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Abstract 

 

Furanics are produced in high abundance from the decomposition of biomass. The 

thermal and chemical instability of these species leads to the formation of humins upon 

condensation. The ring rearrangement of furfural via the Piancatelli mechanism to form 

2-cyclopentenone/cyclopentanone is a well-established reaction known to occur in the 

aqueous phase, but this requires a prior condensation where humin formation readily 

occurs. The upgrading of furfural to cyclopentanone in a single step over supported TiO2 

catalysts in the vapor phase is studied. Role of water, nature of active site and mechanism 

were evaluated over different catalyst. This reaction was also investigated in presence of 

acetic acid and water that are the most abundant oxygenated chemicals obtained from 

biomass. Selectivity for ring rearrangement vs. C-O cleavage over TiO2 supported Ru and 

Pd catalysts can be tuned by manipulating the water partial pressure. Furfural and acetic 

acid compete for active sites. The presence of acetic acid influences the adsorption of 

furfural facilitating the breaking of the ring. Finally, combining the ability to synthesize 

carbon nanotubes with different properties, the location of the active site and important 

kinetics pathways for this rearrangement reaction are discussed. 
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Chapter 1: Introduction 

 

Biomass is an ideal alternative to traditional resources because it is 

environmentally friendly, abundant and renewable1. Lignocellulosic biomass is 

composed mostly of three polymers: hemicellulose, cellulose and lignin. The specific 

ratios of these compounds depend on the source, normally  ranged between 40−50%, 

25−35%, and 15−20% of lignocellulose, respectively 2. 

Fractionation of the bio-oil in stages, with a less complex distribution of chemical 

functionalities facilitates the subsequent catalytic upgrading, which is a more promising 

process to remove oxygen from the bio-oil 3. By carrying out the treatment at successively 

higher temperatures different vapor product streams are obtained, which individually are 

far less complex than whole pyrolysis oil. At each stage, the nature of the chemical 

compounds formed depend on their thermal stability. The first stage is initial heating at 

270 °C resulting in the formation of small oxygenates, primarily acetic acid and furfural; 

increasing to 350 °C breaks down cellulose forming sugars as levoglucosan and furfural; 

finally, at the highest pyrolysis temperature, degradation of the lignin and fractions 

remaining in the solid results in a mixture of  multiple methoxylated phenolics (e.g., 

guaiacol, syringol), catechols, phenol, and other lignin monomers, as well as smaller 

amounts of lignin dimers, trimers, etc, Figure 1 4-6.  
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Figure 1 Yields for a three-stage torrefaction process of raw oak 7 

 

The conversion of biomass to fuels and chemicals through fast pyrolysis presents 

great economic potential over alternative methods such as liquefaction, hydrolysis or 

gasification. However, the obtained mixture contains over 400 different oxygenated 

compounds with a variety of functional groups and many undesirable properties due to 

its intrinsic chemistry. Therefore, the upgrading of the mixture is required to obtain 

suitable compounds for fuels and chemicals1,8,9. 

 

Upgrading of furfural 

 

The first stage of torrefaction requires a low temperature (~270 °C) to mainly degrade 

hemicellulose and release vapors that include acetic acid and furfural as major 

oxygenates, together with lesser amounts of C1–C4 oxygenates 10. Furfural is an almond-

scented, oily, colorless liquid. It is used as a solvent for refining lubricating oils, as a 

fungicide and in the production of different chemicals as furfuryl alcohol, 
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Figure 2 Value-added chemicals derived from furfural 

tetrahydrofuran, methylfuran, etc, Figure 2 11. It has been selected as one of the top 30 

biomass derived  building block compounds by the U.S. Department of Energy based on 

several criteria such as the raw material, estimated processing cost, technical complexity, 

and market potential 12. 

 

 

 

 

 

 

 

 

 

 

 

 Besides pyrolysis of biomass, furfural can be also produced by acid–catalyzed 

dehydration of xylose, a pentose sugar, obtained from hemicellulose 13,14. However, 

furfural presents an obstacle for catalytic upgrading processes. First of all, the number of 

carbons in a furfural molecule after deoxygenation is too low to be added with gasoline. 

Secondly, furfural is thermally unstable and rapidly polymerizes forming humins. 

Furfural is highly reactive under typical biomass processing conditions and even at room 

temperature. This rapid polymerization complicates the condensation approach since the 

furfural will have already polymerized. Therefore, the possibility to convert furfural in 
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the dilute vapor phase prior to condensing in the liquid phase can significantly increase 

yields and improve the characteristics of the final product 4,15. 

 

Furfural hydrogenation to furfuryl alcohol  

 

Furfural holds two useful functional groups, a carbonyl and a conjugated furan ring, 

making its role as a versatile building block for various applications. The carbonyl (C=O) 

group of the furfural ring can be reduced leading to furfuryl alcohol, which is the main 

hydrogenation product obtained from furfural 16. The industrial production of furfuryl 

alcohol is performed by selective hydrogenation of furfural in the gas or liquid phase 

using Cu−Cr catalysts. Chromium causes serious environmental problems due to its high 

toxicity. As a consequence of the high toxicity of chromium, experimental and theoretical 

methods have studied the selective hydrogenation of furfural over a variety of 

environmentally acceptable metal catalysts (Cu, Pd, Pt, Co, and Zn) leading to different 

reaction pathways17-19. Among those reaction mechanisms proposed, Cu-based catalysts 

and group VIII metal catalysts are the most widely accepted, Figure 3a, b. Resasco et al. 

showed furfural tends to adsorb perpendicular through the carbonyl group directly bonded 

to the surface via a lone pair of electrons of oxygen in a η1(O)-aldehyde binding mode 

over Cu, and consequently favors hydrogenation of the C=O bond yielding mainly 

furfuryl alcohol 20. The further hydrogenation of the η1(O)-adsorbed species to furfuryl 

alcohol can proceed via either an alkoxide intermediate or a hydroxyalkyl intermediate, 

Figure 3a. The lower activation barrier for hydroxyalkyl intermediate indicates that the 

first H atom prefers to attack at the O atom rather than the C atom of the carbonyl group 

21. 
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Figure 3 Mechanisms of furfural hydrogenation to furfuryl alcohol over a Cu and 

b group VIII metals based on DFT calculations and experimental results 22 

 

 Vlachos et al. investigated the group VIII metal surfaces finding that the most stable 

adsorption mode of furfural is flat in the η2(C,O)-aldehyde configuration with both the C 

and O atoms of the carbonyl group bonded to the metal surface, Figure 3b. The further 

hydrogenation occurs preferentially with a hydroxyalkyl intermediate to furfuryl alcohol 

22. Due to the electron-withdrawing and space effect of the carbonyl group, the furan ring 

of furfural is less accessible to the cleavage of the ring. The hydrogenation of C=C bonds 

in the furan ring of furfural can produce tetrahydrofurfural and tetrahydrofurfuryl alcohol. 

Since the furan ring is stable, metals with strong affinities for C=C bonds allow furfural  

to adsorb parallel to the metal surface, facilitating the saturation of the ring 20.  
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Furfural decarbonylation to furan 

 

Experimental and theoretical studies have shown when the reaction temperature 

increases, the preferred binding mode of furfural changes from the η2(C,O)-aldehyde 

configuration to the η1(C)-acyl configuration, leading to the formation of furan via 

decarbonylation 20. Different catalysts have been investigated for this reaction, including 

supported noble metal catalysts and mixed metal oxides based on non-noble metals such 

as Zn−Fe, Zn−Fe−Mn, Zn−Cr, etc. Pd has been identified as the more selective catalyst 

for furfural decarbonylation, at high temperature and H2 pressure, while catalysts with 

oxophilic sites have been shown to stabilize the metal oxygen bond more strongly and 

hinder the formation of surface acyl species, leading to decreased selectivity of 

decarbonylation products 23,24. Although Pd catalysts are more active than other catalysts, 

the yield of furan decreases sharply with time on stream. Among the various possible 

reasons for the observed deactivation, the most commonly proposed is carbon deposition, 

which could be due to side reactions, such as condensation and/or decomposition of 

furfural. The change of oxidation state and the sintering of the particles can also promote 

deactivation. The further hydrogenation of C=C bonds in the furan ring can produce 

tetrahydrofuran, which has been widely used as a solvent and intermediate for chemical 

production 20.  

 

Furfural conversion to methyfuran 

 

From the point of view of fuel production, either hydrogenation or decarbonylation 

are desirable. While the hydrogenation does not remove O, decarbonylation loses C in 
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the process. On the other hand, 2-methylfuran is an important component for producing 

perfume intermediates, fine chemicals and medicines. More interestingly, this molecule 

is desirable since it not only has intrinsically good fuel properties (high octane number, 

RON = 131, low water solubility, 7 g/L) but also can be considered an archetypical 

product of the desired reaction paths in bio-oil upgrading 25. 2-methyl furan is produced 

from the hydrogenolysis of the C-O bond of furfuryl alcohol. Sitthisa et al. have shown 

that the combination of metals with oxophilic sites can facilitate the selective cleavage of 

this bond, for example through the use of Ni-Fe alloys. In the same study the DFT 

calculations suggest that the oxophilic nature of Fe makes the di-bonded η2(C, O)-

aldehyde more stable than on the pure Ni surface which indicates that the overall stronger 

interaction of the C=O group with the Ni-Fe alloy surface results in the weakening of the 

C-O bond of the furfuryl alcohol, Figure 4 20,26 . 

 

 

Figure 4 Possible species on the surface during conversion of furfural to 2-

methylfuran over Ni-Fe 26 

 

Ring rearrangement of furfural to 2-Cyclopentenone and cyclopentanone 

 

The rearrangement of furfural to cyclopentanone is a promising route since 

cyclopentanone is more stable than furfural and furfuryl alcohol even in hot water at 
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higher temperatures. Furthermore, its ketone group and the α-hydrogen allow the 

coupling of cyclopentanone with other ketones, aldehydes, and also with itself via self-

aldol condensation. Cyclopentanone can be prepared by vapor-phase catalytic cyclization 

of 1,6-hexanediol or adipic esters, liquid phase oxidation of cyclopentene by nitrous 

oxide, and hydrogenation of phenol. However, all of these petroleum based processes are 

less developed because of the high cost of the feedstocks and environmental concerns 27. 

The most studied catalysts for the transformation of furfural to cyclopentanone are 

Cu-based catalysts, with yields in the range of 60−80%. Hronec et al. was the first to 

report the furfural ring rearrangement. Recently they obtained 92.1 mol% yield over 

carbon-supported Pd−Cu catalysts, suggesting that the distribution of Pd0 and Cu+ was 

responsible for the catalyst activity and selectivity 28. Yang et al. investigated this reaction 

over Ni−Cu/SBA-15 bimetallic catalysts in aqueous media under a H2 atmosphere and 

obtained a 62% yield of cyclopentanone 29, while Li et al. obtained a 67% yield over 

Cu−Co bimetallic catalysts . Several noble metals have  also been tested showing good 

activity 25. Hronec and co-workers found that in the presence of 5% Pt/C catalyst, a 76.5% 

yield was obtained in water at 160 °C and 8.0 MPa H2. They also studied the effect of the 

solvent and the metal type (Ni, Pt, Pd, or Ru) on the rearrangement of the furan ring to 

cyclopentanone, showing that Pt was more selective to produce cyclopentanone than 

other metals and that the acid−base properties of the solvent as well as the furfural 

concentration influenced the product distribution 30,31. 

The mechanism of the ring rearrangement of furanic species to cyclopentanone was 

first reported by Piancatelli et al. who observed the rearrangement of 2-furylcarbinol into 

a 4-hydroxycyclopent-2-enone in an acidic aqueous system. The same rearrangement has 
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been also reported with 2-furylcarbinol and furfuryl alcohol. From furfural, this 

mechanism requires an initial hydrogenation step for the formation of furfuryl alcohol 31, 

which is typically achieved over metals in the presence of hydrogen. The subsequent ring 

rearrangement to cyclopentanone is thought to be acid catalyzed by water.  

The nucleophilic attack of the furan ring by H2O in the Piancatelli mechanism, as well 

as the influence of an aqueous environment on stabilization of the intermediate species 

on the metal surface have been stated as explanations for water’s role. Even in the absence 

of added acid, H2, or catalyst, 4-hydroxy-2-cyclopentenone has been reported to result 

from the heating of furfuryl alcohol in water 32. The required acidity in this case was 

reported to result from the hydronium ions inherently present in water. However, in the 

absence of water furfural conversion is mainly to tetrahydrofurfuryl alcohol and 

methyltetrahydrofuran rather than the ring closure products 29.  

Hronec et al 30, proposed a mechanism for the ring rearrangement reaction that 

involves water and claims as first step the formation of carbocation. They based this 

hypothesis in the fact that not ring rearrangement reaction proceeds with 2-methylfuran 

as the reactant. The carbocation specie is produced in an excess of hydrogen by scission 

of the C-O bond in the alkoxide or hydroxyalkyl intermediates, but not by dissociation of 

strong C-H bond in the methyl group of 2-methylfuran. The stabilization of the 

carbocation plays a very important role as well. If the reactive carbocation is not 

stabilized, it is quickly transformed to undesirable products. The stabilization of 

carbocation is achieved by its strong binding on the metal surface and by additional 

interaction with co-adsorbed water and furfural or furfuryl alcohol. Besides influencing 

the adsorption characteristics of the carbocation on the metal surface, water can attack 
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the carbocation and thus favor the cleavage of the C-O bond and subsequently the 

rearrangement of formed species to cyclopentanone. 

 

Figure 5 Proposed reaction mechanism for the furan ring rearrangement to 

cyclopentanone 31 

 

The ring rearrangement of furfural via the Piancatelli mechanism to form 2-

cyclopentenone/cyclopentanone is a desired reaction because it does not involve the loss 

of any carbon and cyclopentanone can undergo  aldol condensation reactions to more 

valuable molecules 27. The transformation of furfural to cyclopentanone is a well-

established reaction known to occur in the aqueous phase, but currently requires a prior 
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condensation where humin formation readily occurs29-31. However, the vapor phase 

conversion of furfural to cyclopentanone has not been studied. Therefore, this work 

focuses on the upgrading of furfural, investigates the reaction chemistry as well as the 

nature of the active sites and the influence of biomass derived co-adsorbates on furfural 

conversion to cyclopentanone in the vapor phase over different bifunctional catalyst. 
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Chapter 2: Stabilization of furanics to cyclic ketone building blocks in 

the vapor phase 

 

Introduction 

Furanic species are well known products of biomass degradation. While a variety 

of techniques can be used to produce furanic species from biomass in high abundance, 

ranging from hydrolysis to pyrolysis, the selective conversion of furanics to higher value 

products while minimizing side reactions such as humins formation remains a challenge. 

A wide range of reactions have been proposed to yield higher value products from 

furanics,26,33,34 the ring rearrangement reaction to form cyclic ketones, commonly referred 

to as a Piancatelli ring rearrangement, carries significant promise.  

The formation of cyclopentanone (CPNO) and its derivatives from the ring 

rearrangement of furanic molecules such as furfural (FAL) is promising for a variety of 

reasons. Cyclopentanone is more stable than FAL and more amenable to long term 

storage and transportation than its furanic counterpart. In addition, CPNO is capable of 

undergoing self-aldol condensation reactions to form jet fuel precursors, unlike 

furfural.27,35,36 CPNO is a valuable specialty chemical as well, serving as an important 

intermediate for the production of a variety of polymers and pharmaceutical 

chemicals.29,37  

Initial studies focusing on this reaction proposed a pathway via the rearrangement 

of a 2-furylcarbinol into 4-hydroxycyclopent-2-enone in the aqueous phase in an acidic 

aqueous environment.38 It has been shown that the presence of water is necessary for this 

reaction to occur, and that the reaction rate is enhanced in acidic environment28-30,32. 
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Unfortunately, the conditions that are known to favor the ring rearrangement (acidic 

aqueous conditions) are also the same conditions that are known to benefit undesirable 

humin formation.  

