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Abstract 

Multiple sclerosis (MS) is a chronic immune-mediated disease that wreaks havoc on 

the central nervous system (CNS). The disease attacks and degrades the myelin 

sheath that insulates axons in the CNS, as well as the cells that generate myelin 

known as oligodendrocytes. In chronic cases it can even transect the axons 

themselves. The degradation leads to impaired conduction of electrical signals that 

travel to and from the CNS. Due to the variability in degradation sites symptoms 

associated with MS differ considerably from person to person. However, common 

symptoms consist of muscle weakness, fatigue, and impaired mobility and balance. 

Recently, the notion of bilateral asymmetry has become more commonplace in MS 

research, and has been observed in many physiological variables, such as aerobic 

capacity, muscular strength and power, as well as skeletal loading. Yet, one area that 

has not been investigated involves spinal reflexes, particularly the soleus Hoffmann 

(H) reflex. Of importance, bilateral coordination reflexes between legs is necessary 

for tasks such as balance. PURPOSE: Therefore, the intent of this investigation was 

two-fold. First, to determine if the soleus H reflex was asymmetrical in a sample of 

people with MS; and secondly, is the asymmetry associated with impaired balance. 

METHODS: Eight volunteers with MS (Females = 5) and eight healthy volunteers 

(Females = 6) matched for age- and physical activity participated in this investigation. 

The MS patients had an average expanded disability status score of 3.1 ± 2.2 (median 

= 2, range = 1 to 6) indicating mild to moderate disability. The study consisted of six 

visits, five of which were for soleus reflex testing, one for balance testing, and the 

initial for necessary paperwork and familiarization to all experimental protocols. 
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Electrical activity of the soleus muscle was recorded using electromyography 

electrodes placed over the soleus muscle. To contract the soleus muscle involuntarily 

(the muscle was in a resting state) a stimulating electrode was placed over the tibial 

nerve located on the posterior aspect of the knee in the popliteal fossa, and another 

placed just proximal to the patella. Electrical stimulation started at ~ 0.5 volts and 

increased by 0.25V every seven to ten seconds until the H reflex reached a peak 

(Hmax) and the direct muscle response (M wave) reached a plateau (Mmax). EMG 

tracings were analyzed to determine Hmax and Mmax in order to standardize the Hmax to 

the Mmax. Each leg was tested twice in random order, but only once per visit. To 

increase reliability in day-to-day variability stimulating and recording sites were 

traced with a permanent marker, and stimulation visits were scheduled for the same 

time. Within-limb Hmax / Mmax ratios were compared using paired t-tests. Both left 

and right leg Hmax / Mmax ratios were averaged and compared using independent t-

tests. After averaging each leg an asymmetry score was calculated and compared 

between groups using independent t-tests. The asymmetry score was then correlated 

to balance performance collected using dynamic dual-force plates. Two balance tests 

were used: the sensory organization test (SOT) and limits of stability (LOS) test. 

Body composition was assessed with dual-energy x-ray absorptiometry (DXA). 

RESULTS: Within-limb Hmax / Mmax ratios were similar for both legs in the MS 

group (p > 0.05). Left leg within-limb Hmax / Mmax ratios were similar in the left leg (p 

> 0.05) but differed in the right leg (p < 0.05). When each leg was averaged together 

and compared no significant between leg differences were observed for either group 

(p > 0.05). When the averaged Hmax / Mmax ratios were converted into an asymmetry 
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score a significant difference was observed between groups (p < 0.01), with the MS 

groups having a greater asymmetry score than the non-MS group. Asymmetry scores 

from each group were pooled and ran against the results from the SOT and LOS tests. 

Significant negative correlations were observed for condition four of the SOT and 

endpoint excursion, maximum excursion, and directional control from the LOS test in 

the forward direction (i.e., leaning forward). One significant positive correlation was 

observed between the pooled asymmetry scores and reaction time from the LOS test, 

also in the forward direction. No other significant correlations were observed between 

the asymmetry scores and the other conditions or the composite score of the SOT, or 

the other directions tested from the LOS test. Total body fat-mass and percent fat 

differed between groups (p < 0.05). No differences were observed in lower-leg 

composition results (p < 0.05). CONCLUSION: The results from this investigation 

further highlight the presence of bilateral asymmetries in MS patients, and that the 

soleus H reflex is significantly associated with many aspects of leaning forward. Of 

interest, is all asymmetries previously reported in the literature have required physical 

effort and/or motivation; however, the asymmetry observed in this investigation 

occurred in a resting muscle, which did not incorporate descending drive or require 

voluntary effort.  
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CHAPTER I: INTRODUCTION 

Multiple sclerosis (MS) is a multifactor, immune-mediated disease affecting 

the central nervous system (CNS) in approximately 2.5 million individuals worldwide 

(65). Females are on average affected to a greater extent than their male counterparts, 

which has been estimated to be approximately 3:1 (7, 34). On average, diagnosis 

occurs in the third or fourth decade of life, and the disease prevalence varies 

considerably with North America and Europe affected to a greater extent (e.g., 

>100/100,000 inhabitants) than Eastern Asia and sub – Saharan Africa (e.g., 

2/100,000) (34). While the etiology of MS remains unclear three influencing factors 

have been identified, which include genetic predisposition, environmental factors, and 

prior exposure to infectious agents such as Epstein-Barr virus (67). Common 

symptoms of MS include, but are not limited to, reduced strength, symptomatic 

fatigue, and balance and coordination deficits (10). 

In 1996 Lubin and Reingold provided the medical and research communities 

with standardized definitions of the four identified types of MS (36, 37), consisting of 

1) relapsing-remitting MS (RRMS), 2) primary progressive MS (PPMS), 3) 

secondary progressive MS (SPMS), and 4) progressive relapsing MS (PRMS) (35). 

Approximately 85% of MS patients are diagnosed as RRMS, which is characterized 

by frequent, reoccurring attacks with varying periods of remission separating the 

attacks (35, 65). Over time the majority of individuals initially diagnosed with RRMS 

will transition into SPMS (65), which is characterized as a reduction in attacks and 

the onset of gradual neurologic disability (65).  
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The pathogenic cascade of MS is initiated by abnormal behavior within the 

immune system in the peripheral circulatory system, such that specific cells (i.e., T 

cells) are “primed” to target, and subsequently degrade specific proteins and 

phospholipids of the CNS. Once primed, T-cells infiltrate a compromised blood-brain 

barrier (BBB), which is made up of layers of specialized cells that function to 

maintain the integrity of the cerebral spinal fluid within in the CNS, and initiate a 

series of cellular responses that end with the degradation of myelin as well as the cells 

responsible for generating new myelin, oligodendrocytes. The main driving force of 

the degradation appears to be inflammation (65). Indeed, myelin degradation and 

symptoms enter a state of remission once inflammation is no longer present

The degradation of myelin negatively impacts saltatory conduction velocity, 

which is the propagation of an action potential along a myelinated axon (38). It is 

important to note that myelin is not a continuous structure, but rather interrupted at 

regular intervals known as nodes of Ranvier (38). Action potentials only propagate 

down the axon at the nodes of Ranvier, which increases the conduction velocity at 

which the action potential travels relative to an unmyelinated axon. In [genetically 

susceptible] people diagnosed with MS the immune system targets and degrades the 

myelin impairing, and potentially blocking in severe cases, the conduction of action 

potentials generated in the CNS out to a α-motor neuron (MN). Based on the 

pathophysiology of MS, it seems reasonable that electrical measures of muscle 

activation (e.g., electromyography, EMG) would be affected. Indeed, Scott et al. 

recently provided evidence of reduced EMG root mean square (RMS), a measure of 

EMG signal power, of the knee extensors at isometric contraction intensities greater 
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than 60% in a sample of MS patients; this was attributed to a reduction in motor unit 

firing rates (9, 53).  

The Hoffmann (H) reflex, named after Paul Hoffmann – a German 

physiologist, was first described in 1910 (16), and later given its name “Hoffmann 

reflex” in 1950 by Magladery and McDougal (39). Hoffmann originally described 

two phases of the reflex arc, a direct muscle response of short latency (3-5 

milliseconds, ms) and an indirect response of relatively longer latency (30-40 ms), 

known as the M – wave and H – reflex, respectively (21). The H – reflex is the 

electrical analogue to the classical monosynaptic stretch reflex, and has been used to 

assess motor unit excitability (21, 46, 59). Low levels of electrical stimulation applied 

to a peripheral nerve (e.g., tibial nerve) depolarize the large diameter sensory Ia 

afferent neurons that synapse onto an α-MN at the spinal cord which, if reaches 

threshold for depolarization, sends an action potential to its homonymous muscle 

fibers eliciting a muscle twitch that can be observed through EMG recordings (49). 

However, since the threshold to directly depolarize a α-MN is greater than that of 

sensory Ia afferents the M – wave will not be observed initially (46). However, as the 

electrical stimulus continues to increase the H – reflex will eventually reach a peak 

(Hmax) and the M – wave will begin to appear. Further increases in intensity will 

result in a reduced H – reflex amplitude as the orthodromic afferent action potential 

collides with an antidromic efferent action potential generated in the α-MN. At supra-

maximal intensities the H – reflex will be completely absent (21, 46, 59), and M – 

wave amplitude will eventually reach a plateau (Mmax).  
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The soleus H – reflex is one of the most commonly studied reflexes in spinal 

excitability investigations due to the convenient accessibility of the tibial nerve (59, 

66). Of importance, the soleus musculature is fundamental in maintaining proper 

posture, and modulation of the soleus H reflex is paramount during dynamic 

balancing tasks of differing difficulty on a wobble board (20).  

Interestingly, when both sides of the body are measured independently MS 

has been shown to affect one side of the body to a greater extent than the other. This 

unique disparity between limbs has been reported in leg strength (29, 30), bone 

mineral density (28), peak oxygen consumption (68), knee extensor power (5), as 

well as metabolic processes such as glucose uptake during walking (58), and can 

introduce significant predicaments in a person’s daily life [if not addressed]. Indeed, 

Chung et al. (2008) demonstrated knee extensor power was significantly associated 

with impaired postural control in a sample of MS subjects, and reported significant, 

positive correlation coefficients between knee extensor power asymmetry scores and 

normal and brisk walk times (5), indicating as the asymmetry in knee extensor power 

between limbs increased a greater amount of time was required to walk a prescribed 

distance. Moreover, measures of anterior / posterior (A/P) center of pressure (COP) as 

well as medial / lateral (M/L) COP were significantly correlated with loading 

asymmetry scores defined as the bilateral distribution of body mass with respect to 

limb preference during quiet standing (5). Huisinga et al. (17) recently reported MS 

patients had a significantly altered COP sway variability during quiet stance. This 

difference was observed in both frontal plane and sagittal plane sway, and was 

exacerbated with eyes closed.  
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Proper maintenance of postural control depends on the bilateral integration of 

somatosensory, visual, vestibular, and motor processes (4), most of which are 

frequently effected in people with MS (13). Indeed, impaired postural control is a 

common trait in people with MS (5, 19, 57). For example, Sosnoff et al. observed 

significant differences in medial-lateral sway range between MS subjects clustered 

into low and high spasticity groups and healthy controls (i.e., control < low < high) 

(63). Taken together, the observations of Sosnoff et al. (63) in addition to those of 

Chung et al. (5) highlight the importance of better understanding how asymmetry 

influences the ability to successfully accomplish functional tasks in MS patients such 

as maintaining proper balance, which impacts one’s quality of life.  

Purpose 

Based on the importance of bilateral coordination of reflexes in maintaining 

balance, which tends to be impaired in MS patients, and evidence demonstrating the 

presence of bilateral asymmetries in people with MS that significantly impact 

activities of daily living and quality of life it was the intent of this investigation to 1) 

determine if bilateral asymmetry exists in the soleus H reflex in a sample of MS 

subjects; and 2) determine if this asymmetry differs from healthy age- physical 

activity matched participants without MS; and 3) determine if there is any 

relationship between the soleus H reflex asymmetry and balance.  

Research Questions 

1. Will soleus Hmax / Mmax ratio differ between limbs in a sample of MS 

subjects and healthy controls?  

1. Will asymmetry in Hmax / Mmax be greater in MS subjects? 
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2. Will the soleus Hmax / Mmax ratio be related to balance performance? 

Hypotheses 

1. Soleus Hmax / Mmax will differ significantly between limbs in MS subjects, 

and will differ minimally between limbs in Non-MS participants. 

1. Hmax / Mmax asymmetry scores will be greater in MS subjects. 

2. Soleus Hmax / Mmax will be significantly negatively related to all SOT 

conditions and LOS test performance variables with the exception of 

reaction time. 

Research Sub – Questions 

1. Will SOT performance metrics differ between a sample of MS patients 

and Non-MS participants? 

