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Abstract 

Amnestic Mild Cognitive Impairment (aMCI), a condition in which the memory 

functions of cognition are significantly impaired, is an established risk factor for 

Alzheimer’s Dementia, a neurodegenerative disease that has no known cure. 

Electroencephalography’s (EEG) capability to measure the dynamics of the brain’s 

neuronal networks makes it a powerful tool for analyzing and understanding aMCI.  

In this study, I examined the brain activation patterns of four healthy subjects 

with those of thirteen aMCI diagnosed subjects during a one-hour afternoon sleep 

session by employing a 64-channel EEG data collection system.  The power spectrum 

was analyzed to identify sleep stages, while spectral topography and source imaging 

techniques were employed to study the fluctuating patterns of the brain. Results of this 

study show distinct structures of the resting state patterns for aMCI subjects when 

compared to healthy controls. Furthermore, I compared the neuroimaging features from 

EEG to the neurological assessment of memory and additional cognitive measures in 

aMCI subjects. Results for source imaging analysis indicate a significant difference in 

the default mode network connectivities between more impaired versus less impaired 

aMCI diagnosed subjects. The results indicate that spatial topographies and 

electrophysiological networks measured by EEG may be used to characterize the 

neurological correlates of cognitive impairment in aMCI.  

In conclusion, this proof-of-concept study suggests that EEG may be used in 

place of fMRI for the evaluation of brain activations associated with aMCI and its 

degradation levels. This development could pave the way for cheaper, more accessible 

neuroimaging for subjects with aMCI.
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[Chapter 1: Introduction and Background] 

This chapter focuses on providing a fundamental explanation of the core 

concepts necessary to comprehend the research work accomplished. 

[Motivation and Significance of this study] 

This work focuses on attempting to identify potential biomarkers for the purpose 

of diagnosing, or assisting in the diagnosis of, amnestic mild cognitive impairment 

(aMCI). I choose aMCI because it is a significant risk factor for Alzheimer’s Disease, 

an incurable disease. The human and socioeconomic effect of this disease is profound, 

the factors of which will be discussed in a later section. Identification of Alzheimer’s 

Disease at an early stage is critical to the treatment, as the methodologies for dealing 

with the affliction can only slow down the effects and prolong a quality of life. Because 

this disease fundamentally affects the brain, identifying biomarkers for the disease has 

become a topic of significant interest in the neuroimaging community. However, in 

recent years, the majority of research done employs the use of magnetic resonance 

imaging (MRI) and functional magnetic resonance imaging (fMRI). This study has 

chosen to employ electroencephalography instead of these other colloquially used 

technologies due to the cheap, mobile nature of electroencephalography. If successful, 

the results of this work could help lead to a quick, reliable clinical methodology for 

identifying aMCI, at which point a subject could receive further consultation from their 

doctor as to treatment and mitigation efforts to prevent and slow Alzheimer’s Disease.  

[Mild Cognitive Impairment and Alzheimer’s Dementia] 

Mild cognitive impairment (MCI) in humans is a known transition state between 

normal aging and dementia characterized by an existing, measurable decline in 
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cognitive functions [1], in the absence of dementia. Amnestic MCI, where the 

“amnestic” denotation refers to cognitive impairment related to memory loss, is a 

known risk factor for Alzheimer's disease (AD), a neurodegenerative condition 

characterized by progressive memory loss, impairment of other cognitive functions, and 

widespread neuronal loss [2]. Significant progression to AD, is defined by the inability 

ability to take care of one’s self.  Not typically cause of death, AD may lead to years of 

increased dependency on others, and years of care before dying from a concurrent 

disorder.  In adults of age 70 and older, approximately 22% are predicted to have some 

existing form of mild cognitive impairment [3]. Of those that have developed mild 

cognitive impairment, 60% are anticipated to develop dementia within 2 years [4].  

Early characteristics of Alzheimer’s Dementia include difficulty remembering 

names and events, while late stage characteristics characterize function that make the 

person more dependent on others, and includes impaired judgment, disorientation, 

confusion, behavioral changes, as well as difficulties in speaking, walking, and 

swallowing [5].  In end-stage or severe AD, the patient is bed-ridden and reliant on 

around the clock care. This, coupled with the difficulties developed in communicating, 

leave the victims more vulnerable to infections such as pneumonia.  

The widespread brain damage caused by Alzheimer’s can be seen in brain cross 

sections, as depicted below in Figure 1. Notable differences between the healthy and 

unhealthy brain in Figure 1 include significant shrinkage of the brain.  The earliest area 

effect in AD is the hippocampus. The symptomatic and physical effects of this disease 

present significant challenges in treating those afflicted, and highlight the need for 

further research on the subject.  
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Figure 1: Healthy brain vs. diseased brain, [6] 
 

Alzheimer’s dementia has a profound human life and socioeconomic cost that 

simply cannot be ignored. According to the Alzheimer’s Association, 700,000 

Americans were estimated to have died in the year 2016 with the disease, many having 

died due to complications caused by it [7]. Furthermore, total payments in 2016 for 

health care of Alzheimer’s patients were estimated to be around $236 billion.  The 

effect of this disease not only places an emotional burden on families and friends losing 

their loved ones, but also forces upon them an enormous financial responsibility [7]. 

These socioeconomic costs and effects highlight a profound societal need for early 

detection, treatment, and cure for Alzheimer’s Dementia. 

Causes of AD are a widely studied subject. Existing studies suggest that while 

gene mutations may be responsible for early-onset Alzheimer’s, advanced age and a 
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significant family history of the disease remain to be the primary causes [8]. There 

currently exist no known cures for Alzheimer’s disease, only medications and 

treatments to slow the progression of symptoms [9]. Standard practices for dealing with 

the affliction include pharmacologic treatments such as drugs, which have a high cost 

associated with them, and non-pharmacologic therapies including physical therapy, 

mental therapy, and memory training. Non-pharmacologic therapy, while it may 

improve quality of life, does not slow progression of the disease, and even 

pharmacologic treatments are unable to grind the progression to a halt. Because of this, 

it is critical to develop new techniques for early detection of the disease [10].  

