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Abstract

The ability to learn is often a desirable property of intelligent systems which can make

them more adaptive. However, it is difficult to develop sophisticated learning algo-

rithms that are effective. One approach to the development of learning algorithms is

to evolve them using evolutionary algorithms. The evolution of learning is interesting

as a practical matter because harnessing it may allow us to develop better artificial

intelligence; it is interesting also from a more theoretical perspective of understand-

ing how the sophisticated learning seen in nature—including that of humans—could

have arisen. A potential obstacle to the evolution of learning when alternative be-

havioral strategies (e.g., instincts) can evolve is that learning individuals tend to

exhibit ineffective behavior before effective behavior is learned. Nurturing, defined

as one individual investing in the development of another individual with which it

has an ongoing relationship, is often seen in nature in species that exhibit sophisti-

cated learning behavior. It is hypothesized that nurturing may be able to increase

the competitiveness of learning in an evolutionary environment by ameliorating the

consequences of incorrect initial behavior. The approach taken is to expand upon a

foundational work in the evolution of learning to enable also the evolution of instincts

and then examining the strategies evolved with and without a nurturing condition in

which individuals are not penalized for mistakes made during a learning period. It is

found that nurturing promotes the evolution of learning in these environments.
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Chapter 1

Introduction

Chalmers (1990) demonstrated that evolutionary processes can produce artificial sys-

tems that learn. The learning that emerged could be either specific to certain tasks

or generalized for any task in the problem space. It was also possible that learning

might not emerge if none of the behavior adjustment rules evolved performed better

than adjusting behavior randomly.

In Chalmers’s work, learning was the only viable phenotypic strategy that could

emerge from evolution. However, if other strategies, such as “instinctual” behavioral

responses (i.e., responses that are innate), were able to emerge alongside the strategy

of learning, it might be found that learning is not always the strategy that emerges

from evolution. Presumably, the evolutionary environment (or objective function)

would have the effect of influencing which strategies emerge; after all, it is reasonable

to think that no one strategy would always be optimal for every possible kind of

environment.

A disadvantage of learning is that individuals tend to have low fitness early in

their life before they have had the opportunity to learn correct behavior. This is in

contrast to individuals that exhibit instinctive behavior and have high fitness at the

start of life. Such effects could make it less likely for learning to evolve in favor of

instinctual behavior.

However, if the penalties incurred during the early stages of learning could be

mitigated then learning may be more likely to evolve. In the biological world this

can be observed in the form of nurturing, often from a parent to a child. In this

1



way, nurturing may increase the competitive viability of learning by protecting the

learner from otherwise costly errors made before proper behavior has been acquired

(Woehrer et al., 2012).

This work examines whether learning is less likely to evolve when both instincts

and learning have the potential to emerge, and how the introduction into the envi-

ronment of a “nurturing” condition—where mistakes made during learning are not

penalized—influences the evolution of learning as opposed to an instinctual strategy

where behavior is fixed during an individual’s lifetime.

To explore these questions, this work uses a combination of genetic algorithms

and artificial neurons applied to a set of supervised learning tasks (the same tasks,

in fact, that were used by Chalmers). The rest of this chapter introduces the follow-

ing topics, in turn: genetic algorithms, artificial neurons, artificial neural networks,

neuroevolution, the evolution of learning, and nurturing.

1.1 Genetic Algorithms

Genetic algorithms were developed by Holland (1975) to explore using artificial evo-

lution as an optimization process. Many others have built on and applied Holland’s

ideas for genetic algorithms over the intervening decades, and several other forms of

evolutionary computation have since been developed (Engelbrecht, 2007). What fol-

lows in this section is a brief explanation of one typical version of a genetic algorithm

that focuses on the mechanisms used in this thesis, but it should be noted that many

other variations exist.

Genetic algorithms are a class of search algorithms inspired by the process of

evolution by natural selection. Solutions to a problem are encoded in strings referred

to as chromosomes. The distinct variables in the solution representation are encoded

in substrings of the chromosome referred to as genes.
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The procedure begins with a population of chromosomes which are typically ran-

domly generated. The chromosomes are evaluated by an objective function—the

problem to be solved—referred to as the fitness function to determine the fitness

value of each one. The goal of the genetic algorithm is to find the chromosome which

maximizes the fitness function and has the highest fitness; in this sense, a genetic

algorithm can be used as a search algorithm that looks for the best solution for an

objective function.

A process of selection is used to determine the chromosomes which will reproduce

into the next generation based on their fitness values, where individuals with higher

fitness are more likely to be selected. In roulette-wheel selection, individuals are

selected with a probability that is linearly proportional to their fitness. In elitist

selection, the individual with the highest fitness is automatically selected.

The selection chromosomes then reproduce to create the next-generation pop-

ulation. One operation used in reproduction is crossover, where segments of two

chromosomes are combined to create a new chromosome. The offspring chromosomes

may also undergo a process of mutation, where each gene has its value changed with

some probability, in order to explore the problem space.

This process is repeated until some stopping condition is met, typically after a

certain number of generations.
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Genetic Algorithm Diagram

Start

Initialize Population

Fitness Evaluation

Differential Reproduction

Stop Condition?

End

yes

no

Figure 1.1: A high-level view of a genetic algorithm.
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1.2 Artificial Neurons

The concept of an artificial neuron was introduced first by McCulloch and Pitts (1943)

as a theoretical model of biological nervous activity. Many others have expanded

upon this neural model and have developed a number of different neural models

(Engelbrecht, 2007). What follows in this section is a brief explanation of one typical

version of an artificial neuron that focuses on the mechanisms used in this thesis, but

it should be noted that many other variations exist.

Artificial neurons are computational elements inspired by the biological neurons

found in nature. An artificial neuron is comprised of a number of weighted input

connections, an activation function which implements a response to input, and a

number of output connections.

fAN(net)

w1

w2

wI

wI+1

a1

a2

aI

-1

o⫶

Figure 1.2: An artificial neuron.

Figure 1.2 depicts an artificial neuron with I inputs, one output, and an ac-

tivation function fAN . The neuron receives a vector of I + 1 input signals, a =

(a1, a2, . . . , aI , aI+1), where aI+1 is known as a bias unit and always has a value of

−1. The input vector is modulated by a weight vector, w = (w1, w2, . . . , wI , wI+1),

where each weight wi modulates the input signal ai. The neuron computes the net
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input as the sum of the weighted input signals, giving

net =
I+1∑
i=1

aiwi.

The output signal, o, is then computed by applying the activation function to the

weighted input, so that o = fAN(net).

A common choice for fAN is the sigmoid function:

fAN(net) =
1

1 + e−λnet

where the parameter λ influences the steepness of the function, but usually λ = 1.

Artificial neurons can be used to compute linearly separable functions without

error. This means that, for such a function, there exists at least one threshold value

such that the neuron can separate the space of I-dimensional input vectors which

produce an above-threshold output from those which produce a below-threshold out-

put by an I-dimensional hyperplane. This threshold is determined by the bias weight

wI+1, meaning that the neuron can be used to separate the input vectors for which

net > 0 from the input vectors for which net ≤ 0.

