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Abstract

Reliable, real-time traffic surveillance is an integral and crucial function of the
21% century intelligent transportation systems (ITS) network. This technology facilitates
instantaneous decision-making, improves roadway efficiency, and maximizes existing
transportation infrastructure capacity, making transportation systems safe, efficient, and
more reliable. Given the rapidly approaching era of smart cities, the work detailed in
this dissertation is timely in that it reports on the design, development, and
implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor
for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-
the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless
sensor network—ypowered by intelligent algorithms—are the basis of the developed
Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor
combines an energy-harvesting subsystem to extract energy from multiple sources and
enable sensor node self-powering aimed at potentially indefinite life. A wireless power
receiver was also integrated to remotely charge the sensor’s primary battery. Reliable
and computationally efficient intelligent algorithms for vehicle detection, speed and
length estimation, vehicle classification, vehicle re-identification, travel-time
estimation, time-synchronization, and drift compensation were fully developed,
integrated, and evaluated. Several length-based vehicle classification schemes particular
to the state of Oklahoma were developed, implemented, and evaluated using machine
learning algorithms and probabilistic modeling of vehicle magnetic length. A feature
extraction employing different techniques was developed to determine suitable and

efficient features for magnetic signature-based vehicle re-identification. Additionally,

XX



two vehicle re-identification models based on matching vehicle magnetic signature from
a single magnetometer were developed. Comprehensive system evaluation and
extensive data analyses were performed to fine-tune and validate the sensor, ensuring
reliable and robust operation. Several field studies were conducted under various
scenarios and traffic conditions on a number of highways and urban roads and resulted
in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951%
classification rate when binning vehicles into four groups based on their magnetic
length. Threshold-based, re-identification results revealed 65.25%~100% identification
rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation
resulted in 90~100% identification rate for a window of 25~500 vehicles. The
developed platform is portable and cost-effective. A single sensor node costs only $30
and can be installed for short-term use (e.g., work zone safety, traffic flow studies,
roadway and bridge design, traffic management in atypical situations), as well as long-
term use (e.g., collision avoidance at intersections, traffic monitoring) on highways,
roadways, or roadside surfaces. The power consumption assessment showed that the
sensor is operational for several years. The iIVCCS platform is expected to significantly
supplement other data collection methods used for traffic monitoring throughout the

United States. The technology is poised to play a vital role in tomorrow’s smart cities.
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Chapter 1: INTRODUCTION

1.1 Introduction

The rapidly increasing growth of surface transportation—driven by an ever-
growing population—and its impact on traffic safety has been a major concern for the
nation’s transportation agencies over the last decades. The U.S. Federal Highway
Administration (FHWA) predicts a 23% increase in vehicle miles traveled by 2032 [1].

Statistical studies by the World Health Organization (WHO) reported 1.25 million
people die and up to 50 million injuries occur each year on the world’s roads [2]. The
U.S. National Highway Traffic Safety Administration (NHTSA) reported 32,719
fatalities and 2.313 million traffic injuries in 2013, 28% of which were speed-related
[3]. Annual traffic fatalities caused by trucks is reportedly 4,000 deaths, and injuries to
travelers numbers 100,000. Vehicular fatalities on U.S. roadways have an annual direct
economic cost of $242 billion, resulting from 24 million crashes. This figure represents
1.6% of the $14.96 trillion U.S. Gross Domestic Product (GDP) reported in 2010 [4].
The total cost increases to $836 billion when considering societal harm from vehicle
crashes. Furthermore, 44% of the U.S. roadways are classified as congested. According
to the 2015 Urban Mobility Scorecard report [5], traffic congestion costs the U.S. $160
billion each year as a result of 7,000,000,000,000 lost hours and 3,000,000,000,000 fuel
gallons wasted. Additionally, 31% of carbon dioxide emissions come from vehicle
tailpipes [6].

When compared with passenger vehicles, trucks and commercial vehicles have a
significant impact on pavement service life. For example, a vehicle hailing a 40-ton

load causes over 4,000 times more road damage than a five-ton loaded vehicle.
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Moreover, according to [7], approximately 4,000 fatalities and more than 95,000
injuries reported in 2013 involved large trucks. Such an impact requires appropriate and
distinctive traffic planning strategies to mitigate the effect of anticipated increases in
truck traffic. Adequate information about freight volume and vehicle classification is
needed to support geometric and structural design of roadways and bridges.

Without assertive, proactive solutions, traffic crashes are predicted to rise and
roadways congestion is estimated to worsen. Annual delay in the U.S. will grow to 8.3
billion hours, resulting in an increased cost of $192 billion [5].

In spite of the fact that vehicle travel on U.S. highways increased by 39% from
1990 to 2013, new roadways increased by only 4%. To accommodate the growing
demand on transportation and to prevent worsening levels of roadway congestion, the
U.S. FHWA must expand current transportation infrastructure capacity by 23%. One
option to achieve this goal is adding 4,200 miles of new roadway each year [8]. Another
is developing intelligent transportation system (ITS) technologies that maximize
existing transportation infrastructure capacity and improve efficiency, making
transportation systems safe, efficient, and more reliable for the rapidly approaching era
of smart cities.

1.2 Intelligent Transportation Systems and Smart Cities

ITS are an integral part of nationwide traffic management systems (TMS). ITS
performance depends substantially on accuracy of reported data and spatial distribution
of traffic sensors [9], which in-turn influence highway and roadway efficiency and
safety. Designing/planning ITS is a complex task that requires extensive analysis of

public demand for transportation. To determine transportation needs, it is important to



understand the underlying characteristics of traffic patterns, such as vehicle
classifications, vehicle volume and occupancy, and travel time, among many others.
This understanding is an essential aspect of assisting traffic projection studies and
transportation planning [10].

Real-time traffic monitoring systems play a key role in the transition toward smart
cities and more efficient ITS. Autonomous traffic sensing is at the heart of smart city
infrastructures, wherein smart wireless sensors are used to measure traffic flow, predict
congestion, and adaptively control traffic routes. Doing so effectively provides an
awareness that enables a more efficient use of resources and infrastructure.

The Internet of Things (10T) is reshaping the future. Experts project that by 2020
nearly four billion people, more than 25 million Apps, and 26 billion embedded devices
will be connected to the internet, producing 50 trillion gigabytes of data and revenue
opportunities of up to four trillion US dollar [11]. For ITS to be effective in the era of
loT, traffic surveillance systems should have sufficient spatial distribution to permit
interconnected network elements, providing reliable information about traffic
conditions, enabling real-time data exchange among various infrastructure components,
and facilitating instantaneous decision-making. In the context of ITS for smart cities,
loT technology will allow new services aimed at greatly improving quality of life.

1.3 Current Traffic Surveillance Technologies

Vehicle detection and traffic surveillance technologies are a core component of
ITS. Both functions are subject to continuous improvement toward enhancing vehicle
detection, speed estimation, and vehicle classification. Traffic detection and volume

prediction methods are dependent upon several factors, including current and historic



traffic measurements. Widely used traffic surveillance technologies can be classified

into three groups: intrusive, non-intrusive, and off-roadway sensors.

1) Intrusive sensors include inductive loops (IDL), magnetic detectors, pneumatic road
tubes, piezoelectric, and weight-in-motion (WIM) sensors, which are embedded in
the road surface after saw-cutting the surface or adding roadway holes.

2) Non-intrusive sensors include vision systems, microwave radar, and infrared and
ultrasonic detectors, which are installed atop roadway or roadside surfaces or
mounted overhead.

3) Off-roadway sensors (e.g., remote sensing via aircraft or satellite and probe vehicles
equipped with Global Positioning System (GPS) receiver) that do not require
roadway installation.

A description of these technologies can be found in [8], [12]. Both intrusive and
non-intrusive sensors are power-hungry, expensive, and have been known to cause
installation difficulties. The sensors typically require wired infrastructures and power
lines for energy supply. Other drawbacks of intrusive sensors include their large-size,
short life (i.e., as short as 48h for tubes [13]), and high maintenance costs associated
with lane closure and traffic disruption. Piezoelectric and WIM sensors rely on
pavement geometry, meaning that pavement deterioration will result in unreliable data.
Moreover, resurfacing or repairing roadways requires reinstalling sensors, making
worker safety for those deploying intrusive systems a concern [13].