[Sleep and Memory] 

 Memory processes and are well known to be disturbed in Alzheimer’s disease, 

but the function of this phenomena is not yet understood. However, it is well known and 

accepted that sleep and memory are very closely related processes in the human brain, 

and that a decline in sleep adversely affects memory function and capability.  

While even memory processes are not completely understood in the human 

brain, the mechanisms may be broken into three distinct events that must occur for a 

memory to be formed. The first event, acquisition, refers to the exposure of some 

information.  The second event, labeled consolidation, is the process by which the brain 

stabilizes a memory. Finally, the last event is referred to as recall, the process by which 

a person is able to access a stored memory. While acquisition and recall take place 

almost exclusively through wakefulness, research in the field suggests that memory 

consolidation takes place during sleep [11].   
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 [Electroencephalography] 

Electroencephalography is a tool used for the practice of detecting and recording 

neural potential fluctuations projected onto the scalp. These fluctuations are detected by 

electrodes places across the scalp. Many modern EEG systems employ on the order of 

64 to 124 EEG electrodes spread across the scalp in order to het high density data 

information. An example of an electrode-scalp interface may be seen below in Figure 2.  

 

Figure 2: EEG electrode-scalp interface [26] 
 

EEG stands out among other brain imaging modalities in that it has the 

combined properties of having high temporal resolution, low relative cost, and high 
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relative mobility [12]. This set of properties is particularly valuable because it grants 

EEG a high level of societal accessibility, meaning that clinics, hospitals, special 

treatment centers, and even mobile doctors may employ the technology across a wide 

range of patients and subjects.  

The scalp-level fluctuations picked up by an EEG system are generated by 

electric fields produced by neurons that fire simultaneously in the brain. Measurement 

of these activities can be useful in providing insights into activity happening within the 

brain during different events, stimulations, and states. An example of what raw EEG 

data may look like can be found below in Figure 3. In Figure 3, each line of data 

represents an individual EEG electrode’s data. In this case, the y-axis is measured in 

microvolts, and the x-axis measured in seconds.  

 

 

Figure 3: Example EEG data 
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[Physiological Origins] 

 The study of electroencephalography begins with understanding the source of 

the activity. EEG measures electrical fields on the scalp of the head, which arise from 

electrical activity in the brain. This electrical activity is driven by synaptic and action 

potentials generated by neurons. Synaptic potential, in particular, refers to the difference 

in voltage generated between the inside and outside of a postsynaptic neuron. When a 

transmitter input is received at the post-synapse, the membrane ion permeability 

changes and allows for a current to flow into or out of the cell. An inward flow of 

current results in an excitatory post-synaptic potential, while an outward flow creates an 

inhibitory post-synaptic potential.  These synaptic processes are extremely quick to 

occur, but have reasonably long spatial decay coupled with relatively slow temporal 

decay (on the order of tens of milliseconds). Because the decay of these processes is 

relatively long compared to the process itself, synchronization of neural events is much 

more likely to be detected at the macroscopic scale.  

Action potentials, however, are generated by sharp changes of the membrane 

potential at the soma of the neuron, which then propagates along the axon. In a converse 

manner to synaptic potentials, action potentials have a much quicker temporal decay, 

meaning it is much less likely for large levels of detectable synchronization.  

Additionally, these potentials are much more likely to have their electromagnetic fields 

cancelled out by currents occurring in opposite directions. For these reasons, the scalp-

level fluctuations detected by EEG are primarily dominated by synaptic potential. These 

potentials may then be modeled as current dipole sources positioned perpendicular to 

the cortical surface at the gray matter. 
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[Rhythmic Activity] 

 Since the discovery of EEG in 1929 by Hans Berger, there has always been an 

acknowledged rhythmic nature present in EEG signals [13]. These rhythms have a wide 

spectrum, with identifiable frequencies from DC all the way to 70Hz. However, in the 

decades that followed the discovery of EEG, the primary focus of research with the 

technology focused upon event-related potentials (ERPs), the response of the brain to a 

specific stimulus. In these studies, the rhythmic activity of the brain was considered to 

be noise. In order to eliminate this “noise,” ERPs were recorded hundreds of times and 

averaged in order to obtain the desired response signal. It has only been in recent years 

that the rhythmic activity has been realized to be more than simply noise in the data. 

Typically, rhythmic EEG is analyzed and examined in different bands of 

frequencies, such as delta (0-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and 

gamma (>30Hz) [14]. These bands of activity are known to be associated with certain 

tasks and actions, such as body movement, which causes a decrease in alpha frequency 

powers [15]. Power modulations additionally present with topographic changes in brain 

activities across the scalp, allowing for a visual representation of these activities to be 

obtained [16]. In addition to physical movement, rhythmic brain activity modulation has 

been recorded in response to sensory and even cognitive tasks. Oscillation is notably 

present across the entirety of the brain, including cerebral cortex and the subcortical 

regions alike. During the absence of stimuli or tasks, known as the resting state, the 

alpha rhythm is typically dominant, and may be seen in topographic plots as developed 

across the brain from a focal area in the occipital region [17]. Furthermore, such 

fluctuating power activations of differing frequency bands tend to show inverse 
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relationships. So, a decrease in low frequency band power will usually correspond with 

increases in higher frequency band activity [18]. An example of this is found in the 

transitions from wake to sleep. During the awake resting and early stages of sleep, EEG 

power and frequency characteristics align closely with the resting state: high alpha band 

activations dominating the scalp. However, as sleep deepens, high frequency power 

begins to diminish, and the EEG spectrum instead becomes dominated by low 

frequency band activities [19]. This particular example will be elaborated upon in a later 

section. Elucidation of the changing rhythmic patterns as a response to different stimuli, 

states, and tasks will serve to offer valuable insight into the fundamental functioning of 

the human brain. 