Learning is a technique by which the weights of an artificial neuron are updated to

realize functions given by data. One type of learning is known as supervised learning,

where the neuron is provided with a data set, known as the training set, consisting of

training patterns of input vectors with associated target outputs. The weights of the

neuron are then adjusted until the error between the actual outputs of the neuron

and the target outputs in the patterns is minimized.

An example of a supervised learning rule is the so-called delta rule (Widrow and

Hoff, 1960). The delta rule requires the definition of an error function, E , to measure

the neuron’s error in approximating training targets. The sum of squared errors is

usually used, given by
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E =

PT∑
p=1

(tp − op)2

where tp and op are the target and actual output for the pth pattern, and PT is the

total number of patterns in the training set.

Given a single training pattern, weights are updated using

wi(t) = wi(t− 1) + ∆wi(t)

with

∆wi(t) = η(− ∂E
∂wi

)

where

∂E
∂wi

= −2(tp − op)
∂fAN
∂netp

ai,p

and η is a constant known as the learning rate, netp is the net input for pattern p,

and ai,p is the ith input signal in pattern p.

The delta rule requires that its activation function fAN is continuous and differen-

tiable; this is so the gradient of the error can be followed toward lower values, giving

the direction in which the weights should be updated. If we use the sigmoid function

for fAN then

∂fAN
∂netp

= op(1− op)

giving

∂E
∂wi

= −2(tp − op)op(1− op)ai,p

Artificial neurons are generally connected together into artificial neural networks

to perform more sophisticated computation; however, this work is based closely on

the work of Chalmers (1990) which considered single neurons in isolation.
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1.3 Artificial Neural Networks

Artificial neural networks were first described by McCulloch and Pitts (1943) in con-

junction with their artificial neuron model, and the field has been developed by many

others in the intervening decades (Engelbrecht, 2007). Rosenblatt (1958) developed

the perceptron, an algorithm for pattern recognition and one of the first artificial neu-

ral networks to be produced. Werbos (1975) and Rumelhart et al. (1986) developed

the backpropagation algorithm for training multi-layer networks.

Today, deep learning network architectures are used for sophisticated pattern

recognition and machine learning tasks (Schmidhuber, 2015). The Neocognitron

(Fukushima, 1980) was both the first deep neural network and the first convolutional

neural network. LeCun et al. (1998) later developed LeNet-5, a convolutional network

that became widely used for recognizing hand-written numbers. The concept of deep

learning was further popularized by Hinton et al. (2006), who referred to “learning”

for “deep belief nets.”

1.4 Neuroevolution

Any feature of an artificial neural network, such as topology, connection weights,

activation functions, learning rules, and input features, can be subjected to an evolu-

tionary process after being string-encoded (Yao, 1999). However, this work will focus

on the evolution of connection weights and learning rules.

The connection weights of a non-learning neuron can be evolved as the fixed

response of that neuron to input. This is analogous to the evolution of instincts or

what we think of as “hard-wired” behavior.

Alternately, the initial connection weights of a learning neuron can be evolved as

the initial behavior which will be modified by the neuron’s learning rule. This can be
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beneficial for evolving passably fit initial behavior that is then fine-tuned by learning

but it can also be the case that the values of the initial weights are not adaptive and

weights are evolved that are effectively random.

Learning rules can be evolved stand-alone by applying them to neurons initialized

with random weights in the fitness function. In this situation the values of the initial

weights do not matter because the idea is to evolve learning rules that will converge

on a solution that is independent of the values of the starting weights.

The initial connection weights and the learning rules that modify them can be

evolved simultaneously. In this situation, instincts, learning, or a combination of both

can be evolved depending on the environment. This work will examine the outcomes

of the simultaneous evolution of connection weights and learning rules under different

conditions, whereas Chalmers examined only the possibility of evolving learning rules.

1.5 The Evolution of Learning

Given the wide variety of artificial neural networks developed over the decades, the

necessity of having appropriate learning rules for each, and the difficulty in deter-

mining such rules, the evolution of learning in artificial neural networks is a topic of

great interest to the research community, and while many researchers have investi-

gated many different approaches to the evolution of learning, many open questions

still remain (Soltoggio et al., 2017).

Evolution and learning are both forms of adaptation. Evolution takes place across

generations whereas learning takes places within an individual’s lifetime. Evolution

can produce adaptive behaviors such as learning or non-adaptive behaviors such as

instincts.

If an environment is sufficiently diverse or dynamic, instinctual behavior is not rea-

sonably adequate for good task performance; this is because such an environment will
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invariably present novel tasks to which the instinctual behavior is not well-adapted.

Evolved learning behavior that is scalable and adaptive to unknown or changing sit-

uations can be seen in countless species in nature.

Bengio et al. (1990) first proposed the optimization of a learning rule via evolu-

tionary search. Chalmers (1990) evolved learning rules by encoding the parameters of

a template formula as strings, demonstrating that the delta rule for supervised learn-

ing can be evolved in certain situations for artificial neurons in static environments.

Fontanari and Meir (1991) expanded upon Chalmers’s approach to evolve a learning

algorithm for single-layer networks with binary weights.

McQuesten and Miikkulainen (1997) evolved reinforcement learning by culling

subpar individuals and having parent networks teach their offspring using backprop-

agation. Niv et al. (2002) demonstrated the evolution of reinforcement learning in

uncertain environments for networks with a single binary output. Shah (2015) simi-

larly demonstrated the evolution of reinforcement learning in changing environments

for networks with large numbers of rational-valued outputs.

1.6 Nurturing

Nurturing is defined as “the contribution of time, energy, or other resources by one

individual to the expected physical, mental, social, or other development of another

individual with which it has an ongoing relationship” (Woehrer et al., 2012).

Nurturing is prevalent in the biological world and can be an important contributing

factor to the evolution of learning (Woehrer et al., 2012; Eskridge and Hougen, 2012),

an idea which has recently been echoed by others (Soltoggio et al., 2017).

Nurturing itself can be either instinctive or learned. Leonce et al. (2012) demon-

strated the evolution of instinctive nurturing in robots.

Nurturing can cover the initial costs of a learner and the resulting benefits of
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learning can be paid forward to the next generation. In this way, nurturing can

promote the evolution of learning.

The work of McQuesten and Miikkulainen (1997), where it was shown that neu-

roevolution could benefit from parent networks teaching their offspring using back-

propagation, is the first known example demonstrating that nurturing can promote

the evolution of learning; although McQuesten and Miikkulainen did not refer to the

teaching they used as nurturing, it conforms to the definition followed in this thesis.

Eskridge and Hougen (2012) conducted experiments involving food patch estimation

in uncertain environments, and their results demonstrated that nurturing as both

social learning and safe exploration can promote the evolution of learning. Shah

(2015) demonstrated that nurturing as task simplification can promote the evolution

of reinforcement learning in changing environments.

This work explores nurturing as safe exploration in that individuals do not incur

fitness penalties for mistakes made during the learning process.