2. Will LOS test performance differ between a sample of MS patients and 

Non-MS participants? 

Research Sub – Hypotheses  

1. MS subjects will perform significantly worse than Non-MS participants in 

all six conditions of the SOT. 

2. MS subjects will perform significantly worse than Non-MS participants in 

the four cardinal directions associated with the LOS test. 

Significance 

Spinal reflexes are known to play an integral part in bilateral processes such 

as maintaining postural control and MS patients have been shown to experience 

impaired postural control, which can significantly increase the risk for falling and 

living a more sedentary life. In addition, evidence exists demonstrating asymmetry in 
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disease in MS subjects, yet no study currently exist that examined the soleus H – 

reflex between legs in a sample of MS patients to determine if asymmetries in spinal 

excitability exist, and how bilateral asymmetries in the soleus H reflex relate to 

balance. Therefore, the results of this study will help explain how potential 

differences in the soleus H reflex between legs relate to balance in people with MS, 

and help guide future interventions.  

Assumptions 

The following are assumptions associated with the present study. 

1. H – reflex derives solely from group Ia afferents that project mono-

synaptically to α – motor neurons.  

2. Participants will give maximal effort for all muscular fitness testing and 

functional testing. 

3. Participants will provide accurate medical information and health history. 

4. All participants will be honest when filling out fatigue questionnaires. 

5. Participants complied with the directions and guidelines provided prior to 

testing.  This includes refraining from exercise, caffeine, and food. 

Delimitations 

1. The findings of the study will only be applicable to healthy individuals and 

people diagnosed with multiple sclerosis between the ages of 20 and 65. 

2. Multiple sclerosis patients will have neurologist confirmed diagnosis of 

relapsing-remitting multiple sclerosis (RRMS), and an extended disability 

status scale score (EDSS) less than 6.5.   
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3. The findings of this study will only be applicable to the soleus muscle. 

4. Multiple sclerosis patients will be free from relapse for a minimum of 3 

months. 

5. Multiple sclerosis patients must not currently be using prednisone or other 

steroids for disease exacerbation within 3 months of the study  

6. Individuals must not have asymmetric orthopedic limitations. 

7. Individuals must not have multiple risk factors for cardiovascular diseases. 

Limitations 

1. The participants were willing volunteers from the Norman, OK and Oklahoma 

City, OK areas and will not represent a true random sample. 

2. Because testing will occur on multiple testing visits, and fatigue is variable 

and unpredictable in MS patients, initial fatigue in MS patients may differ 

between testing visits. 

3. Medications, symptom management, and disease modification will vary 

between MS patients. 

4. Results will not apply to MS patients that have an EDSS score ≥ 6.5 or an MS 

diagnosis other than relapsing-remitting. 

5. The control group will be matched with the MS group in age, gender, and 

physical activity. 

Operational Definitions 

1. Action potential – electrical neural impulse (38). 

2. Antidromic volley– a volley of electric activity travelling in the wrong 

direction in a motor axon (39, 46). 
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3. Axon – part of motoneuron that transmits the result of an incoming message 

out to skeletal muscle in form of action potential (38). 

4. Bilateral asymmetry – differences between sides of the body (29). 

5. Center of gravity (COG) – a point in which all the mass of an object may be 

considered to be concentrated with respect to the pull of gravity. In normal 

subject standing erect, the center of gravity is located in the lower abdominal 

region and slightly forward of ankle joints (Neurocom International Inc.). 

6. COG sway angle (θ) – the angle between a vertical line projecting upward 

from the center of the area of foot support and a second line projecting from 

that same point to a subject’s COG (Neurocom International Inc.). 

7. Central drive – descending neural output from supra-spinal centers to skeletal 

muscle. 

8. Dendrite – part of motoneuron that receives signals from other neurons (38). 

9. Directional control – a comparison of the amount of movement in the intended 

direction towards the target to the amount of extraneous movement away from 

target. 

10. Electromyography (EMG) – a technique analogous to electrocardiography 

used to monitor skeletal muscle activation. Can be recorded within 

(intramuscularly) or on noninvasively on the surface of the skin (38). 

11. Endpoint excursion – the distance of the first movement toward the designated 

target, expressed as a percentage of maximum LOS distance. The endpoint is 

considered to be the point at which the initial movement towards the target 

ceases. 
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12. Hoffmann (H) reflex – is a spinal reflex analogous to the muscle stretch reflex 

that depends on electrical stimulation rather than a mechanically elicited 

stretch for activation, allowing for the bypass of muscle spindle activity and 

subsequent γ –activation of intrafusal fibers (21, 59). 

13. Interpolated twitch technique – the act of applying a single (or double) 

maximal stimulus to a motor nerve during a maximal voluntary contraction to 

assess level of muscle activation (38). 

14. Kin Com Dynamometer – an electro-mechanical device used to provide 

resistance during isokinetic and isometric muscular contractions.  This device 

will provide force and torque measurements during the different fatiguing 

exercise protocols. 

15. Kurtzke Expanded Disability Status Scale (EDSS) – An incremental 

numerical scale from 1 – 10 used to assess the disability level of an individual 

with MS (26). 

16. Limits of stability (LOS) – The maximum anterior, posterior, and lateral sway 

angles achievable without a fall, stumble, or reaching out. When the sway 

angle exceeds the LOS the subject must step, stumble, or grasp an external 

object to regain equilibrium (Neurocom International Inc.). 

17. M – wave – a direct motor response [of shorter latency] as a result of 

electrical stimulation of a motor axon (21). 

18. Maximal excursion – maximum distance achieved during the trial. 

19. Maximal M – wave (Mmax) – evoked by the recruitment of all motor axons, 

and provides an estimate of response provided by the whole MN pool (49). 
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20. Motor neuron – consists of a soma (cell body), and specialized processes 

known as dendrites and axon (38). 

21. Motor unit – a single motor neuron and the fibers to which its axon runs (38). 

22. Movement velocity – the average speed of COG movement measured in 

degrees per second. 

23. Multiple sclerosis (MS) – an immune-mediated inflammatory disease of the 

central nervous system (CNS) (National MS Society).  

24. Muscle spindle – sensory organs that monitor the length of a muscle, as well 

as the rate of change in length of a muscle (38). 

25. Orthodromic volley – a volley of electric activity travelling in the correct 

direction in a motor axon (46). 

26. Reaction time – the time in seconds between the command to move and the 

patient’s first movement. 

27. Relapsing remitting MS (RRMS) – a type of MS described by clearly defined 

disease relapses with periods of full or residual deficit upon recovery; periods 

of remission are characterized by a lack of disease progression (National MS 

Society).  

28. Primary progressive MS (PPMS) – a type of MS characterized by worsening 

of neurologic function from the onset of symptoms, without early relapses or 

remissions (National MS Society). 

29. Sensory organization test – a test that objectively identifies abnormalities in a 

patient’s use of the three sensory systems that contribute to postural control 

(Neurocom International Inc.). 
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30. Spasticity – an inappropriate, velocity dependent, increase in muscle tonic 

stretch reflexes, due to the amplified reactivity of motor segments to sensory 

input. It is one component of the upper motor neuron syndrome and can lead 

to muscle stiffness and disability (15). 
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CHAPTER II: REVIEW OF LITERATURE 

The follow review of literature will be presented as a series of individual 

analyses in a study-by-study manner. In brief, this review of literature will begin with 

an introduction into the disease multiple sclerosis (MS), and then describe in detail the 

pathophysiology of MS, then present some evidence demonstrating bilateral 

asymmetries will be presented, followed by a detailed analysis of the Hoffmann (H) 

reflex. Finally, this chapter will conclude by describing how bilateral asymmetries in 

the soleus H – reflex may contribute to postural impairments in MS patients. 

Pathogenesis, Diagnosis, and Disease Course 

Multiple sclerosis is a chronic disease affecting the CNS, and has been reported 

to reduce a patient’s lifespan by seven to eight years on average; 50% of patients will 

not be capable of performing household and employment responsibilities ten years after 

disease onset and will be classified as non-ambulatory 25 years after disease onset (65). 

Multiple sclerosis has been referred to as a prototype of non-traumatic immune-

mediated neurological dysfunction (65). The disease is complex and has four primary 

types of classification including relapsing-remitting MS (RRMS), primary progressive 

MS, secondary progressive MS, and progressive-relapsing MS (36). Risk factors have 

been identified such as genetic predisposition, environmental exposures known to affect 

the immune system including Epstein – Barr virus, smoking, and vitamin D deficiencies 

(52, 67), yet the etiology remains unclear; the pathology and pathophysiology of the 

disease have been extensively reviewed (31, 33, 47, 65, 67).  

Focal areas of inflammation mediate the deterioration of myelin in brain and 

spinal cord tissue (32), while sparing the peripheral nervous system (14). The loss of 
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myelin impairs propagation of action potentials through sites of degeneration, which 

subsequently leads to neurological deficits and associated symptoms (14). 

Diagnostically, focal plaques of demyelination are considered the hallmark of MS 

pathology, and have been observed in both grey and white matter in the brain (32).  

Inflammation is first triggered in the peripheral circulatory system where CD4 T 

– cells become primed and infiltrate the CNS via the blood – brain barrier (67). Once 

inside these cells identify specific proteins associated with the myelin sheath, release 

cytokines, and activate macrophages and B – cells that trigger local inflammation and 

results in demyelination of axons and destruction of the cells that synthesize new 

myelin, oligodendrocytes (67). Over time, inflammation will decrease and some myelin 

will regenerate. However, if demyelination is severe enough or present for an extended 

period of time the underlying axons will be damaged eventually leading to axonal 

degeneration and brain atrophy (65, 67). Symptoms vary between patients depending on 

lesion site(s), however, common symptoms include generalized muscle weakness and 

postural instability (14), which will be discussed in greater detail in sections to follow. 

Over the past 4 decades the criteria for diagnosing MS has evolved paralleled 

with evolving medical technology (e.g., MRI) and various disease modifying 

therapeutic agents. In 1976 Rose et al. (56) provided the clinical community with early 

criteria to be used in establishing a diagnosis of MS. Approximately six years later 

Poser and colleagues convened in Washington D.C. with the intention of improving 

diagnostic criteria by reducing subjectivity in diagnosing MS and providing more 

objective MS criteria through incorporating laboratory, neurophysiological, 

neuropsychological, and neuroimaging procedures (50). 
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Poser et al., 1983 (50) 

The intent of this two day workshop held in Washington D.C. in 1982 was to 

develop more objective MS diagnostic criteria by incorporating new reliable and valid 

ancillary procedures in order to conduct more effective therapeutic trials in multicenter 

programs, to compare epidemiological surveys, to evaluate new diagnostic criteria, and 

to estimate the activity of disease process in MS. 

A few important and useful concepts were defined, including attack, clinical 

and para-clinical evidence of a lesion, remission, and laboratory support. Because 

these concepts are used throughout the rest of their review, summarized definitions will 

be provided.  

1. Attack – also referred to as a bout, episode, or exacerbation. The occurrence of a 

symptom or symptoms of neurological dysfunction, with or without objective 

confirmation, and lasts greater than 24 hours. 

2. Clinical evidence of a lesion – signs of neurological dysfunction observed by 

neurological examination. 

3. Para-clinical evidence of a lesion – the demonstration of a lesion of the CNS that 

has not yet produced signs of dysfunction, and may or may not have caused 

symptoms in the past. 

4. Remission – a definite improvement in signs, symptoms, or both that persists for 

at least 24 hours. A remission lasting more than one month is considered 

significant. 

5. Laboratory support – applies to examination of cerebral spinal fluid for 

oligoclonal bands and increased production of immunoglobulin G (IgG). 
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In addition to diagnostic definitions, two major classification groups were 

proposed, consisting of definite and probable, which were then further divided into 

clinical or laboratory-supported MS.  

Clinical definite MS (CDMS) was described by presenting with two attacks and 

clinical evidence indicating two distinct lesions, or two attacks with one clinically 

evident lesion plus one para-clinical evidence of a second separate lesion. Laboratory-

supported definite MS (LSDMS) was described as evidence of IgG oligoclonal bands 

(OB), indicators of inflammation, in the CSF or an increased production of IgG by the 

CNS, in addition to two attacks in two distinct sites of the CNS separated by at least one 

month. Clinically probable MS (CPMS) is described as suffering two attacks and 

clinical evidence of one lesion; whereas, laboratory-supported probable MS (LSPMS) 

was described as suffering two attacks and presence of OB/IgG in CSF. Congruent with 

CDMS and LSDMS the attacks described in CPMS and LSPMS must be at least one 

month apart, last greater than 24 hours, and involve two separate sites of the CNS. 

