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ABSTRACT 
 

The US has defined a number of critical infrastructures, the disruption of which 

“would have a debilitating impact on security, national economic security, national public 

health or safety, or any combination of those matters”. Among these critical 

infrastructures are transportation networks, which enable the flow of people and 

commodities, and recent reports suggest that many highways, bridges, and other transit 

assets in the US fall short of a state of good repair, potentially threatening the efficiency 

of the network. In 2013, 55 million tons of goods valued at more than $49.3 billion 

traversed the US freight transportation system each day, and freight tonnage and 

monetary value rose by 6.3 and 8.0 percent, respectively, over 2007 levels. Over the next 

30 years, transportation’s contribution to the US gross domestic product is expected to 

grow to approximately $1.6 trillion. Given the potential for disruption by malevolent 

attacks, natural disasters, human-made accidents, or common failures, recent US planning 

documents focus on the criticality of transportation network preparedness. Emphasis has 

been placed on “securing and managing flows of people and goods” along transportation 

networks. The consequences of disruptions to critical infrastructures highlight the need 

to better understand resilience, or the ability to withstand the effects of and recover timely 

from a disruption. Particularly for critical infrastructures, the Infrastructure Security 

Partnership (2011) noted that a resilient infrastructure sector would “prepare for, prevent, 

protect against, respond or mitigate any anticipated or unexpected significant threat or 

event” and “rapidly recover and reconstitute critical assets, operations, and services with 

minimum damage and disruption.” As with any other critical infrastructure, resilience 

planning is important for multi-modal transportation networks due to their role in the 
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economic vitality of states, regions, and the broader country. The functionality of this 

network is threatened by disruptive events that can disable the capacity of the network to 

enable flows of commodities in portions of nodes and links. 

This research creates a new paradigm with which to improve decision making for 

freight transportation network sustainment through an integrated duple of resilience and 

interdependent economic impact. Integrating a multi-commodity network flow 

formulation with an economic interdependency model, driven by publicly available data 

from Bureau of Economic Analysis and U.S. Department of Transportation, I have 

proposed a framework to quantify the multi-regional, multi-industry impacts of a 

disruption in the transportation network which has led to (i) defining a new measure of 

network component importance, (ii) planning for adaptive capacity through contingent 

rerouting, (iii) investing for absorptive capacity, and (iv) guiding network recovery and 

resilience. This work has been applied a multimodal freight transportation network in 

Oklahoma that connects the state to several regional trading states, enabling the flow of 

six important commodities that have interdependent effects on the Oklahoma economy 

(classified into 62 industry sectors). 

. 
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CHAPTER 1 
 

INTRODUCTION AND MOTIVATION 
 

In response to the growing vulnerability of critical infrastructure given their 

exposure to natural hazards, malevolent attacks, and the challenges of aging, the 

Presidential Policy Directive on Critical Infrastructure Security and Resilience (PPD-21) 

(White House 2013) was established to focus national efforts to enhance the critical 

infrastructure network resilience.  

The Nation's critical infrastructure provides the essential services that underpin 

American society. Proactive and coordinated efforts are necessary to strengthen and 

maintain secure, functioning, and resilient critical infrastructure – including assets, 

networks, and systems – that are vital to public confidence and the Nation's safety, 

prosperity, and well-being.  

- Presidential Policy Directive/PPD-21: Critical Infrastructure Security and 

Resilience (The White House 2013) 

Among the critical infrastructures defined by the US government are 

transportation networks, which are vital to a society and support many economic activities 

including commerce and tourism. Disruptions triggered by natural hazards, human-made 

events, or common failures can severely compromise a region’s ability to move people 

and commodities, consequently leading to irrecoverable economic losses as well as public 

safety concerns. Many recent large-scale examples highlight the growing need to deal 

with disruptions: Hurricane Sandy that affected multiple infrastructure networks, 

including downed power lines and massive flooding on New York and New Jersey 
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roadways and one million cubic yards of debris that impeded transportation networks 

(Lipton 2013); the August 2003 US electric power blackout that caused transportation 

network disruptions (Minkel 2008); and Hurricane Isabel that adversely impacted the 

transportation system of the Hampton Roads, VA region in 2003 and overwhelmed 

emergency response (Smith and Graffeo 2005). The current state of disrepair of the US 

transportation network (e.g., roads given an American Society of Civil Engineers 

Infrastructure Report Card grade of D, bridges a C+, inland waterways a D- (ASCE 

2013a)) could make the network especially vulnerable to a disruptive event. The situation 

is no better for the state of Oklahoma, where bridges in particular received a lower letter 

grade of D+, which by definition is interpreted as a “poorly performing” infrastructure 

(ASCE 2013b). Recent US planning documents focus on transportation network 

preparedness (The House Committee on Transportation and Infrastructure 2013, US 

Department of Transportation 2014, Yusta et al. 2011), emphasizing “securing and 

managing flows of people and goods” along transportation networks (DHS 2014).  

The physical freight transportation network of the US, the largest in the world, 

consists of four million miles of public roads, 140,000 miles of railroad tracks, 11,000 

miles of navigable waterways, and a network of airports with the combined ability of 

shipping almost 68,000 tons of cargo per year (U.S. Department of Transportation 2013). 

Furthermore, the same document highlights the importance of the US transportation 

network in facilitating the convenient movement of resources among suppliers, 

manufacturers, wholesalers, and customers, with more than 300 million people and 7.5 

million organizations across 3.8 million square miles being served. The vital role the 

freight network plays in transporting raw materials and final products between 
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manufacturers and consumers highlights its position in commerce. The functionality of 

this network is threatened by disruptive events that can disable the capacity of the network 

to enable flows of commodities and cause an interruption of economic productivity across 

multiple industries. That is, the ultimate usefulness of understanding transportation 

network disruptions is not just a descriptor of physical damage, but of economic 

interruption due to infrastructure inoperability (Tierney 1997, Webb et al. 2000). As such, 

discussions of transportation network resilience should account for multi-industry 

impacts.  

This work focuses on the freight transportation network, particularly on its role of 

enabling the flow of commodities and facilitating economic productivity, and thus a 

methodological approach to measure network resilience in the context of multi-industry 

impacts is sought. That is, this work seeks to answer: how can we enhance freight 

transportation network resilience? This research addresses (i) measuring the vulnerability 

of a multimodal freight transportation network with multi-industry impacts in mind, (ii) 

using the vulnerability analysis to develop a measure of importance for each network 

component, (iii) planning for adaptive capacity, (iv) investing for absorptive capacity in 

critical infrastructures and industry sectors, (v) planning network restoration following a 

disruption. 

To model a supply-demand network for a set of business economic areas 

consisting of different industries interacting with their suppliers and customers located 

outside of their region through a multi-modal freight transportation system, a typical 

multi-commodity network flow (MCNF) model (e.g., Ahuja et al. (1993)) is used. The 
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goal of this model is to facilitate the commodity flows between suppliers and consumers 

through a capacitated transportation network while minimizing the cost of transportation. 

Planning decisions in a multi-modal freight transportation network is made at strategic, 

tactical, and operational levels (Crainic and Laporte 1997). It is assumed that (i) strategic 

decisions determine general development policies and define the operating strategies of 

the system over relatively long time horizons (e.g., the location of the physical 

transportation network, the location of main facilities such as rail yards or multi-modal 

platforms (Liotta et al. 2015)), (ii) tactical plans deal mostly with medium-term decisions 

(e.g., route choice and type of service to operate, aggregate scheduling (Kengpol et al. 

2012)), and (iii) operational level decisions are made when real or near real-time response 

is required (e.g., crew or container scheduling (Wang and Yun 2013)). 

Natural hazards, human-made events, or common failures could threaten the 

functionality of the network components and consequently interrupt commodity flows. A 

common theme in the analysis and evaluation of network vulnerability is interdiction 

(Gedik et al. 2014, Murray et al. 2008, Murray et al. 2007), in which scenario-based 

removal of network components is assumed to represent the effects of a disruptive event. 

The consequences of a targeted attack, accident, or natural disaster are simulated as 

disruptions in the flow of valuable goods or services through the network caused by 

disabling network components. The network is analyzed to determine how vulnerable it 

is to a disruption, and which nodes or links, if lost, result in the most damage to network 

performance. Further, the temporal and spatial scales at which analysis is conducted, as 

well as the duration of the disruptive event, affect the disruption analysis. 
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Approaches to interdict a network differ based on how disruption scenarios are 

assessed and understood. A disruption scenario is defined by the set of network 

components that are impacted, the degree to which they are disabled, and the operating 

conditions (e.g., network activity and link/node capacities) of the network prior to the 

disruption regardless of the initiating event that causes the disruption. In extreme cases, 

an affected facility may be rendered completely inoperable by a disruption (e.g., losing a 

road completely due to a bridge collapse as in the case of the I-35 Mississippi River bridge 

failure in 2007). In other instances, a disruption may impact network activity to a lesser 

degree given that only some of the functionality of a facility may be lost (e.g., an accident 

blocking a single lane of an interstate highway segment). The identification of disruption 

scenarios enables an impact assessment. Impacts can range from those directly associated 

with network operation, such as connectivity, flow, or capacity reduction, to more 

complex associations, such as the economic impacts affecting the production and 

consumption of flows (Matisziw and Murray 2009). 

The flexibility in defining scenario-specific disruptions based on historical data 

or other desired analysis makes it appropriate for network vulnerability studies. In 

particular, it provides opportunities for understanding a component’s role and importance 

within a network. For example, one might be interested in the impact of the closure of a 

bridge or a road segment on network performance (e.g., the flow of commodities, the 

topological behavior of a post-disruption network, the multi-industry economic impacts). 

A deterministic scenario-specific approach (Murray et al. 2008), where the potential 

ramifications of the removal of a particular network component is evaluated, is often used 

to quantify network component importance measures (e.g., Nagurney and Qiang 2008, 
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Jenelius et al. 2006). Stochasticity could be introduced to capture uncertainty in disruptive 

scenarios (e.g., Miller-Hooks et al. 2012, Burgholzer et al. 2013, Baroud et al. 2014).  

To model the interdependent adverse effect of commodity flow disruption on 

multiple industry sectors located in different regions, we use a multi-regional extension 

of Inoperability Input-Output Model (IIM). The IIM is an extension of the traditional 

economic input-output model (Leontief 1986), a linear model of the commodity flows in 

a set of interconnected industries. A risk-based multi-regional interdependency model 

used to measure the economic impacts of a transportation disruption in terms of remaining 

commodities at suppliers and unmet demands at demand nodes. The input-output (I-O) 

model is a widely accepted model for analyzing the interdependent connections among 

industries (Miller and Blair 2009), and the use of the I-O enterprise for studying 

disruptions was among the 10 Most Important Accomplishments in Risk Analysis: 1980-

2010 (Greenberg et al. 2012). 

Despite of the I-O model’s assumption of a linear relationship of commodity 

flows among industries, the extensive usage of I-O models is due in part to the availability 

data describing the parameters of the I-O model in a number of countries (OECD 2011, 

Timmer et al. 2015). This includes a data collection effort by the US Bureau of Economic 

Analysis (BEA), which maintains input-output tables at different levels of aggregation 

(BEA 2010). Extending the capability of the I-O model, Santos and Haimes (2004) 

propose the Inoperability Input-Output Model (IIM) to represent the propagation of 

inoperability, or the proportional extent to which industries are unproductive after a 

change in demand or a forced change in demand due to a lack of supply. The use of the 
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IIM can model inoperability in an economic setting, or in a set of interdependent 

infrastructures (Setola and De Porcellinis 2008, Crowther and Haimes 2010, Oliva et al. 

2014). The IIM and some extensions have been deployed in a number of contexts, 

including analyses of infrastructure disruptions (Anderson et al. 2007, Pant et al. 2011, 

2015, Jonkeren et al. 2015, Mackenzie et al. 2012), workforce losses (Orsi and Santos 

2010a,b), and supply chain risk (Barker and Santos 2010a,b), among others. Furthermore, 

the IIM has been used in multi-industry vulnerability studies (e.g., Yu et al. (2014) 

developed a multi-perspective approach for vulnerability decomposition with the aim of 

prioritizing key economic sectors in the aftermath of disruptive events).   

Several definitions of resilience have been proposed, including the ability to 

withstand, adapt to, and recover from a disruption, a definition with which many would 

largely agree (The White House 2011). Barker et al. (2013) highlight two important 

dimensions of resilience: (i) vulnerability, or the extent to which the performance of a 

system degrades after an initiating disruption, and (ii) recoverability, or the ability of a 

system to return to a desired performance level in a timely manner. These are similar to 

the concepts of robustness and rapidity in the resilience triangle literature (Bruneau et al. 

2003). Similarly, Vugrin and Camphouse (2011) defined the resilience capacity of a 

system as a function of: (i) absorptive capacity, or the extent to which a system is able to 

absorb shocks from disruptive events, (ii) adaptive capacity, or the extent to which a 

system can quickly adapt after a disruption by temporary means, and (iii) restorative 

capacity, or the extent to which the system can recover from a disruption or be 

reconstructed in the long-term. As such, absorptive, adaptive, and restorative capacities 
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can be viewed as first, second, and third lines of defense, respectively (Hosseini and 

Barker 2016). Figure 1.1 highlights the relationship between (i) vulnerability and 

recoverability and (ii) absorptive, adaptive, and restorative capacities. 

 

 

Figure 1.1. The relationship between (i) the vulnerability and recoverability 
dimensions of resilience and (ii) the components of absorptive capacity with 

respect to system performance 𝝋(𝒕). 
 

Following the introduction presented in Chapter 1, Chapter 2 presents a 

framework developed to measure the network vulnerability from the unique perspective 

of multi-industry impacts. The framework is illustrated with a case study considering a 

multi-modal freight transportation network consisting of inland waterways, railways, and 

interstate highways that connect the state of Oklahoma to other surrounding states.   

In Chapter 3, it is sought how investing in hardening both the infrastructure (e.g., 

backup equipment) and industries themselves (e.g., on-hand inventory) can lessen the 

effects of disruptions. Chapter 4 of this dissertation is to devise contingent rerouting plans 

to strengthen the network’s adaptive capacity. And, in Chapter 5, network restoration 
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activities, in terms of the order in which disrupted components should be recovered to 

enhance the economic productivity, are discussed. Finally, in Chapter 6, concluding 

remarks and future research avenues are discussed. 
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CHAPTER 2 
 

FREIGHT TRANSPORTATION NETWORK VULNERABILITY 
 

Presidential Policy Directive 21 states that critical infrastructure “must be secure 

and able to withstand and rapidly recover from all hazards” (The White House 2013). 

This combination of the ability to (i) withstand the effects of a disruption and (ii) recover 

timely from the disruption is often referred to as resilience (Hosseini et al. 2016). Figure 

2.1. highlights these two dimensions of resilience: vulnerability and recoverability (Henry 

and Ramirez-Marquez 2012, Pant et al. 2014). The network service function 𝜑(𝑡) 

describes the behavior or performance of the network at time 𝑡 (e.g., 𝜑(𝑡) could describe 

traffic or commodity flow in a transportation network). The vulnerability dimension of 

resilience is the focus of this work.  

 

Figure 2.1. System performance, (t), trajectory following a disruptive event 
(source: Henry and Ramirez-Marquez (2012)). 
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In a freight transportation network, vulnerability is considered to be a problem of 

interrupted serviceability or accessibility of network components, leading to reduced 

system functionality (Berdica 2002, Chen et al. 2007). O’Kelly (2014) classifies network 

vulnerability into link vulnerability, or the reduction of a network’s capability after losing 

a link, and nodal vulnerability, or the extent to which a node plays a critical role in the 

operation of the whole network. From the network interdiction literature, where network 

components (nodes or arcs) are disabled intentionally, there are three approaches to 

evaluate network vulnerability (Murray et al. 2008): (i) scenario-specific evaluation, 

where the potential consequences of a specific disruptive scenario or set of scenarios is 

evaluated (e.g., studying the impact of losing a bridge, a road segment, or a hub on 

network performance (Jenelius and Mattsson 2012, Burgholzer et al. 2013, Rupi et al. 

2014, Fotuhi and Huynh 2017)), (ii) strategy-specific assessment, where vulnerability is 

assessed with respect to a hypothesized sequence or strategy of disruptions targeting 

components perceived to be important (e.g., Erath et al. 2010, Park et al. 2011, Knoop et 

al. 2012), and (iii) mathematical modeling assessment (e.g., Sullivan et al. 2010, Jenelius 

et al. 2010), using game-theoretical techniques to find worst-case scenarios. In our work, 

to analyze network vulnerability and define a measure of importance for network 

components, a scenario-specific approach is taken by analyzing the proportional effect 

on the flow of commodities given the removal of one node/link at time.   

Most work in network vulnerability focuses on network behavior after a 

disruption in terms of graph theoretic measures, such as average shortest distance, 

network diameter, average edge betweenness, and cluster efficiency (e.g., Albert and 

Barabasi 2002, Jonsson et al. 2008, Chen et al. 2010, Mishkovski et al. 2011, Johansson 
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et al. 2013), which describe what is commonly referred to as structural vulnerability. This 

is different from functional vulnerability, where operational characteristics (e.g., network 

flow) of different components are taken into consideration (Ouyang et al 2009). To 

capture the functional aspects of network vulnerability, a measure of importance for 

network components was introduced by Nagurney and Qiang (2008, 2007a,b) based on 

network performance/efficiency considering demands, costs, and flows, as well as 

behavior of the users of the network. Following the lead of Nagurney and Qiang, the 

emphasis of this work deals with describing network vulnerability with respect to flow 

along the network, a more tangible approach than focusing solely on topological features 

of the network and amenable to an analysis of multi-industry economic impacts. That is, 

𝜑(𝑡) is used to describe the flow along the transportation network. Further literature 

describing network component importance based on flow measures is sparse (Rocco et 

al. 2010, Nicholson et al. 2016), and, to the authors’ knowledge, the methodology 

proposed in this work for pinpointing the contribution and importance of individual 

transportation network components to multi-industry economic impacts is an area that 

has not been previously pursued in the literature.  

 This chapter considers network vulnerability as a relative drop in the commodity 

flows along the network after the removal of a particular node or link. And a drop in the 

flow of commodities would generate subsequent impacts on multiple industries relying 

on those commodities. While several approaches have been proposed to capture 

interdependencies among infrastructure and industries (Pederson et al. 2006, Haimes 

2009, Rose et al. 2012, Ouyang 2014), this work makes use of an economic input-output 

model extension that quantifies the propagation of multi-industry inoperability (the extent 
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to which industry output will not be produced) caused by perturbations in supply and/or 

demand.  

Despite the excellent use of network-based models in representing 

interdependencies which consider various aspects of network vulnerability (Holden et al. 

2013, Miller-Hooks et al. 2012, Pederson et al. 2006), there exists a need to integrate parts 

of these models with multi-industry impacts to address freight transportation functionality 

as enabling the flow of commodities and facilitating economic productivity. This need is 

addressed with a four-step methodology, as illustrated in Figure 2.2, which then 

culminates in a transportation network component importance measure.  

 

Figure 2.2. Four step approach to assessing transportation component 
importance with multi-industry impacts. 

 

2.2.1 Baseline Network Flow 

To study the vulnerability of a multi-modal freight transportation network, which 

serves as a facilitator of 𝑛 interacting industries, the topology of the network and 
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corresponding supply and demand nodes must be extracted. The conventional MCNF 

problem for a network, 𝐺(𝑁, 𝐿) with a set of nodes, 𝑁, a set of links, 𝐿, and a number 𝐾 

of commodities, is formulated in model M1. The flow of commodity 𝑘 on link (𝑖, 𝑗) is 

represented with 𝑓௜௝
௞, and the cost of shipment for commodity k on link (𝑖, 𝑗) is 𝑤௜௝

௞ . The 

capacity of link (𝑖, 𝑗) is represented with 𝑢௜௝, and the supply/demand of commodity 𝑘 at 

node 𝑖 is represented with 𝑏௜
௞, defining the “bundle” and “mass balance” constraints in 

model M1, respectively. Note that 𝑏௜
௞ is positive for supply nodes, negative for demand 

nodes, and zero for transshipment (or intermediate) nodes. The capacity of each link is 

considered as a shared constraint for all commodities flowing on the link.   

𝑚𝑖𝑛 ෍ ෍ 𝑤௜௝
௞ 𝑓௜௝

௞

௞(௜,௝)∈ ௅

𝑠. 𝑡. ෍ 𝑓௜௝
௞

௞

≤  𝑢௜௝  ∀ (𝑖, 𝑗) ∈ 𝐿

෍ 𝑓௜௝
௞

(௜,௝)∈ ௅

−  ෍ 𝑓௝௜
௞

(௝,௜)∈ ௅

=  𝑏௜
௞  ∀ 𝑖 ∈ 𝑁, 𝑘 = 1, … , 𝐾

𝑓௜௝
௞ ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐿, 𝑘 = 1, … , 𝐾    

 (M1) 

 

In fact, a generic MCNF model provides a means to formulate the supply-demand 

network in which a multi-modal freight transportation network connects industries and 

enables trading relationships and interactions. From a tactical point of view, the 

integration of (i) business economic sectors and (ii) their supply capabilities or demand 

requirements together with (iii) the structure of the transportation network can result in a 

minimum cost MCNF model that can route the commodities from suppliers to the demand 

nodes via 𝑓௜௝
௞, collectively representing the flow of commodities on the links of a baseline 

(undisrupted) network.  
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2.2.2 Network Disruption 

This step evaluates the effect of losing a network component on freight flow 

through the network and resulting consequences on supply/demand nodes. Hence, a 

disruptive scenario is defined as the removal of a particular network component. An 

optimization formulation is developed to reroute commodity flows through the residual 

network, pursuing the maximum flow throughout the network and capturing failure in the 

form of remaining commodities at supply nodes and unmet demands at demand nodes, as 

formulated in model M2. Intuitively, a decision maker would likely desire to reroute 

commodities to take advantage of the remaining capacity of the residual network. Note 

the difference in perspective in the post-disruption MCNF developed here: prior to the 

disruption, model M1 minimizes the cost of transporting commodities along the 

capacitated network, where model M2 maximizes the flow to meet as much demand as 

possible given the interrupted network with an updated set of links, 𝐿ᇱ, and nodes 𝑁ᇱ. To 

capture undelivered commodities remaining with the suppliers or unsatisfied demand at 

demand nodes, a slac𝐿ᇱ,k variable 𝑆௜
௞ is defined. The magnitude of 𝑆௜

௞ is positive, and 

multiplier 𝛾௜ takes on a negative value for the set of demand nodes (after disruption) 𝑁ି
ᇱ , 

a positive value for supply nodes (after disruption) 𝑁ା
ᇱ , and zero for transshipment nodes 

(after disruption) 𝑁଴
ᇱ. The objective function maximizes the sum of commodity-specific 

flows, where 𝑓௜௝
ᇱ௞ represents the flow of commodity 𝑘 across link (𝑖, 𝑗) which remains in 

the updated set of links, 𝐿ᇱ.  Slack variable 𝑆௜
௞ will be used in the next step to calculate 

inoperability among multiple industries. Here it is assumed that each type of commodity 

represents an industry, and interdependent inoperability propagated through the entire 
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regional economy caused by unsatisfactory levels of demands/supplies will be pursued in 

the next step.  

𝑚𝑎𝑥 ෍ ෍ 𝑓௜௝
ᇱ௞

௞(௜,௝)∈ ௅ᇲ

𝑠. 𝑡. ෍ 𝑓௜௝
ᇱ௞

௞

≤  𝑢௜௝
ᇱ  ∀ (𝑖, 𝑗) ∈ 𝐿ᇱ

෍ 𝑓௜௝
ᇱ௞

(௜,௝)∈ ௅ᇲ

− ෍ 𝑓௝௜
ᇱ௞

(௜,௝)∈ ௅ᇲ

+  𝛾௜𝑆௜
௞ =  𝑏௜

ᇱ௞  ∀ 𝑖 ∈  𝑁ᇱ, 𝑘 = 1, . . . , 𝐾

𝛾௜ = ൝
−1
+1
0

       

𝑓𝑜𝑟 𝑖 ∈ 𝑁ି
ᇱ

𝑓𝑜𝑟 𝑖 ∈ 𝑁ା
ᇱ

𝑓𝑜𝑟 𝑖 ∈ 𝑁଴
ᇱ

𝑓௜௝
ᇱ௞ ≥ 0, 𝑆௜

௞ ≥ 0  ∀ (𝑖, 𝑗) ∈ 𝐿ᇱ, 𝑘 = 1, . . . , 𝐾

 (M2) 

2.2.3 Multi-Industry Economic Impact 

When a disruption within the transportation network results in remaining 

commodities at supply nodes and/or unmet demand at demand nodes, inoperability 

propagates throughout industries in a region. Without loss of generality, each node within 

the network is considered to be either a supplier or a consumer of a particular commodity. 