[Source Imaging] 

The focus of source imaging is aiming to determine the strength and location of 

the current sources which generate the potentials measured upon the scalp by EEG. 

However, the mathematical solution to this problem is both ill posed and non-unique, 

due to the fact that different configurations of sources may lead to the same measured 

surface distributions. Nonetheless, by introducing some a-priori assumptions mentioned 

below, one may retrain the problem in such a way that results in a unique, valuable 

solution. The result of successful source imaging is that EEG data is granted a 

significant increase in special resolution. This is particularly valuable when coupled 

with the already high resolutions in the temporal domain that is typical of EEG data 

collection. 

Modeling the entirety of the brain’s electrical activity may be approached first 

with the distributed current source model. This model employs thousands of current 
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dipoles evenly distributed around the scalp. These current dipoles may be further 

constrained as being perpendicular to the scalp, as the column-based organization of the 

neurons within the gray matter forces regional current to flow either inward or outward 

normal to the local cortical surface [20]. Further restraint of the current sources may be 

applied through the employment of anatomical information obtained through structural 

neuroimaging modalities, such as magnetic resonance imaging (MRI). These 

anatomical structural constraints may be obtained on a subject to subject basis, or they 

may be applied through the use of a standardized structural model.  

[The Default Mode Network] 

Synchronized rhythmic activities that occur across the entirety of the brain are 

perhaps some of the most interesting neural events. These unified responses to 

phenomena, or a lack thereof, are referred to as neural networks. One common network, 

colloquially referred to as the resting state, or default mode network (DMN), reveals the 

activity in the brain that occurs during rest, introspection, and general inactivity. The 

default mode network is characterized by co-activations between the frontal and 

occipital lobes of the brain. These co-activations may be seen represented in Figure 4 

below. 

The mapping depicted in Figure 4 is the result of fMRI imaging techniques, 

which measure the levels of blood oxygenation. These blood-oxygenation-level-

dependent (BOLD) signals are colloquially referred to as the hemodynamic response of 

the brain. Historically, BOLD signals are extremely consistent across healthy subject in 

resting-state fMRI measurements, making them a good baseline for analysis of events 

which modulate this signal. However, a fundamental flaw of this measurement is that it 
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is an indirect measurement of neuronal activity, and is thus not fully understood. EEG 

signals simultaneously acquired with fMRI data display patterns that appear to overlap. 

While these two signals are starkly contrasted in their temporal resolutions, their 

overlap sets the ground plane for examination of high resolution EEG as a substitute 

measurement [28].  

 

Figure 4: Default mode network [21] 
  

The default mode network is known to be altered in a variety of brain-related 

illnesses including autism and schizophrenia. These disease related alterations point to a 

significant relationship between brain health and the resting state network. Additionally, 

previous studies and work have suggested a significant correlation between this network 

and memory processing and Alzheimer’s Dementia. These relationships encourage and 

reinforce the study of the DMN and how it changes underneath different conditions. 
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[Scope] 

The focus of my thesis work is to examine and identify neuroimaging features 

that could be used to answer the following questions:  

 Is it possible to use EEG to identify differences between healthy and 

diseased subjects?  

 Is it possible to use EEG to identify differences between diseased subjects 

that are more degraded versus less degraded?  

These questions were explored through analysis of electroencephalography 

topography plots, power spectrum density plots, source imaging, and template 

correlation analysis. 
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[Chapter 2: Methodology] 

This chapter focuses on outlining the study design, inclusion and exclusion 

criteria, experiment methodology, and strategy for processing data. 

[Demographics and Exclusion] 

Study procedures were approved by the local institutional review board at The 

University of Oklahoma Health Sciences Center. Screened subjects were excluded from 

the study if they had any of the following: A major neurological or neuropsychiatric 

condition, anticholinergics or general anesthesia in the past 6 months, conditions that 

would complicate the interpretation of EEG, conditions contraindicative of MRI scan, a 

sleep disorder, or pregnancy. These criteria were included both to ensure the safety of 

all subjects included as well as to ensure quality of collected data. 

The study design considered three groups of subjects, individuals diagnosed 

with amnestic mild cognitive impairment (aMCI), aMCI who returned for a repeated 

visit one year afterwards, and healthy controls (HC). Upon completion of my thesis, 

seventeen individuals diagnosed with aMCI were recruited in the study. Among them, 

two aMCI individuals did not complete the entire data collection procedures, two aMCI 

individuals’ data were discarded due to device failure or severe quality issues and one 

aMCI individual data was not able to fall asleep thereby the EEG data was excluded 

from further analysis. Three of the seventeen aMCI individuals were recruited for 

repeated visits. For one of the return aMCI, the data from initial visit was excluded and 

the data of return visit was re-grouped as aMCI. Four healthy control individuals were 

recruited and completed the study.  



 

14 

As a result, thirteen aMCI and four HC individuals had their data employed in 

this analysis. The demographics and the clinical assessments of the aMCI and HC study 

participants are listed in Table 1.  

Note that the HC subjects are not perfectly age-matched to the aMCI subjects 

yet, which is still part of ongoing efforts. The difference in the average age is 

approximately 12 years. For exploratory purpose, my analyses examined EEG features 

for both aMCI and HC groups. In order to further study the EEG features in 

charaterizing the disease severity, my analyses seperated the aMCI into two sub-groups, 

a less impaired and a more impaired sub-group, and then examined the difference 

between the two sub-groups of aMCI individuals. The analysis procedures will be 

elaborated in the following sections. An improvement for future work could include 

acquiring additional subjects with better matched ages. 
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Table 1: Demographics of aMCI and HC 

 

 

 

aMCI [n=13] HC [n=4] 

Mean/Max 

possible 
STD 

Mean/Max 

possible 
STD 

Age 68.6 8.4 56.2 3.1 

Year of Education 16.2 3.9 15 1.4 

MMSE 27.3/30 2 29.5/30 0.5 

CDR 0.4/1 0.2 - - 

GSD 6.4/15 1.7 0.8/15 1.3 

Lawton ADL 14.1/16 1.3 16/16 0 

NPI 2.1/12 0.9 1.3/12 1.3 

Memory Score 10.5/36 3.1 18.8/30 8.4 

 

Definitions of the acronyms outlined in the subject demographics figure include: HC: 

healthy control, MMSE: mini-mental state examination, CDR: Clinical Dementia 

Rating, GDS: Geriatric Depression Scale, NPI: Neuropsychiatric Inventory, Lawton 

IADL: Lawton Instrumental Activities of Daily Living, STD: standard deviation, n: 

number of subjects.  
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[Data Collection] 

Data for this study was collected over the course of a single session per subject. 