Overall, these authors developed more objective diagnostic criteria by 

expanding on the earlier Schumacher criteria in order to identify groups of patients 

whose diagnosis would be accepted worldwide, and allow for greater participation in 

various clinical studies. 

Lubin and Reingold, 1996 (36) 

Concerned with improving communication and understandings between 

clinicians and researchers, Lubin and Reingold summarized results of an international 

survey and proposed standardized definitions for the different clinical courses of MS.  
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Relapsing-remitting MS (RRMS), the most common clinical course comprising 

approximately 85% of patients (65), was defined as clear and definite disease relapses 

(see Poser et al. for definition of relapse) with either full recovery or with some degree 

of residual upon recovery; the defining feature of RRMS being transient bouts of 

worsening neurologic function with periods of variable amounts of recovery. 

Three types of progressive MS have been defined. A diagnosis of primary 

progressive MS (PPMS) requires gradual worsening of neurologic function and no 

clearly distinct relapses. However, it was recognized that continuous decline at a 

constant rate was unlikely, and therefore, small variations in the rate of disease 

progression over time must be considered in the definition. Secondary-progressive MS 

(SPMS) was defined as being initially RRMS indicated by episodic periods of attacks 

and subsequent recovery that progressed into continuous decline in function without 

clearly defined relapses, periods of remission, and plateaus in disease progression. 

Kurtzke, 1983 (26) 

In 1983 Dr. John Kurtzke expanded upon his original Disability Status Scale 

(1955) designed to evaluate the treatment effects of isoniazid in what became known as 

the Expanded Disability Status Scale (EDSS)(26). Originally the scale was used to 

evaluate the degree, or magnitude, of neurologic dysfunction based on a neurologic 

examination in MS patients by grading 8 “functional systems” (FS) on a scale ranging 

from 0 (normal) to 5 or 6 (maximal impairment), in addition to an overall disability 

scale ranging from 0 (normal) to 10 (death by MS); an overall score of 6 indicates the 

dependence on some unilateral walking aid (e.g., cane).  
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Function was measured in eight “mutually exclusive” groups consisting of 

Pyramidal, Cerebellar, Brain Stem, Sensory, Bowel and Bladder, Visual, Cerebral, and 

Other. Pyramidal, Cerebellar, Sensory, and Bladder and Bowel refer to physical 

impairments manifesting below the head, regardless of lesion site, while Brain Stem 

functions are related to both supraspinal and inter-segmental neural tracts. The 

expansion of the DSS, which included the addition of half steps within the original 0 to 

10 scale, was to provide greater sensitivity in the scale for research interested in 

monitoring changes over time in chronic MS; this suggestion was made by researchers 

who thought the middle section of the scale lacked sensitivity to appropriately detect 

change. A gain or loss of 0.5 in the EDSS score will define better or worse respectively. 

The 19 steps of the EDSS consist of: 

1. EDSS 1.0 – limited to one FS with a grade of 1, excluding cerebral grade 

1, which includes mood aberrations, and all others with a grade of 0. 

2. EDSS 1.5 – limited to two or more FS with a grade of 1, but nothing 

greater than 1. 

3. EDSS 2.0 – limited to one FS with a grade of 2, all others with a grade of 

0 to 1. 

4. EDSS 2.5 – limited to two FS with a grade of 2, all others with a grade 

of 0 or 1. 

5. EDSS 3.0 – limited to one FS with a grade of 3, or 3 or 4 FS with a grade 

of 2, and others with a grade of 0 to 1. 
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6. EDSS 3.5 – limited to one FS with a grade of 3 plus one or two with a 

grade of 2, or two FS with a grade of 3, or five FS with a grade of 2, and 

others with a grade of 0 to 1. 

7. EDSS 4.0 – limited to combinations exceeding two FS with a grade of 3, 

or one grade 3 and two FS with a grade of 2, or five FS with a grade of 2, 

or one FS with a grade of 4, and others with a grade of 0 or 1. However, 

at this step the ability to walk, work, and complete daily activities takes 

precedence of the grades assigned to the FS. EDSS 4.0 requires ability to 

walk at least 500 meters without aid or rest, and to carry out activities of 

daily living including work of average physical difficulty. 

8. EDSS 4.5 – limited to patients able to walk at least 300 meters without 

aid or rest, and complete work of average difficulty. The patient must be 

up most of the day with just limited activity. 

9. EDSS 5.0 – limited to patients able to walk at least 200 meters without 

aid or rest, but disability is severe enough to limit a full day of activities. 

10. EDSS 5.5 – limited to patients able to walk at least 100 meters without 

aid or rest, and requires special provisions to complete a ½ day of full 

(part-time). 

11. EDSS 6.0 – limited to patients who require some form of aid while 

walking 100 meters. This form can be a cane, crutch, brace, or assistance 

of another individual. 

12. EDSS 6.5 – limited to patients that require assistance to walk 20 meters; 

assistance is typically bilateral.  
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13. EDSS 7.0 – patient are restricted to a wheelchair for distances greater 

than 5 meters. The patient can still get around with chair on own, and 

remain up in the chair for 12 hours, and may be employed. 

14. EDSS 7.5 – patient is unable to take more than a few steps and is 

restricted to a wheelchair. They can wheel around, but not for the entire 

day as in EDSS 7.0. The wheelchair may be motorized. 

15. EDSS 8.0 – patients considered to be restricted to the bed, a chair, a 

passively in a wheelchair most of the day, but still retains ability to 

maintain self-care. Both arms retain function. 

16. EDSS 8.5 – patient cannot tolerate full days in a chair, and is mostly 

restricted to the bed. Can still use one or both arms for self-care, but not 

to the extent in EDSS 8.0. 

17. EDSS 9.0 – described as “helpless bed patients” that can still eat and 

communicate. They cannot perform self-care functions. 

18. EDSS 9.5 – described as a completely helpless bed patient who cannot 

communicate effectively, eat, or swallow. 

19. EDSS 10.0 – death caused by MS. This can be an acute event due to 

brainstem involvement or respiratory failure, or as a consequence of 

being bedridden. It excludes inter-current causes of death. 

A more detailed explanation of each grade for all FS and each EDSS step can be 

found in the appendices A and B of Dr. Kurtzke’s article (26).  
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McDonald et al., 2001 (40) 

In 2001 an international panel of physicians, clinicians, and researchers 

presented revised diagnostic criteria recommendations for MS based on advancements 

in clinical technology (e.g., magnetic resonance imagery, MRI). The panel reviewed 

previously established definitions used in diagnostic criteria for the purpose of 

improving future diagnoses. For the purpose of effectively diagnosing MS, obtaining 

objective evidence demonstrating the expansion of lesions typical to MS in time and 

space is important. Moreover, anecdotal claims of symptoms is not enough to 

definitively diagnose MS, but can provide supporting evidence in the presence of 

lesions separated in time and space. When clinical presentation is not sufficient to make 

a diagnosis, laboratory test measures, such as MRI, analysis of cerebrospinal fluid 

(CSF), and visual evoked potentials can provide additional support for making a sound 

clinical diagnosis. It is important to objectively define subjective terminology 

considered in diagnosing MS. For instance, the term abnormality lies on a continuum 

and can present as mild to severe, and therefore requires further defining if an 

abnormality is to be accurately determined. Three important questions related to 

defining diagnostic criteria were clarified:  

1. What constitutes an attack?   

2. How is the time between attacks measured?   

3. How is abnormality in para-clinical tests determined? 

Pathophysiology of MS 

MS can affect the body in many different ways depending on lesion site and 

whether or not a patient is currently in a state of remission or relapse. While symptoms 
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definitely vary among patients a few that are common, and poses a significant risk on a 

patient’s quality of life (QOL) and their ability to perform functional activities of daily 

living (ADL), are generalized muscle weakness, muscle spasticity, and impaired 

balance or gait (57).  

Maintaining proper balance requires the integration of multiple sensory systems 

including visual, vestibular, and somatosensory input (13). Unfortunately, these 

important systems are commonly impaired in MS patients, which increase their risk for 

falling. Indeed, a retrospective study published in 2002 that quantified fall risk among 

MS patients and important variables associated with falls reported 54% of MS patients 

included in analysis (n=27) had reported at least one fall over the previous two months 

(4). And, of those patients, 32% were classified as “recurrent fallers” as they reported 

having fallen at least twice. The Equiscale test for balance indicated a significant 

difference between the two groups (i.e., “fallers” and “non-fallers”) in balance 

performance, with non-fallers scoring better than fallers (14.1±2.5 vs. 9.3±5.3) (4). The 

score of the Equiscale test is based on eight different conditions scored from 0 to 2; a 

score of 16 representing perfect balance (4). In a more recent cross-sectional descriptive 

study, 52.2% of study participants 45 to 90 years of age reported a fall in the prior six 

months (11), increasing the likelihood of sustaining an injury. In fact, more than 50% of 

354 MS patients aged 55 to 94 reported at least one injurious fall over the prior six 

months (48). The results presented in these studies indicate a high prevalence of falls 

exists among people diagnosed with MS, and the need to address balance and postural 

strategies among MS patients.  
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Indeed, Huisinga et al. (17) reported postural control strategies during a simple 

quiet standing task were altered in 15 individuals diagnosed with MS (average EDSS: 

4.5±1.8, median EDSS: 5.2) asked to stand quietly on a force platform for five minutes 

with eyes open or closed. Sway variability was quantified using the root mean square 

(RMS) calculated from the COP time series in both directions (i.e., anteroposterior, AP; 

mediolateral, ML). MS subjects had significantly greater sway area (mm2; CON: 

3.53±2.92 vs. MS: 12.23±9.14), as well as significantly greater median sway velocity 

(mm/s; CON: 0.98±0.56 vs. MS: 3.12±2.44). In the frontal (ML) and sagittal plane 

(AP), RMS was significantly greater in MS subjects, which was exacerbated during the 

eyes closed condition (17). While not measured in this study spasticity was suggested to 

be one factor resulting in the observed increased COG sway, as higher levels of 

spasticity are related to increased levels of COG sway (63).  

Karst et al. measured COP movement in the sagittal plane (y) during two 

different conditions in 21 MS subjects (15 women; mean EDSS: 2.1±1.6; median: 2.0, 

range 0.0 – 6.0) and 21 age and gender matched controls (15 women); the tasks 

involved leaning and reaching (19). During the leaning task control subjects moved 

their COPy (i.e., anterior/posterior limits of stability) over a significantly greater 

distance than the MS group (cm; CON: 14.2±2.6 vs. MS: 11.9±2.9). Similarly, during 

reaching tasks the control group demonstrated significantly greater peak-to-peak COPy 

displacement, which was explained by a greater displacement in the positive direction 

(+) (19). A smaller COPy displacement was suggested to be either a voluntary or 

involuntary self-limiting strategy reducing the amount deviation from initial COP in the 

sagittal plane to reduce the likelihood of falling (19). Differences in peak-to-peak COP 
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displacement and COPy+ persisted even when comparing control subjects to 12 MS 

subjects with the highest Berg Balance Scale (BBS) scores (i.e., 55 or 56). It should be 

noted the secondary analysis is underpowered due to the reduced sample size, and 

therefore, the differences reported should be interpreted cautiously.  

In 2008, Chung and colleagues calculated the net COP in both planes in 12 MS 

patients (PPMS = 1; RRMS = 6; SPMS = 4; Unclassified = 1) and 12 age-matched 

healthy controls (5). COP measurements were made during 20 seconds of quiet standing 

using dual force platforms. In contrast to the work of Karst and colleagues, Chung et al. 

(5) also calculated a bilateral distribution (i.e., loading) of body mass asymmetry score; 

a score of 100% indicated all body weight was supported on one foot, whereas a score 

of 0% indicated even distribution of body mass beneath the feet. A significant 

difference was observed for loading asymmetry (CON: 6.0±3.0% vs. MS: 10.5±6.9%) 

that indicated bilateral differences in ground reaction forces between feet. Additionally, 

mean AP COP variability was greater in the MS group (mm; CON: 4.33±1.79 vs. MS: 

7.52±3.02), while ML COP variability tended to be greater in the MS patients (CON: 

2.22±1.70 vs. MS: 4.15±3.10), but failed to reach significance (5). However, AP and 

ML COP variability were correlated with loading asymmetry indicating a reduced 

stability, and further confirming postural control is impaired in mild to moderate MS 

(5). 

Spasticity is a commonly reported symptom associated with MS (54, 63), and 

has been defined as an inappropriate, velocity dependent, increase in muscle tonic 

stretch reflexes, as a consequence of augmented reactivity of motor segments to sensory 

input (15). An early 2000 report from the Patient Registry of North American Research 
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Committee on MS indicated 84% of MS patients reported some degree of spasticity, 

ranging from mild to severe. In a recent cross-sectional study examining 16 MS (2 

males) and 16 age and gender matched controls Sosnoff et al. (63) clustered the MS 

group into low (n=7) and high spasticity (n=9) to determine how spasticity relates to 

postural control. Postural control was based on COP motion and was measured in the 

frontal and sagittal planes. Significant differences were identified in postural sway. Like 

expected, the high spasticity group demonstrated the greatest sway (238.9 mm2) 

followed by the low spasticity group (100.9 mm2) and controls (38.1 mm2) (63). 

