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Abstract

Social media have developed quickly over the years, on a worldwide scale. It has

become a major tool for expressing ideas, sharing political opinions, publicity and

market trending, assistance, etc., used on a daily basis by millions of people, in

several languages, and continuously expanding. This evolution has caught the at-

tention of researchers, as much more data became accessible. One research area

concerns the study of social media behavior during natural disasters. These studies

try to determine whether social media are social sensors, but only a few focuses on

the physical environment. Here, the main objective is to establish whether Twitter

is a sensor of the physical environment during a natural disaster.

In order to understand the relationship between Twitter and the physical environ-

ment, a data set of tweets is compared to a measurable disruption caused by the

natural hazard. The tweets need to be relevant to the disruption, and so are �l-

tered using speci�c keywords. Then, they are decomposed into a time series, and

compared with a time series of the measurable disruption with a cross-correlation

function.

Two examples of disruption are studied here, both during Hurricane Sandy in 2012.

The �rst one compares the behavior of Twitter with the number of power outages,

and the second one with the water peak elevations. Both examples do not yield to

conclusive results, as no signi�cant correlation is found. However, it doesn't mean

that a correlation does not exist at all. The analysis is strongly dependent on the

quality of the data set, and unfortunately some values are missing on important

time periods on the Twitter data set. Also, the water peak elevations data set do

not contain many points, and they are not taken at a regular time interval, which

may have biased the analysis.

x



Chapter 1

Introduction

1.1. Purpose of the study

In a world where communication is faster than ever, social media have become a new

tool of expression. Used on a daily basis, they allow people to express opinions, to

share ideas and information. This quick development encourages new ways of use,

like national agencies who provide real time information on gas station availability

during Hurricane Sandy [4], to help organize protests during the Arab Spring [27],

or to ensure of your safety to your relatives with Facebook �Safety check�. Many

researchers around the world have grown an interest in social media, as it makes so

much information available. Most of the studies are linked to sentiment analysis,

and trying to determine the mood of a population for example, for national elections

in Sweden in 2010, or in France and in the United States in 2012, tweets related

to the elections were analyzed to detect which sentiments were predominant before

and after the elections [10, 16]. Social media studies have often been conducted to

determine whether they can be considered as sensors of our society, being during

natural disasters [2, 4] or political events [7, 10, 16]. However, only a few concerns

the relationship between social media and the physical environment.
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1.2. Social Media

The growth of social media has been fast, especially in the United States, as in

January 2015 the part of the total active accounts on social media represented

58 percent of the North American population [1]. While Facebook remains the

most popular platform counting 42 percent of the total social activity in the United

States, Twitter arrives second with 19 percent. Established in 2006, Twitter is a

social platform, which allows users to send in real time, public or private messages

up to 140 characters, and has developed all around the world. Indeed, Twitter

�has become the pulse of a planet-wide news organism, hosting the dialogue about

everything from the Arab Spring to celebrity deaths� [24]. This system is very

appreciated by researchers who can analyze real time reaction, perform sentiment

analysis, etc. These studies are also possible because of all the ways Twitter made

available to collect data, such as the streaming API for example.

1.3. Problem statement

Previous studies have been conducted on social media during natural disasters.

However, most of these analyzed the event detection [6], the reaction of people

thanks to sentiment analysis [2, 16? ], or try to determine a more e�cient way to

select tweets relevant to the disasters [2].

Indeed, most of the work related to Twitter, in general and also during natural dis-

asters, is based on sentiment analysis, and attempts to �gure out whether Twitter is

a sensor of the society. That's why this study is quite new, as it tries to understand

the relationship between Twitter and the physical environment during a natural dis-

aster. Determining the nature of this relationship could help in predictive analytics,

and develop methods on forecasting community performance from infrastructure

2



Figure 1.1: Behavior of the service function ϕ(t) across state transitions.

performance. All this work could help improve situational awareness, which is de-

�ned by ESRI as a �human mental process that can be enhanced using technology

to access, analyze and present information to have a greater understanding of exist-

ing conditions and how they will change over time.� The research question for this

project is � Does Twitter mimic the physical environment during a disaster ? �

In order to answer this question, the idea is to compare the behavior of Twitter

with a measurable disruption caused by a natural hazard. This study is focused on

the infrastructure performance from the disruption event, and aim to compare this

performance with the frequency of tweets related to it on a common time period.

A data set of tweets is examined, and then re�ned thanks to speci�c keywords to

ensure its relevance to the natural disaster and the physical disruption. The idea is

then to compare it with data of the physical disruption caused by the hazard, with

a cross-correlation analysis.

3



1.4. Structure of the thesis

The �rst part of the thesis describes the literature review on analysis of social media

during natural disasters. Then, in Chapter 3, the methodology used for the study

is explained. The results and analysis are detailed in Chapter 4 with two examples,

and �nally, the �fth chapter concludes the thesis.

