
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

FLAVOR CHANGING NEUTRAL CURRENTS IN A

GENERAL TWO HIGGS DOUBLET MODEL:

USING AN EXTENDED HIGGS SECTOR TO SEARCH FOR NEW PHYSICS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

PHILLIP BRENTON MCCOY
Norman, Oklahoma

2017



FLAVOR CHANGING NEUTRAL CURRENTS IN A
GENERAL TWO HIGGS DOUBLET MODEL:

USING AN EXTENDED HIGGS SECTOR TO SEARCH FOR NEW PHYSICS

A DISSERTATION APPROVED FOR THE
HOMER L. DODGE DEPARTMENT OF PHYSICS AND ASTRONOMY

BY

Dr. Chung Kao, Chair

Dr. Keri Kornelson

Dr. Howard Baer

Dr. Ronald Kantowski

Dr. Ian Sellers



© Copyright PHILLIP BRENTON MCCOY 2017
All Rights Reserved.



Acknowledgements

From the first time someone looked at the material world and asked, “I think

there is something in there, something smaller, more fundamental” to the intricate

and challenging work being done now with concepts and objects that cannot even

be seen with the most powerful optics, the field has evolved and changed. And I

am so very grateful to have been a part of that evolution.

I am also very fortunate to have been a part of this wonderful family here at

OU. Their support has gone above and beyond anything anticipated or even hoped

for by someone embarking on this life changing journey. I would like to especially

like to thank Prof. Chung Kao, my advisor, who saw this confused but curious

undergrad one summer about to enter into the crazy and sometimes stressful life of

grad school and took him under his wing and helped mold him into the physicist,

teacher, and person I am today.

I would also like to thank all of my committee members, Prof. Ron Kantowski,

Prof. Howie Baer, Prof. Ian Sellers, Dean Keri Kornelson, and James Hawthorne

for their support and interest in what I was researching. Their patience and

expertise while trying to get everything finished up and frustratingly helpful

leading questions to help me better understand the majesty behind some of the

work I was doing. I am very fortunate to have been able to work with each and

every one of them.

My experiences here and the people I met and interacted with encompass an

entire experience that goes far beyond research and is something I think is unique

within our department. I would like to first thank all of the physics graduate

students past and present for not only their direct interactions with me but also

for all they have done to make this department into the family community it is.

Each one of us leaves a legacy in the form of research but also in the form of how

iv



we shape the department, the classes we teach, and the overall community of the

university.

For me, personally, I would also like to single out Baris Altunkaynak, Mike

Savoy, Dylan Frizell, Hasan Serce, Hasib Ahmed, Scarlet Norberg, Othmane Rifki,

Ben Pearson, David and Callie Bertsche, and Dan Mickelson. In addition to the

broader physics community these individuals make up most of my core High Energy

family and could always be counted on for helpful discussions of particle physics.

High energy physicists are a unique bunch and there are some symmetries that

get broken once you leave our local bit of phase space that don’t quite translate to

the other fields. I also want to sincerely think my newest brother, Rishabh Jain,

for not only his helpful discussions and afternoon coffee breaks but for also being

such an important, vibrant, and intelligent member of our research group. If I am

to leave this work in anyone’s hands I am definitely happy to leave them with you.

Outside of high energy physics is a long, long list of people who have been there

for me but I would like to especially mention Shayne Cairns, Rhiannon Griffin,

Jeremy Lusk, Sean Krzyzewski, Sara Barber, Tom Akin, Tim Miller, Jenna Nugent

Miller, Brian Friesen, Maren Padeffke-Kirkland, and Stephane Valladier. All of

you helped me get started, get through my first two years of grad school, and then

countless times for countless other things during my entire time here. Together we

built G-PSI and helped strengthen this department and each other and I am so

glad to have worked with all of you.

As for these new young whippersnappers, I’m from Tennessee so I can use that

term, who are picking up the mantle we left behind and carrying it forward on

their own journey towards enlightenment, publications, and prestige. I want to

thank you all for your friendship, support, and belief in me and this department.

To Alex, Malia, Renae, James, Tim, Evan, Kyra, Andrew, Joseph, Soumya, Javad,

Delaram, Brian, and Lisa, I wish you all the best of luck going forward both within

v



the department and in your future careers. I am proud to call you all friends and

colleagues and look forward to where you take the department now that all of us

old folks are gone. We leave it in your very capable hands.

Even before I was a grad student, or even a physicist (though that is debatable),

I had the love and support of my wonderful family and friends. Their love,

encouragement, and support for what I wanted to study even if they had no idea

what it was made all of this possible. You all encouraged me from day one to

pursue whatever made me happy, even if that was cringe worthy at times, and gave

me the role models and examples I needed to succeed. My mom and grandmother

were always there to lend an ear whenever I had a student to complain about, and

my dad when I was fighting with my computer over some piece of code or another,

my aunt and step-dad whenever I needed encouragement for where this would lead

and what life looks like once you are out of school, and my brother who not only

supported what I was doing but picked up the slack with the rest of the family

when I was busy working. To Michelle and her family, thank you for your help

and support as I was starting out and always being willing to hear about the crazy

physics I was studying out here, I wouldn’t have made it through those first few

years without you. And to Lauren and her family who welcomed me with open

arms and shared my attention with graduate school and never made me feel bad

for always being busy. I look forward to being able to spend more time with you

all now that I embark on this new chapter of my life.

Graduate school, as I have learned, is more than just the research. Its also

about building you up as a person, helping mold and shape the way you think and

what you do. I have met so many amazing people here and had so many amazing

experiences that would have been impossible to have anywhere else. To the office

staff at OU who helps keep all of that in motion, thank you so very much. This

place really would fall apart without you. And to the faculty who help make the

vi



department the powerhouse of research and education it is, thank you for your

investments in us and the work you do every day to make it a place where we

can learn and grow. You all will forever be one of our the department’s and the

university’s greatest assets.

There are even more people to thank than I could have mentioned here.

Quantum mechanics taught us long ago that our state is influenced by each and

every interaction we experience, positive and negative, and I can attest to the

truth of that even macroscopically. I am who I am today in no small part because

of the work I did at OU and the people I met and I will always remember that.

“The strongest bonds come from families – those
we are born into and those we choose.”

— Jeff Wheeler, Poisonwell
(Whispers from Mirrowen, #3)

vii



Table of Contents

1 The Standard Model 1
1.1 Composition and group structure . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Group structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Need for new physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 The Two Higgs Doublet Model (2HDM) . . . . . . . . . . . . . . . . . 15

1.4.1 Flavor changing neutral currents . . . . . . . . . . . . . . . . . 18

2 Analytic Higgs Production 20
2.1 Higgs production modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Dominant processes . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Sub-dominant processes . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Effective theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Loop diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Analytic solutions: a ‘simple’ alternative . . . . . . . . . . . . . . . . . . 25
2.4 Translating physics into code . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Code development and computational efficiency . . . . . . . . . . 28
2.4.2 Consistency check . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Theory versus phenomenology . . . . . . . . . . . . . . . . . . . 29

3 Top, Charm, and Higgs, an Uncommon Trio 33
3.1 What’s in a name? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Flavor changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Heavy Higgs interactions at the LHC . . . . . . . . . . . . . . . . 34

3.2 Strangers in a strange land . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Good news and bad news . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Tools of the trade . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Rules of the realm . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Proclamations and predictions . . . . . . . . . . . . . . . . . . . . . . . 45

4 When the Higgs Meets the Tau and the Muon 48
4.1 Leptonic FCNC processes . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Interplay between the φ→ tc and φ→ τµ . . . . . . . . . . . . . . . . . 51
4.3 Decaying the τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 SM physics background . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Hadronic τ backgrounds . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Leptonic τ backgrounds . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 φ→ XX backgrounds . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1 Reconstructing the Higgs . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Importance of transverse mass . . . . . . . . . . . . . . . . . . . 61
4.5.3 Asymmetric selection rules . . . . . . . . . . . . . . . . . . . . . 63

4.6 Results and predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



5 Conclusion: A Look Beyond the Standard Model 73

REFERENCES 75

Important Programs 78

Additional Data 81

ix



List of Tables

3.1 We require exactly 1 lepton to meet the pT (`) cut above and exactly 1
b-tagged jet and 1 non b-tagged jet to meet the pT (j) cut listed. The
charm momentum for the signal, pc, and background is found according to 40

4.1 This table shows the SM Higgs width, Γh calculated from 2HDMC, as a
function of ρτµ with cos(β−α) = 0.1 and ρtc = 0.1. The ghτµ terms show
the coupling to the Higgs field, accounting for all other coefficients, as
shown in Equation (4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 This table shows the hadronic background cross sections for the φ→ τµ
signal with MH = 125.1 GeV. Here we have already applied our selection
rules for the signal that will be further discusses in Section 4.5. . . . . . 56

4.3 This table shows the leptonic background cross sections for the φ→ τµ
signal with MH = 125.1 GeV. Here we have already applied our selection
rules for the signal that will be further discusses in Section 4.5. . . . . . 58

4.4 This table shows Higgs mediated background cross sections for the φ→ τµ
signal with MH = 125.1 GeV. Here we have already applied our selection
rules for the signal that will be further discusses in Section 4.5. . . . . . 59

4.5 This table summarizes the cuts applied to the final state particles under
the conditions were the tau decays hadronically and is tagged as a jet and
when it decays leptonically into an electron. The η cut depicted above is
not asymmetric due to the nature of the decay but is chosen to match
the trigger efficiency of CMS. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Cross section data calculated for h0/H0 → τµ→ µe+ /ET +X for
√
s = 8

TeV. In all cases the full suite of selection rules have been applied and
the total width of each Higgs resonance is reported as calculated using
2HDMC with ρtc = cos(β − α) = 0.1 and ρτµ as indicated. . . . . . . . . 66

4.7 Cross section data calculated for h0/H0 → τµ→ µe+ /ET +X for
√
s = 13

TeV. In all cases the full suite of selection rules have been applied and
the total width of each Higgs resonance is reported as calculated using
2HDMC with ρtc = cos(β − α) = 0.1 and ρτµ as indicated. . . . . . . . . 67

4.8 Cross section data calculated for h0/H0 → τµ→ µe+ /ET +X for
√
s = 14

TeV. In all cases the full suite of selection rules have been applied and
the total width of each Higgs resonance is reported as calculated using
2HDMC with ρtc = cos(β − α) = 0.1 and ρτµ as indicated. . . . . . . . . 68

4.9 Cross section data calculated for h0/H0 → τµ→ µjτ + /ET +X for
√
s = 8

TeV. In all cases the full suite of selection rules have been applied and
the total width of each Higgs resonance is reported as calculated using
2HDMC with ρtc = cos(β − α) = 0.1 and ρτµ as indicated. . . . . . . . . 69

4.10 Cross section data calculated for h0/H0 → τµ→ µjτ+ /ET+X for
√
s = 13

TeV. In all cases the full suite of selection rules have been applied and
the total width of each Higgs resonance is reported as calculated using
2HDMC with ρtc = cos(β − α) = 0.1 and ρτµ as indicated. . . . . . . . . 70

x



4.11 Cross section data calculated for h0/H0 → τµ→ µjτ+ /ET+X for
√
s = 14

TeV. In all cases the full suite of selection rules have been applied and
the total width of each Higgs resonance is reported as calculated using
2HDMC with ρtc = cos(β − α) = 0.1 and ρτµ as indicated. . . . . . . . . 71

1 K-factors calculated from higlu for the production of the light, heavy, and
pseudoscalar Higgs bosons through glun-gluon fusion via a heavy quark
loop (top and bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2
√
s = 8 TeV Leptonic Decay with ρtc = 0.50 . . . . . . . . . . . . . . . . 82

3
√
s = 13 TeV Leptonic Decay with ρtc = 0.50 . . . . . . . . . . . . . . . 83

4
√
s = 14 TeV Leptonic Decay with ρtc = 0.50 . . . . . . . . . . . . . . . 84

5
√
s = 8 TeV Hadronic Decay with ρtc = 0.50 . . . . . . . . . . . . . . . . 85

6
√
s = 13 TeV Hadronic Decay with ρtc = 0.50 . . . . . . . . . . . . . . . 86

7
√
s = 14 TeV Hadronic Decay with ρtc = 0.50 . . . . . . . . . . . . . . . 87

8
√
s = 8 TeV Leptonic Decay with ρtc = 2.501× 10−3 . . . . . . . . . . . 88

9
√
s = 13 TeV Leptonic Decay with ρtc = 2.501× 10−3 . . . . . . . . . . 89

10
√
s = 14 TeV Leptonic Decay with ρtc = 2.501× 10−3 . . . . . . . . . . 90

11
√
s = 8 TeV Hadronic Decay with ρtc = 1.759× 10−3 . . . . . . . . . . . 91

12
√
s = 13 TeV Hadronic Decay with ρtc = 2.501× 10−3 . . . . . . . . . . 92

13
√
s = 14 TeV Hadronic Decay with ρtc = 2.501× 10−3 . . . . . . . . . . 93

xi



List of Figures

1.1 This is a graphical representation of the real part of the complex Higgs
portneital, Equation (1.13) . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 This is a graphical representation of the complex Higgs potential, Equa-
tion (1.13), potential. The dark ring in the crease denotes the possible
values that minimize the Higgs potential . . . . . . . . . . . . . . . . . . 10