1.7 Contents of the Thesis

The rest of this thesis is organized as follows: Hypotheses about how nurturing af-

fects the evolution of learning and instincts are detailed in Chapter 2. Operational

definitions for terms such as “nurturing” and “instincts” are introduced in Chapter

3. Procedures for the experiments examining the effect of nurturing on the evolu-

tion of learning and instincts are detailed in Chapter 4. The experimental results,

which demonstrate that nurturing facilitates the evolution of learning, are outlined in

Chapter 5. The conclusion that nurturing facilitates the evolution of learning is de-

scribed in Chapter 6. Finally, ideas for exploring the interaction between nurturing

and the Baldwin effect in future work are described in Chapter 7.
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Chapter 2

Hypotheses

Three factors are considered with respect to their effects on the evolution of learning:

(1) the number of tasks, (2) the presence or absence of nurturing, and (3) the pos-

sibility of evolving instincts. Six hypotheses are formulated to explore these factors,

and we consider them in related pairs. The first pair, which makes predictions about

the addition of a non-nurturing condition to Chalmers’s experimental setup, is dis-

cussed in Section 2.1. The second pair, which makes predictions about the addition

of instincts to the experimental setup used by the first pair, is discussed in Section

2.2. The third pair, which makes predictions about the effects of the nurturing and

non-nurturing conditions on the evolution of instincts and generalized learning, is

discussed in Section 2.3. Finally, appropriate hypothesis tests for these hypotheses

are discussed in Section 2.4.

2.1 Hypotheses H1 and H2

The first two hypotheses consider the effects of adding a non-nurturing condition to

Chalmers’s original model.

Chalmers demonstrated that the quality of evolved generalized learning mecha-

nisms is proportional to the number of tasks in the evolutionary environment. When

there are few tasks in the evolutionary environment, high-quality generalized learning

is not expected to evolve because there is no need for evolution to produce learning

that is fit for more general contexts; instead, we would expect specialized learn-

ing rules to evolve which happen to perform well in the evolutionary environment.
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However, as the number of tasks in the evolutionary environment increases, the en-

vironment becomes too complex for any specialized learning to perform well in, and

so we then expect generalized learning to evolve out of necessity.

Given environments like those used by Chalmers, where instincts cannot be evolved,

the addition of nurturing alone is expected to have little impact on the evolution of

generalized learning because learning is still the only viable strategy in that setup.

Therefore, it is expected that the quality of evolved generalized learning mechanisms

will remain proportional to the number of tasks and the quality of the learning evolved

will be no greater with nurturing than without.

H1: When only learning is evolved, the quality of generalized learning evolved

will be proportional to the number of tasks in the evolutionary environment, both

with and without nurturing.

In other words, we expect to be able both to re-confirm Chalmers’s conclu-

sion about the evolution of generalized learning (since the condition under which

Chalmers’s experiments were performed is effectively the same as the nurturing con-

dition here) and to demonstrate that Chalmers’s conclusion remains valid even when

evaluated under the new non-nurturing condition.

H2: When only learning is evolved, the quality of generalized learning evolved

will be equal with nurturing and without.

This is to say that we do not expect the non-nurturing condition to significantly

influence the quality of evolved generalized learning with respect to the quality of gen-

eralized learning evolved under the nurturing condition (i.e., the conditions Chalmers

used). We expect this to be the case because while the non-nurturing condition

does make learning less competitive, there still are no viable alternative strategies to

learning that can be evolved.

It is important to note that H1 and H2 are independent hypotheses, with H1 mak-

ing a prediction about the effect of varying the number of tasks in the evolutionary
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environment and H2 making a prediction about the presence and absence of nurtur-

ing. As such, it is possible for one hypothesis to be supported while the other is not.

For example, it could be the case that more complex environments promote the evo-

lution of generalized learning but that generalized learning is also less likely to evolve

without nurturing because the fitness penalties incurred during learning cause the

generalizability of the learning rules evolved to be somewhat compromised by more

specialized features that reach higher fitness values more quickly during training (but

which perhaps have a lower post-training fitness), and so the quality of generalized

learning evolved is proportional to the number of tasks in the evolutionary environ-

ment but higher-quality generalized learning is evolved with nurturing than without,

in which case H1 would be supported but H2 would not. Alternately, it could be the

case that the absence of nurturing doesn’t affect the quality of generalized learning

evolved but does induce a gating effect on environmental complexity which makes it

much more difficult to evolve generalized learning until some threshold complexity is

reached, and so the quality of generalized learning evolved is equal with nurturing and

without but the quality of generalized learning evolved is not linearly proportional

to the number of tasks in the evolutionary environment without nurturing, in which

case H2 would be supported but H1 would not.

2.2 Hypotheses H3 and H4

The introduction of the ability to evolve initial network weights alongside learning

rules allows for the evolution of “instincts” as an alternate strategy to learning. The

remaining hypotheses consider the effects of adding the ability to evolve initial net-

work weights to the model developed in the first two hypotheses.

It is expected that higher-quality instincts will evolve for small numbers of evolu-

tionary tasks, but higher-quality learning will evolve as the number of evolutionary
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tasks increases. This will be because there will be a smaller number of instinct genes

than learning genes to “tune” to a correct solution for small number of tasks, but

because the number of genes required to represent instincts will increase as the num-

ber of tasks increases the number of instinct genes will become much larger than the

number of learning genes as the number of tasks increases.

H3: When both instincts and learning are evolved, the quality of instincts evolved

will be inversely proportional to the number of tasks in the evolutionary environment,

both with and without nurturing.

In other words, higher-quality instincts will evolve with low numbers of tasks in the

evolutionary environment, and lower-quality instincts will evolve with higher numbers

of tasks in the evolutionary environment. We expect this to be the case because the

number of genes required to represent instinctive responses to the environment will

be proportional to the number of tasks in the environment, and while it is easy to find

good solutions when only small numbers of genes are evolved, it becomes increasingly

difficult to find good solutions as the number of genes involved increases.

H4: When both instincts and learning are evolved, the quality of generalized

learning evolved will be proportional to the number of tasks in the evolutionary

environment, both with and without nurturing.

In other words, higher-quality generalized learning will evolve with low numbers

of tasks in the evolutionary environment, and lower-quality generalized learning will

evolve with higher numbers of tasks in the evolutionary environment. We expect this

to be the case for the same reasons we expect H1 to be supported; indeed, H4 can

be seen as a prediction that the mechanisms behind H1 will still hold despite the

addition of the possibility of evolving instincts.

H3 and H4 can be seen as sort of counterparts to each other because they predict

that the quality of evolved instincts and generalized learning rules will exhibit opposite

trends with respect to the number of tasks in the evolutionary environment; that
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instincts will be strong under the conditions where generalized learning is weak, and

vice-versa. However, it is important to remain clear about the fact that the outcomes

of H3 and H4 have no dependencies on each other because they make predictions

about instincts and generalized learning with respect to the number of tasks in the

evolutionary environment, not each other; it just so happens that we expect instincts

and generalized learning to exhibit opposite trends but we do not necessarily expect a

zero-sum relationship between the two. For example, it could be the case that learning

and instincts are mutually beneficial, and so the quality of both evolved instincts and

generalized learning would be proportional to the number of tasks in the evolutionary

environment, in which case H4 would be supported but H3 would not. Alternately,

it could be the case that the larger number of genes required for more tasks and the

resulting increase in complexity of the search space means that the quality of both

evolved instincts and generalized learning are inversely proportional to the number

of tasks in the evolutionary environment, in which case H3 would be supported but

H4 would not. There are, of course, other possible relationships between the factors

involved such that one or the other or both of these hypotheses are false.