Moreover, the control group demonstrated a lower sway velocity than both MS groups 

(CON: 3.04 mm2/s vs. H: 10.9 mm2/s and L: 6.58 mm2/s). Unlike Chung et al., no 

difference in AP sway range was observed between groups; however, significant 

differences in ML sway range were observed between the high spasticity group (10.28 

mm) and the low spasticity group (6.59 mm) and controls (2.32 mm), with no statistical 

difference observed between low spasticity and controls.  

Different ways exist in identifying or assessing spasticity; one common method 

involves the measuring the Hoffmann (H) reflex. Interestingly, modulation of the 

[soleus] H – reflex plays a vital role in static and dynamic postural control (3, 22, 23). 

The following section will introduce and describe the H – reflex followed by a review 

of literature that has examined the H – reflex and its influence on postural control 

metrics.  

The Hoffmann reflex 

The Hoffmann (H) reflex was first demonstrated by Piper (1912), but more 

clearly described in 1918 by Paul Hoffmann (16). However, it was not until 1950 that 
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Magladery and McDougal gave the reflex its official name (39). Hoffmann described 

two distinct responses at the muscle following percutaneous stimulation of the tibial 

nerve, a response of shorter latency and one of a longer latency. The shorter latency due 

to direct depolarization of motor axon and only observed with stimulation intensities 

greater than motor threshold, and the longer response due to depolarization of Ia 

afferent fibers whose origin is anchored onto muscle spindles, which synapses onto and 

depolarizes, once membrane potential reaches threshold, an α – motor neuron. The first 

response became known as the motor response, or M – wave, and the later response, the 

H – reflex. In healthy individuals the latency of the M – wave is ~ 6 – 9 milliseconds 

(ms), whereas the latency of the H – reflex is ~ 30 ms (46).  

A benefit of using electrical stimulation to trigger a reflex rather than a 

mechanical stimulus, such as a reflex hammer, is electrical stimulation allows for the 

bypass of muscle spindle activity and its associated gamma motor neuron activity (21). 

However, despite this, the H – reflex is not a monosynaptic reflex as originally thought 

(39, 42); the Ia afferent volley can be influenced by other “large diameter” afferents 

contributing (i.e., oligosynaptic input) to the modulation of the H – reflex amplitude. 

The location of which can be nearby, as in an antagonist muscle (24), or distant, such as 

in a contralateral limb (6). Mechanisms that modulate H – reflex amplitude include 

presynaptic inhibition, post-activation depression, reciprocal inhibition, nonreciprocal 

inhibition, and recurrent inhibition(42). These factors can influence the amount of 

neurotransmitter released from afferent terminals into the synaptic cleft, the excitability 

of motor neurons, and can alter the intrinsic properties of the motor neuron (42).  
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Presynaptic inhibition has been observed in humans following the application of 

a conditioning stimulus to a heteronymous peripheral mixed nerve. For example, Iles 

and Robert (1987) demonstrated vibration applied to heteronymous muscles, both 

distant and antagonistic in function, resulted in some level of presynaptic inhibition 

(18). More specifically, vibration, operating at 100 Hz and timed to end 35 – 60 ms 

prior to each conditioned reflex, of the tibialis anterior significantly decreased the 

soleus H – reflex and vibration of the semitendinosus reduced the soleus H – reflex to a 

lesser extent (18). Moreover, Iles and Robert observed similar effects with the use of 

electrical stimulation applied to a peripheral nerve (18). Specifically, when the common 

peroneal nerve was stimulated with either a single or double shock at 300Hz a biphasic 

presynaptic inhibition was observed; the first phase lasting approximately 10 ms 

(reached peak decline around 2ms) and approximately 90 ms for the second phase with 

reductions of 25% and 20% respectively(18). With the addition of stimuli delivery (i.e., 

> 2 electrical pulses) the first phase of inhibition became non-existent, while the second 

phase became more pronounced, with an approximate 40% reduction in C/T amplitude. 

These results indicate the soleus H – reflex is sensitive to the activity of antagonistic 

afferents (18), and the level of activity in afferents may influence the magnitude of 

inhibition (24, 42).  

Post-activation depression is a second way that H – reflex can be modulated(42). 

Instead of conditioning the reflex with either vibration or electrical stimulation applied 

to a peripheral nerve, post-activation depression involves recent activity occurring at the 

synapse of an Ia afferent and its homonymous α – MN. Ten years after Iles and Roberts 

and in contrast to their results, Kohn and colleagues (24) demonstrated conditioning of 
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soleus H – reflex with stimulation of the common peroneal nerve (CPN; activates 

tibialis anterior muscle) resulted in minimal presynaptic inhibition of the soleus H – 

reflex at latencies of one, two, and three seconds (24). However, when the soleus H – 

reflex was conditioned by stimulating the posterior tibial nerve (PTN; activates soleus 

muscle) subsequent test reflexes remained depressed at all three latency time intervals 

tested (i.e., 1, 2, and 3 seconds). With the use of transcranial magnetic stimulation Kohn 

and colleagues were able to exclude postsynaptic inhibition confirmed by no change in 

excitability of the motor neuron pool at the same latency time intervals tested. Based on 

the evidence, they concluded homosynaptic depression (or post-activation depression) 

localized at the Ia afferent terminal was the driving force for the attenuated soleus H – 

reflex (24). Unfortunately, the mechanism(s) explaining this depression remains 

unanswered; however, two potential options include reduced neurotransmitter release at 

the afferent terminal (21, 24), or an inactivation of calcium channels (42). 

Based on this review of literature no research currently exists, specifically 

examining the soleus H reflex between legs, to investigate the potential for asymmetry 

in people with MS. Therefore, determining whether or not asymmetry in the soleus H – 

reflex exist in MS patients can help guide future therapies in addressing appropriate 

deficiencies related to the disease and the patient’s ability to perform functional tasks 

such as balance with the goal to improve confidence and quality of life. 
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Introduction 

 The following chapter will present the methodology for the current study which 

includes; a description of participants, their inclusion and elusion criteria, the design of 

the study, data collection procedures, instrumentation to be used, and how the data will 

be stored and analyzed. 

Participants 

Based on a power analysis using young vs. old Hmax / Mmax data from Koceja et 

al. (23) with an alpha level of 0.05, statistical power set to 0.80, and an effect size of 2.1 

a total of 10 participants were required. A total of 17 volunteers between the ages of 20-

64 years were recruited for participation in the present study. Eight participants were 

diagnosed by a board certified neurologist with either relapsing remitting or primary 

progressive multiple sclerosis and the other eight were healthy age- and physical 

activity-matched non-MS participants. Each participant was provided detailed 

information regarding the requirements of the study and provided verbal and written 

informed consent approved by the institutional review board at the University of 

Oklahoma before familiarization and data collection took place. All participants were 

also required to provide physician’s clearance prior to enrollment. MS volunteers were 

recruited from Oklahoma Medical Research Foundation (Oklahoma City, OK), the 

Oklahoma City Veteran Affairs Hospital and surrounding areas of Norman, OK. MS 

participants also had to have an expanded disability severity scale (EDSS) score of less 

than 6.5, which indicates being able to walk a distance of 100 meters without aid or rest 

(27). Non-MS participants were recruited from the University of Oklahoma as well as 

surrounding areas of Norman, OK using flyers, emails, and word of mouth. 
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Inclusion criteria 

Individuals meeting the following criteria were considered for participation in the 

current study.  

1. Individuals between the years 20 and 64. 

2. Individuals currently not smoking or quit at least six months ago. 

3. Individuals must have physician’s diagnosis of relapsing-remitting multiple 

sclerosis, and free from relapse during the previous three months. A relapse is 

defined as a worsening of symptoms maintained for at least 24 hours and has 

been prescribed steroids. (Does not apply to control subjects) 

4. Individuals with written physician’s clearance.  

5. Individuals with an EDSS score of < 6.5, which indicates being able to walk at 

least 100 meters without aid or rest. 

6. Individuals not taking prednisone or other steroids medications. 

7. Individuals willing to not take medications to manage symptoms of spasticity on 

test days. 

Exclusion criteria 

Individuals presenting with any of these criteria will not be considered for participation. 

1. Individuals outside of 20 to 64 years of age. 

2. Smokers. 

3. Individuals diagnosed with secondary progressive MS (Does not apply to 

control subjects). 

4. Individuals without written physician’s clearance. 
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5. Individuals with an EDSS score ≥ 6.5 indicating either aid or rest is required to 

walk 100 meters. 

6. Individuals currently taking prednisone or other steroids for management of 

symptoms. 

7. Individuals taking medication to manage symptoms of spasticity on test days. 

Experimental design 

The present study was a randomized, cross-sectional, repeated measures design 

comparing a sample of RRMS or PPMS subjects and healthy controls. The study 

required each participant to visit the Human Performance Laboratory a total of six 

times, which included one visit for completion of all appropriate documents and 

familiarization of procedures and five experimental testing visits. Study documents 

included an informed consent, a detailed health history questionnaire, a health status 

questionnaire, and HIPAA documents. Upon completion of all paperwork 

electromyography (EMG) electrode placement for the soleus muscle (of both legs) was 

measured, as well as the most optimal placement for tibial nerve stimulation, and 

familiarization to balance testing was performed. Visits two through five consisted of 

soleus H – reflex testing to determine Hmax / Mmax. Each muscle was tested twice in 

random order, but only once per visit. Visit six consisted of a body composition 

assessment using dual-energy x-ray absorptiometry (DXA) technology and completion 

of two different balance tasks programmed on the NeuroCom® Smart Master Balance® 

system. The Institutional Review Board at the University of Oklahoma approved the 

study, and all procedures described herein complied with the Declaration of Helsinki.   

Control Variables 
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Testing of each subject was performed at approximately the same time of day 

throughout the course of the study. Participants were asked to abstain from caffeine, 

exercise, and alcohol for 12 hours prior to each testing visit and be 2-3 hours post-

prandial prior to testing. Hydration status was determined prior to performing the DXA 

scans (55) scan using a refractometer (VEE GEE Refractometer CLX-1, Kirkland, 

WA). A value in the range of 1.004-1.029 USG was considered acceptable to conduct 

the DXA scans. If an individual could not reach acceptable hydration values within 30 

minutes of the initial hydration test, the scans were rescheduled for a subsequent visit. 

All female participants also took a pregnancy test prior to the DXA scans. Based on 

evidence from Kraus et al., (2009) hydration status was not measured prior to H – reflex 

testing (25).  

All participants were also given a Rochester Fatigue Diary (RFD; a visual 

analogue scale) to be completed each day enrolled in study, even on days when no 

testing was conducted to monitor levels of fatigue between visits. The RFD is a measure 

of lassitude (i.e., lack of energy) that the participants report each hour of the day. If a 

participant exhibited higher levels of fatigue than normal during the days between 

testing, he/she was rescheduled for a later date in an attempt to reduce any unwarranted 

variability in the data.  

The Modified Fatigue Severity Scale (MFIS) was used to monitor fatigue on the 

day of testing. The MFIS is a 21-item questionnaire, measuring physical, social, and 

cognitive symptomatic fatigue, which uses a summated rating Likert scale to access the 

impact of fatigue on everyday life (41). Our primary outcome of concern was the 

physical subscale on the MFIS; however, all were reviewed prior to testing. If an 
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individuals’ score deviates more than 2.5 standard deviations from their mean they were 

rescheduled for testing on a subsequent day. 

Visit 1: Screening, Necessary Paperwork, and Familiarization. 

Prior to enrollment into the study all subjects were required to obtain 

documented physician’s clearance. Upon initial arrival to the Human Performance 

Laboratory at the University of Oklahoma all volunteers were screened to confirm they 

met all inclusion criteria and did not meet any exclusion criteria. Those who met all 

criteria were provided time to review all study related documents; all questions were 

answered to the best of the experimenter’s ability, and all concerns were addressed 

accordingly. Once all documents were signed subjects were familiarization to all 

experimental procedures.  