Although vision and radar systems are widely considered accurate and typically
do not disrupt traffic, their performance is subject to weather conditions (e.g. fog, rain,

snow, or wind). Off-roadway sensors provide limited traffic statistics at fixed locations;



their performance is limited due to dependence on the number of probe vehicles [8],
[12]. Consequently, the associated high costs (e.g., initial cost, calibration costs, regular
maintenance, among others) limit spatial distribution and large-scale integration. TMS
scalability and availability are essential for efficient and reliable, real-time ITS [9].

1.4 Wireless sensor networks

Wireless sensor networks (WSN) are emerging as a promising technology and a
key enabler for an enormous number of physical-world sensing applications that have
not previously been possible (e.g., 10T) [14]. WSN have demonstrated exceptional
features, such as flexibility, scalability, reliability, and power efficiency [15]. Network
scalability is exceptionally important for ITS, particularly as systems are able to
accommodate an increased number of nodes connected in an ad-hoc, self-configurable
manner [16]. A comprehensive survey of WSN for ITS applications can be reviewed in
[15].

Systems employing WSN consist of medium to large networks of inexpensive
wireless nodes capable of sensing, processing, and collaboratively distributing data
acquired from the physical-world [14].

1.5 Magnetometer Sensors

Rapid technology advancements in solid electronics, embedded computing, and
wireless communication protocols have transformed magnetometer sensors (MAG) into
cost-effective and energy-efficient alternatives to IDLs. Unlike other methods, MAG
are immune to poor weather conditions and environmental factors. They do not require
line-of-sight, and they have a longer lifetime [17]. Integrating WSN with state-of-the-art

embedded MAG has enabled autonomous methods for real-time traffic surveillance



application (e.g., vehicle detection on roadways and in parking lots, vehicle speed
estimation, and vehicle classification). Many credit the PATH program at the University
of California [12] for initiating the use of MAG sensors in traffic surveillance
applications.
1.5.1 Magnetometer Sensor Theory of Operation

The earth’s magnetic or geomagnetic field (B,) is nearly uniform at any specific
place on the earth's surface and ranges between approximately 25 and 65 microtesla
(UT)—0.25 to 0.65 gauss (G). Notably, however, field direction and intensity change
from place-to-place and over time. For example, in Oklahoma, USA, current field
intensity is FM=51uT, which is the magnitude of three geomagnetic field components:
north Bx~21.95uT, east By~1.135uT, and vertical Bz=46uT components [18].

B,, is a three-dimensional vector that can be approximately modeled at Earth’s
surface as a magnet dipole (i.e., geocentric axial dipole), as it is tilted by 11.5° along the

Earth's spin axis. Its south pole points towards geomagnetic north pole (see Figure 1-1).

The Earth's Magnetic Field
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Figure 1-1 Earth’s magnetic field lines distribution [19]
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Geographic heading can be estimated by transferring B,, to coordinate plane and
knowing the declination angle. Field coordinate plane is shown in Figure 1-2. B, vector
is described using seven components: 1) northerly intensity By; 2) easterly intensity By;
3) vertical intensity B;; 4) horizontal intensity H; 5) total intensity Fm; 6) inclination
angle I—angle between the magnetic field B and horizontal plane; and 7) declination
(magnetic variation) angle D—angle between the Geographic North and H. The
quantities H, Fwm, I, and D, can be determined using Eq. 1-1, Eq. 1-2, Eq. 1-3, and Eg.
1-4, respectively, from the orthogonal magnetic field components B, By, and B,. Figure
1-2 depicts B, vector elements in coordinate plane. Table 1-1 shows the range of

magnetic elements at the Earth's surface.

H= /B,g + B} Eq.1-1
Fy =+H?+B2= /B,g + B? + B2 Eq.1-2

B B
[ =tan™!—= = tan~ ! —2— Eq. 1-3
H JBZ + B
D = tan-12% Eq. 1-4
By

B B B
Y=tan ! 2ZFD=tan ' 2L Ftan 1 = Eqg. 1-5

x By By

Vehicles have a large mass of highly permeable ferrous materials (e.g., iron, steel,
nickel, aluminum, or cobalt) that cause a small local disturbance in the Earth’s magnetic
field flux lines. Steel, in particular, has the capacity to concentrate flux lines, as its
magnetic permeability is high relative to surrounding air. A vehicle structure with a

substantial amount of steel can be detected from a significant distance (e.g., 10m). As a



vehicle passes through the Earth’s magnetic field, the magnetic flux lines are absorbed
in a non-uniform manner, as shown in Figure 1-3. The magnitude and direction of the
disturbance depends on several factors, including speed, size, density, and permeability
of vehicle structure. Different vehicles have different structures, hence, different
disturbance factors relative to the geomagnetic field. This measured disturbance
represents a vehicle’s magnetic signature (VMS), which is unique and can be measured

using MAG. VMS can be analyzed to distinguish between different types of vehicles.

A 4
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Geographie Dast
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By

Figure 1-2 The seven elements of the B, vector in coordinate plane
The disturbance in magnetic field B, caused by a vehicle can be modeled as a
large number of magnetic dipoles [20], each with its own moment x and direction r in a
three-dimensional space (see Figure 1-4), as given by Eq. 1-6 [21], where By is the
localized Earth’s magnetic field vector; po is the magnetic permeability of free space
given by uo = 4mrx107 XN /A?; y; is the magnetic dipole moment of the i dipole; and
1; is the vector the i dipole moment y; to sensor location.
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Table 1-1 Ranges of magnetic elements at the Earth's surface [22]

Element Name Min Range Max Positive sense
Bx Northerly intensity -17uT 42uT North
By Easterly intensity -18uT 17uT East
B; Vertical intensity -67uT 61uT Down
H Horizontal intensity OuT 42uT NA
Fwm Total intensity 22uT 67uT NA
| Inclination -90° +90° Down
D Declination -180° +180° East/CW
Uniform  Semi-Distorted Distorted Slightly-Distorted Highly-Distorted Uniform

Figure 1-3 Earth’s magnetic field lines distorted by passing vehicle
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Figure 1-4 Magnetic dipoles moment and direction in a three-dimensional space
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A VMS can be described mathematically using a single point dipole model with a
moment p equal to the geometric sum of all dipoles and centered in the vehicle [23], as
MAG measure the geometric sum of all dipoles on x, y, and z-axes. Hence, Eq. 1-6 can
be written as in Eq. 1-7, where i=1. Given that a vehicle is moving, B(i,7) becomes a
time-variant field and distance r becomes a function of time t, as shown in Eq. 1-8. This
equation can ultimately be used to estimate the maximum magnetic field strength at
distances r from a vehicle. It can also be used to estimate vehicle trajectory and speed
[24], [25].

= to 3(d,P)r — i|7|?
B(:u)r):BO-I_E IFIS Eq 1-7

#o 3(i Fee)reey — il
4n > I°
|T(t)|

§(t) = By + Eq. 1-8

Assuming that background noise induced by on-board electronic components is

modeled as an additive white Gaussian noise (AWGN), then data obtained from the

sensors can be modeled as the sum of B(¢) in Eg. 1-8 and AWGN 0.
B(t) =B(t) + 0y Eq. 1-9

1.6 Energy-Harvesting Solutions for WSN

Smart WSN equipped with sensors and an intelligent controller are among loT
devices. Figure 1-5 illustrates typical elements of a smart device. WSN and loT are
mostly battery-powered devices, and although these have a limited power budget, once
deployed they are expected to be functional for an extended lifetime. Battery leakage,
however, currently depletes the battery charge with time—merely a few years—even if

rarely used [26]. The process of recharging or replacing batteries for spatially
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distributed sensor nodes requires an enormous amount of time at a prohibitive cost.
Even though optimizing energy and minimizing power consumption can help extend
battery life, doing so is not the key to self-sustainable WSN. Notably, advances in
battery capacity have not increased significantly in the last decades [27] when compared
to the exponential advancement in semiconductor technology as a result of Moore’s law
[27]. For this reason and until there is a breakthrough in energy storage technology,
research on self-sustainable WSN has redirected its focus from improving energy
efficiency to introducing a micro-scale, energy-harvesting (EH) technology as the

primary solution for maximizing the lifetime of WSN devices [28], [29].
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Figure 1-5 Earth’s magnetic field lines distribution

Micro-scale EH, also called energy scavenging, is an eco-friendly solution based
on the collection and conversion of microwatt to milliwatt energy from ambient
sources, including, for example, solar (photovoltaic), vibration (piezoelectric), thermal
(thermoelectric), and inductive (electromagnetic). EH have received significant
attention in the last few years. Although the technology’s solutions are in the initial

stages, they are evolving rapidly, introducing more efficient EH and power management
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chips, such as those manufactured by major semiconductor companies like Analog
Devices, Texas Instruments, and Maxim Integrated, among others.