Each commodity belongs to an industry in the economy as defined by the North American 

Industry Classification System (NAICS). To represent the multi-industry impacts of 

unmet demands at demand nodes and remaining commodities at the suppliers’ side in the 

MCNF, an extension of the input-output model is used. The input-output (I-O) model, for 

which Wassily Leontief (1966) won a Nobel Prize, has been widely accepted as a useful 

model for analyzing the interdependent connections among industries (Miller and Blair 

2009). Under a static equilibrium, the total output of the industry 𝑠 is distributed to other 

industries and also satisfies external (consumer) demand. This equilibrium condition is 

described with 𝑥௞ = ∑ 𝑧௞௥
௡
௥ୀଵ +  𝑐௞, where 𝑥௞ is the total output of industry 𝑘, 𝑧௞௥ is the 
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flow of commodities produced by industry 𝑘 and used as input to production in industry 

𝑟, and 𝑐௞  is the external demand for industry 𝑘. The flow of commodities 𝑧௞௥ is assumed 

to be proportional to the output of industry 𝑟 (𝑟 ∈ {1, … , 𝐾} and 𝑟 ≠ 𝑘), expressed as 

𝑧௞௥ =  𝑎௞௥𝑥௥. Further, it is assumed that each industry produces a sole commodity, such 

that industry 𝑘 produces commodity 𝑘. The common form of the Leontief input-output 

model is expressed in Eq. (2.1), where 𝐱 is the vector of industry production outputs, 𝐀 

is an industry-by-industry matrix of interdependency coefficients, 𝑎௞௥, and 𝐜 is a vector 

of final demands. The model shows that total production is made up of industry-to-

industry intermediate production, 𝐀𝐱, and production to satisfy final demand, 𝐜. Terms 

𝑧௞௥, 𝑥௥, and 𝑐௞ are measured in monetary units. 

𝒙 = Ax + 𝒄 ⇒ 𝒙 = [𝑰 − 𝑨]ିଵ𝒄 (2.1) 

 

Instead of describing the connections between the interdependent industries in 

terms of commodity flow dollars, the IIM illustrates how normalized production losses 

propagate through interconnected industries, providing a different perspective from the 

traditional I-O model.  The IIM is provided in Eq. (2.2), describing the relationships 

among 𝐾 industries, resulting in matrices of size 𝐾×𝐾 and vectors of length 𝐾. 

𝒒 = 𝑨⋆𝒒 + 𝒄⋆ ⇒ 𝒒 = [𝑰 − 𝑨⋆]ିଵ𝒄⋆ (2.2) 

 

Vector 𝐪 is a vector of industry inoperability describing the proportional extent to 

which as-planned productivity or functionality is not realized following a disruptive 

event. Inoperability for industry 𝑘 is defined in Eq. (2.3), where as-planned total output 

is represented with 𝑥ො௞ and degraded total output resulting from a disruption is represented 
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with 𝑥෤௞. An inoperability of 0 suggests that an industry is operating at normal production 

levels, while an inoperability of 1 suggests that the industry has become completely 

inoperable. 

𝑞௞ = (𝑥ො௞ − 𝑥෤௞) 𝑥ො௞⁄  ⟺ 𝒒 = [𝑑𝑖𝑎𝑔(𝒙ෝ)]ିଵ(𝒙ෝ − 𝒙෥) (2.3) 

 

Normalized interdependency matrix 𝐀⋆ is a normalized form of the original 𝐀 

matrix describing the extent of interdependence among a set of industries. As stated by 

Eq. (2.4), the row elements of 𝐀⋆ indicate the proportion of additional inoperability that 

are contributed by a column industry to the row industry. 

𝑎௥௞
⋆ = 𝑎௥௞(𝑥ො௞ 𝑥ො௥⁄ )  ⟺ 𝑨⋆ = [𝑑𝑖𝑎𝑔(𝒙ෝ)]ିଵ𝑨[𝑑𝑖𝑎𝑔(𝒙ෝ)] (2.4) 

 

Eq. (2.5) provides the calculation of 𝐜⋆, a vector of normalized demand reduction. 

The elements of 𝐜⋆ represent the difference in as-planned demand 𝑐̂௞ and perturbed 

demand 𝑐̃௞ divided by as-planned production, quantifying the reduced final demand for 

industry 𝑘 as a proportion of total as-planned output. 

𝑐௞
⋆ = (𝑐̂௞ − 𝑐̃௞) 𝑥ො௞⁄  ⟺ 𝒄⋆ = [𝑑𝑖𝑎𝑔(𝒙ෝ)]ିଵ(𝒄ො − 𝒄෤) (2.5) 

 

For the traditional economic loss metric, losses can be calculated by multiplying 

each industry’s production level in monetary units by its inoperability level: for industry 

𝑘, 𝑄௞ = 𝑥௞𝑞௞, or for the entire economy of industries, 𝑄 = 𝐱்𝐪. As such, planning 

decisions can be made with respect to inoperability or economic impact at the industry 

level, or with respect to economic impact across multiple industries. 
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The freight transportation network provides a platform for commodity flows 

between industries. Since the IIM models how demand-related risk in a given industry 

propagates to other industries due to their interdependent productivity, the multi-industry 

impact of a disruption to a freight transportation network can be studied when network 

losses are related to final consumption reduction and inoperability terms as shown in 

subsequent subsections. The demand-reduction IIM proposed by Santos and Haimes 

(2004) has been successfully employed to study multi-industry impacts of perturbations 

in supply and demand (e.g., Resurreccion and Santos (2013), Pant et al. (2011), Haggerty 

et al. (2008), Lian and Haimes (2006)). However, some (e.g., Kujawski (2006), Kelly 

(2015)) have questioned the usefulness (and theoretical plausibility) of supply-driven 

models developed from concepts by Ghosh (1985). Leung et al. (2007) integrated a 

supply-side price IIM and output-side IIM to address initiating perturbations related to 

input factors (value added) and to industry output levels, though some aspects of this 

model may be impractical for integration with supply-demand networks as applied in our 

proposed approach (though may be effective in modeling disruptions to manufacturing 

systems, as noted by Kelly (2015)). Here, we translate a disruption in the form of 

remaining commodities at supply nodes and/or unmet demand at demand nodes into the 

two IIM metrics of inoperability and final consumption perturbation, based on a demand-

reduction IIM implemented by Pant et al. (2011) in modeling supply and demand 

perturbation caused by a port closure. Pant et al. (2011) considered commodities 

remaining at suppliers after a disruption to calculate the final consumption perturbation. 

And the authors considered unmet demands to calculate a “forced” demand reduction, 

assuming that a disruption decreases the supply of a commodity for a demand node while 
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the final external consumption remains virtually unaffected. In such a case, the demand 

nodes temporarily sacrifice their internal need for that commodity until it returns to its 

as-planned supply level, and a surrogate to supply reduction is calculated from the 

combination of “forced” internal consumption and an output inoperability.  

In the following subsections, 𝑁ఈ represents the set of nodes within the area of 

interest 𝛼, and 𝑁ఈഥ  represents the set of nodes outside of the area of interest, such that 

𝑁 = 𝑁ఈ ∪ 𝑁ఈഥ . We formulate the economic consequences of a failure within a particular 

area of interest (e.g., a business economic area, county, state, entire country). As such, 

the failure in the form of remaining commodities at suppliers and unmet demand at 

consumers are captured only in the nodes within the area of interest and each of the 

economic parameters (i.e., 𝐱, 𝐜, 𝐜⋆and 𝐪) are indicators of the industries specific to the 

region of interest. To simplify the notation, superscript 𝛼 is not included for these 

economic metrics to avoid unnecessary indices.  

Modeling Remaining Supply: Transportation facilities operate as facilitators of 

commodity flows across business economic areas. For a supplier of commodity 𝑘 located 

in node 𝑖, any transportation network disruption that perturbs its desired export will be 

considered to be a reduction in final consumption. As modeled in Eq. (2.6), final 

consumption for industry 𝑘 includes commodities consumed by industry k itself 

internally, (𝑐̂௞)௜௡௧, and the amount of external consumption that is exported through the 

network, (𝑐̂௞)ீ. It is assumed that the disruption results in losses of commodity flows 

only through the network, while industry production activities unrelated to the network 

experience no direct failure but might be affected indirectly by a disruption within the 

network (due to an interdependent loss of economic productivity). When industry 𝑘 has 
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difficulty only in exporting commodities, it experiences commodities remaining at supply 

nodes in the region of interest totaling ∑ 𝑆𝑖
௞

௜ ∈( ேశ
ᇲഀ∩ேೖ

ᇲ ) , where 𝑁ା
ᇱఈ represents the set of 

nodes that are home to suppliers in the region of interest 𝛼 after the disruption, as shown 

in Eq. (2.7). As such, the final consumption perturbation for industries that experience 

difficulties only in exporting commodities is modeled as the amount of slack divided by 

as-planned industry output in Eq. (2.8), Note that the supply-demand network may consist 

of suppliers and consumers located outside of the region of interest, yet failures to these 

suppliers and consumers are not accounted for in this model.   

𝑐̂௞ = (𝑐̂௞)௜௡௧ + (𝑐̂௞)ீ           𝑘 ∈ {1, … , 𝑛} (2.6) 

 

𝑐̂௞ − 𝑐̃௞ = ෍ 𝑆𝑖
௞

௜ ∈( ேశ
ᇲഀ∩ேೖ

ᇲ )

          𝑘 ∈ {1, … , 𝑛} 
(2.7) 

 

𝑐௞
⋆ =

∑ 𝑆𝑖
௞

௜ ∈( ேశ
ᇲഀ∩ேೖ

ᇲ )

𝑥ො௞
            𝑘 ∈ {1, … , 𝑛} (2.8) 

 

Modeling Unmet Demand: As discussed by Pant et al. (2011), the amount of 

import (input) of industry k at demand nodes in the supply-demand network defined as 

∑ −𝑏𝑖
௞

௜ ∈൫ேష
ᇲഀ∩ேೖ

ᇲ ൯  contributes toward the production activity and the internal consumption 

of industry k. Thus, when industry k has difficulty only in importing commodities, it 

experiences unmet demands in the region of interest totaling ∑ 𝑆𝑖
௞

௜ ∈( ேష
ᇲഀ∩ேೖ

ᇲ ) . This results 

in the loss of output, ∆𝑥ො௞, representing (𝑥ො௞ − 𝑥෤௞), and final internal 
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consumption, ∆(𝑐̂௞)௜௡௧. Here, 𝑁ି
ᇱఈ represents the set of nodes after disruption located in 

the geographical area of interest 𝛼 that are home to consumers of commodity k. 

∑ 𝑆𝑖
௞

௜ ∈( ேష
ᇲഀ∩ேೖ

ᇲ ) = ∆𝑥ො௞ + ∆(𝑐̂௞)௜௡௧            𝑘 ∈ {1, … , 𝑛}   (2.9) 

 

Therefore, for industry 𝑘, unmet demand causes an inoperability, 𝑞௞, measured as 

the loss of production in industry k as a proportion of its original production level, as 

shown in Eq. (2.3) with ∆𝑥ො௞ 𝑥ො௞⁄ . Also, internal consumption failure, as shown in Eq. 

(2.6), causes a final consumption perturbation, 𝑐௞
⋆, and is modeled as a measure of the 

change in the final consumption as a proportion of the original production level in 

industry k, as shown in Eq. (2.5) with ∆𝑐̂௞ 𝑥ො௞⁄ . The approach to formulate failure in the 

form of unmet demand is adapted from the port disruption work of Pant et al. (2011, 

2015) and the transportation network vulnerability formulation of Darayi et al. (2017), in 

which a slack variable 𝑆௜
௞ is defined to capture unsatisfied demand at demand nodes (or 

undelivered commodities remaining with the suppliers), shown in Eq. (2.10). For the 

industries experiencing difficulties only in importing their required commodities, there 

exists a final consumption perturbation, as modeled in Eq. (2.11). 

∆𝑐̂௞

𝑥ො௞
=

∑ 𝑆𝑖
௞

௜ ∈( ேష
ᇲഀ∩ேೖ

ᇲ ) − ∆𝑥ො௞

𝑥ො௞
         𝑘 ∈ {1, … , 𝑛} (2.10) 

 

𝑐௞
⋆ =

∑ 𝑆𝑖
௞

௜ ∈( ேష
ᇲഀ∩ேೖ

ᇲ )

𝑥ො௞
− 𝑞௞        𝑘 ∈ {1, … , 𝑛} (2.11) 

 

Eqs. (2.8) and (2.11) combined with the IIM in Eq. (2.2) form a complete solvable 

system that quantifies the inoperability and final consumption perturbations for the 
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collection of 𝐾 interconnected industries. For simplicity, the demand perturbations in 

Eqs. (2.8) and (2.11) assume failure in either only demand nodes or only supply nodes 

within a particular industry, whereas in actual situations, some industries would likely 

consist of both supply and demand nodes. Therefore, the total final consumption 

perturbation for industry 𝑘, in the case of having both importing (demand) and exporting 

(supply) roles, is given in Eq. (2.12). 

𝑐௞
⋆ =

∑ 𝑆𝑖
௞

௜ ∈( ேశ
ᇲഀ∩ேೖ

ᇲ )

𝑥ො௞
+

∑ 𝑆𝑖
௞

௜ ∈( ேష
ᇲഀ∩ேೖ

ᇲ )

𝑥ො௞
− 𝑞௞                𝑘 ∈ {1, … , 𝑛} (2.12) 

 

Any of Eqs. (2.8), (2.11), or (2.12) captures the perturbation vector 𝐜⋆ that 

parameterizes the interdependency model in Eq. (2.2) based on the exporting or importing 

nature of the nodes belonging to each industry. Thus, q can then be calculated to measure 

the proportional extent to which as-planned productivity or functionality is not realized 

following a transportation network disruption that results in unmet demand or 

commodities remaining with suppliers, and a contingent rerouting strategy can be devised 

during the period of disruption to lessen the multi-industry impact of the disruption. 

2.2.4 Vulnerability Analysis and Component Importance 

Network vulnerability analysis emerged from the network reliability literature, 

which is often interested in the probability of a desired network performance (Boesch 

2009) or the consequences of the failure of a network component regardless of the 

probability of failure (Taylor and Susilawati 2012, Ramirez-Marquez et al. 2016). This 

second perspective enables the calculation of component importance measures, a long-
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studied area in reliability engineering (Kuo and Zhu 2012), wherein network components 

that impact the performance of the network are identified.  

 Step 4 develops scenario-specific component importance measures based on 

vulnerability. The consideration of the economic impacts of a disruption of transportation 

network components enhances the literature on transportation network vulnerability, 

which have traditionally focused on flow or topological aspects of the network (e.g., 

connectivity and accessibility) as metrics for network performance (Reggiani et al. 2015, 

Mattsson and Jenelius 2015, Sun et al. 2017). As such, when we define our new 

importance measure, we consider the ultimate role of a freight transportation network as 

a facilitator of economic productivity. Such impact is calculated for different disruptive 

scenarios, 𝑒௣, where 𝑝 represents the component removed from the network (as displayed 

in Figure 2.1). As a result, this work advances the study of network vulnerability from 

the perspective of network performance in terms of commodity-driven multi-industry 

impact rather than graph theoretic or flow importance measures. Malfunction of a freight 

transportation network serving a regional economy -- comprised of interdependent 

industries -- causes failure in the form of a delayed shipment of commodities at supply 

nodes and/or unmet demands at demand nodes. Here, the interdependent effect of the 

failure in multiple industries is captured by the IIM as described in Section 2.2.3. And 

finally, vulnerability is defined as the magnitude of this failure in terms of multi-industry 

economic impact, given the occurrence of a particular disruptive event, 𝑒௣. Note, of 

course, that network vulnerability is highly dependent upon the type and extent of 𝑒௣, 

which assumes complete removal of component 𝑝 (though a proportional reduction could 

also be explored). 
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Two vulnerability measures, stated in Eqs. (2.13) and (2.14), are proposed. For 

network topology 𝐺, fixed demand/supply vector 𝐛, and disrupted (removed) component 

𝑝, vulnerability is measured as the relative network efficiency, or the multi-industry 

economic loss 𝑄(𝐺 − 𝑝, 𝐛), after 𝑝 is removed from the network, 𝐺. 𝑄୫ୟ୶ is the 

maximum multi-industry loss caused by a shutdown in the entire network (i.e., a removal 

of all nodes). As such, the vulnerability measure in Eq. (2.13) quantifies the proportional 

economy-wide impact of a loss of component 𝑝 relative to a loss in all components.  This 

measure lies on (0,1), where 0 means that losing component p has no effect on the total 

economy and 1 means that the loss of component p is as disruptive as having a shutdown 

of the entire network. 

𝜂௣(𝐺, 𝐛) =  
𝑄(𝐺 − 𝑝, 𝐛)

𝑄୫ୟ୶
 (2.13) 

 

Eq. (2.14) similarly provides the economic vulnerability experienced by a 

particular industry 𝑘 due to lost component 𝑝, providing an industry-by-industry 

perspective to the importance of vulnerable transportation network elements. 𝑄୫ୟ୶
௞  is the 

maximum loss in a particular industry 𝑘 caused by a shutdown in the entire network, 

capturing indirect economic loss effect on each industry based on the IIM. 

𝜂௣
௞(𝐺, 𝒃) =  

𝑄௞(𝐺 − 𝑝, 𝒃)

𝑄௠௔௫
௞

 (2.14) 
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Thus, Eqs. (2.13) and (2.14) provide economy-wide and industry-specific 

vulnerability measures for the disruption of component 𝑝 in the multi-modal 

transportation network. Naturally, certain industries may be more impacted by certain 

network components than others, which is an important consideration (e.g., a particular 

industry may be more critical to a state or regional economy than another).  

The proposed transportation network vulnerability analysis methodology and 

component importance measures, found as a result of the four-step process in Section 2.2, 

is illustrated with a case study based on a portion of a multi-modal freight transportation 

network within the state of Oklahoma and surrounding states whose industries trade with 

Oklahoma industries. Oklahoma plays a strong role in the transport of goods via a multi-

modal transportation network consisting of three important interstate highways, as well 

as railways and inland waterways that connect to the Mississippi River Navigation 

System via two ports. 

2.3.1 Baseline Network Flow, Illustrated 

Figure 2.3 highlights a supply-demand network in which supply nodes are all 

within the state of Oklahoma: the three important business economic areas of Oklahoma 

City (node 1), the Port of Catoosa in Tulsa (node 2), and the Port of Muskogee (node 3) 

(Ingalls et al. 2002). Demand nodes consist of states external to Oklahoma that are the 

most important states to interact with Oklahoma industries: Texas, Louisiana, Arkansas, 

and Illinois. The effects of a disruption within the network on exporting industries within 

the state are sought, as are the consequences in the entire Oklahoma economy, hence the 
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four importing states are considered as four combined demand nodes connecting to 

Oklahoma’s multi-modal freight transportation network. 

  

(a) (b) 

Figure 2.3. Representations of (a) spatial location of multi-modal nodes in 
Oklahoma and surrounding states, and (b) the connected transportation network. 

 
 

The nodes of the network are discussed in brief in Table 2.1 The Oklahoma City 

business economic area is connected to the north-south corridor through I-35 and east-

west corridor through I-40 and I-44. In addition to the truck way facilities, Burlington 

Northern Santa Fe (BNSF) railroad has an intermodal rail-truck facility in Oklahoma City 

near the junction of I-35 and I-40. The Port of Catoosa, the largest inland port in the 

United States in terms of area, is located near the city of Tulsa, adjacent to I-44, US 169, 

and rail lines. Industries listed in Table 2.2 are almost the port’s largest exporters in terms 

of commodity flows. The Port of Muskogee is connected to the freight transportation 

network through Highway 165 and a rail marshalling yard.  Supply nodes in Figure 2.3 

include Oklahoma City (node 1), the Port of Catoosa (node 2), and the Port of Muskogee 
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(node 3). Demand nodes include Texas city, TX (node 4), New Orleans, LA (node 5), 

Little Rock, AR (node 6), and Chicago, IL (node 7). Node 8 represents the intermodal 

terminal that facilitates the movement of commodities from industries in the industrial 

park of Port of Catoosa to their out-of-state customers using railroad company, BNSF. 

Links (1,7) and (1,4) are part of the North America railroad which connects Oklahoma 

City, OK, with Chicago, IL, and with Texas City, TX, respectively. The Port of Catoosa 

is connected to the North America railroad through a local railroad represented by link 

(2,8).  Links (2,5), (2,4), (2,6), and (2,7) are part of the inland waterway network 

navigated by McClellan–Kerr Arkansas River Navigation System and connect Port of 

Catoosa with the Port of New Orleans, the Port of Texas City, the Port of Little Rock, 

and the Port of Chicago, respectively.  The Port of Muskogee is connected to the Port of 

Little Rock, the Port of Texas City, and the Port of New Orleans through the same inland 

waterway network represented by links (3,6), (3,4), and (3,5), respectively, and it is linked 

to the North America railroad through a local railroad depicted with link (3,8). Node 9 is 

an intermediate node that connects the Oklahoma City business economic area to the U.S. 

interstate highways to the north and south through I-35 and to the east through I-44. Node 

10 is Fort Smith, AR which is a connecting point on I-40 to link Oklahoma City and 

Tulsa, OK to Little Rock, AR. Node 11 represents an intermediate node that connects the 

Port of Catoosa industrial park to interstate highway I-44, link (9,4) connects Oklahoma 

City to Texas City, TX, using interstate highways I-35 and I-45, and link (9,11) is part of 

interstate highway I-44 which connects Oklahoma City to Tulsa.  
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Table 2.1 Spatial location of multi-modal nodes in Oklahoma and surrounding 
states. 

Component Description 
Node 1 Oklahoma City, a supply node for multiple industries 
Node 2 Port of Catoosa, a supply node for multiple industries 

Node 3 Port of Muskogee, a supply node for multiple industries 

Node 4 Port of Texas City, a demand node for multiple industries 

Node 5 Port of New Orleans, a demand node for multiple industries 

Node 6 Port of Little Rock, a demand node for multiple industries 

Node 7 Port of Chicago, a demand node for multiple industries 

Node 8 Intermodal terminal, Tulsa, OK 

Node 9 Transshipment node that connects the Oklahoma City, OK, business economic 
area to the north and south through I-35 and to the east through I-44 

Node 10 Transshipment node in Fort Smith, AR, that is a connecting point on I-40 to 
link Oklahoma City and Tulsa, OK to Little Rock, AR 

Node 11 Transshipment node that connects the Tulsa Port of Catoosa industrial park to 
I-44 

Link (1,7)  Part of the North America railroad that connects Oklahoma City, OK with 
Chicago, IL 

Link (8,7) 
and Link 
(8,4) 

Part of the North America railroad which connects Tulsa, OK, with Chicago, 
IL and Texas City, TX, respectively 

Link (2,8) A local railroad connecting Port of Catoosa to the North America railroad  

Link (1,4) Part of the North America railroad that connects Oklahoma City, OK with 
Texas City, TX 

Links (2,5), 
(2,4), (2,6), 
and (2,7) 

Part of the inland waterway network navigated by McClellan–Kerr Arkansas 
River Navigation System and connect Port of Catoosa with the Port of New 
Orleans, the Port of Texas City, the Port of Little Rock, and the Port of 
Chicago, respectively 

Links (3,6), 
(3,4), and 
(3,5) 

Part of the inland waterway network navigated by McClellan–Kerr Arkansas 
River Navigation System and connect the Port of Muskogee to the Port of 
Little Rock, the Port of Texas City, and the Port of New Orleans, respectively 

Link (9,4) The roadway that connects Oklahoma City to Texas City, TX using interstate 
highways I-35 and I-45 

Link (9,11) Part of interstate highway I-44 that connects Oklahoma City to Tulsa. 

 
In total, there are 62 industries operating in Oklahoma as identified by NAICS, 

suggesting that the 𝐀⋆ matrix regionalized for Oklahoma is 62 × 62. In the proposed 

supply-demand network, six industries, listed in Table 2.2, are considered to be industries 

that primarily export commodities to out-of-state customers according to high trade 

figures (Bureau of Transportation Statistics 2010a). In the developed illustrative MCNF 
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example, each commodity belongs to an industry as defined by NAICS economic sectors, 

and each node within the network is considered to be either a supplier or a customer of a 

particular commodity. 

Table 2.2. Names and NAICS codes for main industries using the network. 

Industry name NAICS code 
Food and beverage and tobacco products  311 
Petroleum and coal products  324 
Chemical products  325 
Nonmetallic mineral products  327 
Machinery  333 
Miscellaneous manufacturing  339 

 

Table 2.3 lists the combined estimated annual supply and demand in tons for the 

associated industries and states, compiled from different databases (US Army Corps of 

Engineers 2013, Tulsa Port of Catoosa 2013, Bureau of Transportation Statistics 2010a,b, 

Port of Muskogee 2013, Bureau of Economic Analysis 2010). 

Table 2.3. Combined annual demands/supplies at supply/demand nodes connecting 
through the network (in thousand tons). 

