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Abstract 

Animal communication signals play an important role in behavioral processes to 

ensure fitness and survivorship of individuals within a species. Weakly electric fish 

produce communication signals that could be among the most energetically expensive 

signals in the animal kingdom. These electric signals underlie an active sensory 

modality (electroreception) as well as a primary communication modality. The weakly 

electric fish Eigenmannia virescens generates constant, quasi-sinusoidal electric organ 

discharges (EODs) at a frequency of 200-600Hz. The EOD signals are produced by the 

summed action potentials of electrocytes - the electrically excitable cells of the electric 

organ (EO). Electric signals with stronger intensity bring adaptive advantages such as 

better resolution for electrolocation and higher efficacy of elctrocommunication, but 

also require larger energetic investments. Two signal features, EOD amplitude (EODa) 

and EOD frequency (EODf), are likely the primary determinants of the energetic costs 

of the EOD. Previous studies have verified the positive relationship between EODf and 

signal metabolic costs via both electrocyte model estimations at the cellular level and 

whole-animal respirometry measurements at the organismal level. Experimental 

evidence from behavioral studies of electric fish under energetic stress also suggest a 

correlation between EODa and signal energetic demands. I estimated and examined the 

combined roles of energetic limitations and sensory effectiveness on signal modulation 

in E. virescens via numerical simulations and behavioral experiments. Computational 

simulations of single electrocytes revealed a strong positive relationship between EODf 

and signaling costs, but no clear relationship between EODa and signaling costs. In 

subsequent behavioral experiments, I hypothesized that an increase in EODa or EODf 
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would be offset by a compensatory decrease in the other. However, I did not observe 

clear tradeoffs between EODa and EODf. Future studies of the relationship between 

EODa, EODf, and signal energetics are needed to more fully investigate the causes and 

mechanisms through which animals regulate their communication signals and balance 

the costs and benefits associated with signaling.   
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Chapter 1: Overview of Electric Sensory and Communication Signals  

Costs and Benefits of Animal Communication Signals 

 Animal communication is an exchange of information between animals, 

especially individuals of the same species. It occurs when the actions or perceptual cues 

produced by one animal affect another animal. Usually the signal’s sender, receiver, or 

both obtain some benefit from the interaction. For instance, gibbons make vigorous 

vocal calls to advertise territory and warn their competitors (Klause, 2001), juvenile 

herring gulls peck at the red spots on the beaks of their parents as a signal of hunger 

(Tinbergen and Perdeck, 1950), and honey bees perform waggle dances in the hive after 

foraging to share information about the direction and distance to food and water sources 

(Kirchner, 1993). Natural selection generally favors signals that maximize signal 

intensity relative to background noise (Endler, 1992). Signal generation, along with 

transmission degradation and receptor characteristics, together determine the quality of 

the received signal. As a result, selective pressures generally favor signals with higher 

intensity (Endler, 1992). For example, bird chicks with louder begging calls tend to 

receive more food from their parents and thereby outcompete their nest mates (Leech 

and Leonard, 1997). Secondly, the evolution of signal transmission has driven signals in 

the direction of less distortion and attenuation. For example, males of some animal 

species produce signals that transmit effectively only during particular seasons. Males 

that transmit signals during these specific time periods obtain more mating 

opportunities than males that transmit signals during other periods (Endler, 1992). 

Finally, signal receptor mechanisms have evolved in ways that increase information 

efficiency and signal reliability. The presence of unintended signals or background 
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noise facilitated the evolution of signal receptors that minimize interference and filter 

out noise (Endler, 1993).       

In contrast to the many benefits of communication signals are the costs of these 

signals, which include opportunity cost, predation risk, and metabolic cost. Opportunity 

costs arise when an animal must choose between two mutually exclusive behaviors. 

Exhibiting one behavior precludes the potential benefit of the alternative behavior. For 

example, when an animal produces signals to attract a mate, it loses that period of time 

for foraging (Bradbury and Vehrencamp, 1998). Predation risks caused by 

communication signals are also widespread in the animal world. The signals of 

courtship, for example, can alert nearby predators and make the sender vulnerable. 

Finally, communication signals incur metabolic costs because they require energetic 

investment for production of the signal. 

The energetic costs of communication signals vary widely among different 

species. According to a comparative study of different taxa and animal groups 

(Stoddard and Salazar, 2010)(Figure 1), orthopteran species spend the highest amount 

of energy on signaling. Wolf spiders, orthoptera, and frogs have the highest ratios of 

energy devoted to signaling to energy spent at rest (Stoddard and Salazar, 2010). 

However, after taking the daily duration of signaling into consideration, the corrected 

energetic costs (Table 1) for some weakly electric fish species with only moderate 

moment-to-moment signal costs ultimately are among the highest on a 24-hour basis 

because these electric signals are emitted constantly (Markham et al., 2016). Generally, 

animals whose communication systems are coupled with an active sensory modality 

require higher metabolic costs for signaling. The self-generated energy of active sensing 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Stoddard%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=21177941
https://www.ncbi.nlm.nih.gov/pubmed/?term=Salazar%20VL%5BAuthor%5D&cauthor=true&cauthor_uid=21177941
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allows better control on signal characteristics but usually has higher energetic demands 

on the sensory system as a tradeoff (Nelson and MacIver, 2006). 

Electric Communication and Sensory Systems of Weakly Electric Fish 

Weakly electric fish use self-generated electric signals to image their 

environment as well as communicate with each other. These fish generate electric fields 

around their bodies through the electric organ discharge (EOD) produced by a 

specialized electric organ (EO). The EO is composed of electrocytes - highly 

electrically excitable cells responsible for producing electric signals. With 

electroreceptors on the skin surface, weakly electric fish detect distortions of the electric 

field. After neural processing and analysis of these distortions, the sensory system can 

characterize surrounding objects as prey items or obstacles. The resolution of the 

sensory image is affected by many factors including signal amplitude, water 

conductivity, and the sampling rate, which is determined by EOD frequency (Hopkins, 

1999). The electric sensory signals generated by weakly electric fish enable them to 

navigate and communicate with conspecifics even in absolute darkness and highly 

turbid waters where vision is ineffective.   

           Within the broad category of weakly electric fish, the African Mormiridae and 

the South American Gymnotiformes evolved independently (reviewed in Markham, 

2013). Electric signal waveforms are highly diverse and distinct to different species. 

However, these signals can be broadly categorized as pulse-type or wave-type based on 

their EOD rates. Pulse-type fish produce EODs with very low rates and long irregular 

intervals while wave-type fish generate continuous signals with regular discharges at 

high frequencies (Bennett, 1970; Stoddard, 2009). The wave-type fish produce signals 
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over a wide range of frequencies, from 30 Hz to 2,200 Hz (Albert and Crampton, 2005). 

High-frequency EODs enable faster sampling by the sensory system with more 

information, leading to enhanced detection of rapid changes in the environment. In 

addition, high-frequency signals shift the peak energy of the signal towards higher 

frequency bands, which reduces the risk of being detected by electroreceptive predators 

that detect only low-frequency components in the range of 0 to 100 Hz (Stoddard and 

Markham, 2008).  

Energetic Costs of EOD Production 

Although signals with high frequency and large intensity bring adaptive benefits 

to weakly electric fish, the energetic cost of these signals likely constrains signal 

generation. This conclusion has been recently supported by both experimental and 

theoretical analyses. Two studies that independently estimated the metabolic costs of 

EOD production via theoretical approaches revealed that signaling occupied 10-30% of 

the daily energy budget in weakly electric fish (Markham et al., 2013; Salazar et al., 

2013). Experimental evidence also suggests that EOD production can take up 

approximately 22% of the daily energy budget in pulse-type fish (Salazar and Stoddard, 

2008) and 30% of the daily energy budget in wave-type fish (Lewis et al., 2014).  

The EOD is the summation of simultaneous or near-simultaneous action 

potentials (APs) produced by more than a thousand electrocytes. Ultimately, the 

energetic cost of EOD production likely arises predominantly from the metabolic cost 

of the electrocyte action potentials (APs). The electrocyte AP is typical of any excitable 

cell, characterized by depolarization and repolarization of the electrocyte membrane 

when Na+ ions flux into the cell through voltage-gated Na+ channels and K+ ions flux 
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out of the cell through voltage-gated K+ channels. The movement of these ions is driven 

by their concentration gradients across the electrocyte membrane. The energy 

consumption of the AP is primarily driven by the Na, K-ATPase, which must hydrolyze 

ATP to restore the ionic gradients across the membrane after each AP (Bean, 2007).  