Familiarization to H – reflex Procedures 

The purpose of familiarization to H – reflex procedures was to allow participants 

to become accustomed to the sensations of electrical nerve stimulation. Initially, 

participants were asked to lie supine on an examination table and EMG electrode sites 

were determined. Each site was shaved, lightly abraded, and cleansed with isopropyl 

alcohol prior to the placement of two bipolar EMG electrodes over the soleus muscle 

and one over the patella. Following EMG electrode placement stimulation electrodes 

were placed on the leg. The first electrode was placed proximal to the patella (just 

above the kneecap). Next, low intensity stimulation was applied multiple times (5 – 25) 

via a handheld electrode to the back of the knee to locate the tibial nerve. Once the 

nerve was located (confirmed with a visible muscle twitch, plantar flexion movement of 

the foot, and a reflex response without a M wave in the EMG tracing) a small circular 
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electrode was affixed in that exact location and subsequently outlined for reliable retest 

purposes. Following electrode placement, participants were moved to the isokinetic 

dynamometer (KIN-COM, Isokinetic International, Chattanooga, TN) to finish the 

familiarization. Participants were positioned in a supine position and their ankle was 

securely attached to a metal bracket attached to the dynamometer so the angle of the 

ankle was100 degrees of dorsiflexion and aligned with the axis of the torque motor, and 

their knee was fully extended. The non-testing limb was also fully extended and 

supported with a stand of equal height to the testing chair. The thigh of the testing leg 

was strapped down to prevent hip flexion during stimulation and isolate the stimulation 

response to stimulation to the ankle joint as much as possible. Participants then received 

a single 1-millisecond electrical pulse at a low intensity while plantar flexor torque and 

the raw EMG signal was recorded. Stimulation intensity increased by 0.25 volts every 7 

– 10 seconds until the direct motor wave (i.e., M – wave) from the EMG signal 

plateaued. The H – reflex and M – wave amplitudes from the EMG signal were 

recorded at each stimulation intensity to construct H – M recruitment curves. 

Familiarization was performed on both limbs during the first visit.  

Familiarization to Balance Testing Procedures 

Familiarization to both balance assessments was provided to finish visit 1. 

Participants were asked to remove their shoes before being fitted with a safety harness 

(similar to a parachute harness) that catches the participant if he/she were to lose their 

balance. Once the harness is securely fastened around their chest and waist they were 

asked to step up onto the specialized force platform (NeuroCom® Smart Balance 

Master®, Natus Medical Inc., Pleasanton, CA) and align their lateral malleolus with the 
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dual force plate’s axis of rotation. Participants were asked to look forward at a screen 

approximately one meter away for the duration of each test unless the condition 

required eyes to be closed. Participants completed a minimum of one trial for each 

condition of the two balance tests, which included a Sensory Organization Test (SOT) 

and a Limits of Stability (LOS) protocol. If a participant did not feel comfortable with a 

test or condition they were provided additional trials until they were comfortable with 

the test. 

General Questionnaires 

Health History and Health Status Questionnaire  

The health history and health status questionnaire requested the necessary 

information about all past health complications that indicated the participant might be at 

an increased risk by participating in physical activity. This form also required any 

medications the participant was taking to be listed, as well as a summary of the 

frequency and types of exercise each participant has performed over the previous six 

months. 

Anthropometrics  

Standing Height 

Height was measured to the nearest 0.5 cm using a stadiometer (Seca Model 

242, Chino, CA).  The participants were asked to remove their shoes and place their 

heels together, take a deep breath, and stand up tall with their head aligned in the 

sagittal plane. 
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Body Mass and Body Mass Index 

Body mass was measured to the nearest 0.1 km using a digital electronic scale 

(Tanita Model WB-627A, Tokyo, Japan) with participants wearing light clothing and no 

shoes.  The body mass index (BMI) was calculated as the body mass in kilograms 

divided by the standing height in meters squared (kg/m2). 

Body Composition 

Total body and lower-leg composition was quantified using a DXA scanner (GE 

Healthcare, Schenectady, NY). The purpose of this test was to compare total body 

composition and composition of the lower-legs between participants. Defining custom 

regions of interest for each leg quantified lower-leg body composition and allowed for 

comparison. Specifically, the ROI for analysis was created by drawing a rectangular 

box over the lower-leg with the upper boundary bisecting the center of the knee joint 

and the lower boundary bisecting the ankle joint just distal to the lateral malleolus. 

ROIs were quality checked by two testers. If a female participant was premenopausal, a 

pregnancy test was conducted before performing the body scans.  

MS Specific Questionnaires 

In addition to the initial screening and familiarization procedures, all 

participants were asked to complete two fatigue questionnaires, a modified fatigue 

impact scale (MFIS) at the beginning of each test visit and a Rochester Fatigue Diary 

(RFD) everyday enrolled in study.  

Modified Fatigue Impact Scale (MFIS) 

The MFIS is a 21-item questionnaire that measures physical, social, and 

cognitive symptomatic fatigue, and uses a Likert scale to access the impact of fatigue on 
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everyday life.  This questionnaire has the subjects describe their own fatigue by 

answering a variety of questions on a scale of 0-4; a 0 indicates having never 

experienced this fatigue symptom and 4 indicates almost always experiencing this 

fatigue symptom.  The questionnaire is scored on a subscale of physical, cognitive, and 

psychosocial fatigue based on specific questions, as well as a total score.  This 

questionnaire was administered on every testing visit and if the physical subscale of the 

MFIS is 2.5 standard deviations greater than the running mean the subjects were asked 

to reschedule the testing visit to a later date when fatigue levels returned to normal. 

Rochester Fatigue Diary (RFD) 

The RFD is a measure of lassitude in MS patients.  The RFD consists of 24 

vertical bars for each subject to rate the severity of fatigue on a visual analog scale at 

each hour of the day (60).  The location of the hourly mark is converted to 0 (maximal 

fatigue) to 100 (no fatigue) and then averaged for a daily fatigue score; sleep is given a 

score of zero.  The advantage of RFD is that it allows the subject to assess their own 

lassitude and is less subjective to recall bias of other fatigue questionnaires (60).  The 

RFD was given to all participants to take home to be completed every day during the 

duration of the study and was measured at the beginning of each test visit.  The 

variability of fatigue was monitored similar to the MFIS in that any significant 

deviation between scores longer than 48 hours along with changes in MFIS resulted in 

the participant to reschedule the testing visit to a later date when the fatigue levels have 

normalized as done previously (29, 30). 

Visits 2 – 5: H – reflex Testing 
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On visits 2 through 5 the soleus H – reflex testing occurred. H – M recruitment 

curves were constructed by progressively increasing the electrical stimulus in 0.25-volt 

increments to find the greatest peak-to-peak amplitude of the H – reflex (Hmax) and M – 

wave (Mmax). Three to five trials were performed and averaged at each intensity to 

determine Hmax and Mmax. A minimum of 24 hours but no more than 120 hours (i.e., 

five days) separated visits two through five. 

Surface Electromyography (EMG) 

Pre-gelled bipolar surface EMG (BIOPAC® Systems, Inc., Goletta, CA) signals 

were collected from the soleus muscle during H – reflex testing. Following careful 

preparation of skin, which included shaving, gently abrading, and cleansing with 

alcohol, surface EMG electrodes (EL503, circular, Ag/AgCl, 10mm diameter, 

BIOPAC® Systems, Goletta, CA) with an inter-electrode distance of 2 cm were placed 

on soleus muscle in accordance with SENIAM recommendations. Specifically, 

placement was 2/3 of the line originating from the medial condylis of the femur and 

extending down through the medial malleolus at the talocrural (i.e., ankle) joint. 

Reliability in EMG measurements were controlled by carefully marking surface 

electrode placement with a permanent marker prior to electrode removal. Participants 

were encouraged to retrace the original placement outline between visits.   

EMG Signal Acquisition 

The soleus muscle EMG signal was sampled at a frequency of 1000Hz, 

amplified with a gain of 500Hz, and filtered with a band-pass filter using a low cutoff 

frequency of 10 Hz and a high cutoff frequency of 500 Hz.  

Soleus H – reflex 
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The H reflex was elicited by applying a percutaneous electrical current 

superficial to the tibial nerve in the popliteal fossa located on the posterior aspect of the 

patellofemoral (i.e., knee) joint while in a fully- reclined, supine position with head 

fixed in a stable position, the testing ankle flexed 100°, and the testing foot securely 

strapped to a metal platform attached to a load cell (Kin Com, Chattanooga, TN). 

Stimulation electrodes used consisted of a 1.25” anode and a 2.0” cathode just proximal 

to the patella. The most optimal stimulating site was located using a handheld 

stimulating pen. Once the most optimal site for stimulation is located a 1.25” self-

adhesive cathode was placed at that site and a 2” anode was placed just proximal to the 

patella. Stimulus duration was 1-ms [rectangular] pulses delivered by a manufactured 

stimulator (STMISOLA and STM100C BIOPAC Systems, Inc., Goletta, CA). An inter-

stimulus duration of ten seconds was provided to reduce post-activation depression. 

Twitch torque of the ankle plantar flexors was collected during stimulation and filtered 

using a low-pass filter set to 4Hz. 

H – Reflex / M – Wave Recruitment Curve 

An H – reflex recruitment curve was constructed by plotting the peak-to-peak 

amplitude recorded from the surface EMG electrodes placed over the soleus muscle. 

The H reflex eventually reaches a peak referred to as the Hmax, and a second response 

begins to appear in the EMG recording, referred to as the M wave. As stimulation 

intensity continues to progressively increase the H reflex will decrease, eventually 

becoming completely absent from the EMG recording, and the M wave will reach a 

plateau (Mmax).  

Visit 6: DXA & Balance Testing 
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On visit 6 subjects initially provided a urine sample to determine hydration and 

pregnancy (if female) status before having a dual energy x-ray absorptiometry (DXA) 

body scan to determine bone density, fat-mass, and fat-free mass. Following the DXA 

scan two balance assessments were completed separated by 10 minutes on a specialized 

force platform (NeuroCom® Smart Balance Master® System, Natus Medical Inc., 

Pleasanton, CA). Subjects were fitted with a parachute harness and attached to a steel 

crossbar on the top of the testing unit with heavy-duty metal clips to prevent falling 

during testing. After all required information was entered into the system subjects were 

instructed to step up onto the testing platform (i.e., a rocking dual force plate) and align 

their body such that their lateral malleolus lines up with the axis of rotation of the 

platform. To confirm correct body position on the testing platform the subject’s COG 

was displayed on a screen and was as close to the center of the crosshairs in the COG 

plot.  

The Sensory Organization Test (SOT) was used to assess impairments in 

postural control, effective use of sensory systems (i.e., vestibular, visual, 

somatosensory), and visual-vestibular conflict resolution. The SOT consists of six 

different conditions that were performed a total of three times (Figure 1). During the 

SOT, inaccurate information delivered to the participant’s eyes, feet, and/or joints is 

controlled through a calibrated sway referencing of the support surface and/or visual 

surround resulting in sensory conflict. The equilibrium score quantifies the center of 

gravity sway or postural stability during each of the three trials of the six conditions. 

The composite equilibrium score characterizes the participant’s overall level of 

performance. Sensory analysis ratios were developed to identify impairments in 
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individual sensory systems. Accurate integration of sensory information is critical to 

maintaining balance within a variety of environments encountered in daily life. An 

inability to appropriately integrate and organize sensory information can lead to 

impairments in COG alignment and/or selection of movement strategies. 

Figure 1. Sensory Organization Test Conditions. 

 

The Limits of Stability (LOS) test quantifies impairments in a participant’s 

ability to intentionally displace their COG to their theoretical stability limit (i.e., 12.5 °) 

without losing balance. A real time display of their COG relative to the directional 

target was provided. A total of eight directions were tested. On command, the 

participant displaced their COG as quickly and accurately as possible towards a target 

located on the LOS perimeter, and held that position as close to the target as possible. 

Each direction was eight seconds in duration. 

LOS analysis includes reaction time, movement velocity, endpoint excursion, 

maximum excursion, and directional control. The ability to voluntarily change the COG 
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to positions within the LOS is fundamental to mobility tasks such as reaching tasks, 

transitioning from sitting to standing (or vice-versa), and walking.  

Data Management and Analysis 

All required documents will be stored in a locked filing cabinet in the Human 

Performance Lab at the University of Oklahoma, and acquired data will be stored on a 

password protected Excel® spreadsheet on a password protected personal computer in 

the Human Performance Lab at the University of Oklahoma. All data was de-identified 

and saved using a specific code for each participant. 

Statistics 

Data was smoothed by averaging the peak-to-peak amplitude of the H – reflex 

and M – wave recordings at each intensity (51). The data was then analyzed to 

determine the stimulation intensity that evoked the maximum amplitude in the H – 

reflex and M – wave in order to calculate the Hmax / Mmax ratio. Asymmetry scores were 

calculated for Hmax / Mmax by averaging the Hmax / Mmax ratios from both days, and then 

turning the average of both limbs into a percentage calculated as: 1 – [ ] x 100 

(5). Asymmetry scores were compared between groups with independent t-tests.  