 Food and 
beverage 

Petroleum 
and coal 

Chemical 
products 

Nonmetallic 
mineral 

Machinery 
mfg. 

Misc. 
mfg. 

Supply nodes 
in OK 

      

Oklahoma 
City 

4351 0 3606 2198 285 1419 

Port of 
Catoosa 

603 5459 3416 303 30 5 

Port of 
Muskogee 

0 408 0 383 0 361 

Demand 
nodes outside 
of OK 

      

Texas City, 
TX 

1167 3804 2448 0 310 362 

New 
Orleans, LA 

604 221 0 0 3 0 

Little Rock, 
AR 

3183 1842 4574 492 2 654 

Chicago, IL 0 0 0 2392 0 769 
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Baseline network flow in the supply-demand network is calculated with model 

M1, where the cost vector is computed based on the transportation mode and the mileage 

of the distances between nodes. The cost per ton-mile for a barge is estimated at $0.97, 

compared to $2.53 for rail, and $5.35 for trucking (Arkansas Waterway Commissions 

2014). The capacity of each link, shown in Table 2.4, representing the availability of 

transportation facilities, is estimated from historical data as a shared constraint for all 

commodities flowing on the link (ODOT 2013). The baseline flow resulted in no 

remaining commodities at supply nodes and no unsatisfied demand at demand nodes, 

suggesting that supply nodes send out all the commodities and demand nodes satisfy all 

their demands. Based on Table 2.3, the total supply of commodity k is assumed to be 

equal to the total demand of the same commodity within the entire supply-demand 

network as depicted in Figure 2.3.  

Table 2.4. Link capacities among the origin/destination nodes in the illustrative 
network (in thousand tons) (ODOT 2013). 

Nodes 4 5 6 7 8 9 10 11 

1 2800   2900  1700 6200  

2 180 650 750 500 3400  3700 1350 
3 355 185 3010  290    

8 3800   300     

9 1800       1700 
10   12000      

11    1600  2000   

 

2.3.2 Network Disruption, Illustrated 

Considering a disruptive scenario as the removal of a particular network 

component, the supply-demand network might experience a failure in satisfying demands 

in the interrupted network. The network components that were considered for disruption 

include: (i) three transshipment nodes within the state of Oklahoma, which have a vital 
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role in connecting segments of high volume-freight-traffic interstate highways, (ii) some 

segments of the North America Railroad, (iii) a local railroad which connects industrial 

parks to the North America Railroad, and (iv) parts of waterway system (described in 

Table 2.1). Discussed previously in Section 2.2.2, a decision maker would likely desire 

to reroute commodities to take advantage of the remaining capacity of the residual 

network, as shown in model M2, by maximizing the flow to meet as much demand as 

possible given the interrupted network. Failure in the form of undelivered commodities 

remaining with the suppliers, or unsatisfied demand at demand nodes, represented by 𝑆௜
௞, 

affect industry output and inoperability propagates through many of the interconnected 

industries. In the illustrative example, all the supply nodes are within the state of 

Oklahoma and the four demand nodes are located outside of Oklahoma. Table 2.5 reports 

∑ 𝑆𝑖
௞

௜ ∈( ேశ∩ேೖ) , the sum of the slack (remaining supply) by industry type at the supply 

nodes when different network components are disrupted.  

Table 2.5. Commodities remaining at suppliers with the removal of network 
components (in thousand tons). 

Removed 
componen

t 

Food and 
beverage 

Petroleum 
and coal 

Chemical 
products 

Nonmetallic 
mineral 

Machinery 
mfg. 

Misc.  
mfg. 

Node 9 291 0 803 0 25 2 
Node 8 478 2508 623 0 0 7 
Node 11 34 143 1067 0 25 7 
Link (1,7) 290 0 0 2000 0 770 
Link 
(9,11) 

189 108 823 0 0 0 
Link (2,5) 504 37 0 0 28 0 
Link (8,4) 367 2108 923 0 0 7 
Link (2,8) 189 2308 823 0 0 5 
Link (2,4) 0 105 0 0 0 0 
Link (3,8) 0 0 0 210 5 0 
Link (8,7) 0 0 0 251 

 
0 0 
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2.3.3 Multi-industry Impact, Illustrated 

In the case of any disruption within the network resulting in the loss of exports, 

there is a demand perturbation in the industries using the network, as calculated in Eq. 

(2.13). Assuming the only losses in the state economy are due to the loss of exports, the 

interdependent cascade of the demand perturbations causes losses to all the other state 

industries, as captured in Q. It is further assumed that industries not using the 

transportation network have zero demand perturbations, though could suffer from 

interdependent inoperability.  

As network component importance rankings are ultimately calculated on a 

relative basis, inoperability is calculated in terms of annual impact, as it is assumed that 

annual industry production accumulates consistently across the year (i.e., neither 

production nor interdependency relationships vary day-to-day, week-to-week, month-to-

month). A smaller time horizon could be considered as a proportion of a year if a 

particular disruptive event is modeled (e.g., a two-week closure of port facilities (Pant et 

al. 2011)).   

Using the remaining commodities left at supply nodes, shown in Table 2.5, 

demand perturbations were calculated with Eq. (2.13). In the example, the industries in 

Oklahoma experience difficulties in exporting commodities, individually for each of the 

11 disrupted network components. The resulting industry inoperability, 𝑞௞, for each 

disrupted component is found, as shown in Table 2.6 and plotted in Figure 2.4. Results 

show that most industries are vulnerable to disruptions that affect the functionality of 

either rail transportation or interstate highways but less susceptible to disruptions to the 

inland waterway which has a smaller share (less than 5% (ODOT 2013)) in outbound 
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freight movement in Oklahoma. As such, perhaps the external capacity in rail and truck 

freight transport suggest that they could serve as alternative transportation modes during 

a disruption, though more costly. A disruption that affects the functionality of the 

intermodal terminals would cause the most significant drop in the productivity of most 

industries. Examples of this include (i) node 8, which facilitates trade between industries 

located in the business economic area in Port of Catoosa, OK with their customers in 

Chicago, IL and Texas City, TX through the North America railroad, and (ii) nodes 9 and 

11, important transshipment nodes that connect the three important business economic 

areas within the state of Oklahoma to their customers through interstate highways.  

From a single industry point of view, it is shown that the productivity of the 

Petroleum and coal (324) industry is mostly vulnerable to its accessibility to the North 

America railroad through the intermodal terminal (node 8) in Tulsa, OK. In general, most 

disruption scenarios may affect the productivity of the Chemical products (325) industry, 

either by a local disruption that interrupts the access of the business economic area at the 

Port of Catoosa through a local railroad (e.g., link (2,8) to the intermodal terminal at node 

8) or a state-wide disruption that affects Oklahoma’s major trucking corridors (e.g., 

interstate highways I-35, I-44, and I-40). Also shown is that parts of the transportation 

network that are less important for most industries may be quite important to the 

productivity of a particular industry (e.g., the Nonmetallic and mineral products (327) 

industry is influenced by the malfunction of the local railroad which connects the Port of 

Muskogee to the North America railroad (link (3,8)) though all the other five industries 

are much less vulnerable to this link). Understanding these inoperability-related 

vulnerabilities could motivate further studies to guide investments in alternative 
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transportation modes. The inoperability values in Table 2.6 may appear to be negligible 

at first, but these numbers are significant when linked to the concept of failure probability 

in the reliability or quality engineering literature (i.e., the maximum allowable failure 

probability for a six-sigma compliant system is 3.4E-06).  

 

Table 2.6. Interdependent industry inoperability resulting from network 
component removal. 

Removed 
compone

nt 

Food and 
beverage 

Petroleum 
and coal 

Chemical 
products 

Nonmetallic 
mineral 

Machinery 
mfg. 

Misc.  
mfg. 

Node 9 2.98E-04 7.15E-06 4.37E-04 1.21E-05 1.81E-04 2.64E-05 
Node 8 4.93E-04 1.11E-03 4.25E-04 4.03E-05 1.82E-05 9.44E-05 

Node 11 3.61E-05 6.83E-05 5.71E-04 8.27E-06 1.80E-04 2.37E-05 
Link 
(1,7) 

3.02E-04 1.11E-05 2.86E-05 9.12E-04 7.71E-06 5.56E-04 

Link 
(9,11) 

1.94E-04 5.20E-05 4.43E-04 6.54E-06 2.37E-06 1.42E-05 

Link 
(2,5) 

5.16E-04 2.28E-05 2.43E-05 1.69E-05 2.05E-04 3.36E-05 

Link 
(8,4) 

3.80E-04 9.33E-04 5.66E-04 3.34E-05 1.53E-05 8.01E-05 

Link 
(2,8) 

1.98E-04 1.02E-03 5.14E-04 3.15E-05 1.53E-05 7.61E-05 

Link 
(2,4) 

1.61E-07 4.63E-05 3.39E-06 1.20E-06 6.19E-07 2.79E-06 

Link 
(3,8) 

1.41E-07 7.11E-07 2.15E-06 1.06E-04 3.80E-05 2.84E-06 

Link 
(8,7) 7.10E-08 4.90E-07 1.36E-06 1.26E-04 2.30E-07 9.62E-07 
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Figure 2.4. Economic inoperability across six most important industries within the 
state of Oklahoma. 

 
 

In addition to inoperability, the complementary perspective of economic losses in 

Table 2.7 can supplement the analysis. The Petroleum and coal products (324) industry 

is a high dollar industry in Oklahoma, and this industry would be significantly impacted 

by a disruption that affects the functionality of rail transportation (e.g., a local railroad 

such as link (2,8), part of the level-one railroad that connects Oklahoma to the North 

America railroad such as link (8,4), or intermodal terminal facilities such as node 8. A 

second prominent industry is the Food, beverage, and tobacco products (311) industry, 

and several transportation components contribute to the dollar volume of production in 

this industry, especially a part of the inland waterway network that connects Port of 

Catoosa with the Port of New Orleans, LA (link (2,5)), and part of the North America 

railroad that connects Tulsa, OK with Texas City, TX (link (8,4)). In fact, the intermodal 

terminal (node 8) which facilitates freight transport at the Port of Catoosa is a prominent 

component in the dollar volume of several exporting industries in Oklahoma. In general, 
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rail transportation and major trucking corridors have a high impact on the economy of 

most industries, though less important components (e.g., part of the inland waterway such 

as links (2,4) or (2,5)) may still have a large impact on a particular industry (e.g., 

Miscellaneous manufacturing (339) and Petroleum and coal products (324) by millions 

of dollars).  

Table 2.7. Economic losses (in 100 million USD) across the six most important 
industries within the state of Oklahoma. 

Removed 
component 

Food and 
beverage 

Petroleum 
and coal 

Chemical 
products 

Nonmetallic 
mineral 

Machinery 
mfg. 

Misc.  
mfg. 

Node 9 1.627 0.090 0.594 0.025 1.308 0.267 
Node 8 2.688 13.974 0.578 0.082 0.132 0.954 
Node 11 0.197 0.860 0.777 0.017 1.304 0.240 
Link (1,7) 1.647 0.140 0.039 1.854 0.056 5.622 
Link (9,11) 1.059 0.655 0.602 0.013 0.017 0.143 
Link (2,5) 2.813 0.287 0.033 0.034 1.484 0.340 
Link (8,4) 2.072 11.757 0.769 0.068 0.111 0.810 
Link (2,8) 1.079 12.837 0.698 0.064 0.111 0.769 
Link (2,4) 0.001 0.583 0.005 0.002 0.004 0.028 
Link (3,8) 0.001 0.009 0.003 0.216 0.275 0.029 
Link (8,7) 0.001 0.001 0.002 0.256 0.002 0.010 

 

2.3.4 Vulnerability Analysis and Component Importance, Illustrated 

The component importance measures, quantifying the proportional economy-

wide impact of a loss of component 𝑝 relative to a loss of the whole network, are 

calculated with Eq. (2.13) and are depicted in Figure 2.5. This measure lies on (0,1), 

where 𝜂௣ = 0 means that the removal of component 𝑝 doesn’t affect the whole economy, 

and 𝜂௣ = 1 means that the particular component removal shut downs the whole economy. 

As shown in Figure 2.5, the most important components relate to the rail transportation 

and major trucking corridors. A main component of the rail freight transport, node 8 is 

the intermodal terminal facilitates the movement of commodities in the industrial park of 
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Port of Catoosa to out-of-state customers and is the most important component in the 

analyzed transportation network. This facility is followed by link (8,4), a portion of 

railroad that connects Oklahoma to Texas City, TX, link (2,8), a local railroad that 

connects the Port of Catoosa to the North America railroad intermodal terminal, and link 

(1,7), a portion of railroad that connects Oklahoma City, OK to Chicago, IL. This suggests 

a further attention to the functionality of the facilities of the most important components 

within the network to avoid any malfunction, or in the case of any disaster which 

deactivates multiple components of the network, there should be priorities to recover the 

most important components. The framework proposed here could be used to evaluate 

alternative transportation modes for shipping commodities after a disruption or to guide 

planning for transportation investments to reduce vulnerability, and thus multi-industry 

impacts. 

 

Figure 2.5. Network component importance measures across the Oklahoma economy 
using 𝜼𝒑(𝑮, 𝐛). 
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Figure 2.6 emphasizes component importance to individual industries, 

quantifying the proportional impact of a loss of component 𝑝 on a particular industry 

relative to the impact of a loss in all components on that industry, as calculated with Eq. 

(2.14). This measure lies on (0,1), where 𝜂௣
௞ = 0 means that the removal of component 

𝑝 does not affect industry k, while 𝜂௣
௞ = 1 suggests that the particular component 

removal completely shuts down industry k.  As it is shown in Figure 2.6, any failure that 

results in disconnection of link (2,5), the inland waterway connecting the Port of Catoosa 

to the Port of New Orleans, would have the largest impact on Food, beverages, and 

tobacco products (311) relative to other industries. The intermodal terminal (node 8), 

which connects the Port of Catoosa to its out-of-state customers through the North 

America railroad, has the largest impact on Petroleum and coal products (324). It also 

demonstrates that the malfunction of local railroads (e.g., link (2,8)) may have a high 

impact on the productivity of Petroleum and coal products (324). In addition, the 

Nonmetallic and mineral products (327) industry, primarily located in the Oklahoma City 

business economic area, is highly vulnerable to the functionality of the part of the North 

America railroad that connects Oklahoma City, OK with Chicago, IL. Note that some 

components are important from the perspective of a particular industry though perhaps 

not the entire economy, such as link (1,7), which suggests lower priority in Figure 2.5 but 

is quite impactful for the Nonmetallic and minerals products (327) industry. Figure 2.5 

also suggests that the Petroleum and coal products (324) industry can be impacted by the 

disruption of several network components, more so than any other industry.  
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Figure 2.6. Network component importance measures focusing on particular 

Oklahoma industries using 𝜼𝒑
𝒌(𝑮, 𝐛). 

 

Transportation network vulnerability studies have largely attempted to quantify 

the reduction in system functionality, following a disruption, as (i) topological properties 

of the network, and (ii) flow importance measures. These structural and flow-related 

measures ignore a larger role that the transportation network plays in facilitating 

economic productivity. This work offers a broader perspective on freight transportation 

network vulnerability analysis with a means to measure importance of network 

components considering economic impacts of degradation of transportation network.  In 

particular, this study considers a multi-modal freight network consisting of highway, 

railway, and waterway transportation, and implements the proposed vulnerability analysis 

framework to understand and rank the criticality of multi-modal transportation nodes and 

links.  
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A four-step approach (i) calculates baseline (undisrupted) multi-commodity flow 

according to minimum cost, (ii) measures slack at supply and demand nodes, in the form 

of undelivered supply and unmet demand, when individual components are removed 

(one-at-a-time) from the network according to a maximum flow perspective, (iii) relates 

slack in the network to perturbations and inoperability among interdependent industries 

relying on commodities flowing along the network, and (iv) quantifies the importance of 

each component from industry-specific and overall regional economy perspectives. The 

primary contribution of this approach is the integration of the multi-commodity network 

flow representation of the multi-modal transportation network with the interdependent, 

multi-industry economic model and a framework to measure a transportation network 

component importance considering its multi-industry impact. 

This approach is illustrated with a stylized case study of a multi-modal 

transportation network in the state of Oklahoma, where supply nodes are located within 

the state and demand nodes are located outside of the state. Results of the case study 

suggest that the Petroleum and coal products industry is particularly susceptible to 

disruptions in several components, and certain components can impact multiple 

industries. Also, analysis shows that the economy of the state and most industries are 

primarily vulnerable to the malfunction of the parts of the railway that connect the state 

to the North America railroad and major trucking corridors including interstate highways 

I-35, I-44, and I-40. While the application pursued in this study focused primarily on the 

state of Oklahoma, the base model can be applied to other freight transportation networks 

to identify the critical nodes/links that can instigate the largest vulnerability across 

interdependent sectors that uniquely vary from region to region. Hence, the proposed 
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model and its future applications could provide significant value to homeland security 

preparedness planning. 

Furthermore, the vulnerability analysis perspective proposed in this study can be 

implemented to highlight priorities in maintaining certain network components (to reduce 

common-cause failure), or in rerouting of commodity flows after a disruption. There also 

exists an opportunity to extend the base approach discussed in this work to analyze 

network completion strategies where capacity enhancement (e.g., link capacity) and 

additional transportation facilities (e.g., added links/nodes) could harden the network 

around the most vulnerable components. Further, longer term transportation 

infrastructure design plans could be informed by this kind of analysis.  
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CHAPTER 3 
 

INVESTING FOR ABSORPTIVE CAPACITY IN INTERDEPENDENT 

INFRASTRUCTURE AND INDUSTRY SECTORS 
 

 

Freight transportation infrastructure, including ports, intermodal stations, 

interstate highways, and railways as basic structures and facilities, enable commodity 

flows and facilitate the productivity of industries. In the past decades, numerous 

disruptive events, whether natural hazards, human-made events or common failures, have 

threatened the operation of multiple modes of this infrastructure system and consequently 

adversely impacted economic productivity. A few examples include flooding of the 

Mississippi and Missouri rivers in 1993, where several railroads experienced delays and 

cancelations (Haefner et al. 1996), Hurricane Katrina that caused damage to the American 

highway system in Louisiana, Mississippi, and Alabama in 2005 (Shen and Aydin 2014), 

and Hurricane Sandy, as a multi-storm which hit the East Coast of the US in 2012, that 

caused all port terminal facilities and the harbor closure at the Port of New York/New 

Jersey area (Fialkoff et al. 2017).  A local disruption (i.e., port closure) can have effects 

that propagate through the system of interdependent infrastructure and industry sectors 

resulting in major reductions in economic efficiency regionally or nation-wide (Pant et 

al. 2011, Arnold et al. 2006). A protective approach could include “hardening” key 

industries to lessen the shocks from disruptive events (DHS 2013). This work provides 

an approach to measure such hardening in terms of the effectiveness of investing in 
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resilience from the perspective of a central decision maker across several interdependent 

industries.  

This work focuses on reducing vulnerability via absorptive capacity. The idea of 

absorptive capacity has also been referred to as static resilience, or “the ability of the 

system to maintain functionality when shocked” (Rose 2007). Mathematically, static 

resilience is measured in terms of the difference between the maximum potential drop in 

system performance and the estimated performance drop (Rose 2004). That is, no notion 

of recovery is considered, only the ability to withstand the initial disruption. This is 

depicted graphically in Figure 3.1 and mathematically in Eq. (3.1), where %ΔDY 

represents the actual percentage change in the performance of the system following a 

disruptive event and %ΔDYmax represents the maximum percentage change given the 

worst-case level of performance (Rose 2009). This quantitative approach is used in this 

study to define a performance measure for the system’s ability to absorb shocks 

(%ΔDYmax − %ΔD) from disruptive events, though we prefer the term absorptive 

capacity rather than static resilience. 

While Figure 3.1, from Pant et al. (2014), represents changes in system 

performance in a general sense, Rose (2009) provides a more specific application, where 

%ΔDY and %ΔDYmax refer to changes in total output produced in an economy of 

interconnected industry sectors. In this sense, these measures are analogous to the concept 

of inoperability, a well-studied topic in the literature of interdependent industries and 

infrastructures (Santos and Haimes 2004, Barker and Haimes 2009, Barker and Santos 

2010a,b). Inoperability, q, quantifies the proportional extent to which a system (e.g., 

economic system) is not functioning in an as-planned manner, thereby providing a metric 
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to describe the behavior of a system regardless of the measure describing its proper 

function (e.g., flow capacity, connectivity, production output).   

 

 

Figure 3.1. The performance components of static resilience (Pant et al. 2014). 
 

𝑎𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒)

=
%∆𝐷𝑌௠௔௫ − %∆𝐷𝑌

%∆𝐷𝑌௠௔௫
   

(3.1) 

 

This chapter seeks to answer: how should limited resources can be allocated to 

harden individual industries effectively to enhance absorptive capacity with total 

economic impacts in mind? These economic impacts are realized due to freight 

disruptions. Freight transportation infrastructure disruptions lead not only to physical 

damage, but also to an interruption of economic productivity across multiple industries 

due to infrastructure inoperability (Ham et al. 2005, Park et al. 2011). Arnold et al. (2006) 

analyzed economic impacts of disruptions in container traffic in the ports of Los Angeles 

and Long Beach, California. Pant et al. (2011), using the Inoperability Input-Output 
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Model (IIM) (Santos and Haimes 2004), showed how a local disruption in the Port of 

Catoosa in Tulsa, OK, would affect multiple industry sectors within the state of Oklahoma 

and neighboring states that trade with Oklahoma. Understanding the absorptive capacities 

of affected industries could inform preparedness planning against impacts. In particular, 

preparedness plans could enhance the ability of the industry sectors to absorb shocks from 

the disruptive events and lessen the maximum economic inoperability that the series of 

interdependent industries would experience.  

This chapter establishes inoperability, through the IIM, as a means to measure 

absorptive capacity in interdependent industries. IIM is a data-driven model that contains 

uncertainties due to inherent linearity or proportionality assumptions and/or inexactness 

in data collection, allocation, and integration (Pant et al. 2011). This research addresses 

(i) defining a measure of absorptive capacity to invest for resilience in an interdependent 

economic system, and (ii) planning for absorptive capacity under uncertainty, while (iii) 

addressing some of the uncertainties of the model. 

The IIM is an extension of the economic input-output model (Leontief 1986), for 

which Wassily Leontief won a Nobel prize. The input-output model has been widely 

accepted as a useful model for analyzing the interdependent connections among 

industries. In a system of 𝑛 interacting industries under a static equilibrium, the total 

output of the ith industry is distributed to all other industries and also satisfies external 

demand. This equilibrium condition is described with 𝑥௜ =  ∑ 𝑧௜௝
௡
௝ୀଵ +  𝑐௜, where xi is the 

output, ci is the external demand for industry i, and zij describes the flow of commodities 

output from industry i and used as input to production in industry j.  The flow of 
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commodities zij is assumed to be proportional to the output of industry j, expressed as 

𝑧௜௝ =  𝑎௜௝𝑥௝ . The common form of the Leontief input-output model is expressed in Eq. 

(2.1) where x is an 𝑛×1 vector of industry production outputs, A is an 𝑛×𝑛 industry-by-

industry matrix of interdependency coefficients, and c is a 𝑛×1 vector of final demands. 

The model shows that total production is made up to satisfy industry-to-industry 

intermediate production (Ax) and final demands (c). 

Instead of describing the connections between the interdependent industry sectors 

in terms of commodity flow in monetary units (e.g., dollars), the IIM illustrates how 

normalized production losses propagate through all interconnected industries. The IIM 

gives us inoperability as an alternative metric for examining the effects of a disruption.  

The IIM is provided in Eq. (2.3) (Santos and Haimes 2004), which describes the 

relationships among 𝑛 infrastructure and industry sectors, resulting in matrices of size 

𝑛×𝑛 and vectors of length 𝑛. 

As is evident from Eq. (2.3) the IIM, like the economic input-output model of Eq. 

(2.1), is a demand-driven model. Specifically in the IIM disruptions are translated to 

demand perturbations giving direct economic losses, following which the indirect 

economic losses can be estimated through Eq. (2.3). Total economic losses, the 

combination of direct and indirect losses, can be calculated by multiplying each industry’s 

production level by its inoperability level: for industry i, 𝑄௜ = 𝑥௜𝑞௜, or for the entire 

economy of industries, 𝑄 = 𝐱்𝐪.  As such, planning decisions can be made with respect 

to inoperability or economic impact at the sector level, or with respect to economic impact 

at the multi-sector level. 
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While the input-output model, and its inoperability-based extension, may appear 

to be overly simple in its linear construction, the validity of the model is attested for by 

the vast amount of literature in which it is used. In addition, there are detailed data sets 

available to support analysis with the model, including the commodity flow data 

published annually by the U.S. Bureau of Economic Analysis (BEA) and many other 

countries worldwide. 