Consequences of EOD Metabolic Costs 

Because of the high energetic costs of the EOD, some weakly electric fish 

species exhibit circadian rhythms of EOD production to conserve energy. The day-night 

oscillation of EOD duration, amplitude, and rate have been intensively studied. In 

general, weakly electric fish are less active and maintain a relatively low EODa during 

the day. EODa begins to increase in the late afternoon and the fish become active by 

sunset. Around an hour after the beginning of darkness, EOD waveforms are then fully 

enhanced with even higher signal amplitudes (Stoddard et al., 2005). Through the 

circadian rhythms of EOD signals, weakly electric fish can regulate their metabolic 

demands and conserve energy for the night time hours when they are active.  

Weakly electric fish also modulate their signal amplitude in response to 

metabolic stress. During energetic constraints when signals of large intensity become 

unaffordable, decreasing EODa could be an effective way of reducing metabolic costs. 

Experimental evidence from recent behavioral studies supports this speculation. Under 

hypoxia, the wave-type fish Eigenmannia virescens reduces EODa as a response to this 

acute energetic constraint (Reardon et al., 2011). Similarly, during food deprivation, 

which is recognized as mild metabolic stress, E. virescens also decrease EODa 

drastically compared with periods of normal feeding (Sinnett and Markham, 2015). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Stoddard%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=16437223
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In this study, I explored the cost-benefit balance in the electric signals of the 

high-frequency wave-type species E. virescens. The benefits of high amplitude and high 

frequency EODs are better electrolocation performance and higher communication 

efficiency. On the other hand, signals with both higher frequency and amplitude require 

larger energy investment. This cost-benefit balance raises the issue of a potential 

tradeoff between signal amplitude and frequency. Specifically, the research question I 

addressed in this study is whether an increase in one parameter is offset by a decrease in 

the other.  
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Tables 

Table 1: Metabolic costs of animal communication signals from experimental 

measurements (adapted from Markham et al., 2016). 
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Figures 

Figure 1: Metabolic costs of signals relative to metabolic costs while at rest of different 

animal species, expressed as the natural logarithm of oxygen consumption. Horizontal 

lines represent the same signal cost. Diagonal lines represent the same proportion of 

energy budget spent on communication signals relative to resting metabolism. (Adapted 

from Stoddard and Salazar, 2010) 
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Chapter 2: Computational Simulations 

Introduction 

The metabolic cost of generating the multi-function electric organ discharge 

(EOD) in weakly electric fish comes primarily from the cost of generating simultaneous 

APs in ~1,000 electrocytes in the electric organ. Electrocyte APs are initiated by a 

medullary pacemaker nucleus that relays a spinal command via motorneurons that form 

cholinergic synapses on the electrocytes. As in any excitable cell, electrocyte APs begin 

with a depolarization phase driven by Na+ flux into the electrocyte through voltage-

gated Na+ channels. As a result of this depolarization, membrane potential increases, 

causing voltage-gated K+ channels to open. Consequently, the concentration gradient of 

K+ across the membrane leads to efflux of K+ and a decrease in membrane potential, 

which characterizes the repolarization phase of the AP. After each AP, ATP-driven 

ATPases pump Na+ out of the cell and pump K+ in to the cell to restore the ion gradients 

necessary for AP production. In each cycle of Na,K ATPAse activity, one ATP is 

hydrolyzed to move three Na+ to the extracellular space and bring two K+ into the 

intracellular space. This process accounts for the vast majority of the energetic cost 

associated with the AP, and presumably the majority of the metabolic costs of EOD 

production. Therefore, estimates of energetic demand of firing APs are typically based 

on the measurement of the total Na+ current, which drives the activity of these Na+/ K+ 

ATP pumps. 

E. virescens is a wave-type electric fish that produces a regular and continuous 

electric sensory and communication signal. Their electrocytes can generate EODs at 

high frequencies of 200-600 Hz (Scheich, 1977), making the signal extremely 
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expensive energetically (Lewis et al., 2014). Additionally, E. virescens is one of the 

most intensively studied electric fish species, with extensive data available from 

behavioral, endocrine, and physiological studies, making them a good model for 

investigating the energetics of EOD signals. The electric signals produced by these fish 

account for a large portion of their daily energetic budget (Lewis et al., 2014). Na+ 

influx during the AP in a single electrocyte can be extremely high, estimated to be ∼3–9 

× 1010 Na+ during each AP based on recent numerical simulations (Markham et al., 

2013) and directly measured with electrophysiological methods to be 6.6 × 1010 Na+ per 

AP, thereby requiring 2.2 × 1010 ATP per AP (Lewis et al., 2014). The energetic cost of 

an AP in E. virescens electrocytes is two orders of magnitude greater than in 

mammalian neurons (Attwell and Laughlin, 2001; Howarth et al., 2012; Lewis et al., 

2014).  

Unlike other closely-related electric fish species where the AP is terminated by 

voltage-gated K+ channels, the AP in E. virescens electrocytes is terminated by Na+-

activated K+ (KNa) channels. An early computational model suggested that these KNa 

channels make the E. virescens electrocyte 30% more energy efficient than cells with 

classic voltage-gated K+ (Kv) channels (Markham et al., 2013). However, recent 

experimental work (Ban et al., 2015) and computational simulations (Ban et al., 2015, 

Joos et al., 2016) cast doubt on this conclusion.   

In weakly electric fish species, metabolic costs of EOD generation can be 

affected by various factors including EOD waveform, EODf, and EODa. Energetic 

costs increase when EODf increases (Lewis et al., 2014) and it is reasonable to predict 

that energetic costs also increase when EODa increases. In some species, including E. 
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virescens, EODa can change by as much as 50% on a circadian rhythm and in response 

to social encounters (Markham et al., 2009; Sinnett and Markham, 2015). In both pulse-

type and wave-type fish, EODf can change transiently in response to social conditions 

or novel environmental events (Moller, 1970; Moller and Richard, 1973; Zakon et al., 

2002). The best understood case is the jamming avoidance response (JAR).   

The JAR is a naturally occurring social behavior of weakly electric fish that has 

been intensively studied (Heiligenberg, 1973; Zakon et al., 2002; Carlson and 

Kawasaki, 2007). Wave-type fish that perform the JAR emit steady quasi-sinusoidal 

EODs. For instance, fish in the genus Eigenmannia generate electric signals ranging 

from 200 to 600 Hz with a frequency variation that less than 0.3% over a 10-min span 

(Bullock et al., 1972). If a neighboring conspecific discharges at a similar frequency to 

the fish’s EODf, their sensory signals will be jammed (by destructive interference), 

leading to degradation of sensory effectiveness. As a result, when two fish with similar 

signal frequencies are in proximity, the destructive interference between the two EOD 

waveforms introduces sensory confusion (Heiligenberg, 1973). As a response, the fish 

with higher frequency further increases its EODf while the fish with lower frequency 

decreases its frequency so that the signals shift away from each other and avoid 

interference. The frequency change associated with the JAR can provide insights to 

questions related to energetics and social communication in these fish (Bullock et al., 

1971).  

Here, I investigated the potential frequency-amplitude tradeoff in EOD signals 

of weakly electric fish. Specifically, will a change one of these features be accompanied 

by a compensatory change in the other? I used a computational model of the E. 
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virescens electrocyte (Ban et al., 2015) to study the dynamics of changing electrocyte 

AP amplitude and frequency and then estimate the corresponding changes in energy 

consumption. I hypothesized that both signal features, amplitude and frequency have 

positive effects on energetic demand during EOD generation. I predicted positive 

correlations between the two signal features and estimated ATP expenditure in the 

biophysical model of a single electrocyte in E. virescens. The alternative hypothesis was 

that either one of the two signal features, amplitude or frequency had no effect or 

negative effect on energetic costs of EOD production.   

 I also investigated the energetic consequences of EODf changes associated with 

the JAR. Because the JAR can be easily reproduced and quantified in experimental 

settings, numerical simulations of JARs in this study should provide predictions that can 

be tested experimentally in vivo. The model estimates from the present study could 

additionally provide novel insights on the signaling behaviors of weakly electric fish.    

Methods 

Computational simulation of the electrocyte 

Based on a biophysical model described previously (Ban et al., 2015), I 

simulated a single E. virescens electrocyte with a modified three-compartment model 

including an active anterior compartment, a passive central compartment and an active 

posterior compartment. The Hodgkin-Huxley formalism was used to simulate changes 

in electrocyte membrane potentials and ionic currents across the membrane. I applied 

simulated cholinergic synaptic currents only to the posterior compartment. I also 

simplified the Na+ entry, diffusion and pumping in the model to dynamically simulate 
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changes of Na+ concentration in the three compartments. From confocal 3D 

reconstructions of electrocytes in E. virescens (Ban et al., 2015), I obtained surface area 

values of the posterior and anterior regions of 0.35 mm2 and 0.2 mm2, respectively. 