Among the different techniques that can be used to convert biomass into biofuels 

and more valuable compounds, torrefaction is considered an attractive technique where 

undergoing a mild heat treatment from 200-330 °C biomass partially decomposes, 

releasing mostly water and to a lesser extent organic compounds. This step leads to an 

increase in energy density of the solid residue, that is, the resulting carbon/oxygen ratio 

is higher than the initial 4,39  and decreases costs associated with producing oxygenated 

monomers.1,40 However, the cellulose and hemicellulose are converted to anhydrosugars 

in the process at elevated temperatures, and the bio-oil, once condensed is not thermally 

stable. Furanic species have a well-known propensity to form humin species when stored 

even at room temperature in bio-oil mixtures.1,5,41,42 The possibility to convert these 

furanic species in the dilute vapor phase prior to condensing to a liquid phase has the 

potential to significantly increase yields and improve the overall thermal stability of the 

resulting product.  

While a great deal of effort has been dedicated to the transformation of FAL and 

other furanics in the vapor phase, 43-47 products observed are typically limited to furfuryl 

alcohol (FOL), 2-methylfuran (2MF), furan (FUR) and cracking products. 48-52 Here we 

show that TiO2 supported catalysts in the presence of water vapor at elevated temperature 

and atmospheric pressure can catalyze ring rearrangement reactions in the absence of a 

condensed phase. Water exhibits the remarkable role of shifting the selectivity from 2MF 

to 2-cyclopentenone (2CPNE) and subsequently CPNO, while also decreasing excess 
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hydrogenolysis to form light gases. The model compound studies were found to be in 

good agreement with the reaction of Red Oak torrefaction feeds which contained a 

mixture of furfurals, acids/esters and an excess of water where both cyclopentanone and 

2-methylfuran were produced. The role of the metal/support interface as well as defects 

on the TiO2 support on this reaction is discussed. 

 

Experimental  

Catalyst Preparation 

Ru and Pd catalysts were synthesized using the incipient wetness impregnation 

method of an aqueous solution of hexaamineruthenium (III) chloride (98% Sigma 

Aldrich) and palladium (II) nitrate dehydrated, respectively, on the TiO2 support 

(Aeroxide P25, 0.25 ml/g pore volume) or SiO2 support (Hisil-210, 0.96 ml/g pore 

volume). The catalysts were then dried at room temperature in air for 48 h, at 120 °C for 

12 h in an oven before reducing at 400 °C for 2 h in hydrogen flow. The catalysts were 

pelletized and sieved to yield pellet sizes from 250-420 μm.  

Catalyst Characterization 

Nicholas Briggs performed the characterization of the different catalyst by 

TEM. 

Inductively coupled plasma mass spectrometry (ICP-AES) was utilized to 

determine Ru content of the synthesized catalysts, since Ru is known to have high 

mobility during reduction and form gases which makes the total amount of the metal in 
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the catalyst smaller 53. Ru and Pd particle size distribution was obtained using 

Transmission Electron Microscopy (TEM, JEOL JEM-2100 model). Before imaging, the 

catalysts were pre-reduced in hydrogen flow at 400 °C for 1 h and cooled down to room 

temperature in nitrogen before dispersion in isopropanol and sonication to obtain a 

uniform suspension. A few drops of the suspension were dispersed on carbon-coated 

copper TEM grids. At least 200 particles were counted in order to obtain particle size 

distributions, which are shown in Figure S1 to S10. 

Catalytic Activity Tests 

Catalytic activity was tested in a quartz tube packed bed flow reactor (0.25 in OD) 

at atmospheric pressure and 400 °C. Catalyst particles (250-420 μm) were mixed with 

inert acid-washed glass beads (Sigma Aldrich, Part number: G1277) with a particle size 

range of 212-300 μm and packed between two layers of quartz wool inside the reactor. In 

a typical experiment, pure distilled furfural (obtained from Sigma Aldrich; distilled and 

stored at -15 °C) with a feed flow rate of 0.1 ml/h or co-fed with water 0.25mL/h, was 

vaporized at the inlet zone of the reactor before introduction into a 30 ml/min hydrogen 

flow. The outlet stream of the reactor was heated to 250 °C to prevent condensation of 

compounds in the transfer lines and then flows through a six-port valve to allow for 

injection into a GC for product analysis. Product distribution was analyzed by online gas 

chromatography equipped with flame ionization detector (Agilent 5890), and HP-

INNOWAX column (30 m, 0.25 µm). Identification of products was confirmed using a 

Shimadzu QP-2010 GCMS and standards were used to quantify the various products in 

the FID. Before introduction of the feed, the catalysts were reduced in situ at 400 °C for 

1 h in 100 ml/min hydrogen flow. Mass balances for all the reactions were > 94 %. 
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Oak Torrefaction Experiments 

For these experiments using the real biomass vapors Red Oak sawdust was ground 

to 0.25-0.45 mm and dried in a vacuum oven (0.02 MPa) at 60 °C for 24 hours. Sample 

sizes consisting of 0.7-1.0 mg red oak were packed in a quartz sample tube for use in the 

pyroprobe CDS analytical Model 5250 with autosampler. The heating chamber in the 

pyroprobe is a quartz chamber that was heated to 270 °C for 20 min in 20 ml/min inert 

helium carrier gas. The vapors produced over the 20 min travel through the transfer lines 

where a 20 ml/min hydrogen stream is introduced. Hydrogen is introduced after the 

torrefaction step to ensure torrefaction is carried out under an inert environment. After 

passing through the catalyst bed the vapors are collected in a sorbent trap at -50 °C by 

use of N2. The trap is then desorbed at 300 °C for 3 minutes and the vapors passed through 

1/16” Silcosteel transfer lines at 300 °C to a separate quartz reactor setup for ex situ 

upgrading. An 8” quartz reactor tube placed inside a 2” ID x 6” Fibercraft Heater was 

connected to the pyroprobe transfer lines. 1.0 mg of Ru/TiO2 catalyst was mixed 

thoroughly with 200 mg acid washed borosilicate beads (Sigma Aldrich G1145) to 

prevent channelling. The catalyst bed was maintained halfway through the quartz reactor 

by use of 30 mg of quartz wool. Temperature was measured directly outside of the quartz 

reactor tube by use of an Omega Type K thermocouple.  

Analysis of the vapor product stream was carried out using an online Shimadzu 

QP2010 GCMS-FID system equipped with a RTX-1701 column (60m×0.25mm with 

0.25 µm film thickness). The column oven heating ramp was set to hold at 4 min at 45 

°C then ramp at 3°C/min to 280°C and hold for 20 min. A helium carrier gas was used 

with a total flowrate of 90 ml/min and a column flowrate of 1 ml/min. The products were 
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identified by literature mass spectral data and quantified using FID peak area. Calibration 

injections of known torrefaction products were applied to determine the molar amounts 

of each compound in the product stream. 

The mass spectrum allowed for identification of each product using the mass 

fragmentation patterns and literature while yields were determined using the FID area of 

a peak normalized to 1 mg of biomass fed. The FID/MS split ratio was set to 10:1.  A 

calibration was then applied to determine the μg of carbon/mg biomass. This was done 

using an effective carbon number (ECN) model which is the number of carbons in the 

molecule that are effective in producing FID signal therefore it takes into account the 

various effects of C-O bonds on the FID signal. Due to the large amount of compounds 

seen in pyrolysis/torrefaction, traditional model compound injection calibrations were not 

feasible. This model has been used extensively for the quantification of compounds found 

in oak pyrolysis. The model was validated with our own experimental calibrations of 42 

compounds, including typical compounds of light oxygenates, sugar derivatives and 

phenolic categories.  

 

Results and discussion 

Reaction of pure furfural over Ru/TiO2 

Product distributions for furfural conversion over Ru/TiO2 in the vapor phase are 

shown in Figure 6b. The most abundant product is 2MF (yield = 59.7 % at 0.9 h), is 

produced from the hydrogenolysis of the C-O bond of FOL. Others have shown that the 

combination of metals with oxophilic sites can facilitate the selective cleavage of this 
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bond, for example through the use of NiFe alloys26. While it is known that this 

hydrogenolysis can occur on metal surfaces,20,26,54,55 interfacial sites formed as a result of 

the interaction between Ru and the reducible oxide TiO2  can play an important role in the 

formation of 2MF from FOL as seen by the importance of these sites in reactions such as 

Fischer- Tropsch56 and alkane hydrogenolysis.57  

The unanticipated reaction product observed under these conditions is 2CPNE and 

CPNO. Both of these products appear to increase at higher contact times (W/F, defined 

as grams of catalyst/grams of furfural fed per hour), while FOL yields pass through a 

maximum (yield = 5.5 % at 0.3 h). This result implies that FOL is subsequently converted 

to 2MF or possibly 2CPNE/CPNO at higher W/F values. FOL can be formed from direct 

hydrogenation of the carbonyl C-O bond of FAL on the Ru metal. This reaction has been 

shown to occur over various metal catalysts such as Pt, Pd, Cu and Ni in liquid and gas 

phase21,26,30,54 To obtain FOL, the O atom in the carbonyl group of FAL can adsorb on 

top of the Ru surface in an η1 configuration as has been reported over Cu catalysts.21,58  

FAL can also adsorb on metal surfaces with both C and O atoms bound to the surface in 

a η2 mode.20,59,60 At higher temperatures, the metal oxygen bond of the η2 intermediate 

may break to form a surface acyl, which is a precursor to decarbonylation to produce 

FUR. Catalysts with oxophilic sites have been shown to stabilize the metal oxygen bond 

more strongly and hinder the formation of surface acyl species,26 leading to decreased 

selectivity to decarbonylation products. This may be occurring at the Ru/TiO2 interface 

in this case.  

The unexpected formation of 2CPNE and the subsequent hydrogenation of the 

olefin to form CPNO represent the most interesting products observed here. From Figure 
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6b, the yield of these products increase steadily as the W/F increases. The yield of the 

ring rearrangement products increased at higher W/F values, with the H2O partial pressure 

also increasing with W/F due to the in-situ water generated from 2MF production.  

 

Figure 6 a. Reaction pathway of furfural conversion over Ru/TiO2. b. Furfural 

conversion and product yield with W/F over 4.4% Ru/TiO2 at 400°C. 1 atm, 

TOS: 30 min. Carbon balance ~ 95% all reactions 
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Role of water for furfural conversion to cyclopentanone 

The importance of water for the Piancatelli rearrangement to occur in the liquid 

phase has been discussed extensively in literature 28-30,38, but this reaction has not been 

investigated in the vapor phase. It should be noted that even though water was not 

introduced as a reactant in the results presented above, the CPNO/2CPNE products were 

still observed. Water can be produced in-situ via the hydrogenolysis of FOL to form 2MF 

as discussed earlier. 

To determine whether gas phase water is involved in this rearrangement, furfural 

was co-fed with excess water in a molar ratio 12:1, the results are presented in Figure 7a. 

With the introduction of water, the sum of the CPNO/2CPNE products (yield = 16 %) is 

similar to the yield of 2MF (yield = 17 %). Comparing this with the values obtained 

without water in the feed, CPNO/2CPNE (yield = 7 %), 2MF (yield = 20 %) an 

enhancement in the rate of the ring rearrangement reaction is clearly observed upon the 

introduction of water to the system. The role of the support on this reaction will be 

discussed in the following section.  
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Figure 7 a) Product distribution for pure furfural and furfural co-fed with excess 

water at different molar ratios. 4.4% Ru/TiO2 at 400°C, 1 atm, and 30 minutes 

time on stream. Conversion=35%. Carbon balance ~ 95% all reactions. b) 

Product Yield for water/furfural (12:1 molar ratio) feed mixture over TiO2, 

Ru/SiO2 , Ru/CNT and Ru/TiO2 catalysts W/F = 1.85h (TiO2 ) and 0.13h (Ru/SiO2 

and Ru/TiO2) and  0.39h(Ru/CNT) Conversion = 10% (TiO2 );  25%(5.3% 

Ru/SiO2 );  38% (4.4% Ru/TiO2) and  37% (1% Ru/CNT) T =  400 °C, P = 1 atm, 

TOS = 30 mins. Carbon balance ~ 94% all reactions 
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Active sites responsible for conversion over Ru/TiO2 and Pd/TiO2 

TiO2 supported catalysts have been shown to exhibit several possible types of 

active sites for the selective cleavage of C-O bonds, ranging from the creation of new 

sites at the metal support perimeter to the presence of defects, or promoter effects on the 

support.61 For the conversion of phenolic oxygenates, enhanced rates of C-O cleavage 

have been reported when the reducible oxide TiO2 was introduced as a support, which 

was attributed to the synergy between Ru and TiO2. While it was not clear if these sites 

were around the perimeter of the Ru metal or defects on the TiO2 support far away from 

the metal, further studies showed that defect sites on the TiO2 support are the active sites 

for the initial transalkylation step of guaiacol conversion, while the same is not 

necessarily the case for the subsequent C-O bond cleavage reactions such as the 

conversion of cresol to toluene 53,62.  

To investigate the importance of active sites on the support for this rearrangement, 

pure Ru catalysts (supported on SiO2 and CNT) and a bare TiO2 catalyst with no metal 

loading were compared with Ru/TiO2. The results obtained from feeding a water/furfural 

(12:1 molar ratio) mixture over these catalysts are presented in Figure 7b. Ru can 

facilitate the splitting of water leading to decoration of the metal surface with OH groups, 

which could potentially play a role in this reaction.63-65 We shall proceed by discussing 

the difference in product selectivity observed over the pure Ru catalysts on inert supports 

(Ru/SiO2 and Ru/CNT) and Ru/TiO2. The following are evident: 1) CPNO and 2CPNE 

are only observed over Ru catalysts supported on TiO2; 2) An enhancement in FAL 

conversion to 2MF, which is also a valuable product, is observed when compared to Ru 
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supported on the other tested supports. 3) Decarbonylation and C-C hydrogenolysis rates 

are inhibited on Ru/TiO2 when compared to other supported Ru catalysts. 

This enhancement to form desired products (CPNO/2CPNE and 2MF) as a result 

of the introduction of TiO2 as a support could be due to either sites located around the 

perimeter of the metal particle, or defects in the TiO2. To understand this further, the same 

reaction was conducted over pure TiO2 without the Ru metal. As seen in Table 1, when 

passing FAL and water over TiO2 alone, some 2CPNE/CPNO is observed, but due to the 

lack of a metal that promotes the dissociation of hydrogen, nearly an order of magnitude 

higher TiO2 catalyst amount is necessary to achieve the same level of conversion as with 

metal supported in TiO2.   

If sites at the metal/support interface are directly involved in the ring 

rearrangement reaction, one would anticipate significant shifts in reaction rate with the 

carbon-metal and carbon-oxygen bond strength should play an important role in this 

reaction. To further probe the role of the metal, the FAL reactions with water were carried 

out over Pd supported on TiO2, with Pd forming much weaker bonds with both carbon 

and oxygen than Ru.66 The role of Pd at opening the furanic ring at interfacial sites is 

anticipated to be very different. Considering spillover to the TiO2 support to create 

defects, however, Rekoske and Barteau reported indistinguishable isothermal reduction 

profiles when the two metals were added in similar quantities to a TiO2 support.67 This 

implies that the different behaviour between the two catalysts likely involves the direct 

interaction of the metal with the furanic species, as opposed to a simple shift in the 

number of defects on the TiO2 support at steady state. In Figure 7b the production of 
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CPNO/2CPNE over Pd/TiO2 is clearly lower than observed for Ru/TiO2, but it is still 

present.  