A disruption within a freight transportation infrastructure affects industries that 

rely on the operation of these facilities to move commodities. The disruption propagates 

through the interdependent system and causes regional and national economic 

inoperability. As discussed in Section 3.2, the interdependent economic impacts of the 

disruption is calculated using the IIM, and subsequently in Section 3.1, a measure of 

absorptive capacity is defined based on the concept of static economic resilience (Rose 

2009, Pant et al. 2014). We propose an optimization framework to devise a strategy to 

allocate limited budget to industry sectors to enhance the absorptive capacity. Epistemic 

data uncertainty in the IIM is considered and decision making under uncertainty is 

discussed. 

3.3.1 Defining Absorptive Capacity with Inoperability 

Suggested previously, the percentage change in the performance of a system, 

%ΔDY, is analogous to the measure of inoperability, q, which represents the proportional 

extent to which a system is not properly functioning. If we define qmax as the maximum 

possible inoperability that could be experienced after a disruptive event, a measure of 

absorptive capacity is provided in Eq. (3.2). Absorptive capacity of sector 𝑖 is referred to 
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with convention Я௜
ௌ, adopting the Я notation of Whitson and Ramirez-Marquez (2009) as 

R often refers to reliability.   

Я௜
ௌ =

𝑞௜,௠௔௫ − 𝑞௜

𝑞௜,௠௔௫
 (3.2) 

 

Using the convention 𝐃⋆ = ൣ𝑑௜௝
⋆ ൧ = [𝐈 − 𝐀⋆]ିଵ, Eq. (2.2) can be written as 𝐪 =

𝐃⋆𝐜⋆. As such, inoperability in sector i can be represented with Eq. (3.3). 

𝑞௜ = ෍ 𝑑௜௝
⋆ 𝑐௝

⋆

௡

௝ୀଵ

 (3.3) 

 

As shown in Eq. (3.4), using the demand-driven paradigm, the absorptive capacity 

for sector i can be written as a function of maximum and expected demand perturbation 

levels, 𝑐௝,୫ୟ୶
⋆  and 𝑐௝

⋆, respectively. Я௜
ௌ measures the proportional “savings” in 

inoperability when a priori planning can stave off the worst-case inoperability outcome 

in favor of reduced inoperability. 

Я௜
ௌ =

∑ 𝑑௜௝
⋆ 𝑐௝,௠௔௫

⋆௡
௝ୀଵ − ∑ 𝑑௜௝

⋆ 𝑐௝
⋆௡

௝ୀଵ

∑ 𝑑௜௝
⋆ 𝑐௝,௠௔௫

⋆௡
௝ୀଵ

=
∑ 𝑑௜௝

⋆ ൫𝑐௝,௠௔௫
⋆ − 𝑐௝

⋆൯௡
௝ୀଵ

∑ 𝑑௜௝
⋆ 𝑐௝,௠௔௫

⋆௡
௝ୀଵ

 (3.4) 

 

To capture absorptive capacity across the entire set of interdependent 

infrastructure and industry sectors, a more appropriate economic resilience metric would 

account for the widespread ability of sectors to collectively maintain operability 

following a disruptive event. As such, individual sector inoperability is multiplied by 

sector output, in dollar terms.  In summation form, this is represented with 𝑄௜ =

∑ 𝑥௜𝑑௜௝
⋆ 𝑐௝

⋆௡
௝ୀଵ . The resulting absorptive capacity metric is provided in Eq. (3.5). 
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Я௧௢௧௔௟
ௌ =

∑ ∑ 𝑥௜𝑑௜௝
⋆ 𝑐௝,௠௔௫

⋆௡
௝ୀଵ

௡
௜ୀଵ − ∑ ∑ 𝑥௜𝑑௜௝

⋆ 𝑐௝
⋆௡

௝ୀଵ
௡
௜ୀଵ

∑ ∑ 𝑥௜𝑑௜௝
⋆ 𝑐௝,௠௔௫

⋆௡
௝ୀଵ

௡
௜ୀଵ

=
∑ ∑ 𝑥௜𝑑௜௝

⋆ ൫𝑐௝,௠௔௫
⋆ − 𝑐௝

⋆൯௡
௝ୀଵ

௡
௜ୀଵ

∑ ∑ 𝑥௜𝑑௜௝
⋆ 𝑐௝,௠௔௫

⋆௡
௝ୀଵ

௡
௜ୀଵ

 

(3.5) 

 

3.3.2 Planning for Absorptive Capacity 

Resource allocation requires developing strategies that reduce demand 

perturbations effectively, thus leading to economic resilience. This demand-driven 

approach is consistent with the idea that static resilience (absorptive capacity) is a 

consequence of efficient utilization of resources and not system repair (Rose 2007).     

Assume that a disruptive event perturbs demand (perhaps directly, or perhaps as 

a forced demand reduction due to a supply shortage) in m ≤ n sectors. The worst-case 

demand perturbations in each of these m sectors is given by 𝑐௟,୫ୟ୶
⋆ , 𝑙 = {1, … , 𝑚}. The 

implementation of preparedness, or resilience-building, activities is concerned with 

reducing 𝑐௟,୫ୟ୶
⋆  through efficient resource allocation. If 𝑟௟ is a preparedness strategy 

adopted to reduce the initial sector 𝑙 demand perturbation impact, the effectiveness of 𝑟௟ 

is measured in terms of the new resulting demand perturbation in Eq. (3.6). All sector 

demand perturbations are governed by Eq. (3.7). 

𝑐௟
⋆ = 𝑓௟൫𝑐௟,௠௔௫

⋆ , 𝑟௟൯ (3.6) 

 

𝑐௜
⋆ = ൜

𝑐௟
⋆ 𝑖𝑓 𝑖 ∈ 𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.7) 
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Assuming a numerically higher value for 𝑟௟ results in a more effective 

preparedness strategy, some candidate graphical relationships between 𝑐௟
⋆ and 𝑟௟ are 

conceptually depicted in Figure 3.2, with the upper bound being 𝑐௟,୫ୟ୶
⋆ . 

𝑐𝑙,max
⋆  

𝑐𝑙
⋆ 

 

Figure 3.2. Candidate functional relationships between 𝒄𝒍
⋆ and 𝒓𝒍.   

 

Since implementing preparedness strategies comes at a cost, there is a finite 

budget that governs the maximum possible values taken by 𝑟௟. If 𝑔௟(𝑟௟) expresses the cost 

of implementing strategy rl, then this budget as an upper bound. For the entire set of 

interdependent infrastructure and industry sectors, if at most budget b is available, then 

Eq. (3.8) is a constraint limits a fixed budget. 

෍ 𝑔௟(𝑟௟)

௠

௟ୀଵ

≤ 𝑏 (3.8) 

 

The collection of Eqs. (3.5), (3.6), and (3.8) results in the resource allocation 

optimization problem in Eq. (3.9). 
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𝑚𝑎𝑥
௖೗

⋆,௥೗

∑ ∑ 𝑥௜𝑑௜௟
⋆ ൫𝑐௟,௠௔௫

⋆ − 𝑐௟
⋆൯௠

௟ୀଵ
௡
௜ୀଵ

∑ ∑ 𝑥௜𝑑௜௟
⋆ 𝑐௟,௠௔௫

⋆௠
௟ୀଵ

௡
௜ୀଵ

𝑠. 𝑡. 𝑐௟
⋆ = 𝑓௟൫𝑐௟,௠௔௫

⋆ , 𝑟௟൯, ∀𝑙 ∈ {1,2, … , 𝑚}

෍ 𝑔௟(𝑟௟) ≤ 𝑏
௠

௟ୀଵ

𝑟௟ ≥ 0, ∀𝑙 ∈ {1,2, … , 𝑚}

 (3.9) 

 

Eq. (3.9) represents a generalized formulation of the resource allocation to 

maximize absorptive capacity. The functional forms of 𝑓௟(·) and 𝑔௟(·) govern the solution 

to the absorptive capacity planning problem. For macro-level planning, the 𝑟௟ value might 

denote the amount of capital that can be invested in purchasing and substituting for the 

lost demand 𝑐௟
⋆.  If the exponentially decreasing functional form (the dotted line in Figure 

3.2) is assumed, Eq. (3.10) would govern how planning for absorptive capacity can 

improve 𝑐௟
⋆, where 𝛼௟ is a measure of the effectiveness of investment 𝑟௟, which also shows 

the return for substituting for lost demand for sector l.  

𝑐௟
⋆ = 𝑐௟,௠௔௫

⋆ 𝑒ିఈ೗௥೗ (3.11) 

 

For this special case, the absorptive capacity planning optimization problem can 

be written as Eq. (3.12), given that Eq. (3.11) is a strict equality constraint. Note that 𝑟௟ 

represents an investment made to improve absorptive capacity, therefore the sum of 𝑟௟ 

must satisfy the budget constraint. 

𝑚𝑎𝑥
௥೗

∑ ∑ 𝑥௜𝑑௜௟
⋆ ൫𝑐௟,௠௔௫

⋆ − 𝑐௟,௠௔௫
⋆ 𝑒ିఈ೗௥೗൯௠

௟ୀଵ
௡
௜ୀଵ

∑ ∑ 𝑥௜𝑑௜௟
⋆ 𝑐௟,௠௔௫

⋆௠
௟ୀଵ

௡
௜ୀଵ

𝑠. 𝑡. ෍ 𝑟௟ ≤ 𝑏
௠

௟ୀଵ

𝑟௟ ≥ 0, ∀𝑙 ∈ {1,2, … , 𝑚}

 (3.12) 
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Decision makers with interdependent economic impacts in mind, planning for 

absorptive capacity to harden industries facing human-made or natural disasters, must 

consider the uncertainty of the decision making environment (e.g., relationships among 

industries after a disruption). Uncertainty resulting from imperfect and/or unknown 

information can be characterized by: (i) inexactness, (ii) unreliability and (iii) ignorance. 

All of these could be caused by the lack of quality or appropriateness of data used as 

inputs to the model, an incomplete understanding of the modeled phenomena, and/or all 

omissions due to a lack of knowledge (Funtowicz and Ravetz 1990). Walker et al. (2003) 

provide a conceptual basis for a systematic treatment of uncertainty in model-based 

decision support activities such as policy analysis and risk assessment by defining three 

dimensions of uncertainty as the location of uncertainty (“where the uncertainty manifests 

itself within the model complex”), the level of uncertainty (“where the uncertainty 

manifests itself along the spectrum between deterministic knowledge and total 

ignorance”), and the nature of uncertainty (“whether the uncertainty is due to the 

imperfection of our knowledge or is due to the inherent variability of the phenomena 

being described”). The location of uncertainty refers to the logical structure of a generic 

system model within which various sources of uncertainty are classified as: (i) context in 

terms of identifying the boundaries of the system to be modeled, (ii) model uncertainty 

associated with both conceptual model and the analytical model, (iii) inputs to the model, 

(iv) parameters uncertainty, and (v) model outcome, as an accumulated uncertainty. The 

level of uncertainty, an expression of the scale of uncertainty, is defined as an entire 

spectrum of different levels of knowledge exists ranging from the complete understanding 
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to total ambiguity categorized as: (i) determinism, (ii) statistical uncertainty, (iii) scenario 

uncertainty, (iv) recognized ignorance, and (v) total ignorance. And, nature of uncertainty 

could be either related to limited and inaccurate data, measurement errors, incomplete 

knowledge, limited understanding, imperfect models, subjective judgement, or 

ambiguities, classified as epistemic uncertainty, or inherent uncertainty or randomness 

induced by variation associated with external input data, input functions, parameters, and 

certain model structures, categorized as aleatory (variability) uncertainty.  

In this work, data uncertainty in the integrated model in Eq. (3.12), consisting of 

data used to parameterize the IIM and resource allocation, is considered. As the 

coefficients of the 𝐀⋆ matrix derived from the technical coefficient matrix 𝐀, they are 

subject to uncertainties arising from the inter-industry data collection efforts by the BEA. 

The BEA collects annual input-output records for a group of 15 aggregated industries and 

more detailed records for 65 industries every five years. As the 𝐱 vector is derived from 

the same BEA data, it is prone to the same uncertainties as 𝐀⋆. Hence the economic input-

output model, and subsequently the IIM, is prone to uncertainties arising from 

parameterizing interdependency coefficients matrix 𝐀 (and 𝐀⋆)and 𝐱 vector of total 

output, due to statistical errors in compiling massive data bases and the variant nature of 

these parameters over time (Bullard and  Sebald 1977, West 1986). Barker (2008) and 

Barker and Haimes (2009) addressed uncertainty in the interdependency matrix 𝐀⋆ 

particularly in the IIM. The inexactness in quantifying the effectiveness of investments 

within the resource allocation model should also be recognized (MacKenzie and Zobel 

2016). Hence, the optimization model formulated in Eq. (3.12) contains epistemic data 
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uncertainty in estimation of (i) the 𝐀⋆ matrix and magnitude of 𝐱 vector and (ii) 𝛼௟ as the 

measure of the effectiveness of investment 𝑟௟ in industry 𝑙. 

Bullard and Sebald (1977) studied inherent uncertainties in the coefficients of 𝐀, 

𝐱, and [𝐈 − 𝐀]ିଵ as bounded within a small interval of the published values. Similarly, 

our approach is to consider small random noises to model data point uncertainties in 𝐱 

and 𝐃⋆ = [𝐈 − 𝐀⋆]ିଵ, whose elements are 𝑑௜௝
⋆ . Furthermore, to model uncertainty in 

defining 𝛼௟, the investment effectiveness for industry 𝑙, we propose probabilistic 

treatment considering the optimistic, pessimistic, and most likely estimates of 𝛼௟.  

We propose a robust formulation of the optimization problem of Eq. (3.12). This 

robust formulation is shown in Eq. (3.13) , where D, X, and Ψ are uncertainty sets that 

contain all possible realizations of respective matrices and vectors. It is assumed that the 

sets D and X contain bounded random variations (e.g., ±5%) of the values of 𝐃⋆ and 𝐱, 

respectively. A triangular distribution represents the set ψ.  

𝑚𝑎𝑥 𝑓

𝑠. 𝑡. ቈ
∑ ∑ 𝑥௜𝑑௜௟

⋆ ൫𝑐௟,௠௔௫
⋆ − 𝑐௟,௠௔௫

⋆ 𝑒ିఈ೗௥೗൯௠
௟ୀଵ

௡
௜ୀଵ

∑ ∑ 𝑥௜𝑑௜௟
⋆ 𝑐௟,௠௔௫

⋆௠
௟ୀଵ

௡
௜ୀଵ

቉ ≥ 𝑓

෍ 𝑟௟ ≤ 𝑏
௠

௟ୀଵ

𝑟௟ ≥ 0, ∀𝑙 ∈ {1, … , 𝑚}

𝐷∗ ∈ 𝐷, 𝑥 ∈ 𝑋, 𝛼 ∈ 𝛹

 (3.13) 

 

The non-linearity and stochasticity of the proposed model makes it difficult to 

solve analytically. As such, rather than guaranteeing a certain level of absorbability, being 

extremely conservative in Eq. (3.13), we want to make sure that the proposed model 

suggests a resource allocation set such that guarantees an absorbability that holds with 

probability (1 − 𝜀) for small 𝜀 > 0. The term 𝜀 is referred to as value-at-risk in portfolio 
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optimization and has been widely used in “soft” robust optimization (Shapiro et al. 2009, 

Ben-Tal et al. 2009, Rockafellar and Uryasev 2000). The final formulation, presented in 

Eq. (3.14), is tractable using different simulation-based optimization solvers. 

𝑚𝑎𝑥 𝑓

𝑠. 𝑡. 𝑃𝑟 ቆ ቈ
∑ ∑ 𝑥௜𝑑௜௟

⋆ ൫𝑐௟,௠௔௫
⋆ − 𝑐௟,௠௔௫

⋆ 𝑒ିఈ೗௥೗൯௠
௟ୀଵ

௡
௜ୀଵ

∑ ∑ 𝑥௜𝑑௜௟
⋆ 𝑐௟,௠௔௫

⋆௠
௟ୀଵ

௡
௜ୀଵ

቉ ≥ 𝑓ቇ ≥ 1 − 𝜖

෍ 𝑟௟ ≤ 𝑏
௠

௟ୀଵ

𝑟௟ ≥ 0, ∀𝑙 ∈ {1, … , 𝑚}

𝐷∗ ∈ 𝐷, 𝑥 ∈ 𝑋, 𝛼 ∈ 𝛹

 (3.14) 

 

The proposed planning model for absorptive capacity is applied to a case study of 

the Port of Catoosa in Tulsa, Oklahoma. The Port of Catoosa is connected to the U.S. 

inland waterway network through the McClellan-Kerr Arkansas River Navigation 

System, a part of the Mississippi River Navigation System. There are approximately 70 

companies using the port and an annual freight volume of 2.2 million tons is sent and 

received through the port (US Army Corps of Engineers 2010, Commodity Flow Survey 

2010, Tulsa Port of Catoosa 2010). As defined by the North American Industry 

Classification System (NAICS), 62 industries operate in Oklahoma, therefore the 𝐀⋆ 

matrix regionalized for Oklahoma is 62 × 62. This case study will focus on the six 

industries that are the port’s largest exporters (listed in Table 3.1) in terms of commodity 

flows due to high trade figures reported by Bureau of Transportation Statistics (2010). In 

this study, the enhancement of the absorptive capacities of these six industries is analyzed.   
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Table 3.1. Six primary industries using the Port of Catoosa, along with their 
NAICS codes. 

Industry name NAICS code 
Food, beverage, and tobacco products  311 
Petroleum and coal products  324 
Chemical products  325 
Nonmetallic mineral products  327 
Machinery  333 
Miscellaneous manufacturing  339 

 
The exports through the Port of Catoosa contribute to the external demand of the 

industries in Oklahoma. As such, in case of a disaster at the port resulting in the loss of 

exports, there is a demand perturbation in the industries that use the port. Due to the 

interdependence among industries, the cascading of the demand perturbations causes 

losses to all the other state industries. Assuming that, in the case of a disruptive event, the 

only losses in the state economy are due to the loss of exports through the port, we can 

obtain estimates of the maximum demand perturbations, 𝑐௟,୫ୟ୶
⋆ , for the six primary 

industries using the port. These are found for each industry as the ratio of that industry’s 

mean estimate of exports to its total economic output, all provided in Table 3.2. It is 

further assumed that industries not using the port have zero demand perturbations, though 

could suffer from interdependent inoperability.  

Table 3.2. Maximum demand perturbation for the major industries using the Port 
of Catoosa in 2007 (output and exports given in million USD). 

Industry name Exports Output 𝑐௟,୫ୟ୶
⋆  

Food, beverage, and tobacco products  140.0  5578.5  0.0251  
Petroleum and coal products  57.0  12644.0  0.0045  

Chemical products  89.0  1327.3  0.0671  
Nonmetallic mineral products  3.0  2026.2  0.0015  

Machinery  108.0  7174.4  0.0151  
Miscellaneous manufacturing  6.0  746.6  0.0080  

 
A policy maker caring about the economy of the state of Oklahoma may seek a 

best way to allocate a limited budget to individual industries in order to let them invest in 
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planning for absorptive capacity to avoid the maximum demand perturbation during the 

port closure. Depending on the industry faced with the disruptive event, this resource 

could describe: (i) maintaining additional inventory to maintain productivity, and (ii) 

setting short-term coordination contracts with distributors to be ready for alternative 

transportation modes other than the port. 

The model assumes that allocating resources reduces the impact exponentially. 

As more resources are allocated to an industry, the impacts on an industry decline at a 

constantly decreasing rate, and investing an additional dollar to reduce risk returns less 

benefit than investing the first dollar. For each directly impacted industry, the exponential 

function, shown in Eq. (12) requires estimating an investment effectiveness parameter, 

𝛼௟. This parameter can be assessed if 𝑟௟, the amount of resources needed to reduce the 

direct impacts on industry 𝑙 by a fraction 𝑐௟
⋆/𝑐௟,୫ୟ୶

⋆ ,  is known or can be estimated, since 

𝛼௟ = −
୪୭୥ (௖೗

⋆/௖೗,ౣ౗౮
⋆ )

௥೗
. While the value of 𝛼௟ is always non-zero and positive with no upper 

bound, it is expected that 𝛼௟ would be small for large-scale disruptions where millions of 

dollars are necessary to reduce the impact. 

Table 3.3 lists parameter estimates for the effectiveness of investments, 𝛼௟, in 

planning for absorptive capacity in different industries considering the consequences on 

reducing the maximum demand perturbation by 50%, i.e., setting 
௖೗

⋆

௖೗,ౣ౗౮
⋆ = 0.5. Food and 

beverage products would be affected dramatically by the closure of the Port of Catoosa 

considering estimates for the cost per ton-mile for a barge at $0.97, compared to $2.53 

for rail, and $5.35 for trucking (Arkansas Waterway Commissions 2014), together with 

the distances to the general customers for the products of this industry, it is assumed that 
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on average $7 million USD should be invested to avoid the maximum demand 

perturbation in this industry by 50%. Direct impacts for Petroleum and coal products is 

much less than Food and beverage products, but the nature of this industry’s products 

makes it difficult to look for alternative transport modes. And long-term investments in 

increasing domestic demand by developing refining facilities, pipelines, and alternate 

transportation infrastructures could be effective and result in a higher absorptive capacity. 

As such, 𝛼ଶ is calculated assuming that an almost $5 million USD investment is needed 

to decrease the maximum demand perturbation in petroleum industries by half. The 

investment effectiveness for the other four industries are estimated considering the 

maximum loss in each industry and the options to increase the absorptive capacity with 

potential contracts for alternative transportation modes.  

Table 3.3. Estimates for the cost-effective parameter 𝜶𝒍 (given as per million USD). 
𝑙 Industry name 𝛼௟ 
1 Food, beverage, and tobacco products  0.0460 
2 Petroleum and coal products  0.0631 
3 Chemical products  0.3419 
4 Nonmetallic mineral products  0.2014 
5 Machinery  0.0836 
6 Miscellaneous manufacturing  0.4257 

 

3.4.1 Planning for Absorptive Capacity 

The proposed model in Eq. (3.12) is implemented to optimize the budget 

allocation among the six important industries that trade through the Port of Catoosa. Four 

different total budget amounts are considered for allocations across the six industries: $10 

million, $20 million, $30 million, and $40 million, all in USD.  

Table 4 shows the results from solving Eq. (3.12), in terms of the budgets 𝑟௟ 

allocated to individual sectors. We see that to maximize the absorptive capacity of the 



 

60 
 

whole interdependent economy: (i) at the smallest budget allocation of $10 million most 

of the resources are distributed to Miscellaneous manufacturing (339) and Chemical 

products (325); (ii) as the budget allocation is increased towards $40 million the resources 

get distributed towards Food and beverage and tobacco products (311) and Machinery 

(333); and (iii) Petroleum and coal products (324) comparatively require some resource 

allocations when budgets are increased to $30 million and beyond; (iv) Nonmetallic 

mineral products (327) comparatively require very little resource allocations. These 

results make sense as, based on Table 2 data, Food and beverage and tobacco products 

(311) and Machinery (333) are the two highest exporters through the port, so to 

progressively maximize the absorptive capacity of the economy most of the budget 

allocations will be distributed towards restoring economic flows in these sectors.  

Miscellaneous manufacturing (339) and Chemical products (325) have high initial 

resource allocation values because their cost effectiveness parameters 𝛼௟ from Table 3 

are high. But this means these is a fast stabilization of absorptive capacities in these 

sectors at the initial investment of $10 million, and subsequently these sectors requires 

smaller increments of the resource allocations to further maximize the absorptive capacity 

of the economic system. Table 3.5 confirms the above, as indicated by the values of the 

absorptive capacities of individual sectors as budget allocations are increased. 

Also shown in Table 3.5 are the values of the total economic losses avoided and 

the level of absorptive capacity achieved (value of the objective function of Eq. (3.12)) 

corresponding to each level of budget allocation. First we see that if no budget allocations 

were made then there is an economic loss of $69.3 million USD to the six industries, 

which is estimated from Table 5 by summing the economic loss values for these sectors. 
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Overall the whole economy has a loss of $146.6 million. These results show the 

interdependent effects of the IIM. A budget allocation of $10 million results in decreasing 

economic losses by $37.9, which is a 25.8% restoration of absorptive capacity. Similarly 

a budget allocation of $40 million decreases the economic losses by $84.8, thereby 

restoring absorptive capacity by 57.8%.  

We note from the Table 3.5 results that for every subsequent $10 million 

increment of budget allocation results in diminishing returns in terms of the value of 

economic loss avoided or absorptive capacity restored. For example, from Table 5 as 

budget allocation is increased from $10 million to $20 million the changes in total loss 

avoided is $19.8 million, whereas an increment of budget allocation from $30 million to 

$40 million results in changing the amount of losses avoided by $12.2 million. Hence the 

decision maker has to make a tradeoff between increasing budget allocations and the 

amount of changing in losses avoided. A point to stop would be when the increment in 

budget allocation is more than the value by which the loss is reduced.               