Based on these surface area values, the capacitance for the posterior compartment was 

set to 48.0 nF and the capacitance of the anterior compartment was set to 18.0 nF. The 

central compartment was approximated as a cylinder with the dimensions of 0.95 mm in 

length and 0.6 mm in diameter (Ban et al., 2015). Thus, the capacitance of the central 

compartment was estimated to be 18 nF, based on this approximation. All equations 

were coded in Matlab (Mathworks, Inc. Natick MA). Differential equations were 

integrated via Euler’s method with time steps of 5 × 10-8
 sec. Model parameters are 

shown in Table 1. 

 The passive central compartment was coupled to the active posterior and 

anterior compartments. The current exchange and dynamic coupling was represented by 

the current balance equation that includes only passive leak (IL) fixed at 5 μS:  

𝐶𝑚
𝑑𝑉𝑐

𝑑𝑡
= −𝐼𝐿𝑐 +  𝑔𝑤(𝑉𝑎 −  𝑉𝑐) + 𝑔𝑤(𝑉𝑝 −  𝑉𝑐) (1) 

where Va, Vc, and Vp represent the membrane voltage of the anterior, central, and 

posterior compartments, respectively, and gw   represents the coupling conductance 

between compartments, fixed at 322 μS. 

The current balance equations for the active posterior and anterior compartments 

were formulized respectively as: 

𝐶𝑚
dVp

dt
= 𝐼𝑆𝑦𝑛(𝑡) − INa − ILp + 𝑔𝑤(𝑉𝑐 −  𝑉𝑝) (2) 
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𝐶𝑚
dVa

dt
= −IKNa − IR − ILa + 𝑔𝑤(𝑉𝑐 − 𝑉𝑎)  (3) 

where ISyn is synaptic current, INa represents Na+ current, IKNa represents the Na+-

activated K+ current, and IR represents the inward rectifier K+ current. IL is the leak 

current, whose value was given for all the three compartments by Equation 4: 

𝐼𝐿 = 𝑔̅L(V + 95)     (4) 

where 𝑔̅L represents the maximum conductance of the leak channel. 

The synaptic current, ISyn, applied to the posterior compartment, was given by 

Equation 5: 

𝐼𝑆𝑦𝑛 = 𝑔̅𝑆𝑦𝑛 𝑔𝑆𝑦𝑛(𝑡)(𝑉𝑝 − 15)    (5) 

with the time series of 10 alpha waveforms denoted by gSyn(t )  and generated from the 

discrete time equation: 

𝑔𝑆𝑦𝑛(𝑛+2) = 2 (1 −
𝑇

𝜏
) 𝑔𝑆𝑦𝑛(𝑛+1) − (1 −

𝑇

𝜏
)

2

𝑔𝑆𝑦𝑛(𝑛) + (
𝑇

𝜏
)

2

𝑥(𝑛) 

(Graham and Redman, 1993), where T represents the integration of time step and τ 

represents the time constant. The onset time of the synaptic inputs was specified via the 

binary series x(n) and the resulting time-series gSyn(n) was normalized to make 0 ≤ gSyn(n) 

≤ 1. 

The Na+ current INa was formulized as the sum of a transient component (INaT) 

and a persistent component (INaP), and their values are given in Equations 7 and 8: 

𝐼𝑁𝑎𝑇 = 𝑔̅𝑁𝑎𝑚3(1 − 𝛾)ℎ(𝑉𝑝 − 𝐸𝑁𝑎)   (7) 
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𝐼𝑁𝑎𝑃 = 𝑔̅𝑁𝑎𝑚3𝛾(𝑉𝑝 − 𝐸𝑁𝑎)    (8) 

where 0 < γ < 1. Based on the Nernst equation ENa = 25.7ln(114/[NaP]), the Na+ 

equilibrium potential ENa, was allowed to change and was determined by Na+ 

concentrations in the posterior compartment (NaP). I assumed a fixed extracellular Na+ 

concentration at 114 mM and temperature of 25 °C. 

         The K+ currents of the anterior compartment were given by equations 9 and 10: 

 𝐼𝐾𝑁𝑎 = 𝑔̅𝐾𝑁𝑎𝑛4𝑠4(𝑉𝑎 + 95)    (9) 

𝐼𝑅 =  𝑔̅𝑅 (
1

1+exp (𝜂𝑅(𝑉𝑚+110))
) (𝑉𝑎 + 95)  (10) 

The gating variables of ion channels denoted as m, n, and h in Equations 7-9 were given 

by Equations 11-13:  

 
𝑑𝑗

𝑑𝑡
=  𝛼𝑗(1 − 𝑗) −  𝛽𝑗(𝑗)       (11) 

𝛼j = 𝑘𝛼jexp (
𝛼j

V)     (12) 

𝛽j = 𝑘𝛽jexp (
𝛽j

V)     (13) 

where j = m, n, or h. 

I simulated the Na+-dependence of the KNa channel and IKNa with another gating 

variable, s. The gating variable s was given by Equation 14: 

𝑑s

𝑑𝑡
= 𝑘f[𝑁𝑎𝐴](1 − s) − 𝑘bs    (14) 

where NaA represents Na+ in the bulk cytoplasm in the anterior compartment. 
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The Na+ concentration in each compartment was modeled based on volumes of 

the three compartments. According to the estimates from 3D reconstructions of 

electrocytes (Ban et al., 2015), the volumes of posterior and anterior compartments 

were, respectively, 4.2 × 107 μm3 and 1.7 × 107 μm3. The central compartment was 

approximated as a cylinder of 0.95 mm in length and 0.6 mm in diameter, giving a 

volume of 2.7 × 108 μm3. The initial Na+ concentration in all three compartments was 

set to 15 mM. The dynamics of Na+ concentration in the posterior compartment was 

given by Equation 15: 

𝑑[𝑁𝑎𝑃]

𝑑𝑡
= 𝑝 +  

𝑞

𝑉𝑜𝑙𝑃
− 𝛿([𝑁𝑎𝑃] − [𝑁𝑎𝐶])

𝜆𝑃

𝜆𝐶
 −  𝑏𝑃[𝑁𝑎𝑃]   (15) 

where p is the Na+ leak and q represents the number of Na+ in moles binding with the 

cholinergic receptors and entering Na+ channels. The equation for q was: 

𝑞 =
𝑑𝑡(2 ISyn+I𝑁𝑎)10−12

𝑒𝐿
     (16) 

where dt(2ISyn+ INa) represents the integrated Na+ current in nA*ms. The value of 

dt(2ISyn+ INa) was then multiplied by 10-12 to yield electric charge in Coulombs, and 

then divided by the elementary charge on a monovalent cation, e, to yield the number of 

Na+ ions from Na+ current, further divided by Avogadro’s constant, L, to yield the 

quantity of Na+ ions in moles. Synaptic current ISyn was multiplied by 2 to account for 

Na+ entry from synaptic input ISyn . The maximum synaptic conductance gSyn arises from 

cholinergic receptors and I assumed that the permeability of Na+ is twice that of K+. 

Diffusion rate of Na+ between compartments was determined by δ (the diffusion 

rate constant), Na+ concentration gradients between compartments and the ratio of the 
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volumes between compartments (λ). Na+ reset was modeled by the fractional pumping 

rate bP that represents how quickly Na+ is pumped out to the extracellular space from 

the posterior compartment. 

Na+ concentration in the central compartment, affected only by diffusion to and 

from the other compartments, was given by Equation 17: 

𝑑[𝑁𝑎𝐶]

𝑑𝑡
= 𝛿([𝑁𝑎𝑃] − [𝑁𝑎𝐶])

𝜆𝑃

𝜆𝐶
− 𝛿([𝑁𝑎𝐶] − [𝑁𝑎𝐴])

𝜆𝐶

𝜆𝐴
   (17) 

Na+ concentration in the posterior compartment was given by Equation 18. 

Factors affecting the posterior compartment Na+ concentration include diffusion into 

and out of the central compartment, and the fractional pumping rate bA that specifies 

how quickly Na+ is pumped out into the extracellular space from the anterior 

compartment. 

𝑑[𝑁𝑎𝑃]

𝑑𝑡
= 𝛿([𝑁𝑎𝐶] − [𝑁𝑎𝐴])

𝜆𝐶

𝜆𝐴
 − 𝑏𝐴[𝑁𝑎𝐴]     (18) 

Model simulations across parameter space 

 Forty thousand different parameter combinations were selected as the model 

inputs by random generation from predetermined ranges of stimulus frequency and the 

following ionic conductances: 𝑔̅𝑁𝑎, 𝑔̅𝐾𝑁𝑎, 𝑔̅𝑅, 𝑔̅La, 𝑔̅Lp, and 𝑔̅𝑆𝑦𝑛 (Table 1). With these 

inputs, the biophysical model of the single electrocyte was able to output ionic current 

time series and EOD waveforms associated with every combination of input variables. 