4



Chapter 2

Literature Review

This chapter analyzes previous works and literature on the use of social media during

disasters.

2.1. Use of Social Media during Disasters

Social media have grown exponentially over the years, and whereas their �rst utility

kept focused on expressing opinions, sharing ideas, or discussing with friends, it

appears that it can also have new functions. Indeed, the number of users and the

format of these media have generated a lot of data. Many researchers have been

wondering if these media can be used in case of emergency. Therefore, in 2011 the

U.S. Geological Survey studied Twitter as a possible earthquake detection tool [6].

In this case, they use the fact that users tend to send tweets very quickly after feeling

the ground shaking. In order to detect earthquakes, they developed a short-term

average, long-term average algorithm. With this method, they managed to detect

48 earthquakes, �with two false triggers in �ve months of data�, out of the 5175

reported by the USGS catalog. This number can seem small, but in their study,

they argue that most of these earthquakes were not powerful enough to be felt, or

5



that they stroke in deserted places.

A previous study was led in 2010, on real-time earthquake detection using tweets

as sensors [21]. They select the tweets based on speci�c keywords, the number of

words and the situation. Their algorithm also try to �nd the objective event, for

example the epicenter of an earthquake, by applying a �probabilistic spatiotemporal

model� which calculates the origin and the trajectory of the disaster location [21].

2.2. Use of Twitter as Sensor

Many studies have been conducted since the creation of Twitter in 2006 on sentiment

analysis, to determine whether Twitter can be considered as a social sensor.

One analyzes human behavior on Twitter to see if humans can become the new

biggest �sensor network� [26]. Humans are considered as sensors, as they make

observations that are either true or false. However, the major issue is to ensure

of the reliability of the human perception. Indeed, some people may attribute to

themselves observations made by others. The results are nonetheless quite promising

as it tends to show that the veracity of human claims can be correctly estimated

through three examples on Hurricane Sandy, Hurricane Irene and on the Egyptian

president resignation in February 2011.

Another study tries to determine if Twitter is a social sensor of natural disasters,

with di�erent level of sensitivity [2]. By analyzing Twitter data, they compare

several elements, such as the variation of tweet frequency before, during and after

the disaster, the proximity to the center of the disaster, the diversity of expressed

feelings, and change in tweet frequency regarding to the social vulnerability [2].

This study is conducted on �ve examples with di�erent types of disasters, like the

Moore Tornado in 2013, or the Black Forest Fire in Colorado in 2013. This analysis

6



tends to show that Twitter is indeed a social sensor, but presents di�erent level of

sensitivity.

2.3. Geo-location

Starting in 2009, the geo-location is an optional function developed by Twitter, pro-

viding either the exact GPS coordinates, or a location chosen by the user. However,

this system is not automatic as users will have to agree �rst when setting up their

Twitter account. As a result, only a few tweets are actually geotagged. Indeed,

according to Leetaru and al. [11] the number of tweets with geographic coordinates

represents about 2.02 percent of the total number of tweets posted each day.

Still, some researchers try to bypass that issue to �nd a global idea of the location

of the tweets. Indeed, by text mining the tweets directly to �nd location words

they managed to obtain geographic information [13]. Then they used a recognition

technique to ensure the locations correspond with the place, or even the street.

Getting the geographic data can be really valuable, especially in case of emergencies.

In their study, MacEachren and al. [12] uses a �geovisual analytics approach to

support situational awareness for crisis event�, which shows that it can be very

useful for assistance supplies.

However, some of the data can be biased, as users can manually put a location that

di�ers from their current position, or because in case of emergencies, some people

may wait to be in a safe place to tweet [4].

7



2.4. Cross-Correlation

The cross-correlation function is a method used in statistics to measure the covari-

ance of two vectors, or also in signal processing to measure the similarity of two

signals. After a look at the literature, it appears this method has never been used

on Twitter analysis. However, it can be found on di�erent �elds.

In 1992, Keane and Adrian use the cross-correlation analysis on particle image ve-

locimetry to �measure the separation of pairs of particle images between successive

frames� [9]. It can also be applied in case of �double- or multiple-exposure single

frame images�, where the cross-correlation analysis is conducted on two di�erent

areas of the same frame.

The cross-correlation function is also often used in time series analysis, to compare

two time series and try to determine if they are linked across time, with a certain

lag value. This method is commonly employed in �nance, for stock price analysis,

to quantify "`the risk of a given stock portfolio [19].

8



Chapter 3

Methodology

This chapter focuses on the methodology used for the cross-correlation analysis on

data set of tweets. The �rst part details the data collection, the second part, the

mathematical analysis.

