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Abstract

Moving target detection with a passive radar system relies on many com-

peting and coupled variables. When simulating a passive bistatic radar

(PBR) system for ground moving target indication (GMTI) a three-dimensional

model is critical. The signal path geometry induced from separating the

radar receiver and transmitter causes several performance effects that change

with location.

Since a performance prediction is only as good as the model, the choice

of how to model clutter becomes important. Measured data of bistatic clut-

ter shows that the received clutter power depends on scattering angles.

Therefore, a new in-plane out-of-plane (IPOP) interpolation model was de-

veloped. The IPOP model causes high clutter returns to reside in regions

near an in-plane orientation (forward or backward scattering). The model

produces a more localized clutter spectrum in angle-Doppler space when

compared to monostatic radar.

Generally, the stationary transmitter is modeled as a communication

emitter due to the availability. These continuous waveforms must be par-
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titioned as pulses spaced at constant intervals over the coherent process-

ing interval (CPI). This diverse pulse train is non-ideal for pulse-Doppler

radars. The waveform produces high range sidelobes and causes colored

noise to spread in Doppler. It is shown for the first time that these wave-

form effects can be modeled through a covariance matrix taper (CMT).

Choosing an optimal emitter becomes an interesting problem when mul-

tiple emitters are present. A common metric for GMTI when using space-

time adaptive processing (STAP) is signal-to-interference-plus-noise ratio

(SINR). However, SINR changes based off relative geometries, and GMTI

depends on where a target’s location and two-dimensional velocity maps

into angle-Doppler space. Therefore, average SINR, weighted average SINR,

minimum SINR, and usable velocity space fraction (UVSF) are the newly

developed metrics proposed for down-selecting to an optimal emitter. The

choice of metric is extremely dependent on the scenario.

Finally, in STAP large clutter discretes (LCDs) can cause either false alarms

or missed detections. Ultimately, they contaminate the data, and it is very

desirable, yet very hard, to remove LCDs. However, the clutter structure

in angle-Doppler space for PBR can offer a benefit for removing an LCD.

Due to the fact that bistatic clutter can be more localized in angle-Doppler,

the detection and estimation of an LCD can be accomplished for an out-of-

plane geometry. Then the LCD can be successfully removed from the data,

xvi



and new application of spectral estimation techniques have been developed

for this purpose.
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Chapter 1

Introduction

1.1 Introduction

Passive radar is an area of research that receives much attention. As com-

mercial signals are becoming more accessible, the attractiveness of passive

radar increases. Furthermore, there is no need to compete for costly fre-

quency spectrum or invest in any transmitter hardware. With these elimi-

nations, the cost of passive radar systems is reduced.

A passive system can also be considered as a passive bistatic radar (PBR).

Generally, many advantages and disadvantages of bistatic systems are also

seen in PBR. For ground moving target indication (GMTI), a major disad-

vantage of bistatic radar is the mitigation of ground clutter. Bistatic clut-

ter filtering efficiency is reduced compared to monostatic clutter filtering

because bistatic ground clutter is inherently non-stationary. Stationarity is

typically considered in statistics where a random process is stationary if the

1



statistical moments do not change with time [1]. In radar engineering, clut-

ter is stationary if the statical moments do not vary over space. Measure-

ments across various terrains and over many angles and frequencies have

been accomplished and show bistatic radar configurations induce varying

clutter statistics over space [2]–[6]. With these measurements, research into

the modeling of bistatic ground clutter began [4], [5], [7]–[12].

Not only is bistatic ground clutter non-stationary, but it is also range de-

pendent. While non-stationary clutter is defined in general terms of clutter

statistics, range dependent clutter is defined as the clutter spectrum var-

ies in the angle-Doppler domain over range bins. So the structure of this

clutter spectrum is strongly dependent on relative geometry, velocities, and

antenna configurations of the transmitter and receiver [13], [14]. There are

many clutter filtering methods that exist for range dependent clutter includ-

ing angle-Doppler compensation (ADC) [15], adaptive ADC (A2DC) [16],

adaptive Doppler compensation [17], derivative based updating (DBU) [18],

Doppler warping [19], high order Doppler warping (HODW) [20], local-

ized processing [21], [22], localized DBU [23], registration based (RB) using

direction Doppler (DD) curves [24], and RB using focusing matrices [25].

Ultimately, the structure of bistatic clutter creates a need for the previous

methods, and it is crucial for bistatic clutter to be properly modeled when

assessing the efficacy of any clutter mitigation method.

2



Advantages of bistatic radar have been discussed for many decades [26],

[27]. Some advantages translate to PBR. For example, the receiver suscepti-

bility to deliberate interference is reduced due to the receiver being passive

and difficult to locate. On the other hand, there are other advantages to

bistatic radar that cannot be achieved for PBR because these rely on coop-

erative transmitters and/or waveform designs. For example, range ambi-

guities can be resolved by using staggered pulse repetition intervals (PRIs)

[26].

The radar waveforms for PBR are generated from uncooperative sys-

tems. Therefore, the performance of PBR depends on many properties of

the emitter of opportunity. Research into the performance and feasibility

of PBR has been conducted for digital video broadcasting-terrestrial (DVB-

T) signals [28]–[34], global system for global communications (GSM) sig-

nals [35], long term evolution (LTE) signals [36]–[38], and various others

[27], [39]–[44]. As is evident, most of the waveform research exists for com-

mercial waveforms, which have not been designed for radar applications.

When a direct path exists from the transmitter to the receiver, a passive

radar can conduct pulse-Doppler processing by capturing short windows

of the direct path signal at constant time intervals. However, this forces the

PBR to use a pulse-diverse waveform, which leads to poor clutter suppres-

sion through matched filtering [45]. The range sidelobes produced from

3



compression will vary with each pulse and thus cause the clutter energy

to spread across Doppler [46], [47]. Therefore, it is critical to include the

clutter-Doppler spreading effect when modeling passive GMTI effective-

ness.

Space-time adaptive processing (STAP) is commonly implemented for

GMTI. The effectiveness of STAP strongly depends on the clutter structure

and statistics. For example, a large clutter discrete (LCD) can cause false

alarms and missed detections because the bright specular scatterer does not

follow the distributed clutter statistics. So while limited research into pas-

sive bistatic STAP exists, LCD mitigation for PBR has not been addressed.

Topics for passive bistatic STAP do include the analysis and suppression of

interference [6], PBR clutter mitigation techniques [48], and some proof of

concepts [6], [49], [50]. Typically, though, LCD removal is found in research

for monostatic radars that incorporate knowledge-aided STAP (KA-STAP)

[51] where a priori knowledge is collected and examined to predict clutter

statistics.

Finally, the research into GMTI via STAP and multiple transmitters be-

comes very scarce [52]. In [52] the clutter contributions are estimated and

mitigated by means of the sparse Bayesian learning (SBL) method. Upon the

completion of clutter mitigation, a target’s two-dimensional velocity vector

is estimated from the combination of multiple transmitters.
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However, no research has been conducted into optimizing emitter selec-

tion for GMTI purposes. As will be seen, GMTI performance depends on

many coupled variables for a multi-transmitter passive system. Therefore,

this research develops metrics that can be used for down-selecting to an op-

timal transmitter based off the relative geometries. Simulated performance

is analyzed across a wide search area and many two-dimensional target ve-

locities.

1.2 Overview

This paper is organized such that Chapter 2 introduces the three dimen-

sional geometry associated with PBR along with common post-processing

methods for GMTI. Chapter 3 details the modeling of PBR for GMTI by

developing the heterogeneous clutter model, defining passive STAP along

with the associated pulse-diverse waveform effects. Chapter 3 will further

stress the importance of modeling by analyzing the changes in expected

performance that are dictated by the chosen clutter model.

Chapter 4 develops new metrics for down-selecting to an optimal trans-

mitter when multiple exist. These metrics become inherently reliant on the

chosen clutter model along with relative geometries. This chapter will con-

clude by analyzing the results from a large simulation.

5



Chapter 5 first derives detection and estimation techniques. These tech-

niques are then applied to simulated data in order to remove a LCD. The

results from the algorithm will then be showcased.

Finally, Chapter 6 will give a brief conclusion that will highlight the re-

search contributions. These contributions all pertain to GMTI in a passive

radar system. They can be further sub-categorized into the areas of clutter

and waveform modeling, emitter selection metrics, and LCD removal.

6



Chapter 2

Foundational Theory

Some foundational understanding is required to model PBR for GMTI. In

particular, the geometry incurred from separating the receiver and trans-

mitter induces range delays that create elliptical range gates. Furthermore,

unlike monostatic, the non-circular isorange contours exhibit varying SNR

performance within the same range gate. These observations are derived in

Section 2.1.

Since STAP is often implemented for GMTI, this adaptive filtering method

is presented in Section 2.2. However, STAP is very computationally in-

tensive and can become impractical. Therefore, a sub-optimal reduced-

dimension STAP algorithm is introduced in Section 2.3 and is known as

the extended factored algorithm (EFA). The EFA is used throughout the re-

search to compare STAP performance more efficiently.

7



2.1 Passive Bistatic Geometry

The passive bistatic radar system is assumed to contain a multiple-channel

radar receiver that collects radar echoes emanating from a non-cooperative

stationary source. It is further assumed the receiver is mounted on an air-

borne platform in a side-looking configuration. The receiver and transmit-

ter heights above the ground plane (x-y plane) are represented as hR and hT,

where it is assumed that hR > hT. The angle between the receiver and trans-

mitter is known as the elevation angle, θT, and is defined as negative. The

bistatic baseline, L, is physical separation between the receiver and trans-

mitter, and calculated as

L =

∣∣∣∣hR − hT

sin θT

∣∣∣∣ . (2.1)

The angle between the receiver and transmitter in the x-y plane is defined

as the azimuth angle, φT, where 0◦ and 90◦ correspond to the x-axis and

y-axis, respectively. Assuming a flat earth model and letting the receive

platform be defined with global coordinates of (0, 0, hR) results in transmit-

ter location of (L cos θT cos φT, L cos θT sin φT, hT). Refer to Figure 2.1 for a

complete illustration of these coordinate parameters.

The direct paths from the receiver and transmitter to any point on the

ground, (x, y, 0), can be represented as range vectors notated as ~RR and ~RT,

respectively. The range from the point on the ground to either the receiver

8



Figure 2.1: Receiver and transmitter locations in three dimensional space.

or transmitter is simply the magnitude, RR and RT, of the respective range

vectors. The plane containing both range vectors is commonly known as the

bistatic plane. The angle between in the range vectors in the bistatic plane

is known as the bistatic angle, β, and is easily calculated as

β = cos−1

 ~RR · ~RT∣∣∣~RR

∣∣∣ ∣∣∣~RT

∣∣∣
 = cos−1

(
~RR · ~RT

RRRT

)
. (2.2)

Finally, the total distance traveled from the transmitter to a point on the

ground and back to the receiver, is known as the bistatic range, RB, such

that

RB = RT + RR. (2.3)
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Figure 2.2: Bistatic range and angle within the bistatic plane.

2.1.1 Isorange Contours

Isorange contours represent a constant propagation delay (e.g. bistatic range)

from all the ground scatterers that lie on the contour. In the bistatic plane,

an ellipse represents a constant bistatic range as seen in Figure 2.2. When

extending to three-dimensional space, the surface of revolution known as

a prolate spheroid defines a constant bistatic range. Revolving the ellipse

from the bistatic plane about its major axis generates the prolate spheroid.

Isorange contours are then found from the intersection of the prolate spheroid

and the ground plane or the global x-y plane.

To solve for this intersection, the local coordinate axes containing the

surface must have one axis that is parallel with its respective global axis

[53]. Therefore, consider a transmitter with an azimuth angle,φT, of zero.
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This yields global positions of (0, 0, hR) and (L cos θT, 0, hT) for the receiver

and transmitter, respectively. Then let the receiver and transmitter represent

the foci of the prolate spheroid with local positions of (0, 0, 0) and (L, 0, 0),

respectively. This setup causes the local coordinate system to be translated

and rotated with respect to the global system and is depicted in Figure 2.3.

A prolate spheroid with the major axis along the x-axis is given in local

coordinates as

(x′ − x0)
2

a2 +
(y′ − y0)

2

b2 +
(z′ − z0)

2

b2 = 1, (2.4)

where (x0, y0, z0) is the center of the 3D surface and a and b are the semi-

major and semi-minor axes respectively. Note that the repetition of b in (2.4)

is what forces the ellipsoid to become a prolate spheroid (football shape). As

an example, if a < b then (2.4) generates an oblate spheroid (Earth shape),

whereas if a = b then a sphere is produced. Using the previous defined

receiver and transmitter locations, the center of the spheroid must equal

(L/2, 0, 0). Then, for a point on the ground, P(x, y, 0), the local coordinates

can be represented as

x′ =
(
x− hR tan θT

)
cos θT

= x cos θT − hR sin θT (2.5)

y′ = y (2.6)
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Figure 2.3: Prolate spheroid local coordinate system configure on the global
coordinate system.

z′ =
−hR

cos θT
−
(
x− hR tan θT

)
sin θT

= −x sin θT − hR

(
1

cos θT
− sin2 θT

cos θT

)
= −x sin θT − hR cos θT, (2.7)
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where the three equations above are based off the definition of θT as nega-

tive. Now substituting the change of variable equations into (2.4) yields

(x cos θT − hR sin θT − L/2)2

a2 +
y2

b2 +
(−x sin θT − hR cos θT)

2

b2 = 1

b2

a2

(
x2 cos2 θT + h2

R sin2 θT +
L2

4
− xhR sin 2θT − xL cos θT + hRL sin θT

)
+y2 + x2 sin2 θT + xhR sin 2θT + h2

R cos2 θT = b2

x2
(

b2

a2 cos2 θT + sin2 θT

)
− 2x

[(
b2

a2 − 1
)

hR
2

sin 2θT +
b2

2a2 L cos θT

]
+ y2 =

b2 − b2

a2

(
h2

R sin2 θT +
L2

4
+ hRL sin θT

)
− h2

R cos2 θT.

(2.8)

Let γ, α and ζ be

γ =
b2

a2 cos2 θT + sin2 θT, (2.9)

α =

(
b2

a2 − 1
)

hR

2
sin 2θT +

b2

2a2 L cos θT, (2.10)

and

ζ = b2 − b2

a2

(
h2

R sin2 θT +
L2

4
+ hRL sin θT

)
− h2

R cos2 θT, (2.11)
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such that (2.8) becomes

γx2 − 2αx + y2 = ζ

x2 − 2
α

γ
x +

(
α

γ

)2

+
1
γ

y2 =
ζ

γ
+

(
α

γ

)2

(
x− α

γ

)2

ζ
γ + α2

γ2

+
y2

ζ + α2

γ

= 1. (2.12)

Last, realizing a = RB/2 and b =
√

R2
B − L2/2 allows γ, α and ζ to be written in

terms of bistatic radar parameters

α =

(
R2

B − L2) L
2R2

B
cos θT −

L2hR

2R2
B

sin 2θT

γ = 1− L2

R2
B

cos2 θT

ζ =
R2

B − L2

4
.

Again, (2.12) is only valid for hR > hT and a transmitter elevation an-

gle, θT, defined as negative. Then, letting RB vary incrementally by the

waveform’s delay resolution, the resolved elliptical isorange contours on

the ground are calculated. These contours are depicted in Figure 2.4. The

parametric equations can be defined by rewriting (2.12) as

(
x− α

γ

)2

ζ
γ + α2

γ2

+
y2

ζ + α2

γ

= cos2 ω + sin2 ω, (2.13)
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Figure 2.4: Isorange contours found through the intersection of the ground
plane and a prolate spheroid with constant RB.

and setting the x and y terms equal to the cos2 ω and sin2 ω respectively.

After solving for x and y, the parametric equations become

x =

√
cos2 ω

(
ζ

γ
+

α2

γ2

)
+

α

γ
, (2.14)

and

y =

√
sin2 ω

(
ζ +

α2

γ

)
, (2.15)

where the parametric parameter, ω ∈ [0, 2π), defines one trip around an

isorange contour. Finally, the isorange contours for any generic transmitter

with global coordinates of (L cos θT cos φT, Lcos θTsin φT, hT), can be found
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by rotating the parametric equations for the x and y coordinates by φT,

x =

(√
cos2 ω

(
ζ

γ
+

α2

γ2

)
+

α

γ

)
cos φT

−
(√

sin2 ω

(
ζ +

α2

γ

))
sin φT (2.16)

y =

(√
cos2 ω

(
ζ

γ
+

α2

γ2

)
+

α

γ

)
sin φT

+

(√
sin2 ω

(
ζ +

α2

γ

))
cos φT. (2.17)

2.1.2 Bistatic Range Performance

The bistatic signal-to-noise ratio (SNR) is defined as [54]

SNR =
PTGTGRλ2σBF2

TF2
R

(4π)3kTsBnLT LRR2
TR2

R
(2.18)
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where

PT = Transmit power

GT = Transmitter antenna gain and pattern

GR = Receiver antenna gain and pattern

λ = Waveform wavelength

σB = Target bistatic RCS

FT = Pattern propagation factor from Tx to target

FR = Pattern propagation factor from Rx to target

k = Boltzmann’s constant

Ts = Receiver system temperature

Bn = Receiver noise bandwidth

LT = Transmitter system losses

LR = Receiver system losses

RT = Range from transmitter to target

RT = Range from receiver to target.

To understand how performance varies with bistatic range in the bistatic

plane, let all non range-dependent variables in (2.18) be represented as the
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constant, C, such that

SNR =
C

R2
TR2

R
. (2.19)

Then after some manipulation, (2.19) can represent a specific quartic poly-

nomial known as a Cassini oval [54].