EODa and frequency were then computed from the waveforms generated and set as the 

predictor variables of the prediction model. ATP consumption was also estimated from 

the total Na+ currents and defined as the response variable of the prediction model. 
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Multiple filters were established to rule out abnormal data, including simulations with 

non-typical EOD waveforms whose voltage potentials never fell back below the 

threshold, incorrect firing frequencies that deviated too much (frequency difference > 6 

Hz) from stimulus frequencies and inappropriately low ratios (< 0.3) between the 

inward posterior current and the outward anterior current.        

Data interpolation 

I used the Delaunay triangulation approach (Amidror, 2002) to perform data 

interpolation on 3-dimensional scatter plots of two input variables, voltage amplitude 

and signal frequency, and one response variable, estimated ATP consumption per 

millisecond. I applied natural-neighbor interpolation to the scattered data sets to 

reconstruct both a continuous surface as well as a function that extended and covered 

sample points within the predetermined parameter space. Interpolation and relevant 

predictions were coded in Matlab (Mathworks, Inc., Natick, MA).     

Grid approximation for optimal energetic strategies  

The model took ionic conductance inputs within the physiologically relevant 

ranges shown in Table 1. With these different combinations of ionic conductances, the 

biophysical model was able to generate EOD signals of the same or similar signal 

amplitude and frequency, but with vastly different energetic costs. Based on the 

optimality model in ecology (Parker and Smith, 1990), I examined the features of model 

cells that achieved the highest energetic efficiency while obtaining electrocyte APs of 

different amplitude and frequency combinations. To approximate optimal energetic 

strategies, it was necessary to identify the model cell with the lowest energetic cost at 
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every combination of amplitude and frequency. To do this, I graphed the scattered data 

in the 3-dimensional space, with the inputs amplitude and frequency on the x and y axes 

and the response variable ATP per millisecond on the z axis. Then, I projected all 

sample points vertically to the xy plane (Figure 2A). Within the parameter space of x 

and y, I created a grid with grid intervals that covered the full range of amplitudes and 

frequencies. The grid intervals were subdivided to achieve pre-specified column width 

and row height values (Fig. 2B). For every projected sample point, its Euclidean 

distances to all grid points were computed. Based on the minimum Euclidean distances, 

the x and y coordinates of each projected sample point were set to the closest grid point 

(Fig. 2B,C). After these adjustments to the x-y coordinates, there were model cells with 

varying energetic costs at each grid point (Fig. 2C). The model cell with the lowest 

energetic cost at each grid point was selected then traced back to its original data point 

in the 3D space. This resulting subset of model cells, the Cells of Optimized Energetics 

(COEs) were selected as data points for subsequent analysis and all the other model 

cells were excluded (Fig. 2D). This data interpolation approach was then applied to 

reconstruct the continuous surface and function that cover the COE model cells (Fig. 

2D).   

JAR simulation 

To simulate the JAR in the set of COEs, I further assumed that E. virescens electrocytes 

are not able to change their ionic conductances upon shifting EODf. In order to 

determine how JAR-related frequency changes affect energetic efficiency, I started with 

the full set of COEs and reran the computational models with the same ionic 

conductances but drove the cells at frequencies +5 Hz, +10 Hz, -5 Hz, and -10 Hz from 
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their baseline frequencies to simulate both an upward and downward JAR. The 

estimated ATP consumption of each model cell after this frequency shift was then 

compared to the energetic costs of the COE for the new amplitude and frequency. The 

difference of energetic costs between the frequency-shifted COE and the resident COE 

was denoted as ΔATP, the difference in ATP consumption between a cell optimized for 

a particular amplitude and frequency versus the ATP consumption of a COE cell shifted 

to that amplitude and frequency. 

Results 

Effects of AP amplitude and frequency on energetic costs 

 Within the entire set of model cells consisting of 40,000 combinations of ionic 

conductances, 81.37% (32,548) of the model cells passed the filters and generated 

normal AP waveforms at the appropriate frequency. The peak-to-peak voltage 

amplitude across the electroycte’s anterior membrane was defined as the signal 

amplitude and was measured from the AP waveform. Energetic costs of producing the 

signal (number of ATP per millisecond and number of ATP per AP) were computed 

from integrated Na+ current in the model output. The biophysical model estimated an 

energetic cost of ~ 1-4 × 1010 ATP molecules per millisecond and ~5-8 × 1010 ATP 

molecules per AP, which was comparable with but slightly higher than previous 

measurements of ~2 × 1010 ATP molecules per AP (Lewis et al, 2014). The 3-

dimensional scatterplot of amplitude, frequency and energetic costs (Fig. 1) displays a 

surface with considerable variation in the z-axis (ATP/ms) because the plot includes 

cells with all combinations of ion conductances and stimulus frequencies that 
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successfully generated normal AP waveforms at each combination of amplitude and 

frequency.  

   The subset of COE cells consisted of 2.22% of the total functional model cells 

(721 out of 32,548) (Fig. 2D). The data interpolation method for selecting this subset of 

COE cells was successfully validated by comparing grids of different resolutions 

(Appendix A). The reconstructed surface of COE cells showed strong positive 

correlation between firing frequency and ATP consumption. There are two patterns 

apparent for amplitude. For COE cells with a frequency lower than ~400 Hz, a subtle 

negative effect of amplitude is apparent in estimated energetic costs. In contrast, for 

COE cells with frequencies greater than 400 Hz, there is a slightly positive correlation 

between amplitude and estimated energetic costs, especially at high amplitudes. 

Marginal effects of amplitude and frequency on the number of ATP per unit time were 

checked via simple linear regression (Fig. 3), using the data points in the subset of 

optimal energetic strategies. Overall, a negative effect of signal amplitude was detected 

on ATP consumption (ATP per ms = -1.129*109 * Amplitude + 1.403*1011, R2= 0.407, 

p < 2.2*10-16). A positive effect of signal frequency was also observed on ATP 

consumption (ATP per ms = 9.706*107* Frequency + 5.755*107, R2= 0.881, p < 

2.2*10-16). 

Effects of simulated JARs 

 Simulated JARs within the set of COE model cells showed that, for either a 

positive or negative frequency change, the estimated metabolic costs for cells after the 

frequency change were almost universally higher than the resident cell at each 
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amplitude/frequency combination (Fig. 4). Overall, data points indicating positive 

ΔATP values (100% and 97.24% in +5 Hz and -5 Hz stimulus data sets, 95.96% and 

96.86% in +10 Hz and -10 Hz stimulus data sets) far outnumbered data points with 

negative ΔATP values (Fig.4A,C,E,G). ΔATP increased as the baseline frequency 

increased, yielding a positive correlation in data sets of +5 Hz and -5 Hz frequency 

shifts (ΔATP = 9.4198*106 * Frequency - 8.0352*108, R2= 0.233, p = 7.71e-35 for +5 

Hz data set, ΔATP = 1.3424*107 * Frequency - 2.0679*109, R2= 0.323, p = 8.22*10-51 

for -5 Hz data set) (Fig. 4B,D). ΔATP from a 10-Hz shift revealed very similar patterns 

of positive correlation between baseline frequency and ATP expenditure (ΔATP = 

1.1841*107 * Frequency - 1.5518*109, R2= 0.225, p = 3.36*10-33 for +10 Hz data set, 

ΔATP = 1.1869*107 * Frequency - 1.5124*109, R2= 0.257, p = 9.53*10-39 for -10 Hz 

data set) (Fig. 4F,H).  

Discussion 

Target outputs can be achieved with a variety of conductance combinations. 

One striking outcome of this study is that any given combination of electrocyte 

AP amplitude and frequency could be achieved by numerous model cells with vastly 

different complements of ionic conductances. This finding is consistent with a growing 

body of evidence that excitable cells can achieve particular action potential waveforms 

and patterns with highly varied combinations and densities of ionic conductances 

(reviewed by Marder and Goaillard, 2006). In the present results, the functional model 

cells at each frequency/amplitude combination exhibited a broad range of energetic 

efficiencies, raising the possibility that the particular combination of ionic conductances 
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expressed to achieve a target frequency and amplitude might be tuned to optimize the 

electrocyte’s energetic efficiency, as is the case in other classes of excitable cells 

(Carter and Bean, 2009). 

