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Abstract 

Reliable, real-time traffic surveillance is an integral and crucial function of the 

21st century intelligent transportation systems (ITS) network. This technology facilitates 

instantaneous decision-making, improves roadway efficiency, and maximizes existing 

transportation infrastructure capacity, making transportation systems safe, efficient, and 

more reliable. Given the rapidly approaching era of smart cities, the work detailed in 

this dissertation is timely in that it reports on the design, development, and 

implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor 

for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-

the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless 

sensor network—powered by intelligent algorithms—are the basis of the developed 

Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor 

combines an energy-harvesting subsystem to extract energy from multiple sources and 

enable sensor node self-powering aimed at potentially indefinite life. A wireless power 

receiver was also integrated to remotely charge the sensor’s primary battery. Reliable 

and computationally efficient intelligent algorithms for vehicle detection, speed and 

length estimation, vehicle classification, vehicle re-identification, travel-time 

estimation, time-synchronization, and drift compensation were fully developed, 

integrated, and evaluated. Several length-based vehicle classification schemes particular 

to the state of Oklahoma were developed, implemented, and evaluated using machine 

learning algorithms and probabilistic modeling of vehicle magnetic length. A feature 

extraction employing different techniques was developed to determine suitable and 

efficient features for magnetic signature-based vehicle re-identification. Additionally, 



xxi 

two vehicle re-identification models based on matching vehicle magnetic signature from 

a single magnetometer were developed. Comprehensive system evaluation and 

extensive data analyses were performed to fine-tune and validate the sensor, ensuring 

reliable and robust operation. Several field studies were conducted under various 

scenarios and traffic conditions on a number of highways and urban roads and resulted 

in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951% 

classification rate when binning vehicles into four groups based on their magnetic 

length. Threshold-based, re-identification results revealed 65.25%~100% identification 

rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation 

resulted in 90~100% identification rate for a window of 25~500 vehicles. The 

developed platform is portable and cost-effective. A single sensor node costs only $30 

and can be installed for short-term use (e.g., work zone safety, traffic flow studies, 

roadway and bridge design, traffic management in atypical situations), as well as long-

term use (e.g., collision avoidance at intersections, traffic monitoring) on highways, 

roadways, or roadside surfaces. The power consumption assessment showed that the 

sensor is operational for several years. The iVCCS platform is expected to significantly 

supplement other data collection methods used for traffic monitoring throughout the 

United States. The technology is poised to play a vital role in tomorrow’s smart cities. 

 



1 

Chapter 1: INTRODUCTION 

 

1.1 Introduction  

The rapidly increasing growth of surface transportation—driven by an ever-

growing population—and its impact on traffic safety has been a major concern for the 

nation’s transportation agencies over the last decades. The U.S. Federal Highway 

Administration (FHWA) predicts a 23% increase in vehicle miles traveled by 2032 [1]. 

Statistical studies by the World Health Organization (WHO) reported 1.25 million 

people die and up to 50 million injuries occur each year on the world’s roads [2]. The 

U.S. National Highway Traffic Safety Administration (NHTSA) reported 32,719 

fatalities and 2.313 million traffic injuries in 2013, 28% of which were speed-related 

[3]. Annual traffic fatalities caused by trucks is reportedly 4,000 deaths, and injuries to 

travelers numbers 100,000. Vehicular fatalities on U.S. roadways have an annual direct 

economic cost of $242 billion, resulting from 24 million crashes. This figure represents 

1.6% of the $14.96 trillion U.S. Gross Domestic Product (GDP) reported in 2010 [4]. 

The total cost increases to $836 billion when considering societal harm from vehicle 

crashes. Furthermore, 44% of the U.S. roadways are classified as congested. According 

to the 2015 Urban Mobility Scorecard report [5], traffic congestion costs the U.S. $160 

billion each year as a result of 7,000,000,000,000 lost hours and 3,000,000,000,000 fuel 

gallons wasted. Additionally, 31% of carbon dioxide emissions come from vehicle 

tailpipes [6]. 

When compared with passenger vehicles, trucks and commercial vehicles have a 

significant impact on pavement service life. For example, a vehicle hailing a 40-ton 

load causes over 4,000 times more road damage than a five-ton loaded vehicle. 
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Moreover, according to [7], approximately 4,000 fatalities and more than 95,000 

injuries reported in 2013 involved large trucks. Such an impact requires appropriate and 

distinctive traffic planning strategies to mitigate the effect of anticipated increases in 

truck traffic. Adequate information about freight volume and vehicle classification is 

needed to support geometric and structural design of roadways and bridges. 

Without assertive, proactive solutions, traffic crashes are predicted to rise and 

roadways congestion is estimated to worsen. Annual delay in the U.S. will grow to 8.3 

billion hours, resulting in an increased cost of $192 billion [5].  

In spite of the fact that vehicle travel on U.S. highways increased by 39% from 

1990 to 2013, new roadways increased by only 4%. To accommodate the growing 

demand on transportation and to prevent worsening levels of roadway congestion, the 

U.S. FHWA must expand current transportation infrastructure capacity by 23%. One 

option to achieve this goal is adding 4,200 miles of new roadway each year [8]. Another 

is developing intelligent transportation system (ITS) technologies that maximize 

existing transportation infrastructure capacity and improve efficiency, making 

transportation systems safe, efficient, and more reliable for the rapidly approaching era 

of smart cities.  

1.2 Intelligent Transportation Systems and Smart Cities 

ITS are an integral part of nationwide traffic management systems (TMS). ITS 

performance depends substantially on accuracy of reported data and spatial distribution 

of traffic sensors [9], which in-turn influence highway and roadway efficiency and 

safety. Designing/planning ITS is a complex task that requires extensive analysis of 

public demand for transportation. To determine transportation needs, it is important to 
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understand the underlying characteristics of traffic patterns, such as vehicle 

classifications, vehicle volume and occupancy, and travel time, among many others. 

This understanding is an essential aspect of assisting traffic projection studies and 

transportation planning [10]. 

Real-time traffic monitoring systems play a key role in the transition toward smart 

cities and more efficient ITS. Autonomous traffic sensing is at the heart of smart city 

infrastructures, wherein smart wireless sensors are used to measure traffic flow, predict 

congestion, and adaptively control traffic routes. Doing so effectively provides an 

awareness that enables a more efficient use of resources and infrastructure. 

The Internet of Things (IoT) is reshaping the future. Experts project that by 2020 

nearly four billion people, more than 25 million Apps, and 26 billion embedded devices 

will be connected to the internet, producing 50 trillion gigabytes of data and revenue 

opportunities of up to four trillion US dollar [11]. For ITS to be effective in the era of 

IoT, traffic surveillance systems should have sufficient spatial distribution to permit 

interconnected network elements, providing reliable information about traffic 

conditions, enabling real-time data exchange among various infrastructure components, 

and facilitating instantaneous decision-making. In the context of ITS for smart cities, 

IoT technology will allow new services aimed at greatly improving quality of life. 

1.3 Current Traffic Surveillance Technologies 

Vehicle detection and traffic surveillance technologies are a core component of 

ITS. Both functions are subject to continuous improvement toward enhancing vehicle 

detection, speed estimation, and vehicle classification. Traffic detection and volume 

prediction methods are dependent upon several factors, including current and historic 
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traffic measurements. Widely used traffic surveillance technologies can be classified 

into three groups: intrusive, non-intrusive, and off-roadway sensors. 

1) Intrusive sensors include inductive loops (IDL), magnetic detectors, pneumatic road 

tubes, piezoelectric, and weight-in-motion (WIM) sensors, which are embedded in 

the road surface after saw-cutting the surface or adding roadway holes. 

2) Non-intrusive sensors include vision systems, microwave radar, and infrared and 

ultrasonic detectors, which are installed atop roadway or roadside surfaces or 

mounted overhead. 

3) Off-roadway sensors (e.g., remote sensing via aircraft or satellite and probe vehicles 

equipped with Global Positioning System (GPS) receiver) that do not require 

roadway installation.  

A description of these technologies can be found in [8], [12]. Both intrusive and 

non-intrusive sensors are power-hungry, expensive, and have been known to cause 

installation difficulties. The sensors typically require wired infrastructures and power 

lines for energy supply. Other drawbacks of intrusive sensors include their large-size, 

short life (i.e., as short as 48h for tubes [13]), and high maintenance costs associated 

with lane closure and traffic disruption. Piezoelectric and WIM sensors rely on 

pavement geometry, meaning that pavement deterioration will result in unreliable data. 

Moreover, resurfacing or repairing roadways requires reinstalling sensors, making 

worker safety for those deploying intrusive systems a concern [13].  

Although vision and radar systems are widely considered accurate and typically 

do not disrupt traffic, their performance is subject to weather conditions (e.g. fog, rain, 

snow, or wind). Off-roadway sensors provide limited traffic statistics at fixed locations; 
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their performance is limited due to dependence on the number of probe vehicles [8], 

[12]. Consequently, the associated high costs (e.g., initial cost, calibration costs, regular 

maintenance, among others) limit spatial distribution and large-scale integration. TMS 

scalability and availability are essential for efficient and reliable, real-time ITS [9]. 

1.4 Wireless sensor networks 

Wireless sensor networks (WSN) are emerging as a promising technology and a 

key enabler for an enormous number of physical-world sensing applications that have 

not previously been possible (e.g., IoT) [14]. WSN have demonstrated exceptional 

features, such as flexibility, scalability, reliability, and power efficiency [15]. Network 

scalability is exceptionally important for ITS, particularly as systems are able to 

accommodate an increased number of nodes connected in an ad-hoc, self-configurable 

manner [16]. A comprehensive survey of WSN for ITS applications can be reviewed in 

[15]. 

Systems employing WSN consist of medium to large networks of inexpensive 

wireless nodes capable of sensing, processing, and collaboratively distributing data 

acquired from the physical-world [14].  

1.5 Magnetometer Sensors 

Rapid technology advancements in solid electronics, embedded computing, and 

wireless communication protocols have transformed magnetometer sensors (MAG) into 

cost-effective and energy-efficient alternatives to IDLs. Unlike other methods, MAG 

are immune to poor weather conditions and environmental factors. They do not require 

line-of-sight, and they have a longer lifetime [17]. Integrating WSN with state-of-the-art 

embedded MAG has enabled autonomous methods for real-time traffic surveillance 
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application (e.g., vehicle detection on roadways and in parking lots, vehicle speed 

estimation, and vehicle classification). Many credit the PATH program at the University 

of California [12] for initiating the use of MAG sensors in traffic surveillance 

applications. 

1.5.1 Magnetometer Sensor Theory of Operation 

The earth’s magnetic or geomagnetic field (𝑩𝛾) is nearly uniform at any specific 

place on the earth's surface and ranges between approximately 25 and 65 microtesla 

(µT)—0.25 to 0.65 gauss (G). Notably, however, field direction and intensity change 

from place-to-place and over time. For example, in Oklahoma, USA, current field 

intensity is FM≈51µT, which is the magnitude of three geomagnetic field components: 

north BX≈21.95µT, east BY≈1.135µT, and vertical BZ≈46µT components [18]. 

𝑩𝛾, is a three-dimensional vector that can be approximately modeled at Earth’s 

surface as a magnet dipole (i.e., geocentric axial dipole), as it is tilted by 11.5° along the 

Earth's spin axis. Its south pole points towards geomagnetic north pole (see Figure 1-1).  

 

Figure 1-1 Earth’s magnetic field lines distribution [19] 
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Geographic heading can be estimated by transferring 𝑩𝛾 to coordinate plane and 

knowing the declination angle. Field coordinate plane is shown in Figure 1-2. 𝑩𝛾 vector 

is described using seven components: 1) northerly intensity Bx; 2) easterly intensity By; 

3) vertical intensity Bz; 4) horizontal intensity H; 5) total intensity FM; 6) inclination 

angle I—angle between the magnetic field B and horizontal plane; and 7) declination 

(magnetic variation) angle D—angle between the Geographic North and H. The 

quantities H, FM, I, and D, can be determined using Eq. 1-1, Eq. 1-2, Eq. 1-3, and Eq. 

1-4, respectively, from the orthogonal magnetic field components Bx, By, and Bz. Figure 

1-2 depicts 𝑩𝛾vector elements in coordinate plane. Table 1-1 shows the range of 

magnetic elements at the Earth's surface. 

𝐻 = √𝐵𝑥
2 + 𝐵𝑦

2  Eq. 1-1 

𝐹𝑀 = √𝐻2 + 𝐵𝑧
2 = √𝐵𝑥

2 + 𝐵𝑦
2 + 𝐵𝑧

2 Eq. 1-2 

𝐼 = tan−1
𝐵𝑧

𝐻
= tan−1

𝐵𝑧

√𝐵𝑥
2 + 𝐵𝑦

2
 Eq. 1-3 

𝐷 = tan−1
𝐵𝑥

𝐵𝑦
 Eq. 1-4 

Ψ = tan−1
𝐵𝑦

𝐵𝑥
∓ 𝐷 = tan−1

𝐵𝑦

𝐵𝑥
∓ tan−1

𝐵𝑥

𝐵𝑦
 Eq. 1-5 

Vehicles have a large mass of highly permeable ferrous materials (e.g., iron, steel, 

nickel, aluminum, or cobalt) that cause a small local disturbance in the Earth’s magnetic 

field flux lines. Steel, in particular, has the capacity to concentrate flux lines, as its 

magnetic permeability is high relative to surrounding air. A vehicle structure with a 

substantial amount of steel can be detected from a significant distance (e.g., 10m). As a 
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vehicle passes through the Earth’s magnetic field, the magnetic flux lines are absorbed 

in a non-uniform manner, as shown in Figure 1-3. The magnitude and direction of the 

disturbance depends on several factors, including speed, size, density, and permeability 

of vehicle structure. Different vehicles have different structures, hence, different 

disturbance factors relative to the geomagnetic field. This measured disturbance 

represents a vehicle’s magnetic signature (VMS), which is unique and can be measured 

using MAG. VMS can be analyzed to distinguish between different types of vehicles. 

 

Figure 1-2 The seven elements of the 𝑩𝜸vector in coordinate plane 

The disturbance in magnetic field 𝑩𝜸 caused by a vehicle can be modeled as a 

large number of magnetic dipoles [20], each with its own moment 𝜇 and direction r in a 

three-dimensional space (see Figure 1-4), as given by Eq. 1-6 [21], where B0 is the 

localized Earth’s magnetic field vector; µ0 is the magnetic permeability of free space 

given by 𝜇0 = 4𝜋×107×𝑁/𝐴2; 𝜇𝑖 is the magnetic dipole moment of the ith dipole; and 

𝑟𝑖 is the vector the ith dipole moment 𝜇𝑖 to sensor location. 
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Table 1-1 Ranges of magnetic elements at the Earth's surface [22]  

Element Name 
Range 

Positive sense 
Min Max 

Bx Northerly intensity -17µT 42µT North 

By Easterly intensity -18µT 17µT East 

Bz Vertical intensity -67µT 61µT Down 

H Horizontal intensity 0µT 42µT NA 

FM Total intensity 22µT 67µT NA 

I Inclination -90º +90º Down 

D Declination -180º +180º East/CW 

 

 

Figure 1-3 Earth’s magnetic field lines distorted by passing vehicle 

 

Figure 1-4 Magnetic dipoles moment and direction in a three-dimensional space 

𝐵𝑖(𝜇1⃗⃗⃗⃗ , 𝑟1⃗⃗⃗  … 𝜇𝑛⃗⃗⃗⃗ , 𝑟𝑛⃗⃗  ⃗) = 𝐵0 +
𝜇0

4𝜋
 ∑

3(𝜇𝑖⃗⃗  ⃗. 𝑟𝑖⃗⃗ )𝑟𝑖⃗⃗ − 𝜇𝑖⃗⃗  ⃗|𝑟𝑖⃗⃗ |
2

|𝑟𝑖⃗⃗ |5

𝑛

𝑖=1

;     

𝜇𝑖⃗⃗  ⃗, 𝑟𝑖⃗⃗ ∈ ℝ3   𝑎𝑛𝑑   𝑖 ∈ {𝑥, 𝑦, 𝑧} 

Eq. 1-6 
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A VMS can be described mathematically using a single point dipole model with a 

moment 𝜇 equal to the geometric sum of all dipoles and centered in the vehicle [23], as 

MAG measure the geometric sum of all dipoles on x, y, and z-axes. Hence, Eq. 1-6 can 

be written as in Eq. 1-7, where i=1. Given that a vehicle is moving, �⃗� (𝜇 , 𝑟 ) becomes a 

time-variant field and distance r becomes a function of time t, as shown in Eq. 1-8. This 

equation can ultimately be used to estimate the maximum magnetic field strength at 

distances r from a vehicle. It can also be used to estimate vehicle trajectory and speed 

[24], [25]. 

�⃗� (𝜇 , 𝑟 ) = 𝐵0 +
𝜇0

4𝜋
 
3(𝜇 , 𝑟 )𝑟 − 𝜇 |𝑟 |2

|𝑟 |5
 Eq. 1-7 

�⃗� (𝑡) = 𝐵0 +
𝜇0

4𝜋
 
3(𝜇 , 𝑟 (𝑡))𝑟(𝑡) − 𝜇 |𝑟 (𝑡)|

2

|𝑟 (𝑡)|
5  Eq. 1-8 

Assuming that background noise induced by on-board electronic components is 

modeled as an additive white Gaussian noise (AWGN), then data obtained from the 

sensors can be modeled as the sum of �⃗� (𝑡) in Eq. 1-8 and AWGN ∅. 

�̂�(𝑡) = �⃗� (𝑡) + ∅𝜇,𝜎  Eq. 1-9 

1.6 Energy-Harvesting Solutions for WSN 

Smart WSN equipped with sensors and an intelligent controller are among IoT 

devices. Figure 1-5 illustrates typical elements of a smart device. WSN and IoT are 

mostly battery-powered devices, and although these have a limited power budget, once 

deployed they are expected to be functional for an extended lifetime. Battery leakage, 

however, currently depletes the battery charge with time—merely a few years—even if 

rarely used [26]. The process of recharging or replacing batteries for spatially 
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distributed sensor nodes requires an enormous amount of time at a prohibitive cost. 

Even though optimizing energy and minimizing power consumption can help extend 

battery life, doing so is not the key to self-sustainable WSN. Notably, advances in 

battery capacity have not increased significantly in the last decades [27] when compared 

to the exponential advancement in semiconductor technology as a result of Moore’s law 

[27]. For this reason and until there is a breakthrough in energy storage technology, 

research on self-sustainable WSN has redirected its focus from improving energy 

efficiency to introducing a micro-scale, energy-harvesting (EH) technology as the 

primary solution for maximizing the lifetime of WSN devices [28], [29].  

 

Figure 1-5 Earth’s magnetic field lines distribution 

Micro-scale EH, also called energy scavenging, is an eco-friendly solution based 

on the collection and conversion of microwatt to milliwatt energy from ambient 

sources, including, for example, solar (photovoltaic), vibration (piezoelectric), thermal 

(thermoelectric), and inductive (electromagnetic). EH have received significant 

attention in the last few years. Although the technology’s solutions are in the initial 

stages, they are evolving rapidly, introducing more efficient EH and power management 
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chips, such as those manufactured by major semiconductor companies like Analog 

Devices, Texas Instruments, and Maxim Integrated, among others. 

Solar energy is more widely used in EH applications, as it is inexpensive, easy to 

use, and has the highest power density (up to 30mW/cm2) among other harvesters. 

Energy produced by photovoltaic cells is proportional to cell size and light source 

brightness. Piezoelectric harvesters produce energy from kinetic sources, such as 

vibration (e.g., motor, shoes). Piezoelectric harvesters require a predictable, consistent 

vibration frequency, which is one of the challenges when using Piezoelectric. 

Thermoelectric generator (TEG) produce energy from heat sources that have a constant 

temperature gradient. A comparison between various EH methods and harvesting-aware 

communication protocols for WSN can be reviewed in [28]–[30]. 

By combining all advancements in state-of-the-art ultra-low-power embedded 

systems, smart physical sensors, WSN, and EH will enable fully autonomous IoT 

devices that (ideally) will remain operational for decades without battery replacement. 

This technological innovation is vital for smart cities, smart homes, and smart energy. 

1.7 Research Motivation 

The primary objective for this research is designing, developing, and 

implementing  a non-intrusive, inexpensive, and portable self-powered vehicular traffic 

monitoring sensor that a) accurately detects, counts, estimates speed and length, and 

classifies vehicles in real-time; b) can be used for short-term deployment (e.g., work 

zone safety, temporary roadway design studies, traffic management in an atypical 

situation, such as evacuations and other similar situations), as well as long-term 

deployment (e.g., traffic management, turn movement, and collision avoidance); and c) 
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is easy-to-install by simply affixing the sensor shell into the surface of highways, 

roadways, or roadsides without intrusive work. Such a solution will maximize existing 

transportation infrastructure capacity and improve efficiency, making transportation 

systems safe, efficient, and more reliable for the rapidly approaching era of smart cities. 

A secondary objective is in response to the critical need of the Oklahoma 

Department of Transportation (ODOT) for an autonomous surveillance technology to 

monitor various traffic conditions. Results can be used to supplement current ITS 

installed throughout the state.  

Because traffic volume has significant implications for highway and roadway 

safety, planning, and design, ODOT—like other U.S. transportation departments—is 

responsible for collecting permanent and temporary traffic characteristic data (e.g., 

vehicle count and class) from various statewide locations each year. Initially, data is 

used for transportation planning strategies and management processes. Unfortunately, 

many sites are not equipped with a vehicle counter. In this case ODOT personnel either 

conduct a manual count for a short period of time or hire a contracting company. The 

former requires intensive labor to visit hundreds of sites. Also, manual count is simply 

not feasible on congested highways with several lanes. Moreover, this method is usually 

conducted for only a few hours, which doesn’t represent accurate traffic volume. 

Alternative methods used to collect vehicle count and class information in Oklahoma 

employ: 1) weight-in-motion (WIM) or automatic vehicle classifiers (AVC) deployed at 

permanent sites throughout the state or 2) pneumatic road tubes (PRT) installed 

temporarily for study proposes [31].  



14 

Currently, PRT are placed on the road surface, crossing the lanes and then 

fastened to the roadway. The axle of a passing vehicle causes a differential pressure in 

the tubes, which in turn triggers axle detection. Speed is estimated by measuring axle 

travel time from one tube to another. AVC, on the other hand, employ piezoelectric 

sensors with inductive loops that are embedded in the roadway. Although these 

technologies are known to be highly accurate, the systems have several drawbacks and 

have been known to cause installation difficulties. PRT, for instance, have a short life 

(e.g., as short as 48h [13]), can monitor only two lanes, and are prone to error (e.g., fake 

pulses or over count) due to tubes bouncing when hit by heavy vehicles traveling at 

high speeds [31]. Moreover, PRT installation often requires road closure and traffic 

disruption, making their use and the high cost of maintenance prohibitive. AVC are 

permanent systems deployed only at logistic locations where heavy truck volume has 

previously been observed. AVC have limited spatial distribution across the state 

because they are expensive and because recorded data is typically accurate only if 

maintenance and calibration is conducted every three or four months. Moreover, the 

safety of on-site workers deploying these system remains a major concern [13]. 

ODOT is in critical need of a technology that is inexpensive, nonintrusive, 

portable, and easy-to-install to supplement current ITS throughout the state and to 

collect accurate traffic information on a large-scale for extended period of time. Ideally, 

the system should come at a lower cost than the thousands of dollars paid every year for 

temporal counting studies at each AVC site. 
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1.8 Proposed Research 

The proposed research aims at developing and implementing a novel, fully-

autonomous, self-powered intelligent wireless sensor for various traffic surveillance 

applications. The sensor integrates state-of-the-art components, including an ultralow 

power, high-performance 32-bit embedded microcontroller; an energy-efficient wireless 

transceiver; smart embedded sensors (i.e., 3D MAG and ACCEL); a highly-accurate 

low-power embedded Global Positioning System (GPS) receiver; dual data storage units 

with ultralow power EH power management unit (PMU), maximum power point 

tracking (MPPT), and charge management controllers; a battery fuel gauge; a wireless 

power charging receiver; and atmospheric sensors. All components are managed by 

distinctive algorithms for implementing various traffic monitoring applications. 

A 3-axis MAG sensor is used to measure magnetic disturbance to the Earth’s 

magnetic field caused by an overpassing vehicle; a 3-axis ACCEL sensor is used to 

measure road surface vertical acceleration resulting from the motion of dynamic loads. 

Other components include a GPS module for auto-localization and global-

synchronization; an RF module for wireless data transmission; and an EH for sensor 

self-powering and battery charging. Sensor node firmware can be upgraded over-the-air, 

which allows a customizable configuration to support various studies and applications. 

The sensor is functional in either standalone or peer-network mode wherein an 

intelligent access-point (iAP) manages WSN data transfer. Estimated cost for 

populating a four-lane highway in both directions is approximately $1000, which 

includes a 16-sensor node, a handheld wireless sensors configuration device, and an 

iAP. 
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1.9 Research Contributions 

This dissertation introduces the design, development, and implementation of a 

novel, fully autonomous, battery-powered intelligent wireless sensor for traffic 

surveillance applications. The sensor integrates state-of-the-art embedded components, 

all of which are managed by distinctive algorithms for implementation of various traffic 

monitoring applications. All aspects and parameters necessary for design and 

implementation are addressed. 

The developed sensor is portable, leverages primary battery-powered and solar 

cell energy, is inexpensive (i.e., $30 per node), and installs easily into the surface of 

highways, roadways, or roadsides without intrusive labor. The sensor can be used for 

short-term deployment (e.g., work zone safety, temporary roadway design studies, 

traffic management in an atypical situation such as evacuations), as well as long-term 

deployment (e.g., traffic management, turn movement, collision avoidance, etc.). 

A novel multi-threshold-based detection algorithm is also introduced, wherein a 

drift in geomagnetic reference field baseline threshold (due to aging or due to variations 

in temperature and/or background noise relative to Earth’s magnetic field over time) is 

adaptively auto-compensated in real-time. This method solves common problems 

reported in literature by keeping magnetic signal variation at a minimum, hence, 

providing reliable vehicle speed estimation under congested traffic, as well as low- and 

high-speed conditions. 

A highly accurate and energy-efficient time-synchronization algorithm that 

utilizes GPS reference signal PPS (Pulse-Per-Second) was developed and implemented 
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as part of research for this dissertation, as was an algorithm for adaptive compensation 

of RTC Frequency Drift due to variations in temperature. 

The repeatability of VMS and the consistency of MAG sensor output were 

investigated to determine degree of similarity between several magnetic signatures 

produced by multiple MAG sensors for the same vehicle under identical testing 

conditions. Vehicle tracking and vehicle re-identification were reported. 

Several computationally efficient, real-time, length-based vehicle classification 

schemes developed for the state of Oklahoma were implemented and evaluated via 

machine learning algorithms and probabilistic modeling. Two vehicle re-identification 

models based on matching vehicle magnetic signatures from a single MAG were also 

developed. 

A non-provisional patent was filed with the U.S. Patent Office on November 07, 

2016 under patent application number 15/330,823; confirmation number is 7135. 

1.10 Dissertation Structure 

This dissertation consists of eight chapters, which are organized as follows: 

 Chapter 1: Includes a general introduction of the scope of this dissertation, 

including a discussion about current technologies used in ITS; Smart cities ITS; 

wireless sensor networks in ITS; MAG theoretical concept and its application in 

traffic surveillance; the motivation for this research; and research contributions. 

 Chapter 2: Provides a literature review of related work and focuses on relevant 

research contributions in vehicle surveillance using MAG, including vehicle 

detection, speed and length estimation, vehicle classification and re-

identification, and time-synchronization in WSN, as well as EH. 
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 Chapter 3: Introduces a detailed description of the sensor system level design in 

its old and new generations, including design aspects, components selection, and 

system architecture and networking. 

 Chapter 4: Includes information about software development and introduces 

various distinctive real-time algorithms developed for vehicle detection, speed 

and length estimation, time synchronization, drift correction, and other 

functions. 

 Chapter 5: Reports field-testing and data collection studies conducted on various 

highways and roadways throughout the state of Oklahoma.  

 Chapter 6: Highlights extensive data analysis and performance evaluation of the 

various functionalities of the developed platform.  

 Chapter 7: Introduces two applications for iVCCS in traffic surveillance. 

 Chapter 8: Presents research outcomes and makes recommendations for further 

research work. 
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Chapter 2: BACKGROUND & EXISTING KNOWLEDGE 

 

2.1 Introduction 

Vehicle-counting and classification data, in particular, play a vital role in 

designing roadways and bridges; predicting freight transport; scheduling maintenance 

operations for pavement resurfacing, reconditioning, and reconstruction; traffic 

planning; weight enforcement strategies; and analyzing road safety and environmental 

impact, among a number of other purposes [13]. Over the last decades, a vast number of 

methods have been proposed in literature. Each leverages various types of sensors and 

focuses on investigating and developing new innovative solutions for traffic 

surveillance. The methods aim to replace antiquated traffic surveillance technologies by 

implementing smart WSN. One approach for traffic surveillance that is gaining research 

attention is utilizing wireless MAG [32]–[58]. 

2.2 Traffic Monitoring using MAG 

The use of magnetic sensors in vehicle detection can be traced to early 1978 [32] 

when a fluxgate magnetic sensor was used to actuate a lighting system as a vehicle 

passed the sensor. A recent study [33] proposed a 2-axis MAG for detecting vehicle 

driving direction. A detection rate of 99% was observed when traveling vehicles passed 

closely to the sensor. Performance degraded to 89% as the signal-to-noise ratio (SNR) 

decreased. A two-threshold, four-state machine algorithm was proposed in [34] for 

vehicle detection using 3-axis AMR sensor. An active magnetic detection method was 

introduced in [35]. Although this method solved the baseline drift problem, it was not 

efficient in power, cost, or size. Authors in [36] proposed a short-time transform 

detection-and-recognition algorithm using a MAG sampled at 2KHz. Work proposed in 



20 

[37] integrated IEEE 802.15.4 transceiver with 32-bit MCU and 1-axis AMR for a 

vehicle counting and collision warning application. A 3-axis MAG was used in [38] for 

vehicle detection in parking lots. In [39], a street parking system using a MAG was 

introduced, and in [40], researchers proposed a vehicle parking detection method using 

a normalized cross-correlation of a 3-axis MAG signal. Authors in [41] proposed a 

scheme for identifying the heading direction of a moving vehicle using a two-axis 

MAG. A wireless link budget study for intersection monitoring using MAG was 

proposed in [42]. 

Vehicle speed estimation is a key parameter for traffic surveillance applications 

[13]. Essential applications demanding speed estimation included length-based vehicle 

classification [59]; travel time estimation [60]; ramp-metering queue length estimation 

[61]; work zone safety [62]; curve warning [63]; vehicle emissions estimation [64]; and 

traffic light control, among many others. More recently, solutions based on cost- and 

power-efficient sensors (e.g., acoustic, MAG, and ACCEL) have become ever more 

popular. Each has advantages and disadvantages. For example, acoustic and ultrasound 

sensors are very sensitive to dirt and background noise (e.g., vehicles or wind). In this 

study, vehicle speed was estimated using MAG sensors. 

A speed estimation algorithm using MAG was proposed in [43]–[45]. In these 

studies, a cross-correlation factor R was calculated via FFT by a master node from raw 

data received via two roadside sensor nodes. Time delay was obtained by R when the 

resulting signal was maximized. Although this method achieved relatively accurate 

estimates, it proved computationally expensive, hence, energy inefficient. A region-

based approach for speed estimation was proposed in [46]. In this work, the first order 
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derivative was calculated on each sensor node, and a region of each signal was selected 

based on a threshold sent to the server for processing. Researchers in [47] claimed 90% 

average speed estimation accuracy by analyzing magnetic length using a single roadside 

node composed of an accelerometer (ACCEL) and MAG. Two magnetic sensor nodes 

were used in [48] to estimate speed, and a third node was used for data fusion. Actual 

speed was underestimated at an error rate of 20%. Authors in [49] proposed using four 

magnetic sensor nodes—two on each side of the lane. A 10% error in speed estimation 

under low speed test (e.g., 6–13m/s) was reported. Studies in [50], [51] proposed 

algorithms for speed estimation using a single MAG. Notably, this method was 

designed to estimate only average speed for the number of passing vehicles over time. 

Four roadside MAG nodes were used in [43] for detection, speed estimation, and 

vehicle classification into four groups based on length and height ratio. Two sensor 

nodes were longitudinally separated by 90cm to estimate vehicle speed. A third sensor 

node was placed orthogonal to the first sensor node with a separation of 10cm for 

identifying false detection from an adjacent lane. A fourth sensor node was placed 

upright relative to the first sensor on a 30cm elevation for differentiating trucks from 

other vehicles, as height is proportional to the ratio of z-axis of both sensors. Vehicles 

were classified into four groups based on length and height ratio. Group 1 included 

sedans; Group 2 included SUVs, pickups, and vans; Group 3 included buses, as well as 

two and three axle trucks; and Group 4 included 4- to 6-axle trucks. Acceptable 

accuracy was reported. Of note is that the proposed method worked for only single lane 

urban roads. Furthermore, the major dataset was composed of small vehicles records; 

only a few trucks were included. Thus, results were inconclusive. Vehicle classification 
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and detection using a single-axis magnetic sensor and an improved one-against-all 

support vector machine (ISVM) classifier was proposed in [52]. The proposed 

algorithm uses concavity and convexity of magnetic signatures to distinguish among 

heavy tracked, tracked, and light-wheeled vehicles. A limited dataset of 93 vehicles 

resulted in 90% classification accuracy. In [53], a 3-axis MAG was used for detection 

and classification in low-speed, congested traffic. A fixed-threshold state machine 

algorithm was employed for vehicle detection, and a tree-based algorithm was 

implemented for classification. Vehicles were divided into four groups: motorcycles, 

saloon, buses, and SUVs. Five features —duration, energy, average energy of vehicle 

signature, and ratio of positive to negative energy on both X and Y axis—were 

extracted to distinguish between the groups. The dataset included only 253 vehicles. 

Although high detection and classification rates were reported, the dataset was limited 

to a small number of samples, and trucks and pickups were not considered. Authors in 

[65] proposed a vehicle classification system using two nodes installed on roadside, 

each combining an ACCEL and MAG. Three features, namely the integral of each of 

MAG magnitude, ACCEL magnitude, and magnitude distribution, were extracted and 

normalized to vehicle speed. Several machine-learning (ML) methods (e.g., logistic 

regression, neural networks, naïve based, and space vector machine) were tested. A 

93.4% classification accuracy was reported for distinguishing between three groups—

motorcycles, passenger cars and pickups, and heavy trucks. Notably, more than 90% of 

the dataset was composed of passenger cars. Moreover, class variation in the dataset 

was limited, and class 5 vehicles with trailers were missing. The absence of class 5 

vehicles can significantly hinder classification accuracy, as these vehicles can be seen 
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on both urban and highway roads and can cause classification confusion due to 

significant variations. Furthermore, accurate clock synchronization is required for speed 

estimation, as all extracted features are normalized to speed. In [55], an array of MAG 

and ACCEL sensors was proposed for vehicle detection, speed estimation, and 

classification. In this study, three MAG nodes positioned longitudinally reported vehicle 

arrival and departure times, and six ACCEL sensors spaced six inches apart were 

positioned over half the lane to detect vehicle axles via a peak detection algorithm. This 

method was used to guarantee that at least one wheel on each axle would cross one of 

the ACCEL sensors. Although this method showed promising results for detecting 2-

axle, 3-axle, and 5-axle vehicles, it was deemed expensive and required an enormous 

amount of intrusive work and high processing capability. Authors in [56] developed a 

features selection model for vehicle classification using a single MAG in which 17 

features were initially identified and extracted, but only 10 suitable features were 

eventually selected. A limited dataset of 460 vehicles—mostly small cars—resulted in 

92.8% average classification accuracy among four groups, including buses, small-

medium cars, and large trucks. Authors in [57] proposed a detection and classification 

approach using a state machine detection algorithm, a shared adaptive threshold to 

compensate background noise, and a neuron classifier. A 2-axis AMR sensor was 

employed. A 90% recognition rate was reported for simulation and on-road testing. 

Authors in [58] integrated MAG, ACCEL, acoustic, and infrared sensors within a single 

sensor node for vehicle classification. Several features were extracted, including 

infrared signal peaks count and the minimum and maximum values of MAG and 

ACCEL signals. A back-propagation neural network was trained to classify vehicles 



24 

into three groups—light, medium, and heavy vehicles. Dataset was limited to only 50 

vehicles. Medium vehicles were classified with acceptable accuracy. However, 25% of 

light vehicles and 16.7% of heavy vehicles were misclassified. Authors in [66] proposed 

vehicle detection algorithms based on a state-machine normalized cross-correlation 

between two sensors placed along the roadside. The study implemented a Gaussian 

filter to eliminate any interference induced by moving vehicles from adjacent lanes; a k-

means clustering for setting a reference for cross-correlation detection state; and a 

normalized cross-correlation computation between two magnetic signals for speed 

estimation. A 99.65%, 99.44%, and 92% accuracy was reported for arrival detection, 

departure detection, and vehicle speed estimation, respectively. Although this method 

showed good accuracy, it required transmitting the magnetic signature from all sensors 

to a central access point for processing. In addition to the platforms detailed above, a 

number of commercial platforms based on MAG are also currently available [67]–[69]. 

In the aforementioned solutions, vehicles were detected using a single magnetic 

sensor; vehicle speed was typically estimated using two sensors at a predefined 

distance; length was calculated from speed and occupancy time; and vehicle 

classification was achieved by employing either multiple MAG or ACCEL sensors, or a 

combination of both. A standardized wireless protocol (e.g., IEEE 802.15.4) was 

considered for node-to-node and node-to-AP communications and synchronization. In 

most of these solutions, sensors were embedded in roadway lanes. Although the time 

required for installing some systems [67]–[69] into the pavement was comparatively 

small, the systems are relatively expensive, intrusive, and cannot be used for temporary 

studies or portable traffic surveillance applications (e.g., work zone safety, roadway 
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design studies, and managing traffic in emergency situations, like evacuations, among 

others). Although a variety of detection, speed estimation, and classification methods 

have been proposed, there has been limited evaluation of detection or classification 

accuracy per vehicle class over a full range of speeds. Furthermore, reported results do 

not reflect actual performance, as testing datasets were small and limited. Notably, 

classes 5 to 13 were highly underrepresented. Additionally, some proposed methods 

[43], [45] were energy-inefficient (i.e., computationally very expensive) and required 

transmission of big chunks of data to the access point for processing. These are 

fundamental limitations to WSN, as the sensors are battery-powered and their network 

operates in an unlicensed spectrum in a shared bandwidth among a vast number of 

different technologies and devices. Hence, high data loss is highly probable because of 

unstable wireless links resulting from either interfering or heavy trucks traveling over 

the detection zone. Other methods [47] relied on the assumption that vehicles of the 

same class moving at the same speed have nearly identical signatures. This assumption 

is misleading for the following reasons: 1) Magnetic length does not represent actual 

vehicle length; 2) lateral distance might change for the same vehicle; and 3) magnetic 

length estimation accuracy depends on the sensor's sampling rate tolerance, which 

normally has a ±5% error and can be affected by temperature variations. Additionally, 

little activity has been performed to evaluate detection and speed accuracy per vehicle 

class over a full range of speeds. A single method fails to encompass variances between 

different magnetic characteristics. 

More importantly, and to the best of the author’s knowledge, no study has 

reported detection error types, methods for optimizing MAG for ideal performance, or 
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suggestions for consistency of MAG sensors output. Furthermore, limited information 

was provided in the literature about system design, algorithm development, and 

comprehensive analysis in various realistic scenarios. 

2.3 Time Synchronization in WSN 

Time synchronization (T-sync) is crucial in communication systems to ensure 

accurate functioning and data fusion, coordinated actuation, and power-efficient duty 

cycling. T-sync for wired communication networks has been studied thoroughly, and 

numerous algorithms have been developed in the last decades. Network Time Protocol 

(NTP) is perhaps one of the most advanced and time-tested systems [70]. Networks 

using NTP externally synchronize nodes to a global reference time that is injected into 

the network at many places via a set of master nodes synchronized using GPS. Power 

consumption and computational energy constraints make NTP unfeasible for WSN. 

Hence, maintaining a T-sync within WSN is challenging, yet still critical. 

Tremendous effort has been made to implement T-sync protocols for WSN. 

Authors in [71] introduced Reference Broadcast Synchronization (RBS) protocol for 

WSN. In RBS, nodes broadcast reference beacons to neighbor nodes. Nodes use the 

beacon signal as a point of reference for their internal clock phase alignment. Authors in 

[72] proposed T-sync Protocol for Wireless Sensor Networks (TPSN). The principle 

behind TPSN is that a multi-level hierarchical network topology is created in which all 

nodes are assigned levels based on number of hops from root node (level 0). After the 

topology is created, a root node initiates a synchronization phase wherein every node 

belonging to level 𝑖 synchronizes to a node in level 𝑖 − 1, and so on, until network-wide 

synchronization is achieved. TPSN achieves an average synchronization error equal to 
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16.9𝜇𝑆, which is a considerable improvement above the 29.13𝜇𝑆 error in RBS. Authors 

in [73] introduced Energy-Efficient Time Synchronization Protocol (ETSP), 

implementing a switching mechanism between RBS and TPSN to reduce node power 

consumption. The switching threshold relies on the number of transmissions required to 

maintain synchronization, which, in turn, depend on the number of network nodes. 