EEG was captured by employing a 64-channel Brain Vision (BrainProducts, Munich, 

Germany) EEG system. An image of the setup, as well as an example scalp map of 

electrode locations can be seen below in Figures 5 and 6. Using this, data was recorded 

at a sampling frequency of 500 Hz, and at a sensitivity of 1μV. This sampling frequency 

and voltage sensitivity is known to be well above the necessary sampling rate and 

sensitivity to acquire clean signal reconstruction.  

 

Figure 5: Image of experimental setup 
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Figure 6: Example 64-channel EEG scalp map [22] 
 

Subjects were first asked to take part in a memory encoding and free recall task 

outlined in Wenger et. al [27]. The encoding section involves displaying three simple 

items, such as boat, bike, or cherry, alongside simple cued that correlate to one of the 

items, such as “fruit.” The subjects were then asked to point out and say the name of the 

item that corresponds to the cues given. This was repeated for 36 items. After the 

encoding session is finished, the subjects were asked to recall, freely, as many of the 

items as they can. The total number of recalled items was recorded and labeled as the 

pre-nap recall number. Examples of the items to be recalled may be seen below in 

Figure 7. 
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Figure 7: Example memory items, images, and cues [27] 
 

Subjects were then asked to sit back in a recliner chair and nap for 

approximately one hour for the purpose of EEG data collection. The testing room was 

separated from the recording room.  During the naps, the room lights were turned off 

and subjects were visually monitored via a near infrared recording system. The testing 

room was sound attenuated, and a white-noise machine was used to further standardize 

room sound levels.  Room temperatures were maintained at 68 degrees F, with blankets 

and pillows provided to promote sleep. Start markers, end markers, and any activity and 

movement observed during the nap via video monitor were marked in the data 

recording using custom made Brain Vision event markers. 

Upon completion of the nap, subjects again were asked to recall as many of the 

encoded items as they were able too, freely. The total number of recalled items post nap 

is used as a second measure of memory capability. This is referred to as the post-nap 

recall number. The differential of items recalled after and before the nap may also be 
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examined in relation to sleep. The final step of this experimental procedure is a cued-

recall session, in which the items that the subject did not remember after the nap are 

attempted to be recovered through the use of similar cues that were used to encode 

them. However, these cued-recall numbers were not employed for this study. 

 

Figure 8: Experiment flowchart 
 

[Data Preprocessing] 

 The entire data processing pipeline can be seen below in Figure 9. This figure 

depicts how the pre-processing steps flow into the data analysis. 

EEG preprocessing steps are necessary to improve the signal to noise ratio of 

collected data. While the hardware used for data collection contains a notch filter to 

eliminate 60 Hz noise, as well as a low pass filter with a high cutoff of 250 Hz, this 

alone is insufficient to provide clean EEG. 
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Figure 9: Data processing flowchart 
 

  The data was initially segmented by start and end markers set by the E-Prime 

software. Next, channels having poor impedance and contamination from muscle 

movements were removed. Poor impedances and muscle movement contamination in 

EEG data may be identified by unusually high or low frequency patterns in a given 

channel when compared to all other channels of data. In the remaining channels, data 
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segments with excessive movement artifacts were further discarded, which accounted 

for less than 1% of the total data. These artifacts are easily identified as brief, high 

frequency, high amplitude blasts in the data. 

Following rejection, the data were processed by a bandpass filter, with a high 

cutoff frequency of 100 Hz and a low cutoff frequency of 1Hz, as well as a second 

notch filter at 60 Hz to further eliminate environmental effects. The filtered data then 

were re-referenced by the common average referencing technique, and down sampled to 

250 Hz. All preprocessing steps up to this point were conducted through the use of 

BrainVision Analyzer software (Brain Products, Gilching, Germany).  

Further de-noising was done using independent component analysis (ICA) via 

the EEGLAB toolbox (Swartz Center for Computational Neuroscience, San Diego, 

CA). ICA is a computational statistical technique employed to decompose a single 

signal, composed of many different inputs, into multiple non-Gaussian signals. 

Assumptions involved in this process include the assumption that the subcomponents 

are non-Gaussian, and that they are statistically independent from one another. This 

allows for identification and separation of different signal components and how 

significantly those components contribute to the measured signal. Components with 

lower numbered denotations, such as independent component 1, will contribute most 

heavily to the system. A higher number denotation implies a less significant 

contribution.  A total of 45 to 50 independent components were examined alongside 

their power spectrum plots, varying from subject to subject. While there is no current 

generally accepted methodology for choosing a given number of independent 

components for analysis, previous studies and work suggest that a quantity between 20 
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and 50 is appropriate, with more components correlating to an increase in the likelihood 

of the ICA process converging upon a solution. Visual inspection of components and 

their spectral power plots led to elimination of any residual heart, muscle, and eye 

related artifacts.  

 

Figure 10: Example result of topographic plots from independent component 
analysis 

 

Figure 10 above depicts a representative result from plotting topographic results 

of the ICA process. Above each scalp map is the IC number, representing its weight of 

signal contribution. In this example, IC number three represents what a typical eye-

movement artifact may look like. Eye movement artifacts are almost always present in 

EEG data, and ICA is one of the best ways to eliminate this contamination. Another 

type of artefactual component is IC number 15, where the activity is completely 
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dominated by one “hole” of activity. This may be the result of muscular movements or 

the so-called “pop” artifacts that may arise from individual channels.  