All analyses will be performed using SigmaPlot Software 12.5 (Systat Software, 

San Jose, CA). Paired t-tests were used to identify within-limb differences across the 

four visits (i.e., left leg 1vs. left leg 2 and right leg 1 vs. right leg 2). The Hmax / Mmax 

ratios of each leg were averaged and compared using independent t-tests. Data was 

reported as mean ± SD, unless otherwise noted. Pearson correlations were run between 

soleus Hmax / Mmax asymmetry scores and all SOT conditions as well as SOT composite 

equilibrium scores, and the four cardinal directions associated with the LOS test. 
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Correlations were run with the groups pooled and separate. Cohen’s d effect sizes (ES) 

were calculated for all comparisons with ≤ 0.20 indicating a small effect, 0.50 

indicating a moderate effect, and ≥ 0.80 indicating a large effect. 

Absolute and relative reliability was determined for H reflex measures.  

Absolute reliability was reported as standard error of the measurement (SEM). SEM 

was calculated as  . Relative reliability was reported as ICC3, 1. Level of 

significance was set a priori at p ≤ 0.05. 

 

   

 

Table 1. Overview of study  

 Protocol Time 

Commitment 

Visit 1 

1. Paperwork 

2. Determine location of EMG and 

stimulation electrodes 

3. Familiarization to balance tests. 

2 hours 

Visits 2 – 5 

1.  Acquisition of soleus H – reflex and M – 

waves from left and right legs. Visits will 

be randomized.  

8 hours 

Visit 6 

1. DXA body scan 

2. Sensory Organization Test  

3. Limits of Stability 

2 hours 

Total  12.0 hours 
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CHAPTER IV: RESULTS & DISCUSSION 

Results 

Participant Characteristics 

Seventeen participants (MS: 9 and Control: 8) were consented, but one person 

with MS withdrew from the study after the first visit leaving eight participants in the 

MS group. Five of the MS participants were females (age = 48.9 ± 13.9 years, height = 

171.5 ± 6.1 cm, weight = 92.7 ± 25.1 kg, EDSS = 3.1 ± 2.2) and three were males (age 

= 51.2 ± 7.7 years, height = 176.7 ± 4.2 cm, weight = 97.5 ± 16.6 kg, EDSS = 3.2 ± 

2.0). Six of the non-MS participants were females (age = 43.5 years, height = 163.8 ± 

4.5 cm, weight = 77.5 ± 26.4 kg) and two were males (age = 64.0 ± 0.0 years, height = 

180.0 ± 4.2 cm, weight = 99.6 ± 3.6 kg). The age range for the MS group was 31 to 64, 

and the age range for the Non-MS group was 31 to 64. The diagnoses of the MS 

participants were as follows: two primary progressive, and six relapsing-remitting. The 

mean ± SD EDSS score for the MS group was 3.3 ± 2.2 (range = 1 to 6; median = 2) 

indicating a mild to moderate degree of disability in the MS sample. No visits had to be 

rescheduled due to levels of fatigue. Descriptive characteristics for both groups are 

summarized in Table 2. The groups were similar in age, height, body mass, lean mass, 

BMI, and physical activity (self-reported). The MS group had significantly greater total 

body fat mass (Non-MS: 24.9 ± 8.2 kg. vs. MS: 42.1 ± 15.8 kg, p = 0.02) and body fat 

% (Non-MS: 34.1 ± 7.7 % vs. MS: 45.1 ± 7.7 %, p = 0.01). Lower-leg lean mass, fat-

mass, and fat mass % did not differ significantly between groups and are summarized in 

Table 3.  
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Table 2. Participant descriptive characteristics (mean ± SD; n = 8 per group).  

 Non-MS MS 95% CI P 

Age (yr.)  48.6 ± 11.3    49.9 ± 11.1 -10.7 to 13.2 0.83 

Height (cm.)      167.9 ± 8.5    173.3 ± 5.7 -2.2 to 13.4 0.14 

Body Mass (kg.)  83.0 ± 24.6  94.5 ± 21.1 -13.0 to 36.2 0.33 

Lean Mass (kg.)  47.2 ± 10.9   49.1 ± 7.5     -8.1 to 11.9 0.69 

Fat Mass (kg.) 24.9 ± 8.2 42.1 ± 15.8   3.7 to 30.7 0.02 

Fat Mass (%) 34.1 ± 7.7 45.1 ± 7.7   2.7 to 19.2 0.01 

BMI (kg * m-2) 29.3 ± 8.5 28.9 ± 6.8     -6.2 to 10.3 0.60 

PA (min * week-1) 120.0 ± 81.8 206.3 ± 89.6 -178.2 to 5.7 0.06 

EDSS NA 3.1 ± 2.2 1.8 NA 

MS, multiple sclerosis; BMI, body mass index; PA, self-reported physical  

activity; EDSS, expanded disability status score; 95% CI, 95% confidence  

interval for the difference of group means. 

 

Table 3. Lower-leg composition (mean ± SD; n = 8 per group). 

 Group Left Right 95% CI P ES 

Lean Mass  

(kg) 

Non-MS 2.02 ± 0.5 1.98 ± 0.4 -0.03 to 0.12 0.23   0.08 

MS 1.99 ± 0.3 2.05 ± 0.3   -0.11 to 0.004 0.06 -0.17 

Fat Mass  

(kg) 

Non-MS 1.01 ± 0.4 1.08 ± 0.7 -0.81 to 0.66 0.82 -0.13 

MS 1.30 ± 0.6 1.35 ± 0.7 -0.15 to 0.06 0.36 -0.07 

Fat Mass  

(%) 

Non-MS 28.8 ± 6.0 29.6 ± 7.3 -2.48 to 0.98 0.34 -0.13 

MS 38.1 ± 9.5  37.8  ± 10.4   -1.30 to 1.90 0.68   0.03 

MS, multiple sclerosis; 95% CI, 95% confidence interval between limbs-within group; 

ES, effect size. 

 

Test Reliability 

All stimulation visits were scheduled near the same time of each day to improve 

consistency across visits. Pearson correlation coefficients (r), intraclass correlation 

coefficients (ICC), and standard error of measurement (SEM) were calculated for the 

soleus Hmax / Mmax ratios and are summarized in Table 4. Both groups demonstrated 

strong within-limb reliability in both limbs. Between limb Hmax / Mmax reliability was 

less consistent in the MS group (r = 0.45, CI = -0.37 to 0.88; ICC = 0.52, CI = -0.22 to 

0.88; SEM = 5.87), but remained strong in the control group, and is summarized in 

Table 5.  
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Table 4. Within-limb reliability for soleus H / M ratios (n = 8 per group).  
Group Limb / Visit Pearson ICC SEM 

Non-MS 
Left 1 & 2 0.98 (CI: 0.87 to 1.00) 0.97 (CI: 0.88 to 0.99) 0.07 

Right 1 & 2 0.93 (CI: 0.66 to 0.99) 0.95 (CI: 0.79 to 0.99) 0.07 

MS 
Left 1 & 2 0.92 (CI: 0.60 to 0.99) 0.94 (CI: 0.74 to 0.99) 0.07 

Right 1 & 2 0.89 (CI: 0.49 to 0.98) 0.91 (CI: 0.62 to 0.98) 0.06 

MS, multiple sclerosis; CI, 95% confidence limits; ICC, intraclass correlation; SEM, 

standard error of the measurement. 

 

Table 5. Between-limb reliability for soleus H / M ratios (n = 8 per group).  

Group Pearson ICC SEM 

Non-MS 0.96 (CI:  0.78 to 0.99) 0.97 (CI:  0.88 to 0.99) 1.39 

MS 0.45 (CI: -0.37 to 0.88) 0.52 (CI: -0.22 to 0.88) 5.87 

MS, multiple sclerosis; CI, 95% confidence limit; ICC, intraclass correlation; SEM, 

standard error of measurement.  

 

Maximum H / M 

Between-limb and within-limb average Hmax / Mmax values for both groups are 

summarized in Tables 6 and 7 respectively. Between limb Hmax / Mmax values were 

similar within each group (Non-MS: Left = 0.603 ± 0.198 vs. Right = 0.601 ± 0.197, p 

= 0.905, ES = 0.01; Figure 1; MS: Left = 0.743 ± 0.172 vs. Right = 0.643 ± 0.197, p = 

0.188, ES = 0.58; Figure 2). A significant Hmax / Mmax difference was observed between 

test visits within the same limb in the control group for the right leg (Right leg 1 = 

0.643 ± 0.197 vs. Right leg 2 = 0.558 ± 0.203mV, p = 0.02, ES = 0.45; Figure 3), but 

not the left (Left leg 1 = 0.596 ± 0.215 vs. Left leg 2 = 0.610 ± 0.184mV, p = 0.564, ES 

= -0.07). The MS group’s within-limb – between visits Hmax / Mmax were similar for 

both legs (Left leg 1 = 0.754 ± 0.187mV vs. Left leg 2 = 0.732 ± 0.165mV, p = 0.413, 

ES = 0.13; Right leg 1 = 0.667 ± 0.225mV vs. Right leg 2 = 0.619 ± 0.180mV, p = 
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0.236, ES = 0.25; Figure 4). The MS group had a significantly greater Hmax / Mmax 

asymmetry score (Non-MS = 4.6 ± 3.9% vs. MS: 21.7 ± 16.6%, p = 0.01, ES = 1.51; 

Figure 5). Hmax / Mmax asymmetry scores are summarized in Table 8 and displayed in 

Figure 6. Percent difference between legs in Hmax / Mmax ratios are displayed in Figure 

7. Individual MS and Non-MS averaged Hmax / Mmax ratios for each leg are presented in 

Figures 8 and 9 respectively. 

 

 

Table 6. Soleus Hmax / Mmax scores between legs (mean ± SD; n = 8 per group). 

 Group Left Right 95% CI P ES 

H / M (%) 
Non-MS 0.603 ± 0.198 0.601 ± 0.197 -0.05 to 0.05 0.91 0.01 

MS 0.743 ± 0.172 0.643 ± 0.197 -0.06 to 0.26 0.19 0.58 

MS, multiple sclerosis; H / M, maximum Hoffmann reflex /maximum M wave; 95% CI, 

95% confidence interval for difference between limbs; ES, effect size. 

 

Table 7. Within-leg Hmax / Mmax (n = 8 per group). 

       Visit 1      Visit 2    95% CI    P   ES 

Non-MS Left 0.596 ± 0.215 0.610 ± 0.184 -0.06 to 0.04 0.56 -0.07 

Right 0.643 ± 0.197 0.558 ± 0.203      0.02 to 0.15 0.02  0.45 

MS Left 0.754 ± 0.187 0.732 ± 0.165 -0.04 to 0.09 0.41  0.13 

Right 0.667 ± 0.225 0.619 ± 0.180 -0.04 to 0.13 0.24  0.25 

MS, multiple sclerosis; ES, effect size. 

 

Table 8. Soleus Hmax / Mmax bilateral asymmetry score (mean ± SD; n = 8 per group). 

 Non-MS MS 95% CI P ES 

H / M Asymmetry (%) 4.6 ± 3.9 21.7 ± 16.6 -30.0 to -4.1 0.01 1.51 

MS, multiple sclerosis; H / M, maximum Hoffmann reflex /maximum M wave; 95% CI, 

95% confidence interval for difference between limbs; ES, effect size. 
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Figure 2. Between-Limb Soleus Hmax / Mmax for Left and Right Leg in Non-MS 

Participants. 

 

Data are presented as mean ± SD. 

 

Figure 3. Between-Limb Soleus Hmax / Mmax for Left and Right Leg in MS Participants. 

 

Data are presented as mean ± SD. 
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Figure 4. Within-Limb Soleus Hmax / Mmax for Left and Right Leg in Non-MS Participants. 

 

Data are mean ± SD. * denotes p < 0.05. 

Figure 5. Within-Limb Soleus Hmax / Mmax for Left and Right Leg in MS Participants. 

 

Data are presented as mean ± SD. 
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Figure 6. Soleus Hmax / Mmax Asymmetry Scores for MS and Non-MS Participants. 

 

Data are presented as mean ± SD. * denotes p ≤ 0.01. 

Figure 7. Individual and Average Hmax / Mmax Asymmetry Scores for Both MS and Non-

MS Participants. 

 

Vertical whiskers represent SD of the average values. * denotes p < 0.01  

for average asymmetry scores between groups.  
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Figure 8. Individual and Average Percent Difference for Hmax / Mmax Between Legs for 

Both MS and Non-MS Participants. 

 

Vertical whiskers represent SD of the average values. 