Authors in [74] proposed Distributed Multi-hop Low cost Time Synchronization 

(DMLTS) protocol based on RBS and TPSN. DMLTS is an improved ETSP, 

synchronizing a group of nodes upon hearing the timing messages of a pair of nodes. 

This reduces the number of exchanged messages and, notably, overall energy 

consumption. In addition to the protocols mentioned above, Flooding T-sync Protocol 

(FTSP) [75], Gradient T-sync Protocol (GTSP) [76], and Lightweight Time 

Synchronization (LTS) [77] are widely used in WSN. Although such protocols have 

reasonable T-sync precision, several challenges remain, for example: 1) failure in 

wireless communication during synchronization; 2) drift error in T-sync over multi-hop 

(3.68μs, 20μs, and 3μs on 4 hops in RBS, TSPN, and FTSP, respectively) [78]; 3) 

master node requirement, 4) essential linear regression (e.g., FTSP), which is 

computationally demanding and power consuming; 5) TSPN-required hierarchical 

structure of nodes; and 6) RBS need for separate timestamp synchronization messages 

for which average error grows with 𝑂(√𝑛) over multi-hops. These challenges make 

protocol implementation impractical for a large-scale WSN and infeasible for strict 

deterministic T-sync requirements. Moreover, T-synch through a periodic or frequent 

exchange of timing packets among network nodes imposes high power budget demand. 

According to [79], energy cost of 1Kbit data transmission for a 100m distance is 
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approximately the same as executing 3-million instructions on a 100 MIPS/Watt 

processor. Hence, local processing is crucial in multi-hop WSN for minimizing power 

consumption.  

Due to rapid technology advancement and increased demand, embedded GPS 

modules have quickly improved in signal sensitivity, accuracy, performance, cost, size, 

and, more importantly, power consumption. Embedded GPS modules can now be 

considered the most simple and cost effective solution for high precision timing and 

clock synchronization. Previously, this approach was not recommended for a number of 

reasons, most notably energy consumption and cost. Recent studies have investigated 

the feasibility of using GPS for T-sync in WSN. For example, the feasibility of using a 

low-cost GPS receiver for T-sync of wireless smart sensors for structural health 

monitoring was investigated in [80]. Authors in [81] developed a GPS-based time 

synchronization algorithm for WSN with nanosecond accuracy. Authors in [82] claimed 

±23µs T-sync accuracy of a single-hop coordinated WSN. The proposed algorithm 

aimed at correcting sensor node internal clock drift by transmitting a beacon from a 

corresponding coordinator every 245.76ms. Upon beacon packet arrival, the RF chip 

generates an interrupt and triggers an internal MCU timer to measure the internal clock, 

calculate the difference, and compensate the drift. The coordinators, on the other hand, 

use the PPS (Pulse-per-Second) signal from a GPS module to calculate their internal 

clock drift and compensate the drift error. This method, however, doesn’t account for 

measurement uncertainties, a variety of propagation paths, or interference from other 

devices in the ISM band where calculated drift can be affected by jitter. Moreover, 

several accumulated errors are not considered (e.g., RF chip interrupt tolerance), which 
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renders results unrealistic. Authors in [83] used a GPS DSP platform to control the 

processor’s RTC drift and compensate phase shift when using a 1-PPS signal. Authors 

reported T–sync accuracy. Details on T-sync protocols for WSN can be found in [78], 

[84]. 
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Chapter 3: SENSOR DESIGN & SYSTEM INTEGRATION 

 

The roadmap to design and implement a real-time, standalone, smart wireless 

sensor that exploits MAG in traffic surveillance applications requires an in-depth 

understanding of embedded systems hardware-software development process, including 

component selection, hardware design, software development, system integration, and 

debugging. The design process and system integration of the intelligent vehicle 

counting and classification sensor (iVCCS) are introduced in the next sections. Various 

algorithms developed for iVCCS are introduced in the next chapter. 

3.1 System Overview 

The multi-disciplinary, innovative integration of systems modeling—coupled with 

state-of-the-art smart physical sensors, wireless sensor networks, embedded systems, 

and intelligent algorithms—will address the components composition of the developed 

platform, which is purposefully designed to support various traffic surveillance 

applications and studies. Figure 3-1 illustrates a conceptual diagram of the various 

components that compose the developed system, where iVCCS nodes are installed into 

enclosures. Two enclosures are deployed in each lane on a roadway at predefined 

distance d. The system’s wireless networking between iVCCS nodes and an intelligent 

access point (iAP) is facilitated through IEEE 802.15.4 protocol with ZigBee 

application layer on top. Wireless networking between iAP and server is managed over 

a cellular network that is assisted by a Quad-Band GSM/GPRS/LTE chipset with GPS 

module on-board.  
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Figure 3-1 Conceptual diagram of developed system 
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3.2 Design Objectives and Requirements 

Two prototypes—representing two generations (G1 and G2) of iVCCS—were 

designed during this research work period. The focus during the first prototype was 

developing and validating various algorithms and firmware to achieve highly accurate, 

real-time traffic monitoring using MAG. As algorithms were developed and validated, 

the focus in the second prototype was on finalizing sensor hardware and implementing 

self-powering and wireless charging features. Both prototypes share the same design 

objectives (See Table 3-1). A flow diagram of the design process can be found in 

APPENDIX C. 

Table 3-1 iVCCS design objective 

Requirement Description 

1) Cost  Inexpensive technology that can be deployed in mass-quantities 

2) Setup  Nonintrusive technology that is easy-to-install and doesn’t disturb traffic 

3) Energy budget  Power-efficient technology that can run on battery for long time 

4) Performance  High accuracy and real-time execution should not be compromised 

5) Reliability  Should be highly reliable and able to recover from any system faults  

6) Lifetime  Sensor components should be supported for the next 10 years 

7) Portability  Can be used for permanents or temporary traffic monitoring studies 

8) Flexibility  Programmable to supports various traffic monitoring studies applications 

9) Scalability  System network can be easily expanded by adding more sensors 

10) Adaptability  Sensor components should function in wide temperature range 

11) Size/Weight  Should be as small as possible in size and lightweight 

 

3.3 Components Selection Methodology 

The primary objective of the selection process is identifying groups of 

components that should be evaluated for potential integration in the design. A selection 

criteria was developed to rank and evaluate each component individually based on three 

factors: 1) characteristics, 2) cost, and 3) size. Component characteristics can be 
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obtained from the component’s datasheet, which defines the features and performance 

of the component at various conditions, including power consumption and operating 

temperature. The criteria and important aspects of the selection process for each 

component are explained in the following sections. 

3.4 iVCCSG1 Platform Overview 

The iVCCS.G1 is a battery-powered, smart wireless sensor node. All components 

that compose the sensor, shown in Figure 3-2, were selected to achieve minimal power 

consumption while maintaining low cost and high-performance of the sensor. Figure 

3-3 shows iVCCSG1 printed circuit board (PCB) and component distribution on top and 

bottom layers. Board dimensions are 65(L)×36(W)×16mm(H). 
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Figure 3-2 iVCCSG1 functional components block diagram 

 

Figure 3-3 iVCCSG1 printed circuit board with all components marked 
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3.4.1 Embedded Microcontroller 

The core component of iVCCSG1 is ATxmega128A4—a high-performance, pico-

power, 8-bit microcontroller from Atmel [85]. Figure 3-4 illustrates the 

ATxmega128A4 block diagram and pin layout. ATxmega128A4 has an eight-channel 

event system with four-channel DMA controller that simultaneously manages eight 

inter-peripheral signals at 32MHz without CPU intervention. The chip also combines 

128KB in-System-Programmable flash memory for developing advanced codes and 

algorithms for future applications. The event handler enables the system to avoid 

software-managed context switching and interrupt handling. Tasks are achieved with 

event-response time in nanoseconds. ATxmega128A4U also has a programmable multi-

level interrupt controller, and 34 GPIOs, as well as rich peripherals and serial interfaces, 

including USART, TWI, SPI, 12-bit A/D and D/A converter, and RTC, among other 

on-board peripherals.  

 

Figure 3-4 ATxmega128A4 internal block diagram and pin-layout 
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ATxmega128A4 has 10mA, 3.8mA, 1.4µA, and 1µA power consumption in 

active, idle, power-down, and power-save modes, respectively. It requires 5µs to wake-

up from power-down mode and transition to active mode. These features, in addition to 

the fact that Atmel was confirmed in 2013 as the fastest growing among the top 10 

suppliers for 8-bit MCUs, made ATxmega128A4 the best 8-bit MCU candidate.  

3.4.2 Magnetometer & Accelerometer Sensors 

An extensive search was conducted to find the MAG/ACCEL that best fit the 

selection criteria. Essential characteristics considered in the selection and evaluation 

process were output data rate (ODR), sensitivity, resolution, measurement range, 

disturbing field, power consumption, and cost. Table 3-2 lists specifications of the top 

three industry-leading MAG sensors available in the 2014 marketplace. 

Table 3-2 Top MAG candidates for iVCCSG1 

 

Freescale 

FXOS8700CQ 

 

STMicroelectronics 

LSM303DLHC 

 

Honeywell 

HMC5883L 

 

Interface I2C/SPI + 2-INT I2C + 2-INT I2C + 1-INT 

Integration 6-axis ACCEL-MAG 6-axis ACCEL-MAG 3-axis MAG 

Measurement Range ±12 Gauss ±1.3 ~ ±8.1 Gauss ±1 ~ ±8 Gauss 

Update Rate (ODR) 1.563Hz ~ 800Hz 0.75Hz ~ 220Hz 0.75Hz ~ 75Hz 

Measurement Period 0.64s ~ 1.25ms 1.33s ~ 4.55ms 1.33s ~ 13.33ms 

Resolution 16-bit ADC 14-bit ADC 12-bit ADC 

Sensitivity 1 mGauss 2 mGauss 4 mGauss 

Disturbing Field 100 Gauss 20 Gauss - 

Maximum Field 1000 Gauss 10,000 Gauss - 

Power Consumption 240µA / 2µA (Idle) 110µA / 1µA (Idle) 100µA / 2µA (Idle) 

Cost US$1.25 US$3.00 US$1.75 

Package QFN-16 (3×3×1.2 mm) LGA-14 (3×5×1 mm) QFN-16 (3×3×1.2 mm) 
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FXOS8700CQ was the best fit for design requirements. FXOS8700CQ is an 

intelligent digital chipset, combining a 3-axis magnetic tunnel, junction-based MAG, 

and a 3-axis ACCEL sensor in one package [86]. The MAG has a dynamic range 

±1200μT and 16-bit ADC resolution with sensitivity of 0.1μT/LSB. Power consumption 

is as low as 8μA and only 2μA in standby mode. FXOS8700CQ has the highest ODR 

among all other sensors and incorporates the industry’s most advanced embedded 

features that enable significant system optimization for low power with substantially 

more savings when the application is driven by interrupt signals. In addition, the chip 

has a wide measurement range, high resolution (0.1μT/LSB), very low noise density 

(0.1μT/√𝐻𝑧 at 100Hz bandwidth), high sensitivity, low output noise range (0.3–

1.5μTRMS for sampling rates 1.563–800Hz), ability to manage a high disturbing field, 

low cost, and low power consumption. Unlike other AMR sensors, FXOS8700C uses 

micro-electro-mechanical system (MEMS) technology with advantages in terms of cost, 

size, weight, and energy [87]. Figure 3-5 details the FXOS8700CQ block diagram. 

 

Figure 3-5 Freescale FXOS8700CQ System Block Diagram 
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The integration of MAG and ACCEL can be used not only for vehicle detection, 

but also to classify vehicles [55], such that the MAG detects presence of a vehicle by 

measuring disturbance to the Earth’s magnetic field and ACCEL detects number of 

axels by measuring the vertical acceleration of a road surface due to motion of dynamic 

loads. 

3.4.3 Embedded RF Engine 

Networking between iAP and iVCCS.G1 nodes is facilitated through a low-power 

wireless protocol. ZigBee is one of the key enabling wireless technologies for IoT 

devices. This technology operates in sub-GHz and 2.4 GHz ISM (industrial, scientific 

and medical) radio bands based on IEEE 802.15.4 physical and MAC layers. 

Among many available commercial ZigBee modules, Synapse’s SM200P81 RF 

Engine [88] was found to be a suitable wireless interface candidate for the sensor design 

in all selection criteria. For example, transmit power is 3dBm with range of 1500ft and 

data transfer rate up to 2Mbps. More importantly, power consumption can be as low as 

1.37μA with 22.5mA data transmission and 20.5mA during data receiving. Receiver 

sensitivity is -100dBm. Unit size is 30×19mm and costs about $17.9/1KU. Outdoor 

line-of-sight (LOS) range can extend up to 450 meters. SM200P81 incorporates 

Synapse's SNAP mesh network operating system [89], which facilitates multi-hop, 

instant-on, self-healing, and internet-enabled mesh networking between network 

devices. Figure 3-6 illustrates the SM200P81 physical module and its internal block 

diagram. 
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3.4.4 Real-Time Clock 

Time-stamping is enabled by Maxim Integrated DS3231M [90], an extremely 

accurate, low-cost, real-time clock (RTC) unit that incorporates the industry's first 

temperature-compensated MEMS resonator with ±5ppm accuracy (±0.432 second/day). 

MEMS reduce crystal mechanical failure susceptibility. The chip has two 

programmable alarms and a 1Hz output (PPS), as well as a battery backup (3V) for 

continuous timekeeping for 10 years. In 2014, DS3231M was considered the most 

accurate RTC chip on the market. 

   

Figure 3-6 SM200P81 Module block diagram 

3.4.5 Embedded GPS Module 

To enable self-configuration, auto-localization, and accurate synchronization of a 

scalable network, a Titan 2 Gms-g6 GPS module was incorporated on iVCCS [91]. 

Titan 2 is a compact, dual-system GPS receiver module with built-in patch antenna, 

featuring up to 210 PRN channels, including 99 search channels and 33 simultaneous 

tracking channels. Titan 2 provides 2.5m positioning accuracy, ±10ns timing accuracy, 

and up to 10Hz update rate, as well as low-power consumption at a cost of only $16 per 

module. Titan 2 has a backup power mode that operates the internal RTC unit even 

when main power is off. This feature helps retain satellite information, locking satellites 
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in about 1-sec on power-up instead of performing a lengthy 30-sec cold start. Power 

consumption is 9µA in backup mode, 350 µA in standby mode, 23mA in tracking 

mode, and 25mA in accusation mode. Module size is 16×16×6.8 mm. Figure 3-7 shows 

the Titan 2 module. 

 

Figure 3-7 Titan 2 Gms-g6 GPS module 

3.4.6 Power Management Unit 

Quiescent current (Iq) is an extremely important parameter when comparing the 

low-power performance of various integrated chips, hence, selecting the best 

components for low-power design. Iq can be defined as the current drawn by a device in 

a load-free state (i.e., Iq represents the minimal current that supports a device’s basic 

functionalities). Iq can be used to estimate battery run time. 

The power management unit included TPS78333, an ultra-low quiescent current 

(i.e., Iq=500nA) with low dropout voltage (i.e., 150mV) 3.3V linear voltage regulator. 

TPS78333 has a thermal shutdown and overcurrent protection. Shutdown current is 

18nA. 

A 3.7V/2000mAh Polymer Li-Ion battery is used to supply the system. Li-Po 

batteries are a best fit for powering handheld and portable devices—small, lightweight, 

and durable. Notably, the batteries should never be discharged too low. If battery 
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voltage drops below approximately 3.0V per cell, the battery will no longer accept a full 

charge and might not hold voltage under load. As such, the load must be discounted the 

moment voltage drops below 3V.  

MAX17043 was used to protect battery from deep-discharging [92]. MAX17043 

is an ultra-compact, low-cost, host-side, fuel-gauge system for Li-Po batteries. The chip 

uses sophisticated algorithms to detect battery state and voltage. Shutdown current is 

0.5µA. In addition to estimated capacity data sets, battery measurements can be 

accessed by the MCU over I2C bus and later reported by iVCCS to iAP. 

TPS78333 provided a shutdown pin controlled by MAX17043. In the event that 

battery voltage drops below a predetermined threshold, the MAX17043’s ALT pin will 

shutdown regulator output. 

3.4.7 Data Storage Unit 

Since the sensor should support various studies and applications—which might 

include sampling the geomagnetic field at high sampling rate and storing raw data for 

an extended period—a microSD card was incorporated on board. Several microSD 

cards were tested. ScanDisk microSD cards were selected because compared to others, 

they have the lowest power consumption. Also, they support automatic switching 

between active and sleep mode. In general, the card will remain in sleep mode except 

when accessed by the host for data read or write. After completion of an operation in 

5ms, the card will automatically return to and remain in sleep mode until a new 

command is issued by the host. Power consumption is around 20mA during a page-

write operation at 10MHz rate. Buffering the data is recommended before transferring it 

into the card to ensure ample time in sleep mode. 
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3.4.8 Road Surface Condition Sensors 

In addition to the aforementioned peripherals, iVCCS.G1 is equipped with road 

surface condition monitoring, including temperature and wet-dry sensors. The 

temperature sensor is a negative temperature coefficient (NTC) resistor (e.g., 

NXFT15WF104FA2B025), and the wet-dry sensor is an impedance grid resistor (IGR). 

Both sensors are connected through low-pass-filters (LPF) to the MUC’s analog-digital-

converter inputs. 

3.4.9 Atmospheric Sensors Extension Module 

Additional extended atmospheric measurements can be obtained from iVCCS by 

attaching a weather-sensing module (WSM), including ambient pressure, humidity, 

temperature, light, acoustic sound, and lightning sensors. Figure 3-8 illustrates the block 

diagram of WSM. Figure 3-9 shows the WSM printed circuit board (PCB). 
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Figure 3-8 WSM sensing components block diagram 

 

Figure 3-9 WSM PCB with all sensing components marked, 25×28mm 
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A comprehensive search was carried out to select the most suitable embedded 

sensors for weather sensing in a WSN application. Selection criterion was based on the 

following factors: sensitivity, accuracy, power consumption, size, cost, and 

communication interface (e.g., analog or digital). Selected sensors and their part 

numbers are shown in Figure 3-10. HTU21D is a digital Humidity Sensor; MPL3115A2 

is a digital absolute xtrinsic smart pressure sensor; ADMP401 is analog omnidirectional 

MEMS microphone module; MAX44009 is digital ambient light sensor; TMP102 is 

low power digital temperature sensor; AS3935 is Franklin lightning detector with 

embedded algorithm that warns of lightning storm activity within a radius of 40kM; and 

NXFT15WF104FA2B025 is the surface temperature sensor. Additional information 

about particular sensors is located on their respective datasheets and application notes. 

      

HTU21D MPL3115A2 ADMP401 MAX44009 TMP102 AS3935 

 

Figure 3-10 Selected Atmospheric Sensors for WSM 

3.5 iVCCSG1 Power Consumption and Battery Life Analysis 

As stated earlier, iVCCS is a battery-powered, wireless sensor node that uses a 

3.7V/2000mAh Lithium Polymer (Li-Po) battery. iVCCS on-board components were 

carefully selected to achieve minimal power consumption. 

A preliminary power consumption analysis in various operation modes showed 

that maximum current rates in power down, idle, and active modes are 156μA, 50nA, 

and 65mA, respectively. Considering 3.7V/2000mAh Li-Po Battery, battery life can be 

roughly estimated in each mode using Eq. 3-1, where µ is external factor allowances 
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that can affect battery life and T is the duty-cycle. Given that µ = 0.75 and T=1, 

estimated battery life in power down mode is limitless. The battery can operate iVCCS 

in idle mode for 578 days and in full active mode for 40 hours. All iVCCS components 

are operating in full active mode, including GPS, RF engine, and data logging unit. 

Power consumption for iVCCS components and WSM sensors is shown in Table 3-3 

and  

The most power-consuming component on iVCCS is the wireless transceiver engine 

(e.g., active current is 22mA). Power consumption is reduced, given a transition from 

one state to another (e.g., power-down  Idle  Active), which is driven by interrupt 

events. A transition from Power Down to Active mode is triggered by a vehicle arrival 

event wherein the MCU samples the magnetic field every TS (i.e., TS = 1.563Hz to 

800Hz). A cyclic transition between Active  Idle modes occurs every TS until a 

transition from Active  Power Down mode is triggered by a vehicle departure event.  

Table 3-4, respectively. Power consumption calculations for various operation modes 

using various Li-Po batteries are illustrated in Table 3-5. 

 𝐵𝐿ℎ𝑜𝑢𝑟 =
1

𝑇
(
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝐴ℎ

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑚𝐴
 ×𝜇)  Eq. 3-1 

Table 3-3 Power consumption for iVCCS components 

Component Idle Full Active 

Atmel XMega A4 Microcontroller 1μA 500μA ~ 8mA 

microSD Card 150uA 20mA 

Voltage Regulator 500nA 8μA 

Li-Po Battery Fuel Gauging 1μA 50μA 

MAG Sensor 2μA 40 ~ 575μA1 

                                                 

 

1 Consumption is related to sensor’s sampling rate 
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ACCEL Sensor 2μA 40 ~ 575μA1 

RF Module 0.37μA 20 / 22mA2 

GPS Module 1μA 20 / 29mA3 

Passive components 50μA 50μA 

 Total Current 160μA 60mA ~ 80mA 

 

The most power-consuming component on iVCCS is the wireless transceiver 

engine (e.g., active current is 22mA). Power consumption is reduced, given a transition 

from one state to another (e.g., power-down  Idle  Active), which is driven by 

interrupt events. A transition from Power Down to Active mode is triggered by a vehicle 

arrival event wherein the MCU samples the magnetic field every TS (i.e., TS = 1.563Hz 

to 800Hz). A cyclic transition between Active  Idle modes occurs every TS until a 

transition from Active  Power Down mode is triggered by a vehicle departure event.  

Table 3-4 Power consumption for WSN components 

Sensor Power-off Idle Active 

Digital Lightning Sensor 0 1μA 60μA 

Microphone Preamplifier 0 24μA 24μA 

Digital Relative Humidity sensor 0 0.1μA 480μA 

Digital Pressure/Altitude sensor 0 2μA 8.5μA 

Digital Temperature Sensor 0 1μA 10μA 

Digital Ambient Light Sensor 0 0.65μA 1μA 

MEMS Silicon Microphone 0 50μA 50μA 

Voltage Regulator 500nA 500nA 8μA 

Analog Impedance grid sensor 0 25μA 25μA 

Analog NTC Thermistor 0 25μA 25μA 

  500nA 129μA 692μA 

                                                 

 

1 Consumption is related to sensor’s sampling rate 
2 Consumption depends on the operation, read/write 
3 Consumption depends on the operation, tracking/accusation 
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Table 3-5 Power consumption in various operation modes using Li-Po batteries 

Li-Po 

Battery 

iVCCS Battery-Life (Days) WSM Battery-Life (Days) 

Shut-down Idle Active Shut-down Idle Active 

500nA 156μA 60~80mA 500nA 129μA 692μA 

1000mAh 83333 252 0.69 83333 323 60.21 

1500mAh 125000 378 1.04 125000 484 90.32 

2000mAh 166666 505 1.39 166666 646 120.42 

2500mAh 208333 631 2.08 208333 807 150.53 

3000mAh 250000 7578 2.08 250000 969 180.64 

4000mAh 333333 1010 2.78 333333 1292 240.85 

 

3.6 Power Consumption Implications of Detection Algorithm 

MAG (e.g., FXOS8700CQ) has an active mode operation current range between 

20—600μA, which is directly related to sensor ODR. MCU, on the other hand, has a 

slightly higher power consumption. After a detection event, iVCCS samples the MAG, 

logs and analyzes acquired data, and then sends timestamps to iAP. In reality, average 

duty-cycle of a detection system could range between 1% and 8%, meaning the system 

is idle more than 92% of the time. Hence, power consumption can be significantly 

reduced by configuring the system to automatically transition to a higher sampling rate 

when needed (i.e., a detection event triggered). iVCCS spends the majority of time in 

idle mode (i.e., no detection event), enabling the use of a very low sampling rate. This 

method, however, is at the expense of losing samples of vehicle signatures. 

3.7 Towards Self-Powered Smart WSN 

Transistor scaling is becoming exponentially smaller approximately every 18 

months as a result of Moore’s law, which allows twice the number of transistors per 

square inch of a silicon chip at lower cost and power consumption [27]. Also, with the 
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approaching era of IoT and smart cities, it is anticipated that the market will demand 

more autonomous and self-powered wireless sensors that should ideally operate for 

decades without service. For these reasons, it was necessary to reconsider iVCCS 

hardware design requirements first designed in 2014 before finalizing for mass 

production.  

The reconsideration demanded the design of a new generation of sensor that is 

self-powered by integrating ultra-low-power (ULP) components and an advanced 

energy-harvesting (EH) and power management unit. 

3.7.1 Characteristics of Self-Powered Applications 

The essential characteristics of any self-powered application are as follows: 

 Ultra-low leakage current integrated devices 

 Energy-efficient components able to operate at low voltages 

 Small size, lightweight, and long operating lifetime 

 Primary and/or secondary power sources 

 Ability to operate efficiently; consume the lowest power at low duty-cycle 

 Ability to instantaneously switch between power-down and active modes 

 Ability to self-sustain full operation during the device’s intended lifetime 

 Ability to support several operation modes (e.g., active, standby, sleep, 

power down) 

Designing ULP applications demands an in-depth understanding of the power 

source side, which is as important as the power consumption side—reason being that 

the nature of power sources for EH systems represents a stochastic process. Notably, 

harvested power tends to be limited, intermittent, and unregulated, meaning that the 

average power and its distribution over time can be characterized. Notably, instant 
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power is unpredictable and subject to several non-deterministic factors. For self-

sustainability of a device, the following key aspect must be considered in the design: 

Average consumed power at system side must be  

less than the average harvested power at source side. 

3.7.2 Enabling Device Power Self-Sustainability 

The most successful approach to enable self-sustainability of a device is by 

enabling ULP energy-efficient hardware design, as well as software development [93], 

meaning that system power budget must be well addressed in the design. This requires 

identifying the power consumption for each component in various operating modes, 

including Iq, transient-current, average-current, and peak-current. 

Given that the sensor enclosure has limited available space, a top-down design 

approach can be followed to estimate the hypothetical lifetime of the device by 

selecting a battery that fits in space. Battery capacity represents maximum power source 

capability. Average power obtained for EH can be characterized based on availability, 

efficiency, and power levels of the ambient source. For example, given a device uses a 

2800mAh Li-Po battery and has α=10% self-leakage or self-discharge over three years 

and a three-year lifetime, average power consumption should not exceed 106μA (See 

Eq. 3-2), that is assuming no other power sources are available to charge the battery. 

𝐼𝑎𝑣𝑔 =
𝑆𝑂𝑈𝑅𝐶𝐸𝐴ℎ

𝑇𝐼𝑀𝐸ℎ𝑜𝑢𝑟𝑠
×(1 − 𝛼) =

2800𝐴ℎ

3𝑦𝑒𝑎𝑟𝑠×365𝑑𝑎𝑦𝑠×24ℎ𝑜𝑢𝑟
×0.9 = 106𝜇𝐴 Eq. 3-2 

3.8 iVCCSG2 Platform Overview 

iVCCSG2 (an evolution version of iVCCSG1) is a novel, fully-integrated intelligent 

wireless smart sensor that employs higher performance, is less expensive, and has more 

power efficient embedded electronics. The sensor was designed to be fully-autonomous 
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and self-powered with the ability to support various traffic surveillance applications and 

research studies.  

iVCCSG2 integrates single board state-of-the-art electronic components, including 

ultralow power, high-performance 32-bit embedded microcontroller, energy-efficient 

wireless transceiver, smart embedded sensors (i.e., 3D MAG and ACCEL), highly-

accurate low-power embedded GPS receiver, dual-units for data storage, ULP EH 

power management unit (PMU) with maximum power point tracking (MPPT) and 

charge management controllers (CMC), battery fuel gauge, wireless power charging 

receiver, and atmospheric sensors. Components are managed by distinctive algorithms 

for implementing various traffic monitoring applications. Sensor firmware can also be 

upgraded over-the-air (OTA), which permits a customizable configuration to support 

various studies and applications. The sensor is functional in either standalone mode, 

wherein all data are stored on internal memory, or in peer-network, wherein iAP 

manages WSN data transfer. Figure 3-11 illustrates iVCCSG2 block diagram. Figure 

3-12 shows component distribution on both layers—top and bottom—on the iVCCSG2 

board. The sensor’s PCB dimension is 45(L)×30(W)×6mm(H). Figure 3-13 depicts 

interconnections between on-board components. Power lines are represented in orange 

color; data/control busses are in green; and power switch control lines are in blue. The 

selection criteria and a brief description of each component are discussed in the next 

sections.   
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Figure 3-11 iVCCSG2 functional components block diagram 
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Figure 3-12 iVCCSG2 PCB with all components marked 
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Figure 3-13 iVCCSG2 functional components interconnections 
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3.8.1 A 32-bit Embedded Microcontroller 

The selection of the right MCU is crucial for ULP embedded systems design. The 

criteria for MCU selection was based on the following criteria: 

 Supported multiple operational power modes  

 Very low power consumption in active mode 

 Tremendously high and efficient processing performance 

 Particularly fast wake-up time 

 Ultra-low power consumption in standby mode 

 Rich peripheral with autonomous operation 

 Industrial grade with wide operational temperature range 

From among several industry-leading ULP MCUs (e.g., TI MSP430; Freescale 

MKL; Renesas RL78; NXP LPC1xxx; Atmel SAM4L; Microchip XLP; and Silicon 

Labs EFM32), STMicroelectronics ultra-energy-efficient ARM Cortex-M0+ 

STM32L071xB was selected. STM32L0 MCU series is ideal for energy-sensitive 

applications, including wearable devices, medical implants, and smart-living devices. 

STM32L0 MCUs have proven class-leading, energy efficiency of 135 ULPMark™-C 

[94]. Moreover, STM32L0 MCUs are highly temperature-stable and have best-in-class 

power consumption at 125°C, combining efficiency and robustness. Figure 3-14 

illustrates a circuit block diagram of the selected STM32L071KB MCU [94], which has 

the following energy-saving features: 

 Seven power modes, including Run, Sleep, Stop, Standby, and others  

 139μA/MHz Run mode current and 76μA/MHz optimized Run mode 

 Energy-saving modes, including 340nA Stop mode with full RAM retention  

 Auto wake-up from Stop mode to Run mode (32MHz) in 3.5µs 

 Temperature operating range -40 to +125°C. 

 Optional low-power pulse counter available in ultra-low power mode 
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 Low-power ADC, 41µA at 12-bit resolution and 10KSPS 

 Interconnect matrix for data handling when CPU is idle 

 

 

Figure 3-14 STM32L071KB MCU block diagram 

Since ULP systems continually switch between Stop and Run modes, the ultra-fast 

wake-up time is extremely important for minimizing inefficient wake-up switching 

delay. The interconnect matrix allows CPU-independent, autonomous, inter-peripheral 

signaling and data transfer between peripherals and memory in energy-saving modes. 

3.8.2 Magnetometer & Accelerometer Sensors 

Kionix KMX62 is a MEMS technology-based, high-performance, low-power, 

inertial sensor that combines a tri-axial MAG and a tri-axial ACCEL coupled with an 

advanced ASIC. This sensor was released in July 2016 as best-in-class. KMX62 

magnetic and acceleration sensing technique is similar to FXOS8700CQ in that 

acceleration is capacitance-based sensing and magnetic is impedance-based sensing. 

Table 3-6 shows a comparison between the two industry-leading 6-axis MAG-ACCEL 

sensors. 
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Table 3-6 Comparison between two industry-leading 6-axis MAG-ACCEL sensors 

 

Freescale (NXP) 

FXOS8700CQ 

 

Kionix (ROHM) 

KMX62-1031 

 

Control Interface I2C/SPI + 2-INT I2C + 2-INT 

Dimensions 6-axis ACCEL-MAG 6-axis ACCEL-MAG 

Update Rate (ODR) 
1.563Hz ~ 800Hz 

400Hz in hybrid mode 

MAG: 0.781Hz ~ 1.60KHz 

ACC: 0.781Hz ~ 25.6KHz 

ODR Accuracy 5% over -40°C to +85°C 2% over -40°C to +85°C 

Magnetometer Range ±1200 μT ±1200 μT 

Acceleration Range ±2g / ±4g / ±8g ±2g / ±4g / ±8g / ±16g 

ADC Resolution 
MAG: 14-bit 

ACC: 16-bit 

MAG: 16-bit 

ACC: 16-bit 

Measurement Period 0.64s ~ 1.25ms 
MAG: 1.28s ~ 625µs 

ACC: 1.28s ~ 39µs 

Magnetic Sensitivity ±0.1 µT/LSB ±0.0366 µT/LSB 

Acceleration Sensitivity 1 Milligauss 0.366 Milligauss 

Magnetic Nonlinearity ±1 %FSMAG ±0.5 %FSMAG 

Acceleration Nonlinearity ±0.5 %FSACC ±0.5 %FSACC 

Acceleration Sensitivity  

±2g 0.244 mg/LSB 

±4g 0.488 mg/LSB 

±8g 0.976 mg/LSB 

±2g 0.06mg/LSB 

±4g 0.12mg/LSB 

±8g 0.24mg/LSB 

±16g 0.49mg/LSB 

Magnetic Output Noise 0.3~1.5 μT-rms@1.56~800Hz 0.2~1.4 μT-rms@0.78~1600Hz 

Acceleration Output Noise 126 µg/√Hz 106 µg/√Hz 

Maximum Exposed Field 100,000 μT 500,000 μT 

Maximum Acceleration 10,000 Gauss 50,000 Gauss 

Zero-Flux Offset ±10 μT ±0 μT 

Flux Offset with Temp ±0.8 μT/°C ±0.3 μT/°C 

Zero-g Level Offset ±30 mg ±25 mg 

g-level Offset with Temp ±0.2 mg/°C ±0.2 mg/°C 

FIFO Buffer 32 Samples (ACC only) 64 Samples (ACC&MAG) 

Power Consumption 

Idle Mode: 2µA 

MAG: 40~575μA @ 12.5~400Hz  

ACC: 10~240μA @ 12.5~800Hz 

M&A: 40~440μA @ 12.5~200Hz  

Idle Mode: 1µA 

MAG: 1.6~292μA @ ODRrange 

ACC: 1.6~156μA @ ODRrange 

M&A: 1.6~385μA @ ODRrange 

Cost US$1.5/1KU US$4.00/1KU 

Package QFN-16 (3×3×1.2 mm) QFN-16 (3×3×0.7 mm) 
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Since MAG/ACCEL is a core component for iVCCSG2, extended selection criteria 

was necessary for decision-making. Table 3-6 shows that KMX62 outperforms 

FXOS8700CQ in every factor except cost. Because low cost is essential and because 

both sensors are pin-to-pin compliable, it was necessary that the final iVCCSG2 design 

ensured its ability to adapt to either sensor. Choice is based on desired performance, as 

well as the application. 

3.8.3 Embedded RF Engine 

Among several promising IoT wireless technologies (e.g., BLE, LoRa, DASH7, 

6LoWPAN, Bluetooth, and Z-Wave), ZigBee is at the forefront in terms of cost, power 

efficiency, distance, and throughput [95]. ZigBee has the advantage of using mesh 

networking topology, which eliminates single points of failure. Additionally, ZigBee is 

well standardized at all network levels, allowing devices from different vendors to work 

together seamlessly. ZigBee module selection criteria was developed to evaluate the 

following key characteristics: 

 Support for multiple-power modes, including idle and deep-sleep 

 Power consumption during transmission, receiving, idle, and deep-sleep 

 Maximum distance range in LOS 

 Maximum data throughput 

 Size, weight, and cost 

 

The most power-consuming component on iVCCS is the wireless transceiver engine 

(e.g., active current is 22mA). Power consumption is reduced, given a transition from 

one state to another (e.g., power-down  Idle  Active), which is driven by interrupt 

events. A transition from Power Down to Active mode is triggered by a vehicle arrival 
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event wherein the MCU samples the magnetic field every TS (i.e., TS = 1.563Hz to 

800Hz). A cyclic transition between Active  Idle modes occurs every TS until a 

transition from Active  Power Down mode is triggered by a vehicle departure event.  

Table 3-4 details a comparison between the top four industry-leading ZigBee 

modules for IoT devices. All modules report comparable performance. However, 

AW5161P0CF serves as the best candidate in terms of cost, size, and sleep current. 

 

Table 3-7 Top ZigBee Module candidates for iVCCSG2 

 

ATMEL 

ATZB-S1-256-3-0-C 

 

Dresden Elektronik  

deRFmega128- 22M00 

 

NXP 

JN5168-001-M00 

 

ZLG 

AW5161P0CF 

 

Voltage Range 1.8V ~ 3.6V 1.8V ~ 3.6V 2.0V ~ 3.6V 2.2V ~ 3.6V 

Controller ATMEGA256RFR2 ATmega128RFA1 NXP JN5168 NXP JN5161 

Throughput 2Mbps 2Mbps 2Mbps 2Mbps 

RX Sensitivity -97dBm -100dBm -95dBm -95dBm 

TX Power +3.6dBm +3.0dBm +2.5dBm +2.5dBm 

Link Budget 100.6dB 103.0dB 97.5dB 97.5dB 

Distance 170 – 570 meter 200 meter 200 meter 500 meter 

Sleep Current 0.6µA 1µA 0.7µA 0.1µA 

RX Current 17mA 18mA 17mA 19mA 

TX Current 16.4mA 18mA 15.3mA 16mA 

Cost US$25/1KU US$15/1KU US$10/1KU US$5/1KU 

Package 30×20×5 mm 23.7×13.2×3 mm 30×16×3 mm 16.5×13.5×3 mm 

Supported 

Protocols 
ZigBit 6LoWPAN, Zigbee 

ZigBee Light Link, 

Smart Energy, RF4CE 

FastZigBee + 

All Low-Power 

 

AW5161P0 [96] is a low power, high performance, surface-mount ZigBee 

module based on NXP JN5168. The sensor supports several protocol stacks, including 

IEEE 802.15.4, JenNet-IP, ZigBee Light Link, ZigBee Smart Energy, and RF4CE (See 

Figure 3-15). AW5161P0 has proven superior in all aspects of performance. For 
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example, transmit power is +2.5dBm with range of 500 meter and data transfer rate up 

to 2Mbps. More importantly, power consumption can be as low as 100nA in deep sleep. 

AW5161P0 can be configured as an End-device, Router, or Gateway. Size is 

16.5×13.5mm, and cost is less than $5, compared to $17.76 for SM200P81 installed in 

iVCCSG1. 

 

Figure 3-15 AW5161P0 support multi-wireless protocol stack [96] 

3.8.4 Real-Time Clock 

STM32L071KB combines an advanced internal RTC unit for providing a full-

feature calendar, alarm, periodic wakeup, digital calibration, timestamp, and 

synchronization. The unit has a separate, accurate low speed external (LSE) oscillator 

with the advantage of providing a low power yet highly accurate clock source for RTC 

timing functions. LSE incorporates OSC32_IN and OSC32_OUT pins for crystal 

connection. 

To provide a highly accurate, external clock source for timestamping, SiT1552 

(an ULP 32.768KHz MEMS TCXO [temperature compensated crystal oscillator]) was 

routed directly to the OSC32_IN pin. SiT1552 is currently the smallest precision 

32KHz TCXO [97] available (See Figure 3-16). SiT1552 has ±5ppm frequency stability 
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over a temperature range with ULP consumption of 990nA. According to SiTime Corp., 

SiT1552’s silicon is qualified for use at 105ºC. SiT1552 was also selected due to its 

resistance to shock and vibration, as larger TCXOs are extremely susceptible to 

mechanical disturbances. In fact, each truck driving by or over the TCXO sensor is 

known to negatively impact timing accuracy. 

 

Figure 3-16 SiT1552, a world’s smallest 32.768KHz MEMS TCXO 

3.8.5 Embedded GPS Modules 

Selection criteria for a ULP GPS module included the following characteristics: 

 Multiple-system support, including GPS and GLONASS 

 Power consumption during tracking, acquisition, standby, and backup 

modes 

 Number of available PNR, tracking, and acquisition channels 

 Sensitivity, positioning accuracy, and timing accuracy 

 Size, weight, and cost 

Quectel’s L76L-M33 GPS module [98] was selected among many commercially 

available GPS modules. L76L-M33 is a ULP, extremely compact (10.1×9.7×2.5mm) 

GNSS module, featuring <2.5m positioning accuracy, ±10ns timing accuracy, and up to 
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10Hz update rate at a cost of only $7.80. The module can monitor up to 210 channels, 

99 of which are searchable, while simultaneously tracking another 33. L76L-M33 

backup power mode consumes only 9µA for supplying the internal RTC when main 

power is off. This feature aids in retaining satellite constellation information and 

locking with satellites in less than 1-sec on power-up rather than performing a lengthy 

cold-start satellite search. Power consumption is 19mA for tracking; 25mA for 

acquisition; 2.8mA for locating; and 500µA in standby mode. Figure 3-17 illustrates 

Quectel’s L76L-M33 GPS module. 

  

Figure 3-17 Quectel’s L76-L extremely compact GPS module 

3.8.6 Data Logging Unit 

iVCCSG2 integrates a micro-SD card and serial NOR flash for data logging. 