2.1 Feynman diagrams for the gluon-gluon fusion process showing the loop-
level and tree-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Feynman diagrams for the sub-dominant quark quark and quark anti-
quark Higgs production modes. . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Feynman diagram for the gluon-gluon fusion production mode of the
Higgs. Here the designations . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Feynman diagram for the φ0 → tc process where we define φ0 = h0, H0, A0 35
3.2 Feynman diagram for the h0 → tc loop process thath allows for FCNCs

in the SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Branching fractions of (a) the heavier Higgs scalar, H0 and (b) the Higgs

pseudoscalar, A0 as a function of Higgs mass, mφ, with cos(β − α) = 0.1,
ρ̃tc = 0.24, and ρii = κi for the diagonal couplings . . . . . . . . . . . . . 42

3.4 The cross section of the heavy Higgs scalar, H0 (solid, black) for σ(pp→
H0 → tc̄+ ct̄→ bjc`ν +X) at the LHC as a function of mass, mH . . . 44

3.5 Discovery potential for a 5σ significance in the mφ − ρ̃tc plane for the
σ(pp→ H0 → tc̄+ ct̄→ bjc`ν+X) signal at LHC center of mass energies,√
s = 13 (14) TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 This figure shows the branching ratios of (a) the heavy Higgs scalar, H0,
for a range of Higgs masses . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Here the SM background for the hadronic decay process at
√
s = 13 TeV

is shown as it compares to the signal cross section . . . . . . . . . . . . 57
4.3 Here the SM background for the leptonic decay process at

√
s = 13 TeV

is shown as it compares to the signal cross section . . . . . . . . . . . . 58
4.4 This plot shows the reconstructed τµ resonance for our signal and the

leptonic WW background. Here it can be seen that the Higgs signal has
a sharp peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 This plot shows the transverse mass of the µ + /ET and e + /ET for our
signal and the leptonic WW background. Here it can be seen that the
WW has symmetric final state partiles whle the signal is more asymmetric 62

4.6 Here the pT for the τ and µ are plotted before any selection cuts are
applied. This signature is similar to what is seen in many of the background
distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



Abstract

In this dissertation I present studies of flavor-changing neutral Higgs interactions

in a general Two Higgs Doublet Model. I focus on the analytic calculation of

φ0 → tc and φ0 → τµ where φ0 = h0, H0, A0. In the case of the tc state we look

at production from heavy Higgs states, H0 and A0, associated production with a

top from charmed initial states, and associated production of a Higgs with a charm

from a tt̄ intermediate state. In the τµ channel we only consider τµ production

from the light, or Standard Model-like, Higgs boson, h0, and the heavy Higgs

states. In all cases I present calculated discovery potentials for finding these rare,

beyond Standard Model decays at the Large Hadron Collider for the 13 TeV and

14 TeV data sets with integrated luminosities of 30, 300, and 3000 fb−1.
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Chapter 1

The Standard Model

“If I have seen further, it is by standing on ye
shoulders of giants.”

— Sir Isaac Newton, Letter from Sir Isaac
Newton to Robert Hooke

The Standard Model (SM) of particle physics is one of the most successful and

precise theories in physics to date. It contains the culmination of our knowledge

involving the fundamental constituents of matter and how they interact with one

another. It also provides a framework on which we can analyze experimental

data and make predictions for what happens when these particles collide at

ultrarelativistic speeds. Experiments to probe these limits and energy scales exist

around the globe as a collaborative effort involving several countries and thousands

of scientists and universities. One of the most notable of these collaborations

being the Conseil Européen pour la Recherche Nucléaire, (CERN) b. Here the

largest particle collider ever built, the Large Hadron Collider (LHC), is operated

by researchers across the world in several collaborations such as, ATLAS, CMS,

Alice, and LHCb to name but a few. It is the LHC and specifically the ATLAS

and CMS collaborations that form the focus and impetus of this dissertation. Let

us begin our journey with the formation and structure of the lauded SM and why

it is we know there is more yet to discover about the fundamentals of nature.

bAbout CERN http://home.cern/about
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1.1 Composition and group structure

We begin our dicussion of the SM with a look at its structure and makeup. As

mentioned, the SM is not only a collection of the fundamental particles but also

describes how those particles interact. To aid with our terminology it is best to

start with what are the fundamental particles of nature and later I will address

the interactions that are significant to this work in particular.

1.1.1 Composition

Matter, as we observe and interact with on a regular basis, is made up predom-

inately of protons, neutrons, and electrons. Along with these main components,

we observe and measure matter, in many cases, through the use of light, elec-

tromagnetic waves that interact with matter as packets or “quanta” of energy

that we call photons. As it turns out, electrons and photons are the first of

our fundamental particles. Protons and neutrons, however, have an underlying

structure that containing particles classified as fermions and bosons.

Fermions

Fermions are particles that have 1/2 integer spin, with the exception of neutrinos,

carry electric charge. They are further subdivided into two categories called leptons

and quarks. The electron, e, that we mentioned before is the first lepton in our

picture of nature and has two other compatriots known as the muon, µ, and tau,

τ . Each of these leptons has integer charge ±e and has a corresponding neutral

partner called the neutrino: νe, νµ, ντ , that have almost no measureable mass.

Without much mass and with no electric charge they interact with only a limited

number of other particles, which makes them especially difficult to detect. Each

pair of lepton and corresponding neutrino form generations and are often organized

2



in doublets,

νe
e

 ,

νµ
µ

 ,

ντ
τ

 . (1.1)

Quarks are the other fermionic particles in the SM and are likewise split up

into three generations and organized into doublets, Equation (1.2). Unlike the

leptons, quarks have fractional charge and also have a quantum number known

as color charge. The ‘up-type’ quarks: up, charm, and top, have a charge of 2/3e

and the ‘down-type’ quarks; down, strange, and bottom; have a charge of − 1/3e.

Of these six quarks, it is the up and down quarks that contribute the most to

the behavior of the protons and neutrons and are referred to as ‘valence’ quarks.

Specifically, the proton has two up quarks and one down quark as its valence

quarks and the neutron has one up quark and two down quarks as its valence

quarks. The term valence in this respect simply means that of the quarks one

might find in a proton or neutron the valence quarks contain the largest fraction

of the proton’s or neutron’s energy. The distribution of the quarks and gluons as

functions of the energy fraction they carry from the parent proton or neutron is

called, the parton distribution function (PDF) [1, 2].

u
d

 ,

c
s

 ,

t
b

 . (1.2)

Bosons

In addition to fermions, which follow Fermi-Dirac statistics and have half-

integer spin we also have particles with integer spin that follow Bose-Einstein

statistics and are thus called bosons. Their ranks include the gluons, W and Z

bosons, the photon, and the Higgs boson. All except for the Higgs are considered
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gauge bosons and mediate one of the fundamental forces of nature: the strong

force, the weak force, and the electromagnetic force.

The W and Z bosons; W+, W−, Z; mediate the weak force and interact

with any particle that has weak hypercharge and are observed mostly in neutrino

scattering and nuclear interactions such as interchange between protons an neutrons.

The gluons, gµa , mediate the strong force and interact with any particle that has

color charge. In the SM this means that quarks are the only particles that couple

directly to the gluons. The strong force is predominately realized as the force

that holds the nucleons together by binding the quarks in the nucleons, protons

and neutrons, together. This leads to a phenomenon known as quark confinement

where at low energies we do not see any quarks that are not bound inside of some

composite object. The last gauge boson that exists in the SM is the photon, γ,

which mediates the well known electromagnetic force and interacts directly with

any particles that have electric charge. Gravity remains the only fundamental

force that the SM does not incorporate.

1.1.2 Group structure

The particles that make up the SM are resonances of fields that are described

within a set of mathematics known as group theory. Each group contains in-

formation about the particle fields and information on how particle states are

created, destroyed, and evolve in space and time. In the SM the group structure is

SU(3)c ⊗ SU(2)L ⊗ U(1)Y . The order of each group can tell us how many unique

generators, and thus bosons, the group contains. For example, SU(3)c is third

order and so contains 32 − 1 = 8 unique generators giving us eight gluons, Gµ
a .

Following that example, SU(2)L has three unique generators giving us the three

W bosons, W µ
1 , W

µ
2 , and W µ

3 . This leaves U(1)Y which has only one generator

4



that gives rise to the Bµ boson. When we bring these fields together with the

other elementary particles we can construct the SM Lagrangian density in its most

concise form:

L =− 1

4

[
BµνBµν +W iµν ·Wiµν +Gµν

a Gaµν

]
+ ψ (iγµDµ −m)ψ + ψj

(
iγµD

′µ
jk −Mjδjk

)
ψk

+ (DµΦ)† (DµΦ)−
∑
f

λf

(
ψLΦψR + ψRΦ̃ψL

)
− V (Φ) ,

i = 1, 2, 3 and a = 1, 2, . . . , 8. (1.3)

We can expand this further with the following definitions:

Dµ = ∂µ + ig′
Y

2
Bµ + igtiW i

µ , (1.4)

D′µjk = δjk∂
µ + ig3(Ta)jkG

µ
a , (1.5)

ψψ = ψLψR + ψRψL , (1.6)

where

ψL,R =
1

2
(1∓ γ5) . (1.7)

In the above definitions, we also need to take special care with the scalar field, Φ,

which is the Higgs field. It is important to distinguish that,

Φ =

φ+

φ0

 and Φ̃ = SΦ =

 φ0∗

−φ−

 , (1.8)

where

S = iσ2 =

 0 +1

−1 0

 . (1.9)
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All of the rank two tensors above represent the gauge boson field strength, the ψ

terms represent the fermion fields, the γµ term is the Dirac matrices associated

with the fermions, the m and M terms represent mass matrices for the fermions,

and Φ is the Higgs field. The coupling between the fermions and Higgs fields is

referred to as the Yukawa portion of the Lagrangian. Here the λf terms show

the couplings between the Higgs field and the fermions. For leptons λf define the

entire coupling, for the quarks, however, they include an additional color tensor,

Gab, F ab:

up-type quarks: λu ≡ F ab , (1.10)

down-type quarks: λd ≡ Gab . (1.11)

As mentioned before, the total group structure of the SM is SU(3)c⊗SU(2)L⊗

U(1)Y , where Dµ, Equation (1.4), is the electroweak covariant derivative and D′µjk,

Equation (1.5). Together these two terms handle all couplings between the gauge

bosons and the other fields of the SM. If you look once more at Equation (1.3),

you will notice that the Higgs field is only operated on by the electroweak covariant

derivative and is not part of the SU(3)c group structure despite the presence of

color matrices in the Yukawa terms. This situation brings about some interesting

possibilities, namely in regard to the Higgs Mechanism and the breaking of the

electroweak symmetry.

When we combine SU(2)L with U(1)Y we get SU(2)L ⊗ U(1)Y which is the

group structure of electroweak theory. When the electroweak symmetry is broken,

the W µ
1 and W µ

2 to mix and W µ
3 and Bµ mix to generate the physical bosons,
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W±, Z and A (photon), Equation (1.12a),

Zµ

Aµ

 =

cos θW − sin θW

sin θW cos θW


W µ

3

Bµ

 , (1.12a)

W+

W−

 =
1√
2

1 −i

i 1


W µ

1

W µ
2

 . (1.12b)

This formulation can technically exist independent of the electroweak symmetry

breaking (EWSB) but is not particularly motivated by anything physical. When

EWSB occurs spontaneously, however, the W and Z bosons can acquire a mass

while the photon, Aµ, remains massless. The breakdown and mixing of the fields

then has meaning as the bosons are now distinguishable from one another.

1.2 The Higgs mechanism

The Higgs mechanism is a process by which the SU(2)L ⊗ U(1)Y symmetry is

broken by the vacuum expectation value of the Higgs Field, and by which particles

acquire mass without having to break the overall symmetry of the Lagrangian.