As shown in Table 3.4, allocating absorptive capacity to Nonmetallic mineral 

products (327) is not as beneficial as investing money in the five other industry, and if 

the total budget is $20 million dollars or less, the policy maker should not devote any 

resources to Petroleum and coal products (324). Also, by increasing the total budget limit, 

a smooth increase in the amount of resources should be invested in Miscellaneous 

manufacturing (339) and Chemical products (325). On the other hand, there are varied 

ascending/descending trends in the percentage of incremental investment devoted to Food 

and beverage and tobacco products (311) and Machinery (333). 
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Table 3.4. Resource allocation for absorptive capacity in different industries (in 
million USD). 

Industry name 

Resources allocated to each industry for each total 
budget 

10 20 30 40 
Food, beverage and tobacco 
products  

0.307 5.885 10.952 14.917 

Petroleum and coal products  0.000 0.000 0.917 3.807 
Chemical products  3.879 4.630 5.311 5.845 
Nonmetallic mineral products  0.000 0.000 0.000 0.000 
Machinery  2.784 5.853 8.640 10.822 
Miscellaneous manufacturing  3.029 3.632 4.179 4.608 

 
As shown in Figure 3.3 and the complementary Table 3.4, investment of $30 

million to harden the five industry sectors among the six most important to the port can 

avoid the maximum economic loss in Oklahoma by up to 50%, and it indirectly protects 

Nonmetallic mineral products (327) though the policy maker does not devote resources 

directly to this industry. Further, for example, nearly $40 million in economic losses 

across the Oklahoma economy can be avoided with a $10 million investment in 

absorptive capacity in the six key industries, according to the model.  
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Table 3.5. Economic loss under different total budget plans (budgets, and losses in 
million USD). 

 
Industry name 

Economic 
loss (no 

investment) 

Proportion of economic loss avoided for each 
total budget 

10 20 30 40 

Food, beverage, and 
tobacco products  

25.897 
0.019 0.240 0.398 0.499 

Petroleum and coal 
products  

12.589 
0.070 0.090 0.151 0.292 

Chemical products  16.464 0.718 0.780 0.825 0.854 
Nonmetallic mineral 
products  

1.045 
0.090 0.164 0.219 0.259 

Machinery  20.317 0.209 0.387 0.514 0.595 
Miscellaneous 
manufacturing  

18.878 
0.588 0.675 0.738 0.781 

Total economic loss 146.6268 108.738 88.8825 73.984 61.7947 
Total economic loss 
avoided 

- 37.9 57.7 72.6 84.8 

Total absorptive capacity - 0.258 0.394 0.495 0.578 

 
 

 

Figure 3.3. Economic loss for each of the six industries and Oklahoma for each 
total budget.   
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Figure 3.4 shows the extent to which each industry sector and the Oklahoma 

economy are able to absorb shocks from a port disruption by allocating a defined amount 

of budget to harden the most important industry sectors in the area. 

3.4.2 Planning for Absorptive Capacity 

Discussed in Section 3.3, epistemic uncertainty in estimating (i) the 𝐀⋆ matrix and 

magnitude of 𝐱 vector, and (ii) 𝛼௟ as the measure of the effectiveness of investment 𝑟௟ in 

industry 𝑙, should be accounted for in this study. In this case study, small amounts of 

perturbations are considered to model data uncertainties in 𝐱 and 𝐃⋆ = [𝐈 − 𝐀⋆]ିଵ, whose 

elements are 𝑑௜௝
⋆ . It is assumed that the elements insets 𝑋 and 𝐷 related to the six industry 

sectors contain bounded random variations to the amount of ±5% of the (deterministic) 

values of 𝐱 and 𝐃⋆, respectively. Furthermore, a probabilistic treatment considering the 

optimistic, pessimistic, and most likely estimates of 𝛼௟ with a triangular distribution is 

assumed to model uncertainty in the investment effectiveness for industry 𝑙. The 

parameters of these triangular distributions are shown in Table 3.6. We model the 

uncertainty in this problem using Frontline Solvers, an optimization and simulation 

application for Microsoft Excel. 

Table 3.6. Probabilistic treatment estimating the cost-effective parameter 𝜶𝒍. 

𝑙 Industry name 
𝛼௟ 

Min Mode Max 
1 Food, beverage, and tobacco products 0.0240 0.0460 0.0570 
2 Petroleum and coal products  0.0400 0.0631 0.0700 
3 Chemical products  0.1000 0.3419 0.4000 
4 Nonmetallic mineral products  0.0900 0.2014 0.3000 
5 Machinery  0.0600 0.0836 0.0900 
6 Miscellaneous manufacturing  0.2000 0.4257 0.5000 
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Table 3.7, which summarizes the solutions of Eq. (3.13), shows how epistemic 

data uncertainty, simulated with 1000 replications, affects the total economic losses 

resulting from each total budget. The differences between 5th and 95th percentiles of 

simulated results is 9 to 12 U.S. million dollars, in the cases of the four different budget 

limits. Hence, it is desired to consider the data uncertainty in decision making for 

allocating the limited budget to harden the six industry sectors within the state of 

Oklahoma. As the standard deviation shows, in the four simulated cases in Table 3.7, the 

amount of variation or data dispersion due to the uncertainty is at least $3 million, 

highlighting the importance of accounting for uncertainty in decision making.   

Implementing the proposed soft-robust optimization model in Eq. (3.14), 𝜀 =

0.05 is considered to guarantee an absorbability that holds with probability of (1 − 𝜀 =

95%). Comparing (i) the resource allocation resulting from the data uncertainty shown 

in Table 3.8, with (ii) the results from the deterministic model shown in Table 3.4, the 

allocation differences are generally less than 10%. Some exceptions include Food and 

beverage and tobacco products (311), which experiences a 100% decrease when the total 

budget is 10 million and subsequently has lesser budget allocations compared to the Table 

3.4 values. Similarly Petroleum and coal products (324), encounters decreases in 

allocated resources and that varies for different total budget amounts. Comparatively 

Chemical products (325), Miscellaneous manufacturing (339), and Machinery (333) see 

increases in budget allocations in that order. These changes, though small, show how 

uncertainty can alter the resource allocations.  Figure 3.4 shows the 95% confidence 

interval estimates for total losses in the Oklahoma economy expected when the each total 

budget is allocated across the six industries.  
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Table 3.7. Probabilistic treatment estimating the cost-effective parameter 𝜶𝒍. 
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Table 3.8. Resource allocation for absorptive capacity in different industries 
considering uncertainty (in million USD). 

Industry name 
Resources allocated to each industry for each total budget 

10 20 30 40 
Food, beverage, and tobacco 
products  

0 5.344 10.712 14.562 

Petroleum and coal products  0 0 0.231 3.071 
Chemical products  4.102 4.964 5.830 6.433 
Nonmetallic mineral products  0 0 0 0 
Machinery  2.708 5.844 8.730 10.983 
Miscellaneous manufacturing  3.191 3.848 4.498 4.952 
Total budget 10 20 30 40 

 

 

Figure 3.4. 95% confidence interval estimates of total economic loss under 
different budget limits, million USD. 

 

Measure of the effectiveness of investment 𝛼௟ is considered to monitor the effects 

of changes in the data uncertainty on budget allocation. Figure 3.6 illustrates the changes 
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treatment of 𝛼௟ is increased by 25%, 50%, and 75%. These three incremental levels of 
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comparing with the results of the deterministic model, for different budget limits, are 

plotted.  

  

(a) total budget of $10 million (b) total budget of $20 million 

  

(c) total budget of $30 million (d) total budget of $40 million 

Figure 3.5. Percentage of changes in budget allocation with increasing interval 
width (25%, 50%, 75%) for the probabilistic treatment of the investment 

effectiveness parameter 𝜶𝒍. 
 

As shown in Figure 3.5 different behavior in percentage of the changes in 

allocating budget to the six industries are monitored based on the total budget limits and 

the magnitude of the change in the uncertainty interval. For example, significant 

decreases are seen in the budget that should be allocated to Food and beverage and 

tobacco products (311) when the total budget is less than $20 million, which is 

comparable to the results from the deterministic model. Smooth changes are seen for the 

allocated budget to Chemical products (325). Also, a recognizable change exists in 
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Petroleum and coal products (324) when the total budget limit is more than $20 million, 

where an increase in the uncertainty interval decreases the budget that should be allocated. 

In general, it can be seen that the larger uncertainty interval for investment effectiveness 

caused more changes in budget allocation for higher budget limits. 

Freight transportation infrastructure plays an important role as a facilitator of 

economic productivity by connecting industries from multiple regions. Large-scale 

disruptive events can cause failures within the system that propagate through the multiple 

interconnected industries. Investing in hardening both the infrastructure (e.g., backup 

equipment) and industries themselves (e.g., on-hand inventory) can lessen the effects of 

disruptions. The interdependent nature of industries must be considered when considering 

such resource allocation. This work discusses a modeling and analysis framework to 

allocate limited resources to harden industry sectors to enhance the absorptive capacity 

of the total economy.  

The interdependent adverse effects of a disruption are measured using a risk-based 

interdependency model and an exponential resource allocation model is introduced to 

formulate the risk reduction. Considering the three components of resilience capacity 

identified by Vugrin and Camphouse (2011) and the notion of static resilience proposed 

by Rose (2009), a measure of absorptive capacity as the ability of the system to absorb 

the effects of a disruption is proposed. Finally, in an integrated optimization model, it is 

sought to maximize the whole system absorbability by allocating a limited budget to 

harden different industries. Further, sources of epistemic data uncertainty in the 
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interdependency model has been considered and a soft-robust optimization model is 

developed to help policy makers to allocate resources under uncertainty. 

The proposed modeling and analysis framework is implemented in case study 

developed based on the six important industries at the Port of Catoosa that use the inland 

waterway to send out commodities to their consumers out of the state of Oklahoma. 

Results show how increasing the budget limit affects allocated budget to each industry. 

Though Miscellaneous manufacturing (339) and Chemical products (325) receive the 

largest share with the $10 million budget, Food and beverage and tobacco products (311) 

and Machinery (333) receive the largest share as the budget allocation is increased to $40 

million. It has been seen that considering bounded random variations to the amount of 

±5% of the (deterministic) values of 𝐱 and 𝐃⋆ together with a probabilistic treatment 

considering the optimistic, pessimistic, and most likely estimates of 𝛼௟ causes dramatic 

variation in the economic loss considering the allocated budget. Also, analysis on the 

measure of effectiveness showed that when the interval in the probabilistic treatment of 

𝛼௟ is increased by 25%, 50%, and 75%, the changes in the allocated budget varies in 

different budget limits. For example, While Food and beverage and tobacco products 

(311) experienced a significant decrease in the allocated budget when the total budget is 

less than $20 million, it faces at most a 30% decrease when the total budget is $40 million. 

The proposed model can be implemented in a network of freight infrastructure 

and the multi-regional impacts of the disruption can be considered in both modeling the 

failure propagation and investing for absorptive capacity.   
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CHAPTER 4 
 

PLANNING FOR ADAPTIVE CAPACITY 
 

The use of the term “resilience” has increased substantially in the literature in 

recent years (Mattson and Jenelius 2015, Hosseini et al. 2016, Kamalahmadi and Parast 

2016), recognizing a shift in planning from prevention and protection to preparing for the 

inevitability of disruption. Several qualitative and quantitative frameworks being 

proposed to describe the resilience of a system (e.g., Patterson et al. (2006), Zobel (2011), 

Sarre et al. (2014)). While most definitions of resilience recognize the time-dependent 

nature of withstanding and recovering from a disruption, Rose (2004) defined static 

resilience as “the ability of an entity or system to maintain function when shocked.” This 

is depicted in Figure 4.1, where %ΔDYmax represents the maximum percentage change 

given the worst-case level of performance following a disruptive event, and %ΔDY 

represents the actual percentage change in the performance of the system (assuming the 

implementation of a mitigation strategy) (Rose 2009). The original application of static 

resilience, as well as several subsequent studies (e.g., Rose (2007, 2009), Rose and Wei 

(2013), Hallegatte (2014), Pant et al. (2014), Baghersad and Zobel (2015)), deal with 

economic disruption. Mathematically, static resilience is measured in terms of the 

maximum potential drop in system performance and the estimated performance drop, as 

shown in Eq. (4.1). This quantitative approach is used in this study to define a 

performance measure for post-disaster rerouting, though we prefer the term adaptive 

capacity rather than static resilience. 
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Figure 4.1. The performance components of static resilience (Rose 2009, Pant et 
al. 2014b). 

 

𝑠𝑡𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =
%∆𝐷𝑌௠௔௫ − %∆𝐷𝑌

%∆𝐷𝑌௠௔௫
 (4.1) 

 

Faturechi and Miller-Hooks (2015) thoroughly review the literature on 

transportation system performance considering disruptions to physical infrastructure. 

Defining a four-phase disaster life cycle as (i) mitigation, (ii) preparedness, (iii) response, 

and (iv) recovery, they suggest that most work focuses on assessing the transportation 

system’s ability to deal with disruption consequences, with less work assessing strategies 

to manage the system after the disruption. Further, the literature that seeks rerouting 

strategies to mitigate the effects of disruption by maintaining freight flow through a 

residual network is sparse (Khaled et al. 2015, Gedik et al. 2014). And, to the author’s 

knowledge, the approach proposed here to reroute flow and plan for adaptive capacity by 

considering the contribution of transportation network components to multi-industry 

impacts is non-existent in the literature. To address this gap in the literature, we propose 

an integrated optimization formulation to reroute commodities through the residual 
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network to decrease the effect on local industries requiring those commodities for 

production. To do so, we combine a multi-commodity network flow formulation of a 

multi-modal transportation network with a risk-based multi-industry impact model in an 

integrated formulation.  

A disruption within a freight transportation network affects its vital role in 

transporting raw materials among manufacturers and final products between 

manufacturers and consumers. Such a disruption in the flow of commodities leads to 

economic losses across multiple industries. To devise an adaptive capacity strategy (i.e., 

post-disruption rerouting) to lessen total economic losses following a disruption, we 

propose an optimization framework that integrates (i) a multi-commodity network flow 

model of freight movement, (ii) a risk-based interdependency model of multi-industry 

impacts, and (iii) an objective function that addresses adaptive capacity with a measure 

of static economic resilience (Rose 2009, 2013, Pant et al. 2014b). The proposed 

optimization model is developed following a three-step approach, illustrated in Figure 

4.2. 
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Figure 4.2. Three-step approach to planning for adaptive capacity with multi-industry 
impacts. 

 

4.2.1 Freight Movement and Disruption 

From a tactical point of view, integrating (i) industries and (ii) their supply 

capabilities or demand requirements together with (iii) the structure of the transportation 

network, can result in a minimum cost MCNF model that can route commodities from 

suppliers to demand nodes via 𝑓௜௝
௞, collectively representing the flow of commodities on 

the links of a baseline (undisrupted) network. Natural hazards, human-made events, or 

common failures could threaten the functionality of the network components and 

consequently interrupt commodity flows. The consequences of a hazards, attacks, or 

failures are simulated as disruptions in the flow of valuable goods or services through the 

network caused by disabling network components. The functionality of the network is 

analyzed to determine how vulnerable it is to interdiction, and which nodes or links, if 

lost, result in the most damage to network performance. Interdiction analyses encompass 



 

75 
 

a wide range of possible disruptions that may vary with respect to spatial scales, 

correlation of disruptive events, sequence of failures, and event duration. 

In the case of any disruption modeled as the removal of a network component or 

a set of components (or a drop in functionality of the network modeled as reduction of 

link capacities, 𝑢௜௝
ᇱ ), the consequences are sought by deducting the commodity flows on 

the affected links from the baseline flow. Let 𝐺ᇱ = (𝑁′, 𝐿′) represent the network after 

disruption with updated sets of links, 𝐿ᇱ and nodes, 𝑁′. The sets 𝑁ି
ᇱ , 𝑁ା

ᇱ , 𝑁଴
ᇱ  denote the 

post disruption sets of nodes associated with home of consumers, home of suppliers, and 

transshipment nodes, respectively. The quantity of commodity 𝑘 at node 𝑖 that is either 

undelivered and remaining with the suppliers, or unsatisfied demand of consumers, is 

reflected in the slack variable 𝑆௜
௞. This slack variable will be used subsequently to drive 

the calculation of inoperability among multiple industries. It is assumed that each type of 

commodity represents the output of a lone industry, and interdependent inoperability 

propagated through a set of industries caused by unsatisfactory demands/supplies will be 

modeled in the next section.  

  4.2.2 Multi-industry Impact 

In this work, we use an extension of the input-output economic model, for which 

Wassily Leontief (1966) won a Nobel Prize, to capture the multi-industry impacts of 

unmet demands at demand nodes and remaining commodities at supply nodes as the result 

of a disruption to components of the transportation network. In addition to industry 

inoperability, a traditional economic loss metric can be calculated by multiplying each 

industry’s production level, 𝑥௞, in dollars, by its inoperability level: for industry 𝑘, 𝑄௞ =

𝑥௞𝑞௞. Such a measure can also be expressed for the collection of 𝐾 industries, 𝑄 = 𝐱்𝐪. 
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As such, decisions to plan for adaptive capacity can be made with respect to economic 

impact across multiple industries. 

  4.2.3 Planning for Adaptive Capacity 

Adaptive capacity is considered to be the extent to which a freight transportation 

network is capable of facilitating economic productivity by the (short-term) rerouting of 

commodities through the residual network to reduce remaining commodities at suppliers 

and unsatisfied demand at consumers. Inoperability in industry 𝑘 is calculated with Eq. 

(2.2), and economic losses for industry 𝑘 can be found by multiplying the proportional 

inoperability by expected production level in monetary units, 𝑄௞ = 𝑥௞𝑞௞. Economic 

losses for the entire set of industries is calculated with 𝑄 = 𝐱்𝐪. As such, inoperability 

or economic impact at the industry level, or total economic impact at the across all 

industries, can be used to valuate strategies for strengthening adaptive capacity. Proposed 

in Eqs. (4.2) and (4.3) are two such metrics motivated by Eq. (4.1). 

When planning emphasis is placed on a particular industry (i.e., rerouting freight 

in the transportation network to reduce the impact to industry 𝑘), Eq. (2.2) is proposed to 

valuate a strategy to strengthen adaptive capacity. Term Я௘
௞ is a proportional measure 

involving (i) the economic loss, 𝑄௘
௞, experienced by a particular industry 𝑘 following 

disruptive event 𝑒 when no adaptive capacity planning is taken and (ii) the economic loss, 

𝑄ோ
௞, in industry 𝑘 when a strategy is taken to avoid the maximum economic loss in that 

particular industry.  

Я௘
௞ =  

𝑄௘
௞ − 𝑄ோ

௞

𝑄௘
௞  (4.2) 
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For a perspective that spans all industries, Eq. (2.3) provides a similar proportional 

metric, where 𝑄௘ is the multi-industry economic loss caused by disruption 𝑒 in the 

baseline case, and 𝑄ோ is the multi-industry loss when a rerouting strategy is taken to avoid 

the maximum economic loss.  

Я௘
ோ =  

𝑄𝑒 − 𝑄𝑅

𝑄𝑒

 (4.3) 

 

Assuming a multi-industry perspective and considering a hypothetical decision 

maker interested in limiting economic losses across multiple industries, Eq. (4.3) serves 

as the objective function in the following optimization framework that integrates the 

multi-commodity network flow model from Section 4.2.1 and the Inoperability Input-

Output Model from Section 4.2.2 Following a particular disruption 𝑒 that affects a 

particular set of transportation links, the proposed model in Eqs. (4.4)-(4.12) seeks to 

optimally reroute the flow of commodities through the residual network such that a 

measure of static economic resilience is minimized. Here, it is assumed that the result of 

the model provides decision makers with a rerouting strategy across different modes. The 

period of disruption is assumed to be sufficiently long enough to employ intermodal 

container scheduling models (e.g., Lee and Kim (2010), Wang and Yun (2013)) to devise 

operational-level plans based on the resulted contingent rerouting strategy in the 

simplified static supply-demand network. Notation employed in the problem formulation 

is summarized as follows, noting that network variables (e.g., the sets of links and nodes) 

with a prime as superscript are related to the network after disruption, referred to as the 

residual network. 

 



 

78 
 

Parameters  

𝐿ᇱ set of links  𝑁′ set of nodes  

𝑁௞
ᇱ  set of nodes related to industry k 𝑢௜௝

ᇱ  capacity of link (𝑖, 𝑗) after disruption 

𝑁଴
ᇱ set of transshipment nodes 𝑞௞ inoperability of industry k 

𝑁ି
ᇱ  set of nodes that are home to 

consumers 
𝑁ି

ᇱఈ set of nodes that are home to 
consumers in the region of interest 𝛼 

𝑁ା
ᇱ  set of nodes that are home to 

suppliers 
𝑁ା

ᇱఈ set of nodes that are home to suppliers 
in the region of interest 𝛼 

𝛾௜ intermediate variable to keep the 
slack at node i positive 

𝑏௜
ᇱ௞ mass-balance variable representing 

demand/supply/transshipment at node 
i after disruption 

𝜇௞ binary coefficient with value 0 
when no unsatisfied demands at 
demand nodes and 1 when at least 
one demand node with unsatisfied 
needs 

𝑆௜
௞ slack variable that captures 

undelivered commodity k remaining 
with the supplier node i or unsatisfied 
demand at demand node i 

𝑎௥௞
⋆  elements of the normalized 

interdependency matrix 𝐀⋆ 
𝑐௞

⋆ final consumption perturbation for 
industry k  

𝑥௞ production level of industry k in 
monetary value 

 

 
Decision variable 

 

𝑓௜௝
ᇱ௞ integer variable represents the 

flow of commodity 𝑘 across link 
(𝑖, 𝑗) in the network after 
disruption 
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Based on this notation, planning for adaptive capacity by rerouting the flow of 

commodities through the residual network is formulated as follows.  

max  Я௘
ோ (4.4) 

s.t. ෍ 𝑓௜௝
ᇱ௞

௄

௞ୀଵ

≤  𝑢௜௝
ᇱ  ∀ (𝑖, 𝑗) ∈ 𝐿ᇱ  (4.5) 

 ෍ 𝑓௜௝
ᇱ௞

(௜,௝)∈ ௅ᇲ

− ෍ 𝑓௝௜
ᇱ௞

(௝,௜)∈ ௅ᇲ

+  𝛾௜𝑆௜
௞ =  𝑏௜

ᇱ௞   𝑘 = 1, . . . , 𝐾 (4.6) 

 𝛾௜ = ൝
−1
+1
0

       

for 𝑖 ∈ 𝑁ି
ᇱ

for 𝑖 ∈ 𝑁ା
ᇱ

for 𝑖 ∈ 𝑁଴
ᇱ
 (4.7) 

 𝑐௞
⋆ =

∑ 𝑆𝑖
௞

௜ ∈( ேశ
ᇲഀ∩ேೖ

ᇲ )

𝑥ො௞
+

∑ 𝑆𝑖
௞

௜ ∈( ேష
ᇲഀ∩ேೖ

ᇲ )

𝑥ො௞
− 𝜇௞𝑞௞        𝑘 = 1, . . . , 𝐾    (4.8) 

 
1

𝑀
෍ 𝑆௜

௞

௜ ∈൫ேష
ᇲഀ∩ேೖ

ᇲ ൯

≤ 𝜇௞ ≤  𝑀 ෍ 𝑆௜
௞

௜ ∈൫ேష
ᇲഀ∩ேೖ

ᇲ ൯

      𝑘 = 1, . . . , 𝐾 (4.9) 

 ൥

𝑞ଵ

⋮
𝑞௄

൩ = ൥
𝑎ଵଵ

∗ ⋯ 𝑎ଵ௄
∗

⋮ ⋱ ⋮
𝑎௄ଵ

∗ ⋯ 𝑎௄௄
∗

൩ ൥

𝑞ଵ

⋮
𝑞௄

൩  + ൥
𝑐ଵ

⋆

⋮
𝑐௄

⋆
൩ (4.10) 

 𝑄ோ = ෍ 𝑥௞𝑞௞

௄

௞ୀଵ

       (4.11) 

 
𝑓௜௝

ᇱ௞ ≥ 0  ∀ (𝑖, 𝑗) ∈ 𝐿ᇱ, 𝑘 = 1, . . . , 𝐾 
𝜇௞  ∈  {0, 1},  𝑘 = 1, . . . , 𝐾 

(4.12) 

 

The formulation implements the idea of planning for adaptive capacity in a 

disrupted transportation network where the residual active network is presented by 𝐺ᇱ =

(𝑁′, 𝐿′), with updated sets of links, 𝐿′, and nodes, 𝑁′. The bundle constraint in Eq. (4.5) 

ties together the commodities by restricting the total flow of all the commodities on each 

link (𝑖, 𝑗) to at most 𝑢௜௝
ᇱ , the capacity of that particular link after disruption. 𝑓௜௝

ᇱ௞ represents 

the flow of commodity 𝑘 across link (𝑖, 𝑗) which remains in the updated set of links, 𝐿ᇱ. 