SanDisk has the best industrial-grade microSD card for applications requiring 

reliability, durability, and high intensity data logging, such as industrial IoT getaways 

and transportation [99]. SDSDQAF-008G-I Class 10 8GB microSD card was selected.  

To protect the card from electrostatic discharge (ESD), electromagnetic 

interference (EMI), and transient voltage and current, TI TPD8F003 was added to the 

design. TPD8F003 [100] is a highly integrated, eight-channel EMI filter with ESD 
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protection (up to ±20-kV air gap discharge). The chip is ultra-small (3.30×1.35 mm) 

and has an ultra-low leakage current of 10nA per channel. Cost is US$0.25/1KU. 

The purpose of adding a microSD card was to support raw data collection (e.g., 

flux magnitude and vertical acceleration), which is useful for research studies. 

Advantages of microSD cards include its portability and large capacity. Disadvantages 

include the fact that the cards are energy inefficient, large sized, and expensive.  

Ultimately, only detection timestamps are necessary for essential traffic 

monitoring (i.e., vehicle counting, speed estimation, or length-based classification). At 

this point and for such applications, a more energy efficient, cheaper, and smaller 

solution is crucial for iVCCSG2 design. 

Serial NOR Flash memories are currently the best solution for logging detection 

timestamps. The Macronix’s MX25R NOR Flash memories family [101] is specifically 

designed for next-generation IoT consumer wearables. These devices feature a ULP 

mode and density to 512Mbit. Active power consumption is 3.1mA for write and 

1.9mA for read, which are 70% lower than other solutions. Deep-power-down mode 

consumption is only 0.1µA, which is 90% lower than other available solutions. Cost for 

MX25R6435F is US$1.0; size is 4×4mm. 

 

 

  

Figure 3-18 SanDisk SDSDQAF-008G-I, TI TPD8F003, and MX25R6435F 

3.8.7 Power Management System 
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Power management system (PMU) is the core of any modern EH system. The 

iVCCSG2 PMS was designed to incorporate the most energy-efficient components 

available in the market. The system is composed of 1) an EH for converting external 

ambient energy sources to electricity; 2) EH management unit (PMU) with maximum 

power point tracking (MPPT) and charge management controllers for collecting 

electrical energy from the harvester, and then charging an energy storage device and/or 

supplies other system components; 3) energy storage device for conserving harvested 

energy; 4) voltage regulator for conditioning the system voltage and supplying sensor 

components with appropriate operation voltage; 5) load switches for activating or 

deactivating subsystems; and 6) battery fuel gauge for providing information about the 

battery state. The sensor MCU has access to all PMS units, ensuring that PMU energy 

use is minimized when energy is not available at the input. The following subsections 

will discuss design aspects and selection criteria for each unit in the PMS. 

 Energy Harvesting Power Management Solutions 

Several major semiconductor vendors, including Analog Devices, Texas 

Instruments, Maxim Integrated, and STMicroelectronics, offer energy-harvesting 

power-management (EHPM) devices with different capabilities and features. The 

selection process for the EHPM device was based on 19 criterions (See Table 3-8). 

Of the aforementioned devices, ADP5091 [102] was found suitable to the sensor 

design in all aspects. The chip was released in late July 2016 as a ULP EHPM unit with 

MPPT for thermoelectric and photovoltaic sources. ADP5091 has an optimized on-chip 

boost-converter that can cold-start with only 380mV input, and then run from 80mV to 

3.3V. Power can be harvested from sources with a 16μW to 600mW range. Internal 
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150mA regulated output can be programmed by an external resistor. MPPT extracts the 

maximum possible energy from the harvester, which has a varying impedance 

dependent on physical parameter changes. MPPT maintains input voltage ripple in a 

fixed range to maintain stable DC-DC boost conversion. A minimum operation 

threshold can be programmed to enable boost shutdown during a low input voltage 

condition (e.g., at night). Quiescent current is 450nA during DC-DC boost and 360nA 

when the boost is in shutdown mode. 

ADP5091 also has a charging control function to protect rechargeable energy 

storage by monitoring battery voltage via the programmable charging termination 

voltage and the shutdown discharging voltage. More importantly, ADP5091 can turn off 

the DC-DC inverter, preventing interference with the RF engine during data 

transmission. The chip costs only US$2.49 and is available in a 3×3mm 24-lead LFCSP 

package; it is rated for a −40°C to +125°C temperature range. Figure 3-19 illustrates the 

ADP5091/2 internal detailed functional block diagram. 
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Figure 3-19 Energy Harvesting Transducers [102]  
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Table 3-8 Characteristics of Energy Harvesting PMU for WSN 
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 Energy Harvesting Transducers 

EH transducers are used to collect ambient energy before converting it into 

electrical power. The most promising and commonly used transducers are described in 

[28]–[30]: 

 Photovoltaic: converts light into energy using solar cells 

 Piezoelectric: produces energy from kinetic sources, such as vibration 

 Electromagnetic: converts inductive/RF radiation into power 

 Thermoelectric: thermal-gradients energy from heat sources 

 Figure 3-20 shows commercially available energy transducers. A mind-map for 

various types of energy harvesters and sources is illustrated in Figure 3-21 [30]. 

   

 

Solar Cells Piezoelectric Inductive Thermoelectric 

Figure 3-20 Energy Harvesting Transducers  

 

Figure 3-21 Different energy harvesters (rectangles) and sources (ovals) 

http://www.digikey.com/product-detail/en/mide-technology-corporation/V21B/V21B-ND/2402859
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A comparison between power density and efficiency for various EH transducers is 

shown in Table 3-9 [30]. Energy conversion Efficiency is defined as the ratio of 

harvested energy at the harvester output to available energy at the harvester input.  

Table 3-9 Characteristics of Energy Harvesting Transducers and Sources for WSN 

Energy Harvester Power Density Efficiency 

Photovoltaic 

Outdoors (direct sun): 15-30 mW/cm2 

Outdoors (cloudy day): 0.15 mW/cm2 

Indoors: 5-30 µW/cm2 

Highest: 32 ± 1.5% 

Typical: 25 ± 1.5% 

Thermoelectric 
Wearable: 50 µW/cm2 

Industrial: 1 to 10 mW/cm2 

±0:1% 

±3% 

Pyroelectric 8.64 µW/cm2 at temperature rate of ∆T = 5°C/s 3.5% 

Piezoelectric 
Human: 4 µW/cm3 

Industrial: 1 mW/cm3 
source dependent 

Electromagnetic 
Human motion: 1 to 4 µW/cm3 

Industrial: 306 µW/cm3 to 800 µW/cm3 
source dependent 

Electrostatic 50 to 100 µW/cm3 source dependent 

RF 
GSM 900/1800 MHz: 0.1µW/cm2 

WiFi 2.4 GHz: 0.01 µW/cm2 
50% 

Wind 380 µW/cm3 at the speed of 5 m/s 5% 

Acoustic noise 
0.96 µW/cm3 at 100 dB 

0.003 µW/cm3 at 75 dB 
- 

 

Solar energy is more widely used in EH applications, as it is most prolific and 

capable among other energy sources. It is inexpensive, easy-to-use, and has the highest 

power density—up to 30mW/cm2. In general, monocrystalline solar cells are preferred 

for outdoor applications, and amorphous solar cells are the best option in low-light 

levels for indoor applications. 

 Energy Storage Devices 

The most commonly used EH energy storage for WSN are rechargeable batteries, 

supercapacitors, Thin-Film batteries, and Solid-State chips. Each technology has a 
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unique advantage. The following criteria should be considered when selecting 

rechargeable devices for energy-storage applications. 

 Energy capacity 

 Peak and continuous current 

 Operation temperature (chemistries perform poorly at low temperature) 

 Self-discharge 

 Charge time 

 Cycle life (number of discharge/charge before capacity drops to 70%) 

 Cost, weight, size, shape 

 Table 3-10 presents a comparison between the essential characteristics of various 

energy storage devices. 

Table 3-10 Characteristics of energy storage devices for EH applications 

 

Li-Po 

Batteries 

 

Thin-Film 

Batteries 

 

 

Super 

Capacitors 

 

Solid-State 

Energy Storage 

 

 

Energy Capacity  up to 10 Ah up to 3 mAh up to 1.5 mAh up to 50 µAh 

Peak Current very high small high very small 

Self-discharge 5% per month 2% per year 10% per minute negligible 

Charge Time Hours 15 minutes Seconds 30 minutes 

Cycle Life See Table 3-12 100,000 1,000,000 5000 

 

Li-Po batteries were chosen primarily because they have superior chemistry for 

small, self-powered devices. Also, they are a highly reliable power source for devices 

that create a relatively high-peak, steep transient current (e.g., GPS module and wireless 

transceiver). When compared with other technologies, Li-Po batteries have a relatively 

http://www.a123systems.com/prismatic-cell-amp20.htm
http://www.electronicsweekly.com/news/research-news/conventional-components-flexible-skin-sensor-2014-04/
http://www.powersystemsdesign.com/product-news?date=2013-01-01
http://www.cymbet.com/pdfs/AN-1036.pdf
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low self-discharge current—approximately 5% per month—and limited number of 

cycles. 

To maximize Li-Po battery cycle, especially in EH applications with daily charge-

discharge cycles, a battery with higher storage capacity could help reduce depth of 

discharge (DoD), which is proportional to battery lifecycles. A battery with higher 

capacity will have lower internal resistance, which allows more peak current to supply 

the load. Reducing DoD to a partial discharge and avoiding over-charge can 

significantly reduce stress and prolong the life of Li-Po batteries. Table 3-11 illustrates 

a comparison between DoD level and corresponding numbers of discharge-charge 

cycles before Li-Po battery capacity is diminished by 20%. 

Table 3-11 Cycle life as a function of depth of discharge 

Depth of discharge Discharge cycles 

100% 300–500 

50% 1200–1500 

25% 2000–2500 

10% 3750–4700 

 

Most Li-Po batteries charge to 4.2V per cell; however, reducing peak charge 

voltage by 0.10V per cell would double the battery cycle life [103]. Consequently, a 

lower peak charge voltage will reduce the nominal capacity a battery can handle. For 

example, a 70mV reduction in charge voltage would reduce overall capacity by 10%, as 

shown in Table 3-12. 

For battery longevity, it is recommended to set charge voltage to 3.92V per cell, 

eliminating voltage-related stress [103]. 
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Table 3-12 Discharge cycles and capacity as a function of charge voltage limit.  

Charge level (V/cell) Discharge cycles Capacity at full charge 

4.30 150 – 250 ~114% 

4.20 300 – 500 100% 

4.10 600 – 1000 ~86% 

4.00 1200 – 2000 ~72% 

3.92 2400 – 4000 ~58% 

 

 Smart Battery Gauge 

Protecting Li-Po battery from deep-discharging and over-charging is crucial for 

battery longevity. BQ27621-G1 [104], a system-side fuel gauging device for single-cell 

Li-Po batteries, was integrated into the design. This smart chip uses sophisticated 

algorithms to calculate remaining battery capacity, state-of-charge, battery voltage, and 

temperature. Data can be accessed by a MCU over serial interface (See Figure 3-22). 

BQ27621-G1 is tiny (1.62×1.58×0.5 mm), inexpensive (US$1.25), power-

efficient (0.6μA in shutdown mode), and requires minimal configuration and firmware 

development. 

  

Figure 3-22 TI BQ27621-G1 Battery Fuel-Gauge [104] 

 Voltage Conditioning Unit 

ADP165 was used to provide a regulated voltage—from the unregulated source at 

ADP5092 system output to the system components and modules. ADP165 [105] is an 

extremely low, quiescent-current, 150 mA voltage regulator. ADP165 has a shutdown 
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current 50nA and operating temperature range from -40 to 125°C. The chip is very 

small and costs only US$0.35/1KU. 

 Nano-Power Load Switches 

For a more energy-efficient design, several TPS22860 [106]—small, ultra-low 

leakage current load switch—were used to control the power supply to each ZigBee 

module, GPS module, and microSD card. TPS22860 has a 12nA total leakage current 

and can support 200mA maximum continuous current. Switch cost is US$0.22/1KU. 

3.8.8 Wireless Charging Receiver 

Wireless charging is an essential element in powering wearable devices and IoT. 

Functionality is based on utilizing electromagnetic energy transmitted from a primary 

coil of energy transmitter in the near-field across a gap to a secondary coil of an energy 

receiver such that both coils are tuned to resonate at the same frequency [107]. The 

receiver converts inductive current into energy that can be used to charge the battery or 

power the device. 

To enable wireless charging for iVCCSG2, a BQ51051B [108] high-efficient, Qi-

compliant wireless power receiver with an integrated Li-Po battery charge controller 

from TI was included in the design. Qi is an international charging standard developed 

by the Wireless Power Consortium (WPC). BQ51051B supports charging current up to 

1.5A with 93% charging efficiency. The chip comes in 3.0×1.9mm package and costs 

US$1.9/1KU. Vishay IWAS-4832FE-50 [109] was considered for the 10W shielded 

receiver coil. The coil has a dimension of only 48×32×1.22mm. Figure 3-23 shows the 

receiver chip and coil. 
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Figure 3-23 TI BQ51051B chip (left) and Vishay IWAS-4832FE-50 coil (right) 

3.8.9 Road Surface Condition Sensors 

Road surface temperature can rise to 200ºC on a hot summer day. A cost-effective 

method for measuring road surface temperature is using NTC glass-based Thermistors. 

These sensors feature an extremely fast response time, high reliability, and an operating 

temperature range between -50°C and +300°C. Note that the sensor glass should be 

coated to ensure moisture-proof robustness. For iVCCSG2, an NTC with at least 100kΩ 

rated resistance at 25°C (e.g., Semitec’s 104NT-4-R025H43G [110] costing US$0.7 

/1KU) is recommended to guarantee minimal power dissipation. 

3.8.10 Passive Components Selection Does Matter 

ULP design should consider leakage current from both active and passive 

components (e.g., capacitors). It is also imperative to understand and evaluate the effect 

of DC bias, temperature variation, and tolerance of the bypass capacitor, as well as the 

technology of the selected capacitor. 

TMJ S1gma™ SMD tantalum capacitors from AVX were used in iVCCSG2. This 

product has an extremely low DC leakage current (i.e., 0.001CV) and high stability over 

an operation temperature ranging between -55 and +125°C [111]. 

3.9 iVCCSG2 Power Consumption and Battery Life Analysis 

iVCCSG2 was designed as an autonomous sensor to harvest, buffer, and consume 

available buffered energy in a highly efficient manner, especially when generated and 

consumed energy profiles are completely different. 
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Average power consumption of the sensor (i.e., 𝑃𝑎𝑣𝑔 = 𝐼𝑎𝑣𝑔 . 𝑉𝐷𝐷) depends 

primarily on system supply voltage (𝑉𝐷𝐷) and average consumed current (𝐼𝑎𝑣𝑔), the 

latter being the sum of average current in active (𝐼𝑎𝑐𝑡𝑖𝑣𝑒) and stop (𝐼𝑠𝑡𝑜𝑝) modes. By 

knowing time spent in active (𝑇𝑎𝑐𝑡𝑖𝑣𝑒) and stop (𝑇𝑠𝑡𝑜𝑝) modes, battery life (𝐵𝐴𝑇𝑙𝑖𝑓𝑒) can 

be estimated using Eq. 3-3, where α is the battery self-discharge rate.  

BATlife[ℎ𝑜𝑢𝑟𝑠] =
𝐵𝐴𝑇𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐼𝑎𝑐𝑡𝑖𝑣𝑒×𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐼𝑠𝑡𝑜𝑝×𝑇𝑠𝑡𝑜𝑝

𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑇𝑠𝑡𝑜𝑝

×𝛼  Eq. 3-3 

Accurately estimating battery life requires a sufficient characterization of all 

components parameters that have a significant influence on the system’s power 

consumption. These are discussed in the next sections and might vary for various 

components. 

3.9.1 Components Parameters Assessment 

A comprehensive assessment for all components was performed to characterize 

power consumption of each component under a variety of operating modes. Component 

datasheets, application notes, user manual, Yokogawa DL9140 digital oscilloscope, true 

RMS multi-meter, and NI vector signal analyser were analysed during the assessment 

process. 

1) Embedded MCU 

MCU parameters with significant influence on power consumption are system 

clock, core voltage, start-up and wake-up times, analog peripherals, and processing 

efficiency. Table 3-13 shows power consumption and wake-up time for STM32L071 in 

all supported modes [94]. RTC unit is enabled in all modes, and VDD is 3.3V. Table 
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3-14 shows the power consumption in active mode for all STM32L071 peripherals 

essential for iVCCSG2 functions and other on-board components. 

iVCCSG2 MCU control the power source of all power-hungry components (i.e., 

RF engine, GPS, and data logging units) via ultra-low power switches. MCU spends 

most of its time in stop mode waiting for an event or interrupt to wake-up—for a short 

period—and process a pre-specified computational task. MCU power consumption in 

stop mode is 1μA and requires 3.5μs to switch from stop to active state. The internal 

system clock is set at 8MHz. 

Table 3-13 iVCCSG2 MCU power consumption in various power modes 

 Active Sleep LP-Active LP-Sleep Stop Standby 

Wakeup Time 0μs 0.36μs 3μs 32μs 3.5μs 50μs 

Consumption 175μA/MHz 35μA/MHz 8.55μA 4.65μA 1μA 655nA 

 

Table 3-14 STM32L071 Peripheral power consumption in active mode 

DMA UART1/2 TIM6/7 RTC I2C1 SPI GPIO 

8μA/MHz 11.5μA/MHz 3μA/MHz 300nA 9.5μA/MHz 3μA/MHz 3μA/MHz 

 

2) Serial Flash Memory (MX25R6435F - SFM) 

Essential characterization parameters for MX25R6435F [112] are listed in Table 

3-15. 𝑡𝐷𝑃𝐷𝐷 is the delay time for release from deep power-down mode; 𝑡𝐷𝑃 is the time 

CS# pin should be held high to enter deep-power down mode; 𝑡𝑝𝑝 is self-timed page 

(i.e., 256 bytes) program cycle time; 𝑡𝑅𝐷𝑃 is recovery time for release from deep power 

down mode; 𝑡𝐶𝑅𝐷𝑃 is CS# toggling time delay before release from deep power-down 

mode; 𝐼𝑆𝐵1 is  standby current; 𝐼𝑆𝐵2 is deep power-down current; 𝐼𝐶𝐶1 is read current; and 

𝐼𝐶𝐶1 is page-program current. 
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Table 3-15 Serial Flash parameters 

𝒕𝑫𝑷𝑫𝑫 𝒕𝑫𝑷 𝒕𝑷𝑷 𝒕𝑹𝑫𝑷 𝒕𝑪𝑹𝑫𝑷 𝑰𝑺𝑩𝟏 𝑰𝑺𝑩𝟐 𝑰𝑪𝑪𝟏 𝑰𝑪𝑪𝟐 

30μs 10μs 3.2ms 35μs 20ns 24μA 0.5μA 1.9mA 3.5mA 

 

3) Magnetometer Sensor (KMX62) 

KMX62 [113] MAG has four resolution modes to support various over-sampling 

rates. Mode RES<0,0> was selected, as it has a standby current of 1μA and sampling 

rate (fs) of 5μA and 30μA active current at 50Hz and 400Hz, respectively. fs is set to 

50Hz when MCU in stop mode and to 400Hz given that MAG motion interrupt occurred 

(i.e., vehicle in detection zone). Startup time is 1ms. 

4) Voltage Supervisor (TPS3839) 

TPS3839 [114] typically consumes only 100nA. However, this current rises to 

15μA after power-up for 200μs where TPS3839 samples the input voltage. Power-up 

delay is 200ms, meaning that the power-up for any device connected with TPS3839’s 

REST pin (i.e., RF Engine and GPS module) will be delayed for 200ms. The bypass 

capacitor connected with the VDD pin maintains average current at 150nA. 

5) 32.768KHz MEMS TCXO (SiT1552) 

The SiT1552 active oscillator has 300ms start-up time at power-up, during which 

time peak supply current reaches 28μA for 200ms before dropping to 0.99μA steady-

state core current. SiT1552 [97] total current (𝐼𝑜𝑠𝑐) is the sum of core current in steady-

state, load current at 10pF load capacitance, and output driver current at 3.5pF drive 

capacitance (i.e., 𝐼𝑜𝑠𝑐 = (0.99) + (0.23) + (0.08) = 1.3𝜇𝐴). 

6) Load Switch (TPS22860) 
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Two load switches control power supply to the ZigBee module and data storage 

unit. TPS22860 [106] has only 10nA quiescent current and 12nA shutdown leakage 

current. Switching time is 4ns for turn-on and 9ns for turn-off. 

7) 8-Channel EMI Filter (TPD8F003) 

The TPD8F003 chip consists of passive components (i.e., resistors and diodes). 

Leakage current on each channel is 10nA [100]. Only seven channels are used in 

iVCCSG2 design. 

8) Low-Dropout Linear Regulator (TPS782) 

TPS782 [115] features 18nA shutdown current and 500nA quiescent current. The 

chip has an enable pin that consumes 0.4nA. Startup time tSTR or shutdown time tSHDN is 

500μs. Output power dissipation is calculated as 𝑃𝐷 = (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)𝐼𝑜𝑢𝑡. 

9) Battery Fuel Gauge (bq27621-G1) 

The bq27621-G1 [104] has four operating modes. Power consumption in normal 

mode is 27μA, 21μA in sleep, 9μA in hibernate, and 600nA in shutdown mode. Input 

leakage current is 100nA. The chip requires 125ms to produce one conversion. Data 

read time from the bus is 1ms. 

10) Energy Harvesting PMU (ADP5092) 

ADP5092 [116] is mainly comprised of two sides: one supplied directly from the 

harvester input (i.e., solar cell) and the other relative to the output side (i.e., SYS and 

BAT pins). The SYS pin has 650nA quiescent current in active state and 390nA in sleep 

mode. In addition to 20nA for input pins, the BAT pin has a 3.5nA leakage current. 
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11) GPS Module 

Table 3-16 lists GPS module L76-M33 [98] essential parameters for power 

consumption characterization. BAUS is the data baud rate for UART interface between 

MCU and GPS; 𝐼𝑉𝐵𝐶𝐾𝑃
 is the supply current for backup power supply to constantly 

maintain GPS RTC domain running and achieve fast Time to First Fix (e.g., <1sec); 

𝒇𝑼𝑹 is GPS NEMA date update rate; 𝑇𝑃𝑊𝑜𝑛
 is start-up time at power-up; and 𝐼𝑎𝑐𝑞 and 

𝐼𝑡𝑟𝑘 are current consumption during acquisition and trancing, respectively. L76-M33 

has 465ms~ 485ms latency range after the rising edge of PPS (See Figure 3-24 [98]). 

PPS duty-cycle is 1/10. A 200ms power-up delay generated by the voltage supervisor 

(TPS3839) should be considered only when GPS load switch was in shutdown state.  

 

Figure 3-24 PPS and NMEA timing for L76-M33 

Table 3-16 GPS Module parameters 

𝑩𝑨𝑼𝑫 𝑰𝑽𝑩𝑪𝑲𝑷
 𝑰𝒔𝒕𝒂𝒏𝒅𝒃𝒚 𝑰𝒂𝒄𝒒 𝑰𝒕𝒓𝒌 𝒇𝑼𝑹 𝑻𝑷𝑾𝒐𝒏

 

115200bps 7μA 500μA 25mA 19mA 1Hz 2ms 

 

12) RF Engine (AW5161P0CF) 

AW5161P0CF [96] power-related parameters are shown in Table 3-17. Current 

consumption during transmission, receiving, in-sleep mode, and deep-sleep (stop) mode 

are denoted as 𝐼𝑇𝑋, 𝐼𝑅𝑋, 𝐼𝑠𝑙𝑒𝑒𝑝, and 𝐼𝑠𝑡𝑜𝑝, respectively. 𝑇𝑃𝑊𝑜𝑛
 is the time delay required 

for local oscillator to stabilize during power-on before radio activities can start. 𝑇𝑤𝑎𝑘𝑒𝑢𝑝 
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is time delay wake-up from stop or sleep modes to active mode. During power-on, only 

4.98mA is consumed because RF front-end is not operating. A 200ms power-up delay 

generated by the voltage supervisor (TPS3839) should be considered only when RF 

engine load switch is in shutdown.  

Table 3-17 RF Engine parameters 

𝑩𝑨𝑼𝑫 𝑰𝑻𝑿 𝑰𝑹𝑿 𝑰𝒔𝒍𝒆𝒆𝒑 𝑰𝒔𝒕𝒐𝒑 𝑻𝒘𝒂𝒌𝒆𝒖𝒑 𝑻𝑷𝑾𝒐𝒏
 

57600bps 18mA 21mA 700nA 120nA 180µs 1ms 

 

Data frame transmission period (𝑇𝑇𝑟𝑎𝑛𝑠) is an important parameter that should 

also be calculated. 𝑇𝐹𝑟𝑎𝑚 depends on two factors: 1) configurations of RF engine and 2) 

size of payload frame. 

AW5161P0CF operates in the 2.4GHz band, which allows 250kbps over-the-air 

data rate (i.e., 62500 symbols per second—each comprising 4bits). The MAC (medium 

access control) layer header size (𝐻𝑀𝐴𝐶) is set to 25 bytes for 64-bit source and 

destination addresses. The physical layer header size (𝐻𝑃𝑌𝐻) is fixed and equal to 6 

bytes. Payload frame (𝐹𝑃𝑎𝑦𝑙𝑜𝑎𝑑) size depends on the amount of data to be transmitted; it 

can be loaded up to 114 bytes. Total time required to transmit a single data frame can be 

calculated as in Eq. 3-4. Given that 𝐹𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 1, then 𝑇𝑇𝑟𝑎𝑛𝑠 = 1.024𝑚𝑠. For 

𝐹𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 114, 𝑇𝑇𝑟𝑎𝑛𝑠 = 4.64𝑚𝑠. 

𝑇𝑇𝑟𝑎𝑛𝑠 =
𝐻𝑀𝐴𝐶 + 𝐻𝑃𝑌𝐻 + 𝐹𝑃𝑎𝑦𝑙𝑜𝑎𝑑

250𝑘𝑏𝑝𝑠
 ×8𝑏𝑖𝑡  Eq. 3-4 

4.64𝑚𝑠 represents the amount of time RF engine consumes 𝐼𝑇𝑋. This figure will 

be used to calculate energy required to send a radio message. Notably, this amount was 

determined under the assumption of an ideal scenario (i.e., interference-free and single-

hop). 
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In a real world scenario, RF engine performs a Clear Channel Assessment (CCA) 

before data transmission to determine an available channel. AW5161P0CF implements 

an unslotted CSMA/CA (carrier sense multiple access with collision avoidance) 

algorithm instead of regular beacons. Two variables are set during configuration: 1) 

number of back-offs (𝑁𝑏𝑎𝑐𝑘𝑜𝑓𝑓) allowed to attempt a single radio message 

transmission—one back-off period is 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 320µs (i.e., 20 symbols, each 16µs) and 

2) Retry interval (𝑇𝑟𝑒𝑡𝑟𝑦), which is how many back-off periods the engine should wait 

before attempting another channel assess. Both 𝑁𝑏𝑎𝑐𝑘𝑜𝑓𝑓and 𝑇𝑟𝑒𝑡𝑟𝑦 were set to 3. 

3.9.2 iVCCSG2 Power Consumption Assessment 

Power consumption assessment was performed based-on the process and power 

sequence flow diagram depicted in Figure 3-26, which represents an optimized 

operation of iVCCSG2 for vehicle detection applications. Component state and power 

consumption during initialization sequence and process execution are shown in Table 

3-18.  

Table 3-18 Execution time and consumed current for iVCCSG2 

Process 𝑰𝒂𝒗𝒈(𝒎𝑨) 𝑻(𝒎𝒔) 

1.  iVCCSG2 Power-up – MCU only 1.456 300 

2.  Report node status, ID, and transfer data to access point 8.927 26.058 

3.  Set and calibrate RTC using GPS 11.129 3765 

4.  Run MAG @ 50Hz, Enable MAG EXIT, and set MCU in Stop mode 0.0347 𝑇𝑠𝑡𝑜𝑝 

5.  Motion interrupt → MAG @ 400Hz → set MCU in Stop mode 0.0597 𝑇𝑖𝑑𝑙𝑒  

6.  Read MAG Data and check for a vehicle departure 0.2785 𝑇𝑎𝑐𝑡𝑖𝑣𝑒  

7.  Transfer Timestamps from SRAM to Flash 3.5587 3.3 

8.  Read Battery Status from the Fuel Gauge 1.5387 126 
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The longest process time T is considered when two tasks occur simultaneously. 

Total average leakage current for MCU decoupling capacitors (𝐼𝑑𝑐𝑎𝑝) is 500nA. 

In process No. 1, 𝐼𝑎𝑣𝑔 and T are calculated as follows: 

 𝐼𝑎𝑣𝑔 = [175µ𝐴×8 (𝑀𝐶𝑈 | 𝐴𝑐𝑡𝑖𝑣𝑒)]  + [28µ𝐴 (𝑇𝐶𝑋𝑂 | 𝑆𝑡𝑎𝑟𝑡𝑢𝑝)]  +

 0.5µ𝐴 (𝑆𝐹𝑀 | 𝐼𝑆𝐵2)  + [12𝑛𝐴×2 (𝐿𝑜𝑎𝑑 𝑆𝑤𝑖𝑡𝑐ℎ | 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛)]   +

 [1𝜇𝐴 (𝑀𝐴𝐺 | 𝑠𝑡𝑎𝑛𝑑𝑏𝑦)]  + [500𝑛𝐴 +  0.4𝑛𝐴 (𝐿𝐷𝑂 | 𝐸𝑛𝑎𝑏𝑙𝑒𝑑)]  + [600𝑛𝐴 +

 100𝑛𝐴 (𝐺𝑎𝑢𝑔𝑒 | 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛)]  + [500𝑛𝐴 (𝐼𝑑𝑐𝑎𝑝)]  + [650𝑛𝐴 +  3.5𝑛𝐴 +

 20𝑛𝐴 (𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑟 | 𝐴𝑐𝑡𝑖𝑣𝑒)]. 

 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒~4.7µ𝐴 

 𝑇 =  300𝑚𝑠 (𝑇𝐶𝑋𝑂 | 𝑆𝑡𝑎𝑟𝑡𝑢𝑝). 

Assuming 𝐹𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 114 bytes, process No. 2 is executed as follows: 

 Enable Load Switch (U5, see iVCCSG2 schematic diagram in appendix B) >               

4ns switching time and 10nA quiescent current. 

 Wakeup AW5161P0CF > 𝑇𝑤𝑎𝑘𝑒𝑢𝑝 +  𝑇𝑃𝑊𝑜𝑛
 @ 𝐼𝑖𝑑𝑙𝑒 = 4.98𝑚𝐴.  

 Enable UART1 > 11.5μA×8 = 92μA (See Table 3-14) 

 Send data MCU → RF engine over UART > 𝐼𝑖𝑑𝑙𝑒 = 5.04𝑚𝐴 and 𝑇𝑈𝐴𝑅𝑇 =

[(114𝐵𝑦𝑡𝑒𝑠×8𝑏𝑖𝑡) + 114𝑠𝑡𝑎𝑟𝑡𝑏𝑖𝑡 + 114𝑠𝑡𝑜𝑝𝑏𝑖𝑡]/57600𝑏𝑝𝑠 = 19.79𝑚𝑠 

 RF engine perform CCA > Assuming 𝑁𝑏𝑎𝑐𝑘𝑜𝑓𝑓 = 1 and the channel is free, then 

𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 = 320𝜇𝑠 @ 5.16mA and 𝑇𝐶𝐶𝐴 = 128𝜇𝑠 @ 𝐼𝑇𝑋 = 18𝑚𝐴. 

 RF engine transmits data over-the-air > 𝑇𝑇𝑟𝑎𝑛𝑠 = 4.64𝑚𝑠 @ 𝐼𝑇𝑋 = 18𝑚𝐴. 

 Disable Load Switch (U5) > 9ns turn-off time 

 Disable UART1>Total run-time 19.79𝑚𝑠 + 320𝜇𝑠 + 128𝜇𝑠 + 4.64𝑚𝑠 = 24.878𝑚𝑠 

 𝐼𝑎𝑣𝑔 = [(10𝑛𝐴×4𝑛𝑠) + (4.98𝑚𝐴×1180𝜇𝑠) + (92𝜇𝐴×24.878𝑚𝑠) +

(5.04𝑚𝐴×19.79𝑚𝑠) + (5.16𝑚𝐴×320𝜇𝑠) + (18𝑚𝐴×128𝜇𝑠) + (𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒×
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26.058𝑚𝑠) + (18𝑚𝐴×4.64𝑚𝑠)]/(4𝑛𝑠 + 1180𝜇𝑠 + 19.79𝑚𝑠 + 320𝜇𝑠 +

128𝜇𝑠 + 4.64𝑚𝑠) = 7.499𝑚𝐴 

 𝑇 = 4𝑛𝑠 + 1180𝜇𝑠 + 19.79𝑚𝑠 + 320𝜇𝑠 + 128𝜇𝑠 + 4.64𝑚𝑠 = 26.058𝑚𝑠 

Average current in process No. 2 is the sum of RF engine average current and 

MCU current in steady-state, active mode (i.e., subtract 28µ𝐴 𝑇𝐶𝑋𝑂 during startup). 

Process No. 3 is executed in the following manner: 

 Enable External Interrupt 1PPS > 3μA×8 = 24μA 

 Enable Load Switch (U3/DIS_SW, see iVCCSG2 schematic diagram in appendix B) 

> 200ms voltage supervisor delay 15μA×200μs + 150nA + 25𝑚𝐴 (𝐼𝑎𝑐𝑞)𝑎𝑓𝑡𝑒𝑟200𝑚𝑠
 

 Set MCU in Stop mode > 1μA.  

 Wait until 1PPS rising edge wakeups the MCU > 1sec. 

 Enable TIM6 > 3μA×8 = 24μA 

 Set MCU in Stop mode > 1μA.  

 Wait until 1PPS falling edge wakeups the MCU > 100ms. 

 Disable TIM6 > TIM6 total runtime is 100ms 

 Disable External Interrupt 1PPS > Total runtime is 1.3s 

 Enable UART2 with Rx Interrupt > 11.5μA×8 = 92μA 

 Set MCU in Stop mode > 1μA. 

 Wait (~365ms as shown in Figure 3-24) until UART2 Rx interrupt wakeups the 

MCU 

 Search for $GPRMC (recommended minimum specific GPS/Transit data) > 100ms 

 Disable Load Switch (U3/DIS_SW) > Total runtime is 1.665s for GPS and 1.865s 

for Load Switch. 

 Disable UART2 > Total runtime for UART2 is ~465ms 
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 Set RTC time and date registers 

 Set MCU in Stop mode > 1μA.  

 Wait for RTC interrupt > 1sec 

 Enable TIM6 > 3μA×8 = 24μA 

 Set MCU in Stop mode > 1μA.  

 Wait for another RTC interrupt > 1sec 

 Disable TIM6 > TIM6 total runtime is 1000ms 

 Calculate the difference of RTC and PPS pulse duration and calibrate RTC 

 Set MCU in Stop mode > 1μA. Total MCU active time is 120ms@1.428mA 

 𝐼𝑎𝑣𝑔 = [(24µA×1.3𝑠) + (15µA×200µs) + (150nA×1.865s) + (25mA×

1.665s) + (1µA×1s) + (24µA×100ms) + (1µA×100ms) + (92µA×465ms) +

(1µA×365ms) + (1µA×1s) + (24µA×1s) + (1µA×1s) + (1.428𝑚𝐴×120ms) +

(𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒×3.765𝑠)]/(3.765𝑠) = 11.129𝑚𝐴 

 𝑇 = 3765𝑚𝑠 

Process No. 4 is executed as follows: 

 Run MAG @ 50Hz > 5μA 

 Enable External Interrupts > 24µA 

 Set MCU in Stop mode > 1µA 

 𝐼𝑎𝑣𝑔 = [1𝜇𝐴 + 5𝜇𝐴 + 24𝜇𝐴 + 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒] = 34.7𝜇𝐴 

 𝑇 = 𝑇𝑠𝑡𝑜𝑝 (𝑇𝑠𝑡𝑜𝑝 can be found based on the number of vehicles per day) 

Process No. 5 is executed as follows: 

 If MAG Motion interrupt triggered → Run MAG @ 400Hz > 30μA 

 Store Timestamp in SRAM 

 Set MCU in Stop mode > 1µA 
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 𝐼𝑎𝑣𝑔 = 59.7𝜇𝐴 

 𝑇 = 𝑇𝑖𝑑𝑙𝑒  (𝑇𝑖𝑑𝑙𝑒 can be found based on the number of vehicles per day) 

Process No. 6 is executed as described below: 

 If MAG Watermark interrupt triggered → Enable I2C1 > 76µA 

 L1: Set MCU in Stop mode > 1µA 

 Wait for MAG Data-ready interrupt (DRI) > 1/400Hz = 2.5ms 

 DRI? → Read MAG x, y, and z registers (16-bit × 3) > 180μs 

 Compute magnetite → Vehicle departure? NO → go to L1 

 Vehicle departure → Store Timestamp in SRAM → Disable I2C1 

 Go to Process No. 4 

 𝐼𝑎𝑣𝑔 = (135.7𝜇𝐴×0.9) + (1.5637𝑚𝐴×0.1) = 0.2785𝑚𝐴 

 𝑇 = 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 (𝑇𝑎𝑐𝑡𝑖𝑣𝑒 can be found based on the number of vehicles per day) 

Process No. 7 is executed once every 64 vehicle detections as follows: 

 Enable SPI1 Interface > 24µA @ 4Mbps 

 Send wakeup command to serial flash > 65μs delay 

 Write data (Page Program command) from SRAM to SPI > 3.2ms / 3.5mA 

 Disable SPI Interface and Set MCU in Stop mode > 1µA 

 𝐼𝑎𝑣𝑔 = 3.5587𝑚𝐴 

 𝑇 = 3.3𝑚𝑠 

Process No. 8 is executed once each day: 

 Enable I2C1 > 76µA  

 Send conversion command to the Fuel Gauge > 27μA / 125ms for one conversion 

 Read battery status data > 280μs 

 Disable I2C1 Interface and Store Data in SRAM to be sent to the access point 
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 Set MCU in Stop mode > 1µA 

 𝐼𝑎𝑣𝑔 = 1.5387𝑚𝐴 

 𝑇 = 126𝑚𝑠 

3.9.3 Battery Life Estimation 

Battery life depends on the amount of time the sensor spends in active state 

compared to stop state. This primarily depends on the number of vehicles at a 

designated detection point. When using 4000mAh Li-Po battery to power the sensor, 

battery life can be calculated using Eq. 3-3 based on power consumption and time delay 

assessment in Table 3-18. The following assumptions were made: 

1) Traffic volume at a highway designated detection point is 10,000 vehicles/day 

2) Average vehicle speed is 60mph (i.e., 26.8224m/s). 

3) Average vehicle length is 7m.  

4) Battery state is checked once each hour. 

5) Data is transmitted from iVCCSG2 to iAP once every 15min because traffic 

volume data is reported in 15min bins. 

6) RTC drift correction is performed once every 60min, guaranteeing 

microsecond synchronization accuracy. 

7) Per-vehicle data is uploaded from iVCCSG2 to iAP at midnight. 

Based on these assumptions, average occupancy time is 7/26.8224 = 0.261s. 

Hence, active time is 2610 second/day or 3% of total time. Stop time is 97% of total 

time. 

At 400Hz during 0.261s, MAG will sample approximately 105 data points. 

Watermark interrupt occurs after 50 data points, during which time current consumption 

is 0.0597mA and 𝑇 = 𝑇𝑖𝑑𝑙𝑒. Hence, 𝑇𝑖𝑑𝑙𝑒 = 0.4762 𝑇𝑎𝑐𝑡𝑖𝑣𝑒. Watermark interrupt 
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conserves 47.6% of the current consumed in active mode. A data point value of 50 was 

determined statistically based on data collected from highways and urban roads. Given 

a motorcycle traveling at 70mph , minimum number of data points should be greater 

than 70. 

To estimate the battery life, the following processes (See below) should be 

calculated: hourly duty-cycle (DC), average current during RF transmission, RTC 

calibration using GPS, data transfer from SRAM to serial Flash, and battery status 

check processes should be calculated. 

𝐷𝐶𝑅𝐹
[ℎ𝑜𝑢𝑟]

=
(0.026058𝑠𝑒𝑐×4𝑟𝑢𝑛𝑠)

3600𝑠𝑒𝑐
= 0.0289% → 𝐼𝑎𝑣𝑔−𝑅𝐹

[ℎ𝑜𝑢𝑟]
= 8.927𝑚𝐴×𝐷𝐶𝑅𝐹

[ℎ𝑜𝑢𝑟]
= 0.259𝜇𝐴 

𝐷𝐶𝐺𝑃𝑆
[ℎ𝑜𝑢𝑟]

=
(3.765𝑠𝑒𝑐×1𝑟𝑢𝑛)

3600𝑠𝑒𝑐
= 0.1046% →  𝐼𝑎𝑣𝑔−𝐺𝑃𝑆

[ℎ𝑜𝑢𝑟]
= 11.129𝑚𝐴×𝐷𝐶𝐺𝑃𝑆

[ℎ𝑜𝑢𝑟]
= 11.641𝜇𝐴 

𝐷𝐶𝑆𝐹𝑀
[ℎ𝑜𝑢𝑟]

=
(0.0033𝑠𝑒𝑐×157𝑟𝑢𝑛)

3600𝑠𝑒𝑐
= 0.0144% → 𝐼𝑎𝑣𝑔−𝐺𝑃𝑆

[ℎ𝑜𝑢𝑟]
= 3.5587𝑚𝐴×𝐷𝐶𝐺𝑃𝑆

[ℎ𝑜𝑢𝑟]
= 0.51𝜇𝐴 

𝐷𝐶𝐺𝑎𝑢𝑔𝑒
[ℎ𝑜𝑢𝑟]

=
(0.126𝑠𝑒𝑐×1𝑟𝑢𝑛)

3600𝑠𝑒𝑐
= 0.0035% → 𝐼𝑎𝑣𝑔−𝐺𝑃𝑆

[ℎ𝑜𝑢𝑟]
= 1.5387𝑚𝐴×𝐷𝐶𝐺𝑃𝑆

[ℎ𝑜𝑢𝑟]
= 0.054𝜇𝐴 

Next, average current in stop, idle, and active modes should be calculated. 