When the electroweak, SU(2)L ⊗ U(1)Y , symmetry is broken the Higgs potential

acquires a vacuum expectation value (VEV) that is unique and causes the couplings

between the fundamental particles and the Higgs boson to be proportional to the

particle’s mass. This effect is a consequence of minimizing the Higgs potential,

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
. (1.13)
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When the above potential is minimized according to standard calculus techniques

we have:

∂V (Φ)

∂|Φ|
= 2µ2|Φ|+ 4λ|Φ|3 = 0 (1.14)

which produces two options for the minimum value of Φ

|Φ| = ±
(
−µ2

2λ

)1/2

. (1.15)

At this point we seemingly have ‘two’ choices for the minimum of the Higgs

potential, call them ±V0. Without losing generality, we can shift the potential

with a constant as expected but it does nothing to offset the minima as shown

in Figure 1.1. However, if the Higgs field were to make a choice, say choose +V0

or −V0, then the minimum would take on a defined value and now 〈0|Φ|0〉 6= 0

but takes on an expectation value, called v or the VEV. Generally, a break in

a symmetry for a particular field would disrupt the overall symmetry of the

Lagrangian but in the case of scalar particles that is not true. More specifically,

L(Φ) = L(−Φ) but V (V0) 6= V (−V0).
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V0-V0

-1.0 -0.5 0.0 0.5 1.0

Φ

R
e[

V
(Φ
)]

Real Higgs Potential for arbitrary μ and λ

Figure 1.1: This is a graphical representation of the real part of the complex
Higgs potential, Equation (1.13), also known as the ‘Mexican Hat Potential’. ±V0

indicate the values of the Higgs minimum possible. When electroweak symmetry
is broken, the Higgs field preferentially chooses the +V0 minimum.

This is a simplistic picture but instructive in how well it represents the di-

chotomy of the minimum of the Higgs potential. Realistically, since this is based

on a complex field, this is a bit more complicated. What is depicted above, then,

is the real part of the Higgs potential. Figure 1.2 shows a truer picture of how

the minimum looks and looks slightly more emblematic of the moniker “ mexican

Hat potential,” but the results describe are fundamentally no different, if not a

bit more striking now. Instead of two choices of minimum value, there are an

infinite number of choices creating a circle in the complex plane, however, we often

choose a real, positive minimum, +V0 from Figure 1.1, instead of a real, negative

or complex value.
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Figure 1.2: This is a graphical representation of the complex Higgs potential,
Equation (1.13), potential. The dark ring in the crease denotes the possible
values that minimize the Higgs potential. The ±V0 shown in Figure 1.1, occur as
Im (Φ)→ 0.

Once the Higgs field obtains a VEV, its effects on the rest of the particles in the

Lagrangian start to become apparent. We can now represent Φ more completely:

Φ =
1√
2

 √2G+

φ0 + iG0

 , (1.16a)

where

φ0 =
1√
2

(H + v) . (1.16b)

Here, H or h0 as it is also referred to, is the physical Higgs boson, the discovery

of which was announced on July 4, 2012, [3, 4]. After the Higgs VEV is obtained,

the W , Z, and fermions all become massive while preserving the symmetry of the

Lagrangian. The G terms in the Higgs field above are Goldstone bosons. They

are consumed by the electroweak gauge fields and give them mass. In the leptonic
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sector we must work with a new representation of the Yukawa terms,

LY = −λe ELΦ eR − λe eRΦ† EL − F ab Q
a

LΦ dbR −Gab Q
a

L Φ̃ ubR , (1.17)

where ψL,R have been changed to EL, eR, QL, and (d/u)R to denotes the left-

handed lepton doublet, right handed lepton singlet, left-handed quark doublet, and

the right-handed quark singlets respectively. The doublet fields are of the form,

EL =

ν`
e`

 , (1.18a)

QL =

uL
dL

 , (1.18b)

with eL,R and (u/d)L,R are generic lepton and quark fields that need to be summed

over. When we apply the form of the Higgs field from Equation (1.16b), we find

that not only do the neutrino fields not interact with the Higgs but we only get

pairs of uL, uR and dL, dR that survive. All cross terms vanish and we are left

with

LY = −λe e −L
(
H + v√

2

)
eR − λe e−R

(
H + v√

2

)
e−L

− F ab d
a

L

(
H + v√

2

)
d b
R −Gab u a

L

(
H + v√

2

)
ubR . (1.19)
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The terms that couple to the VEV then form the mass terms for the fermions,

−LY = e −L M̃` eR + d
a

L M̃ab
d dbR + u a

L M̃
ab
u ubR , (1.20)

where

M̃` =
λev√

2
M̃ab

d =
v√
2
F ab M̃ab

u =
v√
2
Gab . (1.21)

All that remains then is to diagonalize the mass matrices by applying bi-unitary

transformations to the lepton and quark fields,

e′L = LL eL u′ aL = Una
L u a

L d′ bL = Dmb
L d b

L , (1.22)

and

e′R = LR eR u′ aR = Una
R u a

R d′ bR = Dmb
R d b

R . (1.23)

When we diagonalize the mass matrices and sum over `, /a, /b, /m, and n the

eigenvalues fall out naturally and the matrices take on an easily decipherable form,

L†L M̃` LR = ML =


me 0 0

0 mµ 0

0 0 mτ

 , (1.24)

U † anL M̃nm
u Uma

R = MU =


mu 0 0

0 mc 0

0 0 mt

 , (1.25)

D† bnL M̃nm
d Dmb

R = MD =


md 0 0

0 ms 0

0 0 mb

 . (1.26)
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Feeding these results back into the Yukawa coupling we can finally see the effect

of the Higgs VEV on the fermion fields and how the particles ‘acquire’ mass. A

more correct statement would be that the strength of the coupling between the

particle and the Higgs field is proportional to the particle’s mass but it is in some

senses a ‘chicken or the egg’ situation due to how closely they are tied together,

m` =
v√
2
λ` where ` = e, µ, τ ; (1.27)

ma =
v√
2
λaa where a = u, c, t ; (1.28)

mb =
v√
2
λbb where b = d, s, b . (1.29)

We can then define the Yukawa couplings in terms of the particle mass and

see directly how strongly the Higgs field couples to each particle, λ` =
√

2
m`

v
,

λaa =
√

2
ma

v
, and λbb =

√
2
ma

v
. This rounds out the SM and how the picture of

interactions starts to come together but there are still several unanswered questions

that leads us to believe there is more than meets the eye, so to speak.

1.3 Need for new physics

The SM is the most well tested and precise theory to date with the original

formulation of Quantum Electrodynamics (QED) in 1948 [5–8], to the development

of gauge theories in 1954 [9], the prediction and later discovery of CP-violation

[10], the introduction of Quantum Chromodynamics (QCD) in 1973 [11], and

culminating with the discovery of the Higgs boson in 2012 at the LHC. Despite

all of its success, however, the SM does have some limitations. In some ways

it is similar to Newtonian mechanics, in the range of its validity and for select

topics, the SM expertly explains and predicts the physics of fundamental particle
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interactions. Just like Newtonian mechanics and relativity, at some point, nature

calls for a different approach to particle interactions that can offer a more complete

picture of what is going on.

For instance, If we include gravity in the SM, we generate large divergences at

high energy scales [12]. While we have observational evidence of dark matter, no

candidate for such a particle exists in the SM [13]. As mentioned previously, neutri-

nos do not appear in the Yukawa term of the Lagrangian but are observed to have

non-zero mass; but there is no mechanism for this in the SM [14]. Cosmologists and

astrophysicists have continually verified that there is a large asymmetry between

matter and anti-matter in our observable universe but there is no explanation

for this in the SM [15]. Furthermore, though we have discovered a SM-like Higgs

boson matching the predicted mass of 125 GeV, we do not well understand how

the nearly infinite corrections to the Higgs mass term are cancelled [16].

To address these concerns, theorists have proposed several extensions to, and

replacements for, the SM but so far none have been observed experimentally. Some

of the most notable of these theories are supersymmetry (SUSY) [17], multi-verse

theories [18], and string theories [19, 20]. Inside each of these broader areas of

study are several select models that contain different features or focus on answering

specific questions left open by the SM. In addition to full theoretical frameworks

that have been developed there are also highly focused areas where certain sectors

are emphasized and the implications of extending those sectors are worked out. In

the dark matter realm, for instance, the QCD sector is addressed where Peccei and

Quinn introduced a new particle known as the axion and a subsequent symmetry

to explain the lack of observed CP-violation in the gluon sector [21]. In a similar

fashion, much work has been done in extending the Higgs sector in what are called

Multi-Higgs Doublet Models (MHDMs) [10]. One of the most common of which is

a Two-Higgs Doublet Model (2HDM), [22].
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1.4 The Two Higgs Doublet Model (2HDM)

The extended Higgs sector models are of particular interest as they are also

required by all SUSY theories and can have implications for other searches being

conducted. As the Higgs boson is the most recently discovered particle, the sector

in which the Higgs field operates is one of the least experimentally constrained

areas in modern day particle physics. This is partly because of the high mass of

the SM Higgs boson but also because of the large QCD background associated

with the dominant decay modes of the Higgs [23]. In fact, the original discovery

channels were in the ZZ and γγ channels which collectively only make up about

2.6% of the total decay width of the SM Higgs, meaning ≈ 98% of the time the

Higgs will decay into something other than these two states. For these reasons it

was a logical place for a pioneering young graduate student to start their search for

evidence of new physics. Before we get to that, however, let us take a closer look

at how one goes about adding an additional doublet to an area of particle physics.

In the SM, there is a single Higgs field, Φ, which has the doublet representation

shown in Equation (1.16a). In a 2HDM we append this with an additional doublet

of a similar form, so in place of one scalar Higgs field we now have two, Φ1 and Φ2

[24],

Φa =

 φ+
a

(va + ρa + iηa)/
√

2

 , a = 1, 2 , (1.30)

where φ, ρ, and η are all boson fields. Technically, since the Higgs potential is now

dependent on two fields, each field can have its own VEV when the potential is
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minimized, [25],

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + H.c.
]

+
1

2
λ1(Φ†1Φ1)2 1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

{
1

2
λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + H.c.

}
. (1.31)

However, the two VEV’s are not unrelated and we can apply a rotation angle that

allows us to talk about one vacuum expectation value in terms of another following

the form v1

v2

 =

cos β − sin β

sin β cos β


v

0

 , (1.32)

which results in:

v1 = v cos(β) v2 = v sin(β)
v2

v1

= tan(β) . (1.33)

This transformation is then applied to the remaining fields and allows us to the

represent the two Higgs doublets in a more familiar form

Φ1 =
1√
2

 √
2 (G+ cos β −H+ sin β)

v cos β +H1 + i (G0 cos β − A0 sin β)

 , (1.34a)

Φ2 =
1√
2

 √
2 (G+ sin β +H+ cos β)

v sin β +H2 + i (G0 sin β − A0 cos β)

 , (1.34b)

where G+ and G0 are Goldstone bosons that get absorbed by the W and Z fields

as they did in the SM to gain mass. This leaves us now with four unique Higgs

fields: H1,2, A0, H+, and one conjugate field, H−, [26].

Separately, the two neutral scalar states, H1 and H2, can be represented in the
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physical basis through a similar transformation through another rotation angle, α,

called the Higgs mixing angle,

H1

H2

 =

cosα − sinα

sinα cosα


H0

h0

 . (1.35)

To see how this impacts the physics of interactions it is helpful to look at the mass

terms in the Yukawa Lagrangian for this new model,

LY =− ρ`1ELΦ1 eR − ρ`2ELΦ2 eR − ρD1 QLΦ1 dR − ρU2 QLΦ2 dR

− ρU1 QL Φ̃1 uR − ρU2 QL Φ̃2 uR , (1.36)

where ρU,D,` represent the up-type quark, down-type quark, and lepton coupling

matrices respectively. The new fermion masses take on a new form,

MF =
v√
2

(
ρF1 cos β + ρF2 sin β

)
, (1.37)

where F = {U,D, `}. We can then define a new coupling matrix, κF , based on

comparing the above mass terms with those in Equations (1.27) to (1.29),

κF ≡ ρF1 cos β + ρF2 sin β . (1.38)

In addition to this new coupling matrix, κF , we also end up creating an orthogonal

coupling matrix, ρF , that does not participate in the mass interactions

ρF ≡ −ρF1 sin β + ρF2 cos β . (1.39)
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Leading to a new Yukawa Lagrangian,

LY =− 1√
2

∑
F=U,D,L

F
[(
κF sβ−α + ρF cβ−α

)
h0 +

(
κF cβ−α − ρF sβ−α

)
H0
]
F

+
1√
2

∑
F=U,D,L

F
[
i sgn(QF )ρFA0

]
PRF

− U
(
V ρDPR − ρU†V PL

)
DH+ − ν

(
ρLPR

)
LH+ + H.c. , (1.40)

where cβ−α ≡ cos(β − α), sβ−α ≡ sin(β − α), and PL,R = (1∓ γ5)/2.