Giovanni Domenico Cassini was an Italian astronomer and professor

during the seventeenth-century. In 1669, King Louis XIV invited Cassini to

Paris where he eventually became the founding director of the Paris Obser-

vatory [55]. Cassini made many contributions to astronomy ranging from

the discovery of Saturn’s moons and rings to how to make longitudinal

calculations for navigators and mapmakers [55]. During his time, Cassini

rejected Kepler’s theory that planetary motion followed elliptical orbits. In-

stead Cassini proposed what has been called the ”Cassinoı̈de”, ellipse of

Cassini, and Cassini oval [56]. Unlike an ellipse that maintains a constant

sum of the two distances from the foci to a point on the ellipse, a Cassini

oval consists of a set of points where the product of the distances from

the foci to any point on the oval is constant [57]. So while Cassini ovals

may not accurately represent planetary motion, they can represent constant

SNR (thermal noise only) for the bistatic radar range equation. Through the

study of these ovals, a basic understanding can be attained for how bistatic

geometry affects SNR performance.
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First, let us define a two dimensional local coordinate system within the

bistatic plane where the receiver lies at the origin. Then, assume the trans-

mitter is located at (L, 0). These definitions cause the range variables in

(2.19) to be equal to

RR =
√

x2 + y2

RT =
√
(x− L)2 + y2,

(2.20)

Then substituting (2.20) into (2.19) gives the following expression in Carte-

sian coordinates

C
SNR

=
(

x2 + y2
) (

(x− L)2 + y2
)

=
(

x2 + y2
) (

x2 + y2 + L2 − 2xL
)

=
(

x2 + y2
)2

+ L2
(

x2 + y2
)
− 2xL

(
x2 + y2

)
. (2.21)

Next, through the use of polar coordinate transformations where x = r cos θ

and r =
√

x2 + y2, (2.21) becomes

r4 + L2r2 − 2r3L cos θ =
C

SNR
. (2.22)
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Figure 2.5: Cassini ovals that represent iso-SNR contours in the bistatic
plane.

Immediately noticeable is that SNR is inversely proportional to the polar

coordinate r*. Therefore, as SNR decreases, the size of the Cassini oval in-

creases.

Figure 2.5 depicts various constant SNR curves that can be separated

into four categories: two separate closed curves, a figure eight (known as

the Lemniscate of Bernoulli), a single closed curve with indentions, and a

convex closed curve [58]. These categories depend on C/SNR from (2.22)

in comparison to the bistatic baseline separation, L, and defined as follows,

*Radius r is the distance from the center of the oval at (L/2, 0) to a point on the curve.
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0 <
C

SNR
<

L4

16
, Two separate closed curves,

C
SNR

=
L4

16
, Figure eight,

L4

16
<

C
SNR

<
L4

4
, Single closed curve with indentions,

C
SNR

≥ L4

4
, Convex closed curve.

All four categories can be seen in Figure 2.5 where the largest Cassini oval

is the only closed convex curve and calculated for when C/SNR = L4/4.

The Cassini curves given in (2.22) are only defined in the bistatic plane as

shown in Figure 2.5. In order to understand constant SNR for ground mov-

ing targets, the Cassini ovals must be revolved around the bistatic baseline

and intersected with the ground plane (global x-y plane). Figure 2.6 illus-

trates a variety of intersected iso-SNR curves when the receiver is located

at (0, 0, 1000 m) and the transmitter at (940 m, 0, 60 m).

Next, Figure 2.7 compares isorange contours with constant SNR curves

that are spaced at intervals of 3 dB for the same receiver and transmitter

locations as in Figure 2.6. It can be seen in Figure 2.7 that isorange contours

near the transmitter experience greater SNR dynamic range while increas-

ing bistatic range decreases the fluctuation of SNR around the isorange con-

tour. As an example, the smallest bistatic range in Figure 2.7 can experience

greater than 9 dB of SNR dynamic range while the largest bistatic range

contour varies closer to 3 dB.
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Finally, another parameter to assist in understanding bistatic range per-

formance is the isorange contour eccentricity. The eccentricity, e, of each

isorange contour is defined as e = c/a where c is the distance from the cen-

ter of an ellipse to a focus and a is the semi-major axis. From the properties

of an ellipse, c is equal to
√

a2 − b2 where b is the semi-minor axis. Referring

Figure 2.6: Constant SNR curves are found by revolving Cassini ovals
around the baseline and finding the intersection with the ground plane. The
SNR curves shown are spaced every 3 dB.
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Figure 2.7: A comparison of isorange contours and constant SNR curves.
Smaller RB experience a larger dynamic range of SNR when compared to
less eccentric isorange contours.

to (2.12), it is seen that a and b are defined as

a =

√
ζ

γ
+

α2

γ2 (2.23)

b =

√
ζ +

α2

γ
(2.24)
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Therefore, looking at the eccentricity of an isorange contour as bistatic range,

RB, approaches infinity gives

lim
RB→∞

e = lim
RB→∞

c
a

= lim
RB→∞

√
ζ
γ + α2

γ2 − ζ − α2

γ√
ζ
γ + α2

γ2

=

√
∞
1 +

( L cos θ
2 )

2

12 −∞− ( L cos θ
2 )

2

1√
∞
1 +

( L cos θ
2 )

2

12

=

√(
L cos θ

2

)2
+
(

L cos θ
2

)2
−
(

L cos θ
2

)2

√
∞ +

(
L cos θ

2

)2

=

(
L cos θ

2

)
∞

= 0. (2.25)

The result from (2.25) states that the isorange contour becomes circular in

the limit. If the range ring becomes circular in the limit, then RR = RT and

the Cassini oval becomes circular in the limit. Therefore, as range increases

performance mimics monostatic radar in nature because the bistatic geom-

etry is less influential.
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2.2 Space-Time Adaptive Processing Introduction

When a multi-channel radar is mounted to an aerospace platform, the re-

turned ground clutter extends in both range and angle and exhibits induced

Doppler spread from the platform motion [59]. Improved target detection

can be attained through spatial and temporal diversity otherwise known as

degrees of freedom (DoF) [60]. Steering vector notation is often used to rep-

resent the change in phase of the received radar signal over space and time.

If the coherent processing interval (CPI) is M pulses, then the nth antenna

channel measures complex baseband voltages from a point source as [61]

xt,k(n) = αs,k(n)
[
1 exp(j f̄d) exp(j2 f̄d) · · ·

exp(j(M− 2) f̄d) exp(j(M− 1) f̄d)
]T, (2.26)

where T is the transpose operator, αs,k(n) represents a random scalar the nth

channel measures at the kth rangebin, xt,k(n) is the temporal snapshot for

the nth channel, and f̄d is the normalized Doppler frequency. The column

vector in (2.26) is defined as the temporal steering vector, st( f̄d) [61],

st( f̄d) =
[
1 exp(j f̄d) exp(j2 f̄d) · · ·

exp(j(M− 2) f̄d) exp(j(M− 1) f̄d)
]T. (2.27)
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Furthermore, the measured complex baseband voltage of the mth pulse

across N channels from a point source is given as [61],

xs,k(m) = αt,k(m)
[
1 exp(jϑ) exp(j2ϑ) · · ·

exp(j(N − 2)ϑ) exp(j(N − 1)ϑ)
]T, (2.28)

where αt,k(m) represents a measured random scalar from the mth pulse at

the kth rangebin, xs,k(m) is the spatial snapshot for the mth pulse, and ϑ is

the normalized spatial frequency. Thus the spatial steering vector, ss(ϑ), is

defined as

ss(ϑ) =
[
1 exp(jϑ) exp(j2ϑ) · · ·

exp(j(N − 2)ϑ) exp(j(N − 1)ϑ)
]T. (2.29)

It is now possible to define the space-time steering vector, s(ϑ, f̄d), as

s(ϑ, f̄d) = st( f̄d)⊗ ss(ϑ)

=
[
1st

T ejϑst
T ej2ϑst

T · · ·

ej(N−2)ϑst
T e(j(N−1)ϑst

T]T, (2.30)

where ⊗ denotes the kronecker product. When a normalized spatial and

Doppler frequency is hypothesized, (ϑ̂, ˆ̄fd), the space-time steering vector
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represents a matched filter (wk)

wk = µs(ϑ̂, ˆ̄fd) (2.31)

and thus maximizes the signal power relative to white Gaussian noise for

arbitrary scalar µ [61]. The goal in STAP; however, is to maximize signal to

interference-plus-noise ratio (SINR).

The received signal, xk, is characterized by two models,

H0 : xk = ck + nk

H1 : xk = tk + ck + nk, (2.32)

where H0 is commonly known as the null hypothesis and the H1 hypothesis

contains a target. The elements tk, ck, nk represent the contributions from

a target, clutter, and receiver noise respectively. Therefore, SINR is defined

by [61]

SINR =
E
[
wk

Htktk
Hwk

]
E
[
wk

Hxk|H0
xk|H0

Hwk

]

=
σ2

s

∣∣∣wk
Hs(ϑ, f̄d)

∣∣∣2
wk

HRkwk
, (2.33)
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where H denotes a Hermitian or conjugate transpose. It is assumed tk =

αtgts(ϑtgt, f̄d,tgt) and αtgt, ϑtgt, and f̄d,tgt are the target’s corresponding com-

plex RMS voltage, spatial, and Doppler frequencies. Furthermore, it is as-

sumed the data for the null case, xk|H0
, is colored Gaussian noise where

xk|H0
∼ CN(0, Rk) and Rk = xk|H0

xk|H0
H is the interference covariance

matrix at range bin k. Finally, σ2
s represents the signal power at a single

channel and single pulse given as σ2
s = E[|αtgt|2].

The optimal filter that maximizes SINR is

wk = βRk
−1s, (2.34)

where β represents an arbitrary scalar that does not alter the SINR output

[62], [63]. Also note the notation for the steering vector’s dependency on

spatial and Doppler frequencies is dropped for convenience. Substituting

(2.34) into (2.33) yields the optimal SINR for the clairvoyant case as

SINRopt =
σ2

s β2
∣∣∣sHRk

−1s
∣∣∣2

β2sHRk
−1RkRk

−1s

=
σ2

s

∣∣∣sHRk
−1s
∣∣∣2

sHRk
−1s

= σ2
s

∣∣∣sHRk
−1s
∣∣∣. (2.35)
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SINR can be calculated over a two-dimensional angle†/Doppler space. How-

ever, a spatial frequency/angle is usually held constant and referred to as a

spatial cut. SINR is then calculated over −0.5 ≤ f̄d < 0.5. As an example, a

clairvoyant SINR curve is plotted in Figure 2.8 at a spatial cut of ϑ = 0. Fig-

ure 2.8 also labels some common nomenclatures used in STAP that include

the noise and clutter limited regions‡ and the clutter notch. At a spatial

cut of zero the Doppler frequency of the clutter is also zero, which is what

produces the sharp drop in loss that is known as the clutter notch. Differ-

ent spatial cuts will cause induced Doppler shifts on stationary clutter and

result in the clutter notch shifting to the appropriate Doppler frequency. Fi-

nally, the extent of the clutter notch is directly related to the clutter strength.

Larger clutter returns cause deeper notches while weak clutter results in

more shallow notches.

The interference covariance matrix for the clairvoyant case, Rk, is not

known in practice and must therefore be estimated. A common estimation

technique is termed the sample matrix inversion (SMI) [64] where R̂k is

R̂k =
1

P

P

∑
p=1

xpxp
H. (2.36)

†The relationship between angle and spatial frequency is defined in Section 3.2.1.
‡These terms have also been coined as exo-clutter and endo-clutter regions.
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Figure 2.8: Example of a SINR curve with nomenclature labeled.

The data set {xp, p ∈ [1, P]} are from range bins outside the range bin/cell

under test (CUT) and commonly known as the secondary or training data

[60]. If the training data are range independent and identically distributed,

then the so-called RMB rule (named after inventors) states P ≈ 2NM will

yield an average performance loss of 3 dB [63].

With R̂k defined, the adaptive filter becomes

ŵk = βR̂−1
k s. (2.37)
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While β is arbitrary, certain definitions of β can be be more beneficial for

target detection. As an example, if β is

β =
1√

sHR̂−1
k s

, (2.38)

then the adaptive matched filter (AMF) test statistic that is defined as

κ =
∣∣∣ŵH

k xk

∣∣∣2
=

∣∣∣sHR̂−1
k xk

∣∣∣2
sHR̂−1

k s
, (2.39)

will display constant false alarm rate (CFAR) properties [65]. However,

AMF is not the only test statistic. Others extensions of SMI that also exhibit

CFAR properties include Kelly’s generalized likelihood ratio test (GLRT)

[66] and Kraut’s adaptive cosine estimator (ACE) [67].

2.3 Extended Factor Algorithm

The extended factor algorithm (EFA) is a sub-optimal reduced dimension

STAP algorithm. Common problems with STAP include the large com-

putational costs and access to training data that are representative of the

CUT. Therefore, reduced dimension algorithms decrease the STAP degrees
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of freedom (NM) in order to alleviate both the computational complexity

and required number of training cells, P.

In particular, EFA apodizes the slow-time data through the use of tempo-

ral weighting functions (e.g. Hanning, Hamming, etc.) in conjunction with

discrete Fourier transformation. Since the frequency-domain data decorre-

lates at a faster rate [68], the number of pulses, M, can be replaced with

a smaller number of Doppler bins. As an example, if one adjacent Dopp-

ler bin is chosen, then the Doppler degrees of freedom reduces to 3 and

P ≈ 2N(3) = 6N. The computation can be even further reduced due to the

fact that the matched apodized Doppler weight vector can be pre-calculated

since it is shift-invariant in the frequency domain.

The EFA will be used in later chapters to evaluate SINR performance. In

particular, Chapter 3 compares SINR performance across algorithms, PBR

clutter modeling, and waveform effects. Chapter 4 incorporates the mod-

eling from Chapter 3 and compares optimal SINR across emitters. Finally,

Chapter 5 illustrates the SINR performances for EFA and full dimension

STAP for the LCDR algorithm.
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Chapter 3

Passive STAP Modeling

Important factors in modeling a passive STAP radar system are the strength

of the distributed clutter in angle-Doppler space and the performance ef-

fects associated with an uncooperative waveform. Section 3.1 introduces

how to model the strength of clutter over all clutter angles while Section

3.2 defines where in angle-Doppler space the clutter strength resides. Then

Section 3.3 derives the performance impact to STAP that is caused by a non-

ideal radar waveform. Last, Section 3.4 compares the SINR results of the

newly developed in-plane out-of-plane (IPOP) model from Section 3.1 with

two different bistatic clutter models found in literature. These two previ-

ously developed clutter models are introduced in Section 3.4 and are known

as the extended constant gamma (ECG) model and the Aviation and Missile

Command (AMCOM) model.
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3.1 Heterogeneous Clutter Modeling

Classifications of clutter can include homogeneous, heterogeneous, and

range-dependent. Homogeneous and heterogeneous clutter differ in that

the clutter RCS statistics over area are preserved for homogeneous and vary

for heterogeneous. When the clutter’s angle-Doppler power spectrum var-

ies over range, then range-dependent clutter is obtained. Angle-Doppler

power spectrum variation in range is a by-product of a bistatic geometry

where the transmitter and receiver are geographically separated. The focus

in this research is on heterogeneous, range-dependent clutter where the het-

erogeneity is by in-plane and out-of-plane clutter scattering properties [12].

These scattering properties will be introduced in the following sections.

3.1.1 Clutter Defined

At the kth range bin, the clutter contributions, ck are attributed to the re-

ceived voltage response from scatterers within the kth range bin and any

ambiguous range bins [61] and written as

ck =
Na

∑
j=1

2π∫
0

α
(
ϑj(ω), f̄ j(ω)

)
s
(
ϑj(ω), f̄ j(ω)

)
dω, (3.1)
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where Na is the number of ambiguous range bins, α is the random reflection

coefficient at normalized spatial and Doppler frequencies, which are depen-

dent on the parametric parameter, ω, of the isorange contour of interest.

This continuous sum of voltage responses around isorange contours can

be discretized with the use of clutter patches that are depicted in Figure 3.1.

Then ck is approximated as [59]

ck =
Na

∑
j=1

Nc

∑
i=1

αijks(ϑijk, f̄ijk), (3.2)

where Nc is the number of clutter patches within a range bin, and αijk, ϑijk,

and f̄ijk are the random reflection coefficient, normalized spatial frequency,

and normalized Doppler frequency, respectively, of the (ith, jth, kth) clutter

patch.

The random clutter patch reflection, αijk, is a realization from the patch

clutter-to-noise ratio (CNR), ξijk, where ξijk is calculated with the bistatic

radar range equation as

ξijk =
PtGTgRλ2σijkF2

T f 2
R

(4π)3kTsBnLT LRR2
TR2

R
, (3.3)

where gR represents the gain of one channel. Assuming a Rayleigh clut-

ter model (e.g. Gaussian voltage), the clutter patch reflection for a single
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Figure 3.1: The dissection of isorange contours into clutter patches.

channel and pulse is [69]

αijk = Γ
√

ξijkσ2
n, (3.4)

where Γ ∼ CN(0, 1) and σn is a single channel and single pulse noise power.

The clutter patch bistatic radar cross section (RCS), σijk, in (3.3) is calculated

as

σijk = σ0(θI , θS, φOP)Aijk, (3.5)

where Aijk is the area of the ith jth kth clutter patch and σ0 is the clutter

patch normalized RCS coefficient. Previous literature shows bistatic clut-

ter measurements where σ0 is strongly dependent on geometry [2]–[5], [7],
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[54]. However, this geometry-dependent variation is often overlooked in

the simulation-based literature. Therefore, an interpolation model based off

the measured responses from [54] is generated to determine σ0 in (3.5) as a

function of the clutter patch coordinate parameters θI , θS, and φOP. These

parameters will be defined in the next section and are used to uniquely de-

fine a patch’s relative location in the local clutter coordinate system.