𝐷𝐶𝑖𝑑𝑙𝑒 = 1.4385% → 𝐼𝑎𝑣𝑔−𝑖𝑑𝑙𝑒 = 0.0597𝑚𝐴×𝐷𝐶𝑖𝑑𝑙𝑒 = 0.859𝜇𝐴 

𝐷𝐶𝑎𝑐𝑡𝑖𝑣𝑒 = 1.5823% → 𝐼𝑎𝑣𝑔−𝑎𝑐𝑡𝑖𝑣𝑒 = 0.2785𝑚𝐴×𝐷𝐶𝑎𝑐𝑡𝑖𝑣𝑒 = 4.4067𝜇𝐴 

𝐷𝐶𝑠𝑡𝑜𝑝 = 97% → 𝐼𝑎𝑣𝑔−𝑠𝑡𝑜𝑝 = 0.0347𝑚𝐴×𝐷𝐶𝑠𝑡𝑜𝑝 = 33.659𝜇𝐴 

Total average current is 51.3887𝜇𝐴ℎ.  

BATlife =
4000𝑚𝐴ℎ

51.3887𝜇𝐴ℎ
×0.8 = 62,270.499 [ℎ𝑜𝑢𝑟] = 7.1 [𝑦𝑒𝑎𝑟] 

As such, the sensor should operate for over 7 years when powered by a 4000-mAh 

battery with up to an 80% derating factor. 
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3.9.4 Extending Battery Life 

Note that estimated battery life detailed in previous section did not consider 

energy generated by harvesting PMU, which is based on a highly efficiency solar-cell 

(i.e., SLMD121H04) utilized to charge the battery. 

SLMD121H04 [117] has 2V typical voltage, 44.6mA typical current, and 

89.2mW maximum power point (MPP). Cell size is 43×14×2mm, and cell efficiency is 

approximately 22%. Performance is acceptable in even low light conditions. 

SLMD121H04, iVCCSG2 final prototype, and the wireless charging receiver boards are 

shown in Figure 3-25. 

The process flow diagram depicted in Figure 3-26 demonstrates how the energy 

harvesting PMU is operational from sunrise to sunset. Given that total run time is 8 

hours and average harvested and converted energy is 18mWh (i.e., worst case scenario), 

average generated energy—1.5mAh—should be sufficient to compensate for consumed 

energy at output and to maintain longer battery life, thus sensor operations. 
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Figure 3-25 iVCCSG2 Final Prototype PCB 
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Figure 3-26 Sensor node processes and power sequence flow diagram 
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3.10 Proposed Large-scale System Architecture and Networking 

iVCCS nodes can operate in either online or offline modes. In offline mode, 

traffic measurements, events, and magnetic signatures are logged into an on-board data 

logging unit. Data can be accessed anytime via an available wireless link or be retrieved 

by replacing the microSD card. In online mode, data are reported upon request to either 

iAP or collaborative nodes. To conserve power, the data-logging unit remains in sleep 

mode except when accessed by the host (i.e., MCU). 

The network is organized in three tiers—iVCCS nodes, iAPs, and IoT cloud 

server, as illustrated in Figure 3-27. At the lowest tier lies the iVCCS nodes, each 

equipped with a ZigBee RF module and a unique ID. The unique ID is reported with 

node coordination—obtained from an on-board GPS module—to a corresponding iAP 

for mapping purposes. iAPs are located in the second tier, each equipped with a long-

range ZigBee transceiver and an embedded industrial GPRS module [118]. iAP has a 

10MB data cache and a powerful operation system for facilitating rapid connection 

timing to maximize traffic savings and minimize the cost of communication. Data can 

be accessed via dynamic DNS or public IP. 

System wireless networking between iVCCS nodes and iAP is facilitated through 

IEEE 802.15.4 protocol with ZigBee on top. Wireless networking between iAP and the 

server is managed over a cellular network assisted by a Quad-Band GSM/GPRS chipset 

with an on-board GPS module. 

Each iAP was set to manage up to 12 subordinate iVCCS nodes. Upon iVCCS 

node startup, multicast remote procedure calls (RPCs) were sent to inquire about an iAP 
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address to manage an identical channel and network. Only one iAP responded to the 

call by sending its address to the originating iVCCS node. 

 

Figure 3-27 Architecture of the traffic surveillance system network 

In the event that iAP fails to send a response after a number of inquiries within a 

defined period, iVCCS node switches to offline mode. Given that a connection is 

established, iVCCS node switches to online mode wherein, upon request, data is 

exchanged with the designated iAP. Data received by any iAP will be processed, 

analyzed, and logged on a local memory. If there is an established connection, 

processed data will be moved to an IoT cloud server over a cellular network. If not, data 
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can be forcibly retrieved by the server at any time. The IoT cloud server lies in the third 

tier wherein traffic data can be monitored anywhere in real-time. The cloud server can 

also manage and control the network configuration, as well as facilitate a system’s over-

the-air firmware upgrade. This hierarchical topology allows a fully scalable, self-

configurable, and robust system network [119]. 

Once the connection is established (and upon request), iVCCS nodes exchange 

data with designated iAP. The request is managed by serial inquiry frames and 

commands.  

iAP uses Inquiry Frame ‘IQF’ to send an inquiry to either a specific node 

(unicast) or all nodes (multicast) requesting information (e.g., battery health; memory 

status; number of counted vehicles; time and date; sensor status, raw data, and 

temperature). The corresponding node responds with Inquiry Response Frame ‘IQRF.’ 

iAP also uses Command Frame ‘CMDF’ to send a command to either a single 

node (unicast) or all nodes (multicast) asking for a specific task to be executed by the 

node (e.g., ‘configure magnetometer’, ‘do recalibration’). The corresponding node 

responds with Command Confirmation Frame ‘CCF’ to confirm the task by writing the 

binary value ‘10101010’ in the CMD byte or deny it by writing the binary value 

‘01010101.’ Note that Sender/Receiver ID is software-coded and is not related to the 

MAC address. 
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Inquiry Frame (IQF) 

 

1-byte 1-byte 1-byte 1-byte 

SID RID IQ CRC 

 

Inquiry Response Frame (IQRF) 

 

1-byte 1-byte 1-byte 1-byte 1-250 byte 1-byte 

SID RID IQ CNT DATA CRC 

 

Command Frame (CMDF) / Command Confirmation Frame (CCF) 

 

1-byte 1-byte 1-byte 1-byte 

SID RID CMD CRC 

 

Field Discerption 

SID Sender ID (software) 

RID Receiver ID (software) 

IQ Inquiry 

CMD Command 

CNT Data bytes count 

DATA Data stream 

CRC 8-bit Cyclic Redundancy Check 
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Chapter 4: ALGORITHMS DESIGN & FIRMWARE DEVELOPMENT  

 

4.1 Introduction 

Providing reliable traffic-monitoring data requires precise vehicle detection and 

highly accurate speed estimation. Precise detection necessitates a consistent baseline 

(i.e., maintain static localized geomagnetic field) and coherent sampling rate. Speed 

estimation relies on precise time-stamping of vehicle arrival and departure, which is 

dependent on the accuracy of the time-synchronization (T-Sync) algorithm. In this 

chapter, the development and implementation of various distinctive algorithms for real-

time traffic monitoring will be discussed in detail. These include vehicle detection, 

speed estimation, geomagnetic field baseline drift compensation, T-Sync, RTC drift 

correction, and other functions. Figure 4-1 illustrates a block diagram of relationships 

among various developed algorithms and associated interconnection with the system’s 

hardware interfaces and physical components. Hieratical implementation shows three 

levels. Peripheral algorithms and drivers, namely “Embedded Firmware,” are 

implemented in the third level and interact with various “Physical World” components 

and sensors in the first level through “Embedded Hardware” peripherals in the second 

level. 

All algorithms discussed in this chapter are hardware independent, meaning they 

perform the same intended objectives. Notably, execution performance is hardware 

dependent (e.g., iVCCSG2 has an advance performance MCU and more energy efficient 

components than iVCCSG1). Firmware development experience also plays a major role 

in algorithm efficiency during implementation. Pseudo-codes and flowcharts will be 

provided to maintain efficient implementation of algorithms on various platforms. 
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Figure 4-1 Hierarchal integration of hardware and software in iVCCS 
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4.2 Real-Time Vehicle Detection & Counting Algorithm 

4.2.1 An Overview on Implementation of Vehicle Detection Algorithms 

In literature, fixed [43] or adaptive [57] thresholds have been proposed for 

vehicle-detection algorithms. Adaptive algorithms are aimed at maintaining a detection 

threshold above a reference level that could drift due to variations in temperature, 

background noise, vibrations, aging, or relative earth magnetic field over time. 

In this work, a multi-threshold-based detection algorithm was developed. Drift in 

geomagnetic field baseline is adaptively auto-calibrated in real-time. This method aids 

in solving problems reported in [53] by keeping magnetic signal variation at a 

minimum, hence, providing reliable vehicle-speed estimation in low-speed, as well as 

high speed, congested traffic. 

4.2.2 Embedded Magnetometer Sensors 

This work features a single MAG for measuring variations in geomagnetic field 

components (BX, BY, and BZ) caused by an overpassing vehicle. Figure 4-2 and Figure 

4-3 illustrate variations in three geomagnetic field components and the corresponding 

flux magnitude (FM): square-root of BX, BY, and BZ for the Honda Accord 2004 EX-V6, 

sampled at 200Hz; y-axis is the direction of the traffic.  

 

Figure 4-2 Variations in Bɤ in forward and reverse driving directions 

Forward Reverse 
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Figure 4-3 Variations in FM in forward and reverse driving directions 

4.2.3 Detection and Counting using an iVCCS in Roadway Setup 

A five-state machine process algorithm was developed for real-time vehicle 

detection and counting, utilizing a single iVCCS node. The algorithm acts as an 

observer for disturbance in the Earth’s magnetic field instigated by a passing vehicle. 

Localized flux lines pull away from the sensor as a vehicle passes the sensor zone and 

push back toward the sensor as the vehicle drives away (see Figure 1-3), creating 

fluctuations in FM. The five-state machine process analyzes fluctuations for valid 

vehicle detection by leveraging three adaptive thresholds (TH) and three adaptive 

debounce timers (DT), as shown in Figure 4-4. 

 

Figure 4-4 Detection Algorithm Parameters applied on a Vehicle Flux Magnitude 

 

Forward Reverse 
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Detection Thresholds are defined as follows: 

1) Onset threshold (OTH): vehicle arrival 

2) Holdover threshold (HTH): vehicle departure 

3) Baseline threshold (RTH): re-calibration call 

Debounce timers are defined as follows: 

1) Onset debounce timer (ODT): minimizes misdetection and false events due 

to a glitch or transient state 

2) Holdover debounce timer (HDT): minimizes misdetection due to 

fluctuations in FM given that the vehicle has relatively small magnetic 

density (e.g., long trucks) 

3) Detection period debounce timer (PDT): indicates stationary detection 

The algorithm was developed based on MCU interrupts (INT) and an event 

system to ensure real-time performance and CPU offloading to prolong battery life. 

Figure 4-5 details a functional block diagram for the detection and counting algorithm. 

Figure 4-6 illustrates a finite state machine (FSM) diagram for the five-state machine 

process detection algorithm. 

Internal Variables

OTH, HTH, RTH, ODT, HDT, 

FMref(k), BXref(k), BYref(k), 

BZref(k), FM(k), µ, ϭ, 

RTC, INT Flags,

BX(k), BY(k), BZ(k)  

Sampling Rate

Timestamp

Detection Flag

FM(k), FMref(k) 

Arrival Time

Departure Time

In
p

u
ts

O
u

tp
u

ts

 

Figure 4-5 Vehicles detection and counting algorithm functional block 

Upon system power up, an initialization process triggers a calibration state 

wherein MAG samples localized reference magnetic field components (e.g., BXref, BYref, 

and BZref) for a period TS in the absence of vehicles. During this time the reference 

magnetic field flux magnitude FMref is calculated using Eq. 4-1. 
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Figure 4-6 State machine process for vehicle detection and counting 

𝐹𝑀𝑟𝑒𝑓(𝑘) = √𝐵𝑋𝑟𝑒𝑓(𝑘)2 + 𝐵𝑌𝑟𝑒𝑓(𝑘)2 + 𝐵𝑍𝑟𝑒𝑓(𝑘)2  Eq. 4-1 

FMref is normally distributed with a mean µ and STD 𝜎 such that 𝐹𝑀𝑟𝑒𝑓 ∝

𝒩(𝜇, 𝜎). After statistically analyzing FMref, baseline threshold RTH is estimated using 

Eq. 4-2. Consequently, onset threshold OTH and holdover threshold HTH are calculated 

according to Eq. 4-3 and Eq. 4-4, respectively; 𝛼 and 𝛽 are experimentally defined 

coefficients according to the detection zone and signal-to-noise ratio (SNR), and α > β 

provides a hysteresis property in detection. 𝐹𝑀𝑟𝑒𝑓 should be unilaterally and adaptively 

tracked and compensated, as described below in section 0. 

RTH = 𝜇 + 2𝜎 Eq. 4-2 

OTH = 𝜇 + α×𝜎 Eq. 4-3 

HTH = 𝜇 + β×𝜎 
Eq. 4-4 
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After calibration is complete, the node remains in idle state until MAG data-ready 

interrupt (INT1) triggers onset debounce timer ODT, given that the state condition FM(k) 

≥ OTH (i.e., vehicle in detection zone) is true. FM(k) is found using Eq. 4-5. 

𝐹𝑀(𝑘) = √(𝐵𝑋(𝑘) − 𝐵𝑋𝑟𝑒𝑓)
2
+ (𝐵𝑌(𝑘) − 𝐵𝑌𝑟𝑒𝑓)

2
+ (𝐵𝑍(𝑘) − 𝐵𝑍𝑟𝑒𝑓)

2
 Eq. 4-5 

This function simply compares the magnitude defined by OTH vector with the 

difference of two vectors, namely sampled magnetic field 𝐹𝑀(𝑘) and localized magnetic 

field reference 𝐹𝑀𝑟𝑒𝑓(𝑘). If the former is greater than the latter for a minimum duration 

of time specified by ODT, then a true detection event is raised. 

This event can be expressed using vectors, as in Eq. 4-6. MAG sample is denoted 

by �⃗⃗� , and 𝑀𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is programmable offset. Eq. 4-6 can be rewritten as Eq. 4-7, where 𝐹𝑀 

and 𝐹𝑀𝑟𝑒𝑓 are magnitudes of �⃗⃗�  and 𝑀𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and 𝛼 is the angle between vectors. 

|�⃗⃗� − 𝑀𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = √(�⃗⃗� − 𝑀𝑟𝑒𝑓

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗). (�⃗⃗� − 𝑀𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) > OTH Eq. 4-6 

√�⃗⃗� . �⃗⃗� − 2. �⃗⃗� .𝑀𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑀𝑟𝑒𝑓

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑀𝑟𝑒𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = √𝐹𝑀

2 + 𝐹𝑀𝑟𝑒𝑓
2 − 2𝐹𝑀𝐹𝑀𝑟𝑒𝑓 cos 𝛼 > OTH Eq. 4-7 

A transition into detect state occurs after ODT is elapsed and the state condition 

FM(k) ≥ OTH is still true. In detect state, the sensor samples the magnetic field, calculates 

FM(k), and logs BX(k), BY(k) and BZ(k) into a storage memory. 

To minimize double-detection errors resulting from fluctuations in FM that could 

possibly occur between OTH and HTH—given that part of the vehicle has relatively small 

magnetic flux density (e.g., long combination trucks), a holdover debounce-timer HDT is 

utilized. HDT plays a significant role in reducing detection errors.  
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A transition from detect state to HDT state occurs when FM(k) < HTH (i.e., vehicle 

departed the detection zone). A transition into idle state occurs when INT4 triggers after 

HDT is elapsed and FM(k) < HTH. Vehicle counter will then be incremented by one, and 

vehicle arrival time (TA) and departure time (TD) will be logged. TA and TD are 

accurately captured in exactly 12 CPU cycles when INT1 and INT3 triggers, 

respectively. The system remains in idle state until INT1 is triggered again or FM(k) ≥ 

RTH (i.e., a drift in the localized magnetic field baseline). 

Detection period debounce-timer PDT can be configured according to the intended 

application. For example, PDT can be used as a watch-dog-time on highways to clear 

errors resulting from an accidental change in field baseline during a detection event 

(e.g., high speed loaded truck hitting a sensor) and to trigger recalibration. PDT can also 

be configured as a stationary detection timer for parking lot applications. 

4.2.4 Detection and Counting using a iVCCS in Roadside Setup 

iVCCS can be deployed on roadsides adjacent to the lane, in favor of a roadway 

setup in the center of a lane. The system uses the algorithm indicated in Figure 4-6 for 

vehicle detection. However, for a motorcycle or small vehicle driving on the far side of 

the lane opposite the sensor side, SNR could be significantly low, causing misdetection. 

Figure 4-7 shows variations in geomagnetic field components and magnitude caused by 

the Honda Accord 2004 EX-V6 when passing adjacent to the sensor at a distance of 1 

meter. Y-axis is the traffic direction. When compared with roadway setup in Figure 4-8, 

it is clear that the magnitude in roadside setup is three times weaker. Moreover, signal 

variations in roadside setup are relatively uniform when compared with roadway setup. 
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Figure 4-7 Class 2 vehicle magnetic signature sampled by iVCCS on roadside 

 

Figure 4-8 Class 2 vehicle magnetic signature sampled by iVCCS on roadway 

To mitigate this issue, a moving average filter (MAF) with gain coefficient w can 

be employed to reduce signal fluctuations and detect the trend of the  𝐹𝑀𝑔𝑎𝑖𝑛
(𝑘), 

calculated using Eq. 4-8 and Eq. 4-9, which is the input of detection algorithm in Figure 

4-6. One drawback of roadside setup is that it only works for roads with no more than 

two lanes. 

𝐹𝑀𝑔𝑎𝑖𝑛
(𝑘) =

𝑤

𝑁
∑ 𝐹𝑀(𝑘 − 𝑖)

𝑁−1

𝑖=0

;       𝑤 = 4,   𝑁 = 5 
Eq. 4-8 

𝐹𝑀𝑔𝑎𝑖𝑛
(𝑘) = {

𝑤×
𝐹𝑀(𝑘) + 𝐹𝑀(𝑘 − 1) + ⋯+ 𝐹𝑀(𝑘)

𝑘
;                       𝑘 < 𝑁

𝑤×
𝐹𝑀(𝑘) + 𝐹𝑀(𝑘 − 1) + ⋯+ 𝐹𝑀(𝑘 − 𝑁 + 1)

𝑁
;       𝑘 ≥ 𝑁

 Eq. 4-9 
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4.2.5 Adaptive Geomagnetic Baseline Drift Compensation 

Variations in temperature, vibrations, and aging will cause a considerable drift in 

the mean value of FMref(k), which causes detection errors and unreliable speed and 

length estimation. Thus, FMref(k) should be tracked so that BXre, BYref, and BZref are 

compensated for any drift. Tracking FMref(k) is achieved using a MAF when FM(k) < 

OTH. The algorithm computes new BXref, BYref, and BZref values, as in Eq. 4-10, when 

Eq. 4-11 is satisfied. 

𝐵𝑟𝑒𝑓
(𝛾)

=
1

𝑀
∑ 𝐵(𝛾)(𝑘 − 𝑖)

𝑀−1

𝑖=0

;      𝛾 = {𝑋, 𝑌, 𝑍} ∈ ℝ3 Eq. 4-10 

1

𝑀
∑ [𝐹𝑀𝑟𝑒𝑓

(𝑘 − 𝑖) − 𝐹𝑀𝑟𝑒𝑓
(𝑘)] ≥ 𝑅𝑇𝐻

𝑀−1

𝑖=0

 Eq. 4-11 

A high-level description of the baseline drift compensation algorithm is shown in  

Figure 4-9. A flowchart is detailed in Figure 4-10. 

The drift compensation algorithm simply tracks geomagnetic field over time to 

maintain reference magnetic signal variations at a minimum. The function 

stores 𝐵𝑋(𝑘), 𝐵𝑌(𝑘)  𝑎𝑛𝑑 𝐵𝑍(𝑘), and calculates 𝐹𝑀(𝑘) when MAG data ready interrupt 

(INT1) triggers. 𝐹𝑀(𝑘) MAF output is compared to baseline threshold RTH. New 

geomagnetic field reference level components 𝐵𝑟𝑒𝑓
(𝛾)

 are calculated and set using MAF 

when 𝐹𝑀𝐴𝑣𝑔(𝑘) > 𝑅𝑇𝐻. 

MAF, although simple, was able to detect magnetic field disturbances caused by 

factors not related to vehicle presence including temperature, road structure, 

surrounding objects, etc. This work didn’t attempt to discover or model all possible drift 
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causing disturbances that may occur at various locations besides those field testing 

during this research. 

Inputs: BX(k), BY(k), BZ(k) 

Outputs: BXref, BYref, BZref 

1: WHILE FM (k) < OTH 

2: WAITFOR Magnetometer Data-Ready INT 

3: BUFFER  COMPUTE FM(k)  READ BX(k), BY(k), BZ(k) 

4: Idx  Idx + 1 

5: IF Idx = M THEN 

6: 𝐹𝑀.𝐴𝑣𝑔 
1

𝑀
∑ 𝐹𝑀[𝑘𝑀−1

𝑗=0 − 𝑗] 

7: IF OTH >FM-Avg ≥ RTH THEN 

8:  BX𝑟𝑒𝑓, BY𝑟𝑒𝑓, BZ𝑟𝑒𝑓 
1

M
∑ 𝐵(𝛾)[𝑘 − 𝑖]𝑀−1

𝑖=0  

9: ENDIF 

10: Idx  0 : BUFFER  0 

11: ENDIF 

12: LOOP 

13: Idx  0 : BUFFER  0 

 

Figure 4-9 Adaptive Geomagnetic Baseline Drift Compensation Pseudocode  
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Figure 4-10 Flowchart for adaptive compensation of geomagnetic baseline drift 
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4.3 Vehicle Speed Estimation and Time Synchronization 

In this section, the development and implementation of various algorithms for 

real-time vehicle speed estimation and time synchronization are discussed. 

4.3.1 Real-Time Vehicle Speed Estimation using Two Sensor Nodes 

The most accurate method to measure vehicle speed is by calculating travel time 

between two longitudinally positioned sensor nodes (NANB) separated by distance d, 

as shown in Figure 4-11. 

 

Figure 4-11 Speed estimation deployment setup 

Two measures of speed can be identified: 1) per-vehicle or instantaneous speed 

(𝑣�̅�), which is the attained speed of a vehicle at time instant t, and 2) aggregated or time-

mean speed (𝑣�̅�), which is the average speed of n vehicles v over time period t at a 

specific location. 𝑣�̅� and 𝑣�̅� are calculated using Eq. 4-12 and Eq. 4-13, respectively. 

𝑇𝐴
(𝑁𝑖)is vehicle arrival time; 𝑇𝐷

(𝑁𝑖) is the departure time; and q is number of vehicles 

traveling at the same speed. 

𝑣�̅� ≈
𝑑(𝑁𝐴→𝑁𝐵)

𝑇𝐴
(𝑁𝐵)

− 𝑇𝐴
(𝑁𝐴)

≈
𝑑(𝑁𝐴→𝑁𝐵)

𝑇𝐷
(𝑁𝐵)

− 𝑇𝐷
(𝑁𝐴)

≈ 2
𝑑(𝑁𝐴→𝑁𝐵)

𝑇𝐴
(𝑁𝐵)

− 𝑇𝐴
(𝑁𝐴)

+ 𝑇𝐷
(𝑁𝐵)

− 𝑇𝐷
(𝑁𝐴)

 Eq. 4-12 

𝑣�̅� =
1

𝑛
∑�̅�𝑖

𝑛

𝑖=1

=
∑ 𝑞𝑖. �̅�𝑖

𝑛
𝑖=1

∑ 𝑞𝑖
𝑛
𝑖=1

=
∑ 𝑞𝑖. 𝑑

𝑛
𝑖=1

∑ 𝑞𝑖
𝑛
𝑖=1 . 𝑡𝑖

=
∑ 𝑞𝑖. 𝑑

(𝑁𝐴→𝑁𝐵)𝑛
𝑖=1

∑ 𝑞𝑖
𝑛
𝑖=1 (𝑇𝑖

(𝑁𝐵)
− 𝑇𝑖

(𝑁𝐴)
)
 Eq. 4-13 
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Timestamps 𝑇𝐴
(𝑁𝑖)and 𝑇𝐷

(𝑁𝑖)are sent by sensor nodes and received by an iAP, 

which in turn process speed and length estimation and classification. 

For reliable, accurate vehicle speed and length estimation, a high-precision time 

synchronization must be considered. Failing to synchronize all sensor nodes within a 

network will cause inaccurate measurements and confuse decision-making in the 

intelligent controller. Such circumstances might lead to an unsafe condition as a 

consequence of a false alarm. For instance, consider a vehicle travelling 90 mph on a 

highway on which two sensor nodes are deployed on a single lane 6 meters apart. If a 

required speed estimation error is anticipated to be less than 휀=±1%, maximum timing 

error 𝑇𝑠𝑦𝑛𝑐−𝑒𝑟𝑟 should be less than 1.5ms, as indicated by Eq. 4-14 (1mph=0.44704m/s). 

Separation distance between sensors depends on speed range. Increasing d would 

reduce error. [120] recommends d=3.1—3.7 meter for arterial setup and d=6.1—7.3 

meter for freeway setup. 

𝑇𝑠𝑦𝑛𝑐−𝑒𝑟𝑟 =
𝑑

𝑣
×휀 =

6

90×0.44704
×0.01 ≈ 1.5 𝑚𝑠 Eq. 4-14 

4.3.2 Real-Time Vehicle Speed Estimation using Single Sensor Node 

Three interrelated parameters, namely vehicle magnetic length (𝑉𝑀𝐿), speed (𝑣), 

and occupancy time (𝑇𝑂𝑐𝑐
(𝑁𝑖)), can be directly estimated or measured for each passing 

vehicle when two sensor nodes are used per lane, as in Eq. 4-15. However, when using 

a single sensor node, only 𝑇𝑂𝑐𝑐
(𝑁𝑖) can be directly calculated, as in Eq. 4-16. 

𝑉𝑀𝐿̅̅ ̅̅ ̅̅ = �̅�×𝑇𝑂𝑐𝑐
(𝑁𝑖) Eq. 4-15 

𝑇𝑂𝑐𝑐
(𝑁𝑖) = 𝑇𝐷

(𝑁𝑖) − 𝑇𝐴
(𝑁𝑖) Eq. 4-16 
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Several studies have reported different techniques for estimating vehicle speed 

using a single IDL detector. One technique depends on assuming an average length and 

aggregating a large number of estimated speed samples within a time window to reduce 

estimation error resulting from uncorrelated length and speed measurements. However, 

this method is prone to error when mean length deviates (i.e., too many long vehicles). 

In this work, an improved speed estimation method developed in [121] for a 

single IDL detector was adopted using single MAG. The first method employs a 

moving median, as in Eq. 4-17. 

𝑣𝑚𝑒𝑑𝑖𝑎𝑛 =
𝑉𝑀𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑚𝑒𝑑𝑖𝑎𝑛 (𝑇𝐷

(𝑁𝑥)
− 𝑇𝐴

(𝑁𝑥)
)
 Eq. 4-17 

The moving median method uses a fixed window of n samples (i.e., vehicle speed 

values) centered on the current sample. The window moves one vehicle for each sample 

and calculates median speed for the current vehicle, and so on. Sample buffer should be 

selected with size enough to ensure minimal speed estimation error. Based on statistical 

data collected using MAG, a fixed window of 37 samples and average length of 7.2m 

was selected. A high-level description for moving median algorithm is shown in Figure 

4-12. 

Given that the ratio of short to long vehicle fluctuates, the sequence method can 

be applied to further improve speed estimation. Because the sensor’s occupancy time 

ratio between two successive vehicles should be proportional to their length, it is 

possible to statistically determine a ratio threshold between the mean of long vehicles 

(LV) and short (SV) vehicles based only on occupancy time, as in Eq. 4-18. Authors in 

[121] suggested a ratio 3.5:1 for IDL. The statistical analysis conducted in Chapter 6 

revealed a ratio 3.7:1, LV for MAG. Given multiple sequences within the sample 
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window, the algorithm estimates speed for each sequence and then assigns median 

speed from all individual estimates to the sample. Otherwise, given no such sequences 

within the sample window, the algorithm falls back to the moving median method. A 

high-level description for the sequence method algorithm is shown in Figure 4-13. 

𝑣𝑆𝑉 =
𝐿𝑆𝑉
𝐴

(𝑇𝐷

(𝑁𝑥)
− 𝑇𝐴

(𝑁𝑥)
)
𝑆𝑉

;          𝑣𝐿𝑉 =
𝐿𝐿𝑉
𝐴

(𝑇𝐷

(𝑁𝑥)
− 𝑇𝐴

(𝑁𝑥)
)
𝐿𝑉

 Eq. 4-18 

 

Inputs: window_size = 37, 𝑉𝑀𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 7.2𝑚 

Outputs: 𝑣𝑚𝑒𝑑𝑖𝑎𝑛 

1: WHILE (1) 

2: Computer occupancy of each vehicle in the window of current 

vehicle  

3: Search for median value within all values in the window 

4: 𝑣𝑚𝑒𝑑𝑖𝑎𝑛 𝑉𝑀𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒/ median occupancy 

5: Shift the window index to the right by 1 

6: LOOP 

Figure 4-12 Moving median speed estimation algorithm 

 

Inputs: 𝐿𝑆𝑉
𝐴 = 6.6𝑚, 𝐿𝐿𝑉

𝐴 = 15𝑚, 𝑂𝑐𝑐𝑅𝑎𝑡𝑖𝑜 = 3.7𝑚 

Outputs: 𝑣𝐿𝑉, 𝑣𝑆𝑉 

1: WHILE (1) 

2: Occ(i)  Computer occupancy of vehicle i in the sample window  

3: Occ(i+1)  Computer occupancy of vehicle i+1 in the sample window  

4: IF Occ(i+1) / Occ(i) > 𝑂𝑐𝑐𝑅𝑎𝑡𝑖𝑜 THEN 

5:           𝑣𝑆𝑉 𝐿𝑆𝑉
𝐴 / Occ(i)         :         𝑣𝐿𝑉 𝐿𝐿𝑉

𝐴 / Occ(i+1) 

6: ELSE 

7:         Compute moving median speed  

8: END IF 

9: Shift the window index to the right by 1 

10:  LOOP 

Figure 4-13 Speed estimation algorithm using sequence method  
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4.4 Time Synchronization using Embedded GPS Module 

Each sensor node relies on an onboard GPS module and RTC unit to maintain an 

independent local clock that is globally synchronized to the GPS pulse-pre-second 

(PPS) signal. Therefore, wireless connectivity is not necessary for accurate functioning 

of iVCCS nodes. Time stamping, timekeeping, and failure recovery functions are 

enabled by the MCU’s internal RTC unit, which is calibrated and aligned using the PPS 

signal.  

Upon iVCCS node power-up, the embedded MCU enables the GPS module via an 

ultra-low, quiescent-current load switch. Once the GPS receiver is successfully locked 

to available satellites, the Coordinated Universal Time (UTC) information packet is 

used to set RTC time and date. The rising edge of PPS signal, which is globally 

synchronized with ±10ns timing accuracy, is used to align RTC clock phase and 

independently synchronize all WSN-node RTC clocks to the same reference signal (i.e., 

PPS) on a global scale without exchanging messages over the wireless network. 

Once RTC is synchronized, MCU sets the GPS module in backup mode. Location 

coordination of the sensor node and its ID will be reported to the corresponding iAP for 

mapping purposes. Procedure inputs and outputs are depicted in Figure 4-14. Time zone 

is denoted by TZ, and daylight saving time is DST. A high-level description of RTC 

settings and phase alignment using a GPS module is illustrated in Figure 4-15. 

RTC

UTC Time/Date

GPS-PPS

32768Hz

Local Time/Date

DST TZ

Millisecond

 

Figure 4-14 GPS-based RTC clock setting and phase alignment block 
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The method detailed above provides extremely accurate T-Sync, although RTC 

phase alignment error calculated using Eq. 4-21 is subject to frequency tolerance fosc-tol 

of the MCU oscillator. For iVCCS, fosc-tol = ±5ppm and fosc = 32MHz. Another factor 

affecting T-Sync accuracy is RTC frequency drift [122], [123], which is discussed in 

the next section. 

𝑅𝑇𝐶𝑝ℎ𝑎𝑠𝑒𝐸𝑟𝑟 =
𝑓𝑜𝑠𝑐−𝑡𝑜𝑙

(𝑀𝐶𝑈)

106
=

±5𝑝𝑝𝑚

106
≈ ±5𝜇𝑠 Eq. 4-19 

Inputs: Time Zone, DST,  

Outputs: Local Time/Date, Geographic coordinates,  

1: DISABLE RTC clock, INITIALIZE GPS Module 

2: WHILE GPS-3D-Fix IS BUSY LOOP 

3: WHILE GPS-PPS IS INACTIVE LOOP 

4: WHILE NMEA <> $GPRMC | $GNRMC LOOP 

5: {UTC Time, Date, Coordinates}   READ $GPRMC|$GNRMC 

6: COMPUTE Local Time/Date, Sec  Sec+1, DST, Leap Year 

7: WAIT FOR GPS-PPS Rising Edge Interrupt 

8: SET RTC(Time/Date)   GPS(Time/Date) 

9: ENABLE RTC clock, SET GPS Module into Power Saving mode 

 

Figure 4-15 Pseudo-code for RTC setting and phase alignment using GPS-PPS 

4.4.1 Adaptive Compensation of the RTC Frequency Drift 

RTC accuracy is dependent on a 32.768KHz crystal oscillator (32KHzosc) with 

maximum resolution of 30.517μs (i.e., 1/32769 = 30.517μs). 32KHzosc accuracy is 

subject to several factors, including manufacturing tolerances in the 32KHzosc, passive 

PCB components, temperature excursions, and aging. The primary T-Sync error when 

using RTC is caused by the 32KHzosc uncompensated frequency drift. 
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iVCCSG1 uses ABS07-32.768KHZ-T—a 32.768KHz SMD low profile crystal—

which has an extended temperature operation from -55°C to +125°C for industrial 

applications. Output of 32KHzosc has parabolic frequency dependence over temperature, 

as depicted in Figure 4-16. Frequency drift at temperature T is expressed in Eq. 4-20, 

where  is a temperature coefficient given in ppm/T2, which is always negative (i.e., 

RTC oscillator slows down at cold or hot temperatures around T0). T0 is a turnover 

temperature—25°C±5°C. If =-0.036ppm/T2±15% and T0 = 25°C±5°C, the 

corresponding frequency drift at T=50°C, for example, is found using Eq. 4-20. 

 

Figure 4-16 Frequency stability vs. Temperature characteristics for ABS07 

Δ𝑓

𝑓0
= 𝜷(𝑻 − 𝑻𝟎)

𝟐 = −0.036×(50 − 25)2 = −22.5 𝑝𝑝𝑚 Eq. 4-20 

A -22.5ppm with respect to time is equal to: 

−
22.5

106
×60×60×24 = −1.944

𝑠𝑒𝑐

𝑑𝑎𝑦
= −81

𝑚𝑠𝑒𝑐

ℎ𝑜𝑢𝑟
= −1.35

𝑚𝑠𝑒𝑐

𝑚𝑖𝑛
= −22.5

𝜇𝑠𝑒𝑐

𝑠𝑒𝑐
 

The 32KHzosc drift 휀𝑅𝑇𝐶  at constant T has a slope m=1, meaning that change in 

휀𝑅𝑇𝐶 is constant over time at constant temperature. Measuring 휀𝑅𝑇𝐶 at 26°C for one hour 

showed a constant drift of 15µs (i.e., 54ms/hour), which can be modeled as a linear 

equation in Eq. 4-21, where current RTC time is denoted by 𝑡𝑅𝑇𝐶; corrected RTC time 
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is �̂�𝑅𝑇𝐶; GPS time at calibration moment is 𝑡𝐺𝑃𝑆; and 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐) is the accumulated error 

at 𝑇𝑜𝑠𝑐. 𝑇𝑅𝑇𝐶 is the compensated RTC time.  

�̂�𝑅𝑇𝐶 = 𝑚×𝑡𝑅𝑇𝐶 ± 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐)   ;            𝜉𝑅𝑇𝐶

(𝑇𝑜𝑠𝑐) = 휀𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐)(�̂�𝑅𝑇𝐶 − 𝑡𝐺𝑃𝑆) , 𝑚 = 1 Eq. 4-21 

Temperature variations will cause drift in 32KHzosc output. To maintain T-Sync 

error in Eq. 4-14 within an intended range, RTC drift should be tracked for 

compensation, meaning it is possible to correct 𝑡𝑅𝑇𝐶 drift by knowing TOSC. 

Corresponding frequency drift can then be calculated, with respect to time, using Eq. 

4-20;  �̂�𝑅𝑇𝐶 value can be then found using Eq. 4-21. 

The objective of this method is rejecting the disturbance (i.e., variations in TOSC). 

Measuring TOSC is not possible, because oscillator does not have a built-in temperature 

sensor. Nevertheless, and to a greater extent, under steady-state conditions TOSC can be 

assumed equal to the temperature of surrounding components. In addition to an on-

board thermistor, MAG has an on-die temperature sensor that can be used to extrapolate 

TOSC. This approach is appropriate, given that 32KHzosc output has a frequency 

tolerance ≤±5µs and aging factor of ≤±1°C@25°C/year. It is important to realign RTC 

phase when temperature changes approximately 3°C. A re-synchronization using GPS 

is also required every few hours to correct residual errors. Figure 4-17 illustrates the 

RTC drift correction process. 

 

Figure 4-17 RTC drift correction system block diagram 
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A second approach to correcting 32KHzosc output drift was developed. RTC-1Hz 

signal frequency 𝑓𝑅𝑇𝐶
(𝑀𝐶𝑈)

 was compared to an accurate reference frequency 𝑓𝑃𝑃𝑆
(𝐺𝑃𝑆)

, PPS 

signal frequency. In this scheme, both clocks are sampled using high frequency 

clock 𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

, driven from the MCU’s 32MHz oscillator. 𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

has a tolerance ±5ppm; 

however, since both signals are measured using the same clock at the same time, 

tolerance error is canceled out. If 𝑇𝑜𝑠𝑐 changes approximately 3°C, the algorithm 

awakens the GPS module, aligns the RTC phase, and computes a new time correction 

coefficient 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐). Figure 4-18 illustrates the RTC phase correction system. 

 

Figure 4-18 PPS-based RTC time drift correction system block diagram 

Once RTC phase is aligned, the algorithm configures two 16-bit MCU counters 

(Cnt1 and Cnt2) in an overflow interrupt (OVI) mode. Cnt1 is triggered by an external 

interrupt, generated on the rising edge of GPS-PPS signal. Cnt2 is triggered by 1-sec 

RTC timer interrupt, which is generated each time MCU’s RTC timer reaches the top 

value 32,768 and then transitions to zero. Elapsed time at Cnt1 or Cnt2 overflow 

interrupt is calculated (See Eq. 4-22), where Dv is a clock divider and N is timer 

precision. 

𝐶𝑛𝑡𝑇𝑚𝑎𝑥
(𝑖) =

2𝑁×𝐷𝑣

𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

=
65536×1

32×106
= 2.048 𝑚𝑠𝑒𝑐 Eq. 4-22 
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Because 2.048ms is maximum count time for Cnt1 or Cnt2, 488.28125 OVIs is 

required to count 1-sec, as evident in Eq. 4-23. OVI fraction value is equal to 

0.28125/65536=18432 count. Total number of counts, calculated in Eq. 4-24, is the 

number of OVI multiplied by counter precision plus the residual value in the counter 

register. A new time correction coefficient 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐) is calculated, as in Eq. 4-25, where 

𝐶𝑛𝑡𝑎𝑣𝑔 
(𝑖)

is the average count of n measurements (i.e., n-sec).  