2.3 Hypotheses H5 and H6

The final two hypotheses consider the relationship between the nurturing condition

(present or absent) and the quality of evolved instincts or generalized learning. Nei-

ther of these hypotheses makes a prediction about the relationship between evolved

instincts and generalized learning and the number of tasks in the evolutionary envi-

ronment.

It is expected that higher-quality generalized learning will evolve in the nurturing

condition than in the non-nurturing condition because of the costs associated with

the learning process in the non-nurturing condition; individuals tend to have low fit-
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ness early in their life before they have had the opportunity to learn correct behavior,

but in the nurturing condition individuals do not incur fitness penalties for mistakes

made early in life. Likewise, it is expected that higher-quality instincts will evolve

in the non-nurturing condition than in the nurturing condition because, without nur-

turing, the learning individuals will suffer fitness consequences from their unfit initial

behavior, increasing the competitive value of instinctual behavior in the evolutionary

environment.

H5: When both instincts and learning are evolved, higher-quality instincts will

evolve without nurturing than with.

H6: When both instincts and learning are evolved, higher-quality generalized

learning will evolve with nurturing than without.

Like H3 and H4, H5 and H6 can be seen as counterparts to each other because

they predict that the quality of evolved instincts and generalized learning rules will

exhibit opposite effects with respect to the presence or absence of nurturing. However,

as with H3 and H4, it is important to remain clear about the fact that H5 and H6

have no dependencies on each other because they make predictions about instincts

and generalized learning with respect to the presence or absence of nurturing, not

each other. For example, it could be the case that under the nurturing condition

the increased competitiveness of learning does not inhibit the evolution of instincts,

and so higher-quality generalized learning would evolve with nurturing than without

but the instincts evolved with nurturing would be equal to those evolved without,

in which case H6 would be supported but H5 would not. Alternately, it could be

the case that the penalties incurred during learning under the non-nurturing con-

dition promote the evolution of faster, more effective generalized learning than that

which tends to evolve under the nurturing condition, and so higher-quality generalized

learning evolves without nurturing than with, which in turn promotes the evolution

of better instincts in an example of what is known as the Baldwin effect (Floreano
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and Mattiussi, 2008), in which case H5 would be supported but H6 would not.

2.4 Hypothesis Testing

Hypotheses H1, H3, and H4 make predictions about proportionality, and so they will

be tested using the Pearson correlation coefficient, which is a measure of the linear

correlation between two variables. Hypotheses H2, H5, and H6 make predictions

about performance under one condition being better than performance under another

condition, and so they will be tested using a randomized ANOVA procedure for

comparing performance curves (Piater et al., 1998).

18



Chapter 3

Operational Definitions

An individual is a candidate solution to the genetic algorithm’s fitness function whose

characteristics are represented by a chromosome (Engelbrecht, 2007). In this work,

individuals are manifest as artificial neurons.

A task is a set of input-output patterns, where for each pattern in the task an

individual is evaluated on its ability to produce the pattern output when activated

with the corresponding pattern inputs.

An environment is a set of tasks by which individuals are assessed.

An individual’s lifetime is the period during which it is manifest as an artificial

neuron and assessed by the fitness function. Specifically, an individual’s lifetime

consists of a supervised learning period followed by a final evaluation.

Instincts are to be represented by the genetically encoded initial weights of a

neuron. The tasks are independent, so there will need to be a separate set of instinct

weights for each task.

Learning is to be represented by the genetically encoded learning rule that is

applied to a neuron throughout its lifetime.

For evolved neurons where both initial weights and learning rules are genetically

encoded, instinct quality is measured by removing the learning rule and evaluating the

fitness of the neuron in the environment in which it was evolved. For the same neurons,

learning ability is measured by replacing the genetically encoded initial weights with

random initial weights and evaluating the fitness of the neuron in the environment

in which it was evolved; generalized learning ability is measured by evaluating the
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fitness of this instinct-removed neuron in an environment different from the one in

which it was evolved.

By default, an individual’s lifetime fitness is the average of all fitness evaluations

made during learning—when the individual is prone to making mistakes—and the

final fitness evaluation that follows learning; this is the “non-nurturing” condition. In

the “nurturing” condition, then, an individual’s lifetime fitness is simply the result of

the final fitness evaluation taken after the individual has had an opportunity to learn

correct behavior.
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Chapter 4

Procedure

This chapter details the genetic coding of learning rules and initial weights, the pro-

cedure for evaluating fitness during evolution, the methodology for the selection and

reproduction of individuals to create new populations, and the evaluation of individ-

uals following the evolutionary process.

4.1 Genetic Coding of Learning Mechanisms

The weight update rule for an artificial neuron needs to be based on the components

of that neuron which are, as covered in Section 1.2, aj the activation of the input unit

j, oi the activation of the output unit i, ti the training signal on output unit i, and

wij the current value of the connection strength from input j to output i.

Following Chalmers (1990), the genome encodes a function F such that ∆wij =

F (aj, oi, ti, wij), where F is a linear function of its four parameters and their six

pairwise products. Thus F is determined by specifying ten coefficients.

The genome encodes these ten coefficients, as well as an eleventh “scale” param-

eter. That is,

∆wij = k0(k1wij+k2aj+k3oi+k4ti+k5wijaj+k6wijoi+k7wijti+k8ajoi+k9ajti+k10oiti),

where k0 to k10 are the encoded coefficients.

The portion of the genome which encodes ∆wij consists of 35 bits. The first five

bits encode the scale parameter k0 such that it can represent the values 0, ±1/256,
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±1/128, ..., ±32, ±64, via exponential encoding. The first bit encodes the sign of k0

(0: negative, 1: positive), and the next four bits encode the magnitude. If these four

bits are interpreted as an integer j between 0 and 15, we have

|k0| =


0 if j = 0

2j−9 if j = 1, ..., 15.

The other 30 bits encode the other ten coefficients in groups of three. The first

bit of each group expresses the sign, and the other two bits express a magnitude of

0, 1, 2, or 4 via a similar exponential encoding. If we interpret these two bits as an

integer j between 0 and 3, then

|ki| =


0 if j = 0

2j−1 if j = 1, 2, 3.

4.2 Genetic Coding of Initial Weights

Initial weights may be evolved alongside learning rules. It would not be meaningful

for each chromosome to encode a single set of weights to be used on all tasks, so

instead each chromosome simultaneously encodes a distinct set of weights for each

task in the evolutionary environment. The weights to be applied to each evolutionary

task are encoded in distinct, consistent regions of each chromosome.

Initial weights are encoded using 3 bits each. The first bit is the sign of the

weight, and the other two bits express a magnitude of 0, 1
2
, 1, or 2 via an exponential

encoding. If we interpret the remaining two bits as an integer j between 0 and 3,

then
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|ki| =


0 if j = 0

2j−2 if j = 1, 2, 3.

For each task the number of weights encoded is equal to the number of inputs in

that task plus one bias weight.