Solar energy is more widely used in EH applications, as it is inexpensive, easy to
use, and has the highest power density (up to 30mW/cm?) among other harvesters.
Energy produced by photovoltaic cells is proportional to cell size and light source
brightness. Piezoelectric harvesters produce energy from Kinetic sources, such as
vibration (e.g., motor, shoes). Piezoelectric harvesters require a predictable, consistent
vibration frequency, which is one of the challenges when using Piezoelectric.
Thermoelectric generator (TEG) produce energy from heat sources that have a constant
temperature gradient. A comparison between various EH methods and harvesting-aware
communication protocols for WSN can be reviewed in [28]-[30].

By combining all advancements in state-of-the-art ultra-low-power embedded
systems, smart physical sensors, WSN, and EH will enable fully autonomous loT
devices that (ideally) will remain operational for decades without battery replacement.
This technological innovation is vital for smart cities, smart homes, and smart energy.
1.7 Research Motivation

The primary objective for this research is designing, developing, and
implementing a non-intrusive, inexpensive, and portable self-powered vehicular traffic
monitoring sensor that a) accurately detects, counts, estimates speed and length, and
classifies vehicles in real-time; b) can be used for short-term deployment (e.g., work
zone safety, temporary roadway design studies, traffic management in an atypical
situation, such as evacuations and other similar situations), as well as long-term

deployment (e.g., traffic management, turn movement, and collision avoidance); and c)
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IS easy-to-install by simply affixing the sensor shell into the surface of highways,
roadways, or roadsides without intrusive work. Such a solution will maximize existing
transportation infrastructure capacity and improve efficiency, making transportation
systems safe, efficient, and more reliable for the rapidly approaching era of smart cities.

A secondary objective is in response to the critical need of the Oklahoma
Department of Transportation (ODOT) for an autonomous surveillance technology to
monitor various traffic conditions. Results can be used to supplement current ITS
installed throughout the state.

Because traffic volume has significant implications for highway and roadway
safety, planning, and design, ODOT—Iike other U.S. transportation departments—is
responsible for collecting permanent and temporary traffic characteristic data (e.g.,
vehicle count and class) from various statewide locations each year. Initially, data is
used for transportation planning strategies and management processes. Unfortunately,
many sites are not equipped with a vehicle counter. In this case ODOT personnel either
conduct a manual count for a short period of time or hire a contracting company. The
former requires intensive labor to visit hundreds of sites. Also, manual count is simply
not feasible on congested highways with several lanes. Moreover, this method is usually
conducted for only a few hours, which doesn’t represent accurate traffic volume.
Alternative methods used to collect vehicle count and class information in Oklahoma
employ: 1) weight-in-motion (WIM) or automatic vehicle classifiers (AVC) deployed at
permanent sites throughout the state or 2) pneumatic road tubes (PRT) installed

temporarily for study proposes [31].
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Currently, PRT are placed on the road surface, crossing the lanes and then
fastened to the roadway. The axle of a passing vehicle causes a differential pressure in
the tubes, which in turn triggers axle detection. Speed is estimated by measuring axle
travel time from one tube to another. AVC, on the other hand, employ piezoelectric
sensors with inductive loops that are embedded in the roadway. Although these
technologies are known to be highly accurate, the systems have several drawbacks and
have been known to cause installation difficulties. PRT, for instance, have a short life
(e.g., as short as 48h [13]), can monitor only two lanes, and are prone to error (e.g., fake
pulses or over count) due to tubes bouncing when hit by heavy vehicles traveling at
high speeds [31]. Moreover, PRT installation often requires road closure and traffic
disruption, making their use and the high cost of maintenance prohibitive. AVC are
permanent systems deployed only at logistic locations where heavy truck volume has
previously been observed. AVC have limited spatial distribution across the state
because they are expensive and because recorded data is typically accurate only if
maintenance and calibration is conducted every three or four months. Moreover, the
safety of on-site workers deploying these system remains a major concern [13].

ODOT is in critical need of a technology that is inexpensive, nonintrusive,
portable, and easy-to-install to supplement current ITS throughout the state and to
collect accurate traffic information on a large-scale for extended period of time. Ideally,
the system should come at a lower cost than the thousands of dollars paid every year for

temporal counting studies at each AVC site.
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1.8 Proposed Research

The proposed research aims at developing and implementing a novel, fully-
autonomous, self-powered intelligent wireless sensor for various traffic surveillance
applications. The sensor integrates state-of-the-art components, including an ultralow
power, high-performance 32-bit embedded microcontroller; an energy-efficient wireless
transceiver; smart embedded sensors (i.e., 3D MAG and ACCEL); a highly-accurate
low-power embedded Global Positioning System (GPS) receiver; dual data storage units
with ultralow power EH power management unit (PMU), maximum power point
tracking (MPPT), and charge management controllers; a battery fuel gauge; a wireless
power charging receiver; and atmospheric sensors. All components are managed by
distinctive algorithms for implementing various traffic monitoring applications.

A 3-axis MAG sensor is used to measure magnetic disturbance to the Earth’s
magnetic field caused by an overpassing vehicle; a 3-axis ACCEL sensor is used to
measure road surface vertical acceleration resulting from the motion of dynamic loads.
Other components include a GPS module for auto-localization and global-
synchronization; an RF module for wireless data transmission; and an EH for sensor
self-powering and battery charging. Sensor node firmware can be upgraded over-the-air,
which allows a customizable configuration to support various studies and applications.
The sensor is functional in either standalone or peer-network mode wherein an
intelligent access-point (iIAP) manages WSN data transfer. Estimated cost for
populating a four-lane highway in both directions is approximately $1000, which
includes a 16-sensor node, a handheld wireless sensors configuration device, and an

1AP.
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1.9 Research Contributions

This dissertation introduces the design, development, and implementation of a
novel, fully autonomous, battery-powered intelligent wireless sensor for traffic
surveillance applications. The sensor integrates state-of-the-art embedded components,
all of which are managed by distinctive algorithms for implementation of various traffic
monitoring applications. All aspects and parameters necessary for design and
implementation are addressed.

The developed sensor is portable, leverages primary battery-powered and solar
cell energy, is inexpensive (i.e., $30 per node), and installs easily into the surface of
highways, roadways, or roadsides without intrusive labor. The sensor can be used for
short-term deployment (e.g., work zone safety, temporary roadway design studies,
traffic management in an atypical situation such as evacuations), as well as long-term
deployment (e.qg., traffic management, turn movement, collision avoidance, etc.).

A novel multi-threshold-based detection algorithm is also introduced, wherein a
drift in geomagnetic reference field baseline threshold (due to aging or due to variations
in temperature and/or background noise relative to Earth’s magnetic field over time) is
adaptively auto-compensated in real-time. This method solves common problems
reported in literature by keeping magnetic signal variation at a minimum, hence,
providing reliable vehicle speed estimation under congested traffic, as well as low- and
high-speed conditions.

A highly accurate and energy-efficient time-synchronization algorithm that

utilizes GPS reference signal PPS (Pulse-Per-Second) was developed and implemented
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as part of research for this dissertation, as was an algorithm for adaptive compensation
of RTC Frequency Drift due to variations in temperature.

The repeatability of VMS and the consistency of MAG sensor output were
investigated to determine degree of similarity between several magnetic signatures
produced by multiple MAG sensors for the same vehicle under identical testing
conditions. Vehicle tracking and vehicle re-identification were reported.

Several computationally efficient, real-time, length-based vehicle classification
schemes developed for the state of Oklahoma were implemented and evaluated via
machine learning algorithms and probabilistic modeling. Two vehicle re-identification
models based on matching vehicle magnetic signatures from a single MAG were also
developed.

A non-provisional patent was filed with the U.S. Patent Office on November 07,
2016 under patent application number 15/330,823; confirmation number is 7135.