Eq. (4.6) represents mass balances on each node, where 𝑏௜
ᇱ௞ captures demand/supply at 

each node in the residual network. A slack variable 𝑆௜
௞ is defined to capture undelivered 

commodities remaining with the suppliers, or unsatisfied demand at demand nodes. The 
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magnitude of 𝑆௜
௞ is positive, and multiplier 𝛾௜ takes on a negative value for set of demand 

nodes (after disruption) 𝑁ି
ᇱ , a positive value for supply nodes (after disruption) 𝑁ା

ᇱ , and 

zero for transshipment nodes (after disruption) 𝑁଴
ᇱ, as shown in Eq. (4.7). Eqs. (4.8)-(4.10) 

are constraints that translate remaining commodities at supply nodes and unsatisfied 

demand at demand nodes (in the geographical area of interest, α) into multi-industry 

inoperability. Here, 𝑐௞
⋆ transfers remaining commodities of type 𝑘 at the supplier and/or 

unsatisfied demands, 𝑆௜
௞, into a final consumption reduction from Eq.(4.2) with respect 

to the total output of that particular commodity, representing the total output of industry 

k, 𝑥ො௞.  Considering 𝑁௞
ᇱ  as set of nodes related to industry k (in the residual network), 

which either supply or demand commodity k, in Eq. (4.8), 𝑞௞ is added to capture the 

consequences of unsatisfied demand at nodes within the region on the inoperability of 

that industry, reasoning that any disruption leading to unsatisfied demands has an impact 

on the output of that particular industry which needs to be taken care of in the total 

interdependent inoperability. As the network might connect industries within the region 

of interest into their suppliers or customers out of the geographical area of interest, it is 

desired to consider the effect of failure in terms of remaining commodities at suppliers in 

the region of interest represented by 𝑁ା
ᇱఈ,  and unmet demand at demand nodes within the 

region of interest represented by 𝑁ି
ᇱఈ . A binary coefficient, 𝜇௞, in Eq. (4.8) takes on value 

0 when there are no unsatisfied demands at demand nodes within the region under study 

and 1 when there is at least one demand node with unsatisfied needs. Eq. (4.9) requires 

that 𝜇௞ be binary, defining a sufficiently large 𝑀. Eq. (4.10) implements the IIM to 

capture the adverse effect of the disruption in terms of remaining commodities at supply 

nodes and unsatisfied demand at demand nodes. The multi-industry economic impacts of 
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the failure devising a rerouting strategy are captured in Eq. (4.11) with total economic 

loss 𝑄ோ. And the objective function is the proportional economic saving, parametrized 

based on Eq. (4.3) in which 𝑄௘, maximum economic loss experienced by the whole 

economy in the case of a disruption when no mitigating strategy is taken, is already 

calculated based on Section 4.2.1. and 4.2.2. The proposed approach benefits from the 

flexibility, scalability, and efficiency of the base MCNF paradigm with respect to 

optimization (Ahuja et al. 1993, Manfren 2012), as practiced in modeling 

interdependencies in critical infrastructure networks (e.g., Lee et al. (2007), Holden et al. 

(2013)). 

A multi-modal freight transportation network, consisting of three important 

interstate highways, railways, and inland waterways that connect to the Mississippi River 

Navigation System via two ports, plays an important role in transporting commodities 

produced in the business economic areas within the state of Oklahoma to consumers in 

neighboring states. A portion of this multi-modal freight transportation network is 

illustrated on a case study, described in Section 2.4, to implement the proposed model to 

improve adaptive capacity with a post-disruption rerouting strategy. A scenario-based 

disruption defined as the removal of a particular network component is considered in the 

illustrative example. Customers in surrounding states are considered to be four combined 

demand nodes connecting to Oklahoma’s multi-modal freight transportation network. 

The multi-industry impact of the disruption within the economy of the state of Oklahoma 

guides the rerouting of commodities throughout the residual network as an adaptive 
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(short-term) strategy. The case study has been solved using optimization software 

LINGO, version 15. 

  4.3.1 Supply-Demand Network  

Based on the combined estimated annual supply and demand in tons for the 

associated industries and states compiled from different databases (US Army Corps of 

Engineers 2013, Tulsa Port of Catoosa 2013, Bureau of Transportation Statistics 2010a,b, 

Port of Muskogee 2013, Bureau of Economic Analysis 2010), a list of monthly supply 

and demand is presented in Table 4.1 (assuming constant monthly demand, or annual 

demand divided by 12). 

Table 4.1. Combined monthly demands/supplies at supply/demand nodes 
connecting through the network (in tons). 

 Industry 
 311 324 325 327 333 339 
Supply nodes in OK       
Oklahoma City 362526 0 300501 183188 23790 118242 
Port of Catoosa 50244 454911 284685 25268 2470 424 
Port of Muskogee 0 33962 0 31886 0 30021 
Demand nodes outside of 
OK 

      

TX 97281 316905 204006 0 25838 30154 
LA 50244 18449 0 0 267 0 
AR 265245 153518 381180 41038 156 54494 
IL 0 0 0 199304 0 64039 

 
 

  4.3.2 Freight Movement and Disruption  

To parametrize the MCNF model, the cost vector is computed based on the 

transportation mode and the mileage of the distances between nodes: the per ton-mile for 

a barge is estimated at $0.97, compared to $2.53 for rail, and $5.35 for trucking (Arkansas 

Waterway Commissions 2014). The monthly capacity of each link, shown in Table 4.2 

in the appendix, is estimated from historical data as a shared constraint for all 
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commodities flowing on the link (ODOT 2013), representing the availability of 

transportation facilities. Assuming that the total supply of commodity 𝑘 is equal to the 

total demand of the same commodity throughout the network, as shown in Table 4.1, a 

baseline flow resulted in no remaining commodities at supply nodes and no unsatisfied 

demand at demand nodes when there is no disruption to the functionality of the network. 

 

Table 4.2. Link capacities among the origin/destination nodes in the illustrative 
network (ODOT 2013). 

Nodes 1 2 3 4 5 6 7 8 9 10 11 

1    233333   241667  141667 516667  
2    15000 54167 62500 41667 283333  308333 112500 
3    29583 15417 250833  24167    
4            

5            

6            

7            
8    316667   25000     
9    150000       141667 
10      1000000      

11       133333  166667   

 

In the illustrative example, disruption scenarios are defined as the removal of a 

single network component at a time. It is assumed that a disruption, or the removal of a 

particular network component, lasts for a period of one month. Assuming that annual 

industry production accumulates consistently across the year (i.e., neither production nor 

interdependency relationships vary day-to-day, week-to-week, month-to-month), a 

smaller month-long time horizon is considered here as an appropriate proportion of a year 

to calculate the particular disruptive event cascading effect (e.g., a two-week closure of 

port facilities (Pant et al. 2011)). Shown in Table 4.3, three transshipment nodes within 

the state of Oklahoma, some segments of high volume-freight-traffic interstate highways, 
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some segments of the North America Railroad, a local railroad which connects industrial 

parks to the North America Railroad, and parts of waterway system, were individually 

removed from the network to define the disruption scenarios. Focusing on the economy 

of the state of Oklahoma, and considering supply nodes within the state interacting with 

demand nodes in surrounding states, undelivered commodities remaining with suppliers 

or unsatisfied demand at demand nodes, as represented by 𝑆௜
௞, affect industry output and 

result in propagated inoperability through many of the interconnected industries. In the 

illustrative example, all the supply nodes are within the state of Oklahoma and the four 

demand nodes are located outside of Oklahoma. Table 4.3 reports ∑ 𝑆𝑖
௞

௜ ∈(ேశ
ᇲഀ∩ேೖ

ᇲ ) , the 

sum of the slack (remaining supply) by commodity at the supply nodes when different 

network components are disrupted, omitting the flow on the disrupted component from 

the baseline flow within the network. As shown in Table 4.3, the Petroleum and coal 

industry (324) is directly vulnerable in all disruption scenarios except for the loss of link 

(1,7), while the Food and beverage and tobacco industry (311) would be affected only 

by the loss of link (2,5). 

Table 4.3. Tons of remaining commodities at suppliers with the removal of 
network components. 

Removed 
component 

Sum of remaining commodities at supply nodes (tons) 

311 324 325 327 333 339 
Node 9 0 18960 

 
91744 

 
0 0 19740 

 Node 8 0 263776 0 17509 2048 0 
Node 11 0 18960 71119 0 0 0 
Link (1,7) 0 0 0 177628 0 64039 
Link (9,11) 0 18960 71119 0 0 0 
Link (2,5) 50244 3656 0 0 267 0 
Link (8,4) 0 263776 0 0 2048 0 
Link (2,8) 14793 157492 88627 0 0 0 
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  4.3.3 Multi-industry Impact  

As all the demand nodes are located outside of Oklahoma, failure in the form of 

the inability of suppliers to export commodities is modeled as a demand perturbation as 

calculated in Eq. (4.2). Other industries within the state will be affected by the 

interdependent effect of this failure, as captured by 𝑞௞, representing the extent to which 

an industry output will not be produced. And the effect of the disruption on the economy 

of the state is captured by Q, assuming that industries not using the transportation network 

have not experienced any demand perturbation.  

Given the remaining commodities left at supply nodes, shown in Table 4.3, 

demand perturbation is calculated with Eq. (4.2). Resulting industry inoperability, 𝑞௞, is 

provided in Table 4 and depicted in Figure 4.3. The Petroleum and coal industry (324) is 

most vulnerable to the removal of the link (2,8), link (2,4), or node 8.  The removal of 

these components also affect the operability of the Nonmetallic minerals industry (327), 

though to a lesser extent than the removal of link (1,7). The productivity of the Chemical 

products industry (325) is highly dependent on the connectivity of Tulsa and Oklahoma 

City through I-44, as represented by link (9,11), as well as transshipment nodes 9 and 11.  

Table 4.4. Industry inoperability across six most important industries within the 
state of Oklahoma. 

Removed component 

Industry 

311 324 325 327 333 339 
Node 9 0.00E+00 9.00E-04 4.90E-03 0.00E+00 0.00E+00 1.50E-03 
Node 8 0.00E+00 1.16E-02 9.00E-04 1.20E-03 1.60E-03 8.00E-04 

Node 11 0.00E+00 9.00E-04 3.80E-03 0.00E+00 0.00E+00 1.00E-04 
Link (1,7) 0.00E+00 1.00E-04 2.00E-04 8.90E-03 1.00E-04 4.50E-03 

Link (9,11) 0.00E+00 9.00E-04 3.80E-03 0.00E+00 0.00E+00 1.00E-04 
Link (2,5) 5.10E-03 2.00E-04 2.00E-04 1.00E-04 2.00E-04 2.00E-04 
Link (8,4) 0.00E+00 1.16E-02 9.00E-04 3.00E-04 1.60E-03 8.00E-04 
Link (2,8) 4.00E-04 1.16E-02 9.00E-04 1.20E-03 1.60E-03 8.00E-04 
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Figure 4.3. Graphical depiction of inoperability across six most important industries 
within the state of Oklahoma. 

 

Considering each industry’s production level in monetary value and calculating 

total impact of the disruption across the state’s industries with Q, Table 4.5 and Figure 

4.4 provide the supplementary analysis which elaborates the magnitude of loss (in million 

USD) experienced by different industries regarding the total economic loss. The 

interconnected nature of the industries within a region affect productivity of the other 56 

industries operating in Oklahoma though individually to a much lesser extent than the six 

industries directly affected. Many industries are vulnerable to any sort of disruption 

affecting the operability of node 8, the intermodal terminal facilities at the Port of 

Catoosa, or either of the links connecting it to nodes 2 or 4, the port itself and the state of 

Texas, respectively. The Petroleum and coal products industry (324) is a high dollar 

industry in Oklahoma affected the most by the disruption scenarios, though less 

vulnerable to disruptions that remove links (2,5) or (1,7) from service. 
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Table 4.5. Economic losses across the six most important industries within the state 
of Oklahoma. 

 

 

Figure 4.4. Interdependent economic losses in Oklahoma due to network component 
removal.            

 

  4.3.4 Planning for Adaptive Capacity 

During the month-long period of disruption, the efficacy of contingency rerouting 

through the residual network is determined according to its reduction in economic 

productivity of Oklahoma. Respectively, Table 6 and Table 7 report interdependent 

economic inoperability experienced by the six most important industries in Oklahoma 

and the consequential multi-industry economic losses following the contingency 
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311 324 325 327 333 339 Other industries

Removed 
component 

Industry Total multi-
industry 
impact 311 324 325 327 333 339 Others 

Node 9 0.12 11.04 6.67 0.09 0.20 14.77 17.59 50.47 
Node 8 0.24 146.24 1.22 2.47 11.90 7.95 159.32 329.33 

Node 11 0.04 10.80 5.16 0.06 0.11 0.78 12.82 29.79 
Link (1,7) 0.23 0.92 0.23 18.17 0.37 45.79 22.41 88.12 

Link (9,11) 0.04 10.80 5.16 0.06 0.11 0.78 12.82 29.79 
Link (2,5) 28.04 2.70 0.26 0.25 1.65 2.40 23.64 58.95 
Link (8,4) 0.24 146.20 1.21 0.69 11.88 7.88 158.46 326.56 
Link (2,8) 2.12 146.29 1.24 2.48 11.91 8.10 160.71 332.84 
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rerouting strategy devised from the model developed in Eqs. (4.4)-(4.12) to minimize Я௘
ோ. 

Я௘
ோ is defined as a measure to lessen the maximum potential drop in the regional economy, 

lies on (0,1), where Я௘
ோ = 0 means that under a disruption scenario 𝑒, there is no way to 

avoid the maximum possible loss in the economy of the region by rerouting the supply-

demand network, and 𝜂௣ = 1 means that under a disruption scenario 𝑒, it is possible to 

maintain the full productivity of the regional economy by rerouting commodity flows 

through the residual network. Comparing the inoperability caused by the removal of the 

network component with and without devising a contingent rerouting strategy during the 

period of disruption, shown in Figure 5 and Figure 6 respectively, shows that the proposed 

model to plan for adaptive capacity tries to facilitate the trades in high dollar industries 

like Petroleum and coal products (324) and Miscellaneous manufacturing (339), while 

having less impact on Chemical products (325) or Food and beverage and tobacco (311) 

industries.  

Table 4.6. Economic inoperability caused by the disruption after devising a 
contingent rerouting strategy. 

Removed 
component 

Industry 

311 324 325 327 333 339 

Node 9 2.00E-04 0.00E+00 4.80E-03 0.00E+00 0.00E+00 0.00E+00 
Node 8 1.10E-03 7.20E-03 5.00E-03 8.00E-04 1.00E-04 5.00E-04 
Node 11 2.00E-04 0.00E+00 4.70E-03 0.00E+00 0.00E+00 0.00E+00 
Link (1,7) 0.00E+00 0.00E+00 1.00E-04 7.50E-03 0.00E+00 1.00E-04 
Link (9,11) 2.00E-04 0.00E+00 3.60E-03 0.00E+00 0.00E+00 0.00E+00 
Link (2,5) 0.00E+00 1.00E-04 1.50E-03 0.00E+00 2.00E-04 0.00E+00 
Link (8,4) 1.10E-03 7.20E-03 5.00E-03 2.00E-04 1.00E-04 5.00E-04 
Link (2,8) 1.50E-03 7.00E-03 5.20E-03 2.00E-04 1.00E-04 5.00E-04 
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Figure 4.5. Economic inoperability caused by the disruption devising a contingent 
rerouting. 

 

Figure 5 depicts how contingent rerouting would affect the maximum loss across 

multiple Oklahoma industries following the removal of the particular components. And, 

as listed in Table 4.7, this strategy could lessen the vulnerability of the whole system with 

respect to the removal of particular components like link (2,5) as part of the inland 

waterway network. It is also inferred that industries in Oklahoma are most vulnerable to 

disruptions that cause inoperability in (i) node 8, the intermodal terminal facilitates the 

movement of commodities in the industrial park of Port of Catoosa to out-of-state 

customers, (ii) link (8,4), a portion of railroad that connects Oklahoma to Texas City, TX, 

or (iii) link (2,8), a local railroad that connects the Port of Catoosa to the North America 

railroad intermodal terminal, as even rerouting cannot sufficiently enhance the 

performance the collective industries, as measured by Я௘
ோ, by more than 36%. As shown 

in Table 7, the maximum possible loss resulting from the removal of a network 
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component will be avoided with a contingent rerouting strategy, as in some cases system 

performance improved up to 85%.  

Table 4.7. Economic losses, in million USD, within the state of Oklahoma after 
planning for adaptive capacity. 

Removed 
component 

Industry Total multi-
industry 
impact 

Я௘
ோ 311 324 325 327 333 339 Others 

Node 9 0.85 0.41 6.57 0.03 0.05 0.42 3.00 11.32 0.78 
Node 8 5.98 90.15 6.80 1.66 0.78 5.17 100.68 211.22 0.36 
Node 11 0.85 0.40 6.34 0.03 0.05 0.41 2.92 10.98 0.63 
Link (1,7) 0.02 0.37 0.11 15.26 0.10 0.58 7.33 23.78 0.73 
Link (9,11) 0.84 0.31 4.83 0.02 0.04 0.32 2.36 8.72 0.71 
Link (2,5) 0.02 1.82 2.06 0.02 1.43 0.30 3.28 8.92 0.85 
Link (8,4) 5.98 90.12 6.79 0.44 0.78 5.12 100.10 209.33 0.36 
Link (2,8) 8.42 87.77 7.09 0.45 0.78 5.21 99.48 209.22 0.37 

 

 

Figure 4.6. Total economic loss across all industries in Oklahoma, contingent rerouting 
versus no action. 

 

As a contingent rerouting strategy is sought considering the total economic impact 

embedded in Eq. (4.3) , priorities given to high-dollar industries and those with the 

highest interdependent impacts across industries. Though Figure 4.6 shows the absolute 
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benefit of implementing the adaptive capacity planning strategy in the case of different 

disruption scenarios, there might be cases in which the rerouting strategy results in losses 

to particular industries. Figure 4.7 shows how contingent rerouting strategies affect 

different industries (in the form of box plots generated across the eight disruption 

scenarios). For example, the rerouting strategies taken following the eight different 

disruption scenarios would lessen the economic loss in Petroleum and coal products 

(324) industries by $25.46 million, on average, and at least $0.55 million, in the case of 

losing link (1,7). Overall, the Chemical products (325) and Food and beverage and 

tobacco (311) industries are most adversely impacted, as shown in Figure 4.7, because 

optimal contingency rerouting tends not to benefit these industries in favor of the larger 

economy, as shown in Figure 4.6. 

 

Figure 4.7. Effects of contingent rerouting on different industries. 
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With regard to the three components of resilience capacity identified by Vugrin 

et al. (2011), most freight transportation network resilience studies focus on pre-

disruption prevention investments via absorptive capacity or post-disaster network 

restoration strategies via restorative capacity. And such is typically done by defining 

system performance as a measure related to the serviceability of the system (e.g., travel 

time/distance, flow, throughput) or a topological measure related to the network structure 

(e.g. centrality, connectivity, betweenness). This work, however, emphasizes adaptive 

capacity in the form of contingent rerouting strategies to manage the supply-demand 

network after a disruptive event to lessen the total economic impact.  

More specifically, this work proposes an optimization formulation to 

accommodate the flow through the residual network and maintain the productivity of the 

economy of the desired region by (i) integrating a multi-commodity network flow model, 

representing a multi-modal freight transportation network, with a risk-based economic 

interdependency model, to capture the propagation of the failure in a group of 

interconnected industries, and (ii) defining a measure of adaptive capacity to valuate 

rerouting strategies. The formulation provides a means to consider the final role of a 

freight transportation network as the facilitator within the economy in planning for 

adaptive capacity after a disruption.  

Part of a multi-modal freight transportation network connecting Oklahoma to 

surrounding states has been considered to develop a stylized case study in which supply 

nodes are located in the state of Oklahoma and demand nodes are located in surrounding 

states. We address the efficacy of implementing the adaptive capacity planning 
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formulation in Oklahoma when a scenario-based disruption disables a particular network 

component for a month. Results suggest a successful avoidance of maximum potential 

loss in high dollar industries such as Petroleum and coal products (324) and 

Miscellaneous manufacturing (339), and a consequent static resilience in the economy of 

the state, as the average maximum loss could be avoided by more than 50%. Though a 

proportion of the total economic impact has been considered to seek adaptive planning 

strategies in this study, further work should embed larger social and community impacts 

in the problem formulation. 

This initial formulation can be further improved by accounting for the real-world 

intermodal container planning considerations and other dynamic issues. Complementary 

models to plan for system resilience as a function of absorptive and restorative capacity, 

as well as the adaptive capacity-focused formulation proposed here, could more 

effectively highlight the tradeoffs among different resilience capacity planning 

perspectives.  
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CHAPTER 5 
 

PLANNING FOR RESTORATIVE CAPACITY 
 

This work focuses on enhancing network resilience via restorative capacity. Most 

work in infrastructure network recovery focuses on the restoration process as an effort to 

minimize unsatisfied demands in each time period. Nurre et al. (2012) introduce a design 

and scheduling formulation that maximizes the total weighted flow reaching to demand 

nodes in each time period of the recovery horizon. Miller-Hooks et al. (2012) propose 

restoring disrupted network performance as a function of satisfied demand in each time 

period of the restoration horizon from the perspective of network resilience. Sharkey et 

al. (2015) expand the model by Nurre et al. (2012) to recover interdependent 

infrastructure networks. In terms of optimizing network connectivity, Aksu and Ozdamar 

(2014) formulate a multi-vehicle problem to recover blocked links that are critical for 

maintaining network connectivity under limited recovery resources. Celik et al. (2015) 

also plan debris cleaning processes with the aim of recovering transportation network 

connectivity under uncertain nature of the problem. Kasaei and Salman (2016) propose 

an arc routing problem that reconnects network components within a recovery time 

horizon.  

Acknowledging that infrastructure networks do not exist for their own sake but 

serve society, particularly as a means to promote economic productivity, this work 

expands upon the recent literature in optimizing infrastructure network recovery via 

demand satisfaction or network connectivity to accounting for multi-industry economic 

impacts. We focus on measuring the effectiveness of restorative capacity on economic 
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productivity with the proportional value of the maximum loss that can be avoided by 

recovery decisions, adapted from Rose (2004). This is depicted graphically in Figure 5.1 

and mathematically in Eq. (5.1), where %ΔDY represents the economic loss given that 

some recovery action is taken and %ΔDYmax represents the maximum economic loss due 

to the disruption  while no action is taken. This quantitative approach is used in this study 

to define a performance measure for the system’s ability to restore its functionality 

(%ΔDYmax − %ΔD) after a disruptive. In this work %ΔDY and %ΔDYmax refer to 

changes in total output produced in an economy of interconnected industries. In this 

sense, these measures are analogous to the concept of inoperability, a well-studied topic 

in the literature of interdependent industries and infrastructures (Santos and Haimes 2004, 

Barker and Haimes 2009, Barker and Santos 2010a,b). Inoperability, q, quantifies the 

proportional extent to which a system (e.g., economic system) is not functioning in an as-

planned manner, thereby providing a metric to describe the behavior of a system 

regardless of the measure describing its proper function (e.g., flow capacity, connectivity, 

production output). As further discussed in Section 5.3., this measure of restorative 

capacity is extended to represent maximum loss that is avoided in each time period by 

devising recovery actions till the full system restoration. 
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Figure 5.1. The performance components of restorative capacity (adapted from Pant et 
al. (2014)). 

 

 𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
%∆𝐷𝑌௠௔௫ − %∆𝐷𝑌

%∆𝐷𝑌௠௔௫
 (5.1) 

 

A multi-modal freight transportation network can be considered a facilitator of 

economic productivity as it enables the flow of commodities among industries located in 

multiple regions. Following a disruptive event, obstacles in commodity movement ripples 

throughout the interconnected industries, as input to one industry may be disrupted output 

from another industry, thus affecting the entire (regional) economy. As such, we seek 

recovery decisions that enable economic productivity across multiple industries. We 

propose an optimization framework to devise recovery decision by integrating (i) a multi-

commodity network flow model of freight movement, (ii) a risk-based interdependency 

model of multi-regional, multi-industry impacts, and (iii) an objective function that 

addresses restorative capacity with a measure of economic resilience (Rose 2004, 2009, 
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2013, Pant et al. 2014). The proposed optimization model is developed following a three-

step approach, as illustrated in Figure 5.2. 

 

Figure 5.2. Three-step approach to devise network recovery with multi-regional, multi-
industry impacts. 