3.1. Data Collection

A data set of tweets related to Hurricane Sandy was collected. The tweets were

selected with their hashtags, for example #HurricaneSandy, or #Sandy. This data

set was then transmitted to me, thanks to Dr. Barker. It contains tweets from

October 26th to November 5th, 2012. The data set is also composed of the tweets'

ID, the users' ID and the time stamps. As mentioned previously, Twitter made

geodata available since August 2009. The geo-data consists either of a place or

GPS coordinates. However, the geo-localization is not systematic since the user

needs to set it up manually. According to Leetaru and al. [11], only 2.02 percent

of tweets includes geographic data on a regular day. In order to retrieve the tweets'

coordinates, I used the Twitter API services in Python with the tweepy package.

The API tool allows registered application users to get information such as tweets,

9



user names, coordinates, etc. Each request has a limited number of information

allowed. The tweets' ID are then used to retrieve the corresponding coordinates.

Unfortunately, no coordinates were found in this search, for this data set. One

reason could be that I wasn't allowed to get the few existing coordinates because of

my basic registration status on the Twitter API service.

The �rst step of the analysis is to determine the relevance of the data set. For

this problem, the need is to �lter the data set in order to keep tweets related to

both Hurricane Sandy and the physical disruption. In order to do so, a text mining

technique is used to �nd some keywords. The analysis is made in R, with the

platform RStudio. The keywords need to be relevant to the problem. Therefore, the

word �hurricane� is directly chosen. Also, every tweet is limited to 140 characters,

users will have a tendency to employ shorter words when tweeting. That's why the

word �storm� is also picked. The other keywords have to be related to the physical

disruption, and preferably short too. Tweets containing the speci�c keywords are

then selected, using the function grep [6].

The data set is then re�ned to keep only the tweets containing the keywords. Then,

these tweets are decomposed into time series of �fteen minute intervals, taken from

October 26th to November 5th, 2012. Unfortunately, some values are missing on

this data set. Four missing time periods can be identi�ed :

• From 15 : 15 October 29th to 8 : 15 October 30th,

• From 19 : 30 October 30th to 23 : 45 October 30th,

• From 15 : 30 October 31st to 23 : 45 October 31st,

• From 15 : 15 November 4th to 23 : 45 November 4th.

The �rst missing period is quite long, which probably makes it the most disturbing

one. These holes in the data set can have several origins : a problem during the data

10



Figure 3.1: Example of a linear interpolation between two points (x0, y0) and (x1, y1).

collection due to the network, or an error on the code, or maybe human related.

Indeed it is possible that people didn't use Twitter during a certain amount of time

to get into a safe place, or perhaps because of their battery running low due to

power outages. In order to deal with this incomplete data set, a linear interpolation

is performed. Linear interpolation is a technique used to estimate the value of a

continuous function, between a discrete set of known points. For two known points

(x0, y0) and (x1, y1), it will determine the slope of the straight line between them.

The equation of linear interpolation is [17]:

y − y0
x− x0

=
y1 − y0
x1 − x0

. (3.1)

11



This equation can be derived, to express y in term of x:

y = y0 + (y1 − y0)
x− x0
x1 − x0

. (3.2)

To perform the linear interpolation, the function na.approx() in R is used. A spline

interpolation has also been considered. However, the results are not conclusive as it

sometimes approximates a negative number of tweets for certain time period.

Every time series can be decomposed into three elements [8]: a seasonal element

(daily here), a trend element and a remainder element, which can be described by

the following equation:

yt = St + Tt + Et, (3.3)

where yt represents the data at period t, St is the daily or seasonal element at period

t, Tt is the trend element at period t and Et the remainder. A general decomposition

of a time series into its three elements is shown in Figure 3.2.

We can see the general trend obtained, which is the main interest of this analysis

since we want to determine if the trend of the tweets time series matches accurately

the reality. However, it is impossible to remove completely randomness and the

seasonal e�ect.

3.2. Cross-Correlation Analysis

The idea is to compare both time series to determine whether a correlation exists

between them. In order to do so, the cross-correlation function is used. It �measures

how closely two di�erent observables are related to each other at the same or di�ering

times� [22]. However, to apply this method, some work is required beforehand.

12



Figure 3.2: Decomposition of a time series into its seasonal, trend and remainder
elements.
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Indeed, the cross-correlation function needs both time series to be stationary in

order to work properly. A process is said to be stationary if the mean, the variance

and the auto-correlation process do not vary across time [20]. So, the �rst step is to

stabilize the variance of our data, and ensures that the homoscedasticity condition

is met. Therefore, a Box Cox transformation is performed. It also normalizes the

distribution of the data. This method was formulated by two statisticians George

Box and Sir David Roxbee Cox in 1964 [18]. Based on the previous work of Tukey

(1957), the Box Cox transformation can be written as follow:

y
′
(λ) =


yλ−1
λ
, if λ 6= 0

log y, if λ = 0,

(3.4)

where y
′
represents the transformed data, and λ the exponent, range from −5 to

5. To determine the best transformation i.e. the best approximation of a normal

curve, all the values of λ are tested. The function Box.Cox.lambda in R helps

�nding the optimal value of λ. Then the function Box.Cox is used to perform the

transformation with the most accurate value of λ. This method only works for

positive values, however, by adding a constant the equation can be modi�ed to also

�t for negative values.