1.10 Dissertation Structure

This dissertation consists of eight chapters, which are organized as follows:

e Chapter 1: Includes a general introduction of the scope of this dissertation,
including a discussion about current technologies used in ITS; Smart cities ITS;
wireless sensor networks in ITS; MAG theoretical concept and its application in
traffic surveillance; the motivation for this research; and research contributions.

e Chapter 2: Provides a literature review of related work and focuses on relevant
research contributions in vehicle surveillance using MAG, including vehicle
detection, speed and length estimation, vehicle classification and re-

identification, and time-synchronization in WSN, as well as EH.

17



Chapter 3: Introduces a detailed description of the sensor system level design in
its old and new generations, including design aspects, components selection, and
system architecture and networking.

Chapter 4: Includes information about software development and introduces
various distinctive real-time algorithms developed for vehicle detection, speed
and length estimation, time synchronization, drift correction, and other
functions.

Chapter 5: Reports field-testing and data collection studies conducted on various
highways and roadways throughout the state of Oklahoma.

Chapter 6: Highlights extensive data analysis and performance evaluation of the
various functionalities of the developed platform.

Chapter 7: Introduces two applications for iVCCS in traffic surveillance.
Chapter 8: Presents research outcomes and makes recommendations for further

research work.
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Chapter 2: BACKGROUND & EXISTING KNOWLEDGE

2.1 Introduction

Vehicle-counting and classification data, in particular, play a vital role in
designing roadways and bridges; predicting freight transport; scheduling maintenance
operations for pavement resurfacing, reconditioning, and reconstruction; traffic
planning; weight enforcement strategies; and analyzing road safety and environmental
impact, among a number of other purposes [13]. Over the last decades, a vast number of
methods have been proposed in literature. Each leverages various types of sensors and
focuses on investigating and developing new innovative solutions for traffic
surveillance. The methods aim to replace antiquated traffic surveillance technologies by
implementing smart WSN. One approach for traffic surveillance that is gaining research
attention is utilizing wireless MAG [32]-[58].
2.2 Traffic Monitoring using MAG

The use of magnetic sensors in vehicle detection can be traced to early 1978 [32]
when a fluxgate magnetic sensor was used to actuate a lighting system as a vehicle
passed the sensor. A recent study [33] proposed a 2-axis MAG for detecting vehicle
driving direction. A detection rate of 99% was observed when traveling vehicles passed
closely to the sensor. Performance degraded to 89% as the signal-to-noise ratio (SNR)
decreased. A two-threshold, four-state machine algorithm was proposed in [34] for
vehicle detection using 3-axis AMR sensor. An active magnetic detection method was
introduced in [35]. Although this method solved the baseline drift problem, it was not
efficient in power, cost, or size. Authors in [36] proposed a short-time transform

detection-and-recognition algorithm using a MAG sampled at 2KHz. Work proposed in
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[37] integrated IEEE 802.15.4 transceiver with 32-bit MCU and 1-axis AMR for a
vehicle counting and collision warning application. A 3-axis MAG was used in [38] for
vehicle detection in parking lots. In [39], a street parking system using a MAG was
introduced, and in [40], researchers proposed a vehicle parking detection method using
a normalized cross-correlation of a 3-axis MAG signal. Authors in [41] proposed a
scheme for identifying the heading direction of a moving vehicle using a two-axis
MAG. A wireless link budget study for intersection monitoring using MAG was
proposed in [42].

Vehicle speed estimation is a key parameter for traffic surveillance applications
[13]. Essential applications demanding speed estimation included length-based vehicle
classification [59]; travel time estimation [60]; ramp-metering queue length estimation
[61]; work zone safety [62]; curve warning [63]; vehicle emissions estimation [64]; and
traffic light control, among many others. More recently, solutions based on cost- and
power-efficient sensors (e.g., acoustic, MAG, and ACCEL) have become ever more
popular. Each has advantages and disadvantages. For example, acoustic and ultrasound
sensors are very sensitive to dirt and background noise (e.g., vehicles or wind). In this
study, vehicle speed was estimated using MAG sensors.

A speed estimation algorithm using MAG was proposed in [43]-[45]. In these
studies, a cross-correlation factor R was calculated via FFT by a master node from raw
data received via two roadside sensor nodes. Time delay was obtained by R when the
resulting signal was maximized. Although this method achieved relatively accurate
estimates, it proved computationally expensive, hence, energy inefficient. A region-

based approach for speed estimation was proposed in [46]. In this work, the first order
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derivative was calculated on each sensor node, and a region of each signal was selected
based on a threshold sent to the server for processing. Researchers in [47] claimed 90%
average speed estimation accuracy by analyzing magnetic length using a single roadside
node composed of an accelerometer (ACCEL) and MAG. Two magnetic sensor nodes
were used in [48] to estimate speed, and a third node was used for data fusion. Actual
speed was underestimated at an error rate of 20%. Authors in [49] proposed using four
magnetic sensor nodes—two on each side of the lane. A 10% error in speed estimation
under low speed test (e.g., 6-13m/s) was reported. Studies in [50], [51] proposed
algorithms for speed estimation using a single MAG. Notably, this method was
designed to estimate only average speed for the number of passing vehicles over time.
Four roadside MAG nodes were used in [43] for detection, speed estimation, and
vehicle classification into four groups based on length and height ratio. Two sensor
nodes were longitudinally separated by 90cm to estimate vehicle speed. A third sensor
node was placed orthogonal to the first sensor node with a separation of 10cm for
identifying false detection from an adjacent lane. A fourth sensor node was placed
upright relative to the first sensor on a 30cm elevation for differentiating trucks from
other vehicles, as height is proportional to the ratio of z-axis of both sensors. Vehicles
were classified into four groups based on length and height ratio. Group 1 included
sedans; Group 2 included SUVs, pickups, and vans; Group 3 included buses, as well as
two and three axle trucks; and Group 4 included 4- to 6-axle trucks. Acceptable
accuracy was reported. Of note is that the proposed method worked for only single lane
urban roads. Furthermore, the major dataset was composed of small vehicles records;

only a few trucks were included. Thus, results were inconclusive. Vehicle classification
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and detection using a single-axis magnetic sensor and an improved one-against-all
support vector machine (ISVM) classifier was proposed in [52]. The proposed
algorithm uses concavity and convexity of magnetic signatures to distinguish among
heavy tracked, tracked, and light-wheeled vehicles. A limited dataset of 93 vehicles
resulted in 90% classification accuracy. In [53], a 3-axis MAG was used for detection
and classification in low-speed, congested traffic. A fixed-threshold state machine
algorithm was employed for vehicle detection, and a tree-based algorithm was
implemented for classification. Vehicles were divided into four groups: motorcycles,
saloon, buses, and SUVs. Five features —duration, energy, average energy of vehicle
signature, and ratio of positive to negative energy on both X and Y axis—were
extracted to distinguish between the groups. The dataset included only 253 vehicles.
Although high detection and classification rates were reported, the dataset was limited
to a small number of samples, and trucks and pickups were not considered. Authors in
[65] proposed a vehicle classification system using two nodes installed on roadside,
each combining an ACCEL and MAG. Three features, namely the integral of each of
MAG magnitude, ACCEL magnitude, and magnitude distribution, were extracted and
normalized to vehicle speed. Several machine-learning (ML) methods (e.g., logistic
regression, neural networks, naive based, and space vector machine) were tested. A
93.4% classification accuracy was reported for distinguishing between three groups—
motorcycles, passenger cars and pickups, and heavy trucks. Notably, more than 90% of
the dataset was composed of passenger cars. Moreover, class variation in the dataset
was limited, and class 5 vehicles with trailers were missing. The absence of class 5

vehicles can significantly hinder classification accuracy, as these vehicles can be seen
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on both urban and highway roads and can cause classification confusion due to
significant variations. Furthermore, accurate clock synchronization is required for speed
estimation, as all extracted features are normalized to speed. In [55], an array of MAG
and ACCEL sensors was proposed for vehicle detection, speed estimation, and
classification. In this study, three MAG nodes positioned longitudinally reported vehicle
arrival and departure times, and six ACCEL sensors spaced six inches apart were
positioned over half the lane to detect vehicle axles via a peak detection algorithm. This
method was used to guarantee that at least one wheel on each axle would cross one of
the ACCEL sensors. Although this method showed promising results for detecting 2-
axle, 3-axle, and 5-axle vehicles, it was deemed expensive and required an enormous
amount of intrusive work and high processing capability. Authors in [56] developed a
features selection model for vehicle classification using a single MAG in which 17
features were initially identified and extracted, but only 10 suitable features were
eventually selected. A limited dataset of 460 vehicles—mostly small cars—resulted in
92.8% average classification accuracy among four groups, including buses, small-
medium cars, and large trucks. Authors in [57] proposed a detection and classification
approach using a state machine detection algorithm, a shared adaptive threshold to
compensate background noise, and a neuron classifier. A 2-axis AMR sensor was
employed. A 90% recognition rate was reported for simulation and on-road testing.
Authors in [58] integrated MAG, ACCEL, acoustic, and infrared sensors within a single
sensor node for vehicle classification. Several features were extracted, including
infrared signal peaks count and the minimum and maximum values of MAG and