 

Sensory organization test 

All results for SOT conditions are summarized in Table 9 and displayed in 

Figure 10. The MS group performed significantly worse during the SOT 1 condition 

(Non-MS: 96.0 ± 1.5 vs. MS: 93.1 ± 3.1, p = 0.04, ES = -1.25). No significant 

difference between groups was observed for SOT 2 (eyes closed with fixed reference 

and support). The MS group performed significantly worse during SOT conditions three 

through six (Condition 3: Non-MS: 92.6 ± 3.9 vs. MS: 86.7 ± 4.9, p = 0.02, ES = -1.43; 

Condition 4: Non-MS: 91.1 ± 2.0 vs. MS: 85.5 ± 4.0, p = 0.002, ES = -1.89; Condition 

5: Non-MS: 76.3 ± 5.7 vs. MS: 69.6 ± 5.0, p = 0.02, ES = -1.35; Condition 6: Non-MS: 

80.6 ± 5.1 vs. 72.0 ± 7.0, p = 0.01, ES = -1.50). The composite equilibrium score from 
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the SOT indicated the MS group performed significantly worse than the Non-MS group 

(Non-MS: 85.8 ± 2.9 vs. MS: 80.4 ± 4.0, p = 0.01, ES = -1.65). 

 
Table 9. Sensory Organization Test (mean ± SD; n = 8 per group).  

 Non-MS MS 95% CI P ES 

SOT Composite 85.8 ± 2.9 80.4 ± 4.0 -9.1 to -1.70 0.01 - 1.65 

SOT 1 96.0 ± 1.5 93.1 ± 3.1    -5.4 to -0.24 0.04 - 1.25 

SOT 2 91.1 ± 4.3 88.2 ± 4.5     -7.6 to 1.80 0.21 - 0.71 

SOT 3 92.6 ± 3.9 86.7 ± 4.9   -10.7 to -1.20 0.02 - 1.43 

SOT 4 91.1 ± 2.0 85.5 ± 4.0    -9.0 to -2.20 0.002 - 1.89 

SOT 5 76.3 ± 5.7 69.6 ± 5.0 -12.5 to -1.00 0.02 - 1.35 

SOT 6 80.6 ± 5.1 72.0 ± 7.0  -15.2 to -2.00 0.01 - 1.50 

SOT, sensory organization test; MS, multiple sclerosis; 95% CI, 95% confidence interval 

of group means; ES, effect size 

 

Figure 9. Sensory Organization Test Results for Both MS and Non-MS Participants. 

 

Data are presented as mean ± SD. * denotes p < 0.05, # denotes p ≤ 0.01.  

 

Limits of stability (Forward Direction) 

All results for the forward direction LOS test are summarized in Table 10 and 

displayed in Figure 11. Reaction time was similar between groups, but had a moderate 
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effect (Non-MS: 0.83 ± 0.29 seconds vs. MS: 1.05 ± 0.74 seconds, p = 0.45, ES = 0.41). 

Movement velocity was similar between groups, but had a moderate effect (Non-MS: 

3.71 ± 2.18 degrees * second-1 vs. 2.16 ± 1.33 degrees * second-1, p = 0.108, ES = -

0.60). A significant difference and very strong effect was observed between groups for 

end point excursion with the MS group performing worse than the Non-MS group 

(Non-MS: 69.0 ± 11.4% vs. MS: 36.8 ± 9.2%, p = 0.00002, ES = -3.33). A significant 

difference and strong effect was observed between groups for maximum excursion with 

the MS group performing significantly worse than the Non-MS group (Non-MS: 83.0 ± 

10.2% vs. MS: 61.5 ± 16.4, p = 0.007, ES = -1.68). Directional control was similar 

between groups, but had a moderate effect (Non-MS: 89.0 ± 4.8% vs. 86.4 ± 8.2%, p = 

0.45, ES = -0.42).  

 
Table 10. Forward direction limits of stability (mean ± SD; n = 8 per group). 

 Non-MS MS 95% CI P ES 

Reaction Time (s) 0.83 ± 0.29 1.05 ± 0.74 -0.4 to 0.82 0.45   0.41 

Movement Velocity (° * s-1)  3.71 ± 2.18 2.16 ± 1.33 -3.5 to 0.39 0.11 - 0.60 

End Point Excursion (%) 69.0 ± 11.40 36.8 ± 9.20 -43.4 to -21.1 0.00002 - 3.33 

Maximum Excursion (%) 83.0 ± 10.20 61.5 ± 16.4 -36.1 to -6.90 0.007 - 1.68 

Directional Control (%) 89.0 ± 4.80 86.4 ± 8.20 -9.8 to 4.60 0.45 - 0.42 

MS, multiple sclerosis; 95% CI, 95% confidence interval of group means; ES, effect size. 
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Figure 10. Limits of Stability Test Results for Both MS and Non-MS Participants. 

 

Data are presented means ± SD. * denotes p < 0.01, # denotes p < 0.0001. 

 

Relationship Between Hmax / Mmax Asymmetry and Balance 

SOT composite, SOT 1, SOT 2, SOT 3, SOT 5, and SOT 6 were not correlated 

to Hmax / Mmax asymmetry (p > 0.05). SOT 4 was negatively correlated to H / M 

asymmetry (r = - 0.577, p = 0.02), such that those with greater asymmetry performed 

worse (Table 11). 

LOS forward direction reaction time, endpoint excursion, maximum excursion, 

and directional control were all associated with Hmax / Mmax asymmetry. Specifically, 

reaction time was positively correlated with Hmax / Mmax asymmetry, while endpoint 

excursion, maximum excursion, and directional control were all negatively correlated to 

Hmax / Mmax asymmetry. LOS forward direction correlations are summarized in Table 

12.  
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Table 11. Correlation coefficients for relationships between Hmax / Mmax asymmetry score 

and six sensory organization test conditions and composite score (n = 16). 

 Hmax / Mmax Asymmetry Score 

r P 

SOT Composite - 0.351 0.182 

SOT 1 - 0.105 0.669 

SOT 2 - 0.199 0.460 

SOT 3 - 0.284 0.286 

SOT 4 - 0.577 0.020 

SOT 5 - 0.297 0.263 

SOT 6 - 0.343 0.194 

SOT, sensory organization test. 

 

 
Table 12. Correlation coefficients for relationships between Hmax / Mmax asymmetry score 

and limits of stability in the forward direction (n = 16). 

LOS Forward Direction 
H / M Asymmetry Score 

r P 

Reaction Time (s)  0.518 0.04 

Movement Velocity (° * s-1) -0.418 0.107 

Endpoint Excursion (%) -0.625 0.01 

Maximum Excursion (%) -0.709   0.002 

Directional Control (%) -0.615 0.01 

LOS, limits of stability. 
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Discussion 

The following paragraphs will discuss in detail the main findings of the study 

and how the results compare or contrast with previous literature. It will conclude with a 

paragraph addressing limitations associated with the study and considerations for future 

research directions. 

Main Findings  

1. The soleus Hoffmann reflex, reported as Hmax / Mmax in the present study, was 

not statistically difference between limbs in either our groups. 

2. When Hmax / Mmax was converted to an asymmetry score there was a 

significantly difference between groups with a greater asymmetry score in our 

MS patients. 

3. Within-limb Hmax / Mmax appears to a reliable measure as both groups had large 

ICCs and Pearson’s r.  

4. Hmax / Mmax asymmetry was significantly correlated with condition four of the 

SOT assessment when both groups were pooled. 

5. Hmax / Mmax asymmetry was positively correlated with forward direction LOS 

reaction time, and negatively correlated with endpoint excursion, maximum 

excursion, and directional control when both groups were pooled together. 

 

The purpose of this study was two-fold. First we sought to learn whether or not 

limb to limb differences in the soleus Hmax / Mmax ratio existed in a sample of MS 

patients and non-MS participants; and whether this difference between limbs – reported 

as an asymmetry score – differed between groups. Secondly, we wanted to determine if 
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Hmax / Mmax asymmetry was correlated with balance performance. We hypothesized that 

between-limb soleus Hmax / Mmax ratios would differ in the MS group but not the non-

MS group, and that the between-limb difference would be greater in the MS group 

when compared to the non-MS group. Next, we hypothesized that the Hmax / Mmax 

asymmetry would be related to balance performance. Results indicated no significant 

difference between the left and right soleus Hmax / Mmax ratios in neither the MS group 

nor the non-MS group; therefore, this hypothesis was rejected. Our Hmax / Mmax 

asymmetry scores ranged from 1 to 52.2 (median = 19.5) in our MS patients and 0.3 to 

10.5 (median = 4.2) in our non-MS participants, which resulted in a significant 

difference between groups (p < 0.05, ES = 1.51), which agreed with our hypothesis.  

With respect to balance, the SOT composite equilibrium score was not related to 

soleus Hmax / Mmax asymmetry, but when each individual condition was examined a 

significant relationship (r = - 0.577, p < 0.05) was identified between Hmax / Mmax 

asymmetry and condition four (eyes open and a sway referenced support). Additional 

relationships were identified between Hmax / Mmax asymmetry and the LOS test; 

therefore this hypothesis was not fully rejected. Specifically, we observed significant 

negative relationships between Hmax / Mmax asymmetry and endpoint excursion (r = -

0.625, p < 0.01), maximum excursion (r = -0.709, p < 0.01), and directional control (r = 

-0.615, p < 0.05) – all in the forward direction. These results indicate that as reflex 

asymmetry increased the initial distance travelled towards the forward direction end 

target before deviating from the most direct path to the target, the maximum distance 

travelled towards the forward direction end target, and the degree of postural stability 

while moving in the forward direction decreased. Moreover, there was a significant 
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positive relationship between Hmax / Mmax asymmetry and reaction time (r = 0.518, p < 

0.05); which indicates that as reflex asymmetry increased so did reaction time. No other 

relationships were identified for the other three cardinal directions (i.e., backward, right, 

and left). Finding this relationship between reflex asymmetry and leaning in the forward 

direction did not come as a surprise as the soleus muscle is the primary muscle recruited 

to control balance while displacing the body’s COG in the forward direction. 

Asymmetries and Postural Control in MS 

It is known that people diagnosed with MS tend to present with bilateral 

asymmetries across a range of measures (5, 28-30, 68), and that the majority of MS 

patients have some degree of balance impairments. While the soleus H reflex has been 

measured previously in MS patients it was either only collected in the right leg (63) or 

the most spastic leg (62) but not both. Therefore, to the best of our knowledge this was 

the first study of its kind in MS patients, and further illustrates the presence of bilateral 

asymmetries in people with MS.   

Since balance and walking impairments is among one of the most challenging 

limitations in persons with MS (11) it is not surprising that a study in 2002 by Cattaneo 

and colleagues reported that 27 out of 50 (54%) participants reported falling at least 

once in the previous six months, and of those 32 percent were considered recurrent 

fallers having fallen more than twice (4). When matched for age, MS patients are 

injured two to three times more than people without MS as a consequence of falling (8). 

This has been suggested to be the consequence of a combination of reduced level 

weight-bearing activities compared to age-matched controls and the use of steroids for 
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symptom management, which can lead poor bone health and osteoporosis (11). Based 

on these statistics it is clear that falling is a significant concern for people with MS. 

The current investigation used the SMART Balance Master to quantify postural 

control. The system utilizes a dual dynamic force plates that are equipped with 

rotational capabilities that measure vertical forces exerted through the participant’s feet 

to measure center of gravity position and control of postural. The system also has a 

dynamic visual surround that measures the participant’s use of visual input to maintain 

balance. Two different balance protocols were utilized in this investigation: 1) SOT, and 

2) LOS.  The SOT objectively identifies abnormalities in the participant’s use of the 

sensory systems: visual, somatosensory, and vestibular. The LOS quantifies the 

maximum distance the participant can intentionally displace their COG in the four 

cardinal directions and the four diagonal directions while maintaining stability. The 

outcome measures associated with the LOS test are reaction time, movement velocity, 

endpoint excursion, maximum excursion, and directional control. 

With the exception of SOT condition two, where the eyes are closed while 

standing on a fixed sway reference support (i.e., force plates) all six conditions were 

significantly different between groups in the present study (Table 9 and Figure 10). 

These results differ slightly from Fjeldstad and colleagues (2009) who only observed 

differences in SOT 1, 2, and 4 in a sample of relapsing-remitting MS (12). However, 

differences between our study and theirs could be attributed to the fact their sample of 

MS patients had a lower mean EDSS score than ours. Specifically, their MS patients 

had a mean EDSS of 1.6 and a smaller range (1 to 3) while our sample of MS patients 

had a mean EDSS score of 3.1 and a greater range of 1 to 6, which indicates more 
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disability. Moreover, Fjeldstad et al. (12) only enrolled relapsing-remitting MS patients 

while we had two participants with primary-progressive; a diagnosis that tends to have 

more disability. Indeed, the two primary-progressive patients in our study had an EDSS 

score of 5.5. 