The second step is to ensure there is no auto-correlation. Therefore, each time series

is di�erentiated once. �The �rst di�erence of a time series is the series of changes

from one period to the next� [15], which can be described by the following equation

[22]:

Y
′

t = Yt − Yt−1. (3.5)

Di�erencing allows to remove the trends due to the accumulation of randomness [23].

If, after di�erencing once, the time series are not stationary then one can continue
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taking the successive di�erences.

In order to test the stationarity of both time series, a unit root test is performed.

Here, the Augmented Dickey Fuller test is used. It is a bit more powerful than the

regular Dickey Fuller test, since it also takes the lagged values into account [14]. The

�rst equation is an example of the Dickey Fuller test for an auto-regressive model,

and the second one the model for the Augmented Dickey Fuller test.

yt = ρyt−1 + ut, (3.6)

where yt is the variable, ρ a coe�cient and ut the error term.

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + ...+ δp−1∆yt−p+1 + εt, (3.7)

with α a constant, β a time trend coe�cient and p the lag order. The hypotheses

for this test are :


H0 : γ = 0

H1 : γ < 0

(3.8)

The H0 hypothesis being that there is a unit root, therefore the alternative hypoth-

esis is that the time serie is stationary.

Then �nally, after ensuring the stationarity of both time series, the cross-correlation

function is performed. It manages to compare the resemblance of the series as a

function of lag of one set relative to the other. Both time series do not need to be

evenly spaced, nor to even overlap [22]. Indeed, the cross-correlation coe�cient will

be calculated �only for lags which shift the two sample intervals so that they overlap

signi�cantly� [22]. This function is also de�ned as the normalized cross-covariance

function :
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ρxy (τ) =
E [(Xt − µX) (Yt+τ − µY )]

σXσY
, (3.9)

with µX and µY the means of Xt and Yt+τ , and σX , σY their standard deviation.

3.3. Windowed Cross-Correlation

Another cross-correlation method has been developed in 2002, by Boker, Xu, Rot-

tondo and King, called the windowed cross-correlation [3]. It calculates the cross-

correlation function on a limited time segment, where both time series are supposed

to be stationary. This process is then repeated by moving the calculation window

from one value, until the whole time series is treated. This analysis gives a set of

local cross-correlation function. Then a pick peaking algorithm is applied to de-

termine the function maxima, and then to establish the series of successive delays

corresponding to these maxima [3].

Let's de�ne X and Y two time series of length N , X = {x1, x2, ..., xN} and Y =

{y1, y2, ..., yN}. The length of the window is n, and d is the maximum lag value for

the analysis, with d > 0. For a �rst segment of length n, the serie X can be written

as X(a,n) = {xa, xa+1, xa+2, ..., xa+n−1}. Then we calculate the local cross-correlation

coe�cient, for every lag k between −d and d, de�ned by :

r(X(a,n), Y(a+k,n)) =
1

n

a+n∑
i=a

(xi −X(a,n))(yi+k − Y (a+k,n))

σX(a,n)
σY(a+k,n)

, (3.10)

with X(a,n), Y(a+k,n) the means of the segment of both time series X and Y of length

n, respectively starting by xa and ya+k, and σX(a,n)
and σY(a+k,n) their standard devi-

ation. The result is a serie of 2d+ 1 coe�cients, de�ning the local cross-correlation

function, indexed on the central value of the segment X(a,n).
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Chapter 4

Analysis and Results

This chapter details the analysis conducted on two cases to determine the relation-

ship between Twitter and physical disruption during a disaster.

4.1. Examples

In order to establish if a correlation exists between the behavior of Twitter during

a disaster and a physical disruption caused by the disaster, two cases related to

Hurricane Sandy are studied.

As mentioned previously, Hurricane Sandy has been devastating and caused a lot

of damaged in the United States, especially on the Eastern seaboard, which cost is

estimated around $50 billion. The �rst example studies the relationship between the

number of power outages due to Hurricane Sandy and the power- and electric-related

tweets published at that time. For the second example, the analysis is conducted

on the water peak elevations on the Eastern seaboard caused by the heavy rainfall

during Hurricane Sandy. These values are then compared with the �ood-related

tweets.
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Keyword Combination Total Frequency of the Keywords Combination
hurricane + electric 7682
storm + electric 8010
hurricane + power 40040
storm + power 69322

Table 4.1: Frequency analysis of the keywords combination on Hurricane Sandy
data set.