Table 1 shows the rate of formation of various products normalized per metal 

exposed (Ru or Pd), per TiO2 surface area, and per perimeter area surrounding the 

nanoparticles for TiO2 supported catalysts. Ru/TiO2 is the most effective catalyst tested 

for forming ring rearrangement products. When compared with the TiO2 support alone, 

the reaction rate is enhance by approximately 40x when Ru is incorporated, implying that 

the reaction can occur over defects alone, but the rate of this reaction is negligible when 

compared to rate in the presence of a metal. 
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Table 1 Rate of products normalized per exposed metal, support, or metal-support perimeter 

 

  Rate product/exposed metal (mol/m2.h) 

Rate /Per TiO2  

(mol/m2.h) 

Rate/Per Perimeter 

(mol/m.h) 

Carbon 

balance (%) 

Catalyst Conversion (%) FUR LIGHTS 2CPNE+CPNO 2CPNE + CPNO 2CPNE + CPNO  

Ru/SiO2 25 1.23*10-03 1.53*10-03 - - - 95 

Ru/CNT 37 5.55*10-03 9.51*10-04 - - - 94 

Ru/TiO2 38 4.42*10-04 1.78*10-04 1.95*10-03 1.96*10-04 3.52*10-12 95 

Pd/SiO2 11 4.98*10-03 6.02*10-04 - - - 96 

Pd/TiO2 12 6.22*10-04 1.57*10-04 1.21*10-03 5.96*10-05 1.03*10-12 96 

TiO2 10 - - - 5.14*10-06 - 94 

*All reactions conducted at a water/FAL (12:1 molar ratio) feed mixture. W/F = 0.13h (Pd/SiO2 and Pd/TiO2), Conversion = 11.12% (1%Pd/SiO2 ) 

and 13.05%(1% Pd/TiO2), W/F = 1.85h (TiO2 ) and 0.13h (Ru/SiO2 and Ru/TiO2) and  0.39h(Ru/CNT) Conversion = 10% (TiO2 );  25%(5.3% 

Ru/SiO2 );  38% (4.4% Ru/TiO2) and  37% (1% Ru/CNT) T =  400 °C, P = 1 atm, TOS = 30 mins.  
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In the condensed aqueous phase ring rearrangement reaction, it is generally 

accepted that the role of the metal is to hydrogenate the FAL to form FOL, with 

subsequent ring rearrangement reactions occurring in the acidic solvent.31,35  Rates of 

2CPNE/CPNO production when feeding intermediate products (FOL and 2MF) can be 

used to determine the kinetic relevance of pathways involving these intermediates. As 

shown in Table 2 when feeding 2MF no CPNO/2CPNE was observed, which illustrates 

that it is not a relevant intermediate for the reaction. Surprisingly, when feeding FOL, the 

yield of CPNO/2CPNE is lower when than was observed when FAL was fed over 

Pd/TiO2. This indicates that FAL itself can undergo CPNO/2CPNE the furanic 

rearrangement prior to desorbing from the surface, and the role of the metal is not to 

simply supply hydrogen to create defects and yield alcohol intermediates that react on the 

TiO2 support. These results suggest that the active site for this reaction lies at the interface 

of the metal and the TiO2 support. The presence of water accelerates this reaction, even 

under vapor phase conditions. The mechanism by which water interacts with this catalyst 

at elevated temperatures, as well as the role of carbon-metal and carbon-oxygen bond 

strength should be the focus of follow up studies.  
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Table 2 Yield of products for reactions feeding different possible intermediates for 

the ring rearrangement 

 

 

Oak Torrefaction Experiments 

As this reaction showed promise in model compound studies, it was of interest to 

study if the same reaction results would take place with real biomass stream. The effect 

of Ru/TiO2 was studied flowing the Stage 1 torrefaction vapors of red oak to an ex situ 

pulse reactor. The torrefaction stream consisted primarily of water and C2-C3 acids and 

esters. The red oak also yielded 0.21 μmol of furfural specie. The upgrading results over 

Ru/TiO2 for the first biomass pulse have been summarized in Figure 8a. As expected the 

acids and esters underwent ketonization reactions under these conditions to form C3-C4. 

Catalyst Entry* Yield Products (%) 

2CPNE CPNO 2MF Lights FUR CB** 

Pd/TiO2 
 

- - - 0.59 - 93 

 
  2.42 0.12 7.72 0.95 - 89 

  

2.96 1.7 3.94 0.61 2.42 96 

Ru/TiO2 
 

6.82 1.69 5.98 1.40 3.47 95 

*Reaction conditions: water/2MF: 12:1 (W/F = 0.13h (Pd/TiO2, Conversion: 9.15%), water/FOL: 

12:1 (W/F = 0.13h Pd/TiO2, Conversion: 21.8%), water/FAL: 12:1 (W/F = 0.13h Pd/TiO2, 

Conversion: 13.05%), and water/FAL: 12:1(W/F = 0.13 h Ru/TiO2, Conversion: 38%), T =  400 °C, 

P = 1 atm, TOS = 30 mins. **CB: Carbon Balance 
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High levels of ketonization were observed to yield acetone and butanone from acetic acid 

and propionic acid-methyl ester. As shown Figure 8b once condensed, these compounds 

have stable behaviour that limits acid catalyzed reactions, this is of great importance as 

one of the main reasons for separation of the different chemical compounds via thermal 

fractionation is to improve catalyst life. 

However, the most significant finding from this work is, remarkably, the FAL 

species reacted to produce 2CPNE/CPNO and 2MF similar to the model compound 

studies. Furfural conversion levels of 94% were observed in the initial biomass pulse. It 

is important to note that molar ratios of water/furfural levels are even higher with this 

feed than with model compound studies. Competitive adsorption due to the many 

compounds in the torrefaction vapor stream could be playing a major role in shifting the 

product selectivity and reactivity with these real feeds. 

With the real torrefaction stream an increased selectivity to ring rearrangement 

products (74.86 %) was observed compared to dehydration products 2MF (17.18%). A 

summary of product selectivities can be seen in Figure 9a.  Converted furfural not 

accounted is likely cracked into light gases over the metal catalyst.  

During pulse experiments ten pulses of red oak was torrefied approximately two 

hours apart, each time the vapors passed through the reactor with the Ru/TiO2 catalyst. 

As it can be seen in Figure 9b, the conversion to cyclopentenone/cyclopentanone and 

2MF is fairly stable throughout the pulses. It was also observed that the ketonization 

reactions stayed at a stable conversion as well. It would be expected scaling up this 

upgrading process would lead to a stable liquid product. These results also show the 
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Figure 8 a. Product distribution of 1st pulse of Stage 1 torrefaction with 5% 

Ru/TiO2 catalyst. 3b. Sum of moles of acids + esters and ketones as a function of the 

biomass that is pulsed over the reactor 

promise of the torrefaction process. This is the first evidence of a Piancatelli type 

rearrangement using actual biomass feeds. It is well known if a full pyrolysis of oak was 

carried out catalyst deactivation would be significant and unwanted side reactions would 

dominate. As this strategy limits the amount of different organic compounds that pass 

over the catalyst surface, targeted chemistries can occur. This promising product could 

then be upgraded in the liquid phase as discussed previously to form gasoline and/or 

diesel range products. 
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Conclusions 

The carbon efficient reaction of furfural to cyclopentanone/2-cyclopentenone to 

cyclopentanone/2-cyclopentenone was also observed with subsequent hydrogenation to 

form cyclopentanol. Water was demonstrated to play a role in shifting the selectivity from 

2-methylfuran to cyclopentanone and 2-cyclopentenone. The support plays an important 

role in determining the product distribution as pure Ru catalysts produced mainly light 

gases and furan when compared with Ru/TiO2. Experiments feeding various 

intermediates indicate that the vapor phase reaction does not proceed through an alcohol 

intermediate that desorbs from the catalyst surface, as is accepted in condensed phased 

reactions. Experiments over Pd supported catalysts imply that carbon-metal and oxygen-

metal bond strength at the metal/support interface likely play an important role on this 

reaction.  

9. a) 9. b) 
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Using Red Oak as a biomass source, the reaction was also observed with real 

torrefaction feeds in a pulse reactor. With the biomass feeds the selectivity to 

cylcopentanone was enhanced due to the adsorption effects of the numerous compounds 

found in the vapor stream.  
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Chapter 3: Influence of biomass derived co-adsorbates on furfural 

conversion over Ru/TiO2 

 

 

 

 

 

 

Introduction 

Biomass torrefaction yields a significant amount of light oxygenates (acids, 

aldehydes, esters) and sugar derived products (furanics, pyrans) 2. Furanic species such 

as furfural tend to form humins when stored even at room temperature. An upgrading of 

these species in the dilute vapor phase prior to condensing in the liquid phase can 

significantly increase yields and improve the overall characteristics of the final product 

1,5,41,42. 

Furfural (FAL) is considered as a building block for transportation fuels 68. The 

carbonyl group of the furan ring can be reduced leading to furfuryl alcohol (FOL), which 

is the main hydrogenation product obtained from furfural. Depending on the type of metal 

catalyst use decarbonylation 69 and hydrogenolysis26 of the etheric C-O bond  can also 

proceed yielding furan (FUR) or methyl furan (2MF) respectively. It has been shown the 

consecutively ring opening of FUR and 2MF can happen over Ni/SiO2 and Pd/SiO2 

obtaining products in the C4 and C5 range which can further alkylate the furan ring 20,23. 

 

Ru 

Acetic 

Acid Furfural 
Cyclopentanone 

Ring 

Opening 
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More interestingly we have reported the gas phase reaction of FAL co-feeding 

water over bifunctional catalyst such as Ru/TiO2 can undergo selectively transformation 

to 2-cyclopentenone (2CPNE)/cyclopentanone (CPNO). While this reaction is well-

known in the liquid phase as the ring rearrangement reaction 30,31 , our previous report 

showed for the first time this mechanism occurring in the gas phase and with real biomass 

streams. The formation of CPNO is desirable because is more stable than furfural, its 

transformation does not involve a loss of carbon and CPNO can undergo further self-

aldol condensation reaction to products in the jet fuel range 27. 

Various starting reactant molecules have been tested in liquid phase for this 

rearrangement such as FAL, FOL, 4-hydrxoxy-2-carbynol and it has been demonstrated 

that water has an important role for the reaction to occur via key intermediates 29. 

Furthermore, it has been shown that an appropriate addition of weak acids such as acetic 

acid (AcOH) has a positive effect on the production of CPNO over a Ni-based catalyst 

while the addition of basic molecules shows the opposite trend29 . Similarly, results over 

Pt and Pd-Cu catalyst showed 28  the addition of weak acids such as AcOH, NaH2PO4 

preferred the CPNO formation while the addition of Na2CO3, Na2HPO4 favored the 

hydrogenation of FOL to tetrahydrofurfuryl alcohol (THFOL). 

This work investigates the role of water and primarily carboxylic acids in biomass 

such as AcOH for the FAL conversion over Ru/TiO2 to 2CPNE/CPNO in gas phase which 

avoids the formation of humins 7. The ring rearrangement products are observed in the 

presence of the mixture with high water partial pressure and acetic acid. The selectivity 

can be tuned to produce methylfuran vs. cyclopentanone via water partial pressure. 

Competition between the acid and the furfural is observed, the sites for 2CPNE/CPNO 
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production are inhibited by carboxyilic acids. However, water was found to play an 

important role in enhancing the 2CPNE/CPNO production even in presence of the acid. 

The adsorption/desorption of AcOH over the metal may change the adsorption of FAL 

facilitating the breaking of the ring to trans-2-pentenal, this product is observed at high 

selectivity only when co-feeding the acid.  

 

Experimental 

Catalyst Preparation 

Ru catalysts were synthesized using the incipient wetness impregnation method 

of an aqueous solution of ruthenium (III) nitrosyl nitrate solution (1.5% Ru, Sigma 

Aldrich), on the TiO2 support (Aeroxide P25, 0.25 ml/g pore volume) or carbon nanotube 

support. The catalysts were then dried at room temperature in air for 48 h, at 120 °C for 

12 h in an oven before reducing at 400 °C for 2 h in hydrogen flow. The catalysts were 

pelletized and sieved to yield particles sizes from 90-250 μm.  

Catalyst Characterization 

Nicholas Briggs performed the characterization of the different catalyst by 

TEM. 

Inductively coupled plasma mass spectrometry (ICP-AES) was utilized to 

determine Ru content of the synthesized catalysts. Ru particle size distribution was 

obtained using Transmission Electron Microscopy (TEM, JEOL JEM-2100 model). For 

this process, the catalysts were pre-reduced in hydrogen flow at 400 °C for 1 h and cooled 
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down to room temperature in nitrogen before their dispersion in isopropanol and 

sonication to obtain a uniform suspension. Few drops of the suspension were dispersed 

on carbon-coated copper TEM grids. At least 200 particles were counted in order to obtain 

particle size distributions. 

Catalytic Activity Tests 

Catalytic activity was tested in a quartz tube reactor (0.25 in OD) at atmospheric 

pressure and 250°C to 400 °C. Catalyst particles (90 – 250 μm) were mixed with inert 

acid washed glass beads (Sigma Aldrich, Part number: G1277) with a particle size range 

of 212-300 μm and packed between two layers of quartz wool inside the reactor when 

required. In a typical experiment, pure distilled furfural (obtained from Sigma Aldrich; 

distilled and stored at -15 °C ) with a feed flow rate of 0.1 ml/h or co-fed with water or 

acetic acid at different ratios, was vaporized at the inlet zone of the reactor before 

introduction into a 30 ml/min hydrogen flow. The outlet stream of the reactor was heated 

to 250 °C to prevent condensation of compounds in the transfer lines and then flows 

through a six-port valve to allow for injection into a GC for product analysis. Product 

distribution was analyzed by online gas chromatography equipped with flame ionization 

detector (Agilent 5890), and HP-INNOWAX column (30 m, 0.25 µm). Identification of 

products was confirmed using a Shimadzu QP-2010 GCMS and standards were used to 

quantify the various products in the FID. Before introduction of the feed, the catalysts 

were reduced in situ at 400 °C for 1 h in 100 ml/min hydrogen flow.  

 

 

 



36 

Figure 10 Representative TEM images for Ru catalysts a) 4.1% Ru/TiO2 b) 1% 

Ru/CNT 

 

Results and discussion 

Catalyst characterization 

The total metal loading is 4.1% for Ru/TiO2 calculated with ICP. The Ru particles 

size supported on carbon nanotubes (CNT) was 1.5 nm, in the case of Ru/TiO2 the particle 

size was 3.1 nm. TEM micrographs of the catalysts are shown in Figure 10. 

 

 

 

Role of water in furfural conversion over Ru/TiO2 

As the most abundant product from biomass, the role of water was investigated in 

detail for the conversion of FAL using H2 and different ratios of H2O/FAL (H2O/FAL: 5, 

12, 15, 20, 25, and 30). The reduction of furfural is known to proceed in four ways: i) the 

hydrogenation of C=O bond, ii) the hydrogenation of the furan ring, iii) the 

hydrogenolysis of the C=O bond, iv) decarbonylation [9]. However, over Ru/TiO2 as the 

partial pressure of water in the system is increased the yield of the rearrangement products 
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water at different molar ratios (H2O/FAL: 5, 12, 15, 20, 25 and 30) over 

4.1% Ru/TiO2, T= 400°C, P= 1 atm, TOS= 30 mins, W/FFAL: 0.13 h 

Conversion ~ 22% 

2-CPNE/CPNO increments too as shown in Figure 11. There is a clear shift in selectivity 

from FAL to 2MF (yield: 6.39% at H2O/FAL: 30) to FAL to CPNO/2CPNO (yield: 

14.81% at H2O/FAL: 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In liquid phase it was proposed that the hydronium ions formed from the 

dissociation of water can catalyze the furan ring rearrangement reaction by shuttling 

which will require a liquid film that it is not formed in gas phase 32. Furthermore, it is 

believed the water is responsible for initiating the opening and closure of the furan ring 

via nucleophile attack in the 5-position of the furan ring which can make the reaction 

faster 29 . On the other hand, from density functional theory (DFT) calculations it was 

recently proposed the mechanism for the direct deoxygenation of phenol to benzene over 

Pure furfural 

5:1 

12:1 

15:1 

20:1 

25:1 

30:1 

Ratio of water to furfural 
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Ru/TiO2 is by direct proton-assisted of H2O Caryl-OH cleavage mechanism across the 

Ru/TiO2 interface. The last can explain the enhancement of the ring rearrangement 

products in presence of water since the protolytic effect will help with the opening or 

closure of the furan ring to form 2CPNE 70,71. 