Clutter Coordinate System

In a bistatic system, ground clutter geometry can be described by in-plane

and out-of-plane scattering angles [54]. Figure 3.2 introduces the two in-

plane angles, θI and θS, and the out-of-plane angle, φOP. For a fixed in-

stant in time, every ground clutter patch has a unique combination of in-

plane and out-of-plane angles that describe the patch’s relative location in

three-dimensional space with respect to the receiver and transmitter. When

φOP = 180◦ then a forward scattering case is defined, while a backscattering

scenario is designated when φOP = 0◦. If θI = θS and φOP = 0◦, then the

angles describe a monostatic radar.

Clutter Area

Unlike a monostatic sidelooking STAP configuration, clutter patch area var-

ies within a range bin, which can be easily seen in Figure 3.1. The reason

why the patch areas change within a range bin is due to two reasons. First,
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Figure 3.2: The reflectivity coefficient for each patch varies by angles θI ,
θS, and φOP defined here [54]. A forward scattering case is defined when
φOP = 180◦, while a monostatic case is when φOP = 0◦ and θI = θS.

it is assumed that hR > hT, which creates non-concentric isorange contours.

In other words, the center of each elliptical contour is unique and causes

varying patch areas. Second, as RB increases the eccentricity of the isorange

contours decrease. This change in eccentricity causes patch area to change

while traversing around a range bin. Figure 3.3 illustrates this concept by

comparing concentric isorange contours within the bistatic plane with con-

centric ellipses that maintain constant eccentricity with increasing size.

After inspecting the clutter patch shapes from Figure 3.1, a four sided

polygon appears to approximate the patch area effectively. Figure 3.4 mag-

nifies one patch from Figure 3.1 to qualitatively showcase this approxima-
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(a) Isorange contours within the bistatic plane

(b) Concentric ellipses that maintain eccentricity

Figure 3.3: Concentric ellipses in (a) maintain foci locations that cause ec-
centricity to change while concentric ellipses in (b) maintain eccentricity
that cause foci to change locations.
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Figure 3.4: The area of a clutter patch is approximated as a general quadri-
lateral defined above.

tion. The area of a general quadrilateral is calculated as [70]

A =
1
4

√
4p2q2 − (b2 + d2 − a2 − c2)

2, (3.6)

where the variables a, b, c, d, p, and q are lengths denoted in Figure 3.4.

Clutter RCS Coefficient

As previously stated, the RCS coefficient is found from an interpolation

model that is generated from scattering observations presented in Figures

9.2 and 9.5 of [54].The value of σ0 depends on the combination of the in-

plane and out-of-plane ground clutter patch angles [2]–[5]. Overall, the an-

gle that contributed the greatest impact on the clutter patch RCS coefficient

was seen as φOP. When φOP is at an extreme, that is either 0◦ (back scatter-

ing) or 180◦ (forward scattering), σ0 is at its strongest reflectivity. However,
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Figure 3.5: Modeled σ0 for every clutter patch when hR = 1 km, hT = 60 m,
θ = −35◦ and L ≈ 1.6 km.

the weakest value for σ0 is when φOP is around 90◦ [12]. Figure 3.5 depicts

the variation of σ0 over wide range of clutter patch angles where the receiver

and transmitter locations are (0, 0, 1.0km) and (1.3km, 0, 60m) respectively.

High reflectivity is shown in the red regions where φOP is near 0◦.

3.1.2 Clutter Power Results

The received clutter power, ξσ2
n, from (3.3) is depicted over a large area in

Figure 3.6. Every variable from the bistatic radar equation is taken into
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account in Figure 3.6. The receiver was assumed to have a backlobe at-

tenuation of 30 dB in the calculation. Furthermore, the receiver’s antenna

was modeled as a uniform linear array (ULA) with eight sub-arrays at half-

wavelength spacing in azimuth. Plus, the sub-array consisted of eight verti-

cally stacked antenna elements spaced at half-wavelength increments. These

sub-array antenna patterns contain elevation nulls that are seen in Figure 3.6

as the circular notches. Overall, the most influential variables on the clutter

power distribution were the antenna patterns, clutter patch RCS, and range.

Figure 3.6: Received clutter power for transmitter one emissions over all
range bins of interest. The calculated power received takes into account
all variables in the radar range equation for each bistatic combination. The
constants across transmitters are the antenna directivity towards the target
and transmit power.
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3.2 Passive STAP

While Chapter 2 introduced bistatic geometry and STAP, the particular de-

tails that pertain to a PBR system were not covered. Now that the clutter

interpolation model has been covered, the details of passive STAP can be

discussed. First, the PBR clutter response within the angle-Doppler domain

will be defined. Then a moving target’s Doppler shift will be derived.

3.2.1 Passive STAP Clutter

As a reminder, the defined passive system is a multi-channel radar receiver

that is mounted onto an airborne platform in a side looking configuration

and uses emitters of opportunity for the radar waveform. Therefore, the

airborne platform still induces a Doppler shift on the clutter that is extend-

ing in both angle and range. However, the stationary transmitter does not

induce a Doppler shift on the clutter, which is unlike monostatic and bi-

static systems. Therefore, a passive system results in an induced Doppler

shift that is half the shift experienced by monostatic system when keeping

the receive platforms’ velocity and the radar waveforms’ wavelengths con-

stant. An induced Doppler shift is defined by

fd =
k̂Rx · vRx + k̂Tx · vTx

λ
, (3.7)
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where the unit vectors k̂Rx and k̂Tx represent the respective line of sight di-

rections from the receiver and transmitter to a point on the ground, and vRx

and vTx are the respective receiver and transmitter velocity vectors in three-

dimensional space. For a monostatic case where k̂Rx = k̂Tx and vRx = vTx,

(3.7) reduces to the familiar equation of fd = 2vr/λ where vr is the projected

radial velocity of the monostatic platform. However, a PBR system where

vTx = 0 causes (3.7) to reduce to

fd =
vr

λ
. (3.8)

For a ULA with elemental azimuth spacing defined by d = dŷ and the

receive platform velocity given as vRx = vaŷ, then k̂Rx can be formally

written as

k̂Rx = cos θ cos φx̂ + cos θ sin φŷ + sin θẑ, (3.9)

where θ and φ are the elevation (defined as negative) and azimuth angles

from the ULA reference channel to a point on the ground (x− y plane). The

normalized Doppler shift for a clutter patch , f̄ , becomes

f̄ =
k̂Rx · vRx

λ fr
=

va

λ fr
cos θ sin φ, (3.10)
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where fr is the pulse repetition frequency. The normalized spatial frequency

for a clutter patch, ϑ, is defined as

ϑ =
k̂Rx · d

λ
=

d

λ
cos θ sin φ. (3.11)

Equations (3.10) and (3.11) allow a clutter patch’s angle-Doppler response

to be defined in the following linear relationship

f̄ =
vad

λ frd
cos θ sin φ =

va

frd
ϑ. (3.12)

Overall, (3.12) shows that f̄ is a linear function of cos θ sin φ, which is not

the case in traditional bistatic radar where both receiver and transmitter

platforms are moving. Therefore, if the azimuth and elevation angles are

restricted to one elliptical range bin, then a clutter ridge is described in nor-

malized Doppler and spatial frequency space with a linear slope, η, of

η =
va

frd
. (3.13)

This clutter ridge relates where in f̄ and ϑ space the clutter energy resides.

In STAP, wk adaptively filters the clutter contributions, ck, from xk along

this clutter ridge.

45



Figure 3.7 depicts linear clutter ridges for two different range bins for

η = 1, or equivalently, va = frd = frλ/2. In Figure 3.7a, it is seen that the

clutter power distribution is more localized for an isorange contour that is

highly eccentric. Meanwhile, the longer RB shown in Figure 3.7b causes a

lower eccentricity contour and results in a clutter power distribution that

is more extended in angle-Doppler. This observation can be explained in

two parts. First, for highly eccentric isorange contours as seen in Figure 3.1,

the dynamic range of θ and φ restrict the dynamic range of both f̄ and ϑ.

Second, the clutter RCS varies with angle. Figure 3.5 illustrates the strongest

clutter more localized at shorter ranges and becomes more widely spread

with increasing bistatic range.

Finally, the monostatic and PBR clutter ridge differences must be out-

lined. First, monostatic radar produces a clutter ridge within a range bin

where f̄ is a linear function of sin φ whereas f̄ behaves linearly with cos θsin φ

in a PBR system. This difference is due to the fact that cos θ and sin φ are de-

coupled in a monostatic radar because the range bins are circular (e.g. cos θ

is constant within the range bin). So maintaining a constant range for mono-

static radar, results in a constant elevation angle and f̄ changes linearly with

the sine of the azimuth angle. However, to maintain constant bistatic range

in a PBR system, both θ and φ vary while traversing the elliptical isorange

contour. Second, as previously stated, the Doppler shift from a PBR system
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(a) For isorange contour of RB ≈ 2.43 km where e ≈ 0.77

(b) For isorange contour of RB ≈ 8.85 km where e ≈ 0.21

Figure 3.7: Clutter contributions over normalized Doppler and spatial fre-
quency for two different isorange contours when the receiver and transmit-
ter are located at (0, 0, 1 km) and (1.63 km, 0, 60 m) respectively.
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is half that of a monostatic. This factor continues through to the slope of the

clutter ridge. So keeping va, fr, and d constant results in η = ηM/2, where

ηM is the monostatic clutter slope.

3.2.2 Passive STAP Target Response

The total Doppler response, f̄tot from a moving target is the sum of two

Doppler shifts: 1) Doppler shift induced by the radar receiver platform, f̄ ,

2) the moving target Doppler shift, f̄tgt. Similar to (3.7), the the Doppler

shift induced by the moving target, ftgt, is defined as

ftgt =
k̂Rx · vtgt + k̂Tx · vtgt

λ

=
vtgt

λ

(
k̂Rx · v̂tgt + k̂Tx · ˆvtgt

)
, (3.14)

where v̂tgt and vtgt are the target’s velocity direction and magnitude (speed),

respectively. Figure 3.8 introduces angles δ and β/2, which allow (3.14) to

be expressed as

ftgt =
vtgt

λ

[
cos

(
δ− β

2

)
+ cos

(
δ +

β

2

)]

=
2vtgt

λ
cos δ cos

β

2
. (3.15)
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Figure 3.8: Target velocity defined in the bistatic plane.

Then the normalized target Doppler shift becomes

f̄tgt =
2vtgt

λ fr
cos δ cos

β

2
, (3.16)

and the total normalized Doppler shift, f̄tot, is

f̄tot = f̄ + f̄tgt

=
va

λ fr
cos θ sin φ +

2vtgt

λ fr
cos δ cos

β

2
, (3.17)

where θ and φ define the location of the target.
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3.3 Waveform Analysis and Effects

The effects from an uncooperative waveform must be considered when

modeling passive radar performance. In this research, the chosen passive

emitter is assumed to be broadcasting an LTE signal. Therefore, an LTE

waveform’s structure and properties will first be introduced. Then the par-

ticular performance effects related to STAP will be described.

3.3.1 LTE Waveform

The LTE waveform is based off an orthogonal frequency division multiplex-

ing (OFDM) scheme and is partitioned in time into frames, subframes, and

slots. Each of these categories span a respective duration of 10 ms, 1 ms,

and 0.5 ms. A slot consists of either six or seven symbols that are dictated

by the chosen cyclic prefix (CP) [36]. Last, every slot contains a number of

orthogonal subcarrier signals where the number of subcarriers are directly

related to the signal’s bandwidth. At the maximum number of subcarriers,

a signal bandwidth of approximately 20 MHz is achieved, which gives a

monostatic range resolution of approximately 7.5 m.

The CP exists to assist in the mitigation of multipath signals by making

each CP a data copy of the respective symbol’s end portion. The chosen

CP mode defines the time duration of the CP. In the extended mode, each

slot contains six symbols where all six CPs are of uniform duration equal to
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16.67 µs. In turn, the data carrying symbol duration is set to 66.67 µs. So

to maintain subcarrier orthogonality, a frequency step of 15 kHz is used be-

tween each subcarrier within the signals bandwidth. In the maximum LTE

bandwidth configuration, there are 1320 subcarriers present, which equates

to a bandwidth of B = 15 kHz(1320) = 19.8 MHz [36]. More details about

the LTE waveform can be found in the published standards from the Euro-

pean Telecommunications Standards Institute [71].

In this research, a pulse is defined as one LTE symbol with maximum

bandwidth/subcarriers. Additionally, each pulse consists of random simu-

lated user data; thus, the waveform is considered a pulse-diverse waveform

over the CPI. Furthermore, each pulse varies in energy due to the random-

ness of the user data.

3.3.2 Modeling Pulse-Diverse Waveform for STAP

Unfortunately, pulse-diverse waveforms result in poor clutter filtering [45]

due to pulse-to-pulse decorrelation of the clutter spectrum. If strong clutter

is present, then pulse-diverse waveforms can lead to SINR performance that

is clutter-limited across all Doppler shifts. This Doppler modulation effect

has also been termed as clutter-Doppler spread [46], [47].

The Doppler modulation effect can be incorporated by first defining a

direct path signal from the mth pulse as xm(τ). Then the normalized auto-
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correlation of the mth pulse, Rm
xx(τ), is

Rm
xx(τ) =

xm(τ) ∗ x∗m(−τ)

Em

=
1

Em

∫ ∞

−∞
xm(t)x∗m(t− τ)dt, (3.18)

where x∗m(−τ) is the complex-conjugated and time reversed signal of xm(τ),

and Em is the energy in the mth pulse. The pulse energy is calculated as

Em =
∫ ∆τ

0
|xm(t)|2 dt. (3.19)

At one channel, n, and one pulse, m, the clutter contributions can be

defined at time τ0 as a continuous sum of voltage response over angle and

time that is written as

c[m, n] =
∞∫∫

−∞∆ϑ

α(τ, ϑ)Rm
xx(τ − τ0)bm( f̄ )an(ϑ)dϑdτ

=

∞∫∫
−∞∆ϑ

α(τ, ϑ)Rm
xx(τ − τ0)bm

(
va

frd
ϑ

)
an(ϑ)dϑdτ, (3.20)

where ∆ϑ represents the span of illuminated spatial frequencies at time τ

(which maps to propagation delay), and bm( f̄ ) and an(ϑ) are the mth and

nth elements in the steering vectors from (2.27) and (2.29) respectively. Ad-

ditionally, (3.20) uses (3.12) to perform a change of variables and illustrate
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that the slow-time phase element can be represented in terms of spatial fre-

quency, bm(vaϑ/frd). From here on, the temporal and spatial phase elements

will be written as bm and an and the integral limits will be implied.

Letting a taper, t(τ), be defined as

t(τ) =



R1
xx(τ)

R2
xx(τ)

...

RM
xx(τ),


(3.21)

allows (3.20) to be expressed as a M length vector of pulse clutter contribu-

tions at a single spatial channel, which is written as

c[n] =
∫∫

α(τ, ϑ) (t(τ − τ0)� b) andϑdτ, (3.22)

where � is the Hadamard product (element or piece-wise product). The

taper captures the pulse-dependent distributed contributions (Rm
xx(τ)) over

range, or fast-time, when integrating over τ. Additionally, the taper cap-

tures pulse-to-pulse modulation across slow-time, which gives rise to the

clutter Doppler spreading seen in pulse-diverse waveforms [47]. In other

words, at a particular time τ, the taper includes the scattering contribu-

tions that enter the current range bin (located at time τ0) through the range
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sidelobes while simultaneously modulating the slow-time temporal steer-

ing vector that varies with the distance from the range bin at delay τ0. Lastly,

the clutter contributions from (3.22) can be further vectorized into the com-

mon space-time notation that is given as

c =
∫∫

α(τ, ϑ) [t(τ − τ0)� b]⊗ a dϑdτ. (3.23)

where the clutter contributions, c, are now a column vector of length MN.

With the definition of the space-time clutter contributions completed in

(3.23), the clutter covariance matrix (CCM) at the CUT, Rc, becomes

Rc = E
[
ccH

]
= E

[(∫∫
α(τ, ϑ) [t(τ − τ0)� b]⊗ a dϑ dτ

)
×

(∫∫
α(τ′, ϑ′)

[
t′(τ′ − τ0)� b′

]
⊗ a′ dϑ′ dτ′

)H
]

=
∫∫∫∫

E
[
α(τ, ϑ)α∗(τ′, ϑ′)

]
([t(τ − τ0)� b]⊗ a)×

([
t′(τ′ − τ0)� b′

]
⊗ a′

)H dϑ dτ dϑ′ dτ′. (3.24)

Assuming the clutter contributions are uncorrelated in space and time where

E [α(τ, ϑ)α∗(τ′, ϑ′)] = ξ(τ, ϑ)δ(τ′ − τ, ϑ′ − ϑ) and δ(τ′ − τ, ϑ′ − ϑ) is a two-

dimensional Dirac delta function, allows the incorporation of the sifting
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property. Then (3.24) becomes

Rc =
∫∫

ξ(τ, ϑ) ([t(τ − τ0)� b]⊗ a)×

([t(τ − τ0)� b]⊗ a)H dϑ dτ

=
∫∫

ξ(τ, ϑ)
[(

t(τ − τ0)⊗ 1N×N
)
� (b⊗ a)

]
×[(

t(τ − τ0)⊗ 1N×N
)
� (b⊗ a)

]H
dϑ dτ

=
∫ (

t(τ − τ0)tH(τ − τ0)⊗ 1N×N
)
�∫

ξ(τ, ϑ) (b⊗ a) (b⊗ a)H dϑ dτ

=
∫

T(τ − τ0)� Rc,τ dτ, (3.25)

where 1u×v is a matrix of ones with dimensions of u× v, Rc,τ is the CCM

evaluated at delay τ, and T(τ − τ0) is known as a covariance matrix taper

(CMT) [72]. The use of CMTs is a method developed for modeling various

types of interference subspace leakage (ISL) and other decorrelating effects

[73]. For example, CMTs have been used to model STAP performance effects

from intrinsic clutter motion (ICM), antenna jitter, bandwidth dispersion,

etc., [74]. Here, the use of CMTs has been extended to model clutter-Doppler

spreading due to the decorrelation of range sidelobes resulting from a pulse

diverse waveform.