4.2. Case 1 : Power outages

4.2.1 Tweets Selection

For this example, keywords need to be related to power outages in general, then

associated with the previous keywords picked in Chapter 3. The word �power� is

directly chosen. The second keyword is �electric�, as it is also related to power

outages. Moreover, it ensures that the word �electricity� is also picked.

Table 4.1 records the frequency of the keywords combinations in the data set. As

shown, the words �storm� and �power� are the most commonly employed, before

the combination of �hurricane� and �power�. These numbers are not surprising. As

mentioned previously, tweets are limited to 140 characters and users seem to rather

use shorter words than longer one. The same principle applies for the combination

of �storm� and �electric�.

The data set is then re�ned to keep only the tweets containing the combinations

of keywords given in Table 4.1, and decompose into a time series of �fteen-minute

intervals. The Figure 4.1 represents the time series of the total number of tweets,

from Hurricane Sandy, in which the words �power� and �electric� appear. As men-

tioned in Chapter 3, several time periods are missing. Indeed, the four black lines

that we observe on the graph represents the missing points.

The Figure 4.2 represents the time series of the total number of power- and electric-

related tweets after linear interpolation.
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Figure 4.1: Time series of the total number of power- and electric- related tweets
from Hurricane Sandy.

Figure 4.2: Time series of the total number of power- and electric- related tweets
from Hurricane Sandy, after linear interpolation.
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Figure 4.3: Decomposition of the tweets time series into its seasonal, trend and
remainder elements.

As for Figure 4.1, the x-axis doesn't display all the date time by lack of space.

On Figure 4.2, we can observe cyclic or daily elements which could imply that the

number of tweets posted on this data set is depending on the time they were posted.

Figure 4.3 displays the decomposition of the tweets time series into its trend, seasonal

and random elements.

4.2.2 Data Collection on Power Outages

The data set of power outages consists of the number of outages for di�erent states of

the United States, touched by Hurricane Sandy. It encompasses the following states:

Pennsylvania, New Jersey, Connecticut, Maryland, Delaware, Maine, Ohio, Rhode

Island, Vermont, North Carolina, Massachusetts, Virginia and New Hampshire, and

the city of New York. However, the detailed number of power outages by state

through time is not available, so this data set has been analyzed as whole, over
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Figure 4.4: Time series of the total number of power outages taken over �fteen
minute intervals.

�fteen minute intervals. It includes values from October 28th at 9 : 15 pm to the

end of November 2012. Figure 4.4 represents the raw time series of power outages.

From the graph, it looks like there is a peak of power outages during Hurricane

Sandy on October 30th around 10− 11 pm.

As shown previously, the time series can be decomposed into its trend, seasonal

and random components. The Figure 4.5 represents its decomposition. By quickly

comparing the trend from both time series, we can see that they di�er a bit. Indeed,

it looks like there is a recess on the tweet time series decomposition where there

should be a peak. This might be explained by the missing values on the tweets data

set.

As observed on the graph, it seems that there is a lot of noise on certain time period,

especially when many tweets were posted.
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Figure 4.5: Decomposition of the power outages time series into its seasonal, trend
and remainder elements.

4.2.3 One Time Di�erentiation

In this part, the results of the cross-correlation analysis for the power outages case,

with a one time di�erentiation are provided.

The Figure 4.6 represents the cross-correlation coe�cients between the tweet time

series and the power outages time series. For this analysis, the time interval or

frequency of both data sets needs to be corresponding. That's why the tweet time

series interval is limited to 21 : 15 on October 28th to midnight on November 6th,

2012. The x-axis represents the lag time, which can be seen as the number of 15

minute intervals the tweet time series lags the power outages time series. The y-axis

produces the cross-correlation number, in the range of −1 to 1. As shown in Figure

4.6, the maximal absolute value for the ACF is obtained for a lag time of h = 6,

and is slightly below 0.15. The negative coe�cient means that an under-average

number of power outages is related to a above-average number of tweets 90 minutes
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Figure 4.6: Cross-correlation graph between the conditioned time series of power
outages and the time series of power or electricity related tweets from Hurricane
Sandy.

later. Two other points, at h = 2 and h = −22 presents about the same absolute

value for their ACF. However, these coe�cients are supposed to lie between −1 and

1, therefore 0.15 or −0.15 do not seem to be really signi�cant.

The Figure 4.7 provides nine di�erent scatter plots of the power outages time series

versus the tweet time series, given for a 0 to 9 interval lag times. In each graph,

the correlation number is given on the right box. By observing these nine plots and

their correlation number, it looks impossible to detect a relationship between the

number of power outages and the number of tweets. Therefore, it looks like in this

case, the analysis is inconclusive.
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Figure 4.7: Scatterplots of number of power outages versus number of tweets, where
the tweet time series is graphed at increasing lags of the power outages time series.