 

  5.2.1 Freight Movement and Disruption  

A typical MCNF model is used to represent a network of industries located in 

multiple regions. And, a scenario-based removal of network components known as 

interdiction (Murray et al. 2008) is a common theme in modeling and analysis of supply-

demand network disruption. Interdiction analyses encompass a wide range of possible 

disruptions that may vary with respect to spatial scales, correlation of disruptive events, 

sequence of failures, and event duration. In the case of any disruption modeled as the 

removal of a network component or a set of components (or a drop in the functionality of 

the network modeled as reduction of link capacities), the consequences are calculated by 

deducting the commodity flows on the affected links from the baseline flow. Slack 

variable 𝑆௜௧
௞ᇲ

 reflects the quantity of commodity 𝑘ᇱ at node 𝑖  at time 𝑡 that is either (i) 
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undelivered and remaining with the suppliers or (ii) unsatisfied demand experienced by 

consumers. This slack variable will be used subsequently to drive the calculation of 

inoperability among multiple industries.  

  5.2.2 Multi-Regional, Multi-Industry Economic Impact 

To model the interdependent adverse effect of commodity flow disruption on 

multiple industry sectors located in different regions, we use a multi-regional extension 

of Inoperability Input-Output Model (IIM). The IIM is an extension of the traditional 

economic input-output model (Leontief 1986), a linear model of the commodity flows in 

a set of interconnected industries. This section provides methodological background on 

the risk-based multi-regional interdependency model used to measure the economic 

impacts of a transportation disruption in terms of remaining commodities at suppliers and 

unmet demands at demand nodes. 

Input-output model and its multi-regional extension: the traditional I-O model has 

been extended to represent multi-regional economic interdependency (Miller and Blair 

2009). A regional input-output matrix 𝐀௥  is developed by modifying the elements of the 

𝐀 matrix. As shown in Eq. (5.2), 𝑙௞
௥ , referred to as a location quotient, is defined to indicate 

how well industry 𝑘’s production satisfies the regional demand.   

𝑎௞௛
௥ ൜

𝑙௞
௥𝑎௞௛,    𝑙௞

௥ < 1

𝑎௞௛ ,       𝑙௞
௥ ≥ 1

 (5.2) 

 

The location quotient, 𝑙௞
௥ , is mathematically defined in Eq. (5.3), where 𝑥௞

௥  is the 

output of industry 𝑘 in region 𝑟, 𝑥୲୭୲ୟ୪
௥  is the output of all industries in region 𝑟, 𝑥௞ is the 
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output of industry 𝑘 at the national level, and 𝑥୲୭୲ୟ୪ is the output of all industries at the 

national level. 

𝑙௞
௥ =  

𝑥௞
௥ 𝑥௧௢௧௔௟

௥⁄

𝑥௞ 𝑥௧௢௧௔௟⁄
 (5.3) 

 

 As discussed by Isard et al. (1998), in multi-regional analysis, it is desired to 

consider the effects of interdependencies due to the exchange of goods and services 

between regions. The authors extended the input-output model to incorporate inter-

regional commodity exchanges by defining an inter-regional relationship as 𝑧௞௛
௥௥′ =

𝑧௞
௥௥′𝑧௛

௥′, where 𝑧௞௛
௥௥′ is the amount of output of industry 𝑘 in region 𝑟 that is used by 

industry ℎ in region 𝑟′, 𝑧௞
௥௥′ is the amount of output of industry 𝑘 that goes from region 

𝑟 to 𝑟ᇱ, and 𝑧௛
௥′is the amount of output of industry ℎ coming from all regions into 𝑟ᇱ that 

is used as input by industry ℎ. Isard et al. argued that 𝑧௞
௥௥′ is proportional to 𝜉௞

௥ᇱ, the total 

amount of commodities related to industry 𝑘 that come into region 𝑟ᇱ  from all other 

regions (i.e., 𝑧௞
௥௥′ = 𝜓௞

௥௥′𝜉௞
௥ᇱ). Also, 𝑧௞௛

௥′ is proportional to the output of the industry ℎ 

in region 𝑟′ (i.e., 𝑧௞௛
௥௥′ = 𝑎௞௛

௥′𝑥௛
௥ᇱ). Hence, the inter-regional technical coefficient is 

defined with Eq. (5.4). 

𝑎௞௛
௥௥ᇱ =  

𝑧௞
௥௥ᇱ 𝑧௞௛

௥ᇱ

𝜉௞
௥ᇱ  𝑥௛

௥ᇱ = 𝜓௞
௥௥ᇱ𝑎௞௛

௥ᇱ  (5.4) 

 

Ultimately, an inter-regional input-output model is proposed in Eq. (5.5), the 

details of which can be found in Isard et al. (1998) and Miller and Blair (2009). 

𝑥௞
௥ = ෍ ෍ 𝜓௞

௥௥ᇱ𝑎௞௛
௥ᇱ 𝑥௛

௥ᇱ

௄

௛ୀଵ

ோ

௥ᇲୀଵ

+  ෍ 𝜓௞
௥௥ᇱ𝑐௞

௥

ோ

௥ᇲୀଵ

 (5.5) 
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The multi-regional, multi-industry input-output model is provided in Eq. (5.6). 

Each sub-matrix 𝚿௥௥ᇱ is a 𝐾 × 𝐾 diagonal matrix whose diagonal elements are the 

proportions of all commodities 𝜓௞
௥௥′, ∀ 𝑘 ∈ {1, … , 𝐾} that originated in region 𝑟 and are 

consumed in region 𝑟′.  Each sub-matrix 𝚿ଵଵ, referred to as the trade coefficient matrix, 

are parametrized using the Commodity Flow Survey database that documents the annual 

flow of goods in US dollars using multi-modal transportation across different regions in 

the United States, collected by the Bureau of Transportation Statistics (2010).  

൥
𝑥ଵ

⋮
𝑥ோ

൩ = ൥
𝛹ଵଵ ⋯ 𝛹ଵோ

⋮ ⋱ ⋮
𝛹ோଵ ⋯ 𝛹ோோ

൩ ൥
𝐴ଵ ⋯ 0 

⋮ ⋱ ⋮
0 ⋯ 𝐴ோ

൩ ൥
𝑥ଵ

⋮
𝑥ோ

൩ + ൥
𝛹ଵଵ ⋯ 𝛹ଵோ

⋮ ⋱ ⋮
𝛹ோଵ ⋯ 𝛹ோோ

൩ ൥
𝑐ଵ

⋮
𝑐ோ

൩ (5.6) 

 

Inoperability Input-Output Model and its multi-regional extension: Crowther and 

Haimes (2010) followed the same principles in developing multi-regional input-output 

model to propose the Multi-Regional Inoperability Input-Output Model (MRIIM) by 

integrating Eqs. (5.6) and (2.3). In the MRIIM, provided in Eq. (5.7), each of the 𝐾 × 𝐾 

sub-matrices 𝚿⋆௥௥ᇱ, ∀ 𝑟, 𝑟′ ∈ {1,2, … , 𝑅} is normalized by the diagonal regional output 

matrices diag(𝑥௥), ∀ 𝑟 ∈ {1,2, … , 𝑅}. 

൥
𝐪ଵ

⋮
𝐪ோ

൩ = ൥
𝚿⋆ଵଵ ⋯ 𝚿⋆ଵோ

⋮ ⋱ ⋮
𝚿⋆ோଵ ⋯ 𝚿⋆ோோ

൩ ൥
𝐀⋆ଵ ⋯ 0 

⋮ ⋱ ⋮
0 ⋯ 𝐀⋆ோ

൩ ൥
𝐪ଵ

⋮
𝐪ோ

൩  

+ ൥
𝚿⋆ଵଵ ⋯ 𝚿⋆ଵோ

⋮ ⋱ ⋮
𝚿⋆ோଵ ⋯ 𝚿⋆ோோ

൩ ൥
𝐜⋆ଵ

⋮
𝐜⋆ோ

൩ 

(5.7) 

 

Total economic losses, the combination of direct and indirect losses, can be 

calculated by multiplying each industry’s production level by its inoperability level: for 

industry 𝑘, 𝑄௞ = 𝑥௞𝑞௞, or for the entire economy of industries, 𝑄 = 𝐱்𝐪.  A multi-

regional extension of these calculations can measure the total economic loss in the region 
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under study. As such, planning decisions can be made with respect to some combination 

of inoperability or economic impact at the industry level, the multi-industry level, or for 

different regions. 

MRIIM Application to Freight Disruption: following a disruption in freight 

transportation infrastructure, commodity movement is assumed to be degraded and the 

whole system of interconnected industries is faced with a failure in the form of remaining 

commodities at suppliers and unmet demands at consumers. The propagation of the 

failure throughout interconnected industries located in multiple region is formulated 

using MRIIM. Santos and Haimes (2004) proposed a demand-reduction IIM that has been 

successfully employed to study multi-industry impacts of perturbations in supply and 

demand (e.g., Resurreccion and Santos (2013), Pant et al. (2011), Haggerty et al. (2008), 

Lian and Haimes (2006)). Here, the failure is translated into the two IIM metrics of 

inoperability and final consumption perturbation based on a demand-reduction MRIIM 

implemented by Pant et al. (2011) in modeling supply and demand perturbation caused 

by an inland waterway port closure. In the proposed approach, the remaining 

commodities at suppliers after a disruption are considered as final consumption 

perturbations. And the effects of the failure at demand nodes in the form of unmet 

demands is modeled as a “forced” demand reduction, assuming that a disruption 

decreases the supply of a commodity for a demand node while the final external 

consumption remains virtually unaffected. In such a case, the demand nodes temporarily 

sacrifice their internal need for that commodity until it returns to its as-planned supply 

level, and a surrogate for supply reduction is calculated from the combination of “forced” 

internal consumption and an output inoperability. 
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Modeling Remaining Supply: the remaining commodities at a supplier of 

commodity 𝑘 located in node 𝑖 at region 𝑟 will be considered as a reduction in final 

consumption. Final consumption for industry 𝑘 includes commodities consumed by 

industry 𝑘 itself internally, or (𝑐̂௞
௥)୧୬୲, and the amount of external consumption that is 

exported through the network 𝐺, or (𝑐̂௞
௥)ீ, as modeled in Eq. (5.8). It is assumed that the 

disruption results in losses of commodity flows only through the network, so industry 

production activities unrelated to the network experience no direct failure though might 

be affected indirectly due to an interdependent loss of economic productivity. When a 

disruption causes difficulties for industry 𝑘 in region r only in exporting commodities, it 

experiences commodities remaining at supply nodes in region r totaling ∑ 𝑆𝑖
௞

௜ ∈( ேశ
ೝ ∩ேೖ) , 

where 𝑁ା
௥  represents the set of nodes that are home to suppliers in region 𝑟. This is  shown 

in Eq. (5.9). As such, the final consumption perturbation for industries that experience 

difficulties only in exporting commodities is modeled as the amount of slack divided by 

as-planned industry output in Eq. (5.10). 

𝑐̂௞
௥ = (𝑐̂௞

௥)୧୬୲ + (𝑐̂௞
௥)ீ           𝑘 ∈ {1, … , 𝐾} (5.8) 

 

𝑐̂௞
௥ − 𝑐̃௞

௥ = ෍ 𝑆𝑖
௞

௜ ∈( ேశ
ೝ ∩ேೖ)

          𝑘 ∈ {1, … , 𝐾} 
(5.9) 

 

𝑐௞
⋆௥ =

∑ 𝑆𝑖
௞

௜ ∈( ேశ
ೝ∩ேೖ)

𝑥ො௞
௥             𝑘 ∈ {1, … , 𝐾} (5.10) 

 

Modeling Unmet Demand: as discussed by Pant et al. (2011), the amount of 

import (input) of industry 𝑘 at demand nodes in region 𝑟, defined as ∑ −𝑏𝑖
௞

௜ ∈(ேష
ೝ ∩ேೖ) , 
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contributes toward the production activity and the internal consumption of industry 𝑘 at 

region 𝑟. Thus, when a disruption causes difficulties for industry 𝑘 at region 𝑟 in 

importing commodities, it experiences unmet demands totaling ∑ 𝑆𝑖
௞

௜ ∈( ேష
ೝ ∩ேೖ) . The 

consequences are the loss of output, ∆𝑥ො௞
௥ = 𝑥ො௞

௥ − 𝑥෤௞
௥, and final internal 

consumption, ∆(𝑐̂௞)୧୬୲.  

෍ 𝑆𝑖
௞

௜ ∈( ேష
ೝ ∩ேೖ)

= ∆𝑥ො௞
௥ + ∆(𝑐̂௞

௥)௜௡௧            𝑘 ∈ {1, … , 𝐾} 
(5.11) 

 

Therefore, for industry 𝑘, unmet demand causes an inoperability, 𝑞௞, measured as 

the loss of production in industry 𝑘 as a proportion of its original production level, with 

∆𝑥ො௞ 𝑥ො௞⁄ . Also, a disruption in internal consumption, as shown in Eq. (5.8), causes a final 

consumption perturbation, 𝑐௞
⋆, and is modeled as a measure of the change in the final 

consumption as a proportion of the original production level in industry k, with ∆𝑐̂௞ 𝑥ො௞⁄ . 

The failure in the form of unmet demand is formulated following an approach adapted 

from the port disruption work of Pant et al. (2011, 2015) and the transportation network 

vulnerability formulation of Darayi et al. (2017), in which a slack variable 𝑆௜
௞ is defined 

to capture unsatisfied demand at demand nodes (or undelivered commodities remaining 

with the suppliers), shown in Eq. (5.12). For the industries experiencing difficulties only 

in importing their required commodities, there exists a final consumption perturbation, as 

modeled in Eq. (5.13). 

∆𝑐̂௞
௥

𝑥ො௞
௥ =

∑ 𝑆𝑖
௞

௜ ∈( ேష
ೝ ∩ேೖ) − ∆𝑥ො௞

௥

𝑥ො௞
௥          𝑘 ∈ {1, … , 𝐾} (5.12) 
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𝑐௞
⋆௥ =

∑ 𝑆𝑖
௞

௜ ∈( ேష
ೝ ∩ேೖ)

𝑥ො௞
௥ − 𝑞௞

௥        𝑘 ∈ {1, … , 𝐾} (5.13) 

 

To quantify the inoperability and final consumption perturbations for the 

collection of 𝐾 interconnected industries located in R regions, a complete solvable system 

of Eqs. (5.10) and (5.13) combined with the MRIIM in Eq. (5.7) is implemented. While 

in actual situations, some industries would likely consist of both supply and demand 

nodes in each region, Eqs. (5.10) and (5.13) capture failure in either only supply nodes or 

only demand nodes within a particular industry at a region. Eq. (5.14) formulates the total 

final consumption perturbation for industry 𝑘 in the case of having both exporting 

(supply) and importing (demand) roles.  

𝑐௞
⋆௥ =

∑ 𝑆𝑖
௞

௜ ∈( ேశ
ೝ ∩ேೖ)

𝑥ො௞
௥ +

∑ 𝑆𝑖
௞

௜ ∈( ேష
ೝ ∩ேೖ)

𝑥ො௞
௥ − 𝑞௞

௥                       𝑘 ∈ {1, … , 𝐾} (5.14) 

 

As a result, the perturbation vector for region r (𝐜⋆௥), whose elements are captured 

by Eqs. (5.10),  (5.13), or (5.14) depending on the importing/exporting role the nodes 

belonging to each industry in each region, parameterizes the interdependency model in 

Eq. (5.7). And, consequently, regional vector of inoperability 𝐪௥ consisting of 𝐾 elements 

of inoperability for each industry in region 𝑟 can be calculated. Following a disruptive 

event that causes difficulties for freight movement (and results in remaining commodities 

at suppliers and unmet demands), 𝑞௞
௥ measures the proportional extent to which as-

planned productivity or functionality is not realized in industry 𝑘 at region 𝑟. Considering 

each industry’s production level in monetary value and calculating the total impact of the 

disruption across the regions. These multi-regional, multi-industry analyses gives us an 
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opportunity to plan for network restoration considering economic impacts, as discussed 

in the next step.  

5.2.3 Step 3: Planning for Restorative Capacity 

When a disruption leads to the loss of multiple network components, regional 

economies and multiple industries that relied on the functionality of the network 

experience inoperability and economic losses. We desire to tackle recovery actions in 

terms of restoration failed network components with multi-industry economic 

productivity in mind. Restorative capacity is considered to be the extent to which a freight 

transportation network is capable of being recovered through the assignment of work 

crews. Based on the static measure of restorative capacity modeled in Eq. (5.1), a time-

based formulation is proposed in Eq. (5.15) that captures the proportional economic loss 

(considering maximum loss in case of no recovery action) that could be avoided at time 

period 𝑡 by the set of recovery actions devised up to 𝑡. 𝑄୫ୟ୶ represents the summation of 

economic loss in multiple industries located in multiple regions following a disruption, 

and 𝑄௧ is the economic loss at time 𝑡 considering the proportionally recovered network 

in the meantime. Recall that economic loss for industry 𝑘 at region 𝑟 is calculated by 

multiplying the proportional inoperability, 𝑞௞
௥ found using Eq. (5.7), by the expected 

production level in monetary units, or 𝑄௞
௥ = 𝑥௞

௥𝑞௞
௥. Total economic losses at each time 

period is a summation of 𝑄௞
௥ over multiple industries in multiple regions for that particular 

period of time. Recovery decisions are made to maximize restorative capacity over 

multiple time periods, formulated in Eq. (5.15). 

Я௧ =  
𝑄௠௔௫ − 𝑄௧

𝑄௠௔௫
 (5.15) 
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A regional restorative capacity measure is proposed in Eq. (5.16) represents the 

economic productivity improvement in region r triggered by restorative decisions up to 

time 𝑡. Likewise, an industry-specific measure of restorative capacity at time 𝑡 is 

formulated in Eq. (5.17). 

Я௧
௥ =  

𝑄௠௔௫
௥ − 𝑄௧

௥

𝑄௠௔௫
௞  (5.16) 

 

Я௞,௧
௥ =  

𝑄௞,௠௔௫
௥ − 𝑄௞,௧

௥

𝑄௞,௠௔௫
௥  (5.17) 

 

Each node in the transportation network can play the role of a supplier and a 

demand node simultaneously. We do note that no supplier in a region is permitted to 

satisfy demand nodes in that region. To implement that in the model, we connect two 

separated supply and demand dummy nodes to each non-transshipment node with the 

same amount of supply and demand as those amounts which are included in that  

particular node. Note that this expansion on the network turns the non-transition nodes to 

a transition node. We also assume that each industry includes two types of commodities 

and no region supplies a commodity that is also demanded in that region. Notation 

employed in the problem formulation is summarized as follows: 

Sets and indices 
𝑁 Set of nodes 
𝐿 Set of links 
𝑁ା

  Set of supply nodes 
𝑁ି

  Set of demand nodes 
𝑁଴

  Set of transshipment nodes 
𝑁′ Set of disrupted nodes 
𝐿ᇱ Set of disrupted links 
𝑡 = 1, … , 𝑇 Index of discrete time periods, where 𝑇 is the end of the time horizon 
𝑘 = 1, … , 𝐾 Index of industries, where 𝐾 is the total number of industries 
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𝛼௞ Set of commodities belonging to industry 𝑘 
𝑁ା

௞ Set of supply nodes in industry 𝑘 
𝑁ି

௞ Set of demand nodes in industry 𝑘 

𝑘ᇱ = 1, … , 𝐾ᇱ 
Index of types of commodities in each industry, where 𝐾ᇱ is the total 
number of commodities, each industry is made up of two different types of 
commodities  

𝑁ା
௞ᇲ

 Set of supply nodes in commodity 𝑘ᇱ of industry 𝑘 

𝑁ି
௞ᇲ

 Set of demand nodes in commodity 𝑘ᇱ of industry 𝑘 
𝑟 = 1, … , 𝑅 Index of regions, where 𝑅 is the total number of regions 
𝑁ା

௥ Set of supply nodes in the region 𝑟 
𝑁ି

௥ Set of demand nodes in the region 𝑟 
Parameters 
𝑢௜௝

  Capacity of link (𝑖, 𝑗) before disruption 
𝜋௜

௞ Total production of industry 𝑘 in node 𝑖 

𝑏௜
௞ᇲ

 

Mass-balance parameter representing supply/ demand/transshipment of 

commodity 𝑘ᇱ at node 𝑖 after disruption. For supply nodes 𝑏௜
௞ᇲ

> 0, for 

demand nodes 𝑏௜
௞ᇲ

< 0, and for transshipment nodes 𝑏௜
௞ᇲ

= 0 
𝑥௥

௞ Production level of industry k in region 𝑟 in monetary value 

𝑇∗(௞×௥) 
Element of the normalized multi-regional interdependency matrix 𝑇∗ of size 
(𝐾×𝑅)×(𝐾×𝑅) 

𝛾௜௧
௞ᇲ

 

Multiplier of the slack term to represent slack at supply nodes (𝛾௜௧
௞ᇲ

=

1, ∀𝑖 ∈ 𝑁ା
௞ᇲ

), demand nodes (𝛾௜௧
௞ᇲ

= −1, ∀𝑖 ∈ 𝑁ି
௞ᇲ

), and transshipment 

nodes (𝛾௜௧
௞ᇲ

= 0, ∀𝑖 ∈ 𝑁ୀ
௞ᇲ

) 
Decision variables 

𝑓௜௝௧
௞ᇲ

 
Integer variable representing the flow of commodity 𝑘ᇱ of industry 𝑘 across 
link (𝑖, 𝑗) at time 𝑡 after a disruptive event 

𝑆௜௧
௞ᇲ

 
Integer slack variable representing undelivered commodity 𝑘ᇱ of industry 𝑘 
remaining with the supply node 𝑖 at time 𝑡 or unsatisfied demand of 
commodity 𝑘ᇱ of industry 𝑘 at demand node 𝑖 at time 𝑡 

𝜇௜௝௧ Binary variable equal to 1 when the restoration process of disrupted link 
(𝑖, 𝑗) finishes at time 𝑡, and 0 otherwise 

𝛽௜௝௧ Binary variable equal to 1 when link (𝑖, 𝑗) is operational at time 𝑡, and 0 
otherwise 

ω௞௧
௥  

Binary variable equal to 1 if there exists any unsatisfied demand of 
commodities in industry 𝑘 in region 𝑟 at time 𝑡, and 0 otherwise 

𝑐∗
௥௧
௞  

Continuous variable representing final consumption perturbation for 
industry 𝑘 in region 𝑟 at time 𝑡 

𝑞௥௧
௞  

Continuous variable representing inoperability level of industry 𝑘 in region 
𝑟 at time 𝑡 

𝑄௥௧
௞  

Continuous variable representing total economic loss of industry 𝑘 in region 
𝑟 at time 𝑡 
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Planning for restorative capacity by recovering the disrupted links in an order 

which leads to the minimum total economic loss over the time horizon is formulated as 

follows.  

𝑚𝑎𝑥 ෍ Я௧

்

௧ୀଵ

 
(5.18) 

෍ 𝑓௜௝௧
௞ᇲ

௄ᇲ

௞ୀଵ

≤  𝑢௜௝
 , ∀ (𝑖, 𝑗) ∈ 𝐿, 𝑡 = 1, … , 𝑇 

(5.19) 

෍ 𝑓௜௝௧
௞ᇱ

௄ᇲ

௞ᇲୀଵ

≤  𝛽௜௝௧𝑢௜௝
 , ∀ (𝑖, 𝑗) ∈ 𝐿′, 𝑡 = 1, … , 𝑇 

(5.20) 

෍ 𝑓௜௝௧
௞ᇲ

(௜,௝)∈ ௅ 

− ෍ 𝑓௝௜௧
௞ᇲ

(௝,௜)∈ ௅ 

+ 𝛾௜௧
௞ᇲ

𝑆௜௧
௞ᇲ

=  𝑏௜
௞ᇲ

, 𝑘ᇱ = 1, . . . , 𝐾ᇱ, 𝑡 = 1, … , 𝑇 

 

(5.21) 

෍ 𝜇௜௝௧ ≤ 1

்

௧ୀଵ

, ∀ (𝑖, 𝑗) ∈ 𝐿′ 
(5.22) 

𝛽௜௝௧ ≤ ෍ 𝜇௜௝௦

௧

௦ୀଵ

, ∀ (𝑖, 𝑗) ∈ 𝐿′, 𝑡 = 1, … , 𝑇 
(5.23) 

𝑐∗
௥௧
௞ =

∑ ∑ 𝑆௜௧
௞ᇲ

௜ ∈൫ ேశ
ೝ ∩ேೖ൯௞ᇲ∈ேశ

ೖᇲ

𝑥ො௞
௥ +

∑ ∑ 𝑆௜௧
௞ᇲ

௜ ∈( ேష
ೝ ∩ேೖ)௞ᇲ∈ேష

ೖᇲ

𝑥ො௞
௥ − 𝜔௞௧

௥ 𝑞௞௧
௥ ,  

𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡 = 1, … , 𝑇 

(5.24) 

1

𝑥ො௞
௥ ෍ ෍ 𝑆௜௧

௞ᇲ

௜∈ேశ
ೝ௞ᇲ∈ఈೖ

≤ 𝜔௞௧
௥ ≤  𝑥ො௞

௥ ෍ ෍ 𝑆௜௧
௞ᇲ

௜∈ேశ
ೝ௞ᇲ∈ఈೖ

, 𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡

= 1, … , 𝑇 

(5.25) 

𝑄௥௧
௞ = 𝑥௥

௞𝑞௥௧
௞ , 𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡 = 1, … , 𝑇 (5.26) 

 

൥
𝒒௧

ଵ

⋮
𝒒௧

ோ
൩ = ൥

𝜳⋆ଵଵ ⋯ 𝜳⋆ଵோ

⋮ ⋱ ⋮
𝜳⋆ோଵ ⋯ 𝜳⋆ோோ

൩ ൥
𝑨⋆ଵ ⋯ 0 

⋮ ⋱ ⋮
0 ⋯ 𝑨⋆ோ

൩ ൥
𝒒௧

ଵ

⋮
𝒒௧

ோ
൩  

+ ൥
𝜳⋆ଵଵ ⋯ 𝜳⋆ଵோ

⋮ ⋱ ⋮
𝜳⋆ோଵ ⋯ 𝜳⋆ோோ

൩ ൥
𝒄௧

⋆ଵ

⋮
𝒄௧

⋆ோ
൩ 

𝑡 = 1, … , 𝑇 

(5.27) 

𝛽௜௝௧ = {0,1}, 𝜇௜௝௧ = {0,1}, ∀ (𝑖, 𝑗) ∈ 𝐿ᇱ, 𝑡 = 1, … , 𝑇 (5.28) 

𝑆௜௧
௞ᇲ

> 0, ∀𝑖 ∈ 𝑁ା
 , ∀𝑗 ∈ 𝑁ି

 , 𝑘ᇱ = 1, . . . , 𝐾ᇱ, 𝑡 = 1, … , 𝑇 (5.29) 

𝑐௥௧
⋆௞ > 0, 𝑞௥௧

௞ > 0, 𝑄௥௧
௞ > 0, 𝜔௞௧

௥ = {0,1},
𝑟 = 1, … , 𝑅, 𝑘 = 1, . . . , 𝐾, 𝑡 = 1, … , 𝑇 

(5.30) 
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The proposed formulation optimizes the restoration efforts associated with a 

transportation network in the aftermath of a disruptive event. Recall that the network is 

presented by an undirected graph 𝐺 = (𝑁, 𝐿), with set of nodes 𝑁 and set of links 𝐿. 