1.4.1 Flavor changing neutral currents

In the Lagrangian above, Equation (1.40), we take note that although the

ρF terms do not participate in the mass interactions of the fermions they do still

partially govern the coupling of fermions to our Higgs fields. Of particular interest

are the couplings involving these ρF matrices and the neutral Higgs fields: the

light Higgs, h0, the heavy Higgs, H0, and the pseudoscalar Higgs, A0. Since the ρF

matrices do not participate in the mass terms they can have off diagonal elements

that survive the diagonalization of the mass matrices. It is these off-diagonal

terms that produce the phenomenon known as flavor changing currents and since

they happen in relation to the neutral Higgs field they are flavor changing neutral

current (FCNC) processes. These are of particular interest as they are not possible

at the tree-level, or leading order level, in the SM and are further suppressed in

higher orders by the GIM mechanism involving cancellations between diagrams

involving up and charm quarks [27].

In many supersymmetric theories FCNCs are suppressed by imposing a sym-

metry on the Higgs sector where the two Higgs doublets couple preferentially to

either up-type quarks or down-type quarks but not both [26]. In those theories
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the suppression due to an additional symmetry is desired so that the lack of such

signatures in the SM can be better explained within the SUSY framework. In

general, however, this is not necessary as they can be controlled through the mixing

angles, β and α, instead. We call the limit where the 2HDM exactly reproduces

the SM, not unlike the low energy limit of relativity, the alignment limit and is

benchmarked by sin(β − α)→ 1. This effectively destroys any tree-level FCNC

process involving the light, or SM-like, Higgs field h0, while also removing any

effects the heavy Higgs field may have on fermion masses. Current data favors the

alignment limit [28, 29] meaning a heavy Higgs FCNC process is favorable but

there has been some evidence to suggest that FCNC processes may be present in

the leptonic sector [30]. These processes are the focus of this dissertation and the

beginning of our journey starts with how a Higgs boson with a mass of at least

125 GeV is produced in the energetic collision of two protons deep underground in

an area in northern France and southern Switzerland.
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Chapter 2

Analytic Higgs Production

“Tiny, but fierce.”

— Sanya, Changes, Jim Butcher

2.1 Higgs production modes

Higgs production at the LHC is generated predominately through either quark

anti-quark annihilation or gluon gluon fusion. Of course, the Higgs can couple to

any particle that has mass but any other modes will generate additional particles

that may be detected if they are of a high enough energy.

2.1.1 Dominant processes

The dominant processes used in our study of FCNH processes involved gluon

gluon fusion through a heavy quark loop, such as a top or bottom. Despite the

gluon fusion production being a higher order process, the abundance of gluons in

the proton help to enhance its Higgs production rate, Figures 2.1(a) and 2.1(b),

over the tree level qq̄ process, Figure 2.2(c).
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(a) Feynman diagram for the gluon-gluon fu-

sion production mode for the Higgs boson.

(b) Feynman diagram for the effec-

tive gluon-gluon fusion production

mode for the Higgs boson.

Figure 2.1: Feynman diagrams for the gluon-gluon fusion process showing the
loop-level and tree-level diagrams where time is moving from left to right in the
figures. Here the top and bottom contributions are listed as the couple most
strongly to the Higgs and will be your dominant loop particles.

2.1.2 Sub-dominant processes

The sub-dominant processes are generally disregarded in our calculations as

they introduce additional final state particles that we can exclude with careful

selection criteria. However, they are worth introducing as they help illustrate

the coupling behavior of this Higgs and why we must treat it so carefully. All of

the diagrams are t-channel diagrams where the Higgs is produced in association

with some number of jets, again, if we require, in our selection criteria, only jets

associated with the immediate Higgs decay we are interested in be present in our

final state we can effectively remove these additional contributions. They could be

included later if we wanted additional channels in which to study Higgs production

and decay but will introduce additional background processes that may be difficult

to reduce without ignoring too many signal events. Of these additional decays,

the most promising would be the qq̄ → H + jj decay mode as up quarks carry the

dominant fraction of the proton’s initial momentum after gluons. Here we signify
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two light quarks that are produced in association with the Higgs as jets, j.

(a) Feynman diagram for the t-channel pro-

duction of the Higgs from a quark and anti-

quark colliding.

(b) Feynman diagram for the t-channel pro-

duction of the Higgs from two quarks collid-

ing.

(c) Feynman diagram for the s-

channel production of the Higgs

from a cc̄ or a bb̄ in the initial col-

liding protons

Figure 2.2: Feynman diagrams for the sub-dominant quark quark and quark
anti-quark Higgs production modes. As before, time is moving to the right in the
figures. For the charm/bottom production modes we require the 5-flavor scheme
for the initial colliding protons.

2.2 Effective theories

Effective theories are a broad classification of techniques used to approximate

more complicated calculations or corrections. In the context of high energy physics,

effective theories most commonly refer to incorporating higher order corrections into

simple factors or, as is the case with this work, in reducing Loop-level calculations
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to an approximate tree-level calculation. The transition can be seen in Figure 2.1,

where Figure 2.1(a) shows the actual physical production process involving the

virtual fermion loop and Figure 2.1(b) shows the diagram for the effective theory

where we have condensed the loop into an approximate tree-level coupling.

2.2.1 Loop diagrams

Loop diagrams are present in many areas of particle physics as they allow for

couplings between particles that do not normally share any quantum numbers, and

thus violate one or many conservation laws, and account for corrections to physical

processes due to the perturbative nature of the theory. A loop is any process that

is entirely virtual where the particles inside the loop are not required to be on

the mass shell. Furthermore, loops are processes that happen instantaneously in

the context of the decay process. What this means in the context of performing

calculations, since ∆E∆t ≥ h̄/2 by quantum mechanics, if our time is taken to be

precisely known for the loop then we have no constraints on our energy.

Generally, loop diagrams are suppressed due to the presence of additional

vertices and couplings associated with those vertices, and the inclusion of the

propagators associated with each virtual particle. That suppression is outweighed

in the case of Higgs production by a couple of factors. Gluons, for instance, carry

a significant fraction of the proton’s momentum, more so than even the up quarks.

In addition to that, the bottom quark couples nearly four times as strongly as

the next heaviest particle and the top quark nearly forty times as strongly as

the bottom. These two factors combined allow the gluon-gluon fusion process to

dominate Higgs production at hadronic colliders, such as the LHC.
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Virtual particles

Virtual is a classification that refers to a particle or particle-like interaction that

does not happen in resonance with the mass shell of the particle. In the context

of the diagrams above, this is only seen in the fermion loop in the gluon gluon

fusion process. Internally, to construct the transition matrix element from a virtual

particle you have to apply the completeness relation from quantum mechanics and

integrate over the virtual particle’s momentum, which is unconstrained. Externally,

when unstable particles, like the top and Higgs, are in the final state their decay

products exhibit a well defined Breit-Wigner resonance at the mass value of the

parent allowing us to identify them. The decay products of virtual particles in

the final state, however, will produce an invariant mass peak not on the mass

shell and we may need to look at additional metrics to get a clear picture of the

interaction. A good example of this is in the H → ZZ∗ → 4` or beta decay of

a neutron into a proton. The mass difference between a neutron and a proton

is ≈ 1.3 MeV while the W boson that mediates this decay has a mass of ≈ 80

GeV. The neutron-proton interaction simply does not have enough energy to

produce a real W boson, however, the decay process itself must be mediated by

the electroweak interaction. So the W produced that subsequently generates an

electron and electron antineutrino is actually a virtual W , meaning it does not

exist at the mass shell. Mathematically this can be described by the equation

p2 6= M2
W , where p is the four momentum of the W [31].

Propagators and energy limits

Part of the challenge with virtual particles, especially in the context of a loop

as in the gluon fusion process, is evaluating the propagators with unknown limits.
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For a fermion the propagators is of the form,

∆(p) =
i

/p−m+ iε

=
i(/p+m)

p2 −m2 + iε
. (2.1)

With the uncertainty in the energy because of the instantaneous nature of the

loop we can have either very small or very large momenta in the denominator here.

Further complications arise when we have multiple of these terms appearing due to

our loop having three virtual fermion lines, each with their own propagator. Even

though these particles are virtual and their lifespan is nearly instantaneous we

still need the information about propagation in these terms to correctly evaluate

the physical decay. In low transverse momentum situations (low PT , we can

approximate this behavior but not in high PT cases like heavy Higgs production.

So to evaluate this process as correctly as possible we need to generate an analytic

solution, an analytic method for evaluating these loop processes [32].

2.3 Analytic solutions: a ‘simple’ alternative

The technical aspects of calculating analytic cross sections lie in the calculation

of the Transition Matrix Element, often referred to as M that has to be squared

in order to produce the well-defined phase probability that we know of as cross

section. This piece is where all of the physics from our theory takes place, it tells

us how we can go from some initial state to some final state and describes any

intermediate interactions and particles that facilitate this transition. In the case of

the fermion loop that supports the coupling of the Higgs to gluons, you encounter

the following trace as described in Figure 2.3 and Equation (2.2),
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Nµν = Tr
{

[/̀+ /k1 + /k2 +mq]γ
ν [/̀+ /k1 +mq]γ

µ[/̀+mq]
}
. (2.2)

Figure 2.3: Feynman diagram for the gluon-gluon fusion production mode of the
Higgs. Here the designations `, k1, k2 refer to the momentum allocation for the
fermion loop, initial state particles, and mq is the mass of the fermion, either a
top or bottom in this case.

Here, as discussed before in regard to the energy uncertainty, we have to

integrate over the unknown fermion momentum, `. Including the propagators

associated with each fermion line we have to then evaluate the integral,

T µν =∫
dN`

(2π)N
−2fNµν[

(`+ k1 + k2)2 −m2
q + iε

] [
(`+ k1)2 −m2

q + iε
] [
`2 −m2

q + iε
] , (2.3)

where we acquire a factor of 2 from being able to go clockwise or counterclockwise

around the loop and a −1 from the nature of the closed fermion loop and account

for the couplings and color factors in the f term. The N above denotes the

dimensionality of the integral which we leave as arbitrary initially, N = 4 + ε, and

then take the limit of our solution as ε→ 0. If we evaluate the trace, Equation (2.2),
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we then obtain tensors as suggested by [33],

C0 =

∫
dN`

(2π)N
1

D1D2D3

Cµ
1 =

∫
dN`

(2π)N
`µ

D1D2D3

(2.4)

Cµν
2 =

∫
dN`

(2π)N
`µ`ν

D1D2D3

D1 ≡
[
(`+ k1 + k2)2 −m2

q + iε
]
, D2 ≡

[
(`+ k1)2 −m2

q + iε
]
, D3 ≡

[
`2 −m2

q + iε
]
.

While C0 is a scalar integral and can be evaluated explicitly, C1 and C2 are not and

have to be to be reduced to scalar integrals through tensor reduction techniques.

After applying the tensor reduction techniques, C1 and C2 can be written in terms

of C0 and the overall loop part of the matrix element for the production mode can

be written as,

|T |2 = −4f 2
[
2 + (s− 4m2

q)C0

]
(2.5)

2.4 Translating physics into code

Obtaining an analytic solution is one step in finally calculating the cross

section and starting to look at what we can find out about these Flavor Changing

Neutral Currents. The next step is no less daunting and involves developing

computer calculations and code to generate these responses. Analyzing a signal

and developing discovery potential plots requires us to calculate the signal and

dominant physics background, and apply selection criteria to both to try and

minimize contamination. Ultimately this comes down to a numerical integration

technique with some dimensionality set by the complexity of the calculation. In
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our case, there is not much to be gained by using higher level languages such as

C++ and many of the libraries and programs we can use to help piece together

the information are written in Fortran so that is the chosen language for the main

code that we developed.

2.4.1 Code development and computational efficiency

The cross section code I developed with Baris Altunkaynak utilizes subroutines

and refined functions to correctly interpret the physics and develop the integrals

in such a way that we are always integrating under the limits of zero to one. In

addition to analytically calculating the transition matrix element we also develop

routines to calculate phase space for pair decays and calculate appropriate Jacobian

factors.

The development of this code interface has allowed for better portability between

systems which is ideal considering we utilize both our own personal hardware

and the OU Supercomputing Center for Education and Research for many of our

calculations. An additional advantage is the security of having one static ‘cut’ file

where we can easily apply the same analysis to the signal and background codes by

simply pointing it to the proper file to include. This improved my personal code

integrity and allowed me to easily check calculations against other group members

or software as described in the next section.

2.4.2 Consistency check

In order to check the accuracy of our calculations we compared results to

those obtained from MadGraph, version 5, for preliminary or basic results, such as

standard model Higgs production. We were able to achieve agreement within 1%

of what MadGraph predicted, which we viewed as a more than acceptable margin.
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MadGraph was then used to produce matrix elements for our background processes

and interfaced these with our cross section code for consistency. Doing so also

allows us to more easily control our selection criteria without having to rely on the

limited options and algorithms employed by MadGraph. Once code techniques are

verified and selection criteria are selected we can then move on to production and

produce the data presented in this dissertation [34]. For analysis purposes we rely

on programs such as Mathematica and ROOT to analyze and compare our signal

data to our background data. ROOT analysis allows us to perform more realistic

detector simulations but also requires us to use C++ language for calculation.