𝑂𝑉𝐼1𝑠

(𝐶𝑛𝑡(𝑖))
=

𝑡𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑛𝑡𝑇𝑚𝑎𝑥
(𝑖)

=
1𝑠𝑒𝑐

2.048𝑚𝑠 
= 488.28125 Eq. 4-23 

𝐶𝑛𝑡𝑇𝑜𝑡𝑎𝑙
(𝑖) = [2𝑁×𝑂𝑉𝐼(𝐶𝑛𝑡(𝑖))] + 𝐶𝑛𝑡(𝑖) Eq. 4-24 

𝝃𝑹𝑻𝑪
(𝑻𝒐𝒔𝒄) =

𝐶𝑛𝑡𝑎𝑣𝑔
(2)

− 𝐶𝑛𝑡𝑎𝑣𝑔
(1)

𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

;          𝐶𝑛𝑡𝑎𝑣𝑔
(𝑖) =

1

𝑛
∑ 𝐶𝑛𝑡𝑇𝑜𝑡𝑎𝑙

(𝑖) (𝑘)

𝑛

𝑘=1

 Eq. 4-25 

𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐) value represents timing error (i.e., drift) or, in other words, time difference 

between measured periods of GPS-PPS-1Hz reference signal and RTC-1Hz signal.  

Once the correction process is complete, GPS module is set to power-down mode. 

Corrected timestamp is the instantaneous RTC value plus the accumulated correction 

coefficient value over time.  

Measurement resolution is one-cycle of 𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

, which is equal to 31.25ns. The 

correction algorithm should be executed at regular intervals (e.g., every hour) to adjust 

and realign the RTC phase and keep nodes synchronized. A high-level description of 

RTC frequency drift compensation using GPS-PPS signal is presented in Figure 4-19. A 

flowchart representation is depicted in Figure 4-20. 
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Inputs: Sec, 60minCnt 

Outputs: 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐), RTC-CNT 

1: IF Sec = 0 THEN  

2: 𝑇(𝑘) 
1

𝑀
∑ 𝑇(𝑘 − 𝑖)𝑀−1

𝑖=0  READ Temperature 

3: IF 𝑇(𝑘) ≥ 𝑇(𝑘 − 𝑖) + 3 or 𝑇(𝑘) ≤ 𝑇(𝑘 − 𝑖) − 3 or 60minCnt THEN 

4: INITIALIZE GPS in Tracking Mode 

5: WHILE GPS-3D-Fix IS BUSY LOOP 

6: WAITFOR GPS-PPS Rising Edge Interrupt 

7: RTC-CNT1{Realign RTC Phase, Reinitialize RTC Reg.} 

8: 𝑂𝑉𝐼(𝐶𝑛𝑡(𝑖)) 0, 𝐶𝑛𝑡(𝑖) 0, START 𝐶𝑛𝑡(𝑖); 𝑖 = {1,2} 

9: WHILE 𝑛  < 2 

10: WAITFOR GPS-PPS Rising Edge Interrupt, RTC-1sec Interrupt 

11: 𝐶𝑛𝑡𝑇𝑜𝑡𝑎𝑙
(𝑖) (𝑛) = [2𝑁×𝑂𝑉𝐼(𝐶𝑛𝑡(𝑖))] + 𝐶𝑛𝑡(𝑖); 𝑖 = {1,2} 

12: LOOP 

13: GPS Module  Power Saving mode, 60minCnt  0 

14: 𝐶𝑛𝑡𝑎𝑣𝑔
(𝑖)

=
1

𝑛
∑ 𝐶𝑛𝑡𝑇𝑜𝑡𝑎𝑙

(𝑖) (𝑘)𝑛
𝑘=1 ; 𝑖 = {1,2} 

15: 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐) =

𝐶𝑛𝑡𝑎𝑣𝑔
(2)

−𝐶𝑛𝑡𝑎𝑣𝑔
(1)

𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)  

16: ENDIF 

17: ENDIF 

 

Figure 4-19 PPS-based RTC frequency drift compensation algorithm 
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Start

RTC

Sec=0?

YES

READ T(k) 

End

NO

 T(k-1)-α>T(k)>T(k-1)+α

NO

YES

GPS

3D-Fix Done?

YES

NO

INITIALIZE GPS

GPS

PPS- Edge?

NO

YES

REALIGN RTC Phase

INITIALIZE Cnt1, Cnt2

RTC

1-sec Int.?

NO

YES

n = 2?

GPS

PPS- Edge?

NO

YES

n = 2?

NONO

YES YES

POWEDOWN GPS

 

Figure 4-20 PPS-based RTC frequency drift compensation flowchart 

A third approach to overcome 32KHzosc output drift was implemented in 

iVCCSG2. iVCCSG2 uses SiT1552 [97]—an ULP 32.768KHz MEMS TCXO—to 

provide highly accurate clock source to the MCU’s RTC unit. SiT1552 consists of 

MEMS resonator and a programmable analog circuit, as depicted in Figure 4-21. Unlike 

quartz crystals that have a classic tuning fork parabola temperature curve with a 25°C 

turnover point, SiT1552 temperature coefficient is factory calibrated and corrected over 

multiple temperature points using an active temperature correction circuit to ensure 
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extremely tight frequency variation (i.e., ±5ppm) throughout the -40°C to +85°C 

temperature range (See Figure 4-22). 

      

Figure 4-21 SiT1552 MEMS TCXO block diagram 

 

Figure 4-22 SiT1552 stability over temperature 

Using SiT1552 will significantly improve 32KHzosc output stability with ±5ppm 

frequency tolerance throughout the -40°C to +85°C temperature range. Notably, ±5ppm 

can be reduced to 0.9537ppm by employing the STM32L0 MCU Digital Smooth 

Calibration feature in iVCCSG2.  

The STM32L0 MCU series implements an RTC calibration register (i.e., CALP-

CALM) that can be used to increase or decrease the RTC clock (i.e., 32768Hz) with a 

fine resolution of 0.954ppm. An offset ranging from -511 to +512 RTC clock cycles can 
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be added within a 32-second cycle (i.e., 222) calibration window (i.e., -487.1ppm to 

+488.5ppm calibration range). Hence, after RTC phase is aligned using GPS, all nodes 

can be kept synchronized by calculating RTC clock error when temperature changes, 

and then adjusting RTC calibration registers as opposed to accumulating 𝜉𝑅𝑇𝐶
(𝑇𝑜𝑠𝑐) to the 

timestamp itself. For a given 𝑓𝐶𝐿𝐾_𝐼𝑁
(𝑅𝑇𝐶)

 RTC input clock, Eq. 4-26 can be used to calculate 

effective calibrated frequency 𝑓𝐶𝐴𝐿
(𝑅𝑇𝐶)

. 

𝑓𝐶𝐴𝐿
(𝑅𝑇𝐶)

= 𝑓𝐶𝐿𝐾_𝐼𝑁
(𝑅𝑇𝐶)

1 +
(𝐶𝐴𝐿𝑃×512) − 𝐶𝐴𝐿𝑀

220 + (𝐶𝐴𝐿𝑀 − 𝐶𝐴𝐿𝑃)×512
 Eq. 4-26 

4.4.2 Timestamps Matching Issues 

As reported earlier, vehicle arrival and departure timestamps (𝑇𝐴
(𝑁𝑖)and 𝑇𝐷

(𝑁𝑖)) are 

sent by each sensor node to an associated iAP for vehicle speed and length estimation, 

as well as, classification. In some cases—as a result of interference from other 

technologies operating in the ISM band or from a large truck passing the sensor’s 

detection zone—the radio channel might be degraded, resulting in delayed events (i.e., 

𝑇𝐴
(𝑁𝑖)and/or 𝑇𝐷

(𝑁𝑖)). 

Furthermore, a miscalibration in MAG baseline might cause a missing, delayed, 

or wrong 𝑇𝐷
(𝑁𝑖)event. This issue was solved by assigning a unique ID for each sensor 

node, and then combining 𝑇𝐴
(𝑁𝑖)and 𝑇𝐷

(𝑁𝑖) timestamps with identification characters sent 

to the iAP at each event. Also, since sensor nodes N1 and N2 are placed at close 

proximity (6~10 meter apart), the probability of error due to a delayed event is slim to 

none. Given a missing 𝑇𝐴
(𝑁𝑖)or 𝑇𝐷

(𝑁𝑖) timestamp, the corresponding  𝑇𝐴
(𝑁𝑖)or 𝑇𝐷

(𝑁𝑖) event 

will be dropped. 
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4.5 Real-Time Vehicle Magnetic Length Estimation 

Vehicle length is important for vehicle classification [12]. Vehicle magnetic 

length (VML) is defined as a disturbance in the Earth’s magnetic field caused by the 

ferrous material structure of a vehicle. VML is estimated from the product of vehicle 

speed and sensor occupancy time 𝑇𝑂𝑐𝑐
(𝑁𝑖), as shown in Eq. 4-27. A 𝑇𝑂𝑐𝑐

(𝑁𝑖) is defined as the 

difference between vehicle departure and arrival times at a designated detection point; 

both are influenced by magnetic field detection threshold. 

𝑉𝑀𝐿̅̅ ̅̅ ̅̅ = �̅�×𝑇𝑂𝑐𝑐
(𝑁𝑖) = �̅�× (𝑇𝐷

(𝑁𝑖) − 𝑇𝐴
(𝑁𝑖))

= �̅�×
𝑇𝐷

(𝑁𝐴)
− 𝑇𝐴

(𝑁𝐴)
+ 𝑇𝐷

(𝑁𝐵)
− 𝑇𝐴

(𝑁𝐵)

2
 

Eq. 4-27 

Because disturbance level to the Earth’s magnetic field depends on vehicle 

composition of ferrous materials, VML can theoretically be longer than its actual 

physical length (i.e., bumper-to-bumper length). 

Nevertheless, under the assumption that 1) symmetrical detection zone and 2) 

sensor sensitivity are independent of vehicle structure, vehicle physical length can be 

estimated using Eq. 4-28, where 𝑙𝐷𝑍 is the estimated length of sensor’s detection zone 

(See Figure 4-11). 

𝑙�̅� = 𝑙𝑀 −  𝑙𝐷𝑍
(𝑁𝑖);              𝑙𝐷𝑍

(𝑁𝑖)̂
≈ 𝑣�̅� [𝑇𝐷

(𝑁𝐵)
− 𝑇𝐴

(𝑁𝐴)
] − 𝑑𝑁𝐴→𝑁𝐵 Eq. 4-28 

4.6 Real-Time Magnetic Length-based Vehicle Classification 

In this section, the implementation algorithm for several LBVC schemes for 

MAG will be discussed. However, scheme development, including field testing and data 

collection, as well as extensive data analysis, will be introduced in Chapter 5 and 6. 
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Three distinctive LVBC schemes were developed, as illustrated in Figure 4-23. 

Vehicles were grouped in each bin based on structural similarity and statistical data, 

which are discussed in Chapter 6. The PV group includes passenger cars, pickups, and 

SUVs. The short-trailer (ST) group includes busses, light-trucks, and single-unit-trucks. 

The long vehicle (L/LT) group includes single-trailer and multi-trailer trucks. Length 

decision boundaries for 4-GSX using different thresholding methods (i.e., ɤ, αT, and αE) 

are shown in Table 4-1 (Refer to Chapter 7 for more details). These boundaries can be 

easily implemented in real-time using if-then conditions.  

 

Figure 4-23 Proposed LBVC Schemes for MAG 

Table 4-1 Length boundaries for 4-GSX using different thresholding methods 

 4G-Sx MAG 

Group FHWA-SF ɤ αT αE 

G1 F1 0.7→2.984m 0.7→3.736m 0.7→2.9107m 

G2 F2—F3 2.984→10.971m 3.736→7.7516m 2.912→7.427m 

G3 F4—F7 10.971→14.727m 7.7516→14.95m 7.427→15.136m 

G4 F8—F13 >14.727m >14.95m >15.136m 

 

The implementation model for LBVC scheme using MAG is depicted in Figure 

4-24. A vehicle actuation will trigger the detection algorithm at the upstream sensor 

node (NA) and again at the downstream sensor node (NB). Both nodes send arrival and 
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departure times to iAP, which computes speed and magnetic length. The vehicle is then 

classified by comparing computed length to decision boundaries in Table 4-1. 

 

Figure 4-24 Implementation model for LBVC Scheme using MAG 
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Chapter 5: FIELD TESTING & DATA COLLECTION 

 

Several field studies and tests were conducted during this research—many of 

which were in parking lots at the University of Oklahoma-Tulsa campus. Additionally, 

eight major field tests were conducted on highways and urban roads throughout the 

state of Oklahoma. The objectives of these studies were to test sensor hardware, 

validate various developed algorithms, evaluate overall sensor real-time performance, 

and collect data for further analysis. 

5.1 Data Collection Methodology 

This section will report on major field studies conducted on the following 

Oklahoma highways and roadways: 

 Field Test 1 to 3—U.S. 412, Chouteau, OK 74337 USA 

 Field Test 4—S. Yale Ave., Tulsa, OK 74135 USA  

 Field Test 5 —Lake Hefner Pkwy, U.S. 74, OK 73120 USA  

 Field Test 6—536 W State Hwy 152, Mustang, OK 73064 USA  

 Field Test 7—Will Rogers Expy, OKC, OK 73108 USA  

 Field Test 8—5959 Northwest Expy, OKC, OK 73132 USA  

5.1.1 Field Test 1 

The first field study was conducted March 31st, 2015, from 10:55 to 13:15 at U.S. 

412, Chouteau, OK 74337 USA, to evaluate the detection algorithm. iVCCS nodes were 

deployed in two setups: 1) roadway surface at lane center, and 2) roadside surface 

adjacent to rightmost and leftmost lanes. In both setups, MAG sensor x-axis was 

alongside traffic direction; y-axis was perpendicular to traffic lane; and z-axis was 
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pointing upward, perpendicular to the ground. Two iAPs were installed by the roadside. 

The system was configured so that each iAP sent configuration and initialization 

commands to its iVCCS nodes cluster. In turn, iVCCS nodes sent vehicle counts in real 

time to their corresponding iAP. Two video cameras were used as ground-truth for data 

validation and performance evaluation. Vehicle classes and counts were manually 

extracted from video images by counting axel number per FHWA Scheme F with 13 

classes. To reduce human error, the extraction process was validated by comparing 

extracted classes with collected data from a nearby WIM site. Video-based validation is 

considered the most accurate ground-truth, notwithstanding the fact that this method 

requires intensive labor. 

Although only one iVCCS node is needed in each lane for vehicle detection, six 

nodes were deployed in each lane to study detection algorithm portability, as well as 

repeatability of vehicle magnetic signature. Cameras, iVCCS nodes, and iAPs were 

synchronized using a GPS-based clock to aid in data analysis and validation. 

Deployment setup is depicted in Figure 5-1. Figure 5-2 shows the initial prototype 

enclosure for the iVCCS node, where a is top view, and b and c are bottom views. 

Enclosure size was 15.24(L)×15.24(W)×2.54(H) cm. The prototype was printed on a 

desktop 3D printer using PVC materials. Of interest is that many nodes were cracked 

during the test as a result of enormous dynamic load caused by heavily loaded trucks 

traveling at 70mph speed. Figure 5-3 shows the placement of iVCCS nodes, iAP, and 

cameras at the deployment site. The objectives of this field test were to: 

 Evaluate hardware reliability and system performance in a real-life scenario 

 Evaluate the detection algorithm 
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 Evaluate the initial enclosure prototype 

 Collect vehicle signature data for further analysis 

 

Figure 5-1 System setup layout on roadways (S1–S12) and roadsides (S13–S16) 

a)  b)  c)  

Figure 5-2 iVCCS enclosure—1st prototype 

 

Figure 5-3 Field Test 1 deployment site 
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5.1.2 Field Test 2 

A second field study was conducted August 3., 2015, from 8:50 to 12:50 at U.S. 

412 near Chouteau, OK, 74337 USA. The overall purpose was to evaluate detection, 

synchronization, and speed estimation algorithms in two scenarios. Several iVCC nodes 

were installed on the roadway surface of the left lane center and adjacent to the left 

lane. The right lane was blocked using a closure so that traffic was forced to travel only 

on the left lane. All nodes for MAG axis (i.e., x, y, and z) were positioned identical to 

those in Field Test 1. The system was configured so that iVCC nodes reported vehicle 

count and timestamp to a corresponding iAP in real-time. A video camera, as well as 

Road Runner 3 Kit [124] from Diamond Traffic, were used as ground-truth for data 

validation and performance evaluation. The Road Runner kit is a road tube-based 

vehicle counting and classification device. The kit reports 2-channel event timestamp 

data at a resolution of 30.5µs. Vehicles classes were manually extracted from video 

images by counting the number of axles for each vehicle. The effect of potential human 

error resulting from the extraction process was significantly reduced by comparing 

extracted classes from video with the number of axels counted by Road Runner. 

Estimated speed and length from the Road Runner device were used to validate 

estimated speed and length reported by iVCCS. 

Cameras, along with the Road Runner kit, iVCCS nodes, and iAPs, were 

synchronized using a GPS-based clock. The deployment setup is depicted in Figure 5-4. 

Figure 5-5 shows the second prototype enclosure for iVCCS node: again, a is the top 

view, and b and c are the bottom views. Enclosure size is 12.5(L)×12.5(W)×2.54(H) 

cm. Prototype shells were imported from China. A bucket for housing the sensor PCB 
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inside the shell was designed and printed on a desktop 3D printer. The shell was filled 

with epoxy after installing the battery and sensor bucket. Unfortunately, some nodes 

were cracked during the test, primarily because the epoxy material was not hard enough 

to withstand the dynamic load of heavy-loaded trucks. Figure 5-6 depicts the 

deployment site. 

 

Figure 5-4 System setup layout on roadways (NA–NB) and roadsides (NC–ND) 

a)  b)  c)  

Figure 5-5 iVCCS node enclosure—2nd prototype 

 

Figure 5-6 Field test 2 deployment site 
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The objective of field test 2 was to evaluate the following improvements: 

 Holdover de-bounce time was based on the developed statistical modeling 

for detection error. 

 An adaptive algorithm for geomagnetic baseline drift compensation was 

implemented to compensate for drift resulting from variations in 

temperature, vibrations, and aging. 

 An algorithm for time synchronization using the on-board embedded GPS 

module and RTC unit was implemented to estimate speed. 

 In this test, each sensor node maintained its own independent local clock that 

was globally synchronized to a PPS (pulse-per-second) signal generated by 

the on-board GPS module. 

5.1.3 Field Test 3 

The third field study was conducted October 8, 2015, from 8:22 to 14:00 at U.S. 

412, Chouteau, OK 74337, USA. In this test, an incredibly hard epoxy-filling material 

was used for more durable enclosure. The left lane center was populated with six nodes 

(SA, SB, SC, SD, SE, and SF) installed on the roadway surface and separated by 2 meters. 

Six additional nodes (SH, SQ, SL, SG, SI, and SK) were installed on the roadway surface 

sides of the left lane. Two nodes (SM, and SN) were also installed between left lane 

center and the lane edge to accommodate a vehicle magnetic signature diversity study. 

The right lane was blocked using a closure so that traffic was forced to only use the left 

lane. A single node (SO) was deployed in right lane center to study interference from the 

adjacent lane. All nodes were positioned the same as the MAG axis in the first field test. 
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Nodes were operated by three iAP installed on the road shoulder at a separation distance 

of 10 meters. Sensors were configured to report vehicle count and timestamp to a 

corresponding iAP in real-time. A video camera, speed radar, and Road Runner 3 Kit 

were used as ground-truth for data validation and performance evaluation. Vehicles 

class was manually extracted from video images by counting axel number for each 

vehicle. Estimated speeds and vehicle lengths reported from the Road Runner Kit were 

used to validate iVCCS data. The deployment setup layout is depicted in Figure 5-7. 

Figure 5-8 depicts the field test 3 deployment site, installed sensors, and equipment.  

 

Figure 5-7 Field test 3 system setup layout  

 

Figure 5-8 Field test 3 deployment site 
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The objective of field test 3 was to collect additional data about various classes 

for a vehicle classification analysis study and to evaluate the following improvements: 

 An optimization programming was applied to improve detection algorithm 

performance at higher sampling rates (400Hz and 800Hz). 

 An algorithm for adaptive compensation of RTC frequency drift resulting 

from temperature variations was developed and implemented. 

 The T-synch algorithm was improved to correct residual errors. 

 Arrival- and departure-detection time stamp procedures were optimized and 

improved for more accurate and consistent time-stamping. 

 On-board ACCEL was activated to collect vehicle axle data for future 

vehicle classification and axle detection data analysis. 

5.1.4 Field Test 4 

Field study 4 was conducted October 15, 2015, from 9:30 to 17:30 on an urban 

road at 41st South Yale Ave, Tulsa, OK 74135 USA. Eight iVCC nodes were installed— 

six nodes (SA, SE, SF, SG, SH, and SI) on the roadway surface center of each lane and 

two nodes (SB, and SK) on roadsides surface adjacent to the right lane. All nodes were 

operated using a single iAP. A video camera and Road Runner Kit were employed as 

ground truth for data validation and performance evaluation. Vehicle classes were 

manually extracted from video images by counting axel number for each vehicle. The 

same testing methodology was followed for this test as was for the first three tests. 

Deployment setup layout is depicted in Figure 5-9. Figure 5-10 pictures the field test 4 

deployment site, as well as installed sensors and equipment. The objective of this test 

was to evaluate sensor performance and accuracy at traffic signals on an urban road. 
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Figure 5-9 System setup layout on roadways and roadsides 

 

Figure 5-10 Eight iVCCS nodes deployed on an urban road 

5.1.5 Field Test 5 

Field test 5 was conducted April 21, 2016, from 10:52 to 13:23 at Britton Bridge 

on Lake Hefner Pkwy, U.S. 74, OK 73120. Several iVCC nodes were deployed on the 

north side of the highway. A video camera was installed on the shoulder and employed 

as ground truth for data validation and performance evaluation (See Figure 5-11).  

Road-Tubes 

iAP 

 

Camera 
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The primary objective of this study was to collect VMS sampled using MAG and 

IDL for a post-processing analysis aimed at identifying the differences between the two 

VMS sampled using MAG vs. IDL. The deployment location had been recently 

equipped by IDLs connected to a Phoenix Traffic Classifier from Diamond Traffic 

Products, Inc. This classifier device samples VMS from IDL at a sampling rate of 

1KHz.  

 

Figure 5-11 Field test 5 deployment site 

5.1.6 Field Test 6 

Field test 6 was conducted June 06, 2016, from 14:00 to 15:00 at 536 W State 

Hwy 152, Mustang, OK 73064 USA. Several iVCC nodes were deployed to measure 

traffic traveling on the highway in both directions (See Figure 5-12). A tubes counter 

was also installed 20 feet from the sensors. A nearby AVC station was also employed in 

the study. ODOT personnel used a manual counter as ground truth for performance 

evaluation. 

The objective of this study was comparing tube-count, AVC station-count, and 

iVCC-count performance with manual count. Initial data analysis was conducted by 

ODOT. 

 

Camera Node 2 

Node 1 

Node 4 

Node 3 
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Figure 5-12 Field test 6 deployment site 

5.1.7 Field Test 7 

Field test 7 was conducted in June 06, 2016, from 09:00 to 10:00 at Will Rogers 

Expy, OKC, OK 73108 USA. A single iVCC node was placed on the far most left lane 

without traffic interruption (See Figure 5-13). A video camera deployed for an ODOT 

contractor was installed on the shoulder. A nearby AVC station was also employed in 

the study. ODOT personnel used a manual counter as ground truth for performance 

evaluation. The objective of this study was to compare performance between deployed 

technologies and manual count (i.e., ground truth data). 

IDL 
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Figure 5-13 Field test 7 deployment site 

5.1.8 Field Test 8 

Field test 8 was conducted June 06, 2016, from 11:00 to 12:00 at 5959 Northwest 

Expy, OKC, OK 73132 USA. Three iVCC nodes (A, B, C) were deployed at three points 

in the intersection (See Figure 5-14). A video camera for an ODOT contractor was 

installed on the shoulder, referenced to point A. A nearby AVC station was also 

employed in field test 8. A tube counter was installed 10 feet from the sensors at points 

B and C. ODOT personnel used a manual counter as ground truth for performance 

evaluation. The objective of this study was comparing the performance of employed 

technologies at intersection with the manual count of the ground truth. 

 

 

 

IDL 

Camera 
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Figure 5-14 Field test 8 deployment site 

5.2 Log Data File Format and Structure 

The data-logging unit stored raw data on the microSD card using either an ASCII 

(American Standard Code for Information Interchange) or Binary format. ASCII format 

is a text-based representation of data, which is more intuitive and easy to read for 

humans. However, ASCII is a memory-consuming technique, as each single digit 

requires one byte in memory (e.g., the value 123 is represented in ASCII format using 

three bytes). Alternatively, binary format is a non-text file that might include any type 

of data encoded in a binary representation (e.g., the value 123 is represented in binary 

format using one byte). Besides efficient data storage, binary is energy conserving, 

permitting raw data transfer over the wireless link. One disadvantage of Binary format 

IDL 

Camera 

Tubes 
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is that data files require processing (i.e., format conversion) before humans can be read 

the data as text. 

5.2.1 ASCII Log File Structure 

An ASCII log file consists of a header, body, and an end of file (EOF) line. The 

header includes information about data log time and data, node ID, and sensor 

configuration settings. The body includes raw MAG (Bx, By, Bz) and ACCEL (Ax, Ay, 

Az) data, timestamps (i.e., vehicles arrival and departure times), instantaneous vehicle 

count, and reference timestamp, which is logged each minute.  

Table 5-1 illustrates ASCII file fields and corresponding values range. The 

MAG/ACC setting field indicates which sensor is active—“1” MAG only, “2” ACCEL 

only, “3” MAG and ACCEL are active. Given MAG/ACC=1, only Bx, By, and Bz are 

logged. For MAG/ACC=2, only Ax, Ay, and Az will be logged. The ALL/VDT field 

indicates whether raw data are continually stored (i.e., ALL/VDT = 1) or only vehicle 

signature and/or acceleration data (i.e., vehicle detection) are stored (i.e., ALL/VDT=2). 

At midnight (i.e., 00:00:00), the current file will automatically close and a new file will 

be created. Figure 5-15 shows two examples of an ASCII data log file. 
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Table 5-1 Log file structure in ASCII format 

 Field Format Value 

H
ea

d
er

 
Open Log File Time-Data [hh:mm:ss  dd\mm\yy]  

Senor’s ID [ID-Nx] x≫ [A…Z]or[a…z] 

Settings 

[ODR = xxxHz] 

[MAG/ACC = x] 

[ALL/VDT = x] 

xxx≫ [12.5…800] 

x≫   [1,2,or 3] 

x≫     [1 or 2] 

B
o

d
y

 

MAG  Bx By Bz 

ACCEL Ax Ay Az 
sxxxx sxxxx sxxxx sxxxx sxxxx sxxxx 

Bx By Bz Ax Ay Az 

s:±,xxxxx:0…16384 

Vehicle Arrival Time [Nx_TA@secofday.RTCreg] 
Secofday:0…86399 

RTCreg:  0…32767 
Vehicle Departure Time [Nx_TD@secofday.RTCreg] 

Vehicle Number [Nx_N#xxxxxxxxx] [1…4294967295] 

Reference Timestamp [t@hh:mm:ss]  

E
O

F
 Close Log File Time-Data [hh:mm:ss  dd\mm\yy]  

Total Number of Vehicles [Nx_NT#xxxxxxxxx] [1…4294967295] 

 

[10:44:02  10\15\15] 

ID-NK, ODR=400Hz, MAG/ACC=1, 

ALL/VDT=1 

-10 3 -1 

         ⋮ 

NK_TA@38828.10391 

         ⋮ 

30 -32 57 

         ⋮ 

NK_TD@38828.21667 

NK_N#1 

-3 -6 -8 

         ⋮ 

2 5 8 

t@10:48:00 

-1 8 -4 

         ⋮ 

-3 9 -4 

[17:33:00  10\15\15] 

NK_VC#1352 

[00:00:00  10\15\15] 

ID-NK, ODR=400Hz, MAG/ACC=3, 

ALL/VDT=1 

-10 3 -1 -3 9 -4 

         ⋮  

NK_TA@107.581 

          ⋮ 

30 -32 57 2 5 8 

          ⋮ 

NK_TD@107.17633 

NK_N#1 

-3 -6 -8 7 5 -4 

          ⋮ 

-9 5 -7 -2 -5 8  

t@16:30:00 

-8 7 -4 -3 9 -4 

          ⋮ 

-3 9 -4 1 10 -9 

[23:59:59  10\15\15] 

NK_VC#18109 

 

Figure 5-15 Example of ASCII data log file 
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5.2.2 Binary Log File Structure 

In general, the binary file structure is similar to the ASCII file structure—both 

contain header, body and EOF sections. However, binary file format lacks control 

characters (e.g., CR) for separating data lines; thus, prefix [P] and suffix [S] binary 

values are used to differentiate between various data values. For data format of type 

Word or Integer, the order is always [MSB] then [LSB]. The sign is assigned as the last 

bit of the MSB byte; a ‘0’ indicates positive number and ‘1’ indicates negative number. 

The ODR is assigned a value from 1 to 7 as a reference to 25, 50, 100, 200, 400, 800, or 

1600Hz, respectively. The header section starts with a prefix value [00] and ends with a 

suffix value [00]. The number of bytes in the header is fixed to 50 bytes; 40 bytes are 

reserved for future development purpose. Table 5-2 shows binary file format structure. 

Table 5-2 Log file structure in Binary format 

 Field Format Value bytes 

H
ea

d
er

 

Open Log File Time-Data [00][-]…[-] hhmmssDDMMYY 06 

Senor’s ID [-] ID≫(01…99) 01 

ODR [-] [01…06] 01 

MAG/ACC [-] [01,02, or 03] 01 

ALL/VDT [-][00] [01 or 02] 01 

Reserved [-]…[-] R[255] 40 

B
o

d
y

 

MAG  Bx By Bz 

ACCEL Ax Ay Az 

[-]…[-] 

[-]…[-] 

[FF][FF] 

[MSBx][LSBx]…[MSBz][LSBz] 

[sFFF]MSB≫ s+=0,s-=1 
6/12 

Vehicle Arrival Time [FA][-]…[-][FB][FF] 
Secofday(0…86399)≫3-bytes 

RTCreg(0…32767)≫2-bytes 
5 

Vehicle Departure Time [FC][-]…[-][FD][FF] 

Vehicle Number [FE][-][-][FE][FF] VN≫(1…65536) 2 

Reference Timestamp [F8][-]…[-][F9][FF] Secofday(0…86399)≫3-bytes 3 

E
O

F
 Close Log File Time-Data [F6][-]…[-][F7][FF] Secofday(0…86399)≫3-bytes 3 

Total Number of Vehicles [F4][-][-][F5][FF] TVN≫(1…65536) 2 
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An example shows the order of data bytes in Binary format for MAG/ACC = 1 is 

as follows: 

[0x00][hh][mm][ss][DD][MM][YY][ODR][MAG/ACC][ALL/VDT][0x00]

[40 reserved byte… 0xFF][MSBx][LSBx][MSBy][LSBy][MSBz][LSBz] 

[0xFF][0xFF][MSBx][LSBx][MSBy][LSBy][MSBz][LSBz][0xFF][0xFF]

……[0xFA][MSBHSecofday][MSBLSecofday][LSBSecofday][MSBRTCreg][LSBRTCreg]

[0xFB][0xFF][MSBx][LSBx][MSBy][LSBy][MSBz][LSBz][0xFF][0xFF]

……[0xFC][MSBHSecofday][MSBLSecofday][LSBSecofday][MSBRTCreg][LSBRTCreg]

[0xFD][0xFF][xFE][MSBVN][LSBVN][0xFE][0xFF][MSBx][LSBx][MSBy]

[LSBy][MSBz][LSBz][0xFF][0xFF]……[0xF6][MSBHSecofday][MSBLSecofday]

[LSBSecofday][MSBRTCreg][LSBRTCreg][0xF7][0xFF][0xF4][MSBTVN][LSBTVN

][0xF5][0xFF] 

 

An example shows the order of data bytes in Binary format for MAG/ACC = 3 is 

as follows: 

[0x00][hh][mm][ss][DD][MM][YY][ODR][MAG/ACC][ALL/VDT][0x00]

[40 reserved byte 0xFF][MSBMx][LSBMx][MSBMy][LSBMy][MSBMz] 

[LSBMz][MSBAx][LSBAx][MSBAy][LSBAy][MSBAz][LSBAz][0xFF][0xFF][M

SBMx][LSBMx][MSBMy][LSBMy][MSBMz][LSBMz][MSBAx][LSBAx][MSBAy][LS

BAy][MSBAz][LSBAz][0xFF][0xFF]…[0xFA][MSBHSecofday][MSBLSecofday][

LSBSecofday][MSBRTCreg][LSBRTCreg][0xFB][0xFF][MSBMx][LSBMx][MSBMy]

[LSBMy][MSBMz][LSBMz][MSBAx][LSBAx][MSBAy][LSBAy][MSBAz][LSBAz][

0xFF][0xFF]…[0xFC][MSBHSecofday][MSBLSecofday][LSBSecofday][MSBRTCreg

][LSBRTCreg][0xFD][0xFF][xFE][MSBVN][LSBVN][0xFE][0xFF][MSBx][

MSBMx][LSBMx][MSBMy][LSBMy][MSBMz][LSBMz][MSBAx][LSBAx][MSBAy][L

SBAy][MSBAz][LSBAz][0xFF][0xFF]……[0xF6][MSBHSecofday][MSBLSecofday] 

[LSBSecofday][MSBRTCreg][LSBRTCreg][0xF7][0xFF][0xF4][MSBTVN][LSBTVN

][0xF5][0xFF] 

 

 

 

 

 

Figure 5-16 illustrates geomagnetic field components (BX, BY, and BZ) and 

corresponding flux magnitude (FM) for vehicles of various classes and speeds that were 

collected by iVCCS in roadway setup. 
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Figure 5-16 Vehicles signatures, iVCCS on roadway – 𝑩(𝜸) (left) and FM (right) 
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Chapter 6: DATA ANALYSIS & PERFORMANCE EVALUATION 

 

6.1 Overview 

This chapter provides detailed information about various statistical data analysis 

studies applied on field test data reported in Chapter 5 that were collected using MAG 

sensors. Additionally, performance evaluation of developed algorithms—including field 

test results—are presented. Both data analysis and performance evaluation is illustrated 

in Figure 6-1. 

 

 Figure 6-1 Flow diagram for data validation and performance evaluation 

Data collected using MAG sensors, as well as ground truth data from Road 

Runner Kit and video cameras, was pre-processed to extract detection information (e.g., 

count, speed, length, detection time). This information had been extracted from video 

data and aligned—sample by sample—into a reference detection timestamp. 
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6.2 Magnetometer Sensor Characterization Analysis 

6.2.1 Sampling Rate in Active Detection 

Fixed sampling rates, ranging from 8Hz to 200Hz, for vehicle detection using 

MAG have been reported in literature [44], [47], [53], [125], [126]. Unlike other 

platforms, iVCCS, sampling rate can be configured on-the-fly within a range 

0.781Hz~1.60KHz to best-fit application functionalities and power constraints. 

Increasing sampling rate will increase resolution of sampled VMS. Notably, sensor 

noise output and power consumption will also increase. FXOS8700CQ has an output 

noise range 0.3~1.5μT-rms@1.56~800Hz, while output noise range for KMX62 is 

0.2~1.4 μT-rms@0.78~1600Hz. In terms of power consumption vs. sampling rate, 

FXOS8700CQ requires 40~575μA@12.5~400Hz, while KMX62 consumes 

1.6~292μA@0.78~1600Hz (See Table 3-6). 

6.2.2 MAG Output Noise Characterization 

Knowledge about the distribution of MAG output noise at different sampling rates 

is important for setting MAG reference level and Baseline threshold (RTH). 

MAG noise characteristics defined in Table 3-6 do not reflect the effect of 

additional components on PCB. An experimental test was conducted to define noise 

characteristics and gain better understanding of MAG at various sampling rates in the 

presence of other active components on iVCCS board. 

An iVCCS was tightly fixed on a wooden table in the absence of any ferrous 

objects. Eight sampling rates—from 1.56Hz to 800Hz—were tested. Each experiment 

had 50000 samples; each was a 3×16-bit. Flux magnitude (FM) was calculated from 

geomagnetic field components to find histogram and standard deviation (STD) of FM. 

mailto:μT-rms@1.56~800Hz
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Table 6-1 and Figure 6-2 show that noise mean at 400Hz sampling rate was 

approximately 30, with peak noise at 55. Hence, if 400Hz was set, Baseline threshold 

(RTH) should consider a value higher than noise peak.  

Table 6-1 Field Magnitude STD for Different Sampling Rates 

Sampling Rate STD Sampling Rate STD 

1.5625 2.58 100 5.57 

6.25 3.39 200 7.46 

12.5 3.51 400 9.88 

50 4.63 800 13.04 

 

 

Figure 6-2 Field magnitude histogram at different sampling rates 

6.2.3 MAG Sampling Rate Setting 

To determine suitable sampling rate for a particular application, let’s assume that 

a vehicle travels on a highway at a maximum speed of 140kmh and that the number of 
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samples represents the vehicle’s magnetic signature SVMS for a given sampling rate fs 

and vehicle length lV, as in Eq. 6-1. 

SVMS= 3.6 × (
llde+ ltde+ 𝑙𝑉 

v
) × 𝑓𝑠× α  Eq. 6-1 

VMS is subject not only to the disturbance in the Earth’s magnetic field caused by 

a passing vehicle structure, but also to the sensor’s detection zone. The leading and 

trailing detection edge of this zone is denoted as llde 𝑎𝑛𝑑 ltde, respectively. A correction 

factor is denoted by α. Assuming that lV = 5 meters; fs = 200Hz; llde=1.1 m; and ltde= 1.1 

m, by substituting in Eq. 6-1, SVSL = 37 samples. 

Although knowing minimum number of SVSL and low fs (e.g., 100Hz) might be 

sufficient for vehicle detection applications, a higher sampling rate is needed for 

accurate estimation, and a unique features extraction is needed for speed estimation, 

vehicle classification, or re-identification applications based on magnetic signature or 

magnetic length.  

6.2.4 Effect of MAG Rotation Around z-axis 

Vehicles can be modeled magnetically as an infinitely large number of magnetic 

dipoles, each with their own moment and direction in a three-dimensional space. MAG 

measures geometric sum of all dipoles on x, y, and z-axes. As a result, a vehicle can be 

considered a single dipole with a moment equal to the geometric sum of all dipoles. 

Hence, FM will be the same regardless of sensor orientation. However, BX, BY, and BZ 

will be different for rotation angle 𝜃. If 𝜃 is known, component values can be calculated 

before and after rotating sensor 𝜃 radians around z-axis using Eq. 6-2. 
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[

𝐵𝑥
′

𝐵𝑦
′

𝐵𝑍′

] = [
cos 𝜃 sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

] [

𝐵𝑥

𝐵𝑦

𝐵𝑧

] Eq. 6-2 

Figure 6-3 illustrates the test setup where nine iVCCS nodes were rotated around 

z-axis and the rotation of first node (θ=0°) components by 135°, compared to original 

node at 135°. 

 

 

Figure 6-3 Orientation setup and Bx and By with 𝜽=0° were rotated by 135° 

6.2.5 Repeatability of VMS and MAG Sensors Output 

The objective of this analysis was finding the degree of similarity of several 

magnetic signatures produced by multiple MAG sensors for the same vehicle under 

identical testing conditions. 

Data collected in field test 3 was used to verify MAG output consistency. Data 

from only the first four sensor nodes, namely SA, SB, SC, and SD, each separated by 2m 

(See Figure 5-7), were used in this analysis. The dataset included 1655 vehicles, ranging 

from class 1 to 10. Cross-correlation data analysis was used to find the statistical 

relationship of generated signatures between four aligned sensors. 

This method can be used to measure the similarity of two waveforms as a function 

of a time lag applied to either. Correlation between signals can be linear (e.g., impulses 
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signals) or circular (e.g., periodic signals). A correlation coefficient R was used to 

express correlation strength between signals. Pearson’s correlation coefficient is the 

most common measure of linear dependency between two random variables, A and B, 

as in Eq. 6-3. A μA and σA are mean and STD of A, and μB and σB are mean and STD 

of B. 

𝜌(𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
=

1

𝑁 − 1
∑

(𝐴𝑖 − 𝜇𝐴)(𝐵𝑖 − 𝜇𝐵)

𝜎𝐴𝜎𝐵

𝑁

𝑖=1

 Eq. 6-3 

Given that our investigation had four sensors, R for pairwise signals was first 

found using Eq. 6-3, and then the correlation coefficient matrix for all signals was found 

by combining the Rs of all pairwise variable, as in Eq. 6-4. Diagonal entries are always 

equal to 1, as all signals are directly correlated to themselves. 