An interesting component of this Ru/TiO2 catalyst is the relatively low selectivity 

to furan even under high temperature of 400°C used here. This implies that the Ru/TiO2 

interface may play an important role in this reaction. Oxophilic additions to a metal that 

is capable of decarbonylation are known to destabilize the tendency of the O to lift from 

the surface and stabilize the acyl intermediate. This would inherently reduce the 

selectivity to furan. This can be observed by the addition of the oxophilic metal Fe to Ni 

or Pd catalysts 26. 

The metal/support perimeter has been proposed as the active site for bond 

activation for a variety of reactions. In Ru/TiO2 systems, perimeter sites for C-O bond 

activation have been implicated for phenol dehydroxylation and in Fischer-Tropsch (FT) 

synthesis 56. Furthermore, it was shown that surface water on TiO2 donates protons across 

the Au/TiO2 interface, thus acting as a co-catalyst for CO oxidation on Au nanoparticles 

72 

By varying the water partial pressure the rate of 2CPNE production exhibits a 1.2 

order with respect to water as shown in Figure 12a. In the case of the hydrogenolysis to 

lights the order obtained with respect to water is -0.5 showing an inhibition with the 

addition of H2O (Figure 12b). 

. 
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Figure 12 Rate of 2-cyclopentenone and Lights with respect to order of water. 

Conditions are vs water partial pressure over 5% Ru/TiO2 at 400°C, 15.5 mg 

catalyst. TOS = 30 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Role of acetic acid in furfural conversion over Ru/TiO2 

AcOH is one of the most abundant carboxylic acid present in torrefaction of 

biomass 7. AcOH has also showed a positive enhancement in the furan ring rearrangement 

yields obtained from conversion of FAL in liquid phase 29. Therefore, it is important to 

investigate its role in the reaction of furfural over Ru/TiO2 in gas phase. We conducted 

studies by gradually increasing the partial pressure of AcOH in the system (AcOH/FAL: 

3 and 5).  

The product distribution of the reactions are shown in Figure 13. When AcOH is 

co-fed with FAL in absence of water the overall yield of the furan ring rearrangement 

products and 2MF decreased while the yield of acetone produced by ketonization of acetic 

acid increases 73. More interesting, upon introduction of AcOH there is an appearance of 
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a new ring opening product, trans-2-pentenal which can be formed from hydrolysis of the 

furan ring. 

 

 

 

 

 

 

 

 

 

 

 

 

To further investigate the mechanism of formation of the new ring opening 

product we carried out the reaction co-feeding AcOH and FAL over Ru/C. From the 

results showed in Figure 14 it is possible to confirm this product is obtained by the 

interaction of FAL with the metal in the presence of the acid. The AcOH does not 

participate directly as a reactant for this product. This implies the adsorption/desorption 

of acetic acid over the metal may be changing the adsorption of furfural which can 

facilitate the braking of the ring. 
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Figure 13 Product Distribution for pure furfural and furfural co-fed with acetic 

acid at different molar ratios (AceOH/FAL: 3 and 5) over 4.1% Ru/TiO2, T= 

400°C, P= 1 atm, TOS= 30 mins, W/FFAL: 0.13 h Conversion ~ 18% 
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Figure 14 Product Distribution for furfural co-fed with acetic acid at different 

molar ratios (AceOH/FAL: 5) over 5% Ru/C, T= 400°C, P= 1 atm, TOS= 30 mins, 

W/FFAL: 0.13 h Conversion 33% 

 

Role of mixture acetic acid and water in furfural conversion over Ru/TiO2 

 

Schematic 1 Reaction pathway for furfural reactions cofeeding acetic acid and 

water over Ru/TiO2 
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In real biomass torrefaction stream, FAL is in presence of AcOH and water at the 

same time as well as other molecules. To simulate this torrefaction stream closely, we 

carried out experiments increasing the partial pressure of water while co-feeding FAL 

and AcOH Figure 15. In contrast of the results obtained just co-feeding FAL and AcOH, 

where the FAL absorbs strong in the metal yielding ring opening products while the yield 

of ring rearrangement products is dramatically decreased. The water enhances the yield 

of the furan ring rearrangement products even in the presence of the acid. This also 

evidences a competition between the acid and the aldehyde. 

 

 

Figure 15 Product Distribution for furfural co-fed with acetic acid and water at 

different molar ratios (H2O/FAL: 5, 10, 18, 25) over 4.1% Ru/TiO2, T= 400°C, P= 

1 atm, TOS= 30 mins, W/FFAL: 0.13 h, W/FACE: 0.25 h Conversion ~ 22% 

 

It is also important to note the ketonization reaction of AcOH is inhibited by water 

while at the same time it enhances the FAL conversion to 2MF and 2CPNE/CPNO Figure 

16 a y b. This means there is not a simply competition for active sites, water is necessary 

to accelerate the rate of FAL. Resasco et al studied the kinetics of ketonization over 
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Figure 16 a. Rate of 2-cyclopentenone and b. ketonization with respect to 

order of water in a mixture of FAL, ACE and H2O. Conditions are vs 

water partial pressure over 4.1% Ru/TiO2 at 400°C, 15.5 mg catalyst. 

TOS = 30 min 

Ru/TiO2 in gas phase. The water inhibiton order reported was -0.1 73. This confirms the 

competition between the two reactants FAL and ACE since in the present study the 

calculated order of ketonization inhibition in the mixture is -0.53. 
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Role of temperature in furfural conversion over Ru/TiO2 

To obtain kinetic parameters that can be used to evaluate a given reaction 

mechanism, it is important to conduct the measurements in the absence of mass transport 

limitations. When the reaction is controlled by external diffusion, the measured rate is 

proportional to the mass transfer coefficient “Kc” as presented in Equation (1). 

(1) −𝑟𝑜𝑏𝑠 = 𝑘𝑐(𝐶𝐴𝑆) 

(2) 

 

At the same time, the mass transfer coefficient is a function of the viscosity, 

density, diffusivity, velocity, and catalyst particle size as can be observed in Equation (2). 

However, because of the isothermal conditions, the diffusivity, density, and viscosity are 

considered to be constant during reaction. This leads to a proportionality dependence of 

the mass transfer coefficient with the square root of the ratio of the velocity and the pellet 

radius. Therefore, to ensure operation in a regime devoid of mass transport effects, the 

carrier gas flow and catalyst pellet sizes were varied to determine the regime where 

external mass transfer limitations are eliminated. Hydrogen carrier gas flow was varied 

between 20 and 100 ml/min while catalyst pellet size was changed within the range of 90 

to 425 μm. It is important to mention that the W/F (weight of catalyst in g/feed flow rate 

in g/h) and the partial pressure of furfural were maintained constant during this study. 

Results presented in Figure 17 show that rate increases with the parameter (carrier 

gas velocity/particle size)1/2 in the region where the reaction is mass transfer limited. This 
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effect disappears above 30 ml/min of gas flow suggesting the reaction is devoid of 

external diffusion corruptions above this flow rate. All kinetic experiments were therefore 

conducted with a carrier gas flowrate of 40 ml/min74. 

 

 

Figure 17 Effect of varying carrier gas velocity and catalyst pellet size on rate of 

furfural conversion over 4.1% Ru/TiO2. T= 400 ֯C, P = 1atm 

 

Even though this rules out the presence of external mass transport effects in this 

regime, it does not guarantee the absence of internal diffusion effects within the pores. 

Therefore, internal diffusion limitations were also tested by applying Weisz–Prater 

criterion75 (Equation 3), that is: 
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To apply this criteria the most severe reaction conditions were chosen. That is 

at 400°C, largest pellet size (250 µm) and cofeeding FAL and H2O since those reactions 

showed the highest rate of FAL disappearance. The rates were taken at 30 min time on 

stream. Accordingly, the following operating conditions were used: r (reaction rate per 

volume of catalyst) = 3.59×10−5 mol/sec/cm3; Rp (catalyst particle radius) = 1.25×10−2 

cm; Cs (reactant concentration at particle surface) = 1.006×10−9 mol/cm3. Deff (effective 

diffusivity) = 2.05×101cm2/s, calculated with Ru/TiO2 average pore size diameter of 

around 11.92 nm76. 

𝐷𝑒𝑓𝑓 =
𝜐𝑑𝑝

3
=

(5.16𝑥107𝑐𝑚/𝑠)(11.92𝑥10−7𝑐𝑚)

3
= 2.05𝑥101𝑐𝑚2/𝑠 

Where υ is average velocity of furfural molecules in gas phase at 400 °C and 

1 atm and dp is average pore size diameter of the catalyst. Accordingly, the calculated 

Weisz–Prater number obtained over Ru/TiO2 at 400 °C is 0.158, which assured the 

absence of internal mass transfer limitations. 

The study of the product distribution of FAL and FAL co-fed with water was 

carried out in a range of temperature between 250°C to 400°C. Resasco et al. showed that 

Ni and Pd supported over inert supports like SiO2 yield mainly FUR, FOL and C4 ring 

opening products for the reduction of FAL in gas phase at low temperatures 20. For the 

bifunctional catalyst Ru/TiO2, the main product of the reaction is 2MF with and without 

water with an exception at 400°C where 2CPNE becomes the dominant product Figure 

18 b. 2MF is a desirable product not only because it has intrinsically good properties for 

fuels but it can also undergo to several reactions such as acylation reaction. 
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Ring rearrangement products have a higher energetic barrier of production 

compared with the other products from FAL, it is produced until the temperature reaches 

300°C. The effect of water is clear visible even at lower temperatures. The yield of 

2CPNE increases exponentially with temperature when the water is fed Figure 19. 

However, the apparent activation energy calculated for the reaction cofeeding water is 

higher (65KJ/mol) than the one feeding only FAL (53 KJ/mol). In the former case, the 

presence of water may affect the coverage of FAL and at the same time the heat of 

adsorption. That change will compensate in the true activation energy barrier for the 

reaction.  

 

 

Figure 19 Apparent activation energy for ring rearrangement products with and 

without water. Conditions are 4.1% Ru/TiO2 at 250°C - 400°C, 15.5 mg catalyst. 
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Conclusions 

The role of water and acetic acid in the furfural conversion in vapor phase at 400 

oC has been studied over Ru/TiO2 and a number of reactions such as hydrogenation, ring 

opening, hydrogenolysis were observed over the catalyst to form products such as furfuryl 

alcohol, trans-2-pentenal and 2-methylfuran. The carbon efficient ring rearrangement 

reaction of furfural to produce 2-cyclopentenone was also observed with subsequent 

hydrogenation to form cyclopentanone occurring over the Ru metal. Furfural and acetic 

acid compete for active sites however the selectivity can be tuned to produce 

cyclopentanone via water partial pressure even in the presence of the acid. The presence 

of acetic acid influences the adsorption of furfural facilitating the braking of the ring to 

trans-2-pentenal. We believe the approach here will help bridge the gap between 

fundamental studies and real streams. 
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Chapter 4: Identification of Active Sites in Bifunctional Catalysts with 

Carbon Nanotube Hydrogen Highways 

 

Introduction 

Bifunctional catalysts have shown significant promise in terms of both activity 

and selectivity for the conversion of many families of compounds to more valuable 

products. While examples of superior catalytic activity and selectivity when combining 

two different types of active sites in close proximity are abound, the fundamental reason 

for this enhanced activity is often unknown. One of the most common forms of 

bifunctional catalysts are metals deposited on a catalytically active oxide support, with 

promising activity demonstrated for numerous reactions including C-C cleavage, C-O 

cleavage, and C-O oxidation reactions. Many of these oxide supports are also reducible 

oxides, capable of exhibiting OH groups and oxygen vacancies at elevated temperatures.  

The interaction of a reducible metal oxide with a metal capable of dissociating 

hydrogen can be complex due to the creation of several potential catalytic active sites 

under reduction conditions. These active sites can be separated into two general 

categories, short-range interactions and long-range interactions. Short-range interactions 

are in close proximity to the metal particle and include the highly reducible interface 

along the perimeter of the metal, electronic perturbations to the exposed metal surface 

due to interaction with the support, as well as thin oxide films forming over the metal 

surface. Surface defects, subsurface defects, and surface OH groups that are created due 

to spillover from the metal nanoparticle to the support can be considered long-range 
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interactions, or promoter effects, as the primary active sites are found on the support itself 

77,78 

Understanding the location and nature of the catalytic active site is critical for 

controlling a catalyst’s activity and selectivity. A variety of methods have been applied 

to determine the active sites responsible for the activity observed over bifunctional 

catalysts. One approach is to change the particle size of the metal supported on the oxide 

which changes the perimeter of the metal oxide interface56,79-81.   By systematically 

modifying the perimeter and particle size, correlations with the observed rate can be 

developed between perimeter sites and sites on the metal with various coordination. Lack 

of direct correlation with perimeter or metal surface are often correlated with promoter 

effects. However, the metal oxide interface can change due to strong metal support 

interaction involving decoration or encapsulation of the metal particle by the reducible 

oxide support81-84.   Spectroscopic techniques are also used to propose active sites, 

however, the possibility of observable vibrations from spectator species that are often 

difficult to distinguish from catalytically relevant intermediates complicates this 

approach. 

 Furthermore, either the majority of the literature does not address this question 

or authors simply speculate on the location of the active site without any direct proof.  

 In this work vertically grown carbon nanotubes are used to segregate direct catalytic 

interactions from promoter effects. This is accomplished by separating metal and oxide 

catalysts by a precise distance through a conductive bridge of carbon nanotubes serving 

as hydrogen highways. This approach eliminates direct contact of the metal nanoparticle 

with the oxide support while maintaining the formation and regeneration of prospective 
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active sites on the oxide. Promoter effects of the metal on the oxide are still possible in 

this scenario due to the fact that carbon nanotubes are known to facilitate spillover of 

dissociated hydrogen from the metal as illustrated in Figure 20 85-89    

 

Figure 20 Novel catalyst for locating catalytic active sites for bifunctional catalyst. 

The catalyst consists of a metal (red) capable of dissociating hydrogen (yellow) onto 

a carbon nanotube (grey) where hydrogen can travel along to a metal oxide (blue) 

that can be reduced by the hydrogen 
 

 

Experimental 

Materials 

Chemicals used for multi-walled carbon nanotube growth were isopropanol, iron 

nitrate nonahydrate, cobalt nitrate hexahydrate, aluminum nitrate nonahydrate, and 2-

hydroxyethyl cellulose (Mw ~ 1,300,000). All of the chemicals used were purchased from 

Sigma Aldrich. Silicon wafers of n-type were purchased from Wafer World, Inc. (SKU: 

1186). 18 MΩ water was obtained from an in house filtration system and used in this 

study.  
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Vertical Multi-walled Carbon Nanotube Growth 

 Nicholas Briggs grew the carbon nanotubes up, synthetized the catalyst 

and performed the TPR analysis. 

Vertical multi-walled carbon nanotubes (VMWNTs) were grown by spin coating 

a catalyst solution on silicon wafers. First silicon wafers were cut using a diamond scribe 

into 22 mm x 22 mm square pieces. A catalyst solution was made containing 1.11 wt% 

iron nitrate nonahydrate, 0.39 wt% cobalt nitrate hexahydrate, 1.23 wt% aluminum nitrate 

nonahydrate, and 0.74 wt% 2-hydroxyethyl cellulose all with respect to water. The 

solution was spin coated on the silicon wafers by putting one millimeter of solution on 

the silicon wafer and spin coating using two stages which followed one another. The 

silicon wafer was first spin coated at 500 rpm for 10 seconds and then the spin speed 

increased to 2000 rpm for 30 seconds.  The silicon wafers with the solution were then 

allowed to dry overnight and calcined the next day.  

 The silicon wafer spin coated with catalyst solution was calcined the next day by 

placing the sample in a one inch quartz diameter tube and connecting one end to an inlet 

line and the other an outlet line. The one inch quartz diameter tube was placed in a furnace 

oriented horizontally. With a continuous flow of 150 sccm of air through the quartz tube 

the furnace was ramped to 450°C at 10°C per minute and then held at 450°C for two 

hours. After heating at 450°C the reactor was allowed to cool to room temperature and 

the sample removed from the quartz tube.  

 For the growth of vertically aligned MWNTs the silicon wafer with catalyst was 

placed in a one inch quartz diameter tube and connected to inlet and outlet gas lines. The 
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quartz tube was placed in a furnace oriented horizontally for heating. With a flow of 300 

sccm of hydrogen passing through the quartz tube the furnace was heated to 650°C at a 

rate of 10°C per minute and then held at 650°C for 30 minutes. The flow of hydrogen was 

stopped and a flow of 300 sccm of argon was flowed through the quartz tube and the 

quartz tube ramped to a reaction temperature of 675°C at a rate of 10°C per minute. Then 

the flow of argon was changed to 200 sccm and flowed with ethylene at 200 sccm for 20 

minutes. After the reaction the flow of ethylene was stopped and argon continued to flow 

through the quartz tube as the temperature decreased to room temperature.  

Depositing different catalyst on opposite ends of VMWNTs 

 To facilitate the removal of the VMWNTs from the silicon wafer the sample was 

heated in air to help weaken the interaction between the VMWNTs and catalyst particles 

on the silicon wafer 78,90 . The sample was loaded into a one inch diameter quartz tube 

and the quartz tube connected to inlet and outlet airlines. Next the quartz tube was loaded 

into a furnace oriented horizontally. Air was flowed through the quartz tube at 150 sccm 

while the furnace was heated to 480°C at 10°C per minute and then held at 480°C for two 

hours. After this step the sample was removed from the quartz tube once the temperature 

of the furnace reached room temperature.  

 Physical vapor deposition of palladium and titanium onto VMWNTs was 

completed by using a custom built vacuum evaporator. To evaporate metal onto the 

VMWNTs the VMWNTs were placed in the vacuum evaporator sample area. Next a 

tungsten wire, 1mm in diameter, was connected to two brass electrodes which were 

connected to the power supply. Titanium wire, with a diameter of 0.050 cm, palladium 
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wire, with a diameter of 0.025 cm, or copper wire, with a diameter of 0.01 cm was 

wrapped around the tungsten wire. For all metals a length of 2 cm was wrapped around 

the tungsten wire. A quartz crystal monitor was used to determine the amount of titanium, 

copper, or palladium deposited on the VMWNTs. For making the catalyst where the 

palladium and titanium are separated palladium was first deposited on the VMWNTs. 

After evaporation of the palladium the side of the VMWNTs with palladium was attached 

to aluminum tape, which contains a carbon adhesive, to remove the VMWNTs from the 

silicon wafer. Following this the aluminum tape with VMWNTs was placed back into the 

vacuum evaporator sample area with the end of the VMWNTs without palladium face 

up.  

Titanium was then evaporated resulting in deposition on the other end of the 

VMWNTs. After evaporation of the titanium the VMWNTs on the aluminum tape the 

edges of the VMWNTs on the aluminum tape were cut off using a razor blade. This 

removal of the edges was performed to ensure that any palladium which came into contact 

with titanium was removed since the edges of the VMWNTs on the aluminum tape could 

have both catalysts. Next the VMWNTs on aluminum tape were placed in a petri dish 

filled with isopropanol and soaked for one hour to solubilize the carbon adhesive holding 

the VMWNTs to the carbon tape. After soaking for one hour the aluminum tape was 

shaken to help dislodge the VMWNTs from the carbon tape. The VMWNTs were then 

recovered from the isopropanol. To oxidize the titanium to titania or copper to copper 

oxide the VMWNTs with catalyst were placed in a one inch quartz diameter tube and 

connected to inlet and outlet gas lines. The quartz tube was placed in a furnace oriented 

horizontally for heating. With a flow of 100 sccm of air passing through the quartz tube 
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the furnace was heated to 350°C at a rate of 10°C per minute and then held at 350°C for 

60 minutes. This was done to ensure complete oxidation of titanium to titania and copper 

to copper oxide 91-94 .   

Chemical Reactions 

 Catalytic activity for the four different catalysts was tested in a quartz tube reactor 

(0.25 in OD) at atmospheric pressure and 400 °C. Catalyst particles (90 – 250 μm) were 

mixed with inert acid washed glass beads (Sigma Aldrich, Part number: G1277) with a 

particle size range of 212-300 μm and packed between two layers of quartz wool inside 

the reactor. The quartz tube was placed in a furnace oriented vertically and connected to 

an inlet gas line at the top and an outlet gas line at the bottom. The catalyst was reduced 

by flowing 100 sccm of hydrogen through the quartz tube and heating the furnace up to 

400°C and then holding at the same temperature for one hour.  

 In a typical experiment, pure distilled furfural (obtained from Sigma Aldrich; 

distilled and stored at -15 °C) was fed with a flow rate of 0.1 ml/h or co-fed with acetic 

acid and water with flow rates 0.22 mL/h and 0.37 mL/h respectively. The outlet stream 

of the reactor was heated to 250 °C to prevent condensation of compounds in the transfer 

lines and then flowed through a six-port valve to allow for injection into a gas 

chromatography unit equipped with a flame ionization detector, Agilent 6890, using a 

HP-INNOWAX column (30 m, 0.25 µm) for product quantification. Identification of 

products was confirmed using a Shimadzu QP-2010 GCMS and standards were used to 

quantify the various products in the FID.  
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Catalyst characterization 

 Scanning electron microscopy of the catalyst was performed using a Zeis Neon 

40 EsB scanning electron microscope operating at an accelerating voltage of 5 kV for 

imaging and 10 kV when performing energy-dispersive x-ray spectroscopy. Transmission 

electron microscopy was performed by using a JEOL 200 FX equipped with a LaB6 

filament and operating at 200 kV.  

 Temperature programmed reduction (TPR) of the catalysts was carried out using 

an in house built system. An SRI 110 thermal conductivity detector (TCD) was used to 

analyze the effluent gas that was passed over drierite before entering the TCD, which was 

then analyzed with 5% hydrogen in argon mixture gas flown at the same rate. A flow rate 

of 30 sccm of 5% hydrogen in argon was passed through a ¼” quartz tube packed with 

quartz wool and 10 mg of sample. The quartz tube was mounted vertically in a furnace 

for heating. The temperature was ramped to 800°C at 5°C/minute and then held at 800°C 

for ten minutes. 

Results and discussion 

Selective deposition of catalytic sites at a specific distance along the length of a 

nanotube was accomplished through use of vertically grown carbon nanotube forests 

followed by selective deposition with a metal evaporator to deposit metals such as Pd, Cu 

or Ti. Subsequent calcination forms their respective oxides (e.g. TiO2). Loadings are 

determined through a quartz crystal microbalance to tune deposition conditions. The 

amounts of catalyst deposited can be found in the Table S1. Figure 21 shows an energy 
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dispersive X-ray spectroscopy (EDS) spectra of the separated catalyst prepared with Pd 

metal deposited on one end of the forest with TiO2 on the other. Catalyst particles are 

known to sinter and migrate at various rates depending on the catalyst support 95,96. To 

ensure that migration is not sufficient to induce significant physical contact, EDS spectra 

were taken after treatment at 400°C in hydrogen to ensure that the particles were not 

migrating across the length of the nanotube and the two catalysts are not coming into 

contact.  

No significant penetration of Pd or TiO2 was observed beyond 5 microns depth 

into the forest on either side. Pd and Ti signals were within the noise range in the center 

of the forest. The forest length can be adjusted by changing nanotube synthesis 

conditions, controlling the distance between catalytic particles. In this case, the forest was 

manipulated by removing from the silicon wafer via aluminum tape containing a carbon 

adhesive to position the forest for metal deposition on each side. Trace amounts of residue 

from the tape is removed via a mild thermal treatment in an oxidizing atmosphere. 

 

Figure 21 SEM and EDS spectra of a nanotube forest with Pd and TiO2 deposited 

on opposite ends through metal evaporation and after treatment in hydrogen for 

one hour at 400°C 
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A combination of probe reactions and characterization, using temperature 

programmed reduction (TPR), are used to validate this approach for discerning promoter 

effects from direct catalytic effects in bifunctional catalysts. Prior to conducting catalytic 

runs, simple shifts in reduction profile of a CuO catalyst supported on a carbon nanotube 

was conducted in the presence or absence of physically separated Pd on the same 

nanotube. Pd is well known to reduce and dissociate hydrogen at temperatures well below 

those required for dissociation on Cu.i Pd catalysts can be reduced 100°C or even at room 

temperature while CuO reduces just above 200°C 23.i The TPR profile for Pd and CuO 

spatially separated on carbon nanotubes (Pd/CNT/CuO) is compared with identically 

deposited CuO on carbon nanotubes alone (CuO/CNT) in Figure 22 a. EDS spectra of 

this catalyst after high temperature reduction confirming lack of direct Pd-Cu contact can 

be found in Figure 22 b.  
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Figure 22 a. TPR profiles of CuO/CNT and Pd/CNT/CuO catalysts. b. SEM and 

EDS spectra of a nanotube forest with Pd and CuO deposited on each end through 

metal evaporation and after treatment in hydrogen for one hour at 400°C 

 

As can be seen in Figure 3 b, the reduction temperature for CuO is lowered by 

30°C when Pd is present on the same carbon nanotube. Pd is reduced during equilibration 

of the TPR system at room temperature. Therefore, this reduction temperature shift is 

associated with CuO and indicates dissociated hydrogen from the Pd is spilling over onto 

the carbon nanotubes and reaching the CuO causing the CuO to reduce at a lower 

temperature than normal. Comparable shifts in reduction temperature have been observed 

when Pd and CuO are in direct contact in the absence of the carbon nanotube bridge 23. 

This illustrates that hydrogen is capable of travelling along the length of the carbon 

nanotube to reach the oxide and facilitate its reduction. 
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In order to demonstrate the capability of this approach to create promoter effects 

via continuous reduction of an oxide across a carbon nanotube bridge, a combination of 

probe molecules were introduced in parallel to a catalyst containing Pd and TiO2. Acetic 

acid (AceOH) ketonization is a reaction that is known to occur over TiO2, with the rate 

of ketonization to form acetone (ACE) scaling with the number of available oxygen 

vacancies on the surface 73,97. While this reaction is enhanced by the presence of oxygen 

vacancies, these vacancies are not consumed in the process. This makes this reaction an 

ideal probe of the number of defects on the TiO2 surface. 

 Cleavage of oxygen from carbonyl containing species has been proposed over 

reducible oxide catalysts via a reverse Mars van Krevelin approach 98. Specifically over 

TiO2, the selective conversion of furfural (FAL) to form methyl furan has been proposed 

to occur over TiO2 oxygen vacancies that are produced by hydrogen spillover from the 

metal 99,100 

 The selective deoxygenation of furfural has been a subject of many recent 

research articles due to its prevalence in biomass derived stream 33,78,97,101  This reaction 

would consume defects, requiring hydrogen spilled over from the Pd to reduce the oxide 

again and complete the catalytic cycle. By co-feeding AceOH with FAL over a catalyst 

with physically separated sites, one can test significance of this promotion path under 

reaction conditions. As can be observed in Figure 23, the rate of acetone production from 

acetic acid is markedly enhanced in the presence of Pd on the other side of the nanotube 

(Pd/CNT/TiO2) when compared with the catalyst with TiO2 only on the CNT, 

(TiO2/CNT). This reveals that the Pd is capable of generating defects on the TiO2 support 

necessary to enhance the rate of the ketonization reaction.  
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Figure 23 Acetone yield when co-feeding furfural and acetic acid over a) TiO2/CNT 

and b) Pd/CNT/TiO2.  At T= 400 oC, P = 1 atm, under a H2 flow, 30 min TOS 

 

 

In addition to generating active sites, it should be noted that the catalyst with the 

separated Pd sites exhibits increased stability. The low stability over the TiO2/CNT 

catalyst could be due to furfural deoxygenation yielding methylfuran, which would 

consume oxygen vacancies in the process. This deactivation is even more pronounced if 

the TiO2 contains several oxygen vacancies prior to introducing the reactants. This result 

can be found in Figure 24, where a severely pre-reduced TiOx exhibits similar rates of 

acetone formation to the Pd/CNT/TiO2 catalyst after 40 minutes on stream, but the 

deactivation rate is clearly diminished when Pd is present.  

These results indicate that if furfural deoxygenation to form methylfuran is 

occurring on TiO2 defects, the regeneration of active sites by spillover from the Pd is fast 

enough to maintain a stable level of catalytic activity (oxygen vacancies) necessary for 

steady acetone production. In other words, defect regeneration is not rate limiting, or one 
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would expect acetone formation rates to approach levels representative of a non-pre-

reduced catalyst. An alternative explanation could be that side reactions such as aldol 

condensation and eventual coke formation lead to catalyst deactivation when furfural is 

present. In this case as well, the conclusion that Pd levels are sufficient to maintain a 

steady population of surface defects necessary for the proposed furfural deoxygenation 

due to defects on the support under reaction conditions is still valid.   

 

 

Figure 24 Acetone yield comparison as a function of TOS between TiO2/CNT, not 

calcined and Pd/CNT/TiO2 

 

 Since defects are present on the TiO2 surface at steady state when the Pd and TiO2 

catalysts are separated on a nanotube bridge, the role of direct contact between the TiO2 

and the Pd nanoparticle may be investigated. Error! Reference source not found.25 shows 

that Pd on nanotubes alone (Pd/CNT) yields similar rates and selectivity to furan vs. 
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methylfuran when compared with Pd and TiO2 deposited on opposite ends of carbon 

nanotubes (Pd/CNT/TiO2). In contrast, selectivity for methyl furan increased 

significantly, when Pd is deposited on the same side as TiO2 on the carbon nanotubes 

(Pd/TiO2/CNT). It should be noted that furfural conversions were comparable over all 

catalysts (within 3%). These results suggest that active sites for methylfuran production 

are due to direct contact between the Pd and the TiO2, as opposed to on longer range 

defects as some have claimed 99,100. Corma et al. suggested that selective C-O cleavage 

reactions may occur at the periphery of the metal particle, and this evidence appears to 

support this conclusion 102.  

 

 

Figure 25 Reaction feeding furfural over Pd and TiO2 catalysts supported on 

CNTs. T= 400 oC, P = 1 atm, under a H2 flow, 30 min TOS 

 

Conclusions 

This method can be used with a variety of different bifunctional catalyst to segregate the 

role of sites induced by direct contact from promoter effects. Not only does this approach 
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provide the ability to determine the location of catalytically active sites in bifunctional 

catalysts, but also further improve our understanding of the role of defects on hydrogen 

spillover. By coupling precise probe reactions and segregated oxide reduction rates with 

functional groups present and distance between the catalytic moieties on aligned nanotube 

supports, this system provides a surrogate for future kinetic studies to quantify the role of 

functional groups on hydrogen spillover rates on carbon supports as well. 
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Chapter 5: Concluding remarks 

Conversion of furfural in vapor phase at 400°C has been studied and a number of 

reactions such as hydrogenation, decarbonylation, and hydrogenolysis were observed 

over the catalyst to form products such as furfuryl alcohol, furan and 2-methylfuran. The 

carbon efficient reaction of furfural to cyclopentanone/2-cyclopentenone to 

cyclopentanone/2-cyclopentenone was also observed. Water was demonstrated to play a 

role in shifting the selectivity from 2-methylfuran to cyclopentanone and 2-

cyclopentenone. The support plays an important role in determining the product 

distribution as pure Ru catalysts produced mainly light gases and furan when compared 

with Ru/TiO2. Experiments feeding various intermediates indicate that the vapor phase 

reaction does not proceed through an alcohol intermediate that desorbs from the catalyst 

surface, as is accepted in condensed phased reactions.  

Furfural and acetic acid compete for active sites however the selectivity can be 

tuned to produce cyclopentanone via water partial pressure even in the presence of the 

acid. The presence of acetic acid influences the adsorption of furfural facilitating the 

braking of the ring to trans-2-pentenal. Using Red Oak as a biomass source, the reaction 

was also observed with real torrefaction feeds in a pulse reactor. With the biomass feeds 

the selectivity to ring rearrangement products was enhanced beyond the levels observed 

with the model compound studies, illustrating the potential of this reaction to convert 

furfural in real biomass streams. We believe the approach here will help bridge the gap 

between fundamental studies and real streams. 
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Finally, experiments over Pd supported catalysts imply that carbon-metal and oxygen-

metal bond strength at the metal/support interface likely play an important role on this 

reaction. This was also confirmed with the experiments using a separated metal and oxide 

catalysts by a precise distance through a conductive bridge of carbon nanotubes serving 

as hydrogen highways.  
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Appendix A1: Effect of partially oxidized Ni sites in furfural 

decarbonylation/hydrogenation reactions 

 

 

 

Introduction  

The role of surface structure of active sites and the influence of pretreatment of 

the catalyst are often highly complex and difficult to be separated. Understanding those 

effects, allows for the achievement of the highest possible performance of the catalyst 

under reaction conditions103-105. Previous studies have demonstrated that many 

industrially significant reactions including catalytic combustion, ammonia production 

and Fischer−Tropsch synthesis, amongst others are structurally sensitive56,106,107. For 
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instance, the hydrogenation of different aldehydes such as furfural and cinnamaldehyde 

over Pt has been shown to strongly depend of particle size and high selectivity of the 

alcohol has been achieved by manipulating size in each case 104,108. 

On the other hand the pretreatment conditions used in the catalyst for different 

reactions have also been shown to have an impact on selectivity 106. Feng et al. studied 

the effect of catalyst reduction temperature on the hydrogenolysis of glycerol over 

Ru/TiO2. The reaction activity decreased with increasing catalyst reduction temperature, 

which they attributed to the growth in Ru particle size and the strong metal-support 

interaction (SMSI), which results in partially covering of Ru metal particles by Ti2O3 

species 109. The effect of reduction temperature was also studied for CO/CO2 

hydrogenation over Pd-CeO2 and it was found to affect the structural properties and 

catalytic behavior. At higher reduction temperature, the significant growth of palladium 

particles and the sintering of the ceria support weaken the interaction between Pd and 

ceria resulting in fewer CO conversions 110.  

However, reduction temperature not only affects the particle size but also allows 

for the presence of oxide over layers of the surface 106. For the CO oxidation on Pt it was 

suggested the reactivity of PtO2 (110) was higher than that of a Pt metal surface 111,112. 

Later Gong et al. 113 compared calculated CO oxidation energetics for Ru(0001), Rh(111), 

Pd(111), Os(1000), Ir(111), Pt(111) and their corresponding oxides. They concluded that 

the oxides are indeed more reactive than metal 113. Furthermore, Min et al. 114 explained 

the existence of three types of oxygen species on Au(111) that can influence the CO 

reaction: chemisorbed oxygen not part of an ordered phase, well-ordered oxygen on the 
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surface of the oxide , and bulk oxide. The authors claimed that chemisorbed oxygen and 

the surface gold oxide species were more reactive than bulk gold oxide 106. 

Furfural (FAL) is one of the most abundant products obtained from biomass and is 

considered as a building block for transportation fuels 68. The carbonyl group of the furan 

ring can be reduced leading to furfuryl alcohol (FOL), which is the main hydrogenation 

product obtained from furfural. Depending on the type of metal catalyst used 

decarbonylation 69 and C-O bond cleavage 115 can also proceed yielding furan (FUR) or 

methyl furan (2MF) respectively. Both Cu and group VIII metals can be used for furfural 

hydrogenation, but they exhibit different catalytic mechanisms. The Cu-based catalysts 

are used more than group VIII metal catalysts in gas-phase reactions and favor the 

production of furfuryl alcohol via perpendicular adsorption mode 20,21. The group VIII 

metals, especially Ni and Pd, are mainly used in liquid-phase reactions and can produce 

2-methyl furan, furan, and ring opening products at high temperatures or H2 pressures 

22,23.  

In this work we investigate the selectivity of furfural conversion over Ni/SiO2 

catalysts. By reduction/oxidation treatments and particle size studies we decouple the 

effect of NiOx presence on the surface of the catalyst and size of the clusters. The 

unexpected enhancement of furan yield with decreasing reduction temperature and 

oxidizing of the catalyst was attributed to the change in oxophilicity due to the presence 

of NiOx in the catalyst. Hydrogenation reaction of furfural to furfuryl alcohol showed a 

behavior of sensitive structure reaction, as it increases with increasing particle size. This 

results allowed us to have higher selectivity for either furfuryl alcohol or furan using the 
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same catalyst, Ni/SiO2, by changing the pretreatment conditions of the catalyst and 

understanding better the decarbonylation chemistry. 

 

  Experimental section 

Nicholas Briggs and Santiago Umbarila performed the TEM and TPR analysis. 

Catalyst Preparation. Ni catalysts of 3%, 5% and 7% content were synthesized 

using the incipient wetness impregnation method of an aqueous solution of nickel (II) 

nitrate hexahydrate solution 99.999% trace metals basis, on a SiO2 support (Silicon 

dioxide, 99.8%, from Sigma Aldrich). The catalysts were then placed in a calcination 

system where air was flowed at 150 ml/min through the system. The system was ramped 

to 100°C at 2°C/min and held at 100°C for four hours, followed by ramping to 400°C at 

2°C/min and held at 400°C for four hours. The catalysts were pelletized and sieved to 

yield particles between the sizes of 90-250 μm.  

Catalyst Characterization. Ni particle size distribution was obtained using 

Transmission Electron Microscopy (TEM, JEOL JEM-2100 model, equipped with a LaB6 

filament and operating at 200kV). For this process, the 3%, 5% and 7% catalysts were 

pre-reduced in hydrogen at 300 °C and 500 °C for 1 h and cooled down to room 

temperature in nitrogen before their dispersion in isopropanol and sonication to obtain a 

uniform suspension. A few drops of the suspension were deposited on TEM grids. At least 

100 particles were counted in order to obtain particle size distributions. 

Temperature programmed reduction (TPR) of the catalysts was investigated by 

flowing a gas mixture of 5 % H2 in Ar at 35 ml/ min over 50 mg of sample. The 
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temperature was linearly increased from room temperature to 800 C at a rate of 10 °C/min. 

A thermal conductivity detector (TCD) (SRI 110) was used to analyze the effluent gas. A 

calibration curve was generated by conducting a series of TPR runs with CuO standard 

samples to quantify the amount of hydrogen consumed. The quantity of Ni present in the 

sample was calculated by integrating the TPR signal of the calcined catalyst and assuming 

that Ni was present as NiO. TPR experiments were also used for analyzing 

reduction/oxidation treatments of the catalysts. 

The product samples were analyzed by online gas chromatography equipped with 

flame ionization detector (Agilent 5890), and HP-INNOWAX column (30 m, 0.25 µm). 

The products were also collected in an ice-trap and confirmed using a Shimadzu QP-2010 

GCMS.  

Catalytic Activity Tests. Catalytic activity was tested in a quartz tube reactor (0.25 

in OD) at atmospheric pressure and 250°C. Catalyst particles (90 – 250 μm) were mixed 

with inert acid washed glass beads (Sigma Aldrich, Part number: G1277) with a particle 

size range of 212-300 μm and packed between two layers of quartz wool inside the reactor 

when required. In a typical experiment, pure distilled furfural (obtained from Sigma 

Aldrich; distilled and stored at -15 °C ) with a feed flow rate of 0.5 ml/h was vaporized 

at the inlet zone of the reactor before introduction into a 40 ml/min hydrogen flow. The 

outlet stream of the reactor was heated to 250 °C to prevent condensation of compounds 

in the transfer lines and then flowed through a six-port valve to allow for injection into a 

GC for product analysis. Before introduction of the feed, the catalysts were reduced in 

situ at different temperatures between 300 to 500 °C for 1 h in 100 ml/min hydrogen flow. 
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  Results and discussion 

Catalyst characterization. Nickel particle size was measured using TEM and as 

can be seen in Figure S1 particle size increases as the amount of Ni on the catalyst is 

increased and as the reduction temperature is increased. The particle size for the catalysts 

reduced at 300°C for 3%, 5%, and 7% Ni/SiO2 are 1.0 nm, 2.5 nm, and 4.2 nm, 

respectively. For the case of the catalysts reduced at 500°C the particle size for 3%, 5%, 

and 7% Ni/SiO2 are 3.14 nm, 3.6 nm, and 6.3 nm, respectively. This increase in particle 

size is due to the sintering of the particles which increases as the reduction temperature 

increases. An indication of nickel oxide can be seen in the TEM images as the black spots 

appear to be a ligther color for the catalyst reduced at 300°C than 500°C due to nickel 

oxide being simialir to the silica. 

Further understanding of the metallic and oxide nature of the catalyst was 

obtained with TPR. The 5% Ni/SiO2 catalyst after calcination shows a reduction of the 

nickel oxide to nickel metal, Figure S2a, at 450°C and agrees with previous reports 115 . 

The bump next to the tail end of the main peak may be due to the presence of nickel 

silicates, which was observed by Montes et al. 116 as will be discussed in further sections 

depending on the temperature used to reduce the catalyst, either 300°C or 500°C, the 

amount of nickel oxide present can affect reaction selectivity. To quantify the amount of 

nickel oxide present during a reaction TPRs were run in which catalysts were reduced at 

300°C and 500°C for one hour, the same way as for a reaction. By performing a TPR, 

after reduction of the catalyst  
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Figure S 1: (a) 3% Ni/SiO2 reduced at 300°C, (b) 3% Ni SiO2 reduced at 500°C, (c) 5% Ni/SiO2 

reduced at 300°C (d) 5% Ni/SiO2 reduced at 500°C , (e) 7% Ni/SiO2 reduced at 300°C and (f) 7% 

Ni/SiO2 reduced at 500°C.  
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at a set temperature, the amount of remaining nickel oxide can be quantified. As can be 

seen in Figure S2b there is no remaining nickel oxide when reducing the catalyst at 500°C, 

but roughly 13.7% of the nickel oxide remains when the catalyst is reduced at 300°C. 

This residual nickel oxide plays a critical role in controlling reaction selectivity as will 

be discussed in further sections. At similar conditions Manukyan et al. observed NiOx 

too in their reduction study 117.   

 

Figure S 2: a) TPR profile for 5% Ni/SiO2 catalyst after nickel impregnation on the 

support and calcination. b) TPR profile for 5% Ni/SiO2 catalyst after being reduced 

at either 300°C or 500°C for one hour 
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  Effect of reduction temperature 

Gas phase furfural conversion under hydrogen leads to the formation of multiple 

compounds through different reactions such as decarbonylation, hydrogenation, ring 

opening and ring rearrangement 20. At the experimental conditions of this study, two 

primary reactions dominate the reaction pathway: the hydrogenation of C=O bond to 

yield furfuryl alcohol (FOL) which can undergo hydrogenolysis to methylfuran (MF) and 

subsequent ring opening to 2-pentanone (2PNO) and decarbonylation to form furan 

(FUR) which leads to the ring opening reaction which produces C4 products such as 

butanal, butanol and butane as secondary relevant products [9]. However, the selectivity 

of the furfural conversion was observed to strongly depend of the reduction temperature 

having a clear competition between decarbonylation/hydrogenation reactions. 

 

As shown in Figure S3 a and b, with decreasing reduction temperature, or in other 

words with increasing NiO content in the catalyst, the selectivity of FUR and C4 increases 

too, which makes the C-C cleavage reaction dominate. On the other hand, at the highest 

reduction temperature used, there is a clear shift in selectivity from FUR to FOL and 

hydrogenation of the C-O bond is the dominant reaction. Most of the studies in literature 

of furfural hydrogenation over Ni/SiO2 utilize reduction temperatures of 450 °C or more 

for long times obtaining FOL as the dominant product or a small enhancement in FUR 

selectivity. For instance Tomishige et al. 118 studied the total reduction of furfural to 

tetrahydrofurfuryl alcohol (THFOL) over Ni/SiO2 at different reduction temperatures 

from 673 to 873 K and they observed increases of both alcohols, FOL and THFOL with 

temperature. They concluded the conversion of FOL to THFA is sensitive to the structure 
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of the catalyst since Ni particles with a smaller size give higher TOF values 118. Resasco 

et al. 115 investigated the conversion of furfural over Ni/SiO2 and Ni-Fe/SiO2 using a 

temperature reduction of 450 °C. For Ni/SiO2 the dominant product of the reaction at all 

W/F was FUR however when the Fe was introduced the selectivity shifted to form 2MF 

20. This shows that oxophilic additions to a metal that decarbonylates, destabilizes the 

tendency of the O to lift from the surface and stabilize the acyl intermediate.  

Figure 3 b also shows a decrease of conversion with increasing reduction 

temperature due to sintering of the particles also observed by TEM. This indicates that 

not only the presence of the oxide can be affecting the selectivity of the 

decarbonylation/hydrogenation reactions but also the effect of particle size. Therefore 

decoupling of particle size and oxide content is analyzed in the next section. 

 

  Decoupling of oxide content and particle size effects 

The change of particle with increasing reduction temperature can potentially 

influence the selectivity of the furfural reaction by changing the surface of the catalyst 

106. Iglesia et al. 119 showed by kinetics and DFT of alkanols/alkanals over different metals 

that C-O hydrogenolysis occurs preferentially on atoms with high-coordination number 

that prevail on larger clusters while C-C hydrogenolysis is favored over low-coordinated 

atoms . Furthermore, Somorjai et al. 104 claimed furfural conversion to FOL is a highly 

structure sensitive reaction. Their experiments in gas phase over Pt nanoparticles showed 

selectivity for FOL increases with increasing particle size (≤2.9 nm) while at small 

particle sizes the dominant product of the reaction was FUR.  
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To analyze the effect of particle size in our reactions three different Ni/SiO2 

catalyst of 3%, 5% and 7% were investigated at 300 °C and 500 °C reduction 

temperatures. The rate per metal exposed (mol/m2.h) was calculated to avoid 

discrepancies due to particle size and the reactions were run at similar conversions.  As 

shown in Figure S3 c, the ratio between FUR/FOL decreases dramatically for the catalysts 

reduced at 300 °C that have NiOx on the surface and not for a specific trend with particle 

size. This can be observed in Figure S3 d, where the FOL rate behaves as a structure 

sensitive reaction as some studies have shown in literature and increases with increasing 

particle size. However, FUR is clearly affected by the presence of oxide. 

 

  Reduction/Oxidation treatments 

To further understand the role of the NiO in the decarbonylation reaction of 

furfural to FUR reduction/oxidation treatments were analyzed over the 3%, 5% and 7% 

Ni/SiO2 catalysts. Each catalyst was fully reduced at 500 °C, and exposed to air at 400 

°C for different times. To ensure at this conditions the catalysts were not completely 

reduced, the samples were analyzed by doing the same reaction process in the TPR. The 

5% Ni/SiO2 fully reduced at 500 °C and exposed to air for 30 mins at 400 °C at these 

conditions the content of NiOx of the catalyst is 39.3%.  
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Figure 3 a) Product Distribution for furfural conversion over 5% Ni/SiO2 at 

different reduction temperatures b) Selectivity of furan and furfuryl alcohol for 

furfural reaction over 5%Ni/SiO2 at different reaction temperatures. Trxn= 250°C, 

P= 1 atm, TOS= 30 mins, FAL: 0.006 mol/h. c) Ratio of FUR and FOL over the 3%, 

5% and 7% Ni/SiO2 catalysts at different reduction temperatures d) Rate of exposed 

metal for FUR and FOL vs particle size. Trxn: 250 °C. TOS: 30 min 

 

c. 
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The conversion for the three catalyst at different oxidation times is shown in 

Figure S4a. In each case there is a trend with a maximum of conversion corresponding to 

an optimum specific amount of NiOx present on the surface that generated the highest 

conversion. The reaction without reducing catalyst was carried out and very low 

conversion was obtained. Furthermore, the catalysts that were completely oxidized (3% 

for 15 min, 5% 120 min and 7% 140 min) showed a recovery in activity after 1-2 h on 

stream. This proves that both metal Ni and NiOx must be present during reaction to 

enhance the C-C cleavage reaction since for all of the reduced/oxidized catalyst FUR was 

the dominant product of the reaction. The change of selectivity is noticeable in Figure S 

4b,c and d from FOL when the catalyst is fully reduced to FUR when the catalysts begins 

to become oxidized for all the cases.  

The oxide effect in decarbonylation chemistry is still matter of further 

investigation. Based on the oxidations experiments and previous reports that showed the 

change in oxophilicity with oxide present in the surface, it is possible to speculate the 

presence NiOx facilitates the C-C bond cleavage. If the oxide layers allows for a 

weakening of the interaction between the carbon of the carbonyl group and the metal, the 

formation of acyl intermediate will be easier and therefore the furan production will be 

favored [16]. On the other hand, over layers of NiOx can also affect the morphology of 

the surface of the catalyst and it has been showed furan is preferably converted over low-

coordinated atoms [24].   
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Figure 4.a) Furfural conversion vs oxidation time for the 3%, 5% and 7% Ni/SiO2 

catalyst. c), d), e) Product selectivity for furfural conversion over 3%, 5% and 7% 

Ni/SiO2 oxidized catalysts respectively 

 

Conclusions 

Furfural hydrogenation in gas phase was studied over a series of silica supported Ni 

catalysts. The product selectivity to furfuryl alcohol and furan can be controlled by 

changing the pretreatment conditions of the catalyst. At low reduction temperatures, or in 

other words high NiOx presence, furan selectivity is enhanced while fully reduced 

Ni/SiO2 yields as the main product furfuryl alcohol. The hydrogenation to furfuryl 

alcohol was found to be a structure sensitive reaction and its rate increases with increasing 

particle size. The oxide effect in the decarbonylation chemistry can be attributed to 

different factors such as NiOx/Ni interface site that allows C-C bond cleavage or 

electronic effect of the oxide over layers in the metal that helps weaken the C-M bond 
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and enhance furan production. This results allows for high selectivity of either furfuryl 

alcohol or furan using the same catalyst, Ni/SiO2, by changing the pretreatment 

conditions of the catalyst and understanding better the decarbonylation chemistry. 

References 

 

(1 Zhang, Q., Chang, J., Wang, T. & Xu, Y. Review of biomass pyrolysis oil 

properties and upgrading research. Energ Convers Manage 48, 87-92 (2007). 

2 Yang, H., Yan, R., Chen, H., Lee, D. H. & Zheng, C. Characteristics of 

hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781-1788 (2007). 

3 Venderbosch, R. & Prins, W. Fast pyrolysis technology development. Biofuels, 

bioproducts and biorefining 4, 178-208 (2010). 

4 Resasco, D. E. & Crossley, S. P. Implementation of concepts derived from model 

compound studies in the separation and conversion of bio-oil to fuel. Catalysis 

Today 257, 185-199 (2015). 

5 Meng, J., Park, J., Tilotta, D. & Park, S. The effect of torrefaction on the chemistry 

of fast-pyrolysis bio-oil. Bioresource technology 111, 439-446 (2012). 

6 Shankar Tumuluru, J., Sokhansanj, S., Hess, J. R., Wright, C. T. & Boardman, R. 

D. REVIEW: A review on biomass torrefaction process and product properties 

for energy applications. Industrial Biotechnology 7, 384-401 (2011). 

7 Herron, J. A. et al. A Systems‐Level Roadmap for Biomass Thermal Fractionation 

and Catalytic Upgrading Strategies. Energy Technology (2016). 

8 French, R. & Czernik, S. Catalytic pyrolysis of biomass for biofuels production. 

Fuel Processing Technology 91, 25-32 (2010). 

9 Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. 

Biomass and bioenergy 38, 68-94 (2012). 

10 Van der Stelt, M., Gerhauser, H., Kiel, J. & Ptasinski, K. Biomass upgrading by 

torrefaction for the production of biofuels: A review. Biomass and bioenergy 35, 

3748-3762 (2011). 

11 Ebert, J. Furfural: Future feedstock for fuels and chemicals. Ethanol Producer 

Magazine (2008). 

12 Werpy, T. et al. Top value added chemicals from biomass. Volume 1-Results of 

screening for potential candidates from sugars and synthesis gas. (DTIC 

Document, 2004). 

13 Gürbüz, E. I., Wettstein, S. G. & Dumesic, J. A. Conversion of hemicellulose to 

furfural and levulinic acid using biphasic reactors with alkylphenol solvents. 

ChemSusChem 5, 383-387 (2012). 

14 Dias, A. S., Lima, S., Pillinger, M. & Valente, A. A. Furfural and Furfural-Based 

Industrial-Chemicals. Ideas in Chemistry and Molecular Sciences: Advances in 

Synthetic Chemistry 8, 167-186 (2010). 

15 Yan, K., Wu, G., Lafleur, T. & Jarvis, C. Production, properties and catalytic 

hydrogenation of furfural to fuel additives and value-added chemicals. Renewable 

and Sustainable Energy Reviews 38, 663-676 (2014). 



93 

16 Hoydonckx, H., Van Rhijn, W., Van Rhijn, W., De Vos, D. & Jacobs, P. Furfural 

and derivatives. Ullmann's encyclopedia of industrial chemistry (2007). 

17 Nagaraja, B. et al. A highly efficient Cu/MgO catalyst for vapour phase 

hydrogenation of furfural to furfuryl alcohol. Catalysis communications 4, 287-

293 (2003). 

18 Jiménez-Gómez, C. P. et al. Gas-phase hydrogenation of furfural to furfuryl 

alcohol over Cu/ZnO catalysts. Journal of Catalysis 336, 107-115 (2016). 

19 Bhogeswararao, S. & Srinivas, D. Catalytic conversion of furfural to industrial 

chemicals over supported Pt and Pd catalysts. Journal of Catalysis 327, 65-77 

(2015). 

20 Sitthisa, S. & Resasco, D. E. Hydrodeoxygenation of furfural over supported 

metal catalysts: a comparative study of Cu, Pd and Ni. Catalysis letters 141, 784-

791 (2011). 

21 Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P. B. & Resasco, D. E. Kinetics and 

mechanism of hydrogenation of furfural on Cu/SiO 2 catalysts. Journal of 

catalysis 277, 1-13 (2011). 

22 Vorotnikov, V., Mpourmpakis, G. & Vlachos, D. G. DFT study of furfural 

conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd (111). Acs 

Catalysis 2, 2496-2504 (2012). 

23 Sitthisa, S. et al. Conversion of furfural and 2-methylpentanal on Pd/SiO 2 and 

Pd–Cu/SiO 2 catalysts. Journal of catalysis 280, 17-27 (2011). 

24 Wang, S., Vorotnikov, V. & Vlachos, D. G. A DFT study of furan hydrogenation 

and ring opening on Pd (111). Green Chemistry 16, 736-747 (2014). 

25 Li, X., Jia, P. & Wang, T. Furfural: A promising platform compound for 

sustainable production of C4 and C5 chemicals. ACS Catalysis 6, 7621-7640 

(2016). 

26 Sitthisa, S., An, W. & Resasco, D. E. Selective conversion of furfural to 

methylfuran over silica-supported Ni-Fe bimetallic catalysts. Journal of Catalysis 

284, 90-101, doi:DOI 10.1016/j.jcat.2011.09.005 (2011). 

27 Hronec, M. et al. Cyclopentanone: A raw material for production of C 15 and C 

17 fuel precursors. Biomass and Bioenergy 63, 291-299 (2014). 

28 Hronec, M. et al. Carbon supported Pd–Cu catalysts for highly selective 

rearrangement of furfural to cyclopentanone. Applied Catalysis B: Environmental 

181, 210-219 (2016). 

29 Yang, Y. et al. Conversion of furfural into cyclopentanone over Ni–Cu bimetallic 

catalysts. Green Chemistry 15, 1932-1940 (2013). 

30 Hronec, M., Fulajtarová, K. & Liptaj, T. Effect of catalyst and solvent on the furan 

ring rearrangement to cyclopentanone. Applied Catalysis A: General 437, 104-

111 (2012). 

31 Hronec, M. & Fulajtarová, K. Selective transformation of furfural to 

cyclopentanone. Catalysis Communications 24, 100-104 (2012). 

32 Hronec, M., Fulajtárova, K. & Soták, T. Highly selective rearrangement of 

furfuryl alcohol to cyclopentanone. Applied Catalysis B: Environmental 154, 294-

300 (2014). 

33 Williams, C. L. et al. Cycloaddition of biomass-derived furans for catalytic 

production of renewable p-xylene. Acs Catalysis 2, 935-939 (2012). 



94 

34 Gumidyala, A., Wang, B. & Crossley, S. Direct carbon-carbon coupling of 

furanics with acetic acid over Brønsted zeolites. Science Advances 2, e1601072 

(2016). 

35 Bui, T. V., Crossley, S. & Resasco, D. E. C-C Coupling for Biomass‐Derived 

Furanics Upgrading to Chemicals and Fuels. Chemicals and Fuels from Bio-

Based Building Blocks, 431-494 (2016). 

36 Kawabata, T., Kato, M., Mizugaki, T., Ebitani, K. & Kaneda, K. Monomeric 

metal aqua complexes in the interlayer space of montmorillonites as strong lewis 

acid catalysts for heterogeneous carbon–carbon bond‐forming reactions. 

Chemistry–A European Journal 11, 288-297 (2005). 

37 Fischer, J. & Hölderich, W. F. Baeyer–Villiger-oxidation of cyclopentanone with 

aqueous hydrogen peroxide by acid heterogeneous catalysis. Applied Catalysis A: 

General 180, 435-443, doi:http://dx.doi.org/10.1016/S0926-860X(98)00378-0 

(1999). 

38 Piutti, C. & Quartieri, F. The Piancatelli Rearrangement: New Applications for an 

Intriguing Reaction. Molecules 18, 12290-12312, doi:DOI 

10.3390/molecules181012290 (2013). 

39 Pham, T. N., Shi, D. & Resasco, D. E. Evaluating strategies for catalytic 

upgrading of pyrolysis oil in liquid phase. Applied Catalysis B: Environmental 

145, 10-23, doi:10.1016/j.apcatb.2013.01.002 (2014). 

40 Stöcker, M. Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic 

conversion of lignocellulosic biomass using porous materials. Angewandte 

Chemie International Edition 47, 9200-9211 (2008). 

41 Czernik, S. & Bridgwater, A. Overview of applications of biomass fast pyrolysis 

oil. Energy & Fuels 18, 590-598 (2004). 

42 Carlson, T. R., Vispute, T. P. & Huber, G. W. Green gasoline by catalytic fast 

pyrolysis of solid biomass derived compounds. ChemSusChem 1, 397-400 (2008). 

43 Badovskaya, L. A. & Povarova, L. V. Oxidation of furans (Review). Chemistry 

of Heterocyclic Compounds 45, 1023-1034, doi:10.1007/s10593-009-0390-8 

(2009). 

44 Milas, N. A. & Walsh, W. L. Catalytic Oxidations. I. Oxidations in the Furan 

Series. Journal of the American Chemical Society 57, 1389-1393 (1935). 

45 Takagaki, A., Nishimura, S. & Ebitani, K. Catalytic transformations of biomass-

derived materials into value-added chemicals. Catalysis Surveys from Asia 16, 

164-182 (2012). 

46 WANG, S., LENG, Y., LIN, F., HUANG, C. & YI, C. Catalytic oxidation of 

furfural in vapor-gas phase for producing maleic anhydride [J]. Chemical Industry 

and Engineering Progress 6, 029 (2009). 

47 Nielsen, E. R. Vapor phase oxidation of furfural. Industrial & Engineering 

Chemistry 41, 365-368 (1949). 

48 Kijenski, J., Winiarek, P., Paryjczak, T., Lewicki, A. & Mikolajska, A. Platinum 

deposited on monolayer supports in selective hydrogenation of furfural to furfuryl 

alcohol. Applied Catalysis a-General 233, 171-182, doi:Pii S0926-

860x(02)00140-0 

Doi 10.1016/S0926-860x(02)00140-0 (2002). 

http://dx.doi.org/10.1016/S0926-860X(98)00378-0


95 

49 Zheng, H. Y. et al. Towards understanding the reaction pathway in vapour phase 

hydrogenation of furfural to 2-methylfuran. J Mol Catal a-Chem 246, 18-23, 

doi:DOI 10.1016/j.molcata.2005.10.003 (2006). 

50 Zhu, Y. L. et al. A new strategy for the efficient synthesis of 2-methylfuran and 

gamma-butyrolactone. New J Chem 27, 208-210, doi:Doi 10.1039/B208849p 

(2003). 

51 Yang, J. et al. Effects of calcination temperature on performance of Cu-Zn-Al 

catalyst for synthesizing gamma-butyrolactone and 2-methylfuran through the 

coupling of dehydrogenation and hydrogenation. Catal. Commun. 5, 505-510, 

doi:DOI 10.1016/j.catcom.2004.06.005 (2004). 

52 Zheng, H. Y., Yang, J., Zhu, Y. L. & Zhao, G. W. Synthesis of gamma-

butyrolactone and 2-methylfuran through the coupling of dehydrogenation and 

hydrogenation over copper-chromite catalyst. React Kinet Catal L 82, 263-269, 

doi:Doi 10.1023/B:Reac.0000034836.56895.A9 (2004). 

53 Omotoso, T., Boonyasuwat, S. & Crossley, S. P. Understanding the role of TiO 2 

crystal structure on the enhanced activity and stability of Ru/TiO 2 catalysts for 

the conversion of lignin-derived oxygenates. Green Chemistry 16, 645-652 

(2014). 

54 Scholz, D., Aellig, C. & Hermans, I. Catalytic Transfer 

Hydrogenation/Hydrogenolysis for Reductive Upgrading of Furfural and 5-

(Hydroxymethyl)furfural. Chemsuschem 7, 268-275, doi:DOI 

10.1002/cssc.201300774 (2014). 

55 Sitthisa, S., Sooknoi, T., Ma, Y. G., Balbuena, P. B. & Resasco, D. E. Kinetics 

and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. Journal of 

Catalysis 277, 1-13, doi:DOI 10.1016/j.jcat.2010.10.005 (2011). 

56 Komaya, T. et al. Effects of dispersion and metal-metal oxide interactions on 

Fischer-Tropsch synthesis over Ru/TiO2 and TiO2-promoted Ru/SiO2. Journal 

of Catalysis 150, 400-406 (1994). 

57 Resasco, D. E. & Haller, G. L. A Model of Metal-Oxide Support Interaction for 

Rh on Tio2. Journal of Catalysis 82, 279-288, doi:Doi 10.1016/0021-

9517(83)90194-X (1983). 

58 Avery, N. R. Eels Identification of the Adsorbed Species from Acetone 

Adsorption on Pt(111). Surf Sci 125, 771-786, doi:Doi 10.1016/S0039-

6028(83)80059-4 (1983). 

59 Shekhar, R., Barteau, M. A., Plank, R. V. & Vohs, J. M. Adsorption and reaction 

of aldehydes on Pd surfaces. Journal of Physical Chemistry B 101, 7939-7951, 

doi:Doi 10.1021/Jp971077l (1997). 

60 Davis, J. L. & Barteau, M. A. Polymerization and Decarbonylation Reactions of 

Aldehydes on the Pd(111) Surface. Journal of the American Chemical Society 

111, 1782-1792, doi:Doi 10.1021/Ja00187a035 (1989). 

61 Boonyasuwat, S., Omotoso, T., Resasco, D. E. & Crossley, S. P. Conversion of 

guaiacol over supported Ru catalysts. Catalysis letters 143, 783-791 (2013). 

62 Omotoso, T., Boonyasuwat, S. & Crossley, S. P. Understanding the role of TiO2 

crystal structure on the enhanced activity and stability of Ru/TiO2 catalysts for 

the conversion of lignin-derived oxygenates. Green Chem 16, 645-652, doi:Doi 

10.1039/C3gc41377b (2014). 



96 

63 Selvaraj, V., Vinoba, M. & Alagar, M. Electrocatalytic oxidation of ethylene 

glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. J 

Colloid Interface Sci 322, 537-544, doi:10.1016/j.jcis.2008.02.069 (2008). 

64 Iwasita, T. Electrocatalysis of methanol oxidation. Electrochimica Acta 47, 3663-

3674 (2002). 

65 Jiang, J. & Kucernak, A. Electrooxidation of small organic molecules on 

mesoporous precious metal catalysts. Journal of Electroanalytical Chemistry 543, 

187-199, doi:10.1016/s0022-0728(03)00046-9 (2003). 

66 Tan, Q. et al. Different Product Distributions and Mechanistic Aspects of the 

Hydrodeoxygenation of m-Cresol over Platinum and Ruthenium Catalysts. ACS 

Catalysis 5, 6271-6283 (2015). 

67 Rekoske, J. E. & Barteau, M. A. Isothermal reduction kinetics of titanium dioxide-

based materials. The Journal of Physical Chemistry B 101, 1113-1124 (1997). 

68 Choi, S., Song, C. W., Shin, J. H. & Lee, S. Y. Biorefineries for the production of 

top building block chemicals and their derivatives. Metabolic engineering 28, 

223-239 (2015). 

69 Zhang, W., Zhu, Y., Niu, S. & Li, Y. A study of furfural decarbonylation on K-

doped Pd/Al 2 O 3 catalysts. Journal of Molecular Catalysis A: Chemical 335, 

71-81 (2011). 

70 Zhu, X., Nie, L., Lobban, L. L., Mallinson, R. G. & Resasco, D. E. Efficient 

conversion of m-cresol to aromatics on a bifunctional Pt/HBeta catalyst. Energy 

& Fuels 28, 4104-4111 (2014). 

71 Nelson, R. C. et al. Experimental and theoretical insights into the hydrogen-

efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS 

catalysis 5, 6509-6523 (2015). 

72 Hong, S. & Rahman, T. S. Rationale for the higher reactivity of interfacial sites 

in methanol decomposition on Au13/TiO2 (110). Journal of the American 

Chemical Society 135, 7629-7635 (2013). 

73 Pham, T. N., Shi, D. & Resasco, D. E. Kinetics and mechanism of ketonization of 

acetic acid on Ru/TiO2 catalyst. Topics in Catalysis 57, 706-714 (2014). 

74 Madon, R. J. B., M. Experimental Criterion for the Absence of Artifacts in the 

Measurement of Rates of Heterogeneous Catalytic Reactions. Ind. Eng. Chem. 

Fundam 21, 438-447 (1982). 

75 Vannice, M. A. & Joyce, W. H. Kinetics of catalytic reactions. Vol. 134 (Springer, 

2005). 

76 Pham, T., Shi, D. & Resasco, D. Kinetics and Mechanism of Ketonization of 

Acetic Acid on Ru/TiO Catalyst. Topics in Catalysis 57 (2014). 

77 Kennedy, G., Baker, L. R. & Somorjai, G. A. Selective Amplification of C  O 

Bond Hydrogenation on Pt/TiO2: Catalytic Reaction and Sum‐Frequency 

Generation Vibrational Spectroscopy Studies of Crotonaldehyde Hydrogenation. 

Angewandte Chemie 126, 3473-3476 (2014). 

78 Poenitzsch, V. et al. Freestanding foils of nanotube arrays fused with metals. 

Journal of materials science 49 (2014). 

79 Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support 

interface role for ceria catalysts. Science 341, 771-773 (2013). 



97 

80 Omotoso, T. O., Baek, B., Grabow, L. C. & Crossley, S. P. Experimental and 

First‐Principles Evidence for Interfacial Activity of Ru/TiO2 for the Direct 

Conversion of m‐Cresol to Toluene. ChemCatChem (2017). 

81 Resasco, D. & Haller, G. A model of metal-oxide support interaction for Rh on 

TiO2. Journal of Catalysis 82, 279-288 (1983). 

82 Haller, G. L. & Resasco, D. E. Metal–support interaction: Group VIII metals and 

reducible oxides. Advances in Catalysis 36, 173-235 (1989). 

83 Tauster, S., Fung, S. & Garten, R. L. Strong metal-support interactions. Group 8 

noble metals supported on titanium dioxide. Journal of the American Chemical 

Society 100, 170-175 (1978). 

84 Zhao, E. W. et al. Strong metal–support interactions enhance the pairwise 

selectivity of parahydrogen addition over Ir/TiO2. Acs Catalysis 6, 974-978 

(2016). 

85 Bhowmick, R. et al. Hydrogen spillover in Pt-single-walled carbon nanotube 

composites: formation of stable C− H bonds. Journal of the American Chemical 

Society 133, 5580-5586 (2011). 

86 Wang, L., Yang, F. H., Yang, R. T. & Miller, M. A. Effect of surface oxygen 

groups in carbons on hydrogen storage by spillover. Industrial & Engineering 

Chemistry Research 48, 2920-2926 (2009). 

87 Psofogiannakis, G. M. & Froudakis, G. E. DFT study of hydrogen storage by 

spillover on graphite with oxygen surface groups. Journal of the American 

Chemical Society 131, 15133-15135 (2009). 

88 Chen, L., Pez, G., Cooper, A. C. & Cheng, H. A mechanistic study of hydrogen 

spillover in MoO3 and carbon-based graphitic materials. Journal of Physics: 

Condensed Matter 20, 064223 (2008). 

89 Chen, L., Cooper, A. C., Pez, G. P. & Cheng, H. Mechanistic study on hydrogen 

spillover onto graphitic carbon materials. The Journal of Physical Chemistry C 

111, 18995-19000 (2007). 

90 Wang, M. et al. Wafer-scale transfer of vertically aligned carbon nanotube arrays. 

Journal of the American Chemical Society 136, 18156-18162 (2014). 

91 Zhao, B., Liu, Z., Zhang, Z. & Hu, L. Improvement of oxidation resistance of 

ultrafine copper powders by phosphating treatment. Journal of Solid State 

Chemistry 130, 157-160 (1997). 

92 Li, J., Mayer, J. & Colgan, E. Oxidation and protection in copper and copper alloy 

thin films. Journal of applied physics 70, 2820-2827 (1991). 

93 Smith, T. Oxidation of titanium between 25 C and 400 C. Surface Science 38, 

292-312 (1973). 

94 Hass, G. & Bradford, A. P. Optical properties and oxidation of evaporated 

titanium films. JOSA 47, 125-129 (1957). 

95 Dai, Y. et al. A Sinter‐Resistant Catalytic System Based on Platinum 

Nanoparticles Supported on TiO2 Nanofibers and Covered by Porous Silica. 

Angewandte Chemie 122, 8341-8344 (2010). 

96 Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent 

nanoparticle energetics on catalyst sintering. Science 298, 811-814 (2002). 



98 

97 Pham, T. N., Sooknoi, T., Crossley, S. P. & Resasco, D. E. Ketonization of 

carboxylic acids: mechanisms, catalysts, and implications for biomass 

conversion. Acs Catalysis 3, 2456-2473 (2013). 

98 Prasomsri, T., Nimmanwudipong, T. & Román-Leshkov, Y. Effective 

hydrodeoxygenation of biomass-derived oxygenates into unsaturated 

hydrocarbons by MoO 3 using low H 2 pressures. Energy & Environmental 

Science 6, 1732-1738 (2013). 

99 An, K. et al. Preparation of mesoporous oxides and their support effects on Pt 

nanoparticle catalysts in catalytic hydrogenation of furfural. Journal of colloid 

and interface science 392, 122-128 (2013). 

100 Baker, L. R. et al. Furfuraldehyde hydrogenation on titanium oxide-supported 

platinum nanoparticles studied by sum frequency generation vibrational 

spectroscopy: Acid–base catalysis explains the molecular origin of strong metal–

support interactions. Journal of the American Chemical Society 134, 14208-

14216 (2012). 

101 Zhang, J., Wang, B., Nikolla, E. & Medlin, J. W. Directing Reaction Pathways 

through Controlled Reactant Binding at Pd–TiO2 Interfaces. Angewandte Chemie 

129, 6694-6698 (2017). 

102 Primo, A., Concepción, P. & Corma, A. Synergy between the metal nanoparticles 

and the support for the hydrogenation of functionalized carboxylic acids to diols 

on Ru/TiO 2. Chemical Communications 47, 3613-3615 (2011). 

103 Boudart, M. Catalysis by supported metals. Advances in catalysis 20, 153-166 

(1969). 

104 Pushkarev, V. V., Musselwhite, N., An, K., Alayoglu, S. & Somorjai, G. A. High 

structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation 

reaction network as a function of size and shape of Pt nanoparticles. Nano letters 

12, 5196-5201 (2012). 

105 Somorjai, G. A. & Park, J. Y. Molecular factors of catalytic selectivity. 

Angewandte Chemie International Edition 47, 9212-9228 (2008). 

106 Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, 

shape, support, composition, and oxidation state effects. Thin Solid Films 518, 

3127-3150 (2010). 

107 Bennett, C. & Che, M. Some geometric aspects of structure sensitivity. Journal 

of Catalysis 120, 293-302 (1989). 

108 Durndell, L. J. et al. Selectivity control in Pt-catalyzed cinnamaldehyde 

hydrogenation. Scientific reports 5 (2015). 

109 Feng, J. et al. Hydrogenolysis of glycerol to glycols over ruthenium catalysts: 

Effect of support and catalyst reduction temperature. Catalysis Communications 

9, 1458-1464 (2008). 

110 Shen, W.-J. et al. Effect of reduction temperature on structural properties and 

CO/CO 2 hydrogenation characteristics of a Pd-CeO 2 catalyst. Applied Catalysis 

A: General 217, 231-239 (2001). 

111 Ackermann, M. et al. Structure and reactivity of surface oxides on Pt (110) during 

catalytic CO oxidation. Physical review letters 95, 255505 (2005). 



99 

112 Hendriksen, B. & Frenken, J. CO oxidation on Pt (110): scanning tunneling 

microscopy inside a high-pressure flow reactor. Physical Review Letters 89, 

046101 (2002). 

113 Gong, X.-Q., Liu, Z.-P., Raval, R. & Hu, P. A systematic study of CO oxidation 

on metals and metal oxides: density functional theory calculations. Journal of the 

American Chemical Society 126, 8-9 (2004). 

114 Min, B., Alemozafar, A., Pinnaduwage, D., Deng, X. & Friend, C. Efficient CO 

oxidation at low temperature on Au (111). The Journal of Physical Chemistry B 

110, 19833-19838 (2006). 

115 Sitthisa, S., An, W. & Resasco, D. E. Selective conversion of furfural to 

methylfuran over silica-supported Ni Fe bimetallic catalysts. Journal of catalysis 

284, 90-101 (2011). 

116 Montes, M. et al. Influence of metal-support interactions on the dispersion, 

distribution, reducibility and catalytic activity of Ni/SiO2 catalysts. Applied 

catalysis 12, 309-330 (1984). 

117 Manukyan, K. V. et al. Nickel Oxide Reduction by Hydrogen: Kinetics and 

Structural Transformations. The Journal of Physical Chemistry C 119, 16131-

16138 (2015). 

118 Nakagawa, Y., Nakazawa, H., Watanabe, H. & Tomishige, K. Total 

Hydrogenation of Furfural over a Silica‐Supported Nickel Catalyst Prepared by 

the Reduction of a Nickel Nitrate Precursor. ChemCatChem 4, 1791-1797 (2012). 
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Appendix A2: Supporting information chapter 1: Stabilization of 

furanics to cyclic ketone building blocks in the vapor phase 

 

Supplementary Information 

Ru/SiO2 

 

Figure S 5Representative TEM image for 5.3% Ru/SiO2 

 

 

Figure S 6 Particle size distribution of 5.3 % Ru/SiO2 catalyst pre-reduced at 400 

°C for one hour prior to imaging 
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Ru/CNT 

 

Figure S 7 Representative TEM image for 1% Ru/CNT 

 

 

Figure S 8 Particle size distribution of 1% Ru/CNT catalyst pre-reduced at 400 °C 

for one hour prior to imaging 
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Pd/SiO2 

 

Figure S 9 Representative TEM image for 1% Pd/SiO2 

 

 

Figure S 10 Particle size distribution of 1% Pd/SiO2 catalyst pre-reduced at 400 

°C for one hour prior to imaging 
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Pd/TiO2 

 

Figure S 11 Representative TEM image for 1% Pd/TiO2 

 

Figure S 12 Particle size distribution of 1 % Pd/TiO2 catalyst pre-reduced at 400 

°C for one hour prior to imaging 
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Ru/TiO2 

 

Figure S 13 Representative TEM image for 4.4% Ru/TiO2 

 

 

Figure S 14 Particle size distribution of 4.4% Ru/TiO2 

 catalyst pre-reduced at 400 °C for one hour prior to imaging 
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Oak Torrefaction Experiments 

 

Figure S 16 1st Pulse distribution of torrefaction blank with oak 270֯C and 20 min. 

* Formal name: 4-hydoxy-5,6-dihydro-(2H)-pyran-2-one 
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Table S 15 Particle size characterization and Surface area for the different catalyst 

tested 

Catalyst 

Loading 

(wt %) 

BET Surface 

Area (m2/g) 

Average 

Particle size (dp) 

Ru/TiO2 4.4 55 3.6 

Ru/SiO2 5.3 126 4.1 

Ru/CNT 1 

 

1.5 

TiO2 - 60 - 

Pd/SiO2 1 

 

3.4 

Pd/TiO2 1 

 

1.7 
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Number of pulses 1 2 3 4 5 6 7 

Furfural + 

Pyranone balance 94.5% 83.4% 96.1% 108.1% 106.2% 105.8% 93.8% 

Furfural balance 112.8% 117.7% 122.0% 114.4% 139.9% 131.4% 132.6% 

 

Table S 2 Mass balance for furfural products and unreacted furfural respect to 

furfural + 2,3-dihydro-hydroxyl pyranone (4-hydoxy-5,6-dihydro-(2H)-pyran-2-

one) mass in the blank and respect to furfural alone in the blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 