Effects of frequency and amplitude on energetic cost estimates  

Based on the results from the present model, raising EODf caused dramatically 

higher energetic costs, while EODa had only a minor negative effect on ATP 

consumption of the model cells. This finding partially supported my hypothesis that 

both signal frequency and amplitude have positive effects on the energetic costs of 

generating the electric signal. However, the effect of amplitude on energetic demands in 

the present results was not as I hypothesized.  

The effect of frequency on energetic costs of the electrocyte was strong and 

positive, based on the analysis of the COE cells. Surprisingly, within this subset of cells, 

energetic costs were not positively correlated with AP amplitude. Within the COE cells, 

the marginal effect of amplitude revealed slightly lower metabolic costs at higher signal 

amplitude, which seems counterintuitive. However, the three-dimensional reconstructed 

surface showed two different patterns of signal amplitude on estimated ATP 

consumption. At low frequency that was less than about 400 Hz, higher amplitude was 

correlated with lower energetic costs while at high frequency that was greater than 400 

Hz, raising amplitude cost slightly more ATP within a fixed period of time. Based on 

the results of the current model, frequency appears to be more important than amplitude 

in determining the energetic costs of producing EOD signals, suggesting that changes in 

EODf would have greater impacts on signal energetics than changes in EODa.  
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This outcome stands in contrast to experimental studies where E. virescens were 

subjected to metabolic stress. During moderate metabolic stress caused by food 

deprivation, E. virescens responded by decreasing EODa, with little to no change in 

EODf (Sinnett and Markham, 2015). A similar outcome was observed during acute 

metabolic stress caused by hypoxia, where E. virescens respond by reducing EODa 

rather than EODf (Reardon et al., 2011).   

The present results suggest that decreasing EODf is a much more effective 

strategy for reducing metabolic costs during metabolic stress. This modification not 

only would reduce expenditures associated with electrocyte Aps, but also the full cost of 

EOD production, which also includes synaptic costs, the costs of pacemaker function, 

and the costs of sensory circuits where thousands of cells fire 1:1 with the EOD (Krahe 

and Maler, 2014). An important remaining question, then, is why fish respond to 

metabolic stress by reductions in signal amplitude rather than reductions in EODf. 

The metabolic effects of changing EOD frequency 

Perhaps the strongest prediction to arise from the present study concerns the 

effects of transient changes in EODf associated with the JAR. When COE cell firing 

frequency was increased or decreased, this change produced a decrease in energy 

efficiency for more than 95% of the COE cells (assuming no change in ionic 

conductances). This effect was magnified in cells at higher frequencies, meaning that 

fish with higher baseline frequencies sacrifice more energetic efficiency during the JAR 

than fish at lower baseline frequencies. This outcome is consistent with recent 

experimental findings that increases in EODf are exponentially more expensive for fish 
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with higher baseline frequencies (Lewis et al., 2014). The present computational results 

lead to an additional prediction that the extent of frequency changes during the JAR 

should be smaller for fish with higher baseline frequencies.  

In conclusion, the present modeling studies suggest a strong positive effect of 

EODf on energetic costs, but no clear effect of signal amplitude was observed. The 

effects of frequency in the current model are consistent with experimental observations 

that the metabolic cost of EOD production increases exponentially with frequency 

(Lewis et al., 2014), but are inconsistent with experimental findings that fish respond to 

metabolic stress with reductions in amplitude but not frequency (Reardon et al., 2011; 

Sinnett and Markham, 2015). Additional experimental investigation and 

theoretical/computational studies are needed to resolve these inconsistencies. With 

respect to the current computational efforts, it is entirely possible that the present model 

of the E. virescens electrocyte is incomplete in one or more important ways. One 

notable simplification is that the model treats the electrocyte as a three-compartment 

cell, which is potentially a gross oversimplification of the cell’s highly complex 

morphology (Ban et al., 2015). Additionally the biophysical properties of the entire 

suite of ion channels expressed in electrocytes have not been fully characterized, so the 

present model is informed by incomplete experimental support. These shortcomings can 

be addressed through additional experimental work on the electrophysiology of 

electrocytes, as well as the development of computational models with higher spatial 

resolution and more precisely specified functional components.   

Another consideration is that there could be other important features of the 

signal beyond peak-to-peak voltage amplitude and frequency that can influence signal 
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energetics. In electric engineering, voltage measurement integration is widely used to 

compute the power and energy of an electric signal, especially alternating current (AC) 

signals (Equation 19):  

𝐸𝑠 = ∫ |𝑥(𝑡)|2+∞

−∞
dt                                                 (19) 

where 𝐸𝑠 represents the signal energy and 𝑥(𝑡) denotes the voltage measurement of the 

signal at time point t. Thus, for signals with the same frequency, peak-to-peak voltage 

amplitude by itself might not be sufficient to explain the effect of the signal on 

energetic costs. Future computational studies might benefit by considering other 

features of the signal waveform.   
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Tables 

Table 1. Parameter values for the electrocyte model 

Posterior Compartment Anterior Compartment 

Parameter Value Parameter Value 

gL 20 - 100 μS gL 60 – 180 μS 

𝑔̅𝑆𝑦𝑛 300 - 600 μS 𝑔̅𝐾𝑁𝑎 6000 – 10,000 μS 

𝑔̅𝑁𝑎 800 – 1,600 μS 𝑔̅𝑅 100 - 400 μS 

𝜏 0.07 ms   

𝛾 0.05   

𝑘𝑎𝑚 13.6 ms-1 𝑘𝑎𝑛 1.2 ms-1 

𝜂𝛼𝑚 0.0037 mV-1 𝜂𝛼𝑛 0.0095 mV-1 

𝑘𝛽𝑚 0.6894 ms-1 𝑘𝛽𝑛 0.4448 ms-1 

𝜂𝛽𝑚 -0.0763 mV-1 𝜂𝛽𝑛 -0.0155 mV-1 

𝑘𝑎ℎ 0.00165 ms-1 𝑘f 50 mM-1 ∙ ms-1 

𝜂𝛼ℎ -0.1656 mV-1 𝑘b 200 ms-1 

𝑘𝛽ℎ 1.493 ms-1 𝜂𝑅 0.22 mV-1 

𝜂𝛽ℎ 0.11 mV-1   

p 5 mM ms-1   

δ 0.0019 mm2 s-1 δ 0.0019 mm2 s-1 

𝑏𝑃 0.3 mM ms-1 𝑏𝐴 0.7 mM ms-1 

 

 

 

  



28 

 

Figures 

Figure 1: 3D visualization of the prediction model of amplitude and frequency on 

energetic costs. (A) 3D scatter plot showing the relationship between EODf, EODa, and 

ATP consumption (ATP per ms) of the complete dataset from the entire parameter 

space. (B) Reconstructed surface via interpolation that covered all data points of the 

scatter plot in (A).   

 

Figure 2: Schematic illustration of the grid approximation procedures for identifying 

cells of optimal energetics. (A) Data points were projected from the 3D space to the 2D 

plane of EODa/EODf. (B) Grids were established on the EODa/EODf plane and 

Euclidean distances were computed between projected points and grid points to identify 

the nearest grid point to each projected data point. The amplitude and frequency 

coordinates of projected points were then set to their closest grid points. (C) The model 

cells producing the lowest ATP consumption values were selected at each grid point 

and the selected cell was traced back to the original sample points in the 3D parameter 

space as a cell of optimized energetics (COE). Cells not selected as COE were excluded 

from subsequent analyses. (D) Surface interpolation on sample points of COEs and 

reconstruction of an approximated surface that covers all those data points.  

 

Figure 3: Marginal effects of EODa and EODf on energetic costs in COEs. (A) Simple 

linear regression of EODa on ATP per ms in COEs. (B) Simple linear regression of 

EODf on ATP per ms in COEs. 

 

Figure 4: 3D visualization and heat maps of ΔATP from JAR simulations. (A) 3D 

representation of ΔATP on amplitude and baseline frequency in +5 Hz jamming. (B) 

Heat map of ΔATP on amplitude and baseline frequency in +5 Hz jamming. (C) 3D 

representation of ΔATP on amplitude and baseline frequency in -5 Hz jamming. (D) 

Heat map of ΔATP on amplitude and baseline frequency in -5 Hz jamming. (E) 3D 

representation of ΔATP on amplitude and baseline frequency in +10 Hz jamming. (F) 

Heat map of ΔATP on amplitude and baseline frequency in +10 Hz jamming. (G) 3D 

representation of ΔATP on amplitude and baseline frequency in -10 Hz jamming. (H) 

Heat map of ΔATP on amplitude and baseline frequency in -10 Hz jamming. 
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32 

 

Figure 4 
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Chapter 3: Signaling Behavior Experiments 

Introduction 

 Weakly electric fish generate electric signals to image their world and 

communicate with conspecifics in dark and murky waters. Some gymnotiform species 

produce regular EODs constantly without interruption, incurring very high metabolic 

costs that in some cases are comparable to the most energetically expensive animal 

communication signals such as trilling katydids and Carolina wrens (Lewis et al., 2014; 

Markham et al., 2016; Salazar and Stoddard, 2008; Stoddard and Salazar, 2010). E. 

virescens is a weakly electric fish that produces quasi-sinusoidal EODs at constant 

frequencies ranging from 200 to 600 Hz (Scheich, 1977). They are distributed in the 

rivers of central South America, where they shoal in large social groups (Albert and 

Reis, 2011).  