4.3 Evaluation of Fitness

Algorithm 4.1: The procedure for evaluating the fitness of a chromosome on
a given task.

input : chromosome,
task,
isNurturingCondition,
areInitialWeightsEvolved

output: The fitness of the chromosome on the task

1 fitness = 0.0
2 denominator = 1
3 if areInitialWeightsEvolved == true then
4 initialWeights = DecodeWeights(chromosome, task)
5 else
6 initialWeights = InitializeRandomWeights(task)
7 end
8 learningRule = DecodeLearningRule(chromosome)
9 neuron = InitializeNeuron(initialWeights, learningRule)

10 for i = 0 to 9 do
11 if isNurturingCondition == false then
12 fitness + = MeasureTaskAccuracy(neuron, task)
13 denominator + = 1

14 end
15 TrainNeuron(neuron, task)

16 end
17 fitness + = MeasureTaskAccuracy(neuron, task)
18 return fitness / denominator

The procedure for evaluating the fitness of a chromosome for a particular task

is shown in Algorithm 4.1. There are two conditions of evaluation: the nurturing
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case and the non-nurturing case. During evaluation, each network is first trained for

10 epochs using its learning rule. Following this, the network is evaluated on the

same tasks. In the nurturing case the individual’s fitness is simply the result of the

evaluation after learning, whereas in the non-nurturing case the individual’s fitness

is the average of the evaluations during all training epochs and the final evaluation

after learning.

Fitness evaluation for the nurturing case:

(1) Create a network with the appropriate number of input units for the task and

a single output unit.

(2) Initialize the connection strengths of the network using the values encoded in

the chromosome.

(3) For 10 epochs, cycle through the training exemplars for the task, where for

each exemplar:

(3a) propagate input values through the system, yielding output values; then

(3b) adjust the weights of the system according to the formula specified by the

weight update rule, on the basis of inputs, output, training signal, and current weights.

(4) At the end of this process, fitness on the task is measured by testing the

network on all training exemplars, and dividing the total error by the number of

exemplars, and subtracting from 1. This yields a fitness value between 0 and 1.

Fitness evaluation for the non-nurturing case:

(1) Create a network with the appropriate number of input units for the task and

a single output unit.

(2) Initialize the connection strengths of the network using the values encoded in

the chromosome.

(3) For 10 epochs, cycle through the training exemplars for the task, where for

each exemplar:

(3a) test the network on the exemplar and measure the error in the network
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output; then

(3b) propagate input values through the system, yielding output values, then

adjust the weights of the system according to the formula specified by the weight

update rule, on the basis of inputs, output, training signal, and current weights.

(4) At the end of this process, test the network on all training exemplars and

divide the total error of this test and all tests from step 3a by the total number of

tests that occurred, and subtracting from 1. This yields a fitness value between 0 and

1.

Fitness of the chromosome is obtained by evaluating its performance on each of

the (typically 20) tasks, and taking the mean fitness over all tasks. In this way every

chromosome is assigned a fitness between 0 and 1.

4.4 Parameters of the Genetic Algorithm

A fixed population size of 40 is used in all experiments. Following the fitness evalu-

ation process described in Section 4.3, a new population of 40 individuals is created

as follows:

(1) Elitist selection is applied, meaning that an exact copy of the individual with

the highest fitness in the previous population is inserted into the new population.

(2) Roulette-wheel selection (where an individual’s probability of being selected is

linearly proportional to its fitness) is used to select 39 individuals from the previous

population with replacement (so an individual can be selected more than once), then:

(2a) the first 32 selected individuals are reproduced by gene-wise two-point crossover

in pairs to create 32 new individuals which are inserted into the new population;

(2b) the remaining 7 selected individuals are reproduced by cloning to create 7

new individuals which are inserted into the new population.

(3) Each individual in the new population is mutated such that each bit in each
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chromosome has a 1% chance of changing.

This cycle of fitness-evaluation and reproduction is repeated for 1000 generations.

4.5 Post-Evolutionary Evaluation

Before each evolutionary run, 10 tasks are selected at random from the task pool and

designated as test tasks, and up to 20 tasks are selected at random from the remaining

20 tasks and designated as evolutionary tasks. New evolutionary tasks and test tasks

are selected for each repetition of an evolutionary run and between evolutionary runs

of the nurturing condition and the non-nurturing condition.

After each evolutionary run, the individual with the highest fitness score in the

history of the populations in that run is identified. This individual is evaluated on the

evolutionary tasks and test tasks from that run using both the nurturing and non-

nurturing conditions (recall that it is evaluated using only one of these conditions

during evolution).

The fitness test for the non-nurturing condition can be seen as testing how much

fitness an individual would collect on average during the learning process (and one

final evaluation immediately afterward); as such, it will be referred to as the intra-

learning fitness test.

Similarly, the fitness test for the nurturing condition can be seen as testing how

much fitness an individual would collect on average after learning as been completed;

it will be referred to as the post-learning fitness test.

To measure weight-generalized learning ability, the individual’s learning rule genes

are isolated and evaluated on the evolutionary tasks (using both the intra-learning

and post-learning tests) by initializing a set of neurons with random initial weights

and the individual’s learning rule, with the intention of determining the contribution

of the portion of the chromosome that encodes the learning rule to the fitness of the

26



whole chromosome.

To measure task-generalized learning ability, the individual’s learning rule genes

are isolated and evaluated on the test tasks (using both the intra-learning and post-

learning tests) by initializing a set of neurons with random initial weights and the

individual’s learning rule, with the intention of determining the capacity for learning

that is generalizable to new tasks.

To measure instincts (when both learning rules and initial weights are evolved),

the individual’s initial-weight genes are isolated and evaluated on the evolutionary

tasks by initializing a set of neurons with the encoded weights (and no learning

rule), with the intention of determining the contribution to the fitness of the whole

chromosome of just the portion of the chromosome that encodes the initial weights.

In other words, this is intended to test the instincts of the individual in the absence

of learning.

Each evolutionary run is repeated 30 times to collect statistically meaningful re-

sults.
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Chapter 5

Results and Discussion

This chapter presents and discusses the results of all experiments performed.

5.1 The Evolution of Learning

This section presents and discusses the results of experiments where learning rules

can be evolved but initial weights cannot, performed under both the nurturing and

non-nurturing conditions.

5.1.1 Evolutionary Runs

Figure 5.1 shows how the average maximum fitness in each population changes over

the generations. Here, the populations are evolved using 20 tasks under either the

nurturing or non-nurturing condition and the fitness shown is the average over 30

repetitions of the most fit individual in each population each generation, considering

the individual’s evolutionary fitness. An individual’s evolutionary fitness is its fitness

when evaluated on the evolutionary tasks used during evolution.

Figure 5.1 shows the increase of maximum fitness with the progression of gen-

erations, which demonstrates the increasing adaptation of the individuals to their

environment. This is the same trend seen in Figure 1 of Chalmers (1990), which

depicted the evolution of maximum fitness in the populations evolved in that work.

This similarity to previous findings helps to validate our setup as sufficient to observe

the evolution of learning and indicates that we have sufficiently replicated Chalmers’s

setup to be confident in comparing our results to his.
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Figure 5.1: The maximum fitness for populations evolved using 20 tasks under the
nurturing and non-nurturing conditions.