 

Figure 11:  Power spectral density plots resulting from ICA 
 

Figure 11 above depicts the power spectral density plots from a different representative 

subject than the one depicted in the previous Figure 10. This subject’s plots were 

chosen instead to show additional criterion used for IC rejection. In this Figure, IC 6 

displays a pattern typical of ocular artifact. IC 29 displays spiking in higher frequency 

regions, indicating contamination of this IC as well. Details outlining the methodology 

for obtaining the power spectrum density plots will be discussed in a later section. 
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With these preprocessing steps completed, the EEG data is cleaned of 

measurement noise, environmental noise (such as 60 Hz interference), and 

physiological noise of all types. 

[Sleep Stage Segmentation] 

The nap recordings were scored by a certified sleep clinical researcher, using the 

standard rules set by the American Academy of Sleep Medicine. Thirty second epochs 

of data were visually scored by state: either wakefulness, one of the four stages of Non-

Rapid Eye Movement (Stage 1-3 NREM) Sleep, or Rapid Eye Movement (REM) Sleep.  

Representative epochs of each stage of sleep were scored digitally through the 

analysis of the power spectrum of the signals. That is, representative EEG channels 

were selected, and their frequencies analyzed to determine the sleep stage during each 

thirty second epoch. These individually scored epochs are employed later both for 

individual sleep stage EEG analysis and grand averaging of sleep EEG across subjects. 

[Power Spectrum and Scalp Topographies] 

Power spectral density (PSD) plots for these datasets are generated using 

Welch’s method of power estimation. This technique allows for analysis of dominant 

frequency activations which occur in a given set of data. The parameters used for 

Welch’s method include a 250Hz sampling frequency, a hamming window size of 1000, 

and an overlap of 125. 

Scalp level topographies are useful for visual representation and analysis of 

EEG data. In particular, this is valuable for representing results of group level averaging 

of data, as well as for selection of independent components that will be rejected due to 

artifact contamination, as presented above in Figure 10. These topographic plots are 
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generated using EEGLAB functions, and require both recorded data as well as channel 

location data in order to accurately depict the activations. Channel location data refers 

to the three-dimensional coordinates in space that detail where each channel is relative 

to one another.  

[Source Imaging] 

In order to improve the spatial resolution of EEG data, a technique called source 

imaging was employed. Source imaging employs anatomical information collected 

through the use of MRI, or through the use of standard MRI structural images, in order 

to solve the so-called inverse problem. This inverse problem, a fundamentally ill-posed 

problem, is a matter of solving for the distribution of the dipole strengths within the 

brain based on recorded data. By solving this problem and obtaining a unique solution, 

one may determine the sources of EEG activity from a 3D distribution of neuronal 

activity.  Equations that describe this process include 

Φ = A•S + N.                    (1)                

where Φ is a matrix of the measured EEG, S is the unknown matrix of amplitudes of the 

source dipoles in time, A is the mixing matrix, and N is a vector specifying the noise at 

each electrode. Source estimation was achieved by using a minimum norm method to 

derive the linear inverse operator expressed by  

           W = RAT (ARAT+C)-1.                                     (2) 

for which C and R are covariance matrices of the noise and sources, respectively. 

In this analysis, I employ an L-2 minimum norm methodology for solving the 

inverse problem, as outlined in the equations above as well as in in [23, 28]. This 

technique corresponds to the 3D distribution of current densities of dipole sources on 
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the cortical surface with maximum levels of similarity, in terms of orientation as well as 

strength, between neighboring neuron groupings. Because anatomical structural MRI 

data was not available for all subjects involved in our study, I employed a standardized 

brain model. The result of our source imaging technique is that the spatial resolution of 

our EEG data is refined to the millimeter level, rather than the centimeter level. For 

sleep stage analysis, forty second epochs of each stage for each subject were selected in 

order to reduce the processing strain of the source calculations.  

[Template Matching] 

In order to obtain a quantitative measure with which to analyze the data, I 

calculated a correlation between the source imaging results and a template of the default 

mode network. However, this problem is complex, as the measurement of EEG is not 

network selective. This means that our EEG data records all networks active in the 

brain, including the default mode network as well as many others. While the process of 

independent component analysis enables us to identify and separate out different 

networks, it is possible to have multiple networks identified which resemble the default 

mode network. An additional complication is developed due to the fact that ICA result 

weights are not the same from subject to subject. For example, the weight of 

independent component five for subject one may not have the same value as the weight 

of subject two’s independent component five.  

In order to address the issue of unequal weights, the source image data 

undergoes a fisher transformation to convert all data points into z-scores. This changes 

all data to fall within values from negative one to positive one, regardless of their 
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original ranges. With new equal weighting across subjects, averaging and direct 

comparisons from subject to subject is possible to conduct. 

With the data of equal weight available for use, the following step is to compare 

to a default mode network template. However, our source image data suffered from 

being mapped to a different anatomical structure than our template. In order to properly 

conduct calculations between the data and template, the z-scores were re-mapped onto 

the same anatomical structure as the template.  

Lastly, the process of determining the best match of independent component to 

default mode network was comprised of calculating the spatial correlation coefficient 

between the re-mapped z-score data and the template. This calculation was done for 

each of the twenty-five independent components of the resting-state awake data in order 

to identify the best match. 