Nodes and links affected by a disruption are represented with sets 𝑁′ and 𝐿′, respectively. 

The objective function explores a restoration schedule of disrupted links that leads to the 

maximum proportional reduction in economic losses across the time horizon. Eq. (5.19) 

restricts the total flow of all commodities on each link (𝑖, 𝑗) to at most its pre-disruption 

capacity 𝑢௜௝
 . After a disruption, the capacity of each disrupted link (𝑖, 𝑗) ∈ 𝐿′ is reduced 

to zero unless it is completely recovered and becomes operational again, as shown in Eq. 

(5.20). Eq. (5.21) represent the flow balance constraint for all commodities in and out of 

supply, demand, and transshipment nodes. In the aftermath of disruption we maintain the 

flow balance in each node by  defining  ,as the  slack variable 𝑆௜௧
௞ᇲ

 which captures: (i) the 

remaining supply of each industry across each supplier, (i.e., 𝑆௜௧
௞ᇲ

 ∀𝑖 ∈ 𝑁ା
௞ᇲ

), (ii) the 

unmet demand of each industry across each demand node , (i.e., 𝑆௜௧
௞ᇲ

 ∀𝑖 ∈ 𝑁ି
௞ᇲ

). Note that 

𝑏௜
௞ᇲ

 is a positive value for supply nodes, ∀𝑖 ∈ 𝑁ା
௞ᇲ

, a negative value for demand nodes, 

∀𝑖 ∈ 𝑁ି
௞ᇲ

, and it is zero for transshipment nodes, ∀𝑖 ∈ 𝑁ୀ. Eqs. (5.22) and (5.23) schedule 

disrupted links for restoration. Eq. (5.22) shows that each disrupted link is recovered in 

one time period, and when it is recovered, it should remain operational for the remainder 

of the time horizon, Eq. (5.23). Eq. (5.24) calculates the consumption perturbation of each 

industry 𝑘, remaining in each supplier node, 𝑆௜௧
௞ᇲ

 ∀𝑖 ∈ 𝑁ା
௞ᇲ

 , or each unsatisfied demand 

node, 𝑆௜௧
௞ᇲ

 ∀𝑖 ∈ 𝑁ି
௞ᇲ

, in each region 𝑟 at each time 𝑡 with respect the total production of 
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industry 𝑘 in each region 𝑟, 𝑥ො௞
௥ . In Eq. (5.25), ω௞௧

௥   activates the impact of inoperability 

of commodities in industry 𝑘 in region 𝑟 at time 𝑡 in Eq. (5.24) only if there exists any 

unsatisfied demand of commodities in industry 𝑘 in that region. Eqs. (5.26) and (5.27) 

calculate the inoperability level and total economic loss of each industry, 𝑘, in each 

region, 𝑟 ,at time, 𝑡, respectively. In Eq. (5.26), 𝑞௧
௥ is the inoperability matrix, 𝑘×1, ∀𝑘 ∈

𝐾, of all industries in each region 𝑟 which capture the consequences of the existence of 

unsatisfied demand of each industry 𝑘 on the output of that industry which is required to 

be minimized as the result of optimal schedule of disrupted links, Eq. (5.27).  

 

We demonstrate the proposed model on a case study based on a multi-modal 

freight transportation network, consisting of three interstate highways, railways, and 

inland waterway that connect Mississippi River Navigation System through two ports. 

This infrastructure plays a significant role in transporting commodities produced in the 

state of Oklahoma and sent to consumers in neighboring states, and so contrariwise. We 

employ the case study to implement the proposed model and evaluate and analyze the 

restorative efforts from different perspectives, such as, economy loss of each type of 

produced commodity in each region and network resilience behavior within restoration 

horizon. Three disruption scenarios are defined as the complete disruption of four 

different transshipment nodes. Four combined demand/supply nodes are considered in 

surrounding states are connected to three main supply/demand nodes within Oklahoma 

multi-modal freight transportation network. the multi-regional, multi-industry economy 
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loss in the aftermath of each disruptive scenario determines the optimal schedule of 

disrupted links to be restored with results in maximum economy saving during restoration 

process.  

  5.3.1 Supply-Demand Network  

Figure 5.3 shows the multi-modal freight transportation network, which sends and 

receives flows of different commodities from the industry sectors within the state of 

Oklahoma to the neighboring states and from surrounding states to the state of Oklahoma, 

respectively. The network consists of a part of interstate highways I-35, which connects 

Oklahoma to the north-south corridor, and I-40 and I-44, which is connected through the 

east-west corridor. Part of US highways 169 and 165 within Oklahoma connects the Port 

of Catoosa and the Port of Muskogee to the interstate highway network. Two intermodal 

rail-truck facility, one in Oklahoma City near the junction of I-35 and I-40, and the other 

one in Tulsa Oklahoma, which belongs to Burlington Northern Santa Fe (BNSF) railroad, 

are considered in the infrastructure of the network. We also include a part of the US inland 

waterway which connects the connects the Port of Catoosa and the Port of Muskogee to 

the Port of New Orleans, LA (node 5), the Port of Chicago, IL (node 7), the Port of Little 

Rock, AR (node 6), and the Port of Texas City, TX (node 4). 



 

112 
 

  

Figure 5.3. Representations of (a) spatial location of multi-modal nodes in Oklahoma 
and surrounding states, and (b) the connected transportation network. 

 

Based on NAICS, 62 industries operate in each of the five states, therefore 𝐀⋆ 

matrix regionalized for each state is 62 × 62. Although the focus of this work is to study 

the interaction of remained supply/unsatisfied demand and economy loss in the five 

regions, we also are interested in tracking the impacts of disruptions of these five states 

on other states which are not involved in disruption, yet are affected by its consequent 

negative impacts associated with their economy loss. Therefore 𝐀⋆ matrix is 620 × 620 

involved in network disruption and five affected regions by marginal disruption effects. 

We consider six primary industries export and import commodities through each five 

states. Discussed previously, it is assumed that two types of commodities belong to each 

industry as defined by NAICS economic sectors, and each node within the network is 

considered to be home to both suppliers or consumers of multiple commodities or 

transship the flow without adding or reducing any amount of flow. Based on the combined 

estimated annual supply and demand in tons for the associated industries and states 
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compiled from different databases (US Army Corps of Engineers 2013, Tulsa Port of 

Catoosa 2013, Bureau of Transportation Statistics 2010a,b, Port of Muskogee 2013, 

Bureau of Economic Analysis 2010), a list of monthly supply and demand is presented in 

Table 5.2 (assuming constant monthly demand, or annual demand divided by 12). 

Table 5.1. Economic losses, in million USD, within the state of Oklahoma after 
planning for adaptive capacity. 

  Industry 

  
311 324 325 327 333 339 

S
up

pl
y 

Oklahoma City (1) 362526 0 300501 183188 23790 118242 

Port of Catoosa (2) 50244 454911 284685 25268 2470 424 

Port of Muskogee (3) 0 33962 0 31886 0 30021 

Texas (4) 23250 0 21750 0 0 577 

Louisiana (5) 993 3828 36528 0 7174 0 

Arkansas (6) 0 0 60000 635 17000 1100 

Illinois (7) 356 0 448 0 70000 0 

D
em

an
d 

Oklahoma City (1) 23250 0 60000 0 17000 1100 

Port of Catoosa (2) 1064 3828 36976 635 7174 577 

Port of Muskogee (3) 285 0 21750 0 70000 0 

Texas (4) 97281 316905 204006 0 25838 30154 

Louisiana (5) 50244 18449 0 0 267 0 

Arkansas (6) 265245 153518 381180 41038 156 54494 

Illinois (7) 0 0 0 199304 0 64039 
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  5.3.2 Freight Movement and Disruption  

To parametrize the MCNF model, the cost vector is computed based on the 

transportation mode and the mileage of the distances between nodes: the per ton-mile for 

a barge is estimated at $0.97, compared to $2.53 for rail, and $5.35 for trucking (Arkansas 

Waterway Commissions 2014). Assuming that the total supply of commodity 𝑘 is equal 

to the total demand of the same commodity throughout the network, as shown in Table 

5.2, a baseline flow resulted in no remaining commodities at supply nodes and no 

unsatisfied demand at demand nodes when there is no disruption to the functionality of 

the network. 

In the illustrative example, disruption scenarios are defined as the removal of three 

network components, (i.e., nodes), at a time. It is assumed that a disruption, or the removal 

of a particular network component, lasts for a period of one month. Assuming that annual 

industry production accumulates consistently across the year (i.e., neither production nor 

interdependency relationships vary day-to-day, week-to-week, month-to-month), a 

smaller month-long time horizon is considered here as an appropriate proportion of a year 

to calculate the particular disruptive event cascading effect (e.g., a two-week closure of 

port facilities (Pant et al. 2011)). Focusing on the economy each of four states, and 

considering supply nodes within each state interacting with demand nodes in surrounding 

states, undelivered commodities remaining with suppliers or unsatisfied demand at 

demand nodes, as represented by 𝑆௜௧
௞ᇲ

, affect industry output and result in propagated 

inoperability through many of the interconnected industries. In the illustrative example, 

shown in Table 5.3 and Table 5.4, three disruption scenarios are defined as the removal 

of a combination of four nodes among eleven transmission nodes in a random order. In 



 

115 
 

the first scenario nodes 10, 9, 11 and the transmission node associated with node 7 are 

disrupted. The second scenario considers nodes 8, 9, 11 and the transmission node 

associated with node 4. The third scenario disables nodes 10, 8, 11 and the transmission 

node related to node 1. We assume that a disrupted node disconnects all its related links 

completely.   

In the illustrative example, three supply/demand nodes are within the state of 

Oklahoma and the four supply/demand nodes are located in Texas, Louisiana, Arkansas, 

and Illinois. Table 5.3 and Table 5.4 report ∑ ∑ 𝑆௜௧
௞ᇲ

௜ ∈൫ ேశ
ೝ ∩ேೖ൯௞ᇲ∈ேశ

ೖᇲ ,  or the sum of the 

slack (remaining supply) by commodity at the supply nodes when different network 

components are disrupted, and ∑ ∑ 𝑆௜௧
௞ᇲ

௜ ∈( ேష
ೝ ∩ேೖ)௞ᇲ∈ேష

ೖᇲ , the sum of the slack (unsatisfied 

demand) by commodities at the demand nodes when different network components are 

disrupted, respectively, omitting the flow on the disrupted component from the baseline 

flow within the network. As shown in Table 5.3, the Petroleum and coal industry (324) 

is directly vulnerable in all disruption scenarios except for the loss of link (1,7), while the 

Food and beverage and tobacco industry (311) would be affected only by the loss of link 

(2,5). 
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Table 5.2. Tons of remaining commodities at suppliers with the removal of 
network components. 

Disruption Scenario Region 
Sum of remaining commodities at supply nodes (tons) 

311 324 325 327 333 339 

Scenario 1 

Oklahoma 412770 488873 585187 240342 26262 148687 

Texas 23250 0 21750 0 0 577 
Louisiana 993 3828 36528 0 7174 0 
Arkansas 0 0 60000 635 17000 1100 
Illinois 0 0 0 0 0 0 

Scenario 2 

Oklahoma 362526 448612 382487 240342 26262 138687 

Texas 23250 0 21750 0 0 577 
Louisiana 993 3828 36528 0 7174 0 
Arkansas 0 0 60000 635 17000 1100 
Illinois 356 0 448 0 70000 0 

Scenario 3 

Oklahoma 412770 454911 585187 208456 26262 118666 

Texas 23250 0 21750 0 0 577 
Louisiana 0 0 0 0 0 0 
Arkansas 0 0 0 0 0 0 
Illinois 0 0 0 0 0 0 

 

Table 5.3. Tons of unmet demands at demand nodes with the removal of network 
components. 

Disruption Scenario Region 
Sum of unsatisfied commodities at demand nodes (tons) 

311 324 325 327 333 339 

Scenario 1 

Oklahoma 24599 3828 118726 635 94174 1677 

Texas 97281 316906 204006 0 25838 30154 
Louisiana 50244 18450 0 0 267 0 
Arkansas 265245 153518 381180 41038 156 54494 
Illinois 0 0 0 199304 0 0 

Scenario 2 

Oklahoma 24599 3828 118726 635 94174 1677 
Texas 97281 316906 204006 0 25838 30154 
Louisiana 50244 18450 0 0 267 0 
Arkansas 265245 153518 381180 41038 156 54494 
Illinois 0 0 0 199304 0 64039 

Scenario 3 

Oklahoma 24599 3828 118726 635 24174 1677 

Texas 97281 316906 204006 0 25838 30154 
Louisiana 50244 18450 0 0 267 0 
Arkansas 265245 119556 381180 9152 0 24473 
Illinois 0 0 0 199304 0 0 
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As each of four states includes supply and demand nodes, failure in the form of 

the inability of suppliers to export commodities/demands to receive commodities is 

modeled as a inoperability perturbation. Other industries within each of the four states as 

well as other states, which is not involved in disrupted network directly, will be affected 

by interdependent effect of this failure, as captured by 𝑞௥௧
௞  in matrix 𝑞௧

ோ for each region in 

Eq. (5.7), representing the extent to which an industry output will not be products, or an 

industry input will not be received. The effect of the disruption on the economy loss of 

each state is captured by 𝑄௧
௥.  

Given the remaining commodities left at supply nodes and unsatisfied demands 

in demand nodes, shown in Table 5.3 and Table 5.4 respectively, inoperability 

perturbation is calculated with Eqs. (5.26) and (5.27) and depicted in Table 5.5. The 

Machinery industry (333) is the most vulnerable in the presence of each three disruptive 

scenarios. Each these disruptive scenarios also affects the operability of the 

Miscellaneous manufacturing industry (339), yet in lesser extent than industry (333).  The 

operability level in Arkansas is dependent on the connectivity of transshipment nodes 9 

and 11 to the rest of the network. 

Table 5.4 represents a detailed report of the maximum economic loss in the 

aftermath of each disruption scenarios. Each column is associated with one disruption 

scenario and includes: (i) the total economic loss resulted from each disruption scenario, 

(ii) the maximum economic loss related to each state and each industry, (iii) the last 

column presents a detailed report of the maximum economic loss related to each industry 

in each state. Recovery decisions in terms of the order in which disrupted components 
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should be recovered are made based on the impacts on the total economy, as shown in 

Figure 5.4. And, Figures 5.5-5.10 present regional and industry-based impacts of the 

recovery decisions.  

Table 5.4. Economic losses, in million USD, within the state of Oklahoma after 
planning for adaptive capacity. 

Formulation Region Industry 
𝑄௠௔௫ 

Scenario1 Scenario2 Scenario3 
Total economic loss 

෍ ෍ 𝑄௥௧೏

௞

௄

௞ୀଵ

ோ

௥ୀଵ

 
 14707.40 12711.9 13340.7 

The economic loss for each 
region 

෍ 𝑄௥௧೏

௞

௄

௞ୀଵ

 

Oklahoma 558.49 494.58 631.12 
Texas 1218.60 1199.37 530.33 
Louisiana 262.51 236.42 244.68 

Arkansas 6917.85 5832.27 129.17 

 Illinois 5749.97 4949.30 6065.67 

The economic loss for each 
industry 

෍ 𝑄௥௧೏

௞

ோ

௥ୀଵ

 

 311 716.28 633.01 1737.92 
 324 606.02 519.83 419.01 
 325 276.26 242.88 1105.74 
 327 148.63 132.16 178.27 
 333 6659.87 5761.98 6532.99 
 339 1866.38 1586.53 5104.71 

Inoperability 

Oklahoma 

311 0.00546 0.00494 0.00322 
324 0.04501 0.04487 0.00090 
325 0.00210 0.00187 0.00145 
327 0.01148 0.01051 0.00592 
333 0.00252 0.00336 0.00000 
339 0.01135 0.00967 0.01016 

Texas  

311 0.00436 0.00467 0.00399 
324 0.00022 0.00049 0.00020 
325 0.00151 0.00158 0.00138 
327 0.00234 0.00391 0.00214 
333 0.04866 0.04738 0.04407 
339 0.00556 0.00540 0.00506 

Louisiana 

311 0.00188 0.00182 0.00048 
324 0.00019 0.00018 0.00005 
325 0.00283 0.00248 0.00241 
327 0.00326 0.00322 0.00054 
333 0.00000 0.00000 0.00000 
339 0.00302 0.00260 0.00258 

Arkansas 
311 0.06400 0.05389 0.06038 
324 0.04101 0.03450 0.03883 
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325 0.01482 0.01253 0.01396 
327 0.04483 0.03777 0.04226 
333 0.42954 0.36238 0.40553 
339 0.10744 0.09039 0.10184 

Illinois  

 

311 0.00441 0.00382 0.00404 
324 0.00030 0.00027 0.00028 
325 0.00149 0.00129 0.00133 
327 0.00288 0.00254 0.00257 
333 0.07121 0.06123 0.06244 
339 0.00521 0.00444 0.00475 

 

 

Figure 5.4. Total proportional economic saving for each disruption 

 

 

(a) (b) 

Figure 5.5. (a) Proportional economic saving for each industry, (b) Proportional 
economic saving in each region (Scenario 1) 
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(a) (b) 

Figure 5.6. (a) Proportional economic saving for each industry, (b) Proportional 
economic saving in each region (Scenario 2) 

 

 

 

(a) (b) 

Figure 5.7. (a) Proportional economic saving for each industry, (b) Proportional 
economic saving in each region (Scenario 3) 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 5.8. The inoperability level of each industry in: (a) Arkansas, (b) Illinois, (c) 
Louisiana, (d) Oklahoma, (e) Texas (Scenario 1) 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 5.9. The inoperability level of each industry in: (a) Arkansas, (b) Illinois, (c) 
Louisiana, (d) Oklahoma, (e) Texas (Scenario 2) 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 5.10. The inoperability level of each industry in: (a) Arkansas, (b) Illinois, (c) 
Louisiana, (d) Oklahoma, (e) Texas (scenario 3) 
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CHAPTER 6 
 

CONCLUDING REMARKS 
 

The overriding theme of this dissertation is to study the freight transportation 

resilience considering economic impacts. Resilience has been defined based on the three 

aspects of the resilience capacity proposed by Vugrin and Camphouse (2011): (i) 

absorptive capacity, or to the extent a network is able absorb shocks from disruptive 

event, (ii) adaptive capacity, or the extent to which a system can quickly adapt after a 

disruption by temporary means, and (iii) restorative capacity, or the extent to which the 

system can recover from a disruption or be reconstructed in the long-term. Also, It is 

sought to measure the network vulnerability by considering the multi-regional, multi-

industry impacts of a disruption within a freight transportation network.  

In the first step, an integrated framework is developed to measure the economic 

impacts of a disruption within a multi-modal freight transportation network using a 

typical multi-commodity network flow formulation and an economic interdependency 

model. And, a measure of transportation network vulnerability is proposed to analyze a 

broader perspective on freight transportation network vulnerability with a means to 

measure importance of network components considering economic impacts of 

degradation of transportation network. The primary contribution of this approach is the 

integration of the multi-commodity network flow representation of the multi-modal 

transportation network with the interdependent, multi-industry economic model and a 

framework to measure a transportation network component importance considering its 

multi-industry impact. A stylized case study of a multi-modal transportation network in 
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the state of Oklahoma is considered to illustrate the developed vulnerability analysis 

paradigm.  

In the second step, focusing on the first component of resilient capacity of a 

system, it is sought to lessen the effects of disruptions by investing in hardening both the 

infrastructure (e.g., backup equipment) and industry sectors. The interdependent nature 

of industries has been considered in resource allocation. And, a modeling and analysis 

framework to allocate limited resources to harden industry sectors to enhance the 

absorptive capacity of the total economy is developed. The interdependent adverse effects 

of a disruption are measured using a risk-based interdependency model and an 

exponential resource allocation model is introduced to formulate the risk reduction. 

Finally, proposing an integrated optimization model, it is sought how a limited budget 

could be allocated to multiple industries to enhance the whole interdependent system’s 

economic resilience. A risked-based economic interdependency model is used to measure 

the propagation of a failure through industries. Sources of uncertainty in this data-driven 

model are considered, and a soft-robust optimization model is proposed to devise budget 

allocation under uncertainty. The approach is illustrated with an inland waterway port 

case study.  

In the third step, adaptive capacity is emphasized and contingent rerouting 

strategies are discussed to manage the supply-demand network after a disruptive event to 

lessen the total economic impact. An optimization formulation is proposed to 

accommodate the flow through the residual network and maintain the productivity of the 

economy of the desired region by (i) integrating a multi-commodity network flow model, 

representing a multi-modal freight transportation network, with a risk-based economic 
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interdependency model, to capture the propagation of the failure in a group of 

interconnected industries, and (ii) defining a measure of adaptive capacity to valuate 

rerouting strategies. Results suggest a successful avoidance of maximum potential loss in 

high dollar industries such as Petroleum and coal products (324) and Miscellaneous 

manufacturing (339), and a consequent static resilience in the economy of the state, as 

the average maximum loss could be avoided by more than 50%.  

Finally, network resilience enhancement considering economic impacts via 

restorative capacity is discussed. Freight Infrastructure as a means to promote economic 

productivity is considered, and an infrastructure network recovery optimization via 

demand satisfaction or network connectivity accounting for multi-industry economic 

impacts is proposed. The focus is on measuring the effectiveness of restorative capacity 

on economic productivity with the proportional value of the maximum loss that can be 

avoided by recovery decisions. And, regional and industry-based economic impacts of 

recovery decisions are analyzed. It is shown that multi-regional, multi industry 

perspective changes the resilience decisions considering total economic productivity 

though it might not be of benefit to all the regions/industries. 

The methods developed in this dissertation can be employed and expanded in 

several directions. Some of them are discussed below. 

The vulnerability analysis perspective proposed in this study can be implemented 

to highlight priorities in maintaining certain network components (to reduce common-

cause failure), or in rerouting of commodity flows after a disruption. There also exists an 

opportunity to extend the base approach discussed in this work to analyze network 
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completion strategies where capacity enhancement (e.g., link capacity) and additional 

transportation facilities (e.g., added links/nodes) could harden the network around the 

most vulnerable components. Further, longer term transportation infrastructure design 

plans could be informed by this kind of analysis. Also, the proposed model for absorptive 

capacity can be implemented in a network of freight infrastructure.   

This initial formulation proposed to plan for adaptive capacity can be further 

improved by accounting for the real-world intermodal container planning considerations 

and other dynamic issues. Complementary models to plan for system resilience as a 

function of absorptive and restorative capacity, as well as the adaptive capacity-focused 

formulation proposed here, could more effectively highlight the tradeoffs among different 

resilience capacity planning perspectives.  

In the proposed network recovery model, it is assumed that recovery time is equal 

for all disrupted components and it is just possible to recover one link at a time period. 

The model can be improved by considering proportional recovery and scheduling crews 

to recover multiple disrupted components at a time period.  
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