2.4.3 Theory versus phenomenology

In addition to high energy experiment and high energy theory there is a unique

branch or classification of researchers known as phenomenologists. Phenomenology

it a blend of the theoretical side of high energy physics and the experimental side

and this is the category in which our research group is classified. Traditional high

energy theory focuses mainly on the refining and development of new models to

try and explain the world around us. In many scenarios this involves research

that is more mathematically driven where you turn the knobs and dials of nature

and see what all you can make within the parameter space you are given. String

theory and some aspects of supersymmetry (SUSY) can fall into this category if

the research’s main focus is on model building.

Experimentalists on the other hand work directly with the data and often look

at several theories simultaneously to see which one fits and describes the data best.

Alongside theory, these two groups play a sort of cat and mouse style game where

sometimes theory leads the discovery and sometimes the data leads to new theories.

An example is the recent hint of a di-photon event excess at the LHC [35–38],
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which spawned hundreds of new papers on the theory side trying to explain what

might cause this excess. It turns out as more data was collected it was a statistical

anomaly and not a new discovery but it still sparked a lot of interest. Contrary to

that, discoveries of the top quark and Higgs boson were well heralded by theory

which helped to direct the experimental searches and analysis to look for those

particular signatures, [3, 4, 39].

Phenomenology is a unique approach where you play both roles as a theorist and

experimentalist. Occasionally phenomenologists will analyze data from the LHC

to support a study they are conducting. In our work we often try to implement

the selection strategies used by the CMS and ATLAS collaborations to adequately

model an experimental analysis. Instead of looking at data and trying to find the

physics or building and perfecting models that have yet to be tested, we directly

put models to the test in mock experimental settings so we can make predictions.

At times this requires us to do a little model building ourselves but at the end of

the day our goal is to still run simulations and try and look at the data like an

experimentalist so we can tell them where to put their focus or offer suggestions

on types of analyses they can conduct on their data to verify or disprove certain

models. This requires us to have knowledge of the detectors, how they operate, and

we need to be able to break down or expand the BSM theories and SM extensions

that we wish to test.

Many of the studies we perform involve the utilization of several programs,

many of which are modified to fit our needs, and developing our own framework

for calculation. We also adopt several analysis criteria and methodologies from

our experimentalist colleagues. One such criteria is the 5σ significance notion

where we do not treat something as a discovery unless it has the proper statistical

significance. Statistical significance, in this case, is determined by looking at how

far above the standard background the signal + background event data lies. If the
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signal ‘bump’ minus 2.5 times it’s uncertainty lies at the edge of, or outside, the

background plus 2.5 times its uncertainty, it is said to have a 5σ significance and

counts as a discovery. Mathematically this can be represented by the following:

σS ≥
n

L

[
n+ 2

√
LσB

]
(2.6)

or, in terms of number of events,

NSS =
NS√
NB

=
LσS√
LσB

≥ 5 . (2.7)

In Equation (2.6), σS, B is the cross section of the signal + background and

background only, respectively, and n is the scale parameter that selects how

many standard deviations we are away from each datum. So, if we want a 5σ

significance then we set n = 2.5 in to constitute a discovery. In Equation (2.7) ths

is translated to a more familiar measure of the number of signal and background

events, NS, B respectively. The conversion from cross section to number of events

is straightforward, N = σ × L where, again, σ is the cross section (probability)

and L is the integrated luminosity (amount of data collected).

Often times, as mentioned before, phenomenologists rely on experimental

results to inform the studies we undertake. For instance, the idea to look at

FCNCs as possible indicators of new physics beyond the SM was hinted by an

excess of h0 → τµ events reported by CMS during their Run 1 analysis [30]. If

these FCNC processes exist, they should be not only in the leptonic sector but

also in the hadronic sector as they are both fermions and couple to the Higgs field
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in similar ways. Since that interaction is directly proportional to mass,

LY = − λ√
2

∑
F=U,D,L

FLΦ0FR (2.8)

where

λ ∝ mF

v
, (2.9)

where v is the Higgs vacuum expectation value, experimentally 246 GeV [23],

then and FCNCs involving a Higgs interaction are likely to be seen most readily

in an interaction between the top, charm, and Higgs. Since the top has a mass

larger than that of the SM-like, light Higgs boson, h0 → tc is not kinematically

favorable. However, if we adopt a general 2HDM as discussed in Section 1.4,

then a heavy Higgs, H0, or pseudoscalar Higgs, A0, decaying into a top charm

pair is kinematically favorable for any masses more than twice mt, or about 350

GeV. Furthermore, in a general 2HDM the heavier Higgs states FCNC couplngs

are proportional to sin(β − α) while the SM FCNC coupling is proportional

to cos(β − α) and current experimental results favor sin(β − α) → 1. Our first

approach to these rare decays then is to investigate the heavy Higgs sector and see

if we can place constraints on the strength of the FCNC processes and make some

predictions for what the LHC might see from that sector at higher energies and

luminosities.
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Chapter 3

Top, Charm, and Higgs, an Uncommon Trio

“What’s in a name? That which we call a rose
by any other name would smell as sweet”

— Romeo Montague, Romeo and Juliet,
William Shakespeare

This chapter describes our first analysis of Flavor Changing Neutral Currents

and is summarized in our publication, [40]. This chapter will serve as a more

detailed analysis of this study, what it does, and why it is important. In regard

to the famous line from one of Shakespeare’s poems, scientists by and large have

a very different opinion in regard to names and what they mean and, moreover,

what they can tell you about an object. Turns our wizards and occult societies

have the same opinion but hopefully that doesn’t reflect poorly on us.

3.1 What’s in a name?

The title of the paper we put out summarizing this result was Flavor changing

heavy Higgs interactions at the LHC which tells certain readers quite a lot about

the project. Let us take a moment to unpack that name a bit and get into what

we’re really looking at.

3.1.1 Flavor changing

As described earlier, the fundamental particle that make up matter as we

know it involve quarks, leptons, and bosons. The quarks and leptons are divided

into three generations and each type of quark or lepton is referred to as a flavor.

Generally, when a neutral boson decays into two quarks it will decay into a
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quark/anti-quark pair, like the dominant decay mode of the Higgs, h0 → bb̄ [23].

In certain models like the 2HDM, however, we can get mixed decays from these

neutral particles, such as an interaction between a Higgs, a top, and a charm. For

a standard model Higgs, a Higgs with a mass of 125 GeV, the only possible way

for this interaction to occur is through a top decay, t→ ch0. If we relax the mass

condition on the Higgs and allow it to be heavier than 125 or even 173 GeV, then

H0 → tc̄ and H0 → ct̄ become possible. This is the heavy Higgs range.

3.1.2 Heavy Higgs interactions at the LHC

As mentioned above, heacy Higgs refers to Higgs bosons that have a mass larger

than that of the currently observed, Standard Model-like Higgs boson. If you recall,

when we added a second doublet to the Higgs sector then we actually generated

four additional Higgs bosons which we denoted: H0, A0, H±. The CP-Even

scalar, H0, we assume to be heavier than the one we have already discovered and

so designate it as the heavy Higgs. The CP-odd pseudo-scalar A0 is our other

neutral Higgs boson which we designate as the pseudo-scalar. In cases where

mH0 and mA0 > mt = 173 GeV, then the decays listed above, H0 / A0 → ct are

now possible. These are the decays that we choose to study.
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Figure 3.1: Feynman diagram for the φ0 → tc process where we define φ0 =
h0, H0, A0. We look at both the W → jj and the W → `ν final states to maximize
our signal strength.

3.2 Strangers in a strange land

Now, one might wonder, if a decay of t→ ch0 is possible, why haven’t we seen

it yet, and furthermore, what is hoped to be gained by this study. To answer the

first question we need to look at how particles couple in the SM. For starters, let

me remind you we are dealing with fields and as such all of the operators and

couplings that govern how these fields operate are tensors of some form or another.

As it happens, all of our experimental evidence so far supports the construction of

the yukawa couplings in the Higgs sector, in the sense that they are all diagonal.

The interaction Lagrangian for the Yukawa couplings is as follows,

LY = − 1√
2
Uκuh

0U , (3.1)
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where ψL,R refer to the fermion fields, h0 is the SM Higgs field, and the κu term is

defined as:

κu ≡


κuu 0 0

0 κcc 0

0 0 κtt

 . (3.2)

In this coupling matrix the terms along the diagonal are the same flavor couplings

and the off-diagonal elements describe the strength of the flavor mixing couplings.

Since they are all zero in the SM these couplings are forbidden at the tree level.

They can exist as loop processes, Figure 3.2, but those are higher order processes

and are less favorable in general as well as being further suppressed by the GIM

mechanism, [27].

Figure 3.2: Feynman diagram for the h0 → tc loop process that allows for FCNCs
in the SM. Not shown are the decay modes of the top in this diagram but they
would be the same as in the previous figure.

With this in mind, we can safely say that any signatures of a FCNC process

would indicate something beyond the SM. Furthermore, by looking at these

processes in the context of a general 2HDM we can gather information about how

an extended Higgs sector operates. This is specifically important as many of the

predominant beyond SM theories SM rely on such an extension, [17, 41]. The

advantage of a general treatment, however, is that we do not require some of the
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more restrictive assumptions in more complete models. While this does limit our

ability to analyze and predict other beyond the SM (BSM) properties and effects

it allows our findings to be more versatile and adaptable to the different models

we may want to look at.

When we adopt a general 2HDM we gain several key advantages. First, we can

now see FCNCs at the tree level as shown in Figure 3.1 due to the fact that we

now have a new Lagrangian that describes our interactions,

LY =− 1√
2

∑
F=U,D,L

F̄
[(
κF sβ−α + ρF cβ−α

)
h0 +

(
κF cβ−α − ρF sβ−α

)
H0
]
F

+
1√
2

∑
F=U,D,L

F̄
[
i sgn(QF )ρFA0

]
PRF (3.3)

− Ū
(
V ρDPR − ρU†V PL

)
DH+ − ν̄

(
ρLPR

)
LH+ + H.c. ,

where U, D, and L are the up-type quarks, down-type quarks, and leptons respec-

tively; cβ−α ≡ cos(β−α); and sβ−α ≡ sin(β−α). As can be seen in the Lagrangian

above, we have coupling terms to both h0, our SM-like Higgs, and the new Higgs

bosons, H0 and A0. In order for the experimentally verified SM to hold we need

this new Lagrangian to reproduce SM results while retaining the ability to produce

these new effects. The limit in which Equation (3.3) becomes Equation (3.1) is

called the alignment limit. In the context of our model, we reach this limit as

sin(β − α)→ 1 by allowing the κF matrix to be equal to the SM κ matrix. This

also means that all of our FCNC information is stored in the ρF matrices.

Once again, the model we are using is a general 2HDM so there are no additional

simplifying assumptions we can make about the couplings or constraints. For this

study, valid parameters that must be considered are the value of cos(β−α) and the

diagonal parameters of the ρF matrix: ρtt, ρbb, ρcc, and ρττ . In addition, to to the

freedom granted by not imposing additional symmetries we are also not required
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to be Hermitian in the Yukawa part of the Lagrangian. In practice, this means

that the off diagonal terms, ρtc and ρct, can be very different from one another. In

our case this is actually a very helpful scenario as ρct is heavily constrained by

the CKM matrix, [42, 43], but ρtc is not bound by the same constraints. In the

context of the neutral Higgs bosons, since they are scalars and pseudo-scalars they

have no chirality preference which allows us to adopt a funny effective coupling

combining the two:

ρ̃tc =
1√
2

√
ρ2
tc + ρ2

ct . (3.4)

3.2.1 Good news and bad news

The scene is set for our foray into FCNCs as a method for studying the presence

of a second Higgs doublet in the most general sense. Now, how does one study a

FCNC process and how do you know if what the signal you are detecting is indeed

a FCNC process or not?

The benchmark of the signal we are looking for is some top and charm pair

coming from a single resonant particle. Tops are not very long lived and so they

are likely to decay and the dominant mode for that decay is into a b quark and

a W boson. The W boson, like the top, does not generally stay around for too

long and also decays. About 33% of the time the W will decay into a lepton

and a neutrino, say an e or a mu, but another 67% of the time it will decay

hadronically into quark/anti-quark pair like a ud̄ for instance. At detectors, these

decay products are all that survive and are visible in the context of analyzing your

process. The main challenge with any decay process you want to study is then

with picking out the signal of interest when there are other processes producing

the same final set. We can control this issue in a couple of ways, one of which is
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selecting decay modes that are unique in some way and thus do not have a lot of

background contamination. On that note, we actually chose to study the leptonic

decay mode of the W for our signal as any signal involving 3+ jets generally has

a large background from tt̄ production and general QCD processes. The other

method of controlling background contamination is to use what are called selection

rules. How selection rules work, is they exploit physical properties of your signal

that your background is either incapable of producing or exhibits these properties

at an acceptable rate.