5.1.2 Generalized Learning Tests

Figures 5.2 and 5.3 show how the average fitness of individuals evaluated using test

tasks (on which they were not evolved) changes with the number of evolutionary tasks

on which those individuals were evolved. Here, the populations are evolved using 1

to 20 evolutionary tasks under either the nurturing or non-nurturing condition and

the fitness shown is the average over 30 repetitions of the most fit individual from

each evolutionary run being evaluated on 10 test tasks using both the intra-learning

(Figure 5.2) and post-learning (Figure 5.3) tests.

This data is relevant to the following hypotheses:

H1: When only learning rules are evolved, the quality of generalized learning
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Figure 5.2: Intra-learning/non-nurturing generalization test on test tasks for the best
individuals evolved under the nurturing and non-nurturing conditions.

evolved will be proportional to the number of tasks in the evolutionary environment,

both with and without nurturing.

H2: When only learning rules are evolved, the quality of generalized learning

evolved will be equal with nurturing and without.

The data is relevant to these hypotheses because it is interpreted as a measure of

the generalized learning capabilities evolved in each evolutionary run.

Figures 5.2 and 5.3 demonstrate that the generalized learning capabilities of

evolved individuals increase with the number of evolutionary tasks.

The linear correlation between the intra-learning generalized learning fitness and

the number of evolutionary tasks is statistically significant for both the nurtur-

ing condition (Pearson correlation, ρ = 0.52, p < 0.001) and the non-nurturing
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Figure 5.3: Post-learning/nurturing generalization test on test tasks for the best
individuals evolved under the nurturing and non-nurturing conditions.

condition (Pearson correlation, ρ = 0.60, p < 0.001). The linear correlation be-

tween the post-learning generalized learning fitness and the number of evolutionary

tasks is statistically significant for both the nurturing condition (Pearson correlation,

ρ = 0.56, p < 0.001) and the non-nurturing condition (Pearson correlation, ρ = 0.58,

p < 0.001).

The statistically significant linear correlation between the evolved generalized

learning capabilities and the number of evolutionary tasks shows support for hy-

pothesis H1.

The differences between the intra-learning generalization test results for the nur-

turing and non-nurturing conditions are statistically significant for the algorithm

effect but not for the interaction effect (randomized ANOVA, algorithm p < 0.001,
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interaction p = 0.322). The differences between the post-learning generalization test

results for the nurturing and non-nurturing conditions are not statistically significant

(randomized ANOVA, algorithm p = 0.399, interaction p = 0.801).

In the post-learning evaluation, the difference between the quality of generalized

learning evolved under the nurturing and non-nurturing conditions was not found

to be statistically significant. This supports our hypothesis H2 which predicts that

the presence or absence of nurturing will not affect the quality of evolved generalized

learning when learning rules can be evolved but initial weights cannot.

However, in the intra-learning evaluation, the learning rule evolved under the

non-nurturing condition performed better than the learning rule evolved under the

nurturing condition by a statistically significant margin, suggesting that faster gen-

eralized learning is more likely to evolve under the non-nurturing condition. If “the

quality of generalized learning” is interpreted as including a higher learning rate, then

this could be seen to be contrary to our hypothesis that the presence or absence of

nurturing would not affect the quality of evolved generalized learning when learning

rules could be evolved but initial weights could not. Nonetheless, it is important

to note that there was no significant difference found in the quality of the learned

behaviors at the end of the learning period, meaning that the higher learning rate is

not adaptive under the nurturing condition, only under the non-nurturing condition.

This is the same trend shown by the “Test Fitness” line in Figure 2 of Chalmers

(1990). Under both evaluation conditions in each test, the generalized learning fit-

ness was statistically significantly proportional to the number of evolutionary tasks,

suggesting that the quality of evolved generalized learning increases with the number

of evolutionary tasks. This result serves as a re-confirmation of Chalmers’s origi-

nal findings (Chalmers, 1990) and shows that they are robust to the change to a

non-nurturing condition.
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5.2 The Evolution of Learning and Instincts

This section presents and discusses the results of experiments where learning rules and

initial weights can be evolved, performed under both the nurturing and non-nurturing

conditions.

5.2.1 Evolutionary Runs
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Figure 5.4: The maximum fitness for populations evolved using 20 evolutionary tasks
under the nurturing and non-nurturing conditions.

Figure 5.4 shows how the average maximum fitness in each population changes

over the generations. Here, the populations are evolved using 20 tasks under either

the nurturing or non-nurturing condition and the fitness shown is the average over 30

repetitions of the most fit individual in each population each generation, considering
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the individual’s evolutionary fitness. An individual’s evolutionary fitness is its fitness

when evaluated on the evolutionary tasks used during evolution.

Figure 5.4 shows the increase of maximum fitness with the progression of gen-

erations, which demonstrates the increasing adaptation of the individuals to their

environment. This is the same trend shown by Figure 5.1 and Figure 1 of Chalmers

(1990) and indicates that the populations are becoming adapted to their environ-

ments over the generations despite the greater complexity introduced by the addition

of instinct genes.

5.2.2 Intra-Learning and Post-Learning Fitness Test
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Figure 5.5: Intra-learning/non-nurturing fitness test on evolutionary tasks for indi-
viduals evolved under the nurturing and non-nurturing conditions.

Figures 5.5 and 5.6 show how the average fitness of the most fit individual from
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Figure 5.6: Post-learning/nurturing fitness test on evolutionary tasks for individuals
evolved under the nurturing and non-nurturing conditions.

each evolutionary run changes with the number of evolutionary tasks on which that

individual was evolved. Here, the populations are evolved using 1 to 20 evolutionary

tasks under either the nurturing or non-nurturing condition and the fitness shown is

the average over 30 repetitions of the most fit individual from each evolutionary run

being evaluated using both the intra-learning (Figure 5.5) and post-learning (Figure

5.6) tests.

The differences between the intra-learning test results for the nurturing and non-

nurturing conditions are statistically significant (randomized ANOVA, algorithm p <

0.001, interaction p = 0.009).

The differences between the post-learning test results for the nurturing and non-

nurturing conditions are statistically significant (randomized ANOVA, algorithm p <
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0.001, interaction p = 0.022).

Figures 5.5 and 5.6 show that, when evaluated using the intra-learning (non-

nurturing condition) test, those individuals evolved under the non-nurturing condition

on average outperform those evolved under the nurturing condition, and when eval-

uating using the post-learning (nurturing condition) test, those individuals evolved

under the nurturing condition on average outperform those evolved under the non-

nurturing condition. This suggests that the nurturing and non-nurturing conditions

present somewhat different criteria for optimal behavior, and that being very well-

adapted to one condition means being somewhat less well-adapted to the other con-

dition.

5.2.3 Pre-Learning Test

Figure 5.7 shows how the pre-learning fitness of the most fit individual in each evolu-

tionary run changes with the number of evolutionary tasks on which that individual

was evolved. Here, the populations are evolved using 1 to 20 tasks under either the

nurturing or non-nurturing condition and the fitness shown is the average over 30

repetitions of the pre-learning fitness of the most fit individual in each evolutionary

run.

This data is relevant to the following hypotheses:

H3: When both initial weights and learning rules are evolved, the quality of

instincts evolved will be inversely proportional to the number of tasks in the evolu-

tionary environment, both with and without nurturing.