𝑅 = (

𝜌(𝑁𝐴, 𝑁𝐴) 𝜌(𝑁𝐴, 𝑁𝐵) 𝜌(𝑁𝐴, 𝑁𝐶) 𝜌(𝑁𝐴, 𝑁𝐷)
𝜌(𝑁𝐵, 𝑁𝐴) 𝜌(𝑁𝐵, 𝑁𝐵) 𝜌(𝑁𝐵, 𝑁𝐶) 𝜌(𝑁𝐵, 𝑁𝐷)
𝜌(𝑁𝐶 , 𝑁𝐴) 𝜌(𝑁𝐶 , 𝑁𝐵) 𝜌(𝑁𝐶 , 𝑁𝐶) 𝜌(𝑁𝐶 , 𝑁𝐷)
𝜌(𝑁𝐷 , 𝑁𝐴) 𝜌(𝑁𝐷 , 𝑁𝐵) 𝜌(𝑁𝐷 , 𝑁𝐶) 𝜌(𝑁𝐷, 𝑁𝐷)

) Eq. 6-4 

𝑅 =

(

  
 

1 𝜌(𝐹𝑀
(𝑁𝐴)

, 𝐹𝑀
(𝑁𝐵)

) 𝜌(𝐹𝑀
(𝑁𝐴)

, 𝐹𝑀
(𝑁𝐶)

) 𝜌(𝐹𝑀
(𝑁𝐴)

, 𝐹𝑀
(𝑁𝐷)

)

𝜌(𝐹𝑀
(𝑁𝐵)

, 𝐹𝑀
(𝑁𝐴)

) 1 𝜌(𝐹𝑀
(𝑁𝐵)

, 𝐹𝑀
(𝑁𝐶)

) 𝜌(𝐹𝑀
(𝑁𝐵)

, 𝐹𝑀
(𝑁𝐷)

)

𝜌(𝐹𝑀
(𝑁𝐶)

, 𝐹𝑀
(𝑁𝐴)

) 𝜌(𝐹𝑀
(𝑁𝐶)

, 𝐹𝑀
(𝑁𝐵)

) 1 𝜌(𝐹𝑀
(𝑁𝐶)

, 𝐹𝑀
(𝑁𝐷)

)

𝜌(𝐹𝑀
(𝑁𝐷)

, 𝐹𝑀
(𝑁𝐴)

) 𝜌(𝐹𝑀
(𝑁𝐷)

, 𝐹𝑀
(𝑁𝐵)

) 𝜌(𝐹𝑀
(𝑁𝐷)

, 𝐹𝑀
(𝑁𝐶)

) 1 )

  
 

 Eq. 6-5 

Initially, correlation coefficient matrices of magnetic magnitudes FM (See Eq. 4-5) 

obtained from the four sensor nodes were found, as in Eq. 6-5. Histograms for the first 

three pairwise signals, NA-vs-NB, NA-vs-NC, and NB-vs-NC, are shown in Figure 6-4, 

Figure 6-5, and Figure 6-6, respectively. The CDF for all pairwise combinations is 

shown in Figure 6-7. The histogram shows that most correlation coefficients range 

between 0.9 and 1 (i.e., 1462 out of 1655 values), indicating high similarity between 

sensor output across multiple nodes (See Figure 6-8). A p-values matrix was also found 
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for all pairwise combinations. The matrix returned noticeably small p-values (e.g., 2e-

138), rejecting the null hypothesis and identifying significant correlations. 

 

Figure 6-4 Histogram of R between magnetic magnitudes of Node-A and B 

 

Figure 6-5 Histogram of R between magnetic magnitudes of Node-A and C 

 

Figure 6-6 Histogram of R between magnetic magnitudes of Node-B and C 
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Figure 6-7 CDF of correlation coefficients for all pairwise signals 

 

 

Figure 6-8 Magnetic magnitudes for class 2 vehicle obtained from all Nodes 

Alternatively, approximately 11% (i.e., 193 out of 1655 values) of magnetic 

signatures had R < 0.9. In a real-world environment (e.g., highway), multiple factors 

could prevent repeatable results. Including pavement temperature, changes in vehicle 
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trajectory during passage, traffic interference from adjacent lanes, and data loss due to 

jittery sampling rate, are among the most significant factors. A sample set of vehicle 

signatures with low correlation coefficient value was visually inspected and compared 

to identify the cause for 11% degradation in sensor output similarity. Primary causes for 

sensor output variations proved to be either 1) running over the sensors, creating 

significant vibrations and, in some rare cases, data loss in sensors output or 2) changing 

vehicle trajectory during passage time. Figure 6-9 shows a class 3 vehicle traveling at 

72mph driving over the edge of all four sensors. Data loss and noisy signal was 

observed in sensor NB. 

 

 

Figure 6-9 Magnetic magnitudes for class 3 vehicle driving over all sensors 

Figure 6-10 depicts correlation coefficient CDFs for X, Y, and Z-axis, 

respectively. Clearly, the Y component (i.e., BY) demonstrates the highest consistency 
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among the three axis; X and Z components (i.e., BX, BZ) diverge and spread over many 

lower values. This phenomenon confirms that the major contributor for inconsistency is 

running over the sensor, which creates a huge vertical acceleration and random 

magnetic distortion on X and Z-axis. Higher correlation coefficients for FM were 

observed, when compared with correlation coefficients for BX, BY, and BZ individually. 

 

Figure 6-10 Correlation coefficients CDFs for all pairs on x, y, and z-axis 

Small variations between different sensor outputs are considered a noise source 

with minimal effect on detection accuracy. 
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In conclusion, CDF for all pairwise combinations revealed that most R values are 

between 0.9 and 1, indicating high similarity in sensor output across multiple nodes. 

Furthermore, the p-value matrix returned insignificant p-values (i.e., 2e-138), which 

reject the null hypothesis and indicate significant correlations. Hence, each vehicle has a 

unique magnetic signature that can be utilized for vehicle re-identification applications. 

6.3 Vehicle Detection 

6.3.1 Optimal Detection Thresholds Analysis 

FM measurements for 12000 vehicles classified among various FHWA F scheme 

classes [13] via iVCCS on highway and urban roads were statistically analyzed to 

determine optimal OTH, HTH, and RTH values—defined by Eq. 4-2, Eq. 4-3, and Eq. 4-4, 

thus guaranteeing optimal detection performance. Optimality was determined 

empirically. 

FM measurements are normally distributed with a mean µ and STD 𝜎—𝐹𝑀 ∝

𝑁(𝜇, 𝜎). FM measurements can be represented as two Gaussians of a single dimension 

dataset—one representing noise and the other representing vehicle signatures. Since no 

information was provided with regard to which points belong to which distribution, a 

Gaussian Mixture Model (GMM) was used to separate the two distributions, assuming 

both are normally distributed. 

GMM is a parametric probability density function (PDF) of continuous 

measurements represented as a weighted sum of M component Gaussian densities 

(CGD), as in Eq. 6-6, where x is a data vector of d-dimensional continuous 

measurements such that 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑]𝑇; Σ is the covariance matrix of the 

Gaussian; M is the number of Gaussians; 𝜔𝑖 is the weight of Gaussian 𝑖 such that 
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 ∑ 𝜔𝑖 = 1 ,𝑖 𝜔𝑖 ≥ 0, and 𝒩(𝑥|𝜇𝑖, Σ𝑖); and 𝑖 = 1…𝑀 is the CGD given by Eq. 6-7. 

GMM parameters are estimated from a training dataset by maximum likelihood using 

expectation-maximization (EM) algorithm or maximum a posteriori (MAP) estimation. 

An iterative Expectation-Maximization (EM) algorithm was used to fit two 

GMMs to FM components, which assumed to be normally distributed. Using initial 

values for covariance matrixes, components means, and mixing ratio, the EM algorithm 

iterates in two steps, namely Expectation step (E-Step) and Maximization step (M-

Step). In E-Step, the algorithm computes posterior probabilities of component 

memberships for each observation. In M-Step the algorithm applies maximum 

likelihood to estimate covariance matrixes, components mean, and mixing ratio by 

using the component membership posterior probabilities found in the E-Step as weights. 

The new estimated parameters then become the initial parameters for the next iteration, 

and the process iterates until convergence. The initial condition parameter was set to 

random. 

𝑝(𝑥|𝜆) = ∑𝜔𝑖.𝒩(𝑥|𝜇𝑖, Σ𝑖)

𝑀

𝑖=1

 
Eq. 6-6 

𝒩(𝑥|𝜇𝑖, Σ𝑖) =
1

(2𝜋)𝑑/2 √|Σ𝑖|
𝑒−

1
2
(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)

 
Eq. 6-7 

Since d=1 and M=2, Eq. 6-7 can be rewritten as given in Eq. 6-8 and Eq. 6-9, 

where 𝑥𝑖 is a vector of FM readings (32,905,300) and 𝜇𝑛, σ𝑛
2  and 𝜇𝑠, σ𝑠

2 are the mean and 

variance of noise and vehicle signature, respectively. 

These equations can be solved using Bayesian’s role by calculating the likelihood 

to which Gaussian each value of FM belongs, using Eq. 6-10 and Eq. 6-11. The result is 

two distributions (as shown in Figure 6-11), where 𝜇𝑛=18.6; σ𝑛=8.24; 𝜇𝑠=153.5; and 



152 

σ𝑠=153.3. By substituting 𝜇𝑛, σ𝑛 in Eq. 4-2, Eq. 4-3, and Eq. 4-4, and by considering 

β=5 and α=6 (i.e., 6𝜎 represents 99.999% confidence level), we find RTH=35; OTH=68; 

and HTH=60 are the optimal thresholds. 

𝒩(𝑥𝑖|𝜇𝑠, σ𝑠
2) =

1

√2𝜋σ𝑠
2
exp {−

(𝑥𝑖 − 𝜇𝑠)
2

2σ𝑠
2

} 
Eq. 6-8 

𝒩(𝑥𝑖|𝜇𝑛, σ𝑛
2) =

1

√2𝜋σ𝑛
2
exp {−

(𝑥𝑖 − 𝜇𝑛)
2

2σ𝑛
2

} 
Eq. 6-9 

𝑝(𝜇𝑠, 𝜎𝑠
2|𝑥𝑖) =

𝑝(𝑥𝑖|𝜇𝑠, 𝜎𝑠
2)𝑝(𝜇𝑠, 𝜎𝑠

2)

𝑝(𝑥𝑖|𝜇𝑠, 𝜎𝑠
2)𝑝(𝜇𝑠, 𝜎𝑠

2) + 𝑝(𝑥𝑖|𝜇𝑛, 𝜎𝑛
2)𝑝(𝜇𝑛, 𝜎𝑛

2)
 Eq. 6-10 

𝑝(𝜇𝑛, σ𝑛
2 |𝑥𝑖) = 1 − 𝑝(𝜇𝑠, σ𝑠

2|𝑥𝑖) Eq. 6-11 

 

Figure 6-11 Distribution of magnetic noise and signature separated using GMM 
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6.3.2 Optimal Holdover Debounce-time Value 

Three detection errors can be observed if MAG is used for vehicle detection: 

a) Misdetection: Two successive vehicles at close proximity grouped as one 

b) Double detection: Long vehicle has insignificant ferrous composition in center 

c) False detection: Interfering from adjacent lanes caused by large trucks. 

Mis-, double-, and false-detection errors are illustrated in Figure 6-12, Figure 

6-15, and Figure 6-16, respectively. Both mis- and double-detection errors can be 

eliminated using Holdover debounce timer (HDT).  

Misdetection occurs when two vehicles driving at close proximity, bumper-to-

bumper, are grouped as one when the condition gT < HDT is true (See Figure 6-12), 

where gT is the gap time between departure of vehicle i and arrival of vehicle i+1 at a 

designated detection point x, as depicted in Figure 6-13; and where sensor detection 

zone, vehicle length, headway, gap, and clearance are denoted by 𝑙𝐷𝑍
(𝑁𝑖)

, 𝑙�̅�, ℎ̅, �̅�, and 𝑐̅, 

respectively. 

 

Figure 6-12 Miss-detection caused by two vehicle driving at close proximity  

gT 

Vehicle 1  Vehicle 2  
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Figure 6-13 Speed estimation deployment setup 

Double-detection error is observed with combination trucks (i.e., long trucks), as 

their structure can be magnetically divided into three sections: lead, center, and tail. 

Figure 6-14 illustrates the magnetic signature for a class 9 vehicle: lead section engine 

and first three axles, which contain the majority of the vehicle’s ferromagnetic mass. 

The tail section includes two axles. The central section S(2) has a relatively small 

ferromagnetic mass, making FM(k) < HTH true for duration S(2)
T > HDT, given truck 

speed is relatively slow so that the vehicle is double detected, as shown in Figure 6-15. 

This phenomenon is referred to in literature as pulse break-up [127]–[131].  

 

Figure 6-14 Magnetic Flux and Sections of a class 9 vehicle 

During the early stages of developing the detection algorithm, Tafish [132], [133] 

developed an analytical model to describe detection error as function of debounce time 

Td based on vehicle detection data collected using an inductive loop deployed on a 

highway. The probability of detection error was found as the weighted sum of the pulse 

break-up and tailgating probabilities. A Poisson processes was used to model vehicle 
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arrival and inter-arrival time. Vehicle inter-arrival time PDF, representing a Gamma 

distribution, was used to model waiting times between Poisson arrivals. To find pulse 

break-up probability, four assumptions were made: 1) magnitude signature of the 

central section of long truck will fall below detection threshold; 2) length of the central 

section is equivalent to the spacing between axle 3 and 4 of class 9 vehicles, thus 

assumed normally distributed; 3) radius r of detection zone is known; and 4) vehicle 

speed when passing over detection zone is constant. The probability of pulse break-up 

was found as the probability that passage time of a class 9 vehicle central section is 

more than the debounce time Td. Optimal value of Td that minimizes both pulse breakup 

and tailgating for data collected in field Test 1 and presented in Table 6-3 was found 

using the Golden Section Search algorithm. Simulation results showed that Td = 385ms 

is the optimal debounce time value, given that speed mean is 70mph and vehicle arrival 

rate is 10 vehicles per minute.  

 

Figure 6-15 Double detection caused by class 9 vehicle   
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The developed model in [132] is valid for free flow traffic and IDL. The inter-

arrival time distribution model was found to vary depending on traffic characteristics 

(i.e., low, medium, and high volume traffic) and location (e.g., on-ramp, off-ramp, 

intersection, stop-and-go, free flow) [134], [135]. Radius r for IDL is constant and equal 

to the loop radius. However, MAG r is characterized by the amount of furious materials 

in a vehicle structure because MAG, unlike IDL, are passive sensors. 

The following sections introduce statistical data analysis applied on a dataset that 

included 30580 records collected on highways and urban roads under various traffic 

conditions in the state Oklahoma. The objective was to find HDT values that satisfy the 

condition gT >HDT >S2
T (i.e., minimize mis- and double-detection errors). No 

assumptions where made in this analysis.  

 Minimizing misdetection error 

Minimizing misdetection errors was achieved by statistically analyzing gT, 

computed in Eq. 6-12. The objective was to determine optimal value of HDT, thus 

minimizing misdetection error such that gT > HDT. The longer the gap time, the larger 

debounce time, and vice versa. gT values were computed from historical data collected 

using iVCCS (See Chapter 5). Dataset included 13400 records collected on Oklahoma 

highways, in addition to 17180 records collected on urban roads in Tulsa. PDF and 

cumulative distribution function (CDF) were subsequently found (See Figure 6-17). 

CDF showed that setting HDT to 370ms for the highway setup and 430ms for the urban 

road setup reduced misdetection error to 0.1865% and 0.5065%, respectively. 
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Figure 6-16 False detection caused by a vehicle passing in adjacent lane 

 

Figure 6-17 Probability distributions of Gap periods 

gT(𝑘) = 𝑇𝐴(𝑘 + 1) − 𝑇𝑑(𝑘) Eq. 6-12 
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 Minimizing double-detection error 

To define optimal value of HDT that minimizes double-detection error such that 

HDT > S2
T, PDF and CDF of S(2)

T for 1770 vehicle of class 8, 9, and 10 were found from 

data collected using iVCCS on highway and urban roads at a speed range between 25 

and 88mph. The computation process for S2
T is depicted in Figure 6-18. CDF in Figure 

6-19 indicates that the longest S2
T is 500ms. Error probability distribution showed 

0.004% and 0.005% probability of double-detection error when setting HDT≥400ms and 

HDT≥370ms, respectively (See Figure 6-20). 

Extract
Class 8,9,10

Compute 

Magnitude
FM(k) 

MAF
(5-tap window)

Extract 

Section 2
(HDT,ODT,RDT)

Compute 

Section 2 

Duration

PDF/CDF

Durations

Vehicle 

Signatures 

Dataset

 

Figure 6-18 S2
T computation process 

 

Figure 6-19 Probability distributions of Section 2 periods 
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Figure 6-20 Probability of double detection for a given HDT 

 Minimizing false-detection error 

False-detection error is the result of a magnetic disturbance in the adjacent lane 

caused by a vehicle with high magnetic flux density traveling at the edge of lane. Such a 

disturbance will be detected by sensors in both lanes. 

False-detection can initially be eliminated by defining sensor detection zone (DZ). 

In general, DZ can be defined at five detection edges (see Figure 6-21): 1) leading, 2) 

trailing, 3) right-side, 4) left-side, and 5) elevation edge. An empirical test was 

conducted to find the relationship between distance and magnetic disturbance 

magnitude. Results are illustrated in Table 6-2. Notably, leading edge has the highest 

magnetic disturbance because vehicles contain most ferromagnetic mass in the front 

section (e.g., engine). 

Table 6-2 Detection zone characteristics based on Class 2 vehicle 

Leading Edge Trailing Edge Side sensitivity 

Distance (m) FM (µT) Distance (m) FM (µT) Distance (m) FM (µT) 

2.50 3 2.50 1 2.00 3 

2.20 4 2.20 2 1.30 7 

1.25 6 1.16 4 0.90 10 

1.10 7 1.10 6 0.60 18 

0.90 10 0.90 7 0.30 30 

0 70 0 10 0.20 40 

 

400ms 0.002 



160 

Detection zone can be controlled by either changing MAG sensor sensitivity or 

changing detection thresholds, OTH and HTH, where 𝛼 and 𝛽 (See Eq. 4-2, Eq. 4-3 and 

Eq. 4-4) can be calibrated to control detection zone and to eliminate interference outside 

the detection region. 

 

Figure 6-21 Detection zone edges was found to be symmetric 

Analyzing the vehicle magnetic signatures dataset revealed that increasing OTH to 

9µT and HTH to 6µT prevents false detection. However, increasing OTH or HTH results in 

the loss of a portion of the vehicle magnetic signature, hence, rendering an unreliable 

estimation of vehicle length and loss of important features for vehicle classification. 

Conversely, reducing sensitivity might cause motorcycle mis- and delayed-detection. 

To solve this issue, variations in BX, BY, and BZ components were analyzed to 

measure the interference on each component from a vehicle traveling in an adjacent 

lane. Analysis showed insignificant interference effect on BZ. Thus, by using 10-tap 

MAF, calculating BZ(k) mean—as in Eq. 6-13—and comparing 𝜇𝐵𝑍 for each detected 

vehicle (𝑉𝑛) with a threshold ITH, a decision can be made as to whether 𝑉𝑛 is a real 

detection or an interfering signal. ITH =80 was statistically found from dataset. Figure 
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6-22 shows variations in 𝐵(𝛾), their magnitude (𝐵(𝛾)𝑚), and after MAF (𝐵(𝛾)𝑚a) for 

class-3 with trailer detected in the right lane and an interfering vehicle in adjacent lane. 

𝜇𝐵𝑍(𝑉𝑛) =
1

N
∑ (

1

𝑀
∑ 𝐵𝑍𝑚(𝑘 − 𝑖)

𝑀−1

𝑖=0

)

𝑁

𝑘=1

≥ 𝐼𝑇𝐻;  𝐵𝑍𝑚(𝑘) = √(𝐵𝑍(𝑘) − 𝐵𝑍𝑟𝑒𝑓)
2
 Eq. 6-13 

 

  

Figure 6-22 Variations in 𝑩(𝜸)caused by interfering (left) and detection (right) 

6.3.3 Adaptive Geomagnetic Baseline Drift Compensation Performance  

To evaluate adaptive baseline drift compensation algorithm performance, a sensor 

node was deployed on pavement in the absence of ferrous materials over the course of 

the day. Notably, algorithm testing for one day when sensor is deployed on one site is 

not enough to reach a general conclusion about its worthiness. However, the developed 

algorithm repeatedly and indirectly was evaluated during many field testing campaigns 

throughout the study. 

Distribution of noise was found with and without the use of the baseline drift 

compensation algorithm. Figure 6-23 shows drift in FMref over 240 minutes without 
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(yellow) and with (blue) the geomagnetic baseline compensation algorithm. Figure 6-24 

shows vector magnitude normalized distributions without (yellow) and with (blue) 

compensation. Given no compensation is applied, mean is µ=7.67μT and STD is 

σ=1.6319μT. Given the application of compensation algorithm, mean and STD are 

µ=1.79μT and σ=0.7μT, respectively. 

 

Figure 6-23 The drift in FMref  with and without adaptive compensation 

 

Figure 6-24 FMref distribution over 24-hour with and without compensation 
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6.3.4 Detection and Counting Accuracy 

Counting accuracy was evaluated using the mean absolute percent error (MAPE), 

computed as in Eq. 6-14. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐶𝑜𝑢𝑛𝑡𝑣𝑖𝑑𝑒𝑜 − 𝐶𝑜𝑢𝑛𝑡𝑖𝑉𝐶𝐶𝑆|

|𝐶𝑜𝑢𝑛𝑡𝑣𝑖𝑑𝑒𝑜|

𝑛

1

×100 Eq. 6-14 

Field Test 1 resulted in high detection ratio with overall 2% relative error. Dataset 

was limited to 463 vehicles. Classes 4, 7, 10, 11, 12, and 13 were not observed during 

this test. Remaining classes were correctly detected, with the exception of class 9, 

which was double detected with 9% error, as presented in Table 6-3. 

Table 6-3 Detection MAPE for Roadway Setup—Field Test 1 

Vehicle Class Video Count iVCCS Count MAPE 

F01 1 1 0.0% 

F02 247 247 0.0% 

F03 65 65 0.0% 

F05 65 65 0.0% 

F06 8 8 0.0% 

F08 2 2 0.0% 

F09 75 82 9.0% 

Total 463 470 2.0% 

 

Double-detection is one of three detection errors detailed in Section 6.3.2; these 

can be observed when using MAG for vehicle detection. As stated earlier, double 

detection occurs when signal magnitude drops below Holdover Threshold (HTH) for 

duration S2
T > HDT and crosses HTH again while the same vehicle remains in the 

detection zone. Finding optimal HDT value that satisfies the condition HDT > S2
T would 
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solve this problem. Section 6.3.2 provides a detailed analysis for optimal HDT value that 

minimizes double-detection error. 

Field Test 2 had two deployment setups—roadway and roadside. Roadway setup 

resulted in 99.90% detection accuracy for dataset with 2007 vehicles. Class 1, 4, 11, 12, 

and 13 vehicles were not observed during this test (See Table 6-4). Unlike Field Test 1, 

all class 9 vehicles were correctly detected, primarily because a new HTH value based on 

the analysis study in Section 6.3.2 was implemented for this test. However, a 

misdetection of two class 2 vehicles occurred when two successive vehicles located 

within close proximity of one another were grouped as one. This could occur given that 

HDT > gT. Hence, to reduce the probability of double-detection and mis-detection, 

optimal HDT value for satisfying the condition gT > HDT > S2
T should be found This 

requirement is well-detailed in Section 6.3.2. 

The Roadside setup in Field Test 2 confirmed 99.95% detection accuracy (See 

Table 6-5). Flux magnitude variations in roadside setup were relatively uniform when 

compared to roadway setup, which accounts for slightly improved accuracy. 

Table 6-4 Detection MAPE for Roadway Setup—Field Test 2 

Vehicle Class Video Count iVCCS Count MAPE 

F02 624 622 0.32% 

F03 1027 1027 0.00% 

F05 97 97 0.00% 

F06 32 32 0.00% 

F07 1 1 0.00% 

F08 8 8 0.00% 

F09 213 213 0.00% 

F10 5 5 0.00% 

Total 2007 2005 0.099% 
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Table 6-5 Detection MAPE for Roadside Setup—Field Test 2 

Video Count iVCCS Count Detection MAPE 

2044 2045 99.951% 0.0489% 

 

Field Test 3 resulted in a high detection ratio with only 0.0363% MAPE. Dataset 

included 2754 vehicles. Class 11, 12, and 13 vehicles were absent. Detection results per 

class are shown in Table 6-6. 

Table 6-6 Detection MAPE for Roadway Setup—Field Test 3 

Vehicle Class Video Count Roadrunner iVCCS Count MAPE 

1 10 10 8 10% 

2 919 919 918 0.10881393% 

3 1287 1287 1287 0 

4 13 13 13 0 

5 133 133 133 0 

6 48 48 48 0 

8 13 13 13 0 

9 327 330 329 0.6116208% 

10 4 4 4 0 

Total 2754 2757 2753 0.036311% 

 

Field Test 4 proved excellent in-lane detection. However, unlike the first three 

highway-based field tests, Field Test 4 was conducted on an urban road. Doing so 

introduced a new false-detection error resulting from interfering vehicles on an adjacent 

lane. This error was specifically caused due to the following scenarios: 

1) Dissimilar lane widths: highway lanes measured at least 12 feet (3.7 m) wide 

and urban road lanes measured 9 feet (2.7 m) wide 
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2) Trucks traveling at the edge of a detection lane (See Figure 6-25, Figure 6-26, 

and Figure 6-27) or hybrid cars traveling on an adjacent lane (See Figure 

6-28) 

3) Vehicles with a significant amount of steel in their structure 

 

Figure 6-25 Class 9 truck at the edge of lane 2, detected in both lanes 

 

Figure 6-26 Class 6 truck on the edge of lane 2, detected in both lanes 
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Figure 6-27 Class 3 truck with huge trailer on edge of lane 2, detected in both lanes 

 

Figure 6-28 Class 2 hybrid car on the edge of lane 2, detected in both lanes 

Results for in-lane detection errors (i.e., errors resulting from adjacent lane 

interference are not considered) are illustrated in Table 6-7. All classes were detected 

correctly, with the exception of two class 9 vehicles and one class 8 vehicle that were 

double-detected when traveling at very low speeds (e.g., 10 mph). Mean Absolute Error 

(MAE) for per class detection is 0.25% for Lane 1 and 0% for Lane 2. MAPE is 0.058% 

for Lane 1 and 0% for Lane 2. Classes 7, 10, and 13 were not observed during this test. 
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Table 6-7 Number of detections In-Lane per-class—Field Test 4 

Class 
Video iVCCS MAPE 

Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 

1 7 4 7 4 0 0 

2 2607 2552 2607 2552 0 0 

3 793 817 793 817 0 0 

4 1 2 1 2 0 0 

5 39 24 39 24 0 0 

6 4 0 4 0 0 0 

8 3 2 3 2 0 0 

9 6 0 8 0 33.33% 0 

Total 3460 3401 3462 3401 0.058% 0% 
 

Table 6-8 shows overall detection error when vehicles detected from adjacent 

lanes are considered in the error analysis. Overall MAPE is 1.676%. Out of 6976 

detected by iVCCS on both lanes, 115 vehicles (either trucks or hybrid cars) were 

falsely detected from an adjacent lane. False-detection caused by hybrid cars can be 

attributed to the large amount of metal located in the stack of battery elements, as well 

as a large magnet in the electric engine router. 

Table 6-8 Total Detection Error—Field Test 4 

Detection 
iVCCS Video MAE MARE 

Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 

In-Lane 3462 3401 3460 3401 

4.02% 6.45% 1.27% 2.088% Adj-Lane Trucks 23 56 - - 

Adj-Lane Hybrid 19 15 - - 

Total 6976 6861 5.24% 1.676% 

 

False-detection error can be eliminated, as described in Section 6.3.2, by 

computing 𝜇𝐵𝑍 using Eq. 6-13, and then comparing 𝜇𝐵𝑍 for each detected vehicle (𝑉𝑛) 
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with threshold ITH. A decision can be made whether 𝑉𝑛 is an actual in-lane vehicle or an 

interfering signal from an adjacent lane. 

Field Test 5 results (See Table 6-9) demonstrated outstanding detection 

performance. Notably, several class 1 (i.e., motorcycles) were detected, albeit falsely 

from adjacent lane interference) by iVCCS, because they had an insignificant 

ferromagnetic mass and passed near detection zone (See Figure 6-29). Some class 2 and 

3 vehicles were not detected because iVCCS was in calibration state when the vehicle 

passed over the nodes. Vehicles traveling between lanes were considered false-detection 

by iVCCS sensors in both lanes. 

Table 6-9 Detection MAPE—Field Test 5 

Class 
Video iVCCS MAPE 

Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2 

1 3 9 2 7 33.3333 22.2222 

2 2062 947 2059 943 0.1454 0.42234 

3 582 289 581 287 0.17186 0.6922 

4 6 0 6 0 0 0 

5 40 11 40 11 0 0 

6 14 4 14 4 0 0 

7 1 1 1 1 0 0 

8 2 0 2 0 0 0 

9 15 6 15 6 0 0 

10 1 1 1 1 0 0 

12 3 0 3 0 0 0 

Total 2729 1268 2724 1260 0.1832% 0.6309% 
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Figure 6-29 Motorcycle considered as False-detection 

Field Test 6 and 7 results were evaluated by ODOT to determine the accuracy of 

the OU-developed wireless sensor. Real-time implementation and off-line detection 

accuracy were examined. ODOT used automatic vehicle count based on embedded 

inductive loops as ground truth. ODOT-reported results are listed in Table 6-10 and 

Table 6-11. In Field Test 6, iVCCS outperformed AVC and video-based counting 

methods with 0.639% MAPE. In Field Test 7, iVCCS achieved 98.5% detection 

accuracy. 

Table 6-10 Detection MAPE—Field Test 6 

Detection Method Manual Video AVC23 iVCCS 

Total Count 1252 1227 1263 1260 
 

Table 6-11 Detection MAPE—Field Test 7 

Detection Method Manual Tubes AVC04 iVCCS 

Total Count Lane 1 314 314 307 302 

Total Count Lane 2 286 292 293 289 

Total Count Lane 3 228 226 225 224 

Total 828 832 825 815 

 

6.3.5 Detection in Stationary-state and Stop-and-go Scenarios 

Stationary state occurs when a vehicle stops completely (e.g., parking lots) or 

travels in stop-and-go traffic conditions (e.g., traffic signals and intersections). The 
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developed detection algorithm was tested for both scenarios. Achieved detection 

accuracy was 100% when the sensor was deployed in either a roadside or roadway 

setup. Figure 6-30 and Figure 6-31 show go-stop-go detections for Honda Accord 2004 

in both roadside and roadway setups. R1 represents vehicle arrival; R2 represents steady 

state (stop); and R3 represents departure. Figure 6-32 shows FM for go-stop-go scenario 

in both roadside and roadway setups. GA, SS, and GD represent vehicle arrival section 

(go-in), vehicle in steady state (stop); and vehicle departure section (go-out). 

 

Figure 6-30 Go-Stop-Go detection using sensor in roadside setup  

 

Figure 6-31 Go-Stop-Go detection using sensor in roadway setup 
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Figure 6-32 The FM and detection flag in Go-Stop-Go scenario 

6.4 Assessment of Time Synchronization Algorithm 

To assess T-Sync algorithm performance and evaluate drift error on each node, as 

well as over a network, the following test was conducted. 

RTC-1Hz signal duration 𝑇𝑅𝑇𝐶
(𝑀𝐶𝑈)

= 1/𝑓𝑅𝑇𝐶
(𝑀𝐶𝑈)

 was compared to GPS-PPS signal 

duration 𝑇𝑃𝑃𝑆
(𝐺𝑃𝑆)

= 1/𝑓𝑃𝑃𝑆
(𝐺𝑃𝑆)

 over the course of 24 hours. Both clocks were sampled 

using the MCU’s high frequency clock at 𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

= 32𝑀𝐻𝑧. Measurement resolution is 

one-cycle of 𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

, which is equal to 31.25ns. 𝑓𝑇𝐶𝐿𝐾
(𝑀𝐶𝑈)

has a tolerance ±5ppm; however, 

since both signals are measured instantaneously using the same clock, tolerance error is 

differentiated and canceled. Differences between measured durations were logged. 

This particular test was implemented instantaneously on five different iVCCS 

nodes. RTC drift for each node was calculated separately and compared statistically 

with other node drift(s) to find over-network T-Sync error. Drift dataset included 86400 

measurements from each sensor. Temperature measurements were also combined on a 

one-minute basis. Figure 6-33 shows a histogram for absolute error between RTC-1Hz 

and GPS-PPS signals over the course of day for three iVCCS Nodes—A, B, and C. 

Consistent drift between RTC-1Hz and GPS-PPS signals with mean 20~25µSec can be 
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observed for all nodes. Figure 6-34 shows distribution of T-Sync error between two 

nodes. Drift with a mean of 2~4µSec can be observed among Nodes A, B, and C. 

 

Figure 6-33 Histogram of T-Sync error between RTC and GPS 

 

Figure 6-34 Histogram of absolute error of RTC between two nodes 

6.4.1 Evaluation of Timestamps Consistency 

GPS-PPS signal was used to synchronize spatially distributed sensor nodes that 

share a globally synchronized timestamp. However, error in arrival and departure 

timestamps might be driven by factors other than T-Synch error (e.g., delay in MCU’s 

interrupt routine and instruction execution). 



174 

Delay in executing arrival and departure timestamps is nondeterministic. Rather, 

it is subject to frequency tolerance fosc-tol of MCU’s oscillator and priority of task being 

executed by MCU at the moment of a timestamp event. Arrival timestamp event is 

triggered by MAG Magnitude Interrupt over the MC’s external interrupt INT0. 

To evaluate consistency and determine time-stamping delay while MCU is 

executing its typical cycles, a highly accurate signal generator was used to trigger INT0 

at consistent frequency fTrigger. Trigger time was logged, and delay between each two 

consecutive triggers was calculated. The test was repeated for different fTrigger, ranging 

1~1600Hz, each with 108 samples. The test resulted in trivial delay (i.e., tens of 

nanosecond) at various fTrigger values.  

6.5 Vehicle Speed Estimation 

Speed estimation accuracy was evaluated against Road Runner 3 kit with 30.5µs 

event timestamp resolution. Two statistical measurements were used: 1) Mean Absolute 

Percentage Error (MAPE), which measures systematic bias to error such that estimated 

speed values are consistently high or low (Eq. 6-15) and 2) Root Mean Square Error 

(RMSE), which measures mean deviation of estimated speed values (Eq. 6-16). Speed 

analysis is shown in Table 6-12. 

Three separations between the nodes, namely 6-, 8-, and 10-meters, were 

investigated. Better results occurred when 8 meters was used to separate two nodes. 

Notably, increasing separation distance between sensor nodes reduces the effect of 

MAG sampling rate tolerance between different nodes. Roadside setup demonstrated a 

higher speed estimation error when compared to roadway setup. This phenomenon can 

be attributed to lower SNR in the roadside scenario. 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑇𝑟𝑢𝑒 𝑆𝑝𝑒𝑒𝑑(𝑖) − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑(𝑖)

𝑇𝑟𝑢𝑒 𝑆𝑝𝑒𝑒𝑑(𝑖)
|

𝑛

𝑖=1

 Eq. 6-15 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑇𝑟𝑢𝑒 𝑆𝑝𝑒𝑒𝑑(𝑖) − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑(𝑖))

2
𝑛

𝑖=1

 Eq. 6-16 

Table 6-12 Speed Estimation Accuracy  

Setup MAPE RMSE Speed Accuracy 

Roadside (d=6m) 6.4603 mph 6.5001% 93.5012% 

Roadway (d=6m) 3.2064 mph 2.6585% 97.3415% 

Roadway (d=8m) 2.9281 mph 2.5773% 97.4227% 

Roadway (d=10m) 2.9867 mph 2.5218% 97.4782% 

 

Speed estimation using MAG is subject to several inaccurate factors (e.g., sensor 

sampling rate (fS), T-Sync error, and defined vehicle detection zone, among others). 

Nondeterministic error ξTs could occur as the result of a delay in sampling the 

exact instant of vehicle arrival or departure. Maximum ξTs is equal to the period of pre-

defined sampling rate (e.g., if fS=100Hz, then ξTs=10ms). Assume a vehicle with 5-

meter average length travels at 90mph (i.e., 40m/s). Occupancy time on each sensor 

𝑇𝑂𝑐𝑐 = 5/40 = 125𝑚𝑠. Hence, maximum error in TA and TA timestamps is 2ξTs/𝑇𝑂𝑐𝑐 = 

320µs, which accounts for 0.256% error in speed estimation. 

Based on data observations and statistical analysis, the following issues must be 

considered for more accurate speed estimation. 

1) The higher the sampling rate, the higher the speed estimation accuracy. 

2) All sensor nodes should implement the same detection reference thresholds 

(OTH, HTH, and RTH) and debounce timers (ODT, HDT, and PDT); any difference 

in thresholding between nodes will add a detection timestamp error. 
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3) Tolerance error in sensors sensitivity—due to environmental factors—can be 

reduced by using higher sampling rates; however, this error can be neglected 

without need for compensation. The reason for this phenomenon is that the 

sensor has only 2% maximum sampling rate tolerance. Moreover, this error 

depends on the accuracy of MAG internal clock, and it might be practically 

infeasible to characterize this error over operating temperature range. 

4) Changes in vehicle trajectory at detection point might result in a TA and TA 

timestamp error; however, this error is rare, trivial, and can be neglected. 

6.6 Vehicle Magnetic Length Estimation  

Vehicle magnetic length (VML) is estimated from the product of vehicle 

estimated speed and occupancy time using Eq. 4-27. The highway dataset includes 4178 

VML measurements; urban road dataset includes 6856 VML measurements. Figure 

6-35 and Figure 6-36 show the distribution of VML by FHWA F Scheme with 13 

classes for tests conducted on highway and urban roads, respectively. Combined 

distribution is shown in Figure 6-37. 

 

Figure 6-35 VML by FHWA F Scheme – Highway Data 
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Figure 6-36 VML by FHWA F Scheme – Urban Data 

 

Figure 6-37 VML by FHWA F Scheme – Combined 
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Chapter 7: IVCCS APPLICATIONS IN TRAFFIC SURVEILLANCE 

 

7.1 Overview 

In addition to the applications presented in previous chapters, several traffic 

monitoring applications can be implemented using the developed platform, for example, 

in atypical situations for uneventful traffic management of an unplanned evacuation 

path using localized traffic management. Intelligent parking lot management is another 

application wherein the sensor can be used to manage traffic by reporting 

occupied/vacant parking spots and their locations. Other applications include automatic 

garage doors, automatic gates, drive thru vehicle detectors, ramp metering, travel time 

estimation, traffic data collection, intersection capacity, collision avoidance, and 

highway design.  

This chapter provides a detailed study of two particular applications, including the 

development of vehicle classification schemes and re-identification models using 

iVCCS. 

7.2 Introduction to Vehicle Classification Schemes 

7.2.1 Axle-based Vehicle Classification Scheme 

In general, vehicle class data is collected from WIM and AVC sites, which use 

inductive loops (IDL) and piezoelectric sensors to report vehicle class according to 

FHWA Scheme F with 13 classes, as depicted in Figure 7-1.  

Scheme F was developed during the 1980s and is based on manual classification 

of visually identifiable vehicle characteristics. The scheme was later amended to 

provide computational classification based on number of axles and wheelbase axle 

spacing. Such axle-based vehicle classification (ABVC) systems require intrusive 
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sensors that are plagued with a number of drawbacks, chiefly their reliance on pavement 

geometry. This means that pavement deterioration will cause unreliable ABVC data. A 

study [136] conducted by WECAD center at the University of Oklahoma reported high 

classification inaccuracy rates resulting from sensor misconfiguration at Oklahoma 

AVC sites. ABVC schemes have proven problematic due to overlapping among vehicle 

classes, especially with regard to vehicles pulling one-, two-, or three-axle trailers [136]. 

For example, in one study, 43% of class 3 vehicles were falsely classified as class 2, 

and 45% of class 5 were falsely classified as class 3. In fact, three- or four-axle class 3 

trucks often overlap with class 8 trucks, which—upon sensor overpass—causes class 3 

to be classified as class 8. Class 6 trucks also overlap with class 4 three-axle buses. 

Significant overlap has been observed for three- or four-axle class 5 with trailers and 

classes 8 and 5, as well as buses [136]. 

 
F1: Motorcycle 

2 axles 

 
F2: Passenger Cars | 2 axles 

4-Tire, with 1- or 2-axle 

Trailers 

 

 
F3: Pickup, Van, SUV | 2 axles 

with 1- or 2-axle Trailers 

 
F4: Buses | 2 or 3 axles 

full length 

 

 
F5: Single Unite 2-axle Trucks, 6-Tire (dual rear tiers) 

 
F6: Single Unite 3-axle Trucks 

 
F7: Single Unite 4- or more axle Trucks 

 
F8: Single Trailer 3- or 4-axle Trucks 

 
F9: Single Trailer 5-axle Trucks 

 
F10: Single Trailer 6- or More-axle Trucks 

 
F11: Multi-Trailer 5- or Less-axle Trucks 

 
F12: Multi-Trailer 6-axle Trucks  

F13: Multi-Trailer 7- or More-axle Trucks 
 

Figure 7-1 U.S. FHWA Classification Scheme F with 13 class 
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As stated earlier, high costs associated with ABVC scheme technologies, as well 

as high regular maintenance and calibration costs, limit spatial distribution of such 

systems. As such, they are often installed only at strategic points. Thus, the availability 

of ABVC data is limited. Additionally, the feasibility of collecting ABVC data in urban 

areas is significantly hindered by bumper-to-bumper congestion during peak hours. 

Vehicle acceleration/deceleration and stop-and-go scenarios at signals are factors 

contributing to erroneous data. ABVC using MAG remains challenging and warrants 

ongoing research. 