3.2.2 Tools of the trade

As mentioned before, the two big tools we have in our toolbox is carefully

selecting our decay modes and controlling how we analyze the data to favor our

signal over the background. As phenomenologists we also want to make sure our

data sets and analysis reflect the techniques and methods used at the detectors by

experimentalists. In a typical bunch crossing there are roughly 40 million events

[44], of which only about 1% of that is actually readout and collected due to simple

limitations of space and readout speed. When a collision occurs the collision and

decay information passes through very sophisticated trigger systems the allow the

LHC collaborations to pick out interesting behavior. Part of the selection rules we

use then are to match the LHC triggers used by ATLAS and CMS [44, 45]. For

our particular process we implemented the cuts listed in Table 3.1.
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L = 25a, 30b fb−1 L = 300 or 3000fb−1 c

/ET > 20 GeV /ET > 40 GeV

pT (j) > 20 GeV pT (j) > 30 GeV

εb = 60%, εc = 14%, εj = 1% εb = 50%, εc = 14%, εj = 1%

pT (`) > 20 GeV

|η`|, |ηj| < 2.5

|mb`ν −mt| < 0.20mt

|mb`νc −mφ| < 0.20mφ

0.85pc < pT (c) < 1.10pc

Table 3.1: We require exactly 1 lepton to meet the pT (`) cut above and exactly
1 b-tagged jet and 1 non b-tagged jet to meet the pT (j) cut listed. The charm
momentum, pc, for the signal and background is found according to Equation (3.5)
and /ET is calculated by adding up all the visible particle momenta.

The efficiencies listed above (εb,c,j) are the frequencies at which the particle of

interest is tagged as a b-jets. We refer to these as tagging, εb, and mistagging, εc,j

efficiencies. The top three rows are specific to the integrated luminosity of the

detector; 25 and 30b fb−1 or 300b, and 3000a fb−1; while the rest are applied for

all luminosities.

pc =
mφ

2

[
1− m2

t

m2
φ

]
(3.5)

In the formula and table above, mφ is the mass of the Higgs boson taking part

in the decay. In this study, either a heavy Higgs boson, H0, or the pseudo-scalar

Higgs, A0. The cuts in Table 3.1 are chosen to both represent what has been done

at the detectors before through trigger levels and searches that constrain our signal,

a
√
s = 8 TeV

b
√
s = 13, 14 TeV

c
√
s = 14 TeV
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[45, 46], and from our own analysis of signal versus background events. In addition

to background processes that mimic the final state that we are trying to detect

there are also built-in restrictions due to the nature of the particle themselves that

can hinder such a search.

3.2.3 Rules of the realm

The hindrance in the heavier Higgs states has to do with how likely they are

to decay into the state we want in the first place. Figure 3.3 shows the dominant

decay modes of both the heavy Higgs scalar and the pseudoscalar. When the

masses of these new particles are around that of the SM-like or light Higgs boson

our tc decay mode actually dominates but becomes less significant as the mass

increases above twice mt. In our case, the tt̄ background can be reduced with the

cuts we apply for this study seeing as at minimum a tt̄ even would produce a final

state with either 2 b-jets and 2 leptons, or 2 b-jets, 2 light jets, and an isolated

lepton, both of which violate our event selection criteria. This means for us, then

that we do not have to worry about much contamination from ancillary Higgs

decay processes but we still have significant SM backgrounds we need to analyze,

the strongest of which is the W + jets background.
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Figure 3.3: Branching fractions of (a) the heavier Higgs scalar, H0 and (b) the
Higgs pseudoscalar, A0 as a function of Higgs mass, mφ, with cos(β − α) = 0.1,
ρ̃tc = 0.24, and ρii = κi for the diagonal couplings.
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The branching ratios depicted in Figure 3.3 show a best case scenario for a ρ̃tc

coupling to be at the ATLAS sensitivity level [47] that can still be consistent with

the alignment limit. Some of the striking features are the sharp breaks around 300

GeV and the non-existence of an H0 → h0h0 decay mode before then. In the case

of the sharp break around 300 GeV this corresponds to decays into real tt̄ pairs

being kinematically favorable once your resonant mass reaches 2 ∗mt ≈ 350 GeV.

In the plots above, only the decay modes that produce direct background than are

signal and so do not appear on the plots above.

We also must take into account the strength of the background processes that

mimic our final state. One of our best discriminating tools in this case is applying

the cuts that were highlighted in Table 3.1. In the case of this search the Higgs

mass window had the largest effect at reducing the background when coupled with

the cut on the charm momentum. The pT and |η| cuts for more for eliminating

contamination from low energy electroweak processes and tt̄ pair production. The

most significant background was still in the W + jets channel which could be

an electroweak process or could be produced through a single top. Additional

contamination from tt̄ processes where one of the b-jets was misidentified, one W

decays leptonically, and the other W decays into two soft jets that do not pass

our pT cuts. The tight requirements for the tt̄ channel allowed us to effectively

eliminate or at least reduce the otherwise overwhelming production rate to a

process on the order of our signal event. Figure 3.4 shows the cross sections of

the signal and background processes as a function of heavy Higgs mass for the

H0 → tc decay.
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3.3 Proclamations and predictions

The test of any good theory is how well it makes predictions and what those

predictions can tell us. As discussed in Section 2.4.3, a measure that both

experimentalists and phenomenologists use to determine a discovery is statistical

significance, Equation (3.6),

NSS =
NS√
NB

≥ 5 . (3.6)

After all cuts and tagging efficiencies our signal is still roughly two orders of magni-

tude below our background but that is not as concerning due to the proportionality

of NS to
√
NB. From this information we are able to then find projections of what

values of ρ̃tc are accessible through searches at the LHC. Also, keep in mind, even

if we do not see anything necessarily does not mean it is not there. It is well

accepted that the dominant branching ratio of the SM-like, light Higgs, h0 is to a

bb̄ pair which is just now reaching the point where it might be accessible through

direct searches [23]. In many of these cases we simply need more data, higher

integrated luminosities, to drive down our statistical uncertainties and enhance

these rare signal events.

Using the satistical significance criteria and analyzing our signal over a range of

different viable ρ̃tc values allows us then to predict what ρ̃tc should produce a 5σ

result based on the anticipated luminosity values a the LHC; 30, 300, and 3000 fb−1

[48]; and the possible mass of the heavier Higgs state. For these calculations we

assume a degeneracy in all of the heavy Higgs masses allowing mH ≈ mA,

45



200 400 600 800 1000
0.01

0.1

1

mH(GeV)

˜
tc

(a) H0 alone

L =
30 fb

-1

L = 300 fb
-1

L = 3 ab
-1

Expected
sensitivity
from t ch

ii= i

cos( - )=0.1

dashed: s = 13 TeV

solid: s = 14 TeV

200 400 600 800 1000
0.01

0.1

1

mH(GeV)

˜
tc

(b) Degenerate H0 and A0

L = 30 fb
-1

L = 300 fb
-1

L = 3 ab
-1

Expected
sensitivity
from t ch

ii= i

cos( - )=0.1

dashed: s = 13 TeV

solid: s = 14 TeV

200 400 600 800 1000
0.01

0.1

1

mH(GeV)

˜
tc

(c) H0 alone

L
=

30
fb
-1

L = 300 fb
-1

L = 3 ab
-1

Expected sensitivity
from t ch

ii= i

cos( - )=0.2

dashed: s = 13 TeV

solid: s = 14 TeV

200 400 600 800 1000
0.01

0.1

1

mH(GeV)

˜
tc

(d) Degenerate H0 and A0

L =
30 fb

-1

L = 300 fb
-1

L = 3 ab
-1

Expected
sensitivity
from t ch

ii= i

cos( - )=0.2

dashed: s = 13 TeV

solid: s = 14 TeV

Figure 3.5: Discovery potential for a 5σ significance in the mφ − ρ̃tc plane for
the σ(pp → H0 → tc̄ + ct̄ → bjc`ν + X) signal at LHC center of mass energies,√
s = 13 (14) TeV, the dashed (solid) contours. (a) and (c) are discovery potentials

for the heavy, H0, Higgs alone while (b) and (d) show combined results for both
H0 and A0. In (a) and (b) cos(β − α) = 0.1 while we relax that constraint in
(c) and (d) and allow cos(β − α) = 0.2. The shaded regions above the contours
indicate the favorable parameter space for ρ̃tc given the 5σ discovery criteria we
used to construct the curves.

What we find with these discovery potentials is that we have a considerable

parameter space in which we can hope to find evidence of flavor changing neutral

currents involving the production and decay of heavy Higgs states that accompany
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extending the Higgs sector of the SM with a second Higgs doublet. This is done in

a general two Higgs doublet model where we specifically do not place any hard

constraints on how the two doublets should interact and only require that we can

reproduce observed SM results in the alignment limit as sin(β − α)→ 1. Much

of the parameter space will be swept out by the end of Run 2 but there is some

viable parameter space that may not be accessible until after the high luminosity

upgrade is completed and new data is collected.

Our basis for this research was in some way rooted by the excess of FCNCs

reported by CMS in Run 1 in the h0 → τµ channel [30]. However, 2HDMs are

prominent in many extensions of the SM including supersymmetry which requires

a Type-II 2HDM where one Higgs doublet preferentially couples to up-type quarks

and the other to down-type quarks. If we discover these events, that may then

give us some insight into the structure of such a 2HDM which can help narrow

down what BSM theories might be governing the global picture. We also chose to

look at the φ0 → tc case due to its strong coupling to the Higgs field and relatively

straight forward analysis. While h0 → τµ events have been reported at some

significance the analysis and process of producing event data for those decays

takes considerable more effort as described in the next chapter on our analysis or

leptonic FCNCs with τµ events.
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Chapter 4

When the Higgs Meets the Tau and the Muon

“You cannot hide, I see you!”

— Sauron, The Lord of the Rings, J.R.R.
Tolkien

The Higgs interaction with the tau, τ , and the muon, µ, was our first experi-

mental indication that FCNC processes may be visible at the LHC. The excess

announced by CMS during Run I was only a 2.4σ significance, so not nearly enough

to constitute a discovery, but was enough to give us a hint at where we should

look. In addition, this would be the first FCNC process kinematically accessible

by a SM-like Higgs with a mass below the top mass, mt. The SM-like or light

Higgs, h0, still has a cos(β − α) factor that reduces the visibility of a τµ signal

so it is also prudent to consider the heavier Higgs states, H0 and A0, as they are

proportional to the complimentary sin(β − α) term.

4.1 Leptonic FCNC processes

The overall process of a Higgs field coupling to a tau and muon, φ→ τµ where

φ = H0, A0, h0, is not fundamentally any different than the Higgs field coupling

to the top and charm, Equation (1.40). It is still the off-diagonal elements of the

ρF , or in this case ρτµ, that generate these flavor changing states. One important

difference between the htc coupling and the hτµ coupling is the τµ state is a viable

decay for the SM Higgs process and we do not need to wait for a more massive

particle to see such an interaction. Unfortunately, such a decay is suppressed as

we approach the alignment limit by the cos(β − α) term. In addition, since the τ

and µ are so light their coupling to the Higgs field is not as strong as the heavy
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quark states, charm and top. Figures 4.1(a) and 4.1(b) illustrate how favorable

such a decay is in the context of the other possible channels. In Figure 4.1(a) we

scan over possible values of the heavy Higgs particle much as was done in the htc

study. In Figure 4.1(b), however, since the mass of the Higgs boson is fixed by

observation at 125.2± 0.24 GeV a, we scan over possible ρτµ values instead.

ahttp://pdglive.lbl.gov/Particle.action?node=S035&init=0
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(a) MH branching ratios obtained using 2HDMC.

(b) Mh branching ratios obtained using 2HDMC.

Figure 4.1: This figure shows the branching ratios of (a) the heavy Higgs scalar,
H0, for a range of Higgs masses. Included are curves for several test values of the
ρτµ = 0.2, 0.01, and 2.489 × 10−2 (CSA). In (b) the branching fractions of the
SM-like Higgs are shown as a function of the ρτµ coupling as the mass was fixed
at 125.1 GeV. Here, in (a), preference has been given to show alternative Higgs
decays that may serve as background to φ0 → τµ signal, where φ = H0, A0, h0.