H5: When both initial weights and learning rules are evolved, higher-quality

instincts will evolve without nurturing than with.

This data is relevant to these hypotheses because it is interpreted as a measure of

the instincts evolved in each evolutionary run.

Figure 5.7 shows the decreasing quality of evolved instincts as the number of
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Figure 5.7: Pre-learning/instinct test on evolutionary tasks for individuals evolved
under the nurturing and non-nurturing conditions.

evolutionary tasks increases, demonstrating that it becomes more difficult to evolve

suitable instincts as the number of tasks in the evolutionary environment increases.

The inverse-linear correlation between the pre-learning fitness and the number of

evolutionary tasks is statistically significant for both the nurturing condition (Pearson

correlation, ρ = −0.63, p < 0.001) and the non-nurturing condition (Pearson corre-

lation, ρ = −0.83, p < 0.001). The statistically significant inverse-linear correlation

between the pre-learning fitness and the number of evolutionary tasks shows support

for hypothesis H3.

The differences between the results for the nurturing and non-nurturing conditions

are statistically significant (randomized ANOVA, algorithm p < 0.001, interaction p <

0.001). The statistically significant improvement of the pre-learning fitness evolved
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under the non-nurturing condition over that evolved under the nurturing condition

shows support for hypothesis H5.

As shown in Figure 5.7, under both evaluation conditions, the pre-learning fitness

was statistically significantly inversely proportional to the number of evolutionary

tasks, suggesting that the quality of evolved instincts decreases with the number of

evolutionary tasks when it is also possible to evolve learning.

Individuals evolved using the non-nurturing condition performed better on this

evaluation than individuals evolved using the nurturing condition by a statistically

significant margin, suggesting that instincts (initial weights) make a larger contribu-

tion to fitness in the non-nurturing case than in the nurturing case.

5.2.4 Learning Improvement

To determine the average amount of useful learning that evolves for a given number

of tasks we can examine the difference between the post-learning fitness and the pre-

learning (instinctive) fitness, as shown in Figure 5.8. This is because the pre-learning

fitness is the individual’s fitness before it learns, whereas the post-learning fitness is

an individual’s fitness after it learns.

As shown in Figure 5.8, the improvement in fitness due to learning increases

as the number of evolutionary tasks increases under both the nurturing and non-

nurturing conditions. This suggests that learning becomes an increasingly important

evolutionary strategy as the environment becomes more varied.

The linear correlation between the learning improvement and the number of evo-

lutionary tasks is statistically significant for both the nurturing condition (Pearson

correlation, ρ = −0.39, p < 0.001) and the non-nurturing condition (Pearson correla-

tion, ρ = −0.40, p < 0.001).

The differences between the results for the nurturing and non-nurturing conditions

are statistically significant (randomized ANOVA, algorithm p < 0.001, interaction
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Figure 5.8: The difference between post-learning fitness and pre-learning fitness for
individuals evolved under the nurturing and non-nurturing conditions.

p < 0.001). This suggests that learning makes a greater contribution toward fitness

under the nurturing condition than under the non-nurturing condition.

5.2.5 Weight-Generalization Learning Test

Figures 5.9 and 5.10 show how the average weight-generalized fitness of the most fit

individual in an evolutionary run changes with the number of evolutionary tasks on

which that individual was evolved. Here, the populations are evolved using 1 to 20

tasks under either the nurturing or non-nurturing condition and the fitness shown is

the average over 30 repetitions of the weight-generalized evolutionary fitness of the

most fit individual in each evolutionary run as evaluated by the intra-learning test

(Figure 5.9) and the post-learning test (Figure 5.10).
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Figure 5.9: Random-start, intra-learning/non-nurturing learning test on evolutionary
tasks for individuals evolved under the nurturing and non-nurturing conditions.

Figures 5.9 and 5.10 show that the learning rules evolved under the nurturing

condition perform better than the learning rules evolved under the non-nurturing

condition when using both the intra-learning and post-learning tests.

The differences between the intra-learning test results for the nurturing and non-

nurturing conditions are statistically significant (randomized ANOVA, algorithm p <

0.001, interaction p < 0.001). The differences between the post-learning test results

for the nurturing and non-nurturing conditions are statistically significant (random-

ized ANOVA, algorithm p < 0.001, interaction p < 0.001).

The statistically significant improvement of the weight-generalized fitness evolved

under the nurturing condition than that evolved under the non-nurturing condition

suggests that the learning rule makes a larger contribution to fitness under the nur-
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Figure 5.10: Random-start, post-learning/nurturing learning test on evolutionary
tasks for individuals evolved under the nurturing and non-nurturing conditions.

turing condition than it does under the non-nurturing condition.

5.2.6 Task Generalization Learning Test

Figures 5.11 and 5.12 show how average the task-generalized fitness of the most fit

individual in an evolutionary run changes with the number of evolutionary tasks on

which that individual was evolved. Here, the populations are evolved using 1 to 20

tasks under either the nurturing or non-nurturing condition and the fitness shown is

the average over 30 repetitions of the task-generalized fitness of the most fit individual

in each evolutionary run as evaluated by the intra-learning test (5.11) and the post-

learning test (5.12).

This data is relevant to the following hypotheses:
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Figure 5.11: Intra-learning/non-nurturing generalization test on test tasks for indi-
viduals evolved under the nurturing and non-nurturing conditions.

H4: When both initial weights and learning rules are evolved, the quality of gener-

alized learning evolved will be proportional to the number of tasks in the evolutionary

environment, both with and without nurturing.

H6: When both initial weights and learning rules are evolved, higher-quality

generalized learning will evolve with nurturing than without.

This data is relevant to these hypotheses because it is interpreted as a measure of

the generalized learning capabilities evolved in each evolutionary run.

Figures 5.11 and 5.12 show the increasing quality of generalized learning evolved

as the number of evolutionary tasks increases, demonstrating that more complex

environments provide more incentive for the evolution of generalized learning.

The linear correlation between the generalized learning fitness and the number of
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Figure 5.12: Post-learning/nurturing generalization test on test tasks for individuals
evolved under the nurturing and non-nurturing conditions.

evolutionary tasks is statistically significant for the intra-learning test under both the

nurturing condition (Pearson correlation, ρ = 0.62, p < 0.001) and the non-nurturing

condition (Pearson correlation, ρ = 0.43, p < 0.001) and the post-learning test under

both the nurturing condition (Pearson correlation, ρ = 0.61, p < 0.001) and the

non-nurturing condition (Pearson correlation, ρ = 0.42, p < 0.001).

Under both evaluation conditions, the generalized learning fitness was statistically

significantly proportional to the number of evolutionary tasks, showing support for

hypothesis H4 which predicts that the quality of evolved generalized learning increases

with the number of evolutionary tasks when it is also possible to evolve instincts.

The differences between the results for the nurturing and non-nurturing conditions

are statistically significant (randomized ANOVA, algorithm p < 0.001, interaction
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p < 0.001).

In both evaluation conditions, the learning rule evolved under the nurturing con-

dition performed better than the learning rule evolved under the non-nurturing con-

dition by a statistically significant margin, showing support for hypothesis H6 which

predicts that better generalized learning is expected to evolve under the nurturing

condition and is the key hypothesis that this research set out to investigate. These

results strongly support the idea that nurturing promotes the evolution of learning

under these conditions.