ACCEL signals. A back-propagation neural network was trained to classify vehicles

23



into three groups—Ilight, medium, and heavy vehicles. Dataset was limited to only 50
vehicles. Medium vehicles were classified with acceptable accuracy. However, 25% of
light vehicles and 16.7% of heavy vehicles were misclassified. Authors in [66] proposed
vehicle detection algorithms based on a state-machine normalized cross-correlation
between two sensors placed along the roadside. The study implemented a Gaussian
filter to eliminate any interference induced by moving vehicles from adjacent lanes; a k-
means clustering for setting a reference for cross-correlation detection state; and a
normalized cross-correlation computation between two magnetic signals for speed
estimation. A 99.65%, 99.44%, and 92% accuracy was reported for arrival detection,
departure detection, and vehicle speed estimation, respectively. Although this method
showed good accuracy, it required transmitting the magnetic signature from all sensors
to a central access point for processing. In addition to the platforms detailed above, a
number of commercial platforms based on MAG are also currently available [67]-[69].
In the aforementioned solutions, vehicles were detected using a single magnetic
sensor; vehicle speed was typically estimated using two sensors at a predefined
distance; length was calculated from speed and occupancy time; and vehicle
classification was achieved by employing either multiple MAG or ACCEL sensors, or a
combination of both. A standardized wireless protocol (e.g., IEEE 802.15.4) was
considered for node-to-node and node-to-AP communications and synchronization. In
most of these solutions, sensors were embedded in roadway lanes. Although the time
required for installing some systems [67]-[69] into the pavement was comparatively
small, the systems are relatively expensive, intrusive, and cannot be used for temporary

studies or portable traffic surveillance applications (e.g., work zone safety, roadway
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design studies, and managing traffic in emergency situations, like evacuations, among
others). Although a variety of detection, speed estimation, and classification methods
have been proposed, there has been limited evaluation of detection or classification
accuracy per vehicle class over a full range of speeds. Furthermore, reported results do
not reflect actual performance, as testing datasets were small and limited. Notably,
classes 5 to 13 were highly underrepresented. Additionally, some proposed methods
[43], [45] were energy-inefficient (i.e., computationally very expensive) and required
transmission of big chunks of data to the access point for processing. These are
fundamental limitations to WSN, as the sensors are battery-powered and their network
operates in an unlicensed spectrum in a shared bandwidth among a vast number of
different technologies and devices. Hence, high data loss is highly probable because of
unstable wireless links resulting from either interfering or heavy trucks traveling over
the detection zone. Other methods [47] relied on the assumption that vehicles of the
same class moving at the same speed have nearly identical signatures. This assumption
is misleading for the following reasons: 1) Magnetic length does not represent actual
vehicle length; 2) lateral distance might change for the same vehicle; and 3) magnetic
length estimation accuracy depends on the sensor's sampling rate tolerance, which
normally has a £5% error and can be affected by temperature variations. Additionally,
little activity has been performed to evaluate detection and speed accuracy per vehicle
class over a full range of speeds. A single method fails to encompass variances between
different magnetic characteristics.

More importantly, and to the best of the author’s knowledge, no study has

reported detection error types, methods for optimizing MAG for ideal performance, or
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suggestions for consistency of MAG sensors output. Furthermore, limited information
was provided in the literature about system design, algorithm development, and
comprehensive analysis in various realistic scenarios.

2.3 Time Synchronization in WSN

Time synchronization (T-sync) is crucial in communication systems to ensure
accurate functioning and data fusion, coordinated actuation, and power-efficient duty
cycling. T-sync for wired communication networks has been studied thoroughly, and
numerous algorithms have been developed in the last decades. Network Time Protocol
(NTP) is perhaps one of the most advanced and time-tested systems [70]. Networks
using NTP externally synchronize nodes to a global reference time that is injected into
the network at many places via a set of master nodes synchronized using GPS. Power
consumption and computational energy constraints make NTP unfeasible for WSN.
Hence, maintaining a T-sync within WSN is challenging, yet still critical.

Tremendous effort has been made to implement T-sync protocols for WSN.
Authors in [71] introduced Reference Broadcast Synchronization (RBS) protocol for
WSN. In RBS, nodes broadcast reference beacons to neighbor nodes. Nodes use the
beacon signal as a point of reference for their internal clock phase alignment. Authors in
[72] proposed T-sync Protocol for Wireless Sensor Networks (TPSN). The principle
behind TPSN is that a multi-level hierarchical network topology is created in which all
nodes are assigned levels based on number of hops from root node (level 0). After the
topology is created, a root node initiates a synchronization phase wherein every node
belonging to level i synchronizes to a node in level i — 1, and so on, until network-wide

synchronization is achieved. TPSN achieves an average synchronization error equal to
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16.9uS, which is a considerable improvement above the 29.13uS error in RBS. Authors
in [73] introduced Energy-Efficient Time Synchronization Protocol (ETSP),
implementing a switching mechanism between RBS and TPSN to reduce node power
consumption. The switching threshold relies on the number of transmissions required to
maintain synchronization, which, in turn, depend on the number of network nodes.
Authors in [74] proposed Distributed Multi-hop Low cost Time Synchronization
(DMLTS) protocol based on RBS and TPSN. DMLTS is an improved ETSP,
synchronizing a group of nodes upon hearing the timing messages of a pair of nodes.
This reduces the number of exchanged messages and, notably, overall energy
consumption. In addition to the protocols mentioned above, Flooding T-sync Protocol
(FTSP) [75], Gradient T-sync Protocol (GTSP) [76], and Lightweight Time
Synchronization (LTS) [77] are widely used in WSN. Although such protocols have
reasonable T-sync precision, several challenges remain, for example: 1) failure in
wireless communication during synchronization; 2) drift error in T-sync over multi-hop
(3.68us, 20us, and 3us on 4 hops in RBS, TSPN, and FTSP, respectively) [78]; 3)
master node requirement, 4) essential linear regression (e.g., FTSP), which is
computationally demanding and power consuming; 5) TSPN-required hierarchical
structure of nodes; and 6) RBS need for separate timestamp synchronization messages
for which average error grows with 0(\/5) over multi-hops. These challenges make
protocol implementation impractical for a large-scale WSN and infeasible for strict
deterministic T-sync requirements. Moreover, T-synch through a periodic or frequent
exchange of timing packets among network nodes imposes high power budget demand.

According to [79], energy cost of 1Kbit data transmission for a 100m distance is
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approximately the same as executing 3-million instructions on a 100 MIPS/Watt
processor. Hence, local processing is crucial in multi-hop WSN for minimizing power
consumption.

Due to rapid technology advancement and increased demand, embedded GPS
modules have quickly improved in signal sensitivity, accuracy, performance, cost, size,
and, more importantly, power consumption. Embedded GPS modules can now be
considered the most simple and cost effective solution for high precision timing and
clock synchronization. Previously, this approach was not recommended for a number of
reasons, most notably energy consumption and cost. Recent studies have investigated
the feasibility of using GPS for T-sync in WSN. For example, the feasibility of using a
low-cost GPS receiver for T-sync of wireless smart sensors for structural health
monitoring was investigated in [80]. Authors in [81] developed a GPS-based time
synchronization algorithm for WSN with nanosecond accuracy. Authors in [82] claimed
+23us T-sync accuracy of a single-hop coordinated WSN. The proposed algorithm
aimed at correcting sensor node internal clock drift by transmitting a beacon from a
corresponding coordinator every 245.76ms. Upon beacon packet arrival, the RF chip
generates an interrupt and triggers an internal MCU timer to measure the internal clock,
calculate the difference, and compensate the drift. The coordinators, on the other hand,
use the PPS (Pulse-per-Second) signal from a GPS module to calculate their internal
clock drift and compensate the drift error. This method, however, doesn’t account for
measurement uncertainties, a variety of propagation paths, or interference from other
devices in the ISM band where calculated drift can be affected by jitter. Moreover,

several accumulated errors are not considered (e.g., RF chip interrupt tolerance), which
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renders results unrealistic. Authors in [83] used a GPS DSP platform to control the
processor’s RTC drift and compensate phase shift when using a 1-PPS signal. Authors
reported T—sync accuracy. Details on T-sync protocols for WSN can be found in [78],

[84].
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Chapter 3: SENSOR DESIGN & SYSTEM INTEGRATION

The roadmap to design and implement a real-time, standalone, smart wireless
sensor that exploits MAG in traffic surveillance applications requires an in-depth
understanding of embedded systems hardware-software development process, including
component selection, hardware design, software development, system integration, and
debugging. The design process and system integration of the intelligent vehicle
counting and classification sensor (iVCCS) are introduced in the next sections. Various
algorithms developed for iVCCS are introduced in the next chapter.