50



Normally, all branching fractions will add up to unity collectively, in Fig-

ure 4.1(a), the H0 → tt, the H0 → tc, H0 → bb, and the H0 → h0h0 are not

shown, which is why the plot only shows values up to 0.1 or 10%. Due to this

choice, all decay processes involved here do not encompass the main decay modes of

H0 so even if ρtamu were to be high, it would still be considered a rare process. The

advantage of the lepton sector, however, is it does not have as much background

from QCD processes.

4.2 Interplay between the φ→ tc and φ→ τµ

In addition to the background processes generated from the heavy Higgs scalar,

H0, we also have to take into account the φ → tc flavor changing processes. In

some ways this is an addendum to our work in [40] with the added complexity

associated with decaying tau particles. Since we are using a general 2HDM still,

FCNC processes, if present, are at the tree-level and add another decay channel

to the particle states with masses ≥ mt = 173.2 GeV. Including additional decay

modes in the heavier Higgs states causes their decay width, the sum of all of

their decay modes, to change as well. In order to accurately make calculations

and predictions for φ → τµ signal we then have to include information about

ρtc. As no observations of a H0, A0 → tc signal has been reported yet, we have

no experimental benchmark values to report. As reference we chose to use a

conservative value chosen as a case study in [40] of ρtc = 0.1.

Since h0 → tc decay is considered inaccessible, the choice of ρtc does not have

an effect on the SM, or light Higgs, decay width. The h0 → τµ decay, however, is

accessible and has a profound impact on the SM Higgs width and must be treated

with some care. In addition to constraints placed on the coupling by looking at

BABAR [49] and Belle II [50] data for τ → µγ that say ρτµ ≤ 0.26, we also must
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consider how much deviation from the reported SM Higgs width is acceptable.

ρτµ 2.489× 10−2 0.1 0.2 0.26

Γh 3.991× 10−3 4.45× 10−3 5.95× 10−3 7.324× 10−3

ghτµ 1.76× 10−4 7.10× 10−3 1.40× 10−2 1.83× 10−2

Table 4.1: This table shows the SM Higgs width, Γh calculated from 2HDMC,
as a function of ρτµ with cos(β − α) = 0.1 and ρtc = 0.1. The ghτµ terms show
the coupling to the Higgs field, accounting for all other coefficients, as shown in
Equation (4.1).

The table shown above highlights the impact that changing ρτµ has on the h0

decay width, Γh. Also reported in that table are values for the adjusted Higgs

coupling which takes into account the value of ρτµ and cos(β−α) in the Lagrangian,

ghτµ ≡
ρτµ cos(β − α)√

2
. (4.1)

Based on the constraints of [49, 50] and the results shown in Table 4.1 case studies

were chosen for ρτµ = 2.489× 10−3, /0.1, and 0.2 keeping us within 1%, 12%, and

40% of the reported width respectively. A discrepancy from the observed SM

width of 40% is quite extensive and is not viewed as a realistic assumption but

will serve to provide upper-limits on coupling strengths for this study.

4.3 Decaying the τ

Generally speaking, particle decays are very formulaic. You generate Feynman

diagrams to explain the physics of the process, obtain the Feynman rules for each

vertex, compute the trace, evaluate the phase space, and compute the integral.

This process does not change much with the tau, but it does get slightly more
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complicated. Like the top, the tau is the heaviest lepton with a mass or around

1.77 GeVa. This means a couple things. First, the decay of a tau into another

lepton is possible. Second, it can decay into a hadron, specifically a meson that

contains a quark anti-quark pair.

If the tau decays hadronically, the subsequent meson will most likely cause a

shower in the hadronic calorimeter which will cause the tau to look like a funny

jet, aptly name a tau-jet. Dealing with jets in a detector simulation usually is not

very hard, it gets tagged as a jet and from a theory standpoint we don’t need to

know much more than that. With a tau-jet, however, the particulars of the jet

can depend heavily on which meson the tau decayed through, either a π, ρ, or a1.

All three decay modes then have to be taken into account to accurately model the

hadronic tau decay mode.

The leptonic decay mode is more straightforward, the tau decays into a virtual

W which then decays into either a µνµ or an eνe with nearly the same frequency,

10.6% and 10.7% respectively. In this study, to reduce contamination, we are

mainly interested in the electron/positron final state as that then gives us to

different flavor leptons in the final state. With that in mind, we do take special

care to use the properties of the electron tau decay instead of a more generic lepton

decay that could be either an e or a µ.

In addition to the challenges associated with the decay of the tau, production

of the tau presents its own challenges, especially in this τµ process. The SM-like

Higgs has a mass of 125.1 GeV and we expect the heavy Higgs and pseudoscalar

Higgs to be even heavier still. The muon and tau by contrast have a collective

mass of about 1.883 GeV. Because of this large mass difference, the tau and muon

generated from the event are highly boosted, meaning they are traveling more

or less along the same path as the parent particle, instead of scattering at new

ahttp://pdglive.lbl.gov/Particle.action?node=S035&init=0
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angles. Likewise, the tau decay products are also going to be highly boosted

which causes problems when the event is reconstructed. In order to get a picture

or what happened we have to employ the collinear approximation [51] where we

use information about the parent particle and the momentum deposited in the

transverse plane after the tau decay to effectively construct the momentum of

parent tau. For the muon this is not necessary since it is already a final state

particle, but the tau will decay and so we need to know the four momentum it

had to accurately reconstruct the event.

The collinear approximation essentially says that the decay product will simply

carry some fraction of the parent particle’s momentum but be in the same direction,

hence the col in collinear. Mathematically this means

P (`, j) = χ`,j · P (τ) . (4.2)

Likewise, there will be some missing transverse momentum from a tau neutrino,

ντ , that will carry the rest of the parent momentum

/ET = (1− χ`,j)PT (τ) , (4.3)

where χ`,j represents the momentum fraction the lepton or hadron (j) has from the

parent tau, PT (τ) denotes the transverse momentum of the tau, and P`,j represents

the momentum of the decay product of the tau. In the situation above, it is the

P (τ) and the χ`,j that are not known but P (`, j) and /ET are final state values

that would be measured at the collider. We then rely on the tried and true system

of equations method where we can combine these two equations to effectively
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reconstruct the momentum of the parent tau

P (τ) =
P (`, j)

χ`,j
, (4.4)

where

χ`,j =
PT (`, j)

PT (`, j) + /ET

. (4.5)

This allows us then to know the most probable four momentum for the parent tau

and will let us more accurately produce the reconstructed Higgs that produced

the tau and muon pair.

4.4 SM physics background

As with any signal search in particle physics, there is more than one way our

select final state can be produced. The challenge then is tuning your analysis to

pick out your signal over the background without making too many assumptions.

The φ → τµ signal is no exception and also provides us with some interesting

challenges. For the signal in this case, since we are looking at both the hadronic

and leptonic decay modes of the tau, we have to include the backgrounds associated

with each process. In addition, as is indicated in Figure 4.1(a), there are several

possible decay products of a heavy Higgs scalar that need to be accounted for.

4.4.1 Hadronic τ backgrounds

For the hadronic decay of the tau we are looking for a muon and associated

jet that is highly boosted. This same final state can also be produced from an

intermediate Wj process where the W decays to a muon and a muon neutrino, µνµ

that comes from either a single top or an electroweak particle like a photon, γ, or
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a Z. If we first produce a pair of taus, ττ , and we allow one to decay hadronically

into a jet and the other to decay leptonically into a muon, then this will also

produce similar kinematics to our signal. A very similar background process exists

if we consider a WW intermediate process where one W decays into a µνµ and

the other decays into a tau that then decays hadronically and so will be tagged as

a jet.

σ(pp→ X)
√
s = 8 TeV

√
s = 13 TeV

√
s = 14 TeV

pp→ WW → τµ hadronic 0.9145 fb 1.5188 fb 1.6245 fb

pp→ ττ hadronic 37.2235 fb 58.7502 fb 62.8659 fb

pp→ Wj → µνµ j 4.4804× 102 fb 8.0711× 102 fb 8.8093× 102 fb

Table 4.2: This table shows the hadronic background cross sections for the φ→ τµ
signal with MH = 125.1 GeV. Here we have already applied our selection rules for
the signal that will be further discusses in Section 4.5.
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Figure 4.2: Here the SM background for the hadronic decay process at
√
s = 13

TeV is shown as it compares to the signal cross section after full selection cuts.
The black curves show the cross section as a function of MH ∈ [125, 500] GeV for
the various case studies of ρτµ that were selected: 2.489 × 10−2, 0.10, 0.20; for
ρtc = cos(β − α) = 0.1.

4.4.2 Leptonic τ backgrounds

In the leptonic sector we have to contend with even more background processes

than we did than with the hadronic decay mode. Furthermore, we have to be

cautious as to which type of lepton the tau decays into. If the tau decays into

another muon then we have backgrounds from ZZ and Zγ final states, if we do

not we can avoid those backgrounds. Shown below, Table 4.3, is a table showing

the dominant background processes for the different flavor (eµ) lepton final state

and same flavor lepton final states will be added later in this work. For the eµ

final state the dominant background processes are WW , ττ , and WW → τµ. In
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each case, one particle decays into the muon we expect and the other decays into

an electron.

σ(pp→ X)
√
s = 8 TeV

√
s = 13 TeV

√
s = 14 TeV

pp→ WW → τµ leptonic 0.2949 fb 0.4853 fb 0.5200 fb

pp→ ττ leptonic 10.22 fb 16.18 fb 17.33 fb

pp→ WW → µνµeνe 2.108 fb 3.682 fb 3.967 fb

Table 4.3: This table shows the leptonic background cross sections for the φ→ τµ
signal with MH = 125.1 GeV. Here we have already applied our selection rules for
the signal that will be further discusses in Section 4.5.
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Figure 4.3: Here the SM background for the leptonic decay process at
√
s = 13

TeV is shown as it compares to the signal cross section after full selection cuts.
The black curves show the cross section as a function of MH ∈ [125, 500] GeV for
the various case studies of ρτµ that were selected: 2.489 × 10−2, 0.10, 0.20; for
ρtc = cos(β − α) = 0.1.
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4.4.3 φ→ XX backgrounds

In both the hadronic decays and the leptonic decays we have another layer of

complexity added to our system due to the kinematic regime we are working in.

Specifically we have additional backgrounds that, like out signal, are mediated

by the SM Higgs paricle. The SM Higgs can decay into a WW*, a ZZ*, and a

τ+τ− as well as to the τµ signal we are searching for. Our advantage is, however,

that the rate at which it produces these additional particles is much lower than

other modes that do not produce the same final state particles we are interested in.

The disadvantage that we must overcome is that selecting events based on their

ability to reconstruct a Higgs resonance may not be as fruitful for these stats as

they do involve a Higgs resonance. Below, Table 4.4, shows calculated values of

these Higgs mediated backgrounds.

σ(pp→ X)
√
s = 8 TeV

√
s = 13 TeV

√
s = 14 TeV

pp→ h0 → ττ leptonic 0.4633 fb 1.004 fb 1.123 fb

pp→ h0 → ττ hadronic 2.117 fb 4.581 fb 5.127 fb

pp→ h0 → WW → µνµeνe 4.049× 10−2 fb 8.881× 10−2 fb 9.810× 10−2 fb

Table 4.4: This table shows Higgs mediated background cross sections for the
φ→ τµ signal with MH = 125.1 GeV. Here we have already applied our selection
rules for the signal that will be further discusses in Section 4.5.

4.5 Event selection

The background cross sections depicted in Tables 4.2 to 4.4 were all calcu-

lated using carefully developed selection rules that were designed to disfavor the

background and favor the signal. In any search for an exotic decay mode the best

efficiency is obtained by doing your best to exploit the unique physics associated

with your signal. In our case, one of the most telling selection rules is the transverse
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energy distribution of the final state particles. On this same note, this work has

based many of our cuts on the original CMS and ATLAS publications [30, 52],

where they apply additional cuts on the angular distibution of the final decay

products to isolate the unique properties of the signal. Some of the more novel cuts

that were applied in particular to this study are described in more detail below.

4.5.1 Reconstructing the Higgs

Looking at the process pp → φ → τµ, another key identifying feature is the

presence of a Higgs resonance to generate the τµ final state. To verify that the

event we are looking at is indeed our signal this reconstruction must be checked

and can also be used to try and discriminate against background processes. As

described in Section 4.3, our first step is to correctly and fully reconstruct the tau

particle using the collinear approximation. For the signal this allows us to more

accurately characterize the central resonance and verify that is was a Higgs. For

the background it instead purposefully mischracterizes one of the decay products

and will not reconstruct a signal as clean as the φ→ τµ signal.
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H → τμ

WW → μν eν
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Figure 4.4: This plot shows the reconstructed τµ resonance for our signal and
the leptonic WW background. Here it can be seen that the Higgs signal has a
sharp peak right at the Higgs mass as expected and the WW process has a much
broader shape with a peak much closer to the mass of its dominant resonance, the
Z. The above values are shown for a

√
s = 8 TeV and with only basic cuts applied

(pT > 10 GeV and |η| < 2.5).