7.2.2 Available Length-Based Vehicle Classification Schemes 

Traffic flow characteristics are directly affected by long vehicles (i.e., trucks), 

which have a major impact on road service life [137]. Hence, it is crucial for U.S. DOT 

agencies to estimate percentage of roadway damage. Accordingly, the FHWA Traffic 

Monitoring Guide [13] provides a generic length-based vehicle classification (LBVC) 

scheme based on nationwide IDL data. Even so, it is practically impossible to define 

LBVC boundaries for FHWA F Scheme with 13 classes. Clearly, vehicle magnetic 

length (VML) overlapping occurs between a number of classes (e.g., class 2 through 5 

and class 8 through 10). The proposed LBVC scheme [13] categorizes vehicles into four 

groups, namely passenger vehicles (PV), single-unit trucks (SU), combination-unit 

trucks (CU), and multi-unit trucks (MU). The scheme is inexpensive and works best 

with dual-IDL stations. Notably, the FHWA guide permits states to develop their own 

LBVC scheme and define length threshold boundaries that best fit vehicle 

characteristics that vary among states. 
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Since there is no generic definition for LBVC boundaries, several states have 

begun to adopt a LBVC scheme that replaces outdated ABVC and is based on local 

vehicular data collected from AVC and WIM sites located throughout a state’s 

roadways [138], [139]. Many states have defined different length boundaries for their 

developed schemes. Some have adopted a four-group LBVC scheme; others use a three-

group scheme by combining group 3 and 4. For example, the Ohio DOT has adapted a 

statewide three-group LBVC scheme that bins FHWA Scheme F vehicles into PV, SU, 

and MU [140], [141]. Florida, Illinois, Washington, and Idaho have also adopted three-

group LBVC schemes that classify the same Scheme F vehicles into PV, short trucks 

(ST), and long trucks (LT) [142]. Minnesota’s DOT (MDOT) proposed a four-group 

LBVC scheme (e.g., motorcycles [MC], short [S], medium [M], and long [L] vehicles) 

and recognizes a fifth-group, namely very long (VL), in areas with significant numbers 

of seven-or-more axle, multi-trailer trucks [138]. Table 7-1, Table 7-2, and Table 7-3 

summarize LBVC schemes from a number of states and provide a list of boundaries. 

This information was identified from data collected using IDLs. Notably, very few 

efforts attempt to assess the feasibility of defining magnetic length boundaries based on 

data collected using wireless MAG. 

Table 7-1 Three-group LBVC schemes boundaries for different states 

Description FHWA Illinois Washington Idaho Florida Ohio New York 

Passenger Car(PV) F1—F3 0→6.7m 0→6.1m 0→7m 0→6.52m 0→8.53m 0→6.7m 

Short trucks (ST) F4—F7 6.7→11.9m 6.1→12.8m 7→12.2m 6.52→12.9m 8.53→14m 6.7→11.9m 

Long trucks (LT) F8—F13 ≥11.9m ≥12.8m ≥12.2m ≥12.9m ≥14m ≥11.9m 
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Table 7-2 Four-group FHWA-LBVC scheme boundaries 

Description of Vehicles FHWA-ABVC FHWA-LBVC 

Passenger vehicles (PV) F1—F3 0→3.96m 

Single unit trucks (SU) F4—F7 3.96→10.67m 

Combination trucks (CU) F8—F10 10.67→18.59m 

Multi-trailer trucks (MU) F11—F13 18.59→36.58m 

 

Table 7-3 MDOT-LBVC scheme boundaries 

Description of Vehicles FHWA-ABVC Minnesota 

Motorcycle (MC) F1 0→1.98m 

Short vehicle (S) F2—F3 1.98→6.55m 

Medium vehicle (M) F4—F7 6.55→14.93m 

Long vehicle (L) F8—F13 14.93→36.58m 

 

Unlike VMS produced by IDL, vehicle signatures sampled using MAG have less 

consistent peak magnitude due to several factors, such as differences in sensitivity, 

vehicle trajectory, and non-symmetry of detection zone. Moreover, IDLs are active 

magnetic sensors, meaning that they generate magnetic field in the IDL zone and 

resonate at a constant frequency that increases when the generated field is induced by a 

passing vehicle. When this occurs, a detection state is triggered. Unlike IDLs, MAG are 

passive sensors that rely on the disturbance of the Earth’s magnetic field relative to the 

presence of a metallic object (i.e., vehicle). Hence, the amount of preamble ferrous 

materials in a vehicle structure plays a major role in the sensor’s detection range [122], 

[123], [143]. A vehicle with a large amount of steel can be detected from quite a lengthy 

distance, creating significant variations in VML per class. These factors make using 

MAG for LBVC extremely challenging. The development and implementation of 
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computationally efficient, real-time LBVC schemes for wireless MAG will be 

introduced in the next section. 

7.3 Development of Real-Time Length-Based Vehicle Classification 

LBVC algorithm using two timely, synchronized MAG nodes was developed and 

implemented by means of machine learning (ML) and probabilistic modeling. Several 

classification schemes are proposed. The developed algorithm enables real-time, 

computationally efficient vehicle classification based on VML. 

Classification based on VML requires precise vehicle detection and highly 

accurate speed estimation. Precise detection demands a consistent baseline (i.e., 

localized geomagnetic field) and coherent sampling rate. Speed estimation accuracy 

relies on the precision of time-stamping (i.e., vehicle arrival and departure time), which 

is dependent upon the accuracy of a time synchronization algorithm. All algorithms are 

well detailed in companion publications [122], [123], [143]. 

 Vehicle Magnetic Length  

Before developing any classification scheme that bins multiple classes, it is 

important to understand the underlying statistical distribution of each class, as well as 

the overlap among various classes. Classes that show significant overlapping should be 

grouped into the same bin. Significant overlap between two groups will result in a high 

misclassification rate. 

In this study, the combined VML dataset (11034 sample) was considered for data 

analysis and classification study. Vehicles in classes 11, 12, and 13 were missing from 

dataset, as they were not observed during the field studies. Figure 7-2 shows VML 

scatter plots for the dataset used to develop the LBVC schemes. Table 7-4 presents five 
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essential statistical measurements for each class, namely mean, standard deviation 

(STD), and variance (Var), as well as maximum and minimum values. Notably, a 

significant overlap is observed among classes 2 and 3, classes 5 through 7, and classes 8 

through 13. Additionally, significant variations in VML per class are attributed to 

differences in the amount of permeable ferrous materials in each vehicle structure. 

Vehicles with a large amount of steel in their structure can be detected from a longer 

distance; hence, their magnetic length will be longer. There is no way to find a general 

dipole model for all vehicles, even for those within the same class. Figure 7-3 illustrates 

the histograms of VML by FHWA Scheme F with 13 classes. 

 

Figure 7-2 VML scatter plots for dataset that used to develop LBVC schemes 

Table 7-4 VML statistical measurements 

FHWA  

Class 

Mean 

 Length (m) 

Standard 

Deviation 
Variance 

Minimum 

Length (m) 

Maximum 

Length (m) 

F01 1.7629 0.7156 0.5120 0.5370 2.9106 

F02 5.9383 0.8190 0.6708 2.7606 11.0377 

F03 6.6140 1.0713 1.1477 3.5516 12.5161 

F04 15.2446 1.3782 1.8996 13.3784 17.9241 

F05 9.2552 1.9270 3.7132 6.2894 16.3884 
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F06 10.9073 1.6149 2.6078 6.8855 15.4366 

F07 12.4458 NA NA 12.4458 12.4458 

F08 18.8185 3.2396 10.4950 12.0606 25.0102 

F09 21.3425 2.9298 8.5840 13.5164 34.6607 

F10 20.3949 3.5930 12.9097 12.9307 23.3700 

 

Figure 7-3 Histograms of VML by FHWA F Scheme Classes 

 Proposed Classification Schemes 

According to the FHWA’s traffic monitoring guide, “If length-based 

classification is used, it should accommodate motorcycle identification as one of the 

groups” [13]. Based on a) visual observation of VML data shown in Figure 7-2 and 

Figure 7-3, b) statistical measurements presented in Table 7-4, as well as c) structural 

similarity of vehicles, three distinctive LBVC schemes are proposed, as in Figure 7-4.  
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MC group includes only motorcycles. PV group includes passenger cars, pickups, 

and SUVs. Short-trailer group (ST) includes buses, light-trucks, and single-unit-trucks. 

Long vehicles (L/LT) group includes single-trailer and multi-trailer trucks. 

The main objective of the Three Groups LBVC Scheme A (3-GSA) is providing a 

general distinction of long and heavy commercial vehicles, which includes buses, semi-

trailer (ST) trucks, and multi-trailer (MT) trucks. The 3-GSB and 4-GSX provide further 

distinction between Passenger Vehicles (PV) and Single-Unit Trucks (SU). 

 

Figure 7-4 Recommended Classification Schemes 

Scatter plots for datasets based on proposed LBVC schemes are shown in Figure 

7-5. A histogram and statistical measurements for 3-GSA are illustrated in Figure 7-6 

and Table 7-5, respectively. Statistical measurements for 3-GSB are illustrated in Table 

7-6. A histogram and statistical measurements for 4-GSx are illustrated in Figure 7-7 and 

Table 7-7, respectively. 

   

Figure 7-5 Dataset scatter plots for 3-GSA; 3-GSB; and 4-GSx 
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Figure 7-6 Histograms of VML by 3-GSA 

Table 7-5 VML statistical measurements for 3-GSA 

Group 

Number 

Mean 

 Length (m) 

Standard 

Deviation 
Variance 

Minimum 

Length (m) 

Maximum 

Length (m) 

G1 1.6863 0.7899 0.6239 0.8112 2.9106 

G2 6.2912 1.2165 1.4799 2.7606 17.9241 

G3 21.2157 2.9961 8.9765 12.0606 34.6607 

 

Table 7-6 VML statistical measurements for 3-GSB 

Group 

Number 

Mean 

 Length (m) 

Standard 

Deviation 
Variance 

Minimum 

Length (m) 

Maximum 

Length (m) 

G1 6.1681 0.9949 0.9898 0.8112 12.5161 

G2 9.9333 2.2571 5.0944 6.2894 17.9241 

G3 21.2157 2.9961 8.9765 12.0606 34.6607 
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Figure 7-7 Histograms of VML by 4-GSx 

Table 7-7 VML statistical measurements for 4-GSx 

Group 

Number 

Mean 

 Length (m) 

Standard 

Deviation 
Variance 

Minimum 

Length (m) 

Maximum 

Length (m) 

G1 1.6863 0.7899 0.6239 0.8112 2.9106 

G2 6.1783 0.9720 0.9447 2.7606 12.5161 

G3 9.9333 2.2571 5.0944 6.2894 17.9241 

G4 21.2157 2.9961 8.9765 12.0606 34.6607 

 

 LBVC Model using Machine Learning 

Intelligent classification algorithms learn to classify vehicles into predefined 

classes by statistically modeling the relationship between vehicle class and probabilistic 

distribution of features set (or predictors) extracted from VMS. Several ML 

classification methods (e.g., Decision Trees [DT], Support Vector Machine [SVM], k-

Nearest Neighbor [kNN], and Naïve Bayes Classifier [NBC]) were evaluated, 

investigating best practices to build a system classification model and to infer optimal 

length boundaries of a real-time LBVC using MAG or IDL. Optimality was determined 

empirically. 
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VML dataset was divided into two subsets—training and testing. The first was 

used for training the intelligent classifier and the other for assessing its performance. 

Predictive accuracy of fitted models was examined using 10-fold cross-validation. This 

method builds k-different test sets from the same training set; trains all models based on 

the remaining training dataset; and utilizes best performing hypothesis on average to 

avoid over-fitting. 

All classification methods attempt to maximize total classification accuracy. 

However, each method implements different techniques. ML methods and their 

techniques are not the focus of this dissertation; interested readers can review details in 

[144]. Greatly important is that Radial Basis Function (RBF) kernel SVM outperformed 

other kernel types. Since SVM is a binary classifier, a one-vs.-all approach was used. 

This means that m-class models are fitted to the training data—one model for every 

class. When fitting the model for the mth class, training dataset labels are changed. 

Thus, the model is fitted to distinguish among two classes at once. During validation 

with the test dataset, m-individual scores are estimated—one for each model. The class 

with the highest score is chosen as the predicted class. For DT, a J84 version was 

implemented. This algorithm optimizes the tree size using “pruning” (i.e., cease 

splitting if the number of objects in a branch is smaller than a predefined value). 

Optimal values for other parameters (e.g., k-value in kNN; size of the tree and number 

of leaves in DT; C and gamma in SVM) were found using hyper-parameter 

optimization algorithms. 

Classifier performance was assisted using 10 commonly-used metrics (See Table 

7-8), namely, classification rate (CR), MAPE, RMSE, root relative squared error 
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(RRSE), true positive rate (TPR), false positive rate (FPR), F-measure (F1), Matthews’s 

correlation coefficient (MCC), area under receiver operating characteristic (ROC) curve 

(AUC), and confusion matrix (CM), denoting the True Class as 𝑐∗ and Predicted Class 

as �̂�. CR indicates the efficacy of classifier to assign a correct vehicle class, where N is 

the number of classified vehicles and 𝛿𝑛(�̂�𝑛) is a binary indicator function. MAE is a 

linear average of classification error magnitude. RMSE measures the distance from 

�̂� to 𝑐∗. RRSE reports the relative amount a predicted class differs from itself. TPR 

indicates the number of vehicles correctly classified. FPR is an indicator of how many 

vehicles were classified incorrectly. F1 measures harmonic mean of the precision or 

positive prediction value (PPV) and FPR. MCC is an important balanced measure of 

classification quality even if classes are imbalanced. AUC measures overall classifier 

quality. CM includes True Classes in rows and Predicted Classes in columns. CM 

diagonal shows the match between true class and predicted class; values outside the 

diagonal indicate a misclassification. TPR, FPR, F1, MCC, and AUC will be reported 

from this point as a weighted average score instead of per-class score. 

Table 7-8 Performance metrics used to evaluate built classification models 

Metric Formula  

CR 𝐶𝑅 =
1

𝑁
∑ 𝛿𝑛(�̂�𝑛)

𝑁

𝑛=1

;       𝛿𝑛(�̂�𝑛) = {
1, �̂�𝑛 = 𝑐𝑛

∗

0, �̂�𝑛 ≠ 𝑐𝑛
∗  Eq. 7-1 

MAPE 𝑀𝐴𝐸 =
1

𝑁
∑|�̂�𝑛 − 𝑐𝑛

∗ |

𝑁

𝑛=1

 Eq. 7-2 

RMSE 𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑛 − 𝑐𝑛

∗)2
𝑁

𝑛=1

 Eq. 7-3 
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RRSE 𝑅𝑆𝐸 = √
∑ (�̂�𝑛 − 𝑐𝑛

∗)2𝑁
𝑛=1

∑ (𝑐�̅� − 𝑐𝑛
∗)2𝑁

𝑛=1

 Eq. 7-4 

TPR 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq. 7-5 

FPR 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 Eq. 7-6 

F1 𝐹1 = 2
PPV×𝐹𝑃𝑅

PPV + 𝐹𝑃𝑅
;       𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq. 7-7 

MCC 𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁) − (𝐹𝑃×𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃×𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁×𝐹𝑁)
 Eq. 7-8 

 

Table 7-9 presents performance results of all classification methods applied on the 

proposed LBVC schemes using the MAG dataset. Notably, all classification methods 

showed comparable accuracy when correctly assigning vehicle to a class. Results can be 

attributed to parameter optimization (i.e., hyper-parameter optimization), which was 

conducted for each ML classification method. DT models were adopted primarily to 

identify length boundaries using a generated decision tree, primarily because it is quite 

easy to implement and it is very memory efficient. 3G-SA slightly outperformed 3G-SB, 

as the later had more overlap between group 1 and group 2. 3G-SA provides a general 

distinction of long- and heavy-commercial vehicles from other small and medium 

vehicles. 3G-SB, on the other hand, provides further distinction between PV, pickups, 

and SUVs in one group, and SU trucks and buses in another group. 4G-Sx provides an 

important distinction for motorcycles and outperforms 3G-SB due to the fact that there 

is no overlap between group 1 and group 2.  
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Table 7-9 LBVC Schemes performance results for MAG Dataset 
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Length boundaries (ɤ) found by DT models for all LBVC schemes are presented 

in Table 7-10 relative to corresponding FHWA Scheme F classes. 

Table 7-10 Decision boundaries for proposed LBVC Schemes—unites are in meter 

Group 
3G-SA 3G-SB 4G-Sx 

FHWA ɤ-MAG FHWA ɤ-MAG FHWA ɤ-MAG 

G1 F1 0.7→2.984 F1—F3 0.7→10.971 F1 0.7→2.984 

G2 F2—F7 2.984→14.727 F4—F7 10.971→14.727 F2—F3 2.984→10.971 

G3 F8—F13 >14.727 F8—F13 >14.727 F4—F7 10.971→14.727 

G4 — — — — F8—F13 >14.727 

 

One important observation from Table 6-18 is that MCC for 3G-SB and 4G-Sx 

was slightly degraded in all classifiers. As stated earlier, MCC is a balance measure of 

statistical correlation between a true class and predicted class. A correlation coefficient 

of ‘+1’ represents perfect agreement between prediction and observation; a ‘0’ indicates 

nothing but random prediction; and ‘−1’ indicates total disagreement between 

prediction and observation. Declining MCC value, notwithstanding extremely high 

classification rate, is attributed to class imbalance in the training set. CM for 3G-SB 

illustrates 32.7% classification accuracy for group 2 compared to 99.75% classification 

accuracy for group 1 and 97.15% for group 3. The same can be seen in 4G-Sx CM. The 

primary problem with ML algorithms is that researchers try to maximize total 

classification accuracy while imbalanced class distributions increase sensitivity of ML 

algorithms towards overrepresented class [145]. 

Imbalanced data is very common in data analysis using machine learning. A 

powerful method to accommodate strongly imbalanced data is leveraging algorithms 

that combine boosting and data sampling, such as RUSBoost and SMOTEBoost [145]. 

SMOTEBoost (Synthetic Minority Oversampling Technique) works in direct contrast to 
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RUSBoost (Random Under-sampling). However, both techniques implement multiple 

learners to produce a more intelligent classifier. In this study, RUSBoost was 

investigated. This iterative method creates a model, examines instances misclassified, 

assigns more weight, under-samples the overrepresented class, and produces a revised 

model. After all iterations are complete, trained models vote on which class each 

observation should belong, and predicted outputs are based on a weighted majority. 

Ninety-one percent classification accuracy was obtained when using the 

RUSBoost technique with 4G-S, as opposed to 97.7% classification accuracy using DT. 

MCC for RUSBoost was 0.93, showing a more balanced measure when compared to 

0.83 with DT. A 0.9119 TPR and 0.0322 FPR were observed using RUSBoost. Figure 

7-8 presents CM for RUSBoost using 4G-Sx dataset. Class 1 was correctly classified 

with 100% TPR. Although 91% of observations in class 2 where correctly classified, 30 

observations were misclassified as class 1 and 894 observations where misclassified as 

class 3.  

 

Figure 7-8 Confusion Matrix for RUSBoost using 4G-S/MAG dataset 

Classification error for class 3 dropped to 17% compared to 74% using DT, 

indicating a classification balance between groups. However, this method is 

computationally inefficient, requiring10 learners, each composed of a decision tree with 

11 split to implement the intelligent classifier. Thus, probabilistic modeling is proposed 

to empirically achieve optimal solutions, as presented in the next section. 

C1 C2 C3 C4 FNR TPR Total FNR TPR

C1 23 0 0 0 0 23 23 0% 100%

C2 30 9149 894 0 879 9149 10073 9% 91%

C3 0 46 248 5 51 165 299 17% 83%

C4 0 0 7 531 7 531 538 1% 99%

Predicted Class4GS/WMM

RUSBoost

T
u

re
 C

la
ss
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The fact that vehicle class distributions are imbalanced is not unique to 

Oklahoma, where more than 97% of vehicles belong to classes 2, 3, 5, 6, 8, and 9, as 

seen in our vehicle data collection (See Figure 7-9) and in another dataset collected over 

three months from IDL. Similar results can be found in [12], [43], [53], [59], [146]–

[150], although none considers this fact and most studies reported classification rate 

only as an overall measure of classifier performance.  

  

Figure 7-9 Class distribution in Dataset collected using MAG 

 

Figure 7-10 Class distribution in Dataset collected from IDL 

 LBVC Model using Probabilistic Modeling 

Separating two neighboring classes from each other can be treated as a binary 

problem. As such, probabilistic models can be employed to empirically determine 

optimal boundary decisions to separate neighboring classes whose vehicles have 
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overlapping lengths [151]. These methods can be implemented in real-time, require no 

training sets, and improve classification accuracy by minimizing classification errors. 

This section describes the implementation of probabilistic models and optimization 

theory.  

Let x be the vehicle magnetic length, and C1 and C2 represent two vehicle classes. 

The probability of error between two distributions, as shown in Figure 7-11, include 

P(C1|C2) and P(C2|C1), given in Eq. 7-9 and representing probability of error for 

classifying C2 as C1 and C1 as C2.  

 

Figure 7-11 Two overlapped Gaussian distributions with an unknown decision 

threshold α 

𝑃(𝑒𝑟𝑟𝑜𝑟) = ∫ 𝑃(𝑥|𝐶2)𝑃(𝐶1)𝑑𝑥

𝛼

−∞

+ ∫ 𝑃(𝑥|𝐶1)𝑃(𝐶2)𝑑𝑥

+∞

𝛼

 Eq. 7-9 

Distributions P(x, C1) and P(x, C2), shown in Figure 7-11, statistically describe 

random variable, x, corresponding to VML for vehicles traveling on Oklahoma 

roadways. In accordance with central limit theorem and law of large numbers, these 
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distributions can be approximated as Gaussian distribution models, per Eq. 7-10, Eq. 

7-11, and Eq. 7-12, where k is the class number. 

𝑋𝑘 ∝ 𝒩(𝜇𝐶𝑘
, 𝜎𝐶𝑘

)  →   𝑝(𝑥|𝜇𝐶𝑘
, 𝜎𝐶𝑘

) =
1

𝜎𝐶𝑘
√2𝜋

𝑒
−
(𝑥−𝜇𝐶𝑘

)
2

2𝜎𝐶𝑘
2

 
Eq. 7-10 

𝜇𝐶𝑘
=

1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

  ,   𝜎𝐶𝑘
= √

1

𝑛
∑ (𝑥𝑖 − 𝜇𝐶𝑘

)
2𝑛

𝑖=1
 Eq. 7-11 

𝑃(𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝐶1) ∫
1

𝜎𝐶2√2𝜋
𝑒

−
(𝑥−𝜇𝐶2)2

2𝜎𝐶2
2

. 𝑑𝑥

𝛼𝑇

−∞

+ 𝑃(𝐶2) ∫
1

𝜎𝐶1√2𝜋
𝑒

−
(𝑥−𝜇𝐶1)2

2𝜎𝐶1
2

. 𝑑𝑥

+∞

𝛼𝑇

 

Eq. 7-12 

The integration of a probability distribution function (PDF) is a cumulative 

distribution function (CDF) represented by the error function erf, as given in Eq. 7-13. 

𝑃(𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝐶1)
1

2
[1 + 𝑒𝑟𝑓 {

𝛼𝑇 − 𝜇𝐶2

𝜎𝐶2√2
}  ]

+ 𝑃(𝐶2) (1 − (
1

2
[1 + 𝑒𝑟𝑓 {

𝛼𝑇 − 𝜇𝐶1

𝜎𝐶1√2
}  ])) 

Eq. 7-13 

Optimal threshold αT can be empirically found by taking the derivative of Eq. 

7-13 and equating the outcome to 0, as presented in Eq. 7-14. 

To ensure classification error will not change at various times when new values 

are added to either group—as not all groups have the same number of vehicle instances 

per unit of time—weights, 𝑃(𝐶1) and 𝑃(𝐶2), that are proportional to the number of 

instances in each class group are calculated, as in Eq. 7-15. It is worth mentioning that 
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optimal threshold found empirically by solving Eq. 7-14 is global minima, which can be 

verified using the second derivative test, as in Eq. 7-16, such that αT > 0. 

𝑑𝑃(𝑒𝑟𝑟𝑜𝑟)

𝑑𝛼𝑇
= 0 →

𝑃(𝐶1)

𝜎𝐶2√2𝜋
𝑒

−
(𝛼𝑇−𝜇𝐶2)2

2𝜎𝐶2
2

−
𝑃(𝐶2)

𝜎𝐶1√2𝜋
𝑒

−
(𝛼𝑇−𝜇𝐶1)

2

2𝜎𝐶1
2

= 0 Eq. 7-14 

𝑃(𝐶1) =
𝐿𝑒𝑛𝑔𝑡ℎ(𝐶1)

𝐿𝑒𝑛𝑔𝑡ℎ(𝐶1 + 𝐶2)
         ;       𝑃(𝐶2) =

𝐿𝑒𝑛𝑔𝑡ℎ(𝐶2)

𝐿𝑒𝑛𝑔𝑡ℎ(𝐶1 + 𝐶2)
 Eq. 7-15 

𝑑2𝑃(𝑒𝑟𝑟𝑜𝑟)

𝑑𝛼𝑇
2 = 0

→ 𝑃(𝐶1)
(𝜇𝐶2 − 𝛼𝑇)

𝜎𝐶2
3 √2𝜋

𝑒
−
(𝛼𝑇−𝜇𝐶2)

2

2𝜎𝐶2
2

− 𝑃(𝐶2)
(𝜇𝐶1 − 𝛼𝑇)

𝜎𝐶1
3 √2𝜋

𝑒
−
(𝛼𝑇−𝜇𝐶1)2

2𝜎𝐶1
2

= 0 

Eq. 7-16 

The αE uses equal weights (𝑃(𝐶1) = 𝑃(𝐶2)) but implements a classification error 

minimization algorithm among groups. In other words, αE is found by solving Eq. 7-17 

such that probability of error for C1 classified as C2 is equal to probability of error for 

C2 classified as C1; 휀 is a precision value (e.g., 0.001). Equating classification errors 

would result in a decreased classification error for one particular group (i.e., the one 

with fewer instances), but will increase classification error for the second group (i.e., 

the one with more instances), and, hence, increase overall system classification error. 

𝑃(αE, 𝐶1) − 𝑃(αE, 𝐶2) ≤ 휀 Eq. 7-17 

Developed models can now be applied on all overlapping problematic LBVC 

schemes (e.g., 4G-Sx and 3G-SB) that have imbalanced data, as well as high overlap 

ratio among neighboring groups. 

1) Decision Boundaries for 3G-SB: 
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Figure 7-12 shows the fitted Gaussian distribution models and found decision 

thresholds for MAG 3G-SB dataset. Misclassification occurs between problematic 

groups G1 and G2, as high overlapping is observed.  

  

Figure 7-12 Gaussian distribution models and decision thresholds for the MAG 

3G-SB dataset 

Table 7-11 presents a comparison between decision boundaries found by various 

proposed thresholding methods for 3G-SB dataset. Corresponding classification rates in 

each group (i.e., how many where correctly classified as GX out of the total number of 

instances in GX) and classification errors between groups (i.e., how many were 

incorrectly classified out of the total number of instances in both groups) for pairwise 

overlapped groups are shown in Table 7-12. Table 7-13 presents a comparison between 

classification rates for different thresholding schemes applied onto the 3G-SB dataset. 

Decision threshold γ, found using ML methods, was 10.97m, which maximizes 

total classification accuracy at the expense of misclassifying more instances in G2. 

Optimal threshold for achieving balance among groups—regardless of instances in each 

group, αT—was set at 7.76m, which significantly reduces G2 misclassification error at 

the expense of decreasing accurate classification rate for G1. See Table 11 (CR-G1-vs-G2). 

Because the number of instances in G1 is considerably larger than G2 (See Figure 7-2), 

b P(x,G2) P(x,G1) 

P(x,G3) 

P(x,G2) 

a 
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overall classification accuracy was decreased (See Table 7-13). Optimal threshold for 

equal error among overlapping groups’ scenario αE was 7.43m, which rendered an equal 

classification rate CR-G1-vs-G2 at the expense of reducing overall classification accuracy to 

90.2314%, compared to 99.70% and 93.8077% for γ and αT, respectively. For 

classification rates between G2 and G3 (CR-G2-vs-G3), all scenarios achieved comparable 

performance primarily because a minimum overlapping could be observed. 

Table 7-11 Decision boundaries found by different thresholding methods for 3G-SB 

 3G-SB MAG 

Group FHWA-SF ɤ αT αE 

G1 F1—F3 0.81→10.971m 0.81→7.761m 0.81→7.4286m 

G2 F4—F7 10.971→14.727m 7.761→14.9504m 7.427→15.136m 

G3 F8—F13 >14.727m >14.9504m >15.136m 

 

Table 7-12 Pairwise classification rates and errors for different decision 

boundaries applied on 3G-SB dataset 

 3G-SB MAG 

Threshold CR-G1-vs-G2 /CErr (%) CR-G2-vs-G3 /CErr (%) 

ɤ 99.9109 vs. 29.8077 / 2.1906 96.7949 vs. 98.6667 / 2.0311 

αT 93.9778 vs. 83.9744 / 6.3221 97.1154 vs. 98.0952 / 2.2700 

αE 89.9366 vs. 90.0641 / 10.059 97.4359 vs. 97.5238 / 2.5090 

 

Table 7-13 Comparison between classification rates by different thresholding 

methods for 3G-SB LBVC 

 3G-SB MAG 

Group FHWA-SF ɤ αT αE 

G1 F1—F3 99.70% 93.9778% 89.9366% 

G2 F4—F7 32.70% 81.0897% 87.5000% 

G3 F8—F13 97.10% 98.0952% 97.5238% 

Overall CR 97.70% 93.8077% 90.2314% 
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2) Decision Boundaries for 4G-Sx: 

Figure 7-13 illustrates fitted Gaussian distribution models and decision thresholds 

for MAG 4G-Sx dataset.  

     

Figure 7-13 Gaussian distribution models and decision thresholds for the MAG 

4G-Sx dataset 

Problematic groups in 4G-Sx are G2 and G3, which have more significant overlap 

in MAG dataset when compared to IDL dataset, as seen in Figure 7-13/b. Table 7-14 

presents a comparison between decision boundaries determined by various proposed 

thresholding methods for MAG and IDL 4G-Sx datasets.  

 

Table 7-15 presents the corresponding classification rates and errors for pairwise 

overlapping groups. A comparison between classification rates for various thresholding 

methods applied on the 4G-Sx dataset is presented in Table 7-16. 

Table 7-14 Decision boundaries found by different thresholding methods for 4G-Sx 

 4G-Sx MAG 

Group FHWA-SF ɤ αT αE 

G1 F1 0.7→2.984m 0.7→3.736m 0.7→2.9107m 

G2 F2—F3 2.984→10.971m 3.736→7.7516m 2.912→7.427m 

G3 F4—F7 10.971→14.727m 7.7516→14.95m 7.427→15.136m 

G4 F8—F13 >14.727m >14.95m >15.136m 

 

b a c 

P(x,G1) 

P(x,G2) 

P(x,G3) 

P(x,G2) 

P(x,G3) 

P(x,G4) 
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Table 7-15 Pairwise classification rates and errors for different decision 

boundaries applied on 4G-Sx 

 4G-Sx MAG 

Threshold CR-G1-vs-G2 /CErr (%) CR-G2-vs-G3 /CErr (%) CR-G3-vs-G4 /CErr (%) 

ɤ 100 vs. 99.98 / 0.0198 99.91 vs. 29.81 / 2.196 96.79 vs. 98.67 / 2.031 

αT 100 vs. 99.69 / 0.307 93.86 vs. 84.29 / 6.423 97.115 vs. 98.09 / 2.27 

αE 100 vs. 99.99 / 0.0099 89.90 vs. 90.06 / 10.09 97.44 vs. 97.52 / 2.509 

Table 7-16 Comparison between classification rates by different thresholding 

methods for 4G-Sx 

 4G-Sx MAG 

Group FHWA-SF ɤ αT αE 

G1 F1 91.30% 100% 100% 

G2 F2—F3 99.90% 93.557% 89.8938% 

G3 F4—F7 26.30% 81.4103% 87.5% 

G4 F8—F13 98.70% 98.0952% 97.5238% 

Overall CR 97.6951% 93.4419% 90.2131% 

 

For G1 and G2, an insignificant overlapping rendered comparable high rates for 

all thresholding methods. However, G2 and G3 demonstrated a significant overlap, as 

G3 included SU (e.g., class 5), which are highly overlapped in length with class 3 

included in G2. ML methods set γ at a value that maximizes total classification 

accuracy at the expense of misclassifying most instances in the other groups (G3 

classification error 73.7%) because the number of instances in G2 is considerably larger 

than G3. Classification error for G3 was significantly reduced to 18.5897% when using 

αT. However, overall classification accuracy was decreased. Classification rate for G3 

improved when using αE to achieve balanced classification rates among all groups (See  
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Table 7-15) at the expense of reducing overall classification accuracy to 

90.2131% when compared with 97.6951% and 93.4419% for γ and αT, respectively. All 

scenarios achieved comparable classification performance for G3 and G4, as a 

minimum overlapping can be observed. Also, number of data points in both groups is 

relatively comparable. 

 Discussion on LBVC Models 

A comparison between LBVC scheme boundaries developed for MAG in this 

study and in alternative schemes based on IDL data developed by various states 

throughout the U.S. can be seen in Figure 7-14 and Figure 7-15. Observations include 

the following: 

 Vehicle length boundaries detected in a number of states throughout the U.S. 

vary because vehicle and traffic characteristics differ per road type, region, state, 

and other factors; hence, LBVC boundaries developed in one state might require 

adjustment to remain applicable in another. 

 Boundaries defined for MAG detectors are longer in length than those detected 

by IDL detectors; this is primarily due to the fact that MAG estimate VML, 

which is longer than the physical length (See Figure 7-14 and Figure 7-15). 

 Defining an accurate detection zone for MAG is challenging, as disturbance to 

the Earth’s magnetic field depends upon detection; this is proportional to vehicle 

length, height of vehicle chasse above ground, and vehicle structure composition 

of ferrous materials. 

 Analyses demonstrated the importance of investigating not only the 

classification rate for evaluating classification models, but also other 
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performance metrics (e.g., CM and MCC) for identifying bias in the model as a 

result of imbalanced class distributions; this increases sensitivity of ML 

algorithms toward overrepresented classes. 

 Three algorithms developed for identifying length boundaries for LBVC 

schemes resulted in three very different sets of thresholds (γ, αT, and αE): 1) γ 

maximizes classification accuracy at the expense of minority classes; 2) αT 

achieves balance among overlapped groups regardless of number of instances in 

each group; and 3) αE tries to equate classification error between two overlapped 

groups despite group population size. The question remains as to which 

algorithm is suitable. The answer depends exclusively on the objective of the 

LBVC system. If traffic engineers are more concerned with vehicles in higher 

classes (i.e., trucks that are generally highly underrepresented), then it is 

important to utilize a method that achieves balance among classes (i.e., αT). 

However, if classification accuracy is paramount regardless of classification rate 

per group, then γ method would be suitable. For balanced classification error 

among groups, αE should be implemented. 
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Figure 7-14 Decision boundaries for 3G-SB LBVC for several states 

 

Figure 7-15 Decision boundaries for 4G-Sx LBVC for several states 

7.4 Introduction to Vehicle Re-Identification and Travel Time Estimation 

Vehicle re-identification provides important information about link Travel Time 

(TT) distribution between two detection points (i.e., origin and destination) of an 

individual path. TT is a reciprocal of average speed and can be defined as a measure of 

traffic congestion between two points on a road segment. TT has been identified as a 

time-based performance measure of transportation quality and level of service. This 

information is highly beneficial for travelers, operations, and Traffic Management 

Centers (TMC). TMC uses TT for traffic prediction and analyses. Accurate and reliable 

TT information can aid in reducing congestion, improving safety, and enhancing traffic 

flow (e.g., informing commuters to avoid congested roadways, assisting transportation 

agencies to optimize traffic planning). 

Measuring TT requires speed estimation and vehicle re-identification. Several 

technologies have been used by transportation agencies to estimate TT. These include 

Bluetooth and Wi-Fi identification detection, toll tag reader, in-pavement magnetic 

detectors, automatic license plate reader, machine vision, radar equipment, inductive 



206 

loops, crowdsourcing, and cell phone signal monitoring. A detailed description of these 

technologies and best practices for TT implementation and data collection can be found 

in [152][153]. A comprehensive study for evaluating various TT estimation 

technologies was reported in [154]. The study showed that TT estimation accuracy 

depends heavily on the average penetration rate. Each TT technology was shown to 

have advantages and disadvantages (e.g. accuracy, coverage, cost, portability, and other 

factors) that should be considered when designing a scheme to evaluate technology 

reliability. Final conclusions indicated that the most overall reliable TT estimation can 

be achieved by employing multi-sensor technologies. 

A limited number of publications focus on vehicle re-identification using MAG. 

Most investigations implement re-identification algorithms based on multi-sensor array. 

This technology is used to overcome the degradation in re-identification rate due to 

change of vehicle orientation or speed between the two detection points. The most 

notable work centered on TT was proposed by the University of California, Berkeley 

[155], [156] Researchers matched vehicle magnetic signatures obtained from an array of 

seven wireless magnetic sensors positioned perpendicular to the road lane. A dynamic-

time warping algorithm (DTW) was used to calculate the distance between VMS 

obtained from the sensor array at upstream point with another sensor array downstream. 

Minimum distance was selected and compared to a threshold statistically determined 

individually for each location (i.e., mean and standard deviation serve as functions of 

algorithm parameters that must be determined beforehand for each site, primarily 

because traffic characteristics vary from place to place). The test was conducted on a 

road with a 0.9-mile distance between the two points. A 64~74% matching rate, 15% 
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mismatching rate in free flow, and 20~60% mismatching rate during congestion was 

found. A vehicle re-identification algorithm based on multi-sensor correlation was also 

proposed in [157]. The correlation of signatures from multiple sensor nodes was 

calculated, and a maximum likelihood estimation was applied to fuse data from multiple 

sensors to correct errors due to vehicle trajectory or speed change. A 77.6% to 92.8% 

re-identification rate was reported. In [158], Euclidean distances between VMS 

collected using several three-axis magnetic sensors at a sampling rate of 200Hz was 

implemented from vehicle re-identification. Ten sensors were fixed on a 0.6m wide 

plastic plate in the lane center. The algorithm was tested on only 25 vehicles. A 

90~100% re-identification rate was reported. 

7.5 Development of Vehicle Re-Identification Algorithm using MAG 

Vehicle re-identification provides realization on the link TT distribution,  

𝑇𝑇𝑙𝑖𝑛𝑘 = {𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇𝑛}, between two detection points (i.e., original and 

destination) of an individual path. TT of a vehicle i between two detection points, 

namely Upstream (𝑢) and Downstream (𝑑), can be simply found using Eq. 7-18, where 

TA and TD are the time of arrival and departure, respectively. Total and average TT for n 

vehicles traveled over link segment s within time window 𝑊𝑡 is given by Eq. 7-19 and 

Eq. 7-20, respectively.  

𝑇𝑇(𝑖) = 𝑇𝐴
𝑑(𝑖) − 𝑇𝐴

𝑢(𝑖) = 𝑇𝐷
𝑑(𝑖) − 𝑇𝐴

𝑢(𝑖) Eq. 7-18 

𝑇𝑇𝑡𝑜𝑡𝑎𝑙 = ∑(𝑇𝐴
𝑑(𝑘) − 𝑇𝐴

𝑢(𝑘))

𝑛

𝑘=1

 

 

Eq. 7-19 

𝑇𝑇𝑎𝑣𝑔 =
∑ (𝑇𝐴

𝑑(𝑘) − 𝑇𝐴
𝑢(𝑘))𝑛

𝑘=1

𝑛
 

 

Eq. 7-20 
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Vehicle re-identification using MAG is dependent upon matching an individual 

vehicle signature at two detection points. In this work, two models were developed, 

namely, Thresholding and Majority Voting, for vehicle re-identification based on 

matching VMS from a single MAG.  

Vehicle re-identification in both models involves three high-level steps, each 

consisting of several low-level steps. The first high-level step is VMS processing, which 

includes time coding, signal smoothing, magnitude computation, signal windowing, and 

amplitude normalization. The second step includes unique features extraction. The third 

step is the matching process, where unique features being extracted from a VMS at the 

downstream node is compared to a buffer of unique features for vehicles detected at the 

upstream node. Both upstream and downstream nodes are globally synchronized to the 

same reference clock (i.e., GPS). 

7.5.1 Vehicle Magnetic Signature Processing 

Vehicle Magnetic Signature Processing will apply on VMS collected at both 

detection points. The magnetic signature for each vehicle 𝑆𝑉𝑛

(𝐵𝛾)
∶  { 𝑘

𝑇𝐴

(𝑁𝑖)
, … , 𝑘

𝑇𝐷

(𝑁𝑖)
} is 

simply extracted by means of arrival and departure times at each detection point, where 

Vn is vehicle number; 𝐵𝛾 is geomagnetic flux magnitude sampled using MAG in three 

axles—𝛾 = {𝑥, 𝑦, 𝑧} ∈ ℝ3; and k is number of samples in VMS at detection node 𝑁𝑖.  