3.1 System Overview

The multi-disciplinary, innovative integration of systems modeling—coupled with
state-of-the-art smart physical sensors, wireless sensor networks, embedded systems,
and intelligent algorithms—will address the components composition of the developed
platform, which is purposefully designed to support various traffic surveillance
applications and studies. Figure 3-1 illustrates a conceptual diagram of the various
components that compose the developed system, where iVCCS nodes are installed into
enclosures. Two enclosures are deployed in each lane on a roadway at predefined
distance d. The system’s wireless networking between iVCCS nodes and an intelligent
access point (iAP) is facilitated through IEEE 802.15.4 protocol with ZigBee
application layer on top. Wireless networking between iAP and server is managed over
a cellular network that is assisted by a Quad-Band GSM/GPRS/LTE chipset with GPS

module on-board.
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Figure 3-1 Conceptual diagram of developed system
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3.2 Design Objectives and Requirements

Two prototypes—representing two generations (G1 and G2) of iVCCS—were

designed during this research work period. The focus during the first prototype was

developing and validating various algorithms and firmware to achieve highly accurate,

real-time traffic monitoring using MAG. As algorithms were developed and validated,

the focus in the second prototype was on finalizing sensor hardware and implementing

self-powering and wireless charging features. Both prototypes share the same design

objectives (See Table 3-1). A flow diagram of the design process can be found in

APPENDIX C.

1)
2)
3)
4)
5)
6)
7)
8)
9)

Requirement
Cost

Setup

Energy budget
Performance
Reliability
Lifetime
Portability
Flexibility
Scalability

10) Adaptability
11) Size/Weight

N R e e A N

Table 3-1 iVCCS design objective

Description
Inexpensive technology that can be deployed in mass-quantities
Nonintrusive technology that is easy-to-install and doesn’t disturb traffic
Power-efficient technology that can run on battery for long time
High accuracy and real-time execution should not be compromised
Should be highly reliable and able to recover from any system faults
Sensor components should be supported for the next 10 years
Can be used for permanents or temporary traffic monitoring studies
Programmable to supports various traffic monitoring studies applications
System network can be easily expanded by adding more sensors
Sensor components should function in wide temperature range

Should be as small as possible in size and lightweight

3.3 Components Selection Methodology

The primary objective of the selection process is identifying groups of

components that should be evaluated for potential integration in the design. A selection

criteria was developed to rank and evaluate each component individually based on three

factors: 1) characteristics, 2) cost, and 3) size. Component characteristics can be
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obtained from the component’s datasheet, which defines the features and performance
of the component at various conditions, including power consumption and operating
temperature. The criteria and important aspects of the selection process for each
component are explained in the following sections.
3.4 1VCCSec Platform Overview

The iIVCCS.G1 is a battery-powered, smart wireless sensor node. All components
that compose the sensor, shown in Figure 3-2, were selected to achieve minimal power
consumption while maintaining low cost and high-performance of the sensor. Figure
3-3 shows iIVCCSgz printed circuit board (PCB) and component distribution on top and

bottom layers. Board dimensions are 65(L)*x36(W)x16mm(H).
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Figure 3-2 iVCCSai functional components block diagram
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Figure 3-3 iVCCSa: printed circuit board with all components marked
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3.4.1 Embedded Microcontroller

The core component of iVCCSc: is ATxmegal28A4—a high-performance, pico-
power, 8-bit microcontroller from Atmel [85]. Figure 3-4 illustrates the
ATxmegal28A4 block diagram and pin layout. ATxmegal28A4 has an eight-channel
event system with four-channel DMA controller that simultaneously manages eight
inter-peripheral signals at 32MHz without CPU intervention. The chip also combines
128KB in-System-Programmable flash memory for developing advanced codes and
algorithms for future applications. The event handler enables the system to avoid
software-managed context switching and interrupt handling. Tasks are achieved with
event-response time in nanoseconds. ATxmegal28A4U also has a programmable multi-
level interrupt controller, and 34 GPIOs, as well as rich peripherals and serial interfaces,
including USART, TWI, SPI, 12-bit A/D and D/A converter, and RTC, among other

on-board peripherals.
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Figure 3-4 ATxmegal28A4 internal block diagram and pin-layout
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ATxmegal28A4 has 10mA, 3.8mA, 1.4pA, and 1pA power consumption in
active, idle, power-down, and power-save modes, respectively. It requires 5us to wake-
up from power-down mode and transition to active mode. These features, in addition to
the fact that Atmel was confirmed in 2013 as the fastest growing among the top 10
suppliers for 8-bit MCUs, made ATxmegal28A4 the best 8-bit MCU candidate.

3.4.2 Magnetometer & Accelerometer Sensors

An extensive search was conducted to find the MAG/ACCEL that best fit the
selection criteria. Essential characteristics considered in the selection and evaluation
process were output data rate (ODR), sensitivity, resolution, measurement range,
disturbing field, power consumption, and cost. Table 3-2 lists specifications of the top
three industry-leading MAG sensors available in the 2014 marketplace.

Table 3-2 Top MAG candidates for iVCCSa1

STMicroelectronics
LSM303DLHC

Freescale
FX0S8700CQ

Honeywell
HMC5883L

&
Interface I2C/SP1 + 2-INT I2C + 2-INT I2C + 1-INT
Integration 6-axis ACCEL-MAG 6-axis ACCEL-MAG 3-axis MAG
Measurement Range +12 Gauss +1.3 ~ £8.1 Gauss +1 ~ +8 Gauss
Update Rate (ODR) 1.563Hz ~ 800Hz 0.75Hz ~ 220Hz 0.75Hz ~ 75Hz
Measurement Period 0.64s ~ 1.25ms 1.33s ~ 4.55ms 1.33s ~ 13.33ms
Resolution 16-bit ADC 14-bit ADC 12-bit ADC
Sensitivity 1 mGauss 2 mGauss 4 mGauss
Disturbing Field 100 Gauss 20 Gauss -
Maximum Field 1000 Gauss 10,000 Gauss -
Power Consumption 240pA [ 2pA (ldle) 110pA / 1pA (1dle) 100pA / 2pA (ldle)
Cost US$1.25 US$3.00 US$1.75
Package QFN-16 (3x3x1.2 mm)  LGA-14 (3x5x1 mm)  QFN-16 (3%3x1.2 mm)
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FXOS8700CQ was the best fit for design requirements. FXOS8700CQ is an
intelligent digital chipset, combining a 3-axis magnetic tunnel, junction-based MAG,
and a 3-axis ACCEL sensor in one package [86]. The MAG has a dynamic range
+1200uT and 16-bit ADC resolution with sensitivity of 0.1uT/LSB. Power consumption
is as low as 8pA and only 2pA in standby mode. FXOS8700CQ has the highest ODR
among all other sensors and incorporates the industry’s most advanced embedded
features that enable significant system optimization for low power with substantially
more savings when the application is driven by interrupt signals. In addition, the chip
has a wide measurement range, high resolution (0.1uT/LSB), very low noise density
(0.1uT/VHz at 100Hz bandwidth), high sensitivity, low output noise range (0.3—
1.5uTrms for sampling rates 1.563-800Hz), ability to manage a high disturbing field,
low cost, and low power consumption. Unlike other AMR sensors, FXOS8700C uses
micro-electro-mechanical system (MEMS) technology with advantages in terms of cost,

size, weight, and energy [87]. Figure 3-5 details the FXOS8700CQ block diagram.
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Figure 3-5 Freescale FXOS8700CQ System Block Diagram
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The integration of MAG and ACCEL can be used not only for vehicle detection,
but also to classify vehicles [55], such that the MAG detects presence of a vehicle by
measuring disturbance to the Earth’s magnetic field and ACCEL detects number of
axels by measuring the vertical acceleration of a road surface due to motion of dynamic
loads.