This mismatch between the shapes and locations of the peaks is what is

exploited with such a cut on the reconstructed invariant mass, Minv, of the τµ

resonance. It can be somewhat less significant for the φ→ XX backgrounds but

is invaluable for the other electroweak backgrounds.

4.5.2 Importance of transverse mass

As mentioned before, many of our cuts and selection rules are based on

information or restrictions imposed by the experimental collaborations, such

as pT and |η| requirements for triggers and separation requirements to satisfy

isolation cuts in a very naive way. There are some cuts that are also theoretically

motivated and can help the experimentalists select data more efficiently. One such
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cut for us is a cut on the transverse mass, MT . Since the tau decay will involve

the creation of a neutrino we can expect to have some missing transverse energy

in our final state particles.

MT(μν) WW

MT(eν) WW

MT(μν) H → τμ

MT(eν) H → τμ
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Figure 4.5: This plot shows the transverse mass of the µ + /ET and e + /ET for
our signal and the leptonic WW background. Here it can be seen that the WW has
symmetric final state partiles whle the signal is more asymmetric. This plot shows
the reconstructed τµ resonance for our signal and the leptonic WW background.
Here it can be seen that the Higgs signal has a sharp peak right at the Higgs mass
as expected and the WW process has a much broader shape with a peak much
closer to the mass of its dominant resonance, the Z. The above values are shown
for a

√
s = 8 TeV and with only basic cuts applied (pT > 10 GeV and |η| < 2.5).

We can construct a picture of the transverse mass of a particle, q, in the final

state through looking at its transverse components,

M2
T =

(
pT (q) + /ET

)2 −
(
qx + /Ex

)2 −
(
qy + /Ey

)2
(4.6)

We can use this to our advantage by applying cuts on the transverse mass of

certain particles. Following the lead of CMS, we specifically chose to cut on the

transverse mass of a µν pair and the transverse mass of an eν pair. If the final
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state particle, say the muon, came from a single particle decay we can expect the

transverse mass of that particle have a sharp drop around the mass of the parent

particle [53]. Our signal, on the other hand, should exhibit this behavior only in

the electron transverse mass and not the muon.

4.5.3 Asymmetric selection rules

Due to the nature all but the WW → τµ background the processes, we would

expect their decays to be symmetric. This is a property that is not shared in the

φ → τµ signal. Before the tau decays, the two particles are symmetric and, in

fact, their momenta are nearly on top of each other as seen in, Figure 4.6.
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Figure 4.6: Here the pT for the τ and µ are plotted before any selection cuts
are applied. This signature is similar to what is seen in many of the background
distributions.

However, once the tau decays into either a jet or a lepton, there is additional

energy lost in the form of a neutrinos that will offset the transverse spectrum of

the visible particles. Based on this property we have applied some interesting
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asymmetric cuts on the PT and η of the muon and jet or e from the tau decay as

highlighted in the table below, Table 4.5.

Cut Parameter Leptonic: τ → eνeντ Hadronic: τ → jντ

pT (µ) > 50 GeV > 45 GeV

pT (τ) > 10 GeV > 35 GeV

MT (µ) > 40 GeV -

MT (τ) < 65 GeV < 50 GeV

∆φpµT−pτT > 2.7 > 2.7

∆φpτT−/ET < 0.5 -

|ητ | < 2.3 < 2.3

|ηµ| < 2.1 < 2.1

Table 4.5: This table summarizes the cuts applied to the final state particles
under the conditions were the tau decays hadronically and is tagged as a jet and
when it decays leptonically into an electron. The η cut depicted above is not
asymmetric due to the nature of the decay but is chosen to match the trigger
efficiency of CMS.

4.6 Results and predictions

Currently, for this study, we look at both the heavy Higgs decay process and the

SM-like light Higgs decay as possible signatures for the τµ flavor changing process.

All cuts have been applied and cross sections are calculated for heavy Higgs masses

from 150 GeV to 500 GeV for
√
s = 8, 13, 14 TeV using the newly updated CT14

PDFs [1]. For the signal, Mφ/2 is used as the factorization and renormalization

scale and the dynamic choice of
√
s is chosen for all the background processes since

they lack a defined core resonance and are mediated, generally, by a γ or a Z. In

the case of the Z mediated decays we could adopt a similar factorization scale and

renormalization scale to that used for the Higgs signal but such a choice would not
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be appropriate for the γ mediated process. All background events are calculated

using the same fortran code package developed for the signal process with the

exception of importing MG5 matrix elements in lieu of full analytic calculations.

For SM processes, MG5 is well tested and used as a benchmark comparison for

any study we do to as high a level as we can trust the comparison and only breaks

down in the exotic regime or, in the case of H0, when the effective theory breaks

down. But, for well known and tested processes, the use of MG5 matrix elements

offers an extra level of confidence in our calculation and the ability to run full

detector simulations on the background predictions. The following results were

obtained for both leptonic and hadronic tau decay states to be compared against

the background cross sections presented in Tables 4.2 to 4.4.
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The work for this project is ongoing, as we still need to look at the pseudoscalar

signal and extend the mass range for the Heavy Higgs process out to ≈ 1 TeV

as was done with the htc project. The final results will then be submitted for

publication. With the additional data and further refinement of the search, namely

in the context of more points and a higher fidelity scan as a function of Higgs mass,

discovery potentials will be created to visually represent our findings. Preliminary

findings suggest that the end of Run II should provide us with enough data to have

seen enough evidence of a τµ flavor changing process involving a light, SM-like

Higgs boson with a coupling as low as our base value of ρτµ = 2.489× 10−2 while

we will need at least 1800 fb−1 before we can see such a signal in the heavy Higgs

sector making such a signal not visible until after the high luminosity upgrade of

the LHC.
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Chapter 5

Conclusion: A Look Beyond the Standard Model

“The most beautiful thing we can experience is
the mysterious. It is the source of all true art
and science.”

— Albert Einstein, What I believe

Science, by nature, is the attempt to understand the world around you and

be able to make predictions on how nature will behave. Earlier I mentioned how

Newtonian Mechanics is to Relativity as the Standard Model is to Beyond the

Standard Model and so it is only appropriate that what began with a quote from

Newton is summed up by a quote from Einstein. In both cases, I must agree whole

heartedly with their statements. Particle physics is not unique in going beyond

the standard physics of everyday life and looking at something deeper but I do

find it unique in how well defined and documented its history is. What we learn

from papers now will be written down in books before too long and a lot of that

has to do with how the field handles itself and propagates its own wavefunction

forward in time. And so it is with this work.

Though our goals were not as lofty as grand unified theories, or even full

extensions and replacements of the SM, our work does serve an important role in

describing and predicting what may be seen in a corner of particle physics. The

Higgs sector, as the newest sector to be discovered experimentally, still has much

to provide us with in terms of information in how the Yukawa couplings work

and why some particles are so much more massive than the other. Our research

also shows, that it is possible and likely that this is one of the areas in which we

will first see evidence of new physics. new physics, we define as physics beyond

the SM. As Run II is wrapping up we hope some of the data may either match
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our predictions for flavor changing neutral currents or help further constrain the

parameter space for future dedicated studies. Both the leptonic, τµ , and the

hadronic, tc, flavor changing interactions still have a fairly large parameter space

in which the couplings might lie and the more we find out about this parameter

space the more we will know about the alignment limit, cos(β − α) , and the

diagonal mass-based Yukawa couplings that are stored in the κ and ρ matrices.

We acknowledge that it is also possible the general treatment of the Two Higgs

Doublet Model is too generous and needs to be further constrained as in the

Type-II model required by SUSY but we have no direct indications of that yet. We

hope this study will help us gain some more insight. We will be finishing up the

τµ project soon after refining some of the data with higher fidelity information

that we were not able to collect until now and studies into the ρtc coupling will

continue in the group going forward as there is a lot that can be done with the

kenematically viable t → ch0 decay mode. Some preliminary work has already

been completed and will, hopefully, be finished by the end of the calendar year.

Flavor changing neutral currents mediated by Higgs bosons are not the answer

to all the questions the SM needs some help resolving, but they are a small step

in a direction that can tell us a lot about how nature works. And to anyone who

says particle physics is dead and there isn’t anything left to find I simply say, look

harder, the answers are there, we just need to find them.
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[48] G. Apollinari, O. Brüning, T. Nakamoto, and L. Rossi, CERN Yellow Report , 1
(2015), arXiv:1705.08830.

[49] BaBar, B. Aubert et al., Phys. Rev. Lett. 104, 021802 (2010), arXiv:0908.2381.

[50] T. Aushev et al., (2010), arXiv:1002.5012.

[51] K. Hagiwara, A. D. Martin, and D. Zeppenfeld, Phys. Lett. B235, 198 (1990).

[52] ATLAS, G. Aad et al., Eur. Phys. J. C77, 70 (2017), arXiv:1604.07730.

[53] CMS, V. Khachatryan et al., JHEP 03, 032 (2017), arXiv:1606.01522.

[54] M. Spira, (1995), arXiv:hep-ph/9510347.

[55] D. Eriksson, J. Rathsman, and O. Stal, Comput. Phys. Commun. 181, 189 (2010),
arXiv:0902.0851.

[56] R. Boughezal et al., Eur. Phys. J. C77, 7 (2017), arXiv:1605.08011.

[57] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys.
Commun. 185, 2250 (2014), arXiv:1310.1921.

77



Important Programs

In order to perform crucial calculations and predict what we may see we have

to develop our own code and methods of both creating and analyzing the data we

need in order to make reliable predictions some of the tools we use are:

• MadGraph [34]: a software sweet that allows us to run detector simulations

on physical decay processes involving most common models with features

that allow for the import of your own models.

• ROOT: a data analysis framework developed and maintained by CERN

that allow us to analyze data and the detector simulations produced by

MadGraph in ways similar to the experimentalists.

• HIGLU [54]: a piece of software specifically designed to numerically evaluate

leading order (LO), next to leading order (NLO), and even next-to-next-to

leading order (NNLO) gg → φ0 production so we can calculate appropriate

K-factors.

• 2HDMC [55]: software designed to analyze Higgs decays under several

different BSM models, including the 2HDM. This software allows us to

calculate total width and branching ratio information for Higgs bosons under

a broad phase-space region.

• MCFM [56]: software developed at Fermilab to calculate LO, NLO, and

NNLO information for several common SM processes such as WW or tt̄

production with various decay modes. This software is used to calculate

k-factors for many of our background processes.

• VEGAS: is a linux/unix based numerical integration routine that utilizes

important sampling to map out abrupt features of your decay processes so
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that we can produce realistic collider data for analysis.

• FeynRules [57]: a Mathematica package used to create model files to

use with MadGraph that includes the ability to do process level coupling

verification and will check itself for invariance and Hermiticity.

• FORM: software developed to calculate traces like the one shown in Equa-

tion (2.2) and apply tensor reduction techniques for more reliable simplifica-

tion.

• Fortran Code: self developed Fortran programs and analysis were created

and implemented to evaluate the complex integrals involved in cross section

calculations, apply necessary selection cuts, construct the kinematics of the

process, and generate histogram data for analysis.
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Table 1: K-factors calculated from higlu for the production of the light, heavy, and
pseudoscalar Higgs bosons through glun-gluon fusion via a heavy quark loop (top
and bottom). For the top loop, these are next-to-next-to leading order (NLLO) to
leading order (LO) ratios and for the bottom loop they are next-to leading order
of LO ratios.

MH GeV top loop kFactor (formula) bottom loop kFactor (formula)
125 1.92443 1.01226
150 1.93552 1.03564
175 1.94828 1.0554
200 1.96019 1.07253
225 1.9708 1.08763
250 1.98166 1.10114
275 1.99637 1.11336
300 2.02058 1.12451
325 2.06195 1.13478
350 2.13018 1.14428
375 1.94282 1.15313
400 1.90573 1.1614
425 1.88406 1.16918
450 1.8687 1.1765
475 1.85679 1.18344
500 1.84705 1.19001
525 1.83883 1.19627
550 1.8317 1.20223
575 1.82542 1.20793
600 1.81979 1.21339
625 1.81471 1.21863
650 1.81007 1.22365
675 1.8058 1.22849
700 1.80184 1.23316
725 1.79816 1.23766
750 1.79472 1.242
775 1.79148 1.24621
800 1.78844 1.25028
825 1.78555 1.25422
850 1.78282 1.25805
875 1.78021 1.26177
900 1.77773 1.26538
925 1.77536 1.26889
950 1.77309 1.27231
975 1.77091 1.27564
1000 1.76882 1.27889
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Additional Data

The other test cases that were studied set ρtc = 2.501 × 10−3, 0.50 and

ρτµ = 2.489× 10−3, 0.20. Below are data sets for each of those test cases.
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