This result suggests that the conclusions reached by (Chalmers, 1990) about the

evolution of generalized learning are robust even to the addition of the ability to

evolve instincts.
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Chapter 6

Conclusions and Contributions

This chapter summarizes the conclusions drawn from the results and indicates how

they contribute to what was already known by the research community. In particular,

this research explicitly considers the interaction of nurturing, learning, and instincts

as does Shah (2015) but is distinguished from Shah by the type of learning evolved

(here, supervised learning; in Shah, reinforcement learning). This is the first research

to consider the impact of nurturing on the evolution of supervised learning and is the

first to measure the quality of the instincts and learning evolved as a function of task

complexity.

When both learning and instincts could be evolved, it was found that nurturing

promoted the evolution of generalized supervised learning compared to the absence of

nurturing, as was expected. This provides concrete evidence that nurturing promotes

the evolution of learning. This is in support of previous findings by Eskridge and

Hougen (2012), who demonstrated that nurturing promotes the evolution of learning

in uncertain environments, Shah (2015), who demonstrated that nurturing promotes

the evolution of learning in changing environments, and McQuesten and Miikkulainen

(1997), who first demonstrated that nurturing could promote the evolution of learning

in an artificial system (although they did not use the unifying term “nurturing” to

describe their work). Moreover, this supports the overall research agenda laid out by

Woehrer et al. (2012) in their call to the research community that first postulated

that nurturing promotes the evolution of learning. This same idea has also recently

been echoed by Soltoggio et al. (2017), apparently independently.
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When only learning could be evolved and a non-nurturing condition was intro-

duced, it was found that the presence of nurturing did not promote the evolution

of learning compared to the absence of nurturing, as was expected. The quality of

generalized learning evolved was found to be proportional to the number of tasks in

the environment in both the nurturing and non-nurturing conditions, reconfirming

the original findings of Chalmers (1990) and demonstrating that they were valid even

under the non-nurturing condition and with the possibility of evolving instincts.

Instincts evolved under the non-nurturing condition were found to be of higher

quality than those evolved under the nurturing condition, and the quality of instincts

evolved was found to be inversely proportional to the number of tasks in the envi-

ronment. These appear to be original results because, while Niv et al. (2002) and

Shah (2015) both allow for the evolution of instincts in their research, Niv et al. do

not consider nurturing versus non-nurturing conditions and neither attempt to mea-

sure the quality of the evolved instincts. While Niv et al. and Shah both showed

that learning could evolve even when the evolution of instincts was possible, neither

considered their interaction with task numbers or nurturing, so this work provides

clarification of the role that instincts may play in the evolutionary process.

These results are both practical and theoretical contributions. They help to fill

in the picture regarding how and when learning and instincts evolve and the role

that nurturing can play in this process. In addition, they should help researchers

understand how to design their evolutionary environments in order to maximize the

quality of generalized learning and/or instinctive behavior that is likely to be evolved.
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Chapter 7

Future Work

This chapter outlines ideas for future work to build on the results found by this work.

7.1 Variations

There are a number of ideas for future work that can be found by imagining straight-

forward variations on this work.

This work investigated nurturing as safe exploration. However, one could in-

vestigate the questions asked by this work using instead nurturing as social learning,

perhaps by having parent individuals use their learned weights to teach their offspring

in the way of McQuesten and Miikkulainen (1997).

This work investigated the evolution of supervised learning, but one could investi-

gate also the evolution of unsupervised or reinforcement learning, as have McQuesten

and Miikkulainen (1997), Niv et al. (2002), and Shah (2015).

This work investigated the evolution of only single neurons tasked with learning

simple, linearly separable boolean functions, and so another clear future direction

would be to investigate the evolution of multi-layer neural networks tasked with op-

timizing more complex tasks, as can be seen by Shah (2015).

This work investigated only the evolution of mathematical models, but real-world

relevance could be demonstrated by investigating the evolution of behavior in robots,

as has been done by Niv et al. (2002) and Leonce et al. (2012).
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7.2 The Baldwin Effect

Baldwin (1896) argued that learning accelerates evolution because suboptimal in-

dividuals increase their baseline fitness by acquiring more adaptive characteristics

during life. Lifetime learning often involves a cost because the individual may be at

risk at an early stage of its life or it may modify its behavior in ways that are not

functional for its survival. Baldwin suggested that evolution tends to select individ-

uals that are born with some of the useful features that would otherwise be learned.

However, a consequence of this effect is that learned features may gradually become

assimilated into the genotype and reduce the role of learning; this is not necessarily

a good effect if it is desirable for the individuals to retain the ability to learn over

evolutionary time (Floreano and Mattiussi, 2008).

Nurturing can reduce the evolutionary costs of learning and thus may be able to

inhibit the Baldwin effect. Inhibiting the Baldwin effect may result in evolved indi-

viduals that retain greater learning capabilities over evolutionarily significant periods

of time.
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Appendix

a1 a2 a3 t1 t2 t3 t4 t5 t6
0 0 0 1 0 0 1 1 1
0 0 1 1 0 0 0 0 1
0 1 0 1 1 1 0 1 0
0 1 1 0 1 0 0 0 0
1 0 0 1 0 1 1 1 1
1 0 1 0 0 0 1 1 1
1 1 0 0 1 1 1 1 1
1 1 1 0 1 1 0 1 0

Table 7.1: Tasks 1 through 6.

a1 a2 t7 t8 t9 t10
1 1 1 1 1 1
0 1 0 1 1 1
1 0 1 0 1 0
0 0 0 0 0 1

Table 7.2: Tasks 7 through 10.

a1 a2 a3 a4 t11 t12 t13 t14 t15 t16 t17 t18
1 1 0 1 0 0 1 1 1 0 0 1
0 0 1 1 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 1 1 1 0 1
1 0 1 0 1 1 0 1 0 1 0 1
0 1 1 1 0 0 0 0 1 1 1 1
1 0 1 1 0 1 0 1 0 0 1 1
1 0 0 1 0 0 1 1 0 0 0 0
1 1 1 1 0 1 0 1 1 1 0 1

Table 7.3: Tasks 11 through 18.

52



a1 a2 a3 a4 a5 t19 t20 t21 t22 t23 t24 t25 t26
1 1 1 1 1 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 0 1 0
1 1 0 0 0 0 1 1 1 0 1 1 1
1 0 1 0 1 1 0 0 0 0 0 1 1
0 1 1 0 0 0 0 1 0 1 1 0 1
0 1 1 1 1 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 1 1 1 0 1
1 1 0 0 1 1 0 0 1 0 1 1 1
1 0 0 1 0 0 0 1 1 1 0 1 1
1 0 1 1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 1

Table 7.4: Tasks 19 through 26.

a1 a2 a3 a4 a5 a6 a7 t27 t28 t29 t30
1 0 0 1 0 1 0 0 1 0 1
0 0 0 0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0 1 1 1
0 1 1 0 1 1 1 1 0 1 0
1 0 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 1 1 0 1 1
1 0 0 1 0 1 0 0 1 0 1
0 0 1 1 1 0 1 1 0 1 1

Table 7.5: Tasks 27 through 30.
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