3.4.3 Embedded RF Engine

Networking between iAP and iVCCS.G1 nodes is facilitated through a low-power
wireless protocol. ZigBee is one of the key enabling wireless technologies for loT
devices. This technology operates in sub-GHz and 2.4 GHz ISM (industrial, scientific
and medical) radio bands based on IEEE 802.15.4 physical and MAC layers.

Among many available commercial ZigBee modules, Synapse’s SM200P81 RF
Engine [88] was found to be a suitable wireless interface candidate for the sensor design
in all selection criteria. For example, transmit power is 3dBm with range of 1500ft and
data transfer rate up to 2Mbps. More importantly, power consumption can be as low as
1.37pA with 22.5mA data transmission and 20.5mA during data receiving. Receiver
sensitivity is -100dBm. Unit size is 30x19mm and costs about $17.9/1KU. Outdoor
line-of-sight (LOS) range can extend up to 450 meters. SM200P81 incorporates
Synapse's SNAP mesh network operating system [89], which facilitates multi-hop,
instant-on, self-healing, and internet-enabled mesh networking between network
devices. Figure 3-6 illustrates the SM200P81 physical module and its internal block

diagram.
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3.4.4 Real-Time Clock

Time-stamping is enabled by Maxim Integrated DS3231M [90], an extremely
accurate, low-cost, real-time clock (RTC) unit that incorporates the industry's first
temperature-compensated MEMS resonator with £5ppm accuracy (+0.432 second/day).
MEMS reduce crystal mechanical failure susceptibility. The chip has two
programmable alarms and a 1Hz output (PPS), as well as a battery backup (3V) for

continuous timekeeping for 10 years. In 2014, DS3231M was considered the most

—> U.FL

accurate RTC chip on the market.
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Figure 3-6 SM200P81 Module block diagram

3.4.5 Embedded GPS Module

To enable self-configuration, auto-localization, and accurate synchronization of a
scalable network, a Titan 2 Gms-g6 GPS module was incorporated on iVCCS [91].
Titan 2 is a compact, dual-system GPS receiver module with built-in patch antenna,
featuring up to 210 PRN channels, including 99 search channels and 33 simultaneous
tracking channels. Titan 2 provides 2.5m positioning accuracy, £10ns timing accuracy,
and up to 10Hz update rate, as well as low-power consumption at a cost of only $16 per
module. Titan 2 has a backup power mode that operates the internal RTC unit even

when main power is off. This feature helps retain satellite information, locking satellites
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in about 1-sec on power-up instead of performing a lengthy 30-sec cold start. Power
consumption is 94A in backup mode, 350 PA in standby mode, 23mA in tracking
mode, and 25mA in accusation mode. Module size is 16x16x6.8 mm. Figure 3-7 shows

the Titan 2 module.

Compact GNSS
Antenna Module

Multi-GNSS
GPS/Glonass/
© Beidou/Galileo/QZSS
P Ultra-low Power
Consumption

High Positioning
Accuracy
16 x 16 x 6.8 mm Anti-Jamming
Technology

Figure 3-7 Titan 2 Gms-g6 GPS module
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3.4.6 Power Management Unit

Quiescent current (Ig) is an extremely important parameter when comparing the
low-power performance of various integrated chips, hence, selecting the best
components for low-power design. Iq can be defined as the current drawn by a device in
a load-free state (i.e., Iq represents the minimal current that supports a device’s basic
functionalities). g can be used to estimate battery run time.

The power management unit included TPS78333, an ultra-low quiescent current
(i.e., 1g=500nA) with low dropout voltage (i.e., 150mV) 3.3V linear voltage regulator.
TPS78333 has a thermal shutdown and overcurrent protection. Shutdown current is
18nA.

A 3.7V/2000mAh Polymer Li-lon battery is used to supply the system. Li-Po
batteries are a best fit for powering handheld and portable devices—small, lightweight,

and durable. Notably, the batteries should never be discharged too low. If battery
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voltage drops below approximately 3.0V per cell, the battery will no longer accept a full
charge and might not hold voltage under load. As such, the load must be discounted the
moment voltage drops below 3V.

MAX17043 was used to protect battery from deep-discharging [92]. MAX17043
is an ultra-compact, low-cost, host-side, fuel-gauge system for Li-Po batteries. The chip
uses sophisticated algorithms to detect battery state and voltage. Shutdown current is
0.5pA. In addition to estimated capacity data sets, battery measurements can be
accessed by the MCU over I2C bus and later reported by iVCCS to iAP.

TPS78333 provided a shutdown pin controlled by MAX17043. In the event that
battery voltage drops below a predetermined threshold, the MAX17043’s ALT pin will
shutdown regulator output.

3.4.7 Data Storage Unit

Since the sensor should support various studies and applications—which might
include sampling the geomagnetic field at high sampling rate and storing raw data for
an extended period—a microSD card was incorporated on board. Several microSD
cards were tested. ScanDisk microSD cards were selected because compared to others,
they have the lowest power consumption. Also, they support automatic switching
between active and sleep mode. In general, the card will remain in sleep mode except
when accessed by the host for data read or write. After completion of an operation in
5ms, the card will automatically return to and remain in sleep mode until a new
command is issued by the host. Power consumption is around 20mA during a page-
write operation at 10MHz rate. Buffering the data is recommended before transferring it

into the card to ensure ample time in sleep mode.
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3.4.8 Road Surface Condition Sensors

In addition to the aforementioned peripherals, iVCCS.G1 is equipped with road
surface condition monitoring, including temperature and wet-dry sensors. The
temperature sensor is a negative temperature coefficient (NTC) resistor (e.g.,
NXFT15WF104FA2B025), and the wet-dry sensor is an impedance grid resistor (IGR).
Both sensors are connected through low-pass-filters (LPF) to the MUC’s analog-digital-
converter inputs.
3.4.9 Atmospheric Sensors Extension Module

Additional extended atmospheric measurements can be obtained from iVCCS by
attaching a weather-sensing module (WSM), including ambient pressure, humidity,
temperature, light, acoustic sound, and lightning sensors. Figure 3-8 illustrates the block

diagram of WSM. Figure 3-9 shows the WSM printed circuit board (PCB).

Temperature || Humidity Barometer Rainfall
Sensor Sensor Sensor Sensor
Ambient Thermistor Lightning Sound
Light Sensor Sensor Sensor Sensor
. J

Figure 3-8 WSM sensing components block diagram
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Figure 3-9 WSM PCB with all sensing components marked, 25x28mm
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A comprehensive search was carried out to select the most suitable embedded
sensors for weather sensing in a WSN application. Selection criterion was based on the
following factors: sensitivity, accuracy, power consumption, size, cost, and
communication interface (e.g., analog or digital). Selected sensors and their part
numbers are shown in Figure 3-10. HTU21D is a digital Humidity Sensor; MPL3115A2
is a digital absolute xtrinsic smart pressure sensor; ADMP401 is analog omnidirectional
MEMS microphone module; MAX44009 is digital ambient light sensor; TMP102 is
low power digital temperature sensor; AS3935 is Franklin lightning detector with
embedded algorithm that warns of lightning storm activity within a radius of 40kM; and
NXFT15WF104FA2B025 is the surface temperature sensor. Additional information

about particular sensors is located on their respective datasheets and application notes.

HTU21D MPL3115A2 ADMP401 MAX44009 TMP102 AS3935
Figure 3-10 Selected Atmospheric Sensors for WSM

3.5 iVCCSc1 Power Consumption and Battery Life Analysis

As stated earlier, iVCCS is a battery-powered, wireless sensor node that uses a
3.7V/2000mAh Lithium Polymer (Li-Po) battery. iVCCS on-board components were
carefully selected to achieve minimal power consumption.