With the best match to the default mode network determined for the awake 

resting state, the process of determining the best match to the default mode network for 

the three sleep stages would follow. In order to reduce the effect of the non-stationary 

property of EEG, the awake resting stage for each subject that is identified to be the best 

match to the DMN template is then used as that subject’s new individual template for 

the DMN. Spatial correlation coefficients are then calculated between this new 

individual template and Stage 1 NREM, Stage 2 NREM, and Stage 3 NREM sleep. This 

process generates a set of independent components most likely to be numerically 

identified as the default mode network on an individualized basis. With this set of 

components, an evolution can be plotted to examine the change of the DMN as sleep 

deepens. 
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[Chapter 3: Results and Discussion] 

This chapter will discuss both the results of the study as well as delve into 

discussion in sections. This structure was chosen to make chronological order of the 

examined components easier to discuss and refer too. The scope of this chapter focuses 

on two pillars of the study: Neuroimaging Features and Study of MCI. Table 2 below 

outlines the foci of these two pillars. 

Table 2. Structure for results and discussion 

 

 In these results, there exist two different “levels” of plots to be considered. The 

first level, considered to be the sensor level, is produced as a direct result of the EEG 

measurements produced by the electrodes. The second level, our source level, refers to 

plots generated as a result of the source imaging technique described previously. These 

levels of results are both uniquely valuable for the insights they reveal about brain 

activities. 

[Neuroimaging Features: Sensor Level Results] 

Analysis of results is best begun by examining the sensor level topographies and 

power spectrum densities. Figure 12 below displays the evolution of spectral 

topography plots as sleep deepens for the average of all aMCI diagnosed subjects. 

These spectral topographies are divided into three different bands of activity in an 

attempt to isolate and identify changes occurring in each band of frequency across 
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subjects. The bands in consideration for this plot are the Delta band (0Hz to 4Hz), the 

Theta band (4Hz – 8Hz) and the Alpha band (8Hz – 13Hz). 

Figure 12 is divided not only by frequency band, but also by sleep stage. For this 

figure, resting awake, Stage 1 NREM, Stage 2 NREM, and Stage 3 NREM sleep are to 

be examined, with higher NREM Stage indicating higher thresholds of arousal and 

deeper levels of sleep. The top of these topography plots indicated the front of the brain 

(frontal), while the bottom reflects the back of the brain (occipital). Colored activations 

are indicators of electrical activity measured in microvolts (μV). Each band of 

frequency has a colorbar indicator set to a constant range for easier analysis between 

stages. This colorbar was not set to be equal across different frequency bands due to the 

significantly differing values of activation within different bands.  

The first feature of note to be examined in this is the 8-12 Hz frequency band for 

the resting awake stage. This topography plot depicts high levels of activation in the 

occipital areas of the brain, a result that is well established by previous studies. Re-

obtaining this standard result serves as a methodology for verification and validation 

that the processing methodology is functioning correctly. 

The sleep evolution in Figure 12 depicts an increase in delta level activity and 

theta level activity as the subject slips deeper into sleep. Increases of delta band activity 

as sleep deepens is an expected result, as deeper levels of sleep are known to be 

associated with lower frequency activity in the brain. The theta band mirrors this rise in 

activations as sleep deepens. Lastly, the figure reveals that the alpha band does not 

appear to change significantly as sleep deepens for these aMCI subjects, although it is 

present across the scalp. 
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Figure 12: Average spectral topographies for aMCI subjects in Delta (1Hz - 4Hz), 
Theta (4Hz - 8Hz), and Alpha (8Hz - 13Hz) frequency bands 
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Figure 13: Average spectral topographies for Healthy subjects in Delta (1Hz - 
4Hz), Theta (4Hz - 8Hz), and Alpha (8Hz - 12Hz) frequency bands 
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Figure 13 above indicates the spectral topography plots for healthy subjects 

across Alpha (8Hz -12 Hz), Theta (4Hz – 8Hz), and Delta (1Hz – 4Hz) frequency bands 

for Stage 1 NREM, Stage 2 NREM, and Stage 3 NREM sleep. Once again, the awake 

resting plot for the 8-12Hz band depicts significant levels of activity on the posterior 

region of the brain, validating the processing procedures. The sleep plots depict a heavy 

increase in delta wave activity as sleep deepens, alongside a moderate increase in theta 

band activity as well. These subjects, however, show little to no activity at all in the 

alpha band during sleep, with only a small amount of activity in stage one of sleep. Of 

particular interest are the patterns depicted in the Delta band for stages two and three of 

sleep, where activations in both the frontal and posterior areas of the brain are 

concurrently dominant, creating a co-activation pattern.  

In addition to these topographic plots, the EEG spectra may be examined 

through the use of their Power Spectrum Density (PSD) plots. These figures reveal a 

breakdown of the dominant frequency components in the data. PSD plots typically have 

the y axis set to a normalized amplitude, and the x axis set to hertz. A higher normalized 

amplitude for any given frequency corresponds to higher domination or presence of that 

particular frequency in the data.  Figure 14 below depicts a PSD plot for both aMCI and 

healthy subjects, respectively.  
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Figure 14: Power spectral density for aMCI subjects versus healthy subjects for 
electrode POz 

 

This PSD figure was developed through the averaging of data collected from 

electrode POz for each subject in their respective groupings. POz was chosen both for 

its central position on the scalp, as well as for its proximity to activations of interest. 

The figure suggests a stark difference in the alpha band between the subject groups, 
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with healthy subjects exhibiting significantly higher levels of alpha band (8-12Hz) 

normalized amplitudes. In addition, we see a shift of dominant frequency activity as 

sleep deepens. While alpha band is largely evident in the awake state for both groups, 

this band becomes less dominant as the subjects enter sleep, with lower frequency bands 

becoming more dominant as sleep deepens. 

 

[Neuroimaging Features: Sensor Level Discussion] 

Comparing healthy sensor level plots to diseased sensor level plots reveals 

several distinct feature differences in both the topographic plots as well as the power 

spectrum density plots. To discuss and compare the results in the order they appear, the 

first topic is the delta band topographic activities.  