4.2.4 Two Time Di�erentiation

In this section we test the same example, except that both time series are di�eren-

tiated twice.

As previously, the Figure 4.8 represents the cross-correlation coe�cient between the

tweet time series and the power outages time series. As shown in the graph, the

biggest ACF in absolute value is just a bit greater than 0.15, and occurs at h = −23.

Again, this coe�cient is negative. This can be interpreted as a relation between an

above-average number of power outages and an under-average number of tweets

3h45min minutes later. However, we cannot talk about existing correlation as this

number is pretty low for an ACF coe�cient. The same principle applies for the

absolute value of the ACF at h = 5 or h = −24.

The Figure 4.9 gives the nine scatterplots of the number of power outages versus the

number of tweets, taken from a 0 to a 9 interval lags times. Again, the correlation co-
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Figure 4.8: Cross-correlation graph between the conditioned time series of power
outages and the time series of power or electricity related tweets from Hurricane
Sandy, after a two time di�erentiation.

e�cients are pretty low, and it looks like there is no detectable relationship between

the number of power outages and the number of tweets. Therefore, di�erentiating

twice do not seem to be more conclusive in this case.

4.2.5 Windowed Cross-Correlation

In this part, the results of the windowed cross-correlation are presented, for di�erent

window sizes. Table 4.2 gives the cross-correlation coe�cient for the one time dif-

ferentiation case, and Table 4.3, for the two time di�erentiation case. As we can see

in Table 4.2, the values are quite low, as expected from the previous analysis. The

highest coe�cient is found for the smallest window size, and is on the same range of

values than the one found with the regular cross-correlation function. These results

tend to con�rm that there is no signi�cant correlation found here.

As we can see in Table 4.3, for every window size the maximum cross-correlation
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Figure 4.9: Scatterplots of number of power outages versus number of tweets, where
the tweet time series is graphed at increasing lags of the power outages time series.

Window Size Maximum Correlation Coe�cient
2 0.1666667
5 0.0666667
10 0.0333333
15 0.00215538
30 0.001075269
60 0.0005376344
90 0.0003584229

Table 4.2: Maximum correlation coe�cient for di�erent window sizes, for a one time
di�erentiation example.

Window Size Maximum Correlation Coe�cient
2 0.00
5 0.00
10 0.00
15 0.00
30 0.00
60 0.00
90 0.00

Table 4.3: Maximum correlation coe�cient for di�erent window sizes, for a one two
di�erentiation example.
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Keyword Combination Total Frequency of the Keywords Combination
hurricane + �ood 30416
hurricane + water 30814
hurricane + rain 71132
storm + �ood 23323
storm + water 18987
storm + rain 67212

Table 4.4: Frequency analysis of the keywords combination on Hurricane Sandy
data set.

coe�cient is always null. These results are conformed with the previous analysis as

no correlation were found. Therefore, it tends to con�rm that there is no correlation

between both time series in this example. However, it seems surprising that no

coe�cient is found at all. It could be explained by the fact that maybe, the small

coe�cients found previously occur for a very large delay, and so the window sizes

are too small.

4.3. Case 2 : Floods

This part provides the results of the cross-correlation analysis for the �ooding ex-

ample.

4.3.1 Tweets Selection

As for the �rst example, several keywords are selected regarding to their relevance

to the physical disruption caused. The �rst keyword is �ood, which also allows

to select words like �ooding or �ooded during searches. The second one is water,

and the last one rain. Table 4.4 presents the results of the frequency analysis of

the keywords combinations in the Hurricane Sandy data set. As we can see, the

combinations including the keyword rain are the most frequently used.
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Figure 4.10: Time series of the total number of �ood- water- and rain-related tweets
from Hurricane Sandy.

All the tweets containing the keywords are then selected and decomposed into a

time series taken over thirty minute intervals. Figure 4.10 represents the tweets

time series, and as previously some values are missing. These four time periods are

represented by the black lines. Figure 4.11 shows the tweets time series after linear

interpolation.

4.3.2 Water Peak Elevation Data Collection

This data set is composed of water peak elevations due to Hurricane Sandy, on the

Eastern seaboard, involving the following states : Virginia, Maryland, Delaware,

New Jersey, New York, Connecticut, Rhode Island, Massachusetts, and the city

of New York. This data are public and provided by the United States Geological

Survey (USGS).

Unfortunately, this data set is not as complete as the power outages data set. Indeed,

there aren't as many points, and this �ood data do not occur on regular time interval,
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Figure 4.11: Time series of the total number of �ood- water- and rain-related tweets
from Hurricane Sandy, after linear interpolation.

which could possibly damaged the quality of the cross-correlation analysis.