Communication signals with high amplitude and high frequency often confer 

advantages such as greater advertisement to potential mates, increasing ability to warn 

conspecifics for territorial defense and stronger sensory stimulation to receiving 

individuals (Stoddard and Salazar, 2011). For E. virescens, EODs of high amplitude and 

high frequency also provide more information from the surrounding environment and 

enable more accurate sensory performance. Higher frequency EODs provide more rapid 

sampling of the sensory environment, while high-amplitude EODs serve to expand the 

sensory volume surrounding the fish. However, large metabolic costs arising from 

electric signals with both high amplitude and high frequency potentially would 

counteract the benefits that they bring.  

Amplitude and frequency are two key EOD features believed to determine the 

energetic costs of generating the signals (Salazar et al., 2013; Lewis et al., 2014). E. 
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virescens are known to transiently change both EODa and frequency in response to 

environmental conditions. For instance, E. virescens change EODa on a circadian 

rhythm, increasing amplitude at night when these nocturnal fish are active and 

decreasing EODa during the day when fish are at rest (Sinnett and Markham, 2015). E. 

virescens also decrease signal amplitude over a period of days during food deprivation 

and restores the original signal amplitude within two days once feeding resumes 

(Sinnett and Markham, 2015). Rapid decreases in EODa also occur in response to 

hypoxia (Reardon et al., 2011).   

Transient changes in EODf occur during the jamming avoidance response 

(JAR). The presence of a neighboring conspecific with an EODf similar frequency to 

the fish’s EODs can interfere with the sensory signal and impair electrolocation 

effectiveness. To resolve this, when two electric fish with similar frequencies are in 

close proximity, the fish with the slightly higher frequency further increases its 

frequency by ~5-10 Hz and the other fish with a slightly lower frequency will decrease 

its frequency by ~5-10 Hz. This frequency modulation enables the fish to avoid signal 

jamming and maintain the effectiveness of sensory performance. The computational 

simulations from Chapter 2 predict that signal frequency has a strong positive effect on 

energetic costs of generating the electric signal, a conclusion consistent with recent 

experimental findings (Lewis et al., 2014). Presumably raising EODf during the JAR 

incurs higher energetic costs while the reduced EODf of the second fish decreases its 

sensory sampling rate, potentially compromising sensory performance.  

Given that E. virescens exhibits changes in both EODa and EODf in response to 

environmental conditions, this fact raises the question of whether energetic limitations 



35 

 

and sensory performance might force a tradeoff in one parameter if the other changes. 

For example, if a fish increases EODf during a JAR, is there a corresponding decrease 

in EODa to offset the increased metabolic cost incurred by a higher EODf? Conversely, 

if environmental conditions elicit a decrease in EODf, will there be a corresponding 

increase in EODa? I therefore hypothesized that during JAR, fish exposed to jamming 

stimuli that increased EODf (up-jamming) would decrease EODa to conserve energy 

while fish exposed to jamming stimuli that decreased EODf (down-jamming) would 

increase EODa to compensate for the loss in sensory resolution.  

In this study, I also explored whether environmental conditions that require 

increases in EODa would produce compensatory changes in EODf. When electric fish 

inhabit waters near centers of human population, stray electrical noise from power 

transmission lines creates broadband electrical noise in the water (Joerg Henninger, 

personal communication). Presumably, stronger background noise decreases the EOD 

signal-noise ratio and impairs the efficacy of signal propagation. It is very likely that 

electric fish living in electrically noisy environments could increase EODa to overcome 

the background electrical noise, just as birds in noisy urban environments emit higher-

amplitude calls (Nemeth et al., 2013).  

No study to date has reported the effect of electric noise on signaling behavior of 

weakly electric fish. White noise is a standardized form of electric noise with a uniform 

power distribution across the frequency domain. In the presence of electrical white 

noise, the signal efficacy of weakly electric fish should be impaired but they cannot 

overcome this noise by shifting their EODf away from the noise as is the case during 

the JAR. I hypothesized that when E. virescens is exposed to white noise, fish would 
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increase EODa to compensate for the decrease in signal-noise ratio and would decrease 

EODf to compensate for the increased metabolic costs of higher EODa. 

Methods 

Animals 

Wild-caught E. virescens (Glass knife-fish) from tropical South America were 

purchased from a tropical fish supplier. Fish were kept in groups of 4 to 10 individuals 

in 40- or 10-liter tanks within a recirculating aquarium system. The system temperature 

was maintained at 28 ± 1°C and the water conductivity was kept at 200-500 μS/cm. E. 

virescens generate sinusoidal EOD waveforms with a frequency of 200-600 Hz (Fig. 

1D). Each positive pulse is counted as a single EOD (Fig. 1C). The EOD is regulated by 

a medullary pacemaker nucleus (Fig. 1A,B). Eight fish ranging from 17 to 24 cm and 

13.1 to 20.2 g, obtained from 5 different tanks, were used in this experiment. All 

methods were approved by the Institutional Animal Care and Use Committee of The 

University of Oklahoma, and complied with the Public Health Service Guide for the 

Care and Use of Laboratory Animals. 

Experimental Procedures 

The experiment was conducted in an automated measurement tank (Fig. 1E), 

120 x 44 x 44 cm, located in a light- and temperature-controlled room on a 12L:12D 

light cycle. Fish were allowed to acclimate to the recording tanks for at least 24 hours 

prior to beginning each experiment. During the experiment, fish were restricted in an 

electrically-transparent mesh tube centered within the tank. The EOD waveform was 

amplified from nichrome wire electrodes at opposite ends of the tank. EODa was 

measured peak-to peak and EODf was computed from waveform zero crossings during 
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each 100-ms sample. EODs were recorded throughout each experiment at intervals of 

approximately 10s. 

Jamming and white noise stimulus presentation and data acquisition were 

controlled by a custom EOD recording system coded in RPvdsEX (Alachua, Florida) 

and Matlab (Mathworks, Inc. Natick MA). EODs were amplified by Cyngus 

Technologies FLA01 amplifiers (Delaware Water Gap, PA). Inputs were AC coupled 

and amplified at 500x gain with 12.5 kHz high-pass filtering. A Tucker Davis 

Technologies RX8 multi I/0 processor (Alachua, Florida) was used to digitize recorded 

EODs and to generate the stimulus signals with a sampling rate of 48 kHz. The 

jamming stimulus was a bipolar sine wave produced by the RX8 processor, isolated 

from chassis ground by an A-M systems Analog Stimulus Isolator Model 2200 

(Sequim, WA), and delivered to the experimental tank via 3-cm nichrome wires 20 cm 

apart on either side of the fish (orthogonal to the recording electrode axis). The 

experimental control platform was established via a custom graphical user interface 

coded in Matlab (Mathworks, Inc. Natick MA). The output stimulus was calibrated so 

that the jamming and white noise stimulus amplitudes were maintained at 1.0 and 3.0 

mV/cm, respectively, during stimulation. The frequency of the jamming stimulus was 

set to 3 Hz above or 3 Hz below the fish’s recorded frequency at the beginning of the 

stimulus period. During periods of stimulus delivery, EOD signals were recorded during 

100 ms interruptions in the stimulus signal so that EOD recordings were not 

contaminated by stimulus signal. A Tektronix TDS 2024C oscilloscope (Beaverton, 

OR) was used to monitor real-time waveforms of stimulus and recorded EODs. 
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Experimental trials consisted of 60 min baseline EOD recordings, followed by 

90 min of stimulus presentation, then by at least 60 min of recovery after termination of 

the stimulus. Each fish was exposed to all three stimulus conditions on separate days: 

white noise, up-jamming (stimulus frequency 3 Hz below fish’s frequency), or down-

jamming (stimulus frequency 3 Hz above fish’s frequency). 

Data analysis 

To quantify the rate and direction of changes in EODa at key time points in the 

experiments, the linear slope of EODa was compared across 4 different intervals (Fig. 