Observing vehicle signatures revealed that moments of vehicle arrival and 

departure create transient state in the signal, which appear as small peaks that cause a 

larger feature set and could possibly degrade re-identification algorithm performance. A 

windowing is applied to remove transient state samples from the right and left tails of 

the signal, which represents 10msec of the signal at each tail.  
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MAG was configured to run at 400Hz sampling rate, resulting in a significant 

fluctuation in VMS. For a more consistent signal, it is highly recommended to apply a 

smoothing algorithm on the signal using MAF, as in Eq. 7-21, to filter out fast signal 

fluctuations that are not necessary for vehicle re-identification processes. M is the total 

number of samples in a VMS. Using eight-point MAF was empirically found to be the 

suitable setting for signal sampled at 400Hz. The smoothing algorithm has a significant 

impact on feature extraction algorithm performance, hence, re-identification accuracy. 

Once the signal is smoothed, signal magnitude FM is computed using Eq. 4-5. 

𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑
(𝐵𝛾)

=
1

𝑀
∑ 𝑆𝑉𝑁

(𝐵𝛾)(𝑘 − 𝑖)

𝑀−1

𝑖=0

;      𝛾 = {𝑥, 𝑦, 𝑧} ∈ ℝ3 Eq. 7-21 

Because vehicle trajectory might not be identical at the two detection points, the 

summation (𝑯𝑉𝑛
), difference (𝑰𝑉𝑛

), and ratio (𝑹𝑉𝑛
) of 𝑆𝑉𝑛

(𝐵𝑥)
, 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 𝑆𝑉𝑛

(𝐵𝑦)
 were also 

calculated in this step (See Eq. 7-22). As stated in Chapter 5, MAG sensor x-axis was 

alongside traffic direction; y-axis was perpendicular to traffic lane; and z-axis was 

perpendicular to the ground pointing upward in all field test setups. Recalling “1.5.1 

Magnetometer Sensor Theory of Operation” in Chapter 1, 𝑩𝛾 vector is described using 

seven components in the field coordinate plane (See Figure 1-2). Horizontal intensity H 

is the magnitude of 𝐵𝑥 and 𝐵𝑦. The ratio of 𝐵𝑥 and 𝐵𝑦represents magnetic variation 

between Geographic North and horizontal intensity. Considering these components can 

solve the problem of changing vehicle trajectory between points to a certain level (e.g., 

relatively small change and MAG is not captured near the wheels). 

𝑯𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑆𝑉𝑛

(𝐵𝑥)
+ 𝑆𝑉𝑛

(𝐵𝑦)
 

𝑳𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑆𝑉𝑛

(𝐵𝑥)
− 𝑆𝑉𝑛

(𝐵𝑦)
 

Eq. 7-22 
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𝑹𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑆𝑉𝑛

(𝐵𝑦)
/ 𝑆𝑉𝑛

(𝐵𝑥)
  

Next, amplitude normalization is performed to individually rescale each signal, 

including the magnitude FM, by the range of its elements prior to further calculations. 

𝑆𝑉𝑛

(𝐹𝑀)
 was rescaled between [0, 1], as in Eq. 7-23, and signals 𝑆𝑉𝑛

(𝐵𝑥)
, 𝑆𝑉𝑛

(𝐵𝑥)
, 𝑆𝑉𝑛

(𝐵𝑥)
, 𝐻𝑉𝑛

, 

𝐿𝑉𝑛
, and 𝑅𝑉𝑛

 were rescaled between [-1, +1], as in Eq. 7-24. 

𝑆𝑉𝑛𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
(𝐹𝑀)

=
𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(𝐹𝑀)
− min (𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(𝐹𝑀)
)

max (𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(𝐹𝑀)
) − min (𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(𝐹𝑀)
)
  Eq. 7-23 

𝑆𝑉𝑛𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
(𝐵𝛾)

= −1 + 2
𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(𝐵𝛾)
− 𝑚𝑖𝑛 (𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(𝐵𝛾)
)

𝑚𝑎𝑥 (𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑
(𝐵𝛾)

) − 𝑚𝑖𝑛 (𝑆𝑉𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑
(𝐵𝛾)

)
  Eq. 7-24 

The result is seven normalized signals for each vehicle at each detection point (P), 

as in Eq. 7-25, where (𝑁) is either the upstream (u) or downstream (d) detection node; 

𝑋𝑉𝑛
, 𝑌𝑉𝑛

, and 𝑍𝑉𝑛
 is the normalized vector of measurements for a vehicle Vn on x-axis, 

y-axis, and z-axis, respectively; and 𝐹𝑀𝑉𝑛
is the normalized vector of magnitude values. 

𝑆𝑉𝑛

(𝐵𝛾)
 and 𝑆𝑉𝑛

(𝐹𝑀)
 are illustrated in Figure 7-16 and Figure 7-17, respectively; (a) raw 

signal, (b) signals after smoothing, and (c) signals after normalization. 𝐻𝑉𝑛

(𝑁)
, 𝐿𝑉𝑛

(𝑁)
, and 

𝑅𝑉𝑛

(𝑁)
 are depicted in Figure 7-18. 

𝑋𝑉𝑛

(𝑁)
= {𝑥𝑖}𝑖=1

𝑘

𝑌𝑉𝑛

(𝑁)
= {𝑦𝑖}𝑖=1

𝑘

𝑍𝑉𝑛

(𝑁)
= {𝑧𝑖}𝑖=1

𝑘

 

𝐻𝑉𝑛

(𝑁)
= {ℎ𝑖}𝑖=1

𝑘

𝐿𝑉𝑛

(𝑁)
= {𝑙𝑖}𝑖=1

𝑘

𝑅𝑉𝑛

(𝑁)
= {𝑟𝑖}𝑖=1

𝑘

 

Eq. 7-25 
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𝐹𝑀𝑉𝑛

(𝑁) = {𝐹𝑀𝑖}𝑖=1
𝑘  

 

 

 

Figure 7-16 VMS components before and after smoothing and normalization  

 



212 

 

 

Figure 7-17 VMS magnitude before and after smoothing and normalization 

 

Figure 7-18 VMS different combinations of Bx and By. 

7.5.2 Features Extraction & Data Transformation 

Vehicle magnetic signature (VMS) can be represented as a time series. Over the 

last decades, a variety of algorithms have been proposed in literature for time series 
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segmentation or representation. For example, authors in [159] used Perceptually 

Important Points (PIP) to dynamically segment the price time series into subsequences 

and then identify similar historical subsequences using Dynamic Time Warping (DTW). 

The PIP process was first introduced and used for pattern matching of in financial 

applications [160]. Piecewise Linear Representation (PLR) is another technique that is 

widely used as an approximation of a time series (e.g., Electrocardiogram time series). 

An extensive review and empirical comparison of several techniques for segmenting 

time series can be reviewed in [160], [161]. 

In this work, PIP was used as data transformation to reduce the dimension of 

VMS by preserving the salient points for each signal in Eq. 7-25. The extracted salient 

points maintain the unique characteristics of signal while reducing the amount of data to 

be processed or transferred from the sensor node to iAP. 

To find PIP for a VMS, each point is compared with neighboring points. Given a 

normalized signal 𝑆𝑉𝑛

(𝑁)
, which includes k sample point, we can say that 𝑆𝑉𝑛

(𝑁)[𝑘] is a 

peak if its neighboring points within a moving window w at y-axle are smaller than its 

value. 𝑆𝑉𝑛

(𝑁)[𝑘] is a valley if its neighboring points are larger than its value. The 

algorithm also includes the first and last points of the VMS. The generated features 

vector 𝐸𝑉[𝑖] includes the value of each PIP point (i), which represents variations in y 

coordinate. The w value can be calculated using Eq. 7-27, where a is a coefficient that 

was found experimentally.   

𝐸𝑉 = {
𝑝𝑒𝑎𝑘,            𝑆𝑉𝑛

(𝑁)[𝑘 − 𝑤] < 𝑆𝑉𝑛

(𝑁)[𝑘] > 𝑆𝑉𝑛

(𝑁)[𝑘 + 𝑤]

𝑣𝑎𝑙𝑙𝑒𝑦, 𝑆𝑉𝑛

(𝑁)[𝑘 − 𝑤] > 𝑆𝑉𝑛

(𝑁)[𝑘] < 𝑆𝑉𝑛

(𝑁)[𝑘 + 𝑤]
  Eq. 7-26 
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𝑤 =
𝑎

max (𝑆𝑉𝑛

(𝑁)
) − min (𝑆𝑉𝑛

(𝑁)
)
;             𝑎 = 6 Eq. 7-27 

The difference between consecutive PIP points, which represents variations in x 

coordinate, was also taken into consideration to improve vehicle re-identification 

accuracy in the event that signal amplitude is different at the two detection points (i.e., 

vehicle trajectory changed). Doing so eliminates the need for deploying more sensors 

laterally, as proposed [155], [157], [158]. Spacing difference vector (TS) between PIP 

points was calculated by taking the difference between PIP point indices. 

Finally, Piecewise Linear Representation (PL) of the PIP points was found. PL 

consists of slope values in [0, 1], which represent the linear relationship between 

amplitude and spacing between PIP points. 

The result of this step is three sets of features (i.e., 𝐸𝑉[𝑖], 𝑇𝑆[𝑖], and 𝑃𝐿[𝑖]), each 

consisting of seven vectors (See Eq. 7-25), as in Eq. 7-28. The sets are computed for 

each vehicle (Vn) at each detection point (N). Figure 7-19 and Figure 7-20 depict the PIP 

points, spacing, and PL extracted from magnitude and geomagnetic field components 

for a class 9 vehicle. 

𝐸𝑉𝑉𝑛

(𝑁)
= {𝐸𝑉(𝑋𝑉𝑛

(𝑁)
) , 𝐸𝑉(𝑌𝑉𝑛

(𝑁)
), 𝐸𝑉(𝑍𝑉𝑛

(𝑁)
), 𝐸𝑉(𝐹𝑉𝑛

(𝑁)
), 𝐸𝑉(𝐻𝑉𝑛

(𝑁)
), 𝐸𝑉(𝐿𝑉𝑛

(𝑁)
), 𝐸𝑉(𝑅𝑉𝑛

(𝑁)
)} 

𝑇𝑆𝑉𝑛

(𝑁)
= {𝑇𝑆(𝑋𝑉𝑛

(𝑁)
) , 𝑇𝑆(𝑌𝑉𝑛

(𝑁)
), 𝑇𝑆(𝑍𝑉𝑛

(𝑁)
), 𝑇𝑆(𝐹𝑉𝑛

(𝑁)
), 𝑇𝑆(𝐻𝑉𝑛

(𝑁)
), 𝑇𝑆(𝐿𝑉𝑛

(𝑁)
), 𝑇𝑆(𝑅𝑉𝑛

(𝑁)
)} 

𝑃𝐿𝑉𝑛

(𝑁)
= {𝑃𝐿(𝑋𝑉𝑛

(𝑁)
) , 𝑃𝐿(𝑌𝑉𝑛

(𝑁)
), 𝑃𝐿(𝑍𝑉𝑛

(𝑁)
), 𝑃𝐿(𝐹𝑉𝑛

(𝑁)
), 𝑃𝐿(𝐻𝑉𝑛

(𝑁)
), 𝑃𝐿(𝐿𝑉𝑛

(𝑁)
), 𝑃𝐿(𝑅𝑉𝑛

(𝑁)
)} 

Eq. 7-28 



215 

 

Figure 7-19 The PIP, spacing, and PL features for Class 9 VMS 

 

 

Figure 7-20 Field components PIP, spacing, and PL 

7.5.3 Matching Process 

A large number of methods for calculating distance between two time series 

signals 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] and 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛] in an n-dimensional space are 

detailed in [160], [162]. Euclidean distance (See Eq. 7-29), Manhattan distance, 
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Minkowski distance, Chebyshev distance, and Cross-correlation are among the most 

common methods for calculating the distance between two signals. All methods align 

the i-th point on a time series signal with the i-th point on the other signal. However, 

they require compared signals X and Y of the same length (i.e., time normalization). 

Moreover, the methods are sensitive to any change in trajectory and/or acceleration of a 

vehicle overpassing sensors in a detection zone, primarily because disturbance to the 

earth’s magnetic field is dependent upon the relative position of the vehicle to the 

sensor’s detection zone, where any change in vehicle lateral position will cause 

variations in VMS amplitude, hence, the number of points. This effect can be clearly 

observed on the z-axis. 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) = ‖𝑋 − 𝑌‖ = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯+ (𝑥𝑛 − 𝑦𝑛)2 Eq. 7-29 

Dynamic time warping (DTW) [163] is a non-linear alignment method measuring 

similarity between two temporal time series sequences that might vary in speed (i.e., 

sequences are out of phase in the time axis). The DTW algorithm compresses or 

expands in time to find optimal mapping between two signals so that their difference is 

minimized.  

To align two time series, 𝐶 and 𝑄, of lengths 𝑚 and 𝑛, using DTW, an 𝑚×𝑛 

matrix is first constructed, where the 𝑖𝑡ℎ and 𝑗𝑡ℎ element of the matrix contains the 

distance 𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) between the two points 𝑞𝑖 and 𝑐𝑗. The Euclidean distance 

corresponds both to the alignment between points 𝑞𝑖 and 𝑐𝑗 (i.e., 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) =

(𝑞𝑖 − 𝑐𝑗)
2
). 
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Warping path 𝑊 = {𝑤1, … , 𝑤𝑘}.  𝑘
𝑡ℎ element is defined as 𝑤𝑘 = (𝑖𝑘, 𝑗𝑘), and 

𝑚𝑎𝑥(𝑚, 𝑛) ≤ 𝐾 < 𝑚 + 𝑛 − 1 defines mapping between 𝐶 and 𝑄, such that the 

distance between them is minimized (See Eq. 7-30). 

𝐷𝑇𝑊(𝑄, 𝐶) = min
𝑤

[∑ 𝑑𝑖𝑠𝑡(𝑤𝑘)

𝐾

𝑘=1

] ; 

𝑑𝑖𝑠𝑡(𝑤𝑘) = 𝑑𝑖𝑠𝑡(𝑞𝑖𝑘
, 𝑐𝑖𝑘

) = (𝑞𝑖𝑘
− 𝑐𝑖𝑘

)
2
 

Eq. 7-30 

In reality, the signature matching process is performed within a time window that 

matches vehicle signature detection at a downstream point with a number of signatures 

in a candidate vehicle set detected by the upstream point. The matching process is 

always one (in current time)-vs.-all (past time). The number of vehicles in a matching 

window depends on traffic flow, distance, and segment low speed limit between 

upstream and downstream points (See Table 7-17). The longer the distance, the larger 

the number of vehicles in the window buffer and the less the re-identification rate. In 

general, TT is estimated based on 0.5-mile spacing between detectors on urban roads 

and 5- to 10-mile spacing between detectors on highways.  

Table 7-17 Matching window size for different distances between detection points 

Flow (VPH) 1200 

Distance (mile) 0.50 1.00 5.00 10.00 

Avg. Speed (mph) 20 40 30 50 40 70 50 80 

Time Interval (Min) 1.5 0.75 2 1.2 7.5 4.3 12 7.5 

Window Size (Vehicle) 30 15 40 24 150 86 240 150 

 

In this work, the matching process implements DTW algorithm for calculating 

distance (i.e., similarity) between corresponding extracted features at upstream and 

downstream detection points. DTW is applied in a single-dimension manner, such that 
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DTW distance is calculated for PIP feature vectors corresponding to x-axis at both 

detectors (i.e., 𝑑𝑖𝑠𝑡 = 𝐷𝑇𝑊 [𝐸𝑉(𝑋𝑉𝑛

(𝑑𝑁)
), 𝐸𝑉(𝑋𝑉𝑛

(𝑢𝑁)
)]). The same applies for other axles 

and feature vectors. The smaller the 𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗), the more likely 𝑄𝑖 and 𝐶𝑗  belong to the 

same vehicle. Figure 7-21 illustrates extracted features and calculated distances between 

upstream and downstream detection points for vehicle sample number 8. 

 

 

Figure 7-21 Extracted features at upstream and downstream for V8 
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The decision whether a calculated 𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) value can be classified as 

“Identical” or “Different” can be made using one of two methods, namely Threshold-

based and Majority Voting-based re-identification. Figure 7-22 illustrates the re-

identification process for both methods.  

 

Figure 7-22 Re-identification algorithm block diagram 

The first eight steps are applied for both methods; the only difference between 

Threshold-based and Majority Voting-based algorithms is that the first implements a 

decision threshold 𝛼𝑇ℎ to compare VMS distances and classify them into one of two 
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classes, “Identical” or “Different.” The Majority Voting-based algorithm makes a 

decision based on maximum number of minimum distances for 21 features, requiring 

more processing when compared to the Threshold-based method. Notably, re-

identification accuracy is much higher when using Majority Voting-based algorithm. 

 Threshold-based Vehicle Matching 

The objective of Threshold-based Vehicle Match is finding an efficient matching 

function 𝛿 for classifying a calculated distance 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) between upstream and 

downstream points into “Identical” (i.e., 𝛿(𝑖) = 1) or “Different” (i.e., 𝛿(𝑖) = 0), as in 

Eq. 7-31. A statistical model of distance matrix between upstream and downstream 

detection points is proposed in this study to find a decision threshold 𝛼𝑇ℎ. 

𝛿(𝑖) = {
1  ;         𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) ≤ 𝛼𝑇ℎ

0  ;         𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) > 𝛼𝑇ℎ

 Eq. 7-31 

To do so, a distance matrix 𝐴𝑑𝑖𝑠𝑡 is constructed of all pairwise signature distances 

𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) calculated between upstream and downstream detection points (See Eq. 

7-32). M is the number of vehicles at upstream point; N is the number of vehicles at 

downstream point; and O is the number of features. The dataset used in this study at 

upstream and downstream included 5154 VMS matched using video images as a ground 

truth. The dataset was collected from a highway during peak (congested) and free flow 

hours. A feature wise rescaling step was performed to normalize 𝐴𝑑𝑖𝑠𝑡 values calculated 

for each feature between [0,1], as in Eq. 7-23. Next, arithmetic mean of smallest 12 

distance values of 21 features for each 𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) was found. Doing so reduced 𝐴𝑑𝑖𝑠𝑡 

dimension into 𝑀×𝑁, where 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) has become the mean of the smallest 12 

distance values found in Eq. 7-28. This number was experimentally found based on a 
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grid search (i.e., exhaustive search) approach. Figure 7-23 illustrates distance matrixes 

for 𝐸𝑉(𝐹𝑉𝑛

(𝑁)
), 𝑇𝑆(𝐹𝑉𝑛

(𝑁)
), and 𝑃𝐿(𝐹𝑉𝑛

(𝑁)
). The distance matrix for the mean of the lowest 

12 first features is illustrated in Figure 7-24. 

𝐴𝑑𝑖𝑠𝑡 = {
𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗)𝑙

    ;     1 ≤ 𝑀 ≤ 𝑖

                                1 ≤ 𝑁 ≤ 𝑗
                                1 ≤ 𝑂 ≤ 𝑙

} Eq. 7-32 

 

Figure 7-23 Distance matrixes for 𝑬𝑽(𝑭𝑽𝒏

(𝑵)
), 𝑻𝑺(𝑭𝑽𝒏

(𝑵)
), and 𝑷𝑳(𝑭𝑽𝒏

(𝑵)
) 

 

Figure 7-24 Distance matrix for the mean of lowest twelve first features 
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𝐴𝑑𝑖𝑠𝑡 is a 2577×2577 matrix. 𝐴𝑑𝑖𝑠𝑡  diagonal, such that 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) and ∀ 𝑖 = 𝑗, 

consists of all pairwise matched vehicles (i.e., “Identical”). The lower and higher 

triangular parts of 𝐴𝑑𝑖𝑠𝑡, such that 𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) and ∀ 𝑖 ≠ 𝑗, consist of all pairwise 

“Different” vehicles. 

Next, two histograms were extracted for “Identical” and “Different” values of 

𝐴𝑑𝑖𝑠𝑡, as depicted in Figure 7-25. In accordance with central limit theorem and law of 

large numbers, distributions of “Identical,” denoted by f, and “Different,” denoted by g, 

statistically describe random variable corresponding to 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗). Hence, these can be 

approximated using Gaussian distribution models. Clearly, g consists of two 

distributions, which can be attributed to the fact that the dataset includes a significant 

number of trucks (e.g., classes 6, 7, 8, 9, and 10), where 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) is larger between 

VMS for class 2 or class 3 and VMS for trucks, compared to 𝑑𝑖𝑠𝑡(𝑞𝑖 , 𝑐𝑗) between two 

vehicles of the same class. To find an accurate and realistic approximation, GMM was 

used to separate g into two distributions, g1 and g2, assuming both are normally 

distributed, as depicted in Figure 7-25.  

Statistically, there is no overlap between f and g2, as shown in in Figure 7-25 and 

Table 7-18. These statistics were estimated based on a distribution f of 2577 “Identical” 

pairs and distribution g of 6,638,352 “Different” pairs (See Eq. 7-33). Therefore, g2 is 

not of interest for the developed model. Only f and g1 are used to characterize the 

distance matrix and find 𝛼𝑇ℎ; g1 will be denoted hereafter as g. 
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Figure 7-25 The empirical distributions and their Gaussian approximations 

Table 7-18 Statistical characteristics of fitted distributions  

 f g1 g2 

µ 0.0169 0.0510 0.1105 

𝝈 0.0064 0.0089 0.0275 

 

𝐴𝑑𝑖𝑠𝑡|𝜇(min (𝑙1:𝑙12)) = (

𝑑𝑖𝑠𝑡(𝑞1, 𝑐1) 𝑑𝑖𝑠𝑡(𝑞1, 𝑐2) ⋯ 𝑑𝑖𝑠𝑡(𝑞1, 𝑐2577)

𝑑𝑖𝑠𝑡(𝑞2, 𝑐1) 𝑑𝑖𝑠𝑡(𝑞2, 𝑐2) ⋯ 𝑑𝑖𝑠𝑡(𝑞2, 𝑐2577)
⋮ ⋮ ⋱ ⋮

𝑑𝑖𝑠𝑡(𝑞2577, 𝑐1) 𝑑𝑖𝑠𝑡(𝑞2577, 𝑐2) ⋯ 𝑑𝑖𝑠𝑡(𝑞2577, 𝑐2577)

)  Eq. 7-33 

The objective was finding 𝛼𝑇ℎ that maximizes probability of correct matching and 

minimizes probability of incorrect matching. In other words, 𝛼𝑇ℎ should not 

compromise between correct and incorrect re-identification; rather it should minimize 

false negative rate (FNR) (i.e., incorrect matching). FNR has significant impact on TT 

reliability. The proposed algorithm estimates TT in real-time. A 50% re-identification 

rate was found sufficient to accurately estimate a distribution of TT for a given route. 
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To minimize FNR, 𝛼𝑇ℎ must be computed such that the probability of Type II 

error is zero (See Figure 7-26). Optimal threshold 𝛼𝑇ℎ is empirically found by taking 

the derivative of Eq. 7-34 and equating the outcome to 0. 

 

Figure 7-26 Illustration of different Errors for two overlapped distributions 

𝑃(𝐹𝑁) = ∫ 𝑃(𝑥|𝐶2)𝑃(𝐶1)𝑑𝑥

𝛼𝑇ℎ

0

= ∫ (𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗)|𝐶2)𝑃(𝐶1)𝑑𝑥

𝛼𝑇ℎ

0

= 𝑃(𝐶1) ∫
1

𝜎𝐶2√2𝜋
exp [−

(𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) − 𝜇𝐶2)
2

2𝜎𝐶2
2 ] . 𝑑𝑥

𝛼𝑇ℎ

0

= 𝑃(𝐶1)
1

2
(1 + 𝑒𝑟𝑓 [

𝛼𝑇ℎ − 𝜇𝐶2

𝜎𝐶2√2
]  ) 

Eq. 7-34 

Based on the statistical model in Eq. 7-34, which was estimated from distributions 

of 2577 “Identical” pairs and 6,638,352 “Deferent” pairs. Subsequently, determining 

“Identical” or “Different” can simply be made using Eq. 7-31. 

Estimated value of 𝛼𝑇ℎ was found to accurately model signature distances for 

both urban roads and highways, as shown in Table 7-19. This is true for two reasons: 1) 

statistical characteristics of fitted distributions are obtained from the mean of smallest 

distance values for 21 unique features, which was empirically found to have less 

overlap between “Identical” and “Different” distributions; and 2) 𝛼𝑇ℎ was chosen to 

identify “Identical” classes at the cost of having unmatched vehicles, rather than 
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compromising between correct and incorrect re-identification, which is highly 

dependent upon traffic characteristics. Unmatched signatures in this case will be 

considered “Different” or will be discarded after matching window time (e.g., 𝑊𝑡 ≥

𝑇𝑇𝑚𝑎𝑥) is elapsed. 

Re-identification performance was evaluated using six metrics, namely, 1) true 

positive rate (𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)): “Identical” correctly identified as “Identical”; 2) 

false positive rate (𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)): “Different” incorrectly identified as 

“Identical”; 3) true negative rate (𝑇𝑁𝑅 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)): “Different” correctly identified 

as “Different”; 4) false negative rate (𝐹𝑁𝑅 = 𝐹𝑁/(𝑇𝑃 + 𝐹𝑁)): “Identical” incorrectly 

identified as “Different”; 5) positive predictive value (𝑃𝑃𝑉 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)): the 

probability that “Identical” was truly identified as “Identical”; and 6) negative 

predictive value (𝑁𝑃𝑉 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁)): the probability that “Different” was truly 

identified as “Different.” Table 7-19 presents Threshold-based re-identification results 

for various window sizes. Narrowing the search window reduces FPR impact. When 

search window includes 25 vehicles, an “Identical” decision is made when distance 

between feature sets for a vehicle detected at downstream point and any vehicle in the 

window meet the condition 𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗) ≤ 𝛼𝑇ℎ. In this case the probability that FN 

occurs is less compared to a window size equal to 100 vehicles where probability of 

having vehicles that have high similarity is much higher. Notably, vehicles in the 

window will be discarded if no matching was found within the window specified time. 
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 Table 7-19 Threshold-based re-identification evaluation results 

Evaluation 

Metric 

Window Size (Vehicle) 

25 50 100 500 

TP/FP 21/1 43/2 80/3 321/9 

TPR 100.0% 86.00% 80.00% 65.25% 

TNR 84.00% 99.84% 99.92% 99.99% 

FPR 0.330% 0.160% 0.080% 0.010% 

FNR 16.00% 14.00% 21.00% 34.76% 

PPV 95.45% 95.56% 95.18% 97.27% 

NPV 98.68% 70.59% 99.58% 99.86% 

 

 Majority Voting-based Vehicle Matching 

Unlike the Threshold-based algorithm described in the previous section, Voting-

based algorithms do not implement a decision threshold; rather the algorithms make a 

decision as to which VMS in a window buffer should a current VMS be matched based 

on maximum number of minimum distances calculated for the 21 features. 

 The algorithm simply compares the distance for M upstream VMS (𝑞𝑖) in a 

window to a downstream VMS (𝑐𝑗) just detected; stores the indices of minimum 

distance values for each feature (𝑙) of the 21 (𝑂 = 21) in 𝑀×2 matrix 𝐴𝑣𝑜𝑡𝑒 (See Eq. 

7-35); and then votes for a matching decision based on maximum number of similar 

indices. Figure 7-27 depicts indices of minimum distance of 21 features for 25 vehicles. 

𝐴𝑣𝑜𝑡𝑒(𝑣𝑎𝑙𝑗 , 𝑖𝑑𝑥𝑗) = min
𝑂

(𝑑𝑖𝑠𝑡(𝑞𝑖, 𝑐𝑗)𝑙
) ; ∀ 𝑗 ∈ [1:𝑀], ∀ 𝑙 ∈ [1: 𝑂], 𝑖 = 1  Eq. 7-35 

If maximum number of similar indices 𝑁max (𝑖𝑑𝑥) < 휀, then the vehicle will be 

considered unmatched.  If more than one VMS share the same 𝑁max (𝑖𝑑𝑥), which is a rare 

case, then a decision is based on which VMS with the same 𝑁max (𝑖𝑑𝑥) has the smallest 

𝑣𝑎𝑙𝑗 mean in 𝐴𝑣𝑜𝑡𝑒. 
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Figure 7-27 Indices of minimum distance of 21 features for 25 vehicles 

Table 7-20 details evaluation results for various window sizes. Clearly, re-

identification accuracy was improved using Majority Voting-based algorithm. It is 

worth mentioning that this method requires more processing power when compared to a 

Threshold-based method. However, processing is not a concern if it occurs on the server 

side, while dynamic programming can be used to optimize computation speed. 

Table 7-20 Voting-based re-identification evaluation results 

Evaluation 

Metric 

Window Size (Vehicle) 

25 50 100 250 500 

Matched 25 50 97 239 451 

Mismatched 0 0 0 1 3 

Unmatched 0 0 3 10 46 

Re-identification Rate 100% 100% 97% 95.6% 90.2% 

Mismatching Rate 0% 0% 0% 0.4% 0.6% 

Unmatching Rate 0% 0% 3% 4% 9.2% 

  

Votes

8 1 1 1 24 1 1 1 11 1 1 1 1 1 5 1 1 10 14 24 1 14

15 24 17 24 22 16 2 3 2 16 1 2 2 18 17 14 25 17 24 1 25 4

16 3 3 3 3 3 3 3 20 24 3 3 3 3 16 3 3 16 3 3 20 15

4 8 4 4 4 4 4 4 1 19 8 15 4 4 24 4 4 5 7 12 2 11

5 5 5 22 5 5 5 5 20 22 24 16 5 5 18 5 25 23 5 23 23 11

6 18 6 15 6 6 6 6 6 6 6 25 6 6 2 6 6 12 6 4 6 15

7 7 24 7 7 7 7 7 19 7 4 19 7 7 7 7 7 19 4 7 7 15

8 20 8 8 8 8 8 8 8 8 8 13 8 8 16 8 8 18 8 18 18 15

9 11 9 9 9 9 9 9 2 1 9 9 9 9 19 9 9 13 9 19 9 15

10 10 10 12 10 10 10 10 10 10 10 10 10 10 16 10 10 17 10 10 25 17

1 11 11 24 11 11 11 9 11 11 11 12 11 11 11 11 11 19 11 11 11 16

12 12 12 12 12 12 12 12 11 12 12 12 22 12 17 11 12 19 14 12 12 15

13 13 13 13 13 13 13 13 13 13 13 13 23 13 12 13 13 20 23 13 16 16

14 9 14 14 14 14 14 14 2 14 23 2 14 14 23 14 14 15 14 14 12 14

22 15 15 3 15 15 15 15 14 15 15 15 15 15 16 15 15 15 2 15 15 16

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 21

17 17 17 17 17 17 17 17 17 17 23 17 17 19 20 17 17 11 24 3 3 14

15 15 18 13 23 15 25 18 18 15 18 23 18 18 15 18 18 20 3 18 20 9

19 19 19 19 19 19 19 19 14 24 19 19 19 19 17 19 19 17 24 3 19 15

20 20 20 22 17 20 14 20 23 1 3 20 20 20 16 20 9 16 16 14 17 9

21 21 21 21 21 21 21 21 21 21 21 20 21 21 5 21 21 17 21 21 21 18

22 22 15 22 22 22 22 10 22 22 13 20 22 22 16 22 22 9 22 22 22 15

22 23 3 23 9 23 5 23 24 15 9 15 5 23 16 14 23 23 24 23 14 8

24 24 15 24 24 24 24 24 2 24 18 24 24 24 3 24 24 23 24 24 2 15

14 25 25 25 16 25 25 13 25 25 3 13 12 25 15 12 25 19 25 25 12 11

In
d

ic
es

 o
f 

m
in

im
u

m
 d

is
ta

n
ce

 -
 U

p
st

re
a

m
 v

s.
 D

o
w

n
st

re
a

m

Features



228 

Chapter 8: CONCLUSION 

 

8.1 Research Outcomes 

With the approaching era of IoT (Internet of Things) and smart cities, market 

demand will likely drive innovation toward more autonomous and self-powered 

wireless sensors. Combining advancements in state-of-the-art ultra-low-power 

embedded systems, smart physical sensors, WSN, and EH will enable fully autonomous 

IoT devices that remain operational—ideally without battery replacement—for decades. 

This technological breakthrough is the key enabler for smart cities, smart homes, and 

smart energy, among many other perspective innovations. 

Real-time traffic monitoring systems play a major role in the transition toward 

smart cities and more efficient ITS. Autonomous traffic sensing is at the heart of smart 

cities infrastructure, wherein smart wireless sensors are used to measure traffic flow, 

predict congestion, and adaptively control traffic routes. Such information enables a 

more efficient use of resources and infrastructure. 

This dissertation introduces the design, development, and implementation of a 

novel, fully-autonomous, self-powered, intelligent wireless sensor for various traffic 

surveillance applications. The sensor integrates state-of-the-art, embedded components, 

featuring ultralow power, high-performance 32-bit embedded microcontroller, energy-

efficient wireless transceiver, smart embedded sensors (i.e., 3D MAG and ACCEL), 

highly-accurate low-power embedded Global Positioning System (GPS) receiver, dual 

data storage units, an ultralow power EH power management unit (PMU) with 

maximum power point tracking (MPPT) and charge management controllers, battery 

fuel gauge, wireless power charging receiver, and atmospheric sensors. All components 
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are managed by distinctive algorithms designed for implementation in various traffic 

monitoring applications. 

The developed sensor is portable, self-powered (e.g., primary battery and solar 

cell), inexpensive (e.g., $30 per node), easy-to-install into highway surfaces, roadways, 

or even roadsides without intrusive roadwork, and able to accurately detect, count, 

estimate speed and length, classify, and re-identify vehicles in real-time. The sensor can 

be used for short-term deployment (e.g., work zone safety, temporary roadway design 

studies, traffic management in atypical situations such as evacuations) and long-term 

deployment (e.g., traffic management, turn movement, collision avoidance). 

A reliable and distinctive computationally efficient algorithm for real-time traffic 

monitoring was developed, integrated, and validated. Optimization programming tasks 

were applied to improve detection algorithm performance at higher sampling rates and 

compensate for drift in the geomagnetic reference field. An algorithm for adaptive 

compensation of RTC Frequency Drift resulting from variations in temperature was 

implemented. Each sensor node relies on an onboard GPS module and RTC unit to 

maintain an independent local clock that is globally synchronized to the GPS pulse-per-

second (PPS) signal. Wireless connectivity is not necessary for accurate iVCCS node 

functioning. Time stamping, timekeeping, and failure recovery functions are enabled by 

the MCU’s internal RTC unit, which is calibrated and aligned using the PPS signal. A 

time-synchronization algorithm based on GPS-PPS signal was developed and evaluated. 

Results indicated 2~4µSec consistent T-Sync accuracy among the internal RTC of 

several nodes. 
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Several field studies and evaluation tests were conducted during this research, 

many of which were conducted in parking lots at the University of Oklahoma-Tulsa 

campus. Eight additional field tests were conducted on highways and urban roads under 

various traffic conditions throughout the state of Oklahoma. System performance 

evaluation was conducted using real-time data, offline data, video images, and reports 

from the highly accurate Roadrunner Kit 3. 

Repeatability of VMS and consistency of MAG sensor output were investigated. 

The objective was to find degree of similarity of several magnetic signatures produced 

by multiple MAG sensors for the same vehicle under like-testing conditions. Cross-

correlation was used to measure the similarity of two VMS as a function of a time lag 

applied to one or the other. A correlation coefficients matrix of VMS magnitudes 

obtained from four sensor nodes was constructed. CDF for all pairwise combinations 

revealed that most correlation coefficients range between 0.9 and 1, indicating high 

similarity between sensor outputs across multiple nodes. Furthermore, the p-value 

matrix returned insignificant p-values (i.e., 2e-138), which rejects the null hypothesis 

and identifies significant correlations. Hence, each vehicle has a unique magnetic 

signature that can be used for vehicle re-identification applications. 

Three detection errors were observed during this study: 1) Misdetection error, in 

which two successive vehicles at close proximity are grouped as one; 2) Double-

detection error, in which a long vehicle with insignificant ferrous composition in its 

center is detected as two vehicles; and 3) False-detection error caused by an 

interference from large trucks traveling in adjacent lanes. Both misdetection and 

double-detection errors were reduced by using statistical analysis to find an optimal 
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holdover debounce timer (HDT). Optimality was determined empirically. False-detection 

error analysis showed insignificant interference effect on the z-axis. This observation 

was used to reduce false detection by comparing the mean of vertical components to a 

statistically determined threshold. 

Vehicle detection and counting accuracy was evaluated using MAPE. Validation 

studies showed MAPE between 0.4% and 0.7% for detection of all vehicle classes at 

various traffic conditions and speeds in both roadside and roadway setups. 

Speed estimation was evaluated using MAPE and RMSE, indicating 97.4782% 

speed estimation accuracy with 2.9867mph MAPE and 2.5218% RMSE. 

Two methods for vehicle classification using MAG are proposed, namely length-

based (LBVC) and magnetic signature-based vehicle classification (SBVC). Several 

LBVC schemes were developed, implemented, and evaluated via machine learning 

algorithms and probabilistic modeling of VML. A case study of Oklahoma 

classification stations using wireless MAG sensors was performed. This study serves as 

the first LBVC scheme for the state of Oklahoma; the intended purpose is 

supplementing or replacing axle-based data collection methods. The developed LBVC 

models are computationally efficient and can provide real-time data. The methodology 

and work process proved to be adaptable, thus, can be of a great benefit for other states 

and territories interested in developing LBVC schemes. This work can be extended for 

gathering LBVC data using non-intrusive technologies, such as vision systems and 

microwave radars. An LBVC evaluation study resulted in 97.6951% classification rate 

when vehicles are binned into four groups based on their magnetic length. 
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Two vehicle re-identification models based on matching VMS from a single 

MAG were also developed. Features extraction was performed on each sensor node to 

determine three sets of features for each normalized signal. These included Perceptually 

Important Points (PIP), Time Spacing between consecutive PIP, and Piecewise Linear 

Representation (PLR). Notably, the objective of data transformation is reducing the 

dimensionality of the data while maintaining the unique characteristics of signal, thus, 

reducing the amount of data processing or transfer from the sensor node to iAP. The 

matching process implemented a DTW algorithm to calculate distance (i.e., similarity) 

between corresponding extracted features at upstream and downstream detection points. 

The decision whether a calculated distance value can be classified as “Identical” or 

“Different” was made using one of two methods, namely Threshold-based and Majority 

Voting-based re-identification. A statistical model of distance matrix between upstream 

and downstream detection points was proposed to determine a decision threshold that 

maximizes the probability of correct matching and minimizes the probability of 

incorrect matching. A majority voting-based algorithm makes a decision based on the 

maximum number of minimum distances for 21 features, which requires more 

processing when compared to a threshold-based method. Re-identification accuracy 

depends on window size (i.e., the number of vehicles compared to one another). 

Threshold-based re-identification evaluation results revealed 65.25%~100% 

identification rate for the 25~500 vehicle window size. Voting-based re-identification 

evaluation results showed 90~100% identification rate for 25~500 vehicle window size. 

System functionality testing revealed consistent behavior and accurate 

performance that can be exploited for more advanced applications. System cost was 
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estimated at less than $1000 for eight sensor nodes and an access point, meaning that 

the system could be promoted as a replacement for expensive and invasive traditional 

traffic surveillance systems that depend on piezoelectric sensors, magnetic loops, and 

pneumatic tubes. 

8.2 Future Work Plan 

Currently, vehicle classification based on VMS collected using MAG is not 

feasible for more than 5classes. The reasoning behind this conclusion centers on the fact 

that each vehicle has a unique composition of furious materials causing a unique VMS. 

Characteristics of VMS for vehicles of the same class are quite different. During this 

research, several methods where exhausted, including neural networks and deep 

learning. It is nearly impossible to cluster vehicles based on their classes by only 

analyzing VMS. Hence, two approaches are proposed for more accurate vehicle 

classification. The first takes advantage of the highly sensitive, low noise 3D 

accelerometer sensor in iVCSSG2 design and investigates sophisticated signal 

processing and data analysis methods for fusing accelerometer and MAG data toward 

achieving axle-based classification. In a late stage of this research work, measuring road 

surface vertical acceleration using accelerometer for data collected from a sensor node 

placed adjacent to the road demonstrated a clear indication of vehicle axle positions. 

Exploiting this phenomenon to detect and count axles improves classification accuracy 

and allows the measurement of several vehicle dynamics (e.g., axle spacing), given that 

vehicle speed is known. The second approach proposes taking advantage of VMS 

uniqueness for implementing a classification model based on encoding an enormous 
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number of labeled VMS and storing them into a database. Euclidian distance measure 

can be used to compare a real-time VMS with database and identify a class of vehicles.  

Additionally, two areas of interest relative to this research are presented. These 

include enabling a scalable implementation of the system’s wireless sensors network 

through self-configuration; optimizing sensor node power consumption while 

maximizing network lifetime by analyzing power consumption characteristics of a 

sensor node; and then incorporating an energy-awareness algorithm to maintain high 

performance and operation fidelity. 
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APPENDIX B: IVCCSG2 SCHEMATIC, LAYOUT, BOM 
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iVCCSG2 PCB Top Layer 

 

 

iVCCSG2 PCB Ground Plan 
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iVCCSG2 PCB Power Plan 

 

 

iVCCSG2 PCB Bottom Layer 
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iVCCSG2 Board Layer Stack Design 
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APPENDIX C: IVCCSG2 DESIGN PROCESS 
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