Figure 4.12 represents the water peak elevations time series. As we can observe on

the graph, the majority of the �oods seem to occur on the 29th of October 2012.

As previously, the time series can be decomposed into its trend, seasonal and random

elements. As we can observe on the Figure 4.13, it seems di�cult to detect a trend.

4.3.3 One Time Di�erentiation

In this part, the results of the cross-correlation analysis for the �ood example, with

only one time di�erentiation is presented.

The Figure 4.14 represents the correlation coe�cients between the tweet time series

and the water peak elevations time series. We can observe on the graph that the

highest ACF in absolute value appear on h = −6 and h = 1. As for previously these

values are quite low, and we can't conclude that a correlation exists between these

two time series here.
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Figure 4.12: Time series of the water peak elevations from Hurricane Sandy.

Figure 4.13: Decomposition of the water peak elevations time series into its trend,
seasonal and random elements.
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Figure 4.14: Cross-correlation graph between the conditioned time series of water
peak elevations and the time series of �ood or rain related tweets from Hurricane
Sandy.

Again, with Figure 4.15, the scatterplots of the water peak elevations versus the

number of tweets, taken from a 0 to a 9 interval lags times are given. When looking

at the graph, it seems impossible to determine a relationship between the number

of tweets and the water peak elevations.

4.3.4 Two Time Di�erentiation

This section presents the results of the cross-correlation analysis for the �ooding

example, with a two time di�erentiation.

The Figure 4.16 represents the cross-correlation function between the tweet time

series and the water peak elevations time series. As we can observe on the graph, it

looks like there isn't many high cross-correlation coe�cient in absolute value. The

greatest ones appear for h = 3 and h = 8, with a CCF slightly under 0.15, for a

negative correlation. Again, these numbers are too small for us to consider that

there is an actual correlation between these two time series.
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Figure 4.15: Scatterplots of number of water peak elevations versus number of
tweets, where the tweet time series is graphed at increasing lags of the �ood time
series.

On Figure 4.17, the scatterplots of the water peak elevations versus the number of

tweets, taken from a 0 to a 9 interval lags times are displayed. By observing the

values of the cross-correlation coe�cients, we cannot say that a correlation exists

here. We can conclude that there is no signi�cant correlation between the two time

series here.

4.3.5 Windowed Cross-Correlation

Here are presented the results of the windowed cross-correlation, for di�erent win-

dow sizes. The table 4.5 gives the cross-correlation coe�cients for the one time

di�erentiation example, and Table 4.6, for the two time di�erentiation case. As we

can observe on both Table 4.5 and Table 4.6, the results are null, for every window

size. There is no accuracy improvement compared to the previous analysis with

the regular cross-correlation function. Indeed, there is even less information as the

cross-correlation coe�cients found previously are not detected here. This can be
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Figure 4.16: Cross-correlation graph between the conditioned time series of water
peak elevations and the time series of �ood or rain related tweets from Hurricane
Sandy, after a two time di�erentiation.

Figure 4.17: Scatterplots of number of power outages versus number of tweets, where
the tweet time series is graphed at increasing lags of the power outages time series,
after a two time di�erentiation.
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Window Size Maximum Correlation Coe�cient
2 0.00
5 0.00
10 0.00
15 0.00
30 0.00
60 0.00
90 0.00

Table 4.5: Maximum correlation coe�cient for di�erent window sizes, for a one time
di�erentiation example.

Window Size Maximum Correlation Coe�cient
2 0.00
5 0.00
10 0.00
15 0.00
30 0.00
60 0.00
90 0.00

Table 4.6: Maximum correlation coe�cient for di�erent window sizes, for a one two
di�erentiation example.

explained by the fact that this method may be not as e�cient as the previous one

[5].
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Chapter 5

Conclusion

The main motivation on this project is that since Twitter has been created, many

studies have been conducted to exploit its capacity to be a social sensor of our

society, especially through sentiment analysis, with less interest on the physical

environment and their relationship. That's why, in this study, we compare Twitter's

behavior during a natural disaster, with a measurable physical disruption caused by

the hazard, with a cross-correlation analysis.

The cross-correlation analysis did not yield to successful conclusive results. Indeed,

for both examples studied, the highest absolute values of the CCF coe�cients are

quite low, below 0.20. Therefore, it is not possible to conclude that a correlation

exists between the number of tweets related to the hazard, and the measurable

disruption for these examples. Moreover, the results are pretty similar for both

examples between the one time di�erentiation case and the two time di�erentiation

case. No improvement has been observed by di�erentiating a second time both time

series. The second time di�erentiation is to ensure of the stationarity of the time

series, and that trend e�ect, like the time of the day where most tweets are posted,

is eliminated. Since for both cases the number of di�erentiation do not seem to have

an impact on the results of the CCF analysis, it could mean that the e�ect of the
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daily posting trend is quite limited.