2A). The 20 minutes before stimulus initiation was denoted as Baseline. The 20 minutes 

immediately following stimulus initiation was denoted as Stimulus 1. The last 20 

minutes of stimulus presentation was identified as Stimulus 2, and the first 20 minutes 

of the recovery period was defined as Recovery. Simple linear regression was used to 

determine the rate of change in EODa for all four intervals. To account for differences 

in baseline EODa among fish, the regression slopes for all intervals were normalized to 

the mean EODa during the Baseline interval.  

The magnitude of stimulus-induced changes in EODa (ΔAmp) during the 

stimulus presentation were compared to changes in EODa during the 60 min prior to 

stimulus onset. Control condition ΔAmp was computed as the difference between mean 

EODa in the 20-min interval beginning 70-min before stimulus onset (Prebaseline 

EODa) and the mean EODa in the 20-min interval before stimulus onset (Onset EODa) 

(Fig. 2B). 30-min-Stimulus condition ΔAmp was computed as the difference between 

mean EODa in the 20-min interval beginning 30 min after stimulus onset (Stimulus 

30min EODa) and Onset EODa. Final-Stimulus condition ΔAmp was computed as the 



39 

 

difference between mean EODa in the final 20-min interval of stimulus presentation 

(Stimulus Final EODa) and Onset EODa. All ΔAmp values were normalized to Onset 

EODa. Statistical analysis and data visualization were conducted using R (The R 

Foundation for Statistical Computing, Vienna, Austria) and Matlab (Mathworks, Inc. 

Natick MA). 

Results  

The introduction of down-jamming and up-jamming stimuli (3 Hz above and 

below the baseline frequency, respectively) caused an observable jamming avoidance 

response in 8 out of 8 fish (down-jamming) and 7 out of 8 fish (up-jamming)(Appendix 

B1,B2). Increases in EODa were observed in many, but not all fish (7 out of 8 in up-

jamming tests and 6 out of 8 in down-jamming tests), but in no case did EODa decrease 

(Appendix C1,C2). In the white noise experiments, a similar pattern of amplitude 

change was detected where EODa increased in 7 out of 8 fish (Appendix C3). However, 

two different patterns of frequency change were observed. Three out of 8 (Appendix 

B3) fish decreased frequency during the white noise stimulus, while the other 5 fish 

showed small and unsystematic fluctuations of frequency around their baseline 

frequency.    

To track the tendency of amplitude change, regression slopes of the four time 

periods: Baseline, Stimulus 1, Stimulus 2 and Recovery in experiments with different 

stimuli, standardized by the baseline amplitude, were computed and compared. A 

consistent pattern in up-jamming, down-jamming and white-noise stimulation was that 

the slope of amplitude measurement increased from approximately zero at Baseline, to 

positive values at Stimulus 1, dropped to zero at Stimulus 2, then decreased to negative 
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values during Recovery (Fig. 3). Repeated measures ANOVA revealed significant 

difference in the slopes of the four time periods during all three stimulus types: up-

jamming (p = 0.03), down-jamming (p = 0.003) and white-noise (p = 0.02). Subsequent 

Tukey’s pairwise comparisons revealed significant steeper standardized slopes of 

Stimulus 1 than those of Recovery for all three stimulation types (p = 0.02 for up-

jamming, p = 0.002 for down-jamming, p = 0.01 for white-noise), while in down-

jamming, significant difference in slope values was also identified between Stimulus2 

and Recovery (p = 0.02).    

EODa increased at Stimulus 30 min and Stimulus Final across all three stimulus 

types. ΔAmp of Final-Stimulus condition was significantly larger than Control for all 

the three types of stimulus (Fig. 4): up-jamming (repeated measure ANOVA, p = 0.01, 

Tukey’s pairwise test, p = 0.002), down-jamming (repeated measure ANOVA, p = 

0.006, Tukey’s pairwise test, p < 0.001) and white-noise (repeated measure ANOVA, p 

= 0.006, Tukey’s pairwise test, p < 0.001). ΔAmp of 30-min-Stimulus was also higher 

than Control but statistical significance was not detected at all three stimulus types 

(Tukey’s pairwise test, p = 0.08 for up-jamming, p = 0.02 for down-jamming and p = 

0.006 for white-noise). 

Discussion 

In the present experiment, I exposed E. virescens to stimuli designed to produce 

changes in EODf or changes in EODa. Contrary to my hypothesis, increases in EODf 

did not cause decreases in EODa, and increases in EODa were not accompanied by 

decreases in EODf. Both upward and downward changes in EODf were accompanied 

by increased EODa during the JAR experiments. In the presence of white noise, 
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changes in EODf were small and unreliable in 5 of 8 fish, but I did observe clear 

changes in EODa, with three cases where EODf decreased. 

I hypothesized that fish that increased EODf during the JAR would decrease 

EODa to conserve energy. However, the results of the up-jamming condition showed 

considerably higher amplitude at stimulus compared with baseline. The increased slope 

of EODa immediately after stimulus onset suggests that this change in EODa is a rapid 

response to the stimulus. Based on this result, my hypothesis was not supported because 

EODa changed in the opposite direction than I had predicted. One possible explanation 

is that the positive shift of around 5 to 10 Hz in EODf indeed incurred additional 

energetic demand but not enough to reach an energetic constraint that would force a 

tradeoff in EODa. Thus the fish would be able to accommodate the increased energetic 

demands without reducing EODa. Another alternative interpretation is that EODa does 

not have as much of an impact on energetic costs as does EODf. This interpretation is 

consistent with the results of the computational studies from Chapter 2 of this thesis. 

Within these simulations, no clear relationship was found between EODa and energetic 

costs of producing EOD at the cellular level, and the marginal effect of EODa even 

showed a slightly negative effect on metabolic demands.  

In the down-jamming condition, fish reduced EODf as expected. The reduction 

of EODf would be expected to reduce energetic demands, thus energetic constraints 

would be no more of a determinant factor of the signal modulation in this case. 

However, the frequency drop here could impair sensory performance of the fish because 

signal features are closely related to image distance and resolution in electrolocation as 

well as the quality and efficacy of electrocommunication. So it was reasonable to 
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hypothesize that the fish decreasing EODf during JAR would increase its EODa to 

compensate for signal efficacy. The results of the down-jamming experiments indeed 

revealed a significant increase in EODa. Additionally, the slope of EODa increased 

immediately after stimulus onset and decreased immediately after stimulus termination.  

 When electric noise is present in the environment of weakly electric fish, the 

efficacy of signaling should decrease because of a degraded signal-to noise ratio. 

Accordingly, I hypothesized that when exposed to broad-band white noise, E. virescens 

would raise its EODa to maintain a relatively high signal-noise ratio and would reduce 

its EODf to offset the metabolic costs of increased EODa. This hypothesis was based on 

the assumption that EODa was positively related to signal energetic costs. However the 

simulation experiments from Chapter 2 of this thesis predicted a slightly negative 

correlation between signal amplitude and the ATP consumption of producing EODs. So 

even though an increase of EODa was observed when fish were exposed to white noise, 

the hypothesis itself cannot well explain the mechanism. Moreover, the frequency 

pattern was divergent in that some fish (3 out of 8) displayed a decrease in frequency 

and the others did not, indicating that an urgent requirement to conserve energy did not 

affect all fish. This outcome is consistent, to a certain degree, with the unclear effect of 

signal amplitude on energetic costs observed in the simulation studies of Chapter 2.    

 While the results revealed some patterns in both amplitude and frequency 

response of E. virescens exposed to stimulus, the behavior experiments here have some 

limitations. Firstly, only eight fish were tested under each type of stimulus. The small 

sample size might reduce the statistical power of the study and raise the margin of error. 

Secondly, all the behavior tests were conducted during the day (light cycles). The 
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purpose of this was to reduce unreliable signal recording caused by body movement of 

test fish since they are more active at night. However, the presence of light might 

introduce bias and the results may not well reveal the signal response pattern to stimulus 

during dark cycles. These limitations should be taken into consideration in the 

experiment design of future study.    

 In conclusion, tradeoff between EODa and EODf was observed in only the 

down-jamming and some white-noise tests. No tradeoff was detected in up-jamming 

tests, where I expected fish to show a co-effect of both energetic limitations and sensory 

efficacy on signal modulation. Taken as a whole, the present results indicate that our 

understanding of energetic constraints on EOD signaling in E. virescens is far from 

complete. While convincing experimental outcomes demonstrate that EOD signaling is 

compromised under metabolic stress, and that EOD signaling consumes a significant 

fraction of the energy budget, the present data resulting from short-term perturbations in 

EODa and EODf suggest that signal energetics are not limiting in all conditions. Further 

research is needed to fully specify the conditions under which metabolic factors 

influence EOD signaling across timescales ranging from seconds to month. 
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Figures 

Figure 1: The electric organ discharge (EOD) in E. virescens. (A) The medullary 

pacemaker nucleus innervates electrocytes of the electric organ through spinal motor 

neurons. The synchronous action potentials in the electric organ produce the EOD. (B) 

Electrocytes produce action potentials simultaneously, with the current flow summing 

in the direction of the head. The returning path of the current flow is towards the tail. 