A preliminary power consumption analysis in various operation modes showed
that maximum current rates in power down, idle, and active modes are 156pA, 50nA,
and 65mA, respectively. Considering 3.7V/2000mAh Li-Po Battery, battery life can be

roughly estimated in each mode using Eq. 3-1, where p is external factor allowances
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that can affect battery life and T is the duty-cycle. Given that p = 0.75 and T=1,
estimated battery life in power down mode is limitless. The battery can operate iVCCS
in idle mode for 578 days and in full active mode for 40 hours. All iVCCS components
are operating in full active mode, including GPS, RF engine, and data logging unit.
Power consumption for iVCCS components and WSM sensors is shown in Table 3-3
and

The most power-consuming component on iVCCS is the wireless transceiver engine
(e.g., active current is 22mA). Power consumption is reduced, given a transition from
one state to another (e.g., power-down — Idle — Active), which is driven by interrupt
events. A transition from Power Down to Active mode is triggered by a vehicle arrival
event wherein the MCU samples the magnetic field every TS (i.e., TS = 1.563Hz to
800Hz). A cyclic transition between Active <> Idle modes occurs every TS until a
transition from Active — Power Down mode is triggered by a vehicle departure event.
Table 3-4, respectively. Power consumption calculations for various operation modes

using various Li-Po batteries are illustrated in Table 3-5.

1

BLpour = = (

- Capacityman ><u> Eq. 3-1

Current,,,

Table 3-3 Power consumption for iVCCS components

Component Idle Full Active
Atmel XMega A4 Microcontroller 1pA 500pA ~ 8SmA
microSD Card 150uA 20mA
Voltage Regulator 500nA S8uA
Li-Po Battery Fuel Gauging 1puA 50pA
MAG Sensor 2uA 40 ~ 575pAl

! Consumption is related to sensor’s sampling rate
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ACCEL Sensor 2uA 40 ~ 575pAl

RF Module 0.37puA 20/ 22mA?2
GPS Module 1uA 20/ 29mA3
Passive components 50pA S50pA
Total Current 160pA 60mA ~ 80mA

The most power-consuming component on iVCCS is the wireless transceiver
engine (e.g., active current is 22mA). Power consumption is reduced, given a transition
from one state to another (e.g., power-down — Idle — Active), which is driven by
interrupt events. A transition from Power Down to Active mode is triggered by a vehicle
arrival event wherein the MCU samples the magnetic field every Ts (i.e., Ts = 1.563Hz
to 800Hz). A cyclic transition between Active < Idle modes occurs every Ts until a
transition from Active — Power Down mode is triggered by a vehicle departure event.

Table 3-4 Power consumption for WSN components

Sensor Power-off Idle Active
Digital Lightning Sensor 0 1pA 60pA
Microphone Preamplifier 0 24pA 24uA
Digital Relative Humidity sensor 0 0.1pA 480uA
Digital Pressure/Altitude sensor 0 2uA 8.5uA
Digital Temperature Sensor 0 1A 10pA
Digital Ambient Light Sensor 0 0.65pA 1pA
MEMS Silicon Microphone 0 50nA 50uA
Voltage Regulator 500nA 500nA SuA
Analog Impedance grid sensor 0 25uA 25uA
Analog NTC Thermistor 0 25pA 25pA
500nA 129pA 692pA

! Consumption is related to sensor’s sampling rate
2 Consumption depends on the operation, read/write
3 Consumption depends on the operation, tracking/accusation
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Table 3-5 Power consumption in various operation modes using Li-Po batteries

IVCCS Battery-Life (Days) WSM Battery-L.ife (Days)

Bljollttzgy Shut-down Idle Active Shut-down Idle Active
500nA 156pA 60~80mA 500nA 129pA 692pA

1000mAh 83333 252 0.69 83333 323 60.21
1500mAh 125000 378 1.04 125000 484 90.32
2000mAh 166666 505 1.39 166666 646 120.42
2500mAh 208333 631 2.08 208333 807 150.53
3000mAh 250000 7578 2.08 250000 969 180.64
4000mAh 333333 1010 2.78 333333 1292 240.85

3.6 Power Consumption Implications of Detection Algorithm

MAG (e.g., FXOS8700CQ) has an active mode operation current range between
20—600uA, which is directly related to sensor ODR. MCU, on the other hand, has a
slightly higher power consumption. After a detection event, iVCCS samples the MAG,
logs and analyzes acquired data, and then sends timestamps to iAP. In reality, average
duty-cycle of a detection system could range between 1% and 8%, meaning the system
is idle more than 92% of the time. Hence, power consumption can be significantly
reduced by configuring the system to automatically transition to a higher sampling rate
when needed (i.e., a detection event triggered). iVCCS spends the majority of time in
idle mode (i.e., no detection event), enabling the use of a very low sampling rate. This
method, however, is at the expense of losing samples of vehicle signatures.
3.7 Towards Self-Powered Smart WSN

Transistor scaling is becoming exponentially smaller approximately every 18
months as a result of Moore’s law, which allows twice the number of transistors per

square inch of a silicon chip at lower cost and power consumption [27]. Also, with the
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approaching era of 10T and smart cities, it is anticipated that the market will demand
more autonomous and self-powered wireless sensors that should ideally operate for
decades without service. For these reasons, it was necessary to reconsider iVCCS
hardware design requirements first designed in 2014 before finalizing for mass
production.

The reconsideration demanded the design of a new generation of sensor that is
self-powered by integrating ultra-low-power (ULP) components and an advanced
energy-harvesting (EH) and power management unit.

3.7.1 Characteristics of Self-Powered Applications
The essential characteristics of any self-powered application are as follows:

e Ultra-low leakage current integrated devices

e Energy-efficient components able to operate at low voltages

e Small size, lightweight, and long operating lifetime

e Primary and/or secondary power sources

e Ability to operate efficiently; consume the lowest power at low duty-cycle

e Ability to instantaneously switch between power-down and active modes

e Ability to self-sustain full operation during the device’s intended lifetime

e Ability to support several operation modes (e.g., active, standby, sleep,
power down)

Designing ULP applications demands an in-depth understanding of the power
source side, which is as important as the power consumption side—reason being that
the nature of power sources for EH systems represents a stochastic process. Notably,
harvested power tends to be limited, intermittent, and unregulated, meaning that the

average power and its distribution over time can be characterized. Notably, instant
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power is unpredictable and subject to several non-deterministic factors. For self-
sustainability of a device, the following key aspect must be considered in the design:
Average consumed power at system side must be

less than the average harvested power at source side.

3.7.2 Enabling Device Power Self-Sustainability

The most successful approach to enable self-sustainability of a device is by
enabling ULP energy-efficient hardware design, as well as software development [93],
meaning that system power budget must be well addressed in the design. This requires
identifying the power consumption for each component in various operating modes,
including Iq, transient-current, average-current, and peak-current.

Given that the sensor enclosure has limited available space, a top-down design
approach can be followed to estimate the hypothetical lifetime of the device by
selecting a battery that fits in space. Battery capacity represents maximum power source
capability. Average power obtained for EH can be characterized based on availability,
efficiency, and power levels of the ambient source. For example, given a device uses a
2800mAnh Li-Po battery and has a=10% self-leakage or self-discharge over three years
and a three-year lifetime, average power consumption should not exceed 106uA (See

Eq. 3-2), that is assuming no other power sources are available to charge the battery.

SOURCE, 2800
lag = 5 (1 — @) = Ah x0.9 = 106uA Eq. 3-2
TIME}, purs 3yearSX365dayS X24h0uT

3.8 1VCCSa:2 Platform Overview

IVCCSa: (an evolution version of iVCCSax) is a novel, fully-integrated intelligent
wireless smart sensor that employs higher performance, is less expensive, and has more
power efficient embedded electronics. The sensor was designed to be fully-autonomous
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and self-powered with the ability to support various traffic surveillance applications and
research studies.

IVCCSac: integrates single board state-of-the-art electronic components, including
ultralow power, high-performance 32-bit embedded microcontroller, energy-efficient
wireless transceiver, smart embedded sensors (i.e., 3D MAG and ACCEL), highly-
accurate low-power embedded GPS receiver, dual-units for data storage, ULP EH
power management unit (PMU) with maximum power point tracking (MPPT) and
charge management controllers (CMC), battery fuel gauge, wireless power charging
receiver, and atmospheric sensors. Components are managed by distinctive algorithms
for implementing various traffic monitoring applications. Sensor firmware can also be
upgraded over-the-air (OTA), which permits a customizable configuration to support
various studies and applications. The sensor is functional in either standalone mode,
wherein all data are stored on internal memory, or in peer-network, wherein iAP
manages WSN data transfer. Figure 3-11 illustrates iVCCSc. block diagram. Figure
3-12 shows component