While it was not the main intent of the present study to specifically identify 

sensory dysfunction, but more or less determine if asymmetry in the soleus H reflex was 

correlated to balance control, the SOT quantifies sensory function in the vestibular, 

somatosensory, visual, or some combination of these three sensory systems.  Using 

criteria by Nelson et al. (1995) a composite equilibrium score of 70 or less in any of the 

conditions indicates some degree of postural abnormalities (43). Condition 5 and/or 6 

assesses vestibular function; conditions 4, 5, and 6 assess visual and vestibular function; 

and conditions 2, 3, 5, and 6 assess somatosensory and vestibular function (43). Of the 

eight MS participants in the present study six (75%) had equilibrium scores below 70 in 

condition 5 and three (38%) had equilibrium scores below 70 in condition 6, both of 

which indicate vestibular dysfunction. In contrast, only one (12.5%) non-MS 

participants had an equilibrium score below 70 (68.3) in condition 5 while all non-MS 

participants scored over 70 in condition 6. These results are similar to those of Nelson et 

al., 1995 where 57% of their low-functioning (a composite equilibrium score below 70 

– none of our MS patients had a composite equilibrium score below 70) and 28.5% of 

their high-functioning MS participants had vestibular dysfunction (43) for a grand total 

of ~ 86% of their participants.  

In a sample hemi-paretic patients that were within the first year after sustaining 

a stroke Oliveira et al. (2011) observed similar results to ours where they observed 
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significant differences in SOT conditions 3 through 6; however, their values for each 

condition were lower than ours (44). It is hard to say if their stroke patients were similar 

in disability to our MS patients, but it was reported that 33 percent of those enrolled had 

sustained at least one fall after the stroke, and they were on average less than six months 

post-stroke. Therefore, their level of disability could very well have been greater than 

that of the MS patients in the present study.   

While other studies have assessed postural stability in MS patients, they did not 

use the SMART Balance Master system that was sed in the present study. For instance, 

Chung and colleagues collected vertical ground reaction forces using two adjacent force 

plates and calculated center of pressure variability in the anterior-posterior and medial-

lateral planes, which was used as their measure of postural control (5). They also used 

their force plate data to determine bilateral distribution of body mass during 20 seconds 

of quiet standing, which has been unique to their study. The purpose of their study was 

to identify any relationships between these measures of postural stability and knee 

extension and ankle dorsiflexion torque and power asymmetry. Chung and colleagues 

observed a significant positive relationship between anterior-posterior COP sway and 

knee extensor power asymmetry, ankle dorsiflexion power asymmetry, and loading 

asymmetry scores (r = 0.58, 0.40, and 0.62, respectively). They also observed a 

significant positive relationship between medial-lateral COP sway (r = 0.80) and 

loading asymmetry.   

The soleus Hmax / Mmax has also been used as a way to identify ankle spasticity 

in MS patients (63). Sosnoff et al. (2010) examined the spasticity’s role in postural 

control in a sample of 16 MS patients. Degree of spasticity was determined by assessing 
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the soleus H reflex in the right leg where the high spasticity group had a Hmax / Mmax 

ratio of 0.80 ± 0.06 and the low spasticity group had a ratio of 0.43 ± 0.07. Sixty-three 

percent of our MS patients would have met the criteria used by Sosnoff and colleagues 

to identify spasticity, yet none of the MS patients in our study had been diagnosed with 

any degree of ankle spasticity. Similar to Chung et al., Sosnoff and colleagues collected 

center of pressure data using adjacent force plates to assess postural control. Balance 

assessments included postural sway, anterior-posterior sway range, and medial-lateral 

sway range (63). 

Hmax / Mmax Reliability 

 In an attempt to provide the most reliable results possible only one tester 

collected all data. In support of this approach, our results for between limb Hmax / Mmax 

testing were very reliable between visits for both the MS and non-MS groups. Pearson’s 

correlations were 0.98 and 0.93 for the left and right leg respectively in our non-MS 

group, yet were a little lower in the MS group, which was 0.92 and 0.89 for the left and 

right leg respectively. Within-limb intraclass correlation coefficients (ICC) were also 

strong for each group. Our non-MS group had ICCs of 0.97 and 0.95 for the left and 

right leg respectively, and our MS group had ICCs of 0.94 and 0.91 for the left and right 

leg respectively. These results demonstrate strong reliability in the Hmax / Mmax collected 

in the present study. Between limb reliability remained strong for our non-MS group (r 

= 0.96, ICC = 0.97, SEM = 1.39, but fell a small extent in our MS group (r = 0.45, ICC 

= 0.52, SEM = 5.87). When paired t-tests were run between visits for each limb only a 

significant difference was observed for the right leg in our non-MS group (p < 0.05, ES 

= 0.45), which is hard to explain since all recording and stimulating sites were outlined 
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with a permanent marker. All stimulation visits were performed at the same time each 

day to reduce day to day variability, and while we tried to control for before testing 

physical activity and caffeine consumption, the truth of the matter is some participants 

may have deviated from our protocol. Moreover, while the effect size is not as low as 

we would like, the value barely approached a moderate effect (ES = 0.45). Overall, our 

correlation coefficients and ICCs are in line with those previously reported on soleus 

Hmax / Mmax statistics (45). 
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CHAPTER V: CONCLUSIONS 

The soleus H reflex was measured in both the left and right leg in a sample of 

MS and Non-MS participants to calculate Hmax / Mmax ratios. The Hmax / Mmax 

ratios were converted to an asymmetry score and correlated to balance performance. 

Significant differences were not observed between the left and right leg within each 

group, however, when the Hmax/ Mmax ratios were converted to an asymmetry we did 

observed differences between the two groups with the MS group displaying greater 

asymmetry. The two balance assessments used were the sensory organization test and 

limits of stability. The SOT consisted of six conditions and provided a composite 

equilibrium score. Only condition four was significantly negatively related to Hmax / 

Mmax asymmetry when the groups were pooled. The LOS test assesses an individual’s 

ability to intentionally displace their center of gravity in eight directions; the four 

cardinal and four angular directions and calculates reaction time, movement velocity, 

endpoint excursion, maximum excursion, and directional control. We observed 

relationships while displacing COG in the forward direction in all measures except 

movement velocity; reaction time was the only positive relationship.  

Answer to Research Questions 

First Research Question and Hypothesis 

Will soleus Hmax / Mmax ratio differ between limbs in a sample of MS subjects and 

healthy controls? It was hypothesized that the soleus Hmax / Mmax will differ 

between limbs in MS subjects, but will not differ between limbs in our Non-MS 

participants. We did not observe significant soleus Hmax / Mmax differences between 

legs in either the MS or non-MS group. The hypothesis that a difference in the soleus 
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Hmax / Mmax would be observed in our MS group was not supported by our data. The 

between-limb difference was 0.033 millivolts. However, our hypothesis that no 

differences in the soleus Hmax / Mmax would be observed in our non-MS group was 

supported by our data. The between-limb difference was 0.002 millivolts. 

Second Research Question and Hypothesis 

Following converting the soleus Hmax / Mmax ratios into asymmetry scores, will the 

asymmetry score be greater in MS subjects? We hypothesized the asymmetry 

score would be greater in our MS group. A significantly greater asymmetry score 

was observed in the MS group (21.7 ± 16.6 vs. 4.6 ± 3.9); therefore, the data supports 

this hypothesis. 

Third Research Question and Hypothesis 

Will the soleus Hmax / Mmax asymmetry scores be related to balance performance? 

We hypothesized the soleus Hmax / Mmax asymmetry scores would be significantly 

related to SOT and LOS performance. A significant relationship was not observed 

between our pooled asymmetry scores and the composite equilibrium score of the SOT. 

However, when the conditions were separated a significant negative relationship was 

observed between the pooled asymmetry scores and condition four, which consists of 

eyes open, a fixed visual reference, and a sway referenced platform. For the LOS test 

only relationships were observed between pooled asymmetry scores and the forward 

direction assessment. A positive relationship was only observed between reaction time 

and asymmetry scores. Negative relationships were observed between endpoint 

excursion, maximum excursion, directional control and asymmetry scores. 
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First Research Sub – Question and Hypothesis 

Will Sensory Organization Test performance differ between our sample of MS and 

Non-MS participants? It was hypothesized that the composite equilibrium score 

would be significantly greater in the Non-MS group than the MS group. The 

composite equilibrium score was greater in the Non-MS group (85 vs. 80), supporting 

our hypothesis. 

Second Research Sub – Question and Hypothesis 

Will Limits of Stability test performance differ between our sample of MS and 

Non-MS participants? It was hypothesized that the Non-MS group would perform 

better in LOS testing; however, any specific direction was not stated. The results of 

the LOS test indicate the Non-MS group did perform better in LOS testing, however, it 

was only in the forward direction. Therefore, the data does partially support our 

hypothesis; unfortunately, our hypothesis lacked specificity. 

Clinical Significance 

It is known that bilateral asymmetries exist in people with MS, and that these 

asymmetries can have a significant impact in their daily life. Impaired balance is also a 

common consequence in people with MS, which has been shown to reduce their level of 

physical activity, as they tend to lose confidence in their ability to not fall, even in 

simple daily tasks such as walking. One area not fully understood was whether or not 

asymmetry in spinal reflexes existed in people with MS. More specifically, whether or 

not an asymmetry in the soleus H reflex – if present – would be associated with their 

ability to maintain balance during different balance tasks. The results of this study 

provide preliminary evidence of spinal reflex asymmetry and further support the notion 
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that bilateral asymmetries are common in people with MS. In contrast to previous 

research, this asymmetry was observed without exertion or motivation; both of which 

remove the influence of descending drive and the CNS. Moreover, asymmetry in the 

soleus H reflex appears to be significantly correlated with tasks such as leaning forward, 

and explains 50 percent of the variability in the ability to maximally displace COG in 

the forward direction (r2 = .50). Since we are aware of this asymmetry, clinicians and 

therapist can work to improve this imbalance in the soleus H reflex as this reflex has 

been shown to respond to training and differs between populations (e.g., different 

athlete populations or young versus old). It is the hope that improving symmetry in this 

reflex may improve their ability to maintain balance when challenges are presented that 

displaces their center of gravity and lead to improved confidence and a more active 

lifestyle. 

Future Directions 

Now that it is known that the soleus H reflex can be asymmetrical in people with 

MS, it is important to begin designing interventions to address this imbalance. 

Therefore, future research should focus on training interventions to reduce asymmetry 

in the soleus H reflex, as well as tasks that improve balance. Further, since MS is a 

disease that directly affects the central nervous system, it would be interesting to 

investigate whether or not a variant of the H reflex – the V wave, which introduces the 

central nervous system and descending drive – is asymmetrical in people with MS as 

well. Since this was the very first study of its kind in people with MS, future research 

should investigate whether or not this asymmetry in the soleus H reflex is present in a 

second sample of people with MS. Finally, it may be important to replicate this study 
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with the exception of testing both the left and right during one visit to reduce day-to-day 

variability in not just reflex excitability but also daily fatigue in people with MS. 

Limitations 

As with any study the limitations associated with our study need to be 

addressed. First of all, due to a rather small sample size some of the comparisons made 

were underpowered and additional significant differences may have been observed if 

more participants had been enrolled. This does not mean those results are any less 

meaningful as many of them had large effect sizes. Also, these results are only 

representative of those who completed the study, which were 31 to 64 years of age. Six 

of MS patients in the present study did report a limb they perceived to be more affected, 

however, two reported that both legs were equally affected and since no other 

performance measure was collected between limbs comparing more affected to least 

affected was not possible. Another limitation is that the increase in stimulation intensity 

appears to have been too great resulting in the possibility for some of the Hmax values 

recorded to be underestimated. When reflecting on the study design it may have been 

more important to test both legs in one visit to reduce any influence daily fatigue may 

have had on our stimulation results. However, we controlled for fatigue to the best of 

our ability using two common fatigue questionnaires. Finally, even though the SMART 

Balance Master is equipped with a parachute harness and overhead steel bar for safety 

reinforcement, we were not always comfortable strictly depending on it and at times of 

severe sway assisted the MS patients to reduce the likelihood of falling. This 

undoubtedly could have artificially enhanced some of their condition equilibrium 

scores, especially in the more challenging conditions (i.e., conditions 4 – 6). 
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Appendix A: IRB Approval, Consent Form, and HIPAA



 

76 

 

 
 

 

 

 



 

77 

 



 

78 

 



 

79 

 



 

80 

 



 

81 

 



 

82 

 



 

83 

 

 



 

84 

 

 



 

85 

 

 
 



 

86 

 

 



 

87 

 

Appendix B: Rochester Fatigue Diary, Modified Fatigue Impact Scale, and 

Health History 
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Appendix C: Clearance Letters and Recruitment Flyer 
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Appendix D: DXA Physics Report 
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