(C) The voltage potential trace of 1 EOD pulse. (D) The waveform of continuous EODs 

at ~500 Hz. (E) A sketch diagram of the experimental apparatus. (Adapted from Sinnett 

and Markham, 2015) 

 

Figure 2: Different time periods of behavior experiments involved in the computation 

and statistical analysis. (A) Schematic illustration of the four intervals: Baseline, 

Stimulus 1, Stimulus 2 and Recovery, from which the standardized regression slopes 

were computed. (B) Schematic illustration of the four time periods: Prebaseline, Onset, 

Stimulus 30min and Stimulus Final from which the control and tested conditions (30-

min-Stimulus and Final-Stimulus) were defined.   

 

Figure 3: Standardized amplitude slopes of the four different intervals: Baseline, 

Stimulus 1, Stimulus 2 and Recovery. The upper, middle and lower panels represent the 

effects of up-jamming, down-jamming and white-noise stimulus, respectively. 

Significance at p < 0.05 marked as “*”.  

 

Figure 4: Grouped bar plots that compare ΔAmp between 30-min-Stimulus, Final-

Stimulus and Control during all three stimulus types: down-jamming, up-jamming and 

white-noise. Significance were detected between different letters (a and b) within each 

group. 

  

http://www.sciencedirect.com/science/article/pii/S0018506X15000434
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Chapter 4: Summary and Future Directions 

Weekly electric fish produce electric organ discharges (EODs) for the purpose 

of both sensing their environment and communication. As for all the other 

communication modalities, this electric signaling system evolved under selective 

pressures to balance the benefits and costs associated with the signaling behavior. While 

discharging with higher intensity and higher frequency provides the fish with an 

expanded sensory range, clearer images of the surrounding environment, and better 

quality of communication with conspecifics, it also exposes them to electroreceptive 

predators and requires a larger energetic investment. The research reported in this thesis 

focused on how the energetic costs of the electric signal might affect signaling 

behaviors of weakly electric fish. 

EODs are energetically expensive to produce. Previous theoretic studies 

estimated that production of EOD signals could cost up to ~30% of the daily energy 

budget in wave-type fish which produce constant regular discharge (Salazar and 

Stoddard, 2008; Lewis et al., 2014), and this prediction was confirmed in recent 

experimental studies (Markham et al., 2013; Salazar et al., 2013). E. virescens is an 

example of wave-type fish that can produce EODs with a frequency as high as 600 Hz, 

and cost ~1-3 × 1010 ATP per EOD in a single electrocyte (Lewis et al., 2014). Signal 

features such as amplitude and frequency were thought to be related with energetic 

costs associated with EOD production. A recent simulation study showed that 

maintaining EODa at higher frequency required larger energetic costs (Lewis et al., 

2014). The goal of the present project was to explore the effect of signal amplitude and 

frequency on signaling energetic costs and investigate how energetic constraints 
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induced by amplitude or frequency increase influenced signaling behavior in weakly 

electric fish E. virescens. 

In the computational studies in Chapter 2, EODf was positively related with 

energetic costs in the Eigenmannia electrocyte; higher EODf required drastically more 

ATP molecules per unit time. The simulation of the JAR within these simulations also 

revealed that frequency shifts at higher baseline frequencies caused larger deviations 

from optimal energetic efficiency, further confirming the importance of EODf to signal 

energetics. However, no clear effect of EODa on metabolic costs was identified. It 

appeared, based on these simulations, that frequency might be more closely related with 

energetic costs of EOD production than amplitude. This result did not support my 

original hypothesis and also failed to explain the amplitude decrease observed under 

hypoxia or food deprivation, which were considered to be conditions of energetic 

constraint.  

One alternative interpretation is that the two features, frequency and amplitude, 

were not able to provide sufficient information to the model and resulted in underfitting 

of the model. It is also likely that the model itself is missing important components and 

needs to be further developed. As for future work, continuous efforts to re-evaluate and 

optimize the electrocyte computational model are necessary. In the meantime, it is 

likely worthwhile to introduce other signal features into the prediction model. One 

possible candidate feature is the shape of the EOD waveform. In signal processing, 

continuous electric potential measurements are used to compute the power and energy 

of an electric signal, indicating that the shape of the waveform is also involved in 

determining signal energy, besides the peak-to-peak amplitude.  
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Though the signal energy in this context is not exactly the same as the physical 

energetic costs as we mentioned above, the two concepts are closely related and it is 

possible to convert from one to the other with certain mathematical operations. With 

some appropriate method of quantifying the shape of signal waveforms, it will be 

possible extract one or more variables associated with the shape and introduce them into 

the prediction model. Skewness and kurtosis are two candidate variables to represent 

the signal shape. Once more information is provided from these extra features, perhaps 

the pattern of signal amplitude on signal metabolic cost could become clearer. 

The behavioral experiments in Chapter 3 tested for potential tradeoffs between 

signal amplitude and frequency. The up-jamming stimulus caused fish to increase both 

amplitude and frequency. If the amplitude is positively related to signaling costs, then 

the observed amplitude increases that accompanied increased frequency might indicate 

that energetic demands introduced by frequency shifts in JAR are small enough that the 

fish was still able to balance the extra metabolic costs without sacrificing signal 

intensity. However, the positive correlation between EODa and energetic demands was 

not verified in the computational simulations, so it is possible that the fish modulate 

signal features via a different mechanism in response to the stimulus. Tradeoff of 

amplitude increase and frequency drop was identified in down-jamming experiments. 

This finding lends some support to my hypothesis that fish might increase EODa to 

compensate for decreased EODf, which might maintain signal quality and its adaptive 

benefits. In the white-noise experiments, I expected to observe increased EODa and 

decreased EODf based on the expectation that fish would increae EODa to maintain a 

relatively high signal to noise ratio for signal efficacy, with a drop in EODf to conserve 
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energy. Though EODa did increase during the white-noise stimulus, there was no 

consistent decrease in EODf. A reduction in EODf was only observed in 3 out 8 fish in 

response to broad-band white noise, possibly because increased EODa imposes little 

additional metabolic cost – an interpretation consistent with my findings from Chapter 

2. In future research, it will be worthwhile to experimentally verify the relationship 

between EODa and energetic demands of generating the signal, perhaps through whole-

animal respirometry experiments. In addition, more acute and severe energetic 

challenges beyond those imposed by the JAR or white-noise stimulation might be 

needed to observe the potential tradeoff between EODa and EODf.  

The present sstudy provides a good starting point for further investigation of the 

energetics of EOD production and any corresponding energetic constraints. Future 

research should attempt to develop better elaborated computational models that could 

provide theoretical insights on the basis of signal feature modulation in weakly electric 

fish. In addition, more experimental evidence is needed concerning the ways in which 

signal energetics affect signaling behavior in weakly electric fish. Continued integration 

of theoretical and computational models with expanding experimental data in this area 

promises to better elucidate the causes and mechanisms underlying the ways in which 

animals regulate their communication signals to balance the costs and benefits 

associated with signaling.     
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Appendices:  

Figure S1: Approximated surfaces of optimal energetic strategies generated from three 

different column width and row height combinations (A, B, C represent reconstructed 

surfaces using column width = 0.25, 0.5, 1 mV and row heights = 5, 10, 20 Hz) of the 

grid plane that were compared and produced highly similar structures, indicating the 

reliability of this reconstruction method. The surface from grid width of 0.5 mV and 

row height of 10 Hz was arbitrarily chosen as a representation. 2.22% (721 out of 

32,548) of data points in the complete data set were identified as the subset of the lower 

boundary that represented optimal energetic efficiency. 

 

Figure S2: Frequency measurements of all 8 tested fish during (A) up-jamming 

experiments, (B) down-jamming experiments, and (C) white-noise experiments. Red 

dots represent recordings of baseline and recovery periods. Blue dots represent 

recordings during the stimulus period. 

 

Figure S3: Amplitude measurements of all 8 tested fish during (A) up-jamming 

experiments, (B) down-jamming experiments, and (C) during white-noise experiments. 

Black dots represent recordings of baseline and recovery periods. Blue dots represent 

recordings during the stimulus period. 
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Figure S2A: 
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Figure S2B: 
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Figure S2C: 
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Figure S3A: 
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Figure S3B: 
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Figure S3C: 
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