Healthy subject delta topographies present as high-powered activations around 

and across the scalp, increasing in presence as sleep deepens. These plots are 

characterized by patterns of activity in the frontal, temporal, and posterior areas of the 

brain, creating a “ring” of dense activity around the scalp map, the most prominent rings 

presenting in stage three sleep. In contrast, diseased subjects do not generate the same 

powerful “rings” in the delta band. aMCI subjects exhibit activations only in the frontal 

and posterior regions of the brain, and at activations levels lower than their healthy 

counterparts. Activations in this frequency band are expected to rise as sleep deepens, 

making the delta band one of the most synonymous with healthy sleep patterns. 

Decreases in activation levels alongside reduced areas of activation for unhealthy 

subjects suggest that their sleep is indeed being affected adversely.  
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Moving onto the theta band activations, the healthy subjects and the diseased 

subjects begin to show more similar patterns of activations, with both groups showing 

dominant activities in the frontal and posterior lobes. However, a still notable difference 

between the groups is a lower activation power for the diseased subjects. The lower 

levels of theta band activations in the unhealthy subject group may be a result that 

makes sense, as this band is strongly associated with memory processes [24]  

Lastly, the alpha band depicts strong levels of activation in the posterior region 

for both healthy and unhealthy subjects in the awake resting state, for which the healthy 

subject shows higher activation powers. However, as sleep advances, both groups show 

a significant drop in activity in the alpha band, such that there is virtually no alpha 

activity in their sleep waves. These results for the alpha band are consistent with 

previous work done in the area of neuroimaging, and serve as a validation measure for 

our results. Analysis of the power spectrum plots for the healthy versus unhealthy 

subjects further confirms the results measured in the topography plots: overall higher 

levels of activation for healthy subjects. However, the power spectrum better reveals the 

significant difference in alpha band activations between the subjects, with the healthy 

group experiencing activations more than four times more powerful.  

[Neuroimaging Features: Source Level Results] 

 In order to evaluate the differences between levels of degradation in the 

unhealthy subject group, a source imaging approach was chosen. This methodology was 

chosen to allow for re-mapping of the EEG results to a brain anatomy that matches to a 

template used in previous fMRI studies. Re-mapping our data to a template anatomy 

allows for template matching and analysis of comparative networks.   
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 Figure 15 is a depiction of a representative subject’s source imaging results. As 

mentioned in the methodology section, these plots are generated as a result of selecting 

the independent component of the awake resting state that is best matched to the default 

mode network template via a spatial correlation calculation. The sleep stages are then 

chosen as the independent components that are best matched to the awake resting state 

independent component. 
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Figure 15: Representative subject source results and PSD 
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The result of plotting an individual subjects is, unfortunately, difficult to 

analyze. While it is important to maintain a consistent colorbar across stages in order to 

properly examine differences between subjects, doing so in this case results in stages 

that are either crowded by high amplitude information or devoid of region activations 

significant enough to visually interpret. Furthermore, the power spectrum 

representations of these particular independent components do not depict strongly 

varying frequency dominances between stages.  

In an effort to obtain plots with better visual properties for analysis, group 

analyses were examined. Subjects were first split into two different groupings. To 

accomplish this, memory scores of the subject were outlined and divided.  The dividing 

score was chosen such that the two resulting groups had similar sizes (an equal size 

being impossible due to the number of aMCI subjects being 13). Group 1 is defined as 

those who remembered fewer items in the memory task, assumed to be more impaired, 

and Group 2 is defined as those who remembered more items, defined as less impaired. 

The difference in the memory items recalled between the groups shows significance 

(P<0.02) in a two-tailed t-test. In addition to the two groups, plots were also developed 

for the combined set of subjects for comparison. 
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Table 3. More impaired vs. less impaired demographics  

 Age 
Years of 

Education 
MMSE CDR GSD 

Lawton 

ADL 
NPI 

Memory 

Score 

aMCI 

More 

Impaired 

n = [6] 

Mean 71.3 16.5 26.0 0.5 2.8 15.8 2.0 6.5 

Std 

Dev 
7.4 2.8 1.8 0 1.9 5.1 1.5 2.8 

aMCI 

Less 

Impaired 

n = [7] 

Mean 61.6 15.0 28.4 0.4 1.6 14.3 2.3 14.0 

Std 

Dev 
6.9 3.4 1.4 0.2 1.4 1.5 1.1 3.8 

p-value  0.03 0.4 0.02 0.36 0.22 0.50 0.72 0.002 

 

Conducting two-tailed t-tests between each evaluation feature of the two groups reveals 

significant differences in their ages (p = 0.03), MMSE scores (p = 0.02), and their 

memory scores (p = 0.002). These significance values highlight the differences in our 

two subject groups, where age and memory appear to be correlated in a way that is 

expected. However, there are no significant differences in years of education, CDR 

score, GSD, Lawton ADL, or NPI values between these subject groups, lending to their 

similarity in aspects other than age, mental status, and memory. 
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Figure 16: Sleep topography evolution averages for more impaired subjects 
 

 Figure 16 above depicts the average awake resting state topographies for the 

more impaired subject group. This plot demonstrates significant regions of connectivity 

in the posterior areas of the brain.  

 

Figure 17: Sleep topography evolution averages for less impaired subjects 
 

 Figure 17 displays average topographic plots of the awake resting state for the 

less impaired group. These subjects also show significant regions of connectivity in the 

posterior regions of the brain. 

 In order to better examine the difference of default mode network matching 

between groups, side-by-side topographic plots were deemed appropriate. Figure 18 
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depicts the change in the topography across groups for the situation of awake resting. In 

particular, this figure also includes results from healthy controls for comparison. 

 

Figure 18: Resting awake topographies across groups 
 

 Differences in the awake resting state prompted a t-test calculation between the 

two groups’ z-score data. A plot of the t-test results in the form of brain topography 

may be seen below in Figure 19.  
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Figure 19: More impaired vs. less impaired T-test topography for awake resting 
state 

 

 The t-test topography depicts the differences between group 1 and group 2 

topographies for the resting awake state. This mapping was thresholded such that only 

statistically significant differences (p<0.05) regions are plotted on the blank mapping. 