The windowed cross-correlation analysis also did not provide successful proof of

a relationship between the physical environment and Twitter. Indeed, except for

the one time di�erentiation case on the power outages example during Hurricane

Sandy, no correlation is detected at all. The windowed cross-correlation function

is an alternative, but in no case a more accurate method than the regular CCF.

Therefore, it is not surprising that the coe�cients found are not higher in absolute

value than the previous ones. However, not having any correlation at all for most

cases is questionable.

All these results are similar as no clear correlation is found for any case. However,

it is also impossible to conclude for both examples, that the time series are not

correlated at all. This study only shows that we didn't �nd a correlation, not that

it didn't exist. Indeed, several factors may have in�uenced the analysis, and the

major one is the quality of the data sets used here. The Twitter data set is common

to both example, and even though it is composed of several million tweets related

to Hurricane Sandy, important holes may have impacted a lot the quality of the

analysis. The missing periods correspond mainly to times when Hurricane Sandy

stroke violently the Eastern seaboard, and the use of a linear interpolation to �ll the

gap may have increase uncertainty. Several factors may have caused these holes as

mentioned previously. It can be due to a technical issue during the data collection,

or may be human related. It is possible that people would stop using Twitter, or

social media in general to get safe during a natural disaster, or that they would

use carefully their electronic devices to save battery in case of power outages for

example. Also, for the second case, the water peak elevation data set do not contain

many points and there are not consistently taken over thirty minute intervals.

Unfortunately, after this study, it remains impossible to answer the research ques-

tion. The cross-correlation analysis do not allow us here to declare that the behavior
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of Twitter during a natural disaster is linked to the physical environment. However,

for all the reasons mentioned previously, we also cannot conclude that these two

entities are uncorrelated. To pursue this research, studying another natural disaster

example with di�erent data sets can be considered, preferably a large scale hazard,

where o�cial national agencies provide public data on the physical disruption such

as power outages. It would also have been interesting to perform a spatial analysis,

and compare the repartition of the tweets with the locations of the disruption. An-

other research interest could be to highlight the social index of the damaged zones,

and determine their use of social media during a natural catastrophe. Kyle Walker,

a geography teacher at the Texas Christian University, developed an interactive

map on social indexation in several states of the Unites States [25], which could be

interesting to compare if spatial coordinates are available on the data sets.
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Appendix A

Box Cox Transformation
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Figure A.1: Time series of the total number of power- and electric-related tweets,
after a Box Cox transformation with λ = 0.1.

Figure A.2: Time series of the total number of power outages, after a Box Cox
transformation with λ = 0.6.
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Figure A.3: Time series of the total number �ood related tweets, after a Box Cox
transformation with λ = 0.1.
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Appendix B

Di�erentiation
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Figure B.1: Time series of the di�erentiated, transformed power- and electricity-
related Twitter data.

Figure B.2: Time series of the di�erentiated, transformed power outages data.
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Figure B.3: Time series of the second order di�erentiated, transformed power- and
electricity-related Twitter data.

Figure B.4: Time series of the second order di�erentiated, transformed power out-
ages data.
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Figure B.5: Time series of the di�erentiated, transformed �ood-related Twitter data.

Figure B.6: Time series of the di�erentiated, transformed water peak elevations
data.
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Figure B.7: Time series of the di�erentiated, transformed �ood-related Twitter data.

Figure B.8: Time series of the di�erentiated, transformed water peak elevations
data.
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Appendix C

Augmented Dickey Fuller test

Results of the Augmented Dickey Fuller test for every time series, in both exam-

ples. A low p-value, and a high Dickey Fuller statistic mean that the time series is

stationary.

Time series Di�erentiation order Dickey Fuller coe� Lag order p-value
Power outages 1 -10.346 9 0.01

Tweets 1 -7.9078 9 0.01

Table C.1: Results of the Augmented Dickey Fuller test for the power outages
example with a one round di�erentiation.

Time series Di�erentiation order Dickey Fuller coe� Lag order p-value
Power outages 2 -18.37 9 0.01

Tweets 2 -14.683 9 0.01

Table C.2: Results of the Augmented Dickey Fuller test for the power outages
example with a two time di�erentiation.
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Time series Di�erentiation order Dickey Fuller coe� Lag order p-value
Water peak elevations 1 -5.5078 6 0.01

Tweets 1 -8.5456 6 0.01

Table C.3: Results of the Augmented Dickey Fuller test for the �ood example with
a one round di�erentiation.

Time series Di�erentiation order Dickey Fuller coe� Lag order p-value
Water peak elevations 2 -5.5078 6 0.01

Tweets 2 -8.5456 6 0.01

Table C.4: Results of the Augmented Dickey Fuller test for the �ood example with
a two time di�erentiation.
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