It is now worth examining how (3.25) changes with different assump-

tions of the radar waveform. First, if the waveform is comprised of M iden-
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tical pulses, then only one autocorrelation function exists causing t(τ) =

Rxx(τ)⊗ 1M×1 and T(τ) = Rxx(τ)⊗ 1MN×MN. Therefore, the CMT in (3.25)

can be represented as a scalar multiplication equal to the autocorrelation

function, which varies in time/range and given as

Rc =
∫

Rxx(τ − τ0)Rc,τ dτ. (3.26)

The CCM calculated from (3.26) still includes the range sidelobes that result

of matched filtering. However, the effects of Doppler modulation that arise

from pulse diverse waveforms are now eliminated.

Alternatively, for an ideal waveform where it is assumed that no range

sidelobes exist or Rm
xx(τ) = δ(τ), the taper and CMT respectively become

t(τ) = δ(τ)⊗ 1M×1 and T(τ) = δ(τ)⊗ 1MN×MN. Then after applying the

sifting property, (3.25) reduces to

Rc = Rc,τ0

=
∫

ξ(τ0, ϑ)ssHdϑ, (3.27)

where s is the steering vector defined in (2.30). The CCM in (3.27) now only

depends on the clutter power within the CUT described at delay τ0. Also

note, whether or not the waveform is pulse diverse holds no bearing on the
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CCM when an ideal waveform is assumed. If there are no sidelobes in fast

time, then there can not be any Doppler modulation over slow time.

With clutter-Doppler spreading derived, Figure 3.9 illustrates the poten-

tial performance effects through SINR loss curves. In STAP, SINR loss repre-

sents the degradation in performance that is due to interference (other than

receiver noise) where 0 dB represents no loss. At spatial frequencies where

high clutter energy exists, clutter-Doppler spread occurs from the pulse-to-

pulse decorrelation (slow-time or Doppler) of the clutter spectrum, which

is seen as the entire curve being clutter limited across Doppler (refer to Rc

curve in Figure 3.9). So when modeling PBR performance, clutter-Doppler

spread must be included.

3.4 Model Comparison

Clutter-Doppler spreading is more prominent at spatial frequencies where

large clutter power resides. Therefore, the method for modeling the RCS

of bistatic ground clutter dictates the severity of the expected performance

degradation from pulse-diverse waveforms. To illustrate the model depen-

dent performance degradation effects, two previously published models

will be introduced and then compared. From this point forward, the three

models shall be specified as the in-plane, out-of-plane (IPOP) model as char-
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Figure 3.9: SINR Loss comparison between (3.27) and (3.25). When incor-
porating clutter-Doppler spreading, then the entire SINR Loss curve can be-
come clutter limited and not reach the full potential processing gain outside
the clutter notch.
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acterized in Section 3.1, the extended constant gamma (ECG) model from

[10], and the Aviation and Missile Command (AMCOM) model from [4].

3.4.1 ECG Model

Barton first formulated the constant gamma model as [75]

σ0 = γ sin ψ (3.28)

where γ and ψ are the normalized reflectivity parameter and grazing angle

respectively. The reflectivity parameter is scene dependent. For example,

farm land is modeled around −15 dB while wooded hills force γ to be 5 dB

greater [75].

The ECG model reformulates the traditional constant gamma model RCS

coefficient and assimilates the propagation factors for the transmitter and

receiver, FT and FR. So ECG defines σ0 as

σ0 = γ
√

sin (ψR) sin (ψT)F2
TF2

R, (3.29)
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where

F2
T,R = 1 + ρ2

T,R − 2ρT,R cos
(

4πσH sin (ψT,R)

λ

)
(3.30)

ρ2
T,R = exp

[
−
(

4πσH sin (ψT,R)

λ

)2
]

. (3.31)

The variables ρT,R, ψT,R, and σH are, respectively, the specular scattering

factors, grazing angles, and RMS surface roughness for the transmitter and

receiver where applicable [10].

3.4.2 AMCOM Model

The AMCOM model, similar to ECG, is a specular model and defines the

bistatic clutter RCS coefficient as [4]

σ0 = ρ̄2
s R2

0, (3.32)

where R0 is the reflection coefficient for a smooth surface that is based off

the Fresnal equation and ρ̄s is the RMS value of the specular scattering fac-

tor. These variables are calculated as

ρ̄s =
λ sin (2π∆h sin (γ) λ)

2π∆h sin (γ)
(3.33)

R0 =
− η1 cos θi + η2 cos θt

η1 cos θi + η2 cos θt
, (3.34)

60



Figure 3.10: Ground plane locations for the simulation used to compare
models.

where ∆h and γ in (3.33) are the standard deviation of disturbance height

and depression angle. Meanwhile, η1, η2, θi and θt in (3.34) respectively

represent the intrinsic impedances of air and the clutter material and the

angles of incidence and transmittance.

3.5 Analysis & Results

Consider a scenario where a receiver, two transmitters, and a target reside at

global coordinates of (0, 0, 1 km), (1.34 km, 0, 0.06 km), (0.95 km, 0.95 km,

0.06 km), and (3.1 km, 0, 0) as seen in Figure 3.10. Furthermore, assume

vRx = vaŷ where va is chosen to achieve a clutter ridge slope of one. It

can be seen from Figure 3.10 that the first transmitter lies in-plane relative

to the receiver and target while the second transmitter is located outside of

the x-z plane. Furthermore, the bistatic baseline, L, is held constant across
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transmitters at roughly 1.6 km and the transmitters’ antenna patterns are

directed at the target.

With the simulation setup in mind, Figure 3.11 illustrates the SINR Loss

in normalized angle-Doppler space for both transmitters at the respective

range bins of the target for all three models: IPOP, ECG, and AMCOM. The

impacts of the different methods for modeling bistatic RCS coefficients of

the clutter patches are easily seen in Figure 3.11. First, while the strength

of the clutter from the ECG and AMCOM models can be adjusted through

their respective control parameters, both assume out-of-plane scattering to

be equally strong as in-plane scattering. To be clear, in-plane scattering oc-

curs at the spatial frequency where a transmitter is located because of back-

ward or forward scattering effect. Therefore, in-plane scattering is at zero

spatial frequency for the first transmitter and 0.29 for the second transmit-

ter. So in theory, clutter strength should be move localized around ϑ = 0

for the first transmitter (Figures 3.11a, 3.11c, and 3.11e) and ϑ = 0.29 for

the second transmitter (Figures 3.11b, 3.11d, and 3.11f). However, the ECG

and AMCOM models produce strong clutter power that is distributed fur-

ther out in angle/spatial frequency (Figures 3.11c-f). On the other hand, the

IPOP method models clutter power that varies with out-of-plane angle and

results in a more focused distribution across the spatial/Doppler frequen-

cies (Figures 3.11a-b).
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Figure 3.11: SINR Loss in angle and Doppler for three different bistatic clut-
ter RCS coefficient models and two transmitters.
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A related second observation comes from comparing the SINR loss be-

tween the transmitters. The differences between transmitters for the ECG

and AMCOM models arise from the antenna pattern orientations. Figure

3.10 depicts the nulls of the transmitters’ antenna patterns. These nulls

appear in the two-dimensional SINR Loss curves from Figure 3.11 in the

vicinity of ϑ = 0.25 and ϑ = −0.25 for the first transmitter (column one)

and ϑ = 0.30 for the second transmitter (column two). However, the IPOP

method is modeling weaker RCS coefficients for the out-of-plane scatterers

plus the inclusion of the antenna pattern orientations. In particular, Figure

3.11b models very weak clutter overall because the second transmitter’s an-

tenna pattern has a null where strong clutter returns appear at the in-plane

scattering angle/frequency.

A third observation comes from the clutter-Doppler spread. Model-

ing higher clutter-to-noise ratio (CNR) increases the severity of the clutter-

Doppler spread. For example, Figure 3.11 shows that the strongest clutter

across models appears at the zero spatial cut for the first transmitter. How-

ever, the loss across Doppler is the worst for AMCOM. This observation can

also be seen in Figure 3.12a by comparing the solid and dashed SINR curves.

The solid curves represent optimal SINR without modeling a pulse-diverse

waveform whereas the dashed lines are the SINR curves that include the

clutter-Doppler spread effect. Notice there is about 1 dB loss across Doppler

64



for the IPOP and ECG models while approximately 5 dB lose is experienced

for the AMCOM model. This greater loss is due to the larger modeled clut-

ter RCS coefficients. Therefore, to understand the pulse-diverse waveform

performance impacts in passive radar, the chosen clutter model will dictate

the degree of impact from clutter-Doppler spread.

Figure 3.12 shows that the first transmitter in Figure 3.12a experiences

higher SINR than the second in Figure 3.12b within the exo-clutter region.

This better performance is attributed to the R2
TR2

R product from the bistatic

radar range equation as discussed in Section 2.1.2. The first transmitter’s

location creates a range product that is approximately 2.5 dB smaller than

the second transmitter’s range product.

Once again the difference in modeling out-of-plane scattering can be

seen when comparing the clutter notch depth between transmitters. Even

though the notch depth decreases for all models when going from the first to

the second transmitter, the relative decrease is greatest for the IPOP model.

As previously mentioned, the decreases in notch depths are attributed to

antenna patterns for the ECG and AMCOM models.

Finally, the severity of performance loss that comes from clutter-Doppler

spread can be seen in Figure 3.12. In particular, the IPOP model simulates

weak clutter at zero spatial frequency (target location) for the second trans-

mitter, which causes insignificant clutter-Doppler spread. Therefore, in a
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(a) Transmitter #1

(b) Transmitter #2

Figure 3.12: SINR at the zero spatial cut for Transmitter #1 and Transmitter
#2 across the three models that include and exclude clutter-Doppler spread.
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scenario where the passive receive platform must down-select to an opti-

mal emitter, the second transmitter would be chosen for the IPOP modeling

method, while the first transmitter would likely be selected for the other

models. The next chapter will focus on this interesting problem of how to

down-select to an optimal emitter when multiple emitters are present. Fur-

thermore, only the IPOP model will be considered henceforth.
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Chapter 4

Passive STAP Emitter Selection Metrics

In a scenario where multiple emitters exist, down-selecting to an optimal

emitter becomes an interesting problem. It is a difficult problem that is in-

fluenced by many competing and coupled parameters. In this chapter, four

metrics will be introduced and analyzed. The choice of emitter greatly de-

pends on where a target is located. Therefore, Section 4.2 outlines the simu-

lation setup that is used to vary a target’s location over a large spatial grid.

Then, Section 4.3 gives the results of the metrics over the spatial grid while

also providing a detailed analysis.

4.1 Metrics

The metrics used for comparing emitters of opportunity are the average

SINR, weighted average SINR, minimum SINR, and usable velocity space

fraction (UVSF). These proposed metrics attempt to distinguish the perfor-
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mance between emitters against a target’s four unknown parameters: (x, y)

location and (vx, vy) velocity.

4.1.1 Average SINR

Signal-to-interference-plus-noise ratio (SINR) is the most commonly used

metric for STAP performance. For Gaussian interference, probability of de-

tection, Pd, is a monotonic function of SINR [60]. Thus, a higher average

SINR can suggest a better Pd for an unknown target location and velocity.

So the probability of detection for an unknown target Doppler of uniform

distribution is statistically best for high average SINR. The average SINR,

SINRAvg, is calculated as

SINRAvg =

0.5∫
−0.5

SINR(0, f̄d)d f̄d, (4.1)

where the average is being calculated at the zero spatial cut.

4.1.2 Weighted SINR Average

Instead of a uniform Doppler distribution, let the target two-dimensional

velocity be uniformly distributed. This distribution gives equal probability

for an unknown target moving in any direction on the ground, which can

be a practical assumption in a search scenario. Mapping the uniform veloc-
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ity distribution into normalized Doppler leads to a non-uniform Doppler

distribution that is dependent on target location relative to the transmitter

and receiver. Figure 4.1 illustrates two different Doppler distributions for

two different bistatic angles. Overall, approximately 50% of velocities occur

within the boundary defined by | f̄d| ≤ 0.1. Therefore, the weighted aver-

age SINR metric, SINRWA, distinguishes transmitters by the average SINR

within the boundary of −0.1 ≤ f̄d ≤ 0.1 and calculated as

SINRAvg =

0.1∫
−0.1

SINR(0, f̄d)d f̄d. (4.2)

The weighted average SINR metric, in turn, places more emphasis on slow

moving targets that appear in the vicinity of the clutter notch.

4.1.3 Minimum SINR

One possible method of choosing an emitter of opportunity is by selecting

the transmitter with the best worst-case performance. The worst-case per-

formance is defined as the minimum SINR, SINRMin, across all Doppler at

the zero spatial cut and written as

SINRMin = min
−0.5≤ f̄d<0.5

(
SINR(0, f̄d)

)
(4.3)
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Figure 4.1: Comparison of velocity distribution for two different bistatic
angles.

Selecting the highest SINRMin across emitters is ultimately optimizing be-

tween low clutter energy from SINR curve and low R2
RR2

T product from bi-

static radar range equation. In turn, this metric favors transmitters that are

out-of-plane with respect to the receiver and target, while also exhibiting

an R2
RR2

T product that gets favorable SNR. The balancing that takes place

depends primarily on the relative geometries of the target, receiver, and all

possible emitters.
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4.1.4 Usable Velocity Space Fraction

A common STAP metric is the usable Doppler space fraction (UDSF). The

UDSF is the percentage of Doppler frequencies that exceed the SINR detec-

tion threshold (DT) where the DT is the SINR performance needed to detect

a target. However, the mapping from velocities to Doppler frequencies is

not constant across relative geometries for bistatic radar. This is observed

by referring back to Figure 4.1 where the Doppler frequencies change for

different emitter locations or bistatic angles. Therefore, a new STAP metric

for PBR is proposed as the usable velocity space fraction (UVSF). In lieu of

Doppler frequencies, the UVSF is the percentage of unambiguous velocities

that exceed the SINR DT. Thus, this metric is considered a three-step pro-

cess in calculating. First, SINR Doppler frequencies that fall below the DT

are captured. Second, these poor performing SINR Doppler frequencies are

mapped into velocities based off the relative geometry under consideration.

Third, the percentage of detectable velocities is calculated. It is assumed the

necessary DT is 12 dB.

4.1.5 Discussion

Figure 4.2 graphically depicts the metrics. In Figure 4.2a the difference be-

tween SINRAvg, SINRWA, and SINRMin is easily understood when shown

on a SINR curve at a zero spatial cut. The SINRAvg is equally considering
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all regions of SINR, noise and clutter, when evaluating an emitter, while

SINRWA and SINRMin put more emphasis on the clutter region. Further-

more, it is seen how SINRMin puts the most emphasis on the clutter region,

or in turn, slow moving targets. Note, however, that none of these three

metrics use the DT. Thus, SINRAvg, SINRWA, and SINRMin distinguish be-

tween relative performance of emitters, and do not place any assumptions

on the size of a point target.

To be clear, consider the optimal SINR equation given as

SINRopt = σ2
s

∣∣∣sHRk
−1s
∣∣∣. (4.4)

It is seen that SINRopt is directly related to the signal power, σ2
s , or alterna-

tively, the target RCS. However, changing σ2
s does not change the chosen

emitter when using SINRAvg, SINRWA, or SINRMin. Therefore, these metrics

are considered as relative metrics.

On the other hand, UVSF depends on a DT, which in turn depends on an

assumption of the target’s RCS. Figure 4.2 uses both subfigures to relate the

UVSF metric. Figure 4.2a captures the range of Doppler frequencies, f̄d, that

are below the DT, and then depicts the mapping of frequencies to velocities

in Figure 4.2b. Even though Figure 4.2 shows f̄tgt, it is a one-to-one mapping

between f̄tgt and vtgt, but again, there is not a one-to-one mapping between
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(a) Metrics

(b) UVSF Mapping

Figure 4.2: Conceptual view of metrics. UVSF is a two-step process that
uses a detection threshold (DT).

f̄d and vtgt. By viewing target velocities as f̄tgt, it allows different relative

geometries to be plotted on the same axes.
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Figure 4.3: Comparison of velocity distribution for two different bistatic
angles.

To clarify, consider the scenario depicted in Figure 4.3. All six emitters

maintain a constant bistatic baseline, L, and constant height of 60 m. The

emitters’ azimuth angles, φT are spaced every 15◦ and all emitters have an

elevation angle of θT = −35◦. The target located at (1.2km,1.2km,0) is in-

plane with the receiver and fourth emitter. Finally, the receiver’s coordi-

nates are (0,0,1.0km).
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By symmetry, the bistatic angles are constant when comparing either

emitters three and five, or emitters two and six. In total, there are four

unique bistatic angles for the six transmitters. When considering a uniform

set of unambiguous target velocities, then the identical bistatic angles from

the two sets of emitters create two identical sets of f̄tgt distributions and

two identical UVSF metrics within each set. These equalities only occur

when considering the set of unambiguous uniformly distributed velocities

as a whole. Choosing just one velocity where |vtgt| 6= 0 will generate six

unique f̄tgt, where similar f̄tgt groupings occur for emitters two and three

and emitters five and six.

Figure 4.4 depicts the target Doppler frequency for each emitter when

considering the maximum target speed in the set of unambiguous velocities,

|vtgt|max, and 360 different velocity directions, v̂tgt, that are incremented

every degree from 0◦ to 359◦. From Figure 4.4, it can be seen that curves

for transmitters two and six, and transmitters three and five are translated

versions of each other (identical in dynamic range and shape). It can also

be seen how emitters two and three, and emitters five and six have very

similar Doppler curves but are not identical. Recall f̄tgt is calculated as

f̄tgt =
2vtgt

λ
cos δ cos

β

2
. (4.5)
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Figure 4.4: Target Doppler frequency curves over velocity angle when con-
sidering maximum speed.

The bisector of the bistatic angle controls the dynamic range of the f̄tgt dis-

tribution while δ, as defined in Figure 3.8, controls the projection of the ve-

locity vector onto the bisector of the bistatic angle. Figure 4.5 illustrates the

changes in directions for all unambiguous velocities. Again, the two sets

of transmitters two and three, and transmitters five and six are very similar

per set, but could produce different UVSF metrics within each set. How-

ever, the sets of emitters two and six, and emitters three and five would

have identical UVSF metrics within each set. The UVSF metric does not dis-

criminate which unambiguous velocities are detectable. The UVSF metric
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relates how many unambiguous velocities are detectable, which equates to

how many target Doppler frequencies are detectable.
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Figure 4.5: Target Doppler frequencies for uniformly spaced vtgt.
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4.2 Methodology

The goal is to understand how emitter selection changes over varying tar-

get locations and velocities. In a passive radar system, GMTI performance

depends on many coupled parameters to include all variables within the bi-

static radar range equation, the relative geometries of the receiver, transmit-

ter, and target, and the relative two-dimensional velocities of the receiver

and target. With these dependencies in mind, a simulation was developed

that calculated SINRopt over a spatially diverse sector for multiple, spatially

distinct long-term evolution (LTE) transmitters. Then the metrics from Sec-

tion 4.1 were evaluated at every spatial point for each transmitter. Last, the

emitter that achieved the highest metric was selected.

For the simulation, a pulse is defined as one LTE symbol with maximum

bandwidth of 19.8 MHz. Furthermore, each pulse is unique in containing

random simulated user data. Therefore, the simulation also contains the

effects of clutter-Doppler spreading due to pulse-diverse waveforms [45]–

[47]. However, the set of random pulses are the same across transmitters in

to compare emitters.

A ground moving target was simulated at 11, 250 different locations on

the global x-y plane as illustrated in Figure 4.6. At each location, all anten-

nas from the six transmitters and one receiver were directed toward the tar-

get location. Changing the antenna directivity assisted in removing the de-
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Figure 4.6: The set of spatial points where a ground moving target was
simulated. The data points lie on isorange contours for transmitter 1.

pendency of antenna patterns and due to side-looking configuration, the re-

ceiver maintained a zero spatial frequency with the simulated target across

all spatial data points . In turn, the total target Doppler shift at each location

depended only on the Doppler shift caused by the moving target, f̄tgt.

The spatial data points consisted of 75 isorange contours for transmitter

number one (Tx1) that were spaced at every eight range resolution cells.

Next the isorange contour arc length of 135◦ was divided into 150 equal

delta arc lengths; therefore, the total number of spatial data points became

75(150) = 11, 250. This method of spatial sampling allowed for a more

uniform spatial distribution along the Tx1 isorange contours.

The set of velocity data points consisted of only unambiguous velocities

to avoid Doppler aliasing. Therefore, the requirement is | f̄tgt| ≤ 0.5. From
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(3.16), this requirement becomes

vtgt ≤
λ fr

4
, (4.6)

where vtgt = |vtgt|. Furthermore, the receive platform is defined by a uni-

form linear array (ULA) of half-wavelength elemental spacing, and a clutter

ridge slope from (3.13) of η = 1. This definition fixes the platform velocity

as va = frd = λ fr/2, which makes (4.6) become

vt ≤
va

2
. (4.7)

Therefore, the velocity magnitude became a set of 100 linearly spaced speeds

from zero to va/2, while the velocity direction was a set of 360 angles rang-

ing from 0◦ to 359◦. The combination of the sets of magnitude and direc-

tion created a unique set of uniformly distributed velocity vectors of size

360(99) + 1 = 35, 641.

The ideal SINR for each transmitter at every spatial data point for the

zero spatial frequency cut was linearly sampled at 501 Doppler frequencies

from −0.5 to 0.5 at increments of 0.002. Then f̄tgt was calculated for the

set of velocity vectors at each spatial data point for each transmitter. Last,

solving for the metrics and their findings shall be presented in the next sec-
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tion. Table 4.1 lists the remaining simulations parameters as well as the ones

previously discussed.

Table 4.1: Simulation Parameters

Number of Transmitters 6

Transmit Power 1000 W

Number of Channels 8

Number of Pulses 32

Height of Rx 1000 m

Height ∀ Tx 60 m

Baseline Separation ∀ Tx 1.88 km

Elevation Angle ∀ Tx −30◦

Tx Azimuth:

Tx1 0◦

Tx2 15◦

Tx3 30◦

Tx4 45◦

Tx5 60◦

Tx6 75◦

Spatial Data
Points:

Rb,min,Tx1 4.7 km
Rb,max,Tx1 9.2 km

Total 11,250

Velocity Data
Points:

|v̄min| 0 m/s
|v̄max| va/2

∠vmin 0◦

∠vmax 359◦

Total 35,641

4.3 Results

This section shall show the performance of each transmitter across the spa-

tial grid for each specific metric introduced in Section 4.1. Next, the optimal
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transmitter at each data point will be illustrated for each metric. Finally, the

analysis of the metrics shall be discussed.

4.3.1 Average SINR

Figure 4.7 depicts SINRAvg across the spatial grid. The first noticeable fea-

ture is that the average behaves according to Cassini ovals that show con-

stant SNR performance. This feature is attributed to the fact that the noise

limited regions of the SINR curve (see Figure 2.8) skew the SINR average to-

ward noise limited performance, or alternatively, SNR performance. There-

fore, Tx6 understandably generates the largest average SINR due to the

smallest range product, R2
RR2

T. A second relatable item is that average SINR

does a poor job in relaying areas of strong clutter power because the metric

is skewed toward target Doppler shifts outside of the clutter notch. There-

fore, this metric can be useful if a priori knowledge exists for high target

Doppler shift.

4.3.2 Weighted SINR Average

Figure 4.8 illustrates SINRWA throughout the spatial points. By effectively

giving more weight toward smaller Doppler magnitudes, it is possible to

see regions with more clutter power due to in-plane scattering (see Figure
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(a) Tx1 (b) Tx2

(c) Tx3 (d) Tx4

(e) Tx5 (f) Tx6

Figure 4.7: Average SINR at each spatial point for each transmitter.

3.10). Ultimately, this metric illustrates worse performance is seen when a

target resides in the in-plane clutter scattering regions.
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(a) Tx1 (b) Tx2

(c) Tx3 (d) Tx4

(e) Tx5 (f) Tx6

Figure 4.8: Weighted average SINR at each spatial point for each transmitter.

4.3.3 Minimum SINR

As discussed earlier, a maximin method can be used for optimal emitter

selection. Therefore, Figure 4.9 illustrates SINRMin across all Doppler fre-

quencies over the spatial grid for each transmitter. Figure 4.9 mimics some

of the behavior from the UVSF metric in Figure 4.10, but it discriminates be-
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(a) Tx1 (b) Tx2

(c) Tx3 (d) Tx4

(e) Tx5 (f) Tx6

Figure 4.9: Minimum SINR at each spatial point for each transmitter.

tween transmitters in overlapping regions where UVSF equals one or zero.

Again, more clutter power is seen in regions that are in-plane.
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4.3.4 UVSF

Figure 4.10 depicts the performance of each transmitter for the UVSF metric.

The sharp dropoff (most easily seen in Figure 4.10f) in UVSF occurs when

the entire SINR curve dips below the threshold, which equates to UVSF = 0.

In other words, the SNR is too weak due to the R2
RR2

T product from (2.18).

In turn, the UVSF region where UVSF > 0 are shaped as a Cassini oval.

In regions of out-of-plane scattering, the entire SINR curve can rise above

the DT and results in UVSF = 1. Unfortunately, when regions of UVSF = 1

overlap across multiple transmitters, the UVSF metric cannot down-select

to an optimal emitter. Therefore, a second step is needed when such a situ-

ation arises.

4.3.5 Comparison

Taking Figures 4.7-4.10 and selecting the best performing transmitter at each

spatial point leads to Figure 4.11. The first column consisting of (a), (c), and

(e) shows SINRAvg, SINRWA, and SINRMin, respectively. Then the second

column of (b), (d), and (f) uses UVSF to perform an initial down-select that

is followed by average SINR (UVSFAvg), weighted average SINR (UVSFWA),

and minimum SINR (UVSFMin), respectively. For spatial regions where the

UVSF metric is unique for each transmitter, then the emitter decision is

based solely on the emitter with maximum UVSF. If regions exist where
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(a) Tx1 (b) Tx2

(c) Tx3 (d) Tx4

(e) Tx5 (f) Tx6

Figure 4.10: UVSF at each spatial point for each transmitter.

all six transmitters exhibit a zero UVSF (e.g. the entire SINR curve is below

the DT), then no transmitter is selected.

By first focusing on subfigure (a), it can be seen that in-plane scattering

influences the transmitter selection for SINRAvg. It is easiest to see in the in-

plane scattering regions for either Tx1 or Tx6 where SINRAvg selects Tx2 and

Tx5, respectively. However, when comparing Figure 4.11a with the rest of
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(a) SINRAvg (b) UVSFAvg

(c) SINRWA (d) UVSFWA

(e) SINRMin (f) UVSFMin

Figure 4.11: Optimal transmitter over the spatial grid using each of the de-
scribed metrics.

the subfigures, it can be seen that the clutter power influences the SINRAvg

emitter selection the least. For example, the in-plane scattering region for

Tx1 runs along the x-axis and SINRAvg chooses Tx2, which is the adjacent

emitter. However, SINRWA selects either Tx3 or Tx4 (depends where on the

x-axis) and SINRMin selects either Tx4 or Tx5. Therefore, the SINRAvg places
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the least emphasis on clutter power because the in-plane scattering regions

where the majority of the clutter power resides is the most narrow with

SINRAvg. Therefore, slow-moving targets may go undetected if the clutter

notch is below the DT.

In subfigure (b), the UVSFAvg metric promotes detectable SINR across

Doppler frequencies, and then uses the average SINR to further distinguish

between the remaining transmitters. It could be hypothesized that for an

unknown target with a two dimensional uniform velocity distribution, or

alternatively a f̄tgt distribution depicted in Figure 4.1, the SINRAvg metric

would be inferior to the UVSFAvg when pertaining to probability of detec-

tion. This hypothesis is due to the fact that approximately 50% of the ve-

locities lie within the clutter region of the SINR curve. However, if a priori

knowledge of a fast moving target existed, then SINRAvg could perform bet-

ter when a target’s RCS is small.

In subfigure (c) the SINRWA metric places more emphasis on the clutter

region of the SINR curve, which in turn, places more emphasis on detecting

slow moving targets. Likewise, the UVSFWA metric also inherently empha-

sizes small Doppler shifts. Therefore, the UVSFWA in subfigure (d) does not

differ significantly from (c) across the spatial grid. These differences will be

further discussed in the next section.
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For subfigure (e), the SINRMin emitter selection method ultimately down

selects to the transmitter that contains a combination of the lowest clutter

power present and the smallest bistatic range product, R2
RR2

T. As an exam-

ple, if the bistatic range product of transmitter A is less than transmitter B,

but more clutter power is present in transmitter A, then the clutter notch

of transmitter A could extend below that of transmitter B. Therefore, the

SINRMin selects transmitter B. The problem with this metric is that there is

no sanity check against the DT. The entire SINR curve of transmitter B from

the previous example could fall below the DT while only a portion of the

notch from transmitter A might fall below the threshold. Therefore, it can

be hypothesized that UVSFMin out performs SINRMin from a probability of

detection point of view when assuming the previous described scenario.

4.3.6 Analysis

Figure 4.12 illustrates the SINR curves for all six transmitters for six differ-

ent spatial data points that are depicted by the magenta circles in Figure

4.11. The first subfigure is labeled (a) and is for the spatial point located

at (2.5 km, 1.4 km). The chosen transmitters are Tx2 for SINRAvg, Tx1 for

SINRWA, and Tx5 for SINRMin. Each of the UVSF metrics produce the same

selection as if UVSF was not considered. Therefore, UVSF must have been

equal to one for at least Tx2, Tx1, and Tx5. In (a) is can first be seen that
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only Tx3 produces a UVSF of less than one, which explains the repeated

selection pattern.

In subfigure (b) the spatial point is located at (2.8 km, 2.2 km). The cho-

sen transmitters are Tx3 for SINRAvg, Tx6 for SINRWA, Tx1 for SINRMin,

Tx5 for UVSFAvg, Tx6 for UVSFWA, and Tx1 for UVSFMin. When taking the

DT into account, only Tx1, Tx2, Tx5, and Tx6 should be considered. There-

fore, the average SINR method chose an unfavorable transmitter for this

scenario.

For subfigure (c), the SINR curves are for the spatial location of (4.5 km,

1.0 km). The chosen transmitters are Tx1 for SINRAvg, Tx4 for SINRWA,

Tx5 for SINRMin, and Tx5 for all UVSF metrics. This location is interest-

ing because only Tx5 and Tx6 are above the DT for all Doppler frequencies

(UVSF = 1). Therefore, this is a case where the SINRWA metric does not

place enough emphasis toward clutter power. Even though Tx4 achieved

the best average within the clutter region, there are Doppler frequencies

where SINR fall below the DT. Overall, the UVSF metrics appear to have

selected the best transmitter, Tx5, for this scenario.

Subfigure (d) compares the SINR curves at the location (1.3 km, 2.1 km),

which is the shortest RR range of any of the points. The chosen transmitters

are Tx5 for SINRAvg, Tx6 for SINRWA, Tx3 for SINRMin, Tx4 for UVSFAvg,

Tx6 for UVSFWA, and Tx3 for UVSFMin. Such a short range causes SINR
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Figure 4.12: All six SINR curves compared to the DT at the six labeled loca-
tions.
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curves that reside far above the DT. This location is in-plane with Tx5, which

suggests very large clutter power returns. These large returns are seen in

two ways. First, the clutter notch depth is almost 30 dB, which is the most

loss for any SINR curves depicted in Figure 4.12. Second, the CDS is easily

visible across Doppler frequencies. This case highlights how skewed the

SINRAvg can be because the metric chose an emitter with the most loss or

clutter power. When taking UVSF into consideration, only Tx5 is removed

(UVSF < 1), while the remaining transmitters are tied at UVSF metrics of

one. From these remaining emitters, Tx3 appears to be the best overall due

to high SINR performance across all Doppler frequencies. Both, SINRMin

and UVSFMin chose Tx3.

Subfigure (e) illustrates the transmitter performances at location (3.5 km,

2.7 km). The chosen transmitters are Tx4 for SINRAvg, Tx1 for SINRWA, Tx1

for SINRMin, Tx6 for UVSFAvg, Tx1 for UVSFWA, and Tx1 for UVSFMin. At

this location is only Tx1 or Tx6 should be considered because their SINR

curves are over the DT entirely. Furthermore, Tx1 and Tx6 appear almost

identical except for the skewed notches. The notch for Tx1 exhibits higher

clutter power in negative Doppler shifts while the notch for Tx6 is skewed

toward positive Doppler frequencies. This case highlights how the metrics

only consider SINR values and not the frequencies that experience the most

loss. With nearly identical SINR curves, there could be scenarios where Tx6
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is best. Therefore, a possible solution would be to down select to multiple

emitters when metrics are within a small user defined tolerance.

Subfigure (f) depicts the SINR curves for the spatial point (5.4 km, 0.0

km), which is the longest RR range of any of the considered locations. The

chosen transmitters are Tx2 for SINRAvg, Tx4 for SINRWA, Tx5 for SINRMin,

and Tx2 for all UVSF. In this instance, the UVSF value is unique across trans-

mitters, and not a single transmitter has a UVSF of zero or one. Thus, all

UVSF metrics agree because the second down selection method is never

reached. Interestingly is how SINRAvg agreed with the UVSF metrics since

the metrics differ in where they emphasize clutter power. Since the clut-

ter notch is the first point that can dip below a DT, UVSF inherently places

emphasis on the clutter region. However, it has been shown over multiple

examples how SINRAvg is skewed more toward the noise limited regions.

Another interesting feature is how the UVSF for Tx5 is zero, yet the SINRMin

metric selects Tx5. This is a case were no sanity check against a DT occurs.

A summary of chosen transmitters for each spatial point can be found

in Table 4.2. Overall, the selection process depends first on whether or not

to consider a DT. A DT can be arbitrary at times due to the dependence

the SINR curve has on an unknown target’s RCS. The stronger the return

from the target, then the higher the SINR curve and in turn UVSF. Likewise,

for low target RCS values the UVSF could become zero. Thus, for optimal
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Table 4.2: Selected Transmitters for High/Low Target RCS

Location (m) SINRAvg SINRWA SINRMin UVSFAvg UVSFWA UVSFMin

x y

2534 1399 2/2 1/1 5/5 2/4 1/1 5/5

2845 2197 3/3 6/6 1/1 5/6 6/6 1/1

4493 1022 1/1 4/4 5/5 5/2 5/2 5/2

1252 2075 5/5 6/6 3/3 4/4 6/6 3/3

3485 2713 4/4 1/1 1/1 6/4 1/4 1/4

5372 0 2/2 4/4 5/5 2/NA 2/NA 2/NA

transmitter selection for unknown targets, it may not be wise to consider a

metric that contains an underlying dependence on a target’s RCS.

However, if an assumption on target size can be made, then UVSF can

assist in emitter selection. As an example, Figure 4.13 repeats the emitter

selection process for only the UVSF metrics for a target with a low RCS

assumption. It is now clear how UVSF relies on the size of a target’s RCS.

In a scenario where a small target exists, UVSF can be beneficial for

knowing where performance is lacking. If there is a desire to search a spa-

tial grid with a zero UVSF, then possibly either the receiver platform’s flight

path could be altered to give a favorable UVSF or the number of pulses

could be increased to achieve higher processing gain. Another benefit from
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(a) UVSFAvg

(b) UVSFWA

(c) UVSFMin

Figure 4.13: Optimal emitter using UVSF over the spatial grid with a small
target assumption.
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UVSF is the search grid can be optimized for the relative locations of the

receiver and transmitters, thus, limiting waste of computational resources.

In other words, if a region shows a UVSF of zero for all transmitters, then

exclude the region from the search grid.

On the other hand, if an assumption for a target’s RCS cannot be made,

then the metrics that do not use UVSF could be the optimal method for

emitter selection. This is due to the fact that the non-UVSF metrics rely

on relative performance differences for transmitter selection, which can be

seen in Table 4.2. Notice the selected transmitters for the non-UVSF met-

rics do not vary between high and low target RCS values. This is because

the non-UVSF metrics are rating transmitters based on the relative bistatic

geometries for an assumed isotropic scattering target. Thus, for unknown

targets it can be proposed that optimal metrics should be limited to either

SINRAvg, SINRWA, or SINRMin.

Furthermore, it can be argued that either SINRWA or SINRMin should be

considered for transmitter selection for a target with unknown properties.

While it may not be wise to use UVSF for selecting transmitters when no

a priori knowledge exists, the same could be said for using the SINRAvg

metric. As previously shown, the SINRAvg metric can be biased to transmit-

ters with strong clutter notches because the spatial points with more clutter

power contain attributes of being in plane with the receiver and transmit-
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ter. This low out-of-plane angle can in turn lead to a transmitter with the

minimum R2
RR2

T distance. Furthermore, a minimum range product causes

the maximum SINR at high Doppler frequencies. Therefore, SINRAvg can be

biased towards high SINR at large Doppler frequencies because of the mini-

mum R2
RR2

T that occurs at the spatial frequencies where more clutter power

exists. Then depending on the target’s RCS, there could be anywhere from

a few to many two-dimensional target velocities that become undetectable.

Finally, another simulation was conducted with the same setup, but a

large clutter discrete (LCD) was placed at (3315 m, 657 m). In short, an

LCD contaminates the received data and can cause false alarms and missed

detections. The presence of the discrete was most apparent for the SINRWA,

SINRMin, and UVSF metrics. Figure 4.14 illustrates the UVSF for each trans-

mitter. In particular, the loss in performance from the LCD is most notice-

able for subfigures (d), (e), and (f) where UVSF < 1 in the vicinity of the

discrete. However, take note how the impact is minimal when the LCD lies

in-plane with a transmitter as in Figure 4.14a. The next chapter formally de-

fines an LCD and will look to exploit this out-of-plane observation in order

to detect, estimate, and remove the LCD from the received data.

100



(a) Tx1 (b) Tx2

(c) Tx3 (d) Tx4

(e) Tx5 (f) Tx6

Figure 4.14: UVSF at each spatial point for each transmitter for a low target
RCS and an LCD present.
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Chapter 5

Large Clutter Discrete Removal

5.1 Introduction

A large clutter discrete (LCD) is classified as a strong scattering clutter re-

turn that is spatially localized. The performance impact from LCDs de-

pends on where in range the LCD resides. If an LCD exists in the CUT,

then a false alarm can likely appear at the discrete’s angle-Doppler location.

If an LCD exists in the training data from (5.29), then over-nulling occurs

in the CUT at the discrete’s angle-Doppler frequency, which can result in a

degradation in moving target detection. Therefore, it is desirable to remove

LCDs from a data cube no matter where they reside in range. The first step

is to detect an LCD and this detection will be covered in Section 5.2. Then

Section 5.3 details different estimation techniques that will be used to esti-

mate the LCD parameters (e.g. spatial/Doppler frequencies and complex
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amplitude). Then the complete algorithm will be laid out in Section 5.4 and

followed up by results in Section 5.5.

5.2 LCD Detection

Detecting an LCD is accomplished through the use of a two-dimensional

cell-averaging constant false alarm rate (CA-CFAR) detector. In a CA-CFAR

detector, an adaptive threshold is used for hypothesis testing where the null

hypothesis, H0, does not contain an LCD and the alternative hypothesis, H1,

contains an LCD. The adaptive threshold is calculated from the arithmetic

mean of the surrounding interference levels in range and spatial/Doppler

frequency [76].

First a range versus clutter ridge image is generated by calculating the

clutter spectral energy, X, along the clutter ridge for all range bins in the

data cube. The spectral energy at the kth range bin is calculated as

Xk[ϑ̂, ˆ̄fd] = sHR̂ks, (5.1)

where the hypothesized spatial and Doppler frequencies, ϑ̂ and ˆ̄fd, are dic-

tated by (3.12). The estimated clutter covariance matrix, R̂k, is

R̂k =
1
P ∑
|p−k|�g

xpxp
H, (5.2)
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where P and g are the total number of training cells and number of guard

cells, respectively. Furthermore, P must satisfy the RMB rule of P ≈ 2NM

[63].

5.3 LCD Estimation

Spectrum estimation techniques can be classified into two categories, non-

parametric and parametric. Both can be used for either temporal or spa-

tial estimations. If a received signal is sampled over time with a known

sampling frequency, then a temporal estimation produces a power spectral

density (PSD) that portrays the distribution of signal power over frequency

[77]. If an array of sensors is deployed with all sensor locations known, then

spatial sampling is accomplished by capturing snapshots of the signal from

all sensors at the same instant in time. With these snapshots, a spatial esti-

mation can be accomplished to generate a PSD that relates the distribution

of signal power over spatial frequency [78].

Again, both temporal and spatial estimation techniques fall into either

nonparametric or parametric categories. In general, nonparametric meth-

ods do not contain any assumptions about the received data, x[t], except

that the data sequence comes from a wide-sense stationary random process

[79]. Some nonparametric temporal estimation examples include, correlo-

gram, periodogram, Blackman-Tukey, Bartlett, Welch, Capon, and Ampli-
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tude and Phase Estimation (APES). Examples of nonparametric spatial esti-

mators consist of primarily beamforming, Capon, and APES.

If a method assumes that x[t] behaves according to a particular paramet-

ric model, then said method is classified as a parametric estimation tech-

nique. Accuracy of parametric models is only as good as the accuracy of

the assumptions/behavior of the signal of interest. If little a priori knowl-

edge exists about x[t], then performance from parametric methods will most

likely suffer. Therefore, only nonparametric models were considered for es-

timating the signal parameters of the LCD.

To effectively remove an LCD from the data cube, the signal parameters

of spatial/Doppler frequency and the complex amplitude must first be esti-

mated. The two examined estimation techniques are Capon [80] and Ampli-

tude and Phase Estimation (APES) [81]. It has been shown that the Capon

method achieves higher resolution and more accuracy than APES for esti-

mating signal frequency in the presence of noise [77], [82]. However, when

accurate frequency estimates exist, APES outperforms Capon in estimat-

ing complex amplitude [77], [83]. Therefore, the Capon is used to estimate

an LCD’s spatial/Doppler frequency, followed by APES for estimating the

complex amplitude of the LCD. This combined method is known as CAPES

(Capon-APES) [84].
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Furthermore, when estimating amplitude, Capon and APES can be in-

terpreted as solutions to a weighted least-squares (WLS) problem. How-

ever, when estimating the PSD, the methods are more easily interpreted as

matched-filterbank (MAFI) approaches [85], [86]. As will be seen, the two

methods differ in their chosen weights/filters.

The next section will first introduce the WLS framework for a one di-

mensional signal/dataset. Then, the Capon MAFI power estimator will be

derived. Next, the Capon and APES solutions for estimating complex am-

plitude will be given. Finally, the Capon and APES methods will be ex-

tended for a two-dimensional signal as is representative in STAP datasets.

5.3.1 Weighted Least-Squares Signal Framework

Let an arbitrary one-dimensional time series be represented as x[m] where

0 ≤ m < M− 1. At a given frequency, ω, x[m] can be written as

x[m] = α(ω)ejωm + wω[m], (5.3)

where α(ω) is a complex amplitude and wω[m] is a residual term that rep-

resents both random noise and other signals not at ω. Also assume the M

samples are uniformly spaced in time. Let yk be a subsequence of length L

of the received data, x[m] where k represents the kth subsequence. Finally,
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arrange all possible subsequences in a matrix Y such that

Y def
= [y0 · · · yK−1]

def
=



x[0] x[1] · · · x[K− 2] x[K− 1]

x[1] x[2] x[K− 1] x[K]

... . . . ...

x[L− 2] x[L− 1] x[M− 3] x[M− 2]

x[L− 1] x[L] · · · x[M− 2] x[M− 1]


(5.4)

where K = M− L + 1 is the total number of subsequences.

The residual term in (5.3) can be defined in matrix form as

W(ω) =

[
w0(ω) . . . wK−1(ω)

]
, (5.5)

where wk(ω) is a length L subsequence of wω[m] that is staggered in the

same method as (5.4). Let aP(ω) be defined as a steering vector of length P

such that

aP(ω)
def
=



1

ejω

...

ej(P−1)ω


. (5.6)
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Using (5.6), the linearly progressing phasor in (5.3) can be represented as an

outer product between two steering vectors of specific lengths given as

A(ω) = aL(ω)aT
K(ω). (5.7)

Finally, (5.4) can be written as

Y = α(ω)A(ω) + W(ω). (5.8)

In estimation theory, the data model in (5.8) is known as a linear model

[87]. It can be seen that the data in Y are observed after the parameter of

interest, α(ω), is operated upon by A(ω). The linear signal model is the

easiest to work with and the basis for nearly all practical algorithms [88]. In

particular, a WLS estimate, α̂(ω) can be calculated by minimizing

J(α(ω)) = Tr
{[

Y− α(ω)A(ω)
]H

Φ [Y− α(ω)A(ω)]

}
= Tr

{
YHΦY

}
− α(ω)Tr

{
YHΦA(ω)

}
− α∗(ω)Tr

{
AH(ω)ΦY

}
+α∗(ω)α(ω)Tr

{
AH(ω)ΦA(ω)

}
, (5.9)

where Φ is a symmetric positive definite weighting matrix. Since (5.9) is

quadratic in α(ω), the minimum can be found by setting the derivative with

respect to α(ω) equal to zero. In order to take the complex derivative of a
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real scalar function, J, with respect to the complex amplitude, the Wirtinger

derivative is employed (see Appendix A) [89]. Furthermore, the optimiza-

tion can be accomplished through either ∂/∂α or ∂/∂α∗. The more advanta-

geous operator depends on the actual cost function being optimized. When

quadratic functions like (5.9) are considered, the ∂/∂α∗ operator is preferable

[90] and (5.9) becomes

∂J(α(ω))

∂α∗(ω)
= −Tr

{
AH(ω)ΦY

}
+ α(ω)Tr

{
AH(ω)ΦA(ω)

}
(5.10)

Then, setting (5.10) equal to zero and solving for the amplitude leads to the

WLS estimate of

α̂(ω) =
Tr
{

AH(ω)ΦY
}

Tr {AH(ω)ΦA(ω)}

=
Tr
{

a∗K(ω)aH
L (ω)ΦY

}
Tr
{

a∗K(ω)aH
L (ω)ΦaL(ω)aT

K(ω)
}

=
aH

L (ω)ΦYa∗K(ω)

aH
L (ω)ΦaL(ω)aT

K(ω)a∗K(ω)

=
aH

L (ω)Φg(ω)

aH
L (ω)ΦaL(ω)

, (5.11)

where g(ω) is a column vector of length L defined as

g(ω)
def
=

1
K

K−1

∑
k=0

yke−jωk

=
1
K

Ya∗K(ω). (5.12)
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Equation (5.12) can be interpreted as a discrete-time short-time Fourier

transform (STFT) for L windows of length K [91]. Furthermore, when the

discrete-time STFT is computed for signals offset by one lag, as represented

in Y, then (5.12) can be efficiently implemented using the sliding discrete

Fourier transform (SDFT) algorithm [92].

In the extreme case of L = 1, then K = M, Y = xT, Φ disappears, and

(5.11) reduces to the discrete Fourier transform (DFT)

α̂(ω)DFT =
xTa∗M(ω)

aT
M(ω)a∗M(ω)

=
1
M

M−1

∑
m=0

x[m]e−jmω. (5.13)

In the case of 1 < L < N and Φ = I (independently weighted over ω), then

the amplitude estimate becomes the averaged Fourier method and is equal

to [82]

α̂(ω)A−DFT =
aH

L (ω)Ig(ω)

aH
L (ω)IaL(ω)

=
1
L

aH
L (ω)g(ω)

=
1

KL

K−1

∑
k=0

L−1

∑
l=0

x[k + l]e−jω(k+l). (5.14)
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5.3.2 Capon Power Estimation

The easiest way to think about the Capon method for power estimation is as

a MAFI approach [86]. The method generates a data-dependent bandpass

filter at a frequency of interest, ω. From the bandpass filter, a power esti-

mate at ω is generated from the solution of a minimization problem that is

subject to linear constraints. Then, the process is repeated for all frequencies

of interest to create the PSD [77].

For a filter of length L with an impulse response defined as

h = [h0 h1 . . . hL−1]
T . (5.15)

The filtered output, yF, of yk is given as

yF =
L−1

∑
l=0

h∗l yk[l]

= hHyk. (5.16)

Next, the filtered output power is defined as

E
{
|yF(t)|2

}
= E

{
hHykyH

k h
}

= hHE
{

ykyH
k

}
h

= hHRh, (5.17)
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where R is the covariance matrix of yk and formally defined as

R def
= E

{
ykyH

k

}
. (5.18)

For an accurate estimate, the filter, h, must not distort the signal infor-

mation within the passband. The filter frequency response, H(ω), is given

as

H(ω) =
L−1

∑
l=0

hle−jωl

= aH
L (ω)h = aHh, (5.19)

where the notations for frequency and window length have been dropped

for convenience.

As previously stated, the Capon spectral estimation method can be de-

rived through a constrained minimization problem. The function to be min-

imized is (5.17), which is subjected to the undistorted constraint on H(ω).

This constraint is formally written as

aHh = 1. (5.20)
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The solution to this complex constrained minimization problem requires

the use of complex Lagrangian multipliers. First let (5.20) be rewritten as

(
aT

R − jaT
I

)(
hR + jhI

)
= 1, (5.21)

or equivalently

aT
RhR + aT

I hI = 1

aT
RhI − aT

I hR = 0.

Since two sets of constraints exist now, the Lagrangian becomes

J(h) = hHRh + λR

(
aT

RhR + aT
I hI − 1

)
+ λI

(
aT

RhI − aT
I hR

)
= hHRh + λRRe

{
aHh− 1

}
+ λIIm

{
aHh− 1

}
, (5.22)

where λR and λI are real Lagrangian multipliers. However, letting λ =

λR + jλI represent a complex Lagrangian multiplier, then (5.22) simplifies

113



to

J(h) = hHRh + Re
{(

λR + jλI
)∗(aHh− 1

)}
= hHRh + Re

{
λ∗
(
aHh− 1

)}
= hHRh +

1
2

λ∗
(
aHh− 1

)
+

1
2

λ
(
aTh∗ − 1

)
= hHRh +

1
2

λ∗
(
aHh− 1

)
+

1
2

λ
(
hHa− 1

)
. (5.23)

Since (5.23) is quadratic in h, the minimum can be found by setting the

derivative with respect to h equal to zero. As before, the Wirtinger deriva-

tive is employed to take the complex derivative of the real function, J, with

respect to the complex filter. Furthermore, with (5.23) being quadratic in h,

the ∂/∂hH operator is again preferable [90] and derivative becomes

∂J(h)
∂hH = Rh +

1
2

λa. (5.24)

Setting (5.24) equal to zero and solving for h leads to an expression for the

optimal filter, hopt, where

hopt = −
λ

2
R−1a. (5.25)
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Substituting the optimal filter into (5.20) yields

aHhopt = 1

−λ

2
aHR−1a = 1

λ

2
=

−1
aHR−1a

. (5.26)

Finally substituting (5.26) for λ/2 in (5.25) produces the final expression for

hopt as

hopt =
R−1a

aHR−1a
. (5.27)

When hopt is inserted into the filtered output power expression, (5.17),

then the power spectral density (PSD) of the data, S(ω), is obtained as [79],

[93], [94]

S(ω) = hH
optRhopt

=
aHR−1RR−1a

aHR−1aaHR−1a

=
aHR−1a

(aHR−1a) (aHR−1a)

=
1

aHR−1a
. (5.28)
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Since R is unknown in practice, it is estimated as

R̂ =
1
K

K−1

∑
k=0

ykyH
k

=
1
K

YYH, (5.29)

where Y is expressed in (5.4). Then, the final Capon PSD estimate using all

previous notations becomes

Ŝ(ω)CM =
1

aH
L (ω)R̂−1aL(ω)

. (5.30)

As an example, an LCD’s location in angle can be estimated by letting

the generic frequency ω be represented as spatial frequency ϑ. The ϑ that

maximizes (5.30) corresponds to the relative angle between the ULA and

LCD and can be formally written as

ϑ̂LCD = argmax
ϑ

1
aH

L (ϑ)R̂
−1aL(ϑ)

, (5.31)

where ϑ̂LCD is the spatial frequency estimate of the LCD.

5.3.3 Capon Amplitude Estimation

Recalling the WLS solution from (5.11), the Capon method for estimating

complex amplitude is defined when the weighting matrix, Φ, equals the in-
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verse of the covariance matrix defined by (5.18) and estimated with (5.29).

Thus, the Capon method produces a frequency dependent complex ampli-

tude estimate equal to

α̂(ω)CM =
aH

L (ω)R̂−1g(ω)

aH
L (ω)R̂−1aL(ω)

. (5.32)

5.3.4 APES Amplitude Estimation

Again using the WLS solution from (5.11), the APES method estimates the

complex amplitude by setting Φ = Q−1(ω), where Q(ω) is defined as [81]

Q(ω)
def
= R− g(ω)gH(ω). (5.33)

Substituting the estimated covariance matrix from (5.29) into (5.33) yields

Q̂(ω) and causes the APES estimated complex amplitude to be

α̂(ω)APES =
aH

L (ω)Q̂−1(ω)g(ω)

aH
L (ω)Q̂−1(ω)aL(ω)

. (5.34)

The APES technique attempts to estimate the covariance matrix of the

noise and interference by removing the data dependent contributions at ω.

In turn, the APES method can be more computationally intense because

a matrix inversion is required for each frequency ω. Therefore the matrix
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inversion lemma is often employed for APES and expressed as [77]

Q̂−1(ω) =
[
R̂− g(ω)gH(ω)

]−1

= R̂−1 +
R̂−1g(ω)gH(ω)R̂−1

1− gH(ω)R̂−1g(ω)
. (5.35)

Substituting (5.35) into (5.34) yields the following simplified expression [77]

α̂(ω)APES =
aH

L (ω)R̂−1g(ω)[
1− gH(ω)R̂−1g(ω)

]
aH

L (ω)R̂−1aL(ω) +
∣∣aH

L (ω)R̂−1g(ω)
∣∣2

(5.36)

5.3.5 Two-Dimensional Extension

Next, let us define a two-dimensional space-time series as x[n, m]. At spatial

and Doppler frequencies of ϑ and f̄ , x[n, m] is expressed as

x[n, m] = α(ϑ, f̄ )ej(ϑn+ f̄ m) + wϑ, f̄ [n, m]. (5.37)

In addition, assume the M pulses and N channels are linearly incremented

in time and space. The subsequences are defined as [82]

ykN ,kM

def
= vec




x[kN, kM] · · · x[kN, kM + LM − 1]

... . . . ...

x[kN + LN − 1, kM] · · · x[kN + LN − 1, kM + LM − 1]



 ,

(5.38)
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where LN and LM are the respective lengths of the subsets of the space and

time samples taken from x[n, m]. Furthermore, KN and KM are the number

of unique windows in space and time, respectively, given as

KN = N − LN + 1 (5.39)

KM = M− LM + 1. (5.40)

Let aPN ,PM(ϑ, f̄ ) be the space-time steering vector described by arbitrary

lengths of PN and PM such that

aPN ,PM(ϑ, f̄ ) =
[

1 ej f̄ . . . ej f̄ (PM−1)

]T

⊗
[

1 ejϑ . . . ejϑ(PN−1)

]T

, (5.41)

where ⊗ represents a Kronecker product. Next, define Y as the collection of

snapshots (subsequences) that are arranged as

Y =

[
y0,0 y1,0 . . . yKN−1,0 y0,1 y1,1 . . . yKN−1,KM−1

]
, (5.42)

and let

A(ϑ, f̄ ) = aLN ,LM(ϑ, f̄ )aT
KN ,KM

(ϑ, f̄ ). (5.43)

An expression similar to (5.8) can then be given for the two-dimensional

case as

Y = α(ϑ, f̄ )A(ϑ, f̄ ) + W(ϑ, f̄ ). (5.44)
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Going through similar derivations as before will lead to a WLS complex

amplitude estimate for the two-dimensional case that is given as

α̂(ϑ, f̄ ) =
aH

LN ,LM
(ϑ, f̄ )Φg(ϑ, f̄ )

aH
LN ,LM

(ϑ, f̄ )ΦaLN ,LM(ϑ, f̄ )
, (5.45)

where g(ϑ, f̄ ) is now defined as

g(ϑ, f̄ ) def
=

1
KNKM

KN−1

∑
kn=0

KM−1

∑
km=0

ykn,km ej(ϑkn+ f̄ km)

=
1

KNKM
Ya∗KN ,KM

(ϑ, f̄ ). (5.46)

Finally, the estimations of the complex amplitude using the two dimen-

sional dataset for the Capon and APES methods are

α̂(ϑ, f̄ )CM =
aH

LN ,LM
(ϑ, f̄ )R̂−1g(ϑ, f̄ )

aH
LN ,LM

(ϑ, f̄ )R̂−1aLN ,LM(ϑ, f̄ )
(5.47)

α̂(ϑ, f̄ )APES =
aH

LN ,LM
(ϑ, f̄ )Q̂−1(ϑ, f̄ )g(ϑ, f̄ )

aH
LN ,LM

(ϑ, f̄ )Q̂−1(ϑ, f̄ )aLN ,LM(ϑ, f̄ )
, (5.48)

where R̂ and Q̂ are

R̂ =
1

KNKM
YYH (5.49)

Q̂(ϑ, f̄ ) = R̂− g(ϑ, f̄ )gH(ϑ, f̄ ). (5.50)
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For completeness, the APES complex amplitude estimation can be more ef-

ficiently computed through the matrix inversion lemma and is given as

α̂(ϑ, f̄ )APES = (5.51)

aH
LN ,LM

(ϑ, f̄ )R̂−1g(ϑ, f̄ )[
1− gH(ϑ, f̄ )R̂−1g(ϑ, f̄ )

]
aH

LN ,LM
(ϑ, f̄ )R̂−1aLN ,LM (ϑ, f̄ ) +

∣∣∣aH
LN ,LM

(ϑ, f̄ )R̂−1g(ϑ, f̄ )
∣∣∣2 .

Last, the Capon PSD estimate, Ŝ(ϑ, f̄ )CM, can be derived similarly as

in Section 5.3.2 for the two-dimensional dataset. After solving for the con-

strained optimization problem by means of Lagrangian multipliers, the Ca-

pon PSD estimate becomes

Ŝ(ϑ, f̄ )CM =
1

aH
LN ,LM

(ϑ, f̄ )R̂−1aLN ,LM(ϑ, f̄ )
. (5.52)

The Capon spectrum is now two-dimensional. Therefore, searching for

an LCD’s location requires, in theory, a two-dimensional search across spa-

tial and Doppler frequencies. However, with an assumption that the LCD is

stationary (zero Doppler) and knowing that the clutter ridge for PBR is lin-

ear over spatial and Doppler frequencies, the two-dimensional search grid

can be limited to a one-dimensional search through the use of the clutter

ridge equation, (3.12).
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5.4 LCD Removal Algorithm and Analysis

Overall, the LCD removal (LCDR) algorithm can be outlined in the follow-

ing steps:

1. Determine range bin location of LCD using CFAR detector

2. Estimate LCD location in angle-Doppler by Capon power estimation,

(5.52)

3. Estimate complex amplitude of LCD

Use APES amplitude estimation, (5.48), at specific space-time lo-

cation to attain initial guess

Finalize complex amplitude estimate through iterative process that

minimizes output power at specific space-time location

4. Subtract LCD from datacube by using the estimates from 2 and 3

Figure 5.1 illustrates the steps with a flowchart. The next sections will ana-

lyze each algorithm step and provide incremental results.

5.4.1 Step 1: LCD Detection

As in Chapter 4, the choice of an emitter impacts the performance, or in this

case, the ability of detecting LCDs. To illustrate the impact of emitter se-
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Figure 5.1: Flowchart of the LCD Removal (LCDR) algorithm.

lection, two examples will be provided. The only difference between these

examples is the location of the emitter.

Unsuccessful LCD Detection

Consider the scenario illustrated in Figure 5.2 where a receiver is at (0, 0,

1000 m), a transmitter is at (1573 m, 421 m, 60 m), and an LCD resides at

(3315 m, 657 m, 0). This geometry creates clutter coordinates of (θI , θS,

φOP) = (1.95◦, 16.48◦, 3.52◦). These coordinates, in turn, cause the LCD to

reside in an area with high clutter energy due to in-plane scattering effects.
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Figure 5.2: Orientation of receiver, transmitter, and target. The LCD is in
the vicinity of the target in this in-plane setup.

Figure 5.3 depicts two clutter-energy-versus-range images where one is

for the clairvoyant case when the clutter covariance matrix (CCM) is known

while the other is when the CCM is estimated. It is easy to locate the LCD

for the clairvoyant case, but the CFAR detector fails to detect the presence of

(a) Clairvoyant (b) Estimated

Figure 5.3: Clutter ridge versus range bin when using two different covari-
ance matrices for the Figure 5.2 scenario.
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Figure 5.4: Orientation of receiver, transmitter, and target. The LCD is in
the vicinity of the target in this out-of-plane setup.

the LCD with the estimated CCM. Therefore, the LCD cannot be removed

due to the relative geometry of the receiver, transmitter and LCD.

Successful LCD Detection

The next example, depicted in Figure 5.4, repositions the transmitter to

(814m, 1410m, 60m). This equates to a relative geometry where the out-

of-plane angle, φOP, is greater than before. This greater angle causes the

majority of the clutter energy to reside at higher spatial/Doppler frequen-

cies. Therefore the LCD becomes located in a noise limited region on the

clutter ridge.

Figure 5.5 shows the clairvoyant and estimated clutter energy spectra.

With the LCD more isolated from strong clutter, the CA-CFAR detector ac-

curately locates the range bin of the LCD. If multiple stationary emitters are

in an area of an LCD, then selecting the emitter that does not lie in-plane
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(a) Clairvoyant (b) Estimated

Figure 5.5: Clutter ridge versus range bin when using two different covari-
ance matrices for the Figure 5.4 scenario.

with the receiver and LCD (e.g. φOP 6= 0◦ or φOP 6= 180◦) creates a more

favorable detection problem.

Figure 5.6 further illustrates this concept. The LCD is difficult to de-

tect within the received data from Tx1 because it lies in a high-clutter re-

gion around zero spatial frequency (as seen in Figure 5.3b). However, the

high clutter region from Tx2 is located at higher spatial/Doppler frequen-

cies away from zero. With the clutter energy shifting in frequencies, the

LCD becomes much more isolated (as seen in Figure 5.5b) and easier to de-

tect.

It is also important to highlight the impact of an LCD for the two sce-

narios. By comparing Figures 5.3b and 5.5b, it can be seen that the LCD is

relatively stronger around its local region in the out-of-plane scenario for

Tx2. When the LCD resides within a high clutter region, then the LCD is
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Figure 5.6: Conceptual view of where high clutter regions reside for differ-
ent transmitters.

less impactful on performance and harder to detect. Therefore, if an emit-

ter that is in-plane with an LCD is chosen as optimal, then removing an

LCD may be unnecessary. However, if the chosen emitter exhibits an out-

of-plane geometry with the LCD, then the LCD needs to be detected and

removed.

For the remainder of Section 5.4, only the scenario with Tx2 as described

in Figures 5.4 and 5.6 will be discussed. The remaining incremental results

were created off the Tx2 simulated data.

5.4.2 Step 2: LCD Spectral Estimation

After the detection of an LCD occurs, then the spatial and Doppler frequen-

cies are estimated using (5.52). However, the window lengths for the chan-
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nel and time samples, LN and LM, must be chosen. Ultimately, there are MN

different choices for calculating the Capon spectrum. Figure 5.7 depicts all

MN Capon spectrum estimates for M = 32 pulses, N = 8 channels. The

spectra are populated with approximately 5, 000 spatial and Doppler fre-

quency pairs from the clutter ridge at the range bin of the detected LCD.

The sharp peak in each sub-figure highlights the LCD’s spatial and Doppler

frequencies.

Previous literature states the appropriate choices for LN and LM should

be limited by LN ≤ N/2 and LM ≤ M/2 [77], [78], [81], [86]. The reason

for this limitation comes from (5.49). Whenever the limits are passed, then

the estimated covariance matrix is no longer full rank. Therefore, R̂ must

be diagonally loaded before calculating the Capon spectrum. Figure 5.7

suggests the limit can be violated for at least this estimation problem. The

reasoning behind this observation is due to the fact that an LCD is well ap-

proximated with a rank 1 matrix. Furthermore, an LCD corresponds to the

largest and most influential eigenvalue in the CCM. So even in the extreme

case of LN = N and LM = M, the calculated Capon spectrum produces a

peak (albeit weak) at the LCD location (see Figure 5.7h). The lengths that

actually produce the worst Capon spectrum are when LN = LM = 1 (see

5.7a). The poor performance occurs because no resolution can be attained
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when R̂ is a scalar. So with increasing lengths, the resolution increases at

the expense of R̂ becoming singular.

(a) LN = 1 (b) LN = 2 (c) LN = 3

(d) LN = 4 (e) LN = 5 (f) LN = 6

(g) LN = 7 (h) LN = 8 (i) LN = 4 and LM = 16

Figure 5.7: Capon spectrums for all combinations of LN and LM window
lengths.
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5.4.3 Step 3: LCD Amplitude Estimation

After estimating the spatial and Doppler frequencies of the LCD, the APES

method from (5.48) is used to estimate the LCD’s complex amplitude. Even

though previous literature states the APES method is superior to the Capon

technique for estimating amplitude, it was seen that the accuracy failed to

achieve any substantial removal of an LCD. Therefore, the APES estimator

was used for a variety of LN and LM to create multiple estimates. Then the

statistical outliers were removed to reduce the search area as represented in

Figure 5.8. With the real and imaginary amplitude limits defined, a linearly

spaced search grid of size 25 by 25 is used to find the local minimum for

S = sH
s−tvec

{
xk − α̂sssT

t

}
vec

{
xk − α̂sssT

t

}H
ss−t. (5.53)

This equation is first subtracting the hypothesized complex amplitudes in

the search grid from the data at the range bin of the LCD, and then calculat-

ing the expected output power at the spatial and Doppler frequencies from

step #2. Then a new and more localized search grid is created, and the pro-

cess is reimplemented with (5.53). This iterative approach is used until a

user defined threshold is attained as depicted in the flowchart in Figure 5.1.

Figure 5.8 illustrates the first and last iteration of this approach. The goal

here was not to optimize the iterative method’s rate of convergence, but to

130



verify that the LCD amplitude estimation step is effective for the ultimate

removal of LCD.

5.4.4 Step 4: LCD Removal

Once the iterative process produces the final complex amplitude estimate,

the LCD and its sidelobes are subtracted from the data cube. To subtract the

sidelobes from the radar data cube, the full range profile that is pulse de-

pendent must be used in the subtraction. The new data cube, x′k, is defined

as

x′k = xk − α̂LCD,k0

(
1N×1 · Rxx[k0 − k]

)
�
(

sssT
t

)
, (5.54)

where � is the Hadamard or piece-wise product, k0 is the range bin where

the LCD is detected, and Rxx[k0 − k] is the normalized pulse-diverse auto-

correlation function given as

Rxx[k0 − k] =
[

R1
xx[k0 − k] R2

xx[k0 − k] . . . RM
xx[k0 − k]

]
. (5.55)

Figure 5.9 depicts the clutter energy spectrum for before and after LCDR.

The color scales have been set to the dynamic range of the LCDR dataset. It

can be seen by comparing the two subplots in the top row that the LCD was

reduced by approximately 25 dB. The reduction of range sidelobes from the

LCD can be seen when comparing the two graphs from the second row.
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(a) Initial Estimates using APES

(b) First Search (c) Eleventh Search

Figure 5.8: Complex amplitude recursive estimation.
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(a) Before LCDR x-z View (b) After LCDR x-z View

(c) Before LCDR x-y View (d) After LCDR x-y View

Figure 5.9: Clutter ridge versus range bin for before and after LCDR

These range sidelobes are easily visible in Figure 5.9c at the zero frequency

cut, while they have been mitigated in Figure 5.9d at the same frequency

cut.
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Figure 5.10: Comparison of SINR loss curves when LCD resides in the train-
ing data.

5.5 Results

For an LCD in the training data, the final results are given in Figure 5.10

where seven SINR loss curves are shown at a spatial cut of ϑ = 0. The solid

lines represent curves from a data set with an LCD while the dashed lines il-

lustrate SINR loss from a different realization that does not contain an LCD
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within the data set. Both data sets were generated using the scenario de-

picted in Figure 5.5. Additionally, the blue lines represent SINR loss from

full dimension (FD) STAP using the ideal/clairvoyant CCM. The red lines

are for extended factored algorithm (EFA) STAP when using the clairvoy-

ant CCM. The gold lines depict EFA STAP performance when the CCM is

estimated from the training data, or surrounding range bins. Finally, the

purple line is the performance for EFA STAP with an estimated CCM after

implementing the LCDR algorithm.

The first noticeable feature is the impact of the LCD. This can be seen

when comparing like colored curves and seeing the sharp loss in SINR at

the Doppler frequency of the LCD, f̄ = 0. Furthermore, the LCD impact in

the clairvoyant algorithms is only due to the range sidelobes that come from

the use of non-ideal pulse diverse waveforms. The LCD is actually not in

the CUT, but rather in the training data. However, the range sidelobes from

the LCD are in the CUT, which causes notches in performance even when

using the clairvoyant CCM (solid blue and red lines). Therefore, when the

CCM is estimated, as in the solid gold line, the adaptive filter over-estimates

the LCD and experiences a much greater loss than necessary at f̄ = 0. This

loss is about 7 dB less than optimal performance.

The performance increase from the LCDR algorithm can be measured

at approximately 12 dB improvement at f̄ = 0. By successfully removing
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the LCD from the dataset, the SINR loss for the estimated EFA algorithm is

better performing than even the optimal FD STAP. The performance of the

LCDR actually mimics the performance for the dataset where an LCD does

not exist (dashed gold line).

Figure 5.11 shows the same SINR loss curves for the same geometry.

However, now the LCD is in the CUT. This can be seen by comparing the

notch of the gold solid line with the clairvoyant algorithms’ notches. They

have very similar depths because the training data is only corrupted by

the range sidelobes of the LCD. Therefore, the estimated covariance matrix

underestimates the LCD at the CUT and could likely lead to a false alarm.

As for the LCDR algorithm performance, it again drastically improves

the SINR loss. In this setup, there is almost 25 dB of improved SINR at f̄ = 0

when comparing the before and after LCDR of the estimated EFA. Then,

comparing the LCDR performance to that of the optimal FD, an increase of

about 20 dB is seen.

Last, the performance difference from subtracting only the LCD peak

versus the LCD peak and sidelobes should be considered. Figure 5.12 re-

peats the SINR loss curves from Figure 5.10 for the before and after LCDR

cases when implementing the EFA and using an estimated covariance ma-

trix. The new dashed curve illustrates the SINR loss when only the peak

is subtracted from the data cube. While more loss appears at the Doppler
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Figure 5.11: Comparison of SINR loss curves when LCD resides within the
CUT.

frequency of the LCD when only subtracting the peak, it is less than 2 dB.

Therefore, getting accurate estimates of the LCD is vastly more important

than subtracting the LCD peak and range sidelobes.
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Figure 5.12: Comparison of SINR loss curves when LCD resides in the train-
ing data and not subtracting the LCD sidelobes.
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Chapter 6

Conclusions

In conclusion, a heterogeneous clutter model was developed that mimics

bistatic clutter measurements taken over various in-plane and out-of-plane

angles. Furthermore, clutter Doppler spread was derived for the first time

and then related to covariance matrix tapers (CMT) in order to apply the

spreading. The clutter reflectivity modeling is applicable to any bistatic sys-

tem while the CMTs can be applied to any pulse-diverse waveform simula-

tion.

Down-selecting to an optimal emitter of opportunity was done through

metrics studied in Chapter 4. It was seen that the best choice depends on

the coupling of the relative geometry of the target, receiver, and transmitters

with that of the target’s RCS and two-dimensional velocity in relation to the

receiver’s velocity vector. The usable velocity space fraction (UVSF) was

developed to reduce a four-dimensional problem down into one number.

However, it was found that UVSF is only as good as the assumed target
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RCS. Therefore, the best metric depends on the target detection scenario

and whether any a priori knowledge exists. Overall, slower targets have

a better chance of being detected when they lie outside of the plane that

contains the transmitter and receiver. However, fast moving targets with

small RCS have a better chance of detection for high-SNR Cassini ovals,

which could be in the same plane as the transmitter and receiver.

Finally, a large clutter discrete (LCD) was successfully simulated, de-

tected, estimated, and removed. The detection and estimation of the LCD

from random data was assisted from the LCD being more isolated on the

clutter ridge for out-of-plane geometries. The algorithm was unsuccessful

when the LCD was present near the projected bistatic baseline. Successfully

removing LCDs either improves target detections or reduces false alarms

for GMTI.

6.1 Future Work

Only the 4G LTE waveform at bandwidth of approximately 20 MHz was

considered due to the large amount of other variables. At this time, it is con-

sidered that the LTE waveform offers the best compromise between band-

width and availability for a PBR system performing GMTI. However, the

performance from other waveforms should be formally explored along with
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future commercial waveforms such as 5G LTE. Since 5G LTE is a MIMO

waveform, a feasibility study would need to be conducted.

The fidelity of the model could be improved by assuming a 4/3 Earth

model. This would greatly increase the complexity because analytical solu-

tions to isorange rings would not exist. Instead a numerical solver would

need to be utilized.

Probably more interesting would be to add to the model a feature that

assesses the ability to capture a direct path signal. If a waveform cannot

be captured with sufficient SNR, the integrity of the datacube is reduced.

Then, target detection and/or LCD removal may fail. Furthermore, if dif-

ferent SNRs are modeled for different transmitters in a scene, then some

transmitters could be eliminated before metrics are ever analyzed.

Another interesting topic would consider a real-world setup. This setup

would include various emitter types and locations. With the addition of

highways, moving target velocity vectors could be assumed along different

locations on the highways. Then, an emitter selection experiment could be

conducted using the metrics plus a priori knowledge.
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Appendix A

Wirtinger Calculus

In 1927 the Austrian mathematician Wilhelm Wirtinger formulated a useful

method of differential calculus that is being referred to as Wirtinger Cal-

culus. In engineering, finding optimal solutions is a common task. For

example, estimation theory often relies on the use of optimal filters derived

through constrained minimization problems [87]. For a complex cost func-

tion, an analytical solution is found from setting particular partial deriva-

tives of the real and imaginary portions equal to zero. Then the optimal

solution is found through solving these set of equations. However, in com-

munications and engineering, it is more common to optimize a real func-

tion that depends on complex parameters/signals. Here is where the use of

Wirtinger Calculus resides[90].
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A.1 Derivatives

Consider first the real valued function of a real variable given as

f : R 3 x 7→ y = f (x) ∈ R. (A.1)

Then an extremum is found in some continuous regionR at point xopt only

if

d f
dx

∣∣∣∣
xopt

!
= 0, (A.2)

where it is assumed the derivative exists.

Comparable to a real function, a complex function of a complex variable

is defined as

f : C 3 z 7→ w = f (z) ∈ C, (A.3)

and the derivative is formally given as [95]

f ′(z0)
def
=

d f
dz

∣∣∣∣
z0

= lim
z→z0

f (z)− f (z0)

z− z0
. (A.4)

Furthermore, if (A.4) exists within a region R ⊂ C, then f (z) is analytic† in

R.
†Terms regular and holomorphic can be seen in literature and are synonymous with

analytic.
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Let u + jv be the value of f (z) when z = x + jy. Each real number, u and

v, only depend on real variables x and y. Therefore, f (z) can be expressed

as

f (z) = u(x, y) + jv(x, y). (A.5)

With (A.5) defined, f (z) can be classified as analytic if the real compo-

nent functions, u(x, y) and v(x, y), satisfy the well known Cauchy-Riemann

equations of [90], [95]

∂u(x, y)
∂x

=
∂v(x, y)

∂y
(A.6a)

∂v(x, y)
∂x

= −∂u(x, y)
∂y

. (A.6b)

If f (z) is analytic, then the complex derivative is expressed as [95]

d f (z)
dz

=
∂u(x, y)

∂x
+ j

∂v(x, y)
∂x

. (A.7)

In complex analysis, the complex derivative of a complex function serves

an important role. However, common engineering optimization problems

deal with real functions that can depend on complex variables. Maximiza-

tion of a complex cost function does not make sence because the maximum

modulus principle states [95]
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Theorem 1 If a function f is analytic and not constant in a given domain D, then

| f (z)| has no maximum value in D. That is, there is no point z0 in the domain

such that | f (z)| ≤ | f (z0)| for all points z in it.

Furthermore, minimization does not exist either under the circumstances

given by the minimum modulus principle as [96]

Corollary 1.1 Let f be non-constant analytic on a domain D with f (z) 6= 0‡ for

z in D. Then f (z) does not attain its minimum modulus | f (z)| at any point of D.

Therefore, complex cost functions are of no interest for the optimization

problems covered in this paper.

A.2 Wirtinger Calculus

As previously stated, real cost functions of complex variables are of real

interest. Therefore, let the functions be defined as

f : C 3 z = x + jy 7→ w = f (z) = u(x, y) ∈ R. (A.8)

With v(x, y) ≡ 0, the function f (z) is generally not analytic. The only case

that satisfies the Cauchy-Riemann equations is when u(x, y) is constant,

which is disregarded.

‡The stipulation of f (z) 6= 0 is necessary to make 1/f (z) analytic and defined in D.
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To solve for the optimal solution to (A.8), let f (z) = u(x, y). Now f (z)

is represented as a function of two real variables instead of a real function

of one complex variable. Thus, optimization occurs when the real partial

derivatives equal zero [90]. For functions categorized by (A.8), the require-

ment is written as

∂u(x, y)
∂x

!
= 0

∂u(x, y)
∂y

!
= 0.

(A.9)

Combining the requirements above into a linearly complex valued equa-

tion leads to

a1
∂u(x, y)

∂x
+ ja2

∂u(x, y)
∂y

!
= 0 + j0 = 0, (A.10)

where a1 and a2 are arbitrary non-zero real constants. Equation (A.10) is

only equivalent to (A.9) due to the fact that real and imaginary components

are orthogonal. This process allows for a more compact representation [90].

Representing the real and imaginary components of z as the ordered pair

(x, y) allows the following differential operator to be defined [90]

∂

∂z
def
= a1

∂

∂x
+ ja2

∂

∂y
, (A.11)
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where the operator can be used on complex functions. This makes sense

because real cost functions can be composed of complex functions such as

f (z) = |z|2

= z · z∗

= f1(z) · f2(z).

The final undertaking is assigning values for a1 and a2. Wilhelm Wirtinger

established these constants as a1 = 1/2 and a2 = − 1/2 [89], which meet all

necessary requirements as will be shown. With these constants in mind,

the partial derivatives of a complex function f (z) with respect to complex

variables z and z∗ are respectively defined as

∂ f
∂z

def
=

1
2

(
∂ f
∂x
− j

∂ f
∂y

)
(A.12)

and

∂ f
∂z∗

def
=

1
2

(
∂ f
∂x

+ j
∂ f
∂y

)
. (A.13)
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A.2.1 Wirtinger Identities

Let f (z) = cz where c is a complex constant. The derivative with respect to

z yields

∂ f
∂z

=
1
2

(
∂c(x + jy)

∂x
− j

∂c(x + jy)
∂y

)
=

1
2
(c− j (jc))

= c, (A.14)

whereas the derivative with respect to z∗ is

∂ f
∂z∗

=
1
2

(
∂c(x + jy)

∂x
+ j

∂c(x + jy)
∂y

)
=

1
2
(c + j (jc))

= 0. (A.15)

If f (z) = cz∗ then the respective partial derivatives become

∂ f
∂z

=
1
2

(
∂c(x− jy)

∂x
− j

∂c(x− jy)
∂y

)
=

1
2
(c− j (−jc))

= 0, (A.16)
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and

∂ f
∂z∗

=
1
2

(
∂c(x− jy)

∂x
+ j

∂c(x− jy)
∂y

)
=

1
2
(c + j (−jc))

= c. (A.17)

For the real function mentioned earlier of f (z) = zz∗ = |z|2 = x2 + y2,

the partial derivatives become

∂

∂z
zz∗ =

1
2

(
∂(x2 + y2)

∂x
− j

∂(x2 + y2)

∂y

)
=

1
2
(2x− j2y)

= z∗, (A.18)

and

∂

∂z∗
zz∗ =

1
2

(
∂(x2 + y2)

∂x
+ j

∂(x2 + y2)

∂y

)
=

1
2
(2x + j2y)

= z. (A.19)

These useful Wirtinger derivatives are summarized in Table A.1.

As illustrated in Table A.1, the derivatives behave similarly to real partial

differentiation. Furthermore, z∗ is considered a separate variable from that
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Table A.1: Wirtinger Derivative Pairs

f (z)
∂ f (z)

∂z
∂ f (z)
∂z∗

cz c 0

cz∗ 0 c

zz∗ z∗ z

of z. Some properties from real calculus, such as linearity and the sum,

product, and quotient rules, also apply. As an example, if f (z) = f1(z) f2(z),

then the derivative with respect to z is derived as

∂

∂z
( f1(z) f2(z)) =

1
2

(
∂ f1(z) f2(z)

∂x
− j

∂ f1(z) f2(z)
∂y

)

=
1
2

(
∂ f1(z)

∂x
f2(z) +

∂ f2(z)
∂x

f1(z)

−j
∂ f1(z)

∂y
f2(z)− j

∂ f2(z)
∂y

f1(z)
)

=
1
2

(
∂ f1(z)

∂x
f2(z)− j

∂ f1(z)
∂y

f2(z)
)

1
2

(
∂ f2(z)

∂x
f1(z)− j

∂ f2(z)
∂y

f1(z)
)

=
∂ f1(z)

∂z
f2(z) +

∂ f2(z)
∂z

f1(z). (A.20)
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Likewise, the product rule for ∂/∂z∗ is given as [97]

∂

∂z∗
( f1(z) f2(z)) =

∂ f1(z)
∂z∗

f2(z) +
∂ f2(z)

∂z∗
f1(z). (A.21)

The quotient and chain rules are respectively [97]

∂

∂z

(
f1(z)
f2(z)

)
=

∂ f1(z)

∂z
f2(z)−

∂ f2(z)

∂z
f1(z)

( f2(z))2 (A.22a)

∂

∂z∗

(
f1(z)
f2(z)

)
=

∂ f1(z)

∂z∗
f2(z)−

∂ f2(z)

∂z∗
f1(z)

( f2(z))2 , (A.22b)

and

∂ f (g(z))
∂z

=
∂ f (g(z))

∂z
∂g(z)

∂z
+

∂ f (g(z))
∂z∗

∂g∗(z)
∂z

(A.23a)

∂ f (g(z))
∂z∗

=
∂ f (g(z))

∂z
∂g(z)
∂z∗

+
∂ f (g(z))

∂z∗
∂g∗(z)

∂z∗
, (A.23b)

where the proofs for these rules can be found in [98].

A.2.2 Analysis

All though the Wirtinger derivatives generally do not satisfy the Cauchy-

Riemann conditions, they are attractive because they obey the rules of cal-
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culus and allow computations to be carried out as in a real case [99]. The

derivatives can actually be viewed as something inbetween a real derivative

of real functions and complex derivative of complex functions [90]. How-

ever, if the (A.12) and (A.13) are rewritten as

∂ f
∂z

=
1
2

(
∂
(
u(x, y) + jv(x, y)

)
∂x

− j
∂
(
u(x, y) + jv(x, y)

)
∂y

)

=
1
2

(
∂u(x, y)

∂x
+

∂v(x, y)
∂y

+ j
[

∂v(x, y)
∂x

− ∂u(x, y)
∂y

])
, (A.24)

and

∂ f
∂z∗

=
1
2

(
∂
(
u(x, y) + jv(x, y)

)
∂x

+ j
∂
(
u(x, y) + jv(x, y)

)
∂y

)

=
1
2

(
∂u(x, y)

∂x
− ∂v(x, y)

∂y
+ j
[

∂v(x, y)
∂x

+
∂u(x, y)

∂y

])
, (A.25)

then the Cauchy-Riemann equations can be satisfied when f (z) is analytic.

Substituting (A.6a) and (A.6b) into (A.24) and (A.25) yields

∂ f
∂z

=
∂u(x, y)

∂x
+ j

∂v(x, y)
∂x

(A.26a)

∂ f
∂z∗

= 0. (A.26b)

Therefore, when f (z) is analytic, ∂ f/∂z agrees with (A.7). Furthermore, (A.26b)

suggests that analytic functions are not dependent on z∗. However, for non-
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analytic functions, such as real cost functions, either ∂/∂z or ∂/∂z∗ can be im-

plemented for optimization [90].

A.2.3 Multivariate

Typically, practical cost functions rely on many variables where f : Cn 3

z = [z1, z2, . . . , zn]T 7→ w = f (z) ∈ R. Then the optimal solution is based off

n partial derivatives with respect to n unique complex variables. In vector

form, these derivatives are known as gradients and are defined as

∂ f
∂z

def
=

 ∂ f

∂z1
,

∂ f

∂z2
, · · · ,

∂ f

∂zn

T

(A.27)

and

∂ f
∂z∗

def
=

 ∂ f

∂z∗1
,

∂ f

∂z∗2
, · · · ,

∂ f

∂z∗n

T

(A.28)

where the optimal solution only exists when the derivatives equal the zero

vector, 0 def
= [0, 0, . . . , 0]T [90].

The Wirtinger pairs in Table A.1 can be easily applied to functions f (z) =

cTz or f (z) = cTz∗ when c is a vector of constants, c = [c1, c2, . . . , cn]T as

∂

∂z
cTz = c,

∂

∂z
cTz∗ = 0,

∂

∂z∗
cTz = 0,

∂

∂z∗
cTz∗ = c.

(A.29)
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Then for f (z) = zHz the derivatives become

∂

∂z
zHz = z∗, (A.30)

and

∂

∂z∗
zHz = z. (A.31)

Finally, a commonly seen quadratic function given as f (z) = zHAz, where

A represents a n× n matrix of constants, results in derivatives of [90]

∂

∂z
zHAz =

(
zHA

)T
, (A.32)

and

∂

∂z∗
zHAz = Az. (A.33)

Table A.2 summarizes these Wirtinger multivariate derivative pairs.

Table A.2: Wirtinger Multivariate Derivative Pairs

f (z)
∂ f (z)

∂z
∂ f (z)
∂z∗

cTz = zTc c 0

cTz∗ = zHc 0 c

zHz = zTz∗ z∗ z

zHAz = zTATz∗ ATz∗ Az
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