The blank mapping in this case is green, while regions of interest are depicted in blue. 

The results show significant differences in connectivity in the posterior and medial 

prefrontal areas of the brain. 

 A mask was created through the intersection of the t-test topography results and 

the default mode network template topography. This mask was employed to analyze the 

differences in the average z-scores, or connectivity scores, of the subjects as they 

compared to the MMSE and memory scores. However, no trend in memory or MMSE 

score was found when compared to these average z-scores. Statistical analysis was 

conducted on the average z-scores of the awake resting state default mode network for 

less impaired and more impaired groups and revealed that these two groups have a 

statistically significant difference (P= 0.025) in their average z-scores for the DMN. 
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However, it is important to note that this significance is merely a validation measure of 

our t-test plots. Figure 20 below delivers a visual representation of the difference of the 

connectivity scores between these three groups. 

 

Figure 20: Connectivity scores across groups 
 

[Neuroimaging Features: Source Level Discussion] 

 Topographic plots of group-level source imaging results show significant 

differences between the less impaired and more impaired subject groups. Visually, it 

can be seen that the more degraded subject group has stronger activations across the 

scalp than the less degraded group. Examination of the awake-resting state shows that 

the less impaired has connectivity patterns more prevalent in the posterior region of the 

brain than the more impaired group. The healthy subject group appears to have more 
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significant levels of connectivity in the DMN than the more impaired subject group, but 

less than the less impaired subject group. 

The result of the less impaired group having stronger default mode network 

characteristics was surprising to the research group, but has been found to be consistent 

with previous fMRI studies [29]. Figure 21 below depicts the similarities between the 

imaging modality results. 

 

Figure 21: fMRI vs. EEG aMCI results [29] 
 

The implication of the result depicted in figure 21 is that EEG source imagining may 

have the capability to be used as a substitute for the fMRI imaging modality.  
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[Chapter 4: Summary and Perspectives] 

This research work has focused on EEG analysis of subjects with and without 

aMCI, an intermediate step between healthy functioning and Alzheimer’s Disease. This 

research work is important because there exists no known cure for Alzheimer’s Disease, 

only steps and measures to slow the progression. This makes early detection and 

identification of risk factors of the utmost importance. Identification of a biomarker to 

detect or assist in the diagnosis of aMCI would allow subjects and doctors to better 

evaluate what steps may be necessary to protect their brain’s health.  

Our first focus, the sensor level evaluation of EEG, revealed that our aMCI 

subjects have stark differences in their scalp activation topographies as well as in their 

power spectrum density plots. Their differences were most significant in the delta and 

theta frequency bands, where unhealthy subjects had significantly reduced activations. 

These band activations, associated with sleep and memory respectively, suggest that the 

disease affects both memory and sleep quality. Whether or not the sleep quality is the 

driving factor for the memory issues, however, remains to be explored.  

Analysis of the source level results first began with a focus on analysis of 

development of sleep stages between different levels of degradation into aMCI. 

However, as these results developed further and further, promising results were instead 

found strictly in the awake-resting state. There, I found statistically significant 

differences in the connectivities of the default mode network to the awake resting state 

between less impaired versus more impaired subject groups. The most interesting result, 

however, lies in the fact that our EEG source imaging results match very closely with 
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results gathered using fMRI. This development suggests that source imaging has some 

of the same network identifying capabilities as fMRI. 

In conclusion, this proof-of-concept study has proven that EEG may have the 

potential to be used in place of fMRI for the evaluation of brain activations associated 

with aMCI and its degradation levels. This development could pave the way for 

cheaper, more accessible neuroimaging for subjects with aMCI. 
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[Chapter 5: Products of This Work] 

 In addition to the work conducted as outlined in this thesis, I also prepared 

abstracts, papers, and presentations to present my work to the academic community. 

These products include: 

 Journal manuscript in preparation 

o O’Keeffe J, Carlson BW, De Stefano L, Wenger MJ, Craft MA, Hershey 

LA, Hughes J, Wu D, Ding L, Yuan H: Alterations in default mode 

network in amnestic mild cognitive impairment: an 

electroencephalogram study. To be submitted to Journal of Neural 

Engineering. 

 Published Proceedings 

o O’Keeffe J, Carlson BW, De Stefano L, Wenger MJ, Craft MA, Hershey 

LA, Hughes J, Wu D, Ding L, Yuan H: EEG fluctuations of wake and 

sleep in mild cognitive impairment. 39th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 

Jeju Island, Korea, 2017. [oral presentation]  

o Chen Y, Farrand J, Tang J, Chen Y, O'Keeffe J, Shou G, Ding L, Yuan 

H*: Relationship between Amplitude of Resting-State fNIRS Global 

Signal and EEG Vigilance Measures. 39th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 

Jeju Island, Korea, 2017. [poster] 
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 Published Abstracts 

o O’Keeffe J, Carlson BW, De Stefano L, Wenger MJ, Craft MA, Hershey 

LA, Hughes J, Wu D, Ding L, Yuan H*: EEG fluctuations of 

wakefulness and sleep in mild cognitive impairment. 23rd Annual 

Meeting of the Organization for Human Brain Mapping, Vancouver, 

Canada, 2017. [poster] 

o Chen Y, Farrand J, Tang J, Chen Y, O'Keeffe J, Shou G, Ding L, Yuan 

H: Amplitude of resting-state fNIRS global signal is related to EEG 

vigilance measures. 8th International IEEE EMBS Neural Engineering 

Conference, Shang Hai, China, 2017. [poster] 

o Farrand J, Chen Y, Tang J, Chen Y, O’Keeffe J, Shou G, Ding L, Yuan 

H: Multimodal imaging of human brain auditory responses using 

simultaneous EEG and fNIRS. 1st OU-OUHSC Biomedical Engineering 

Symposium, Oklahoma City, OK, 2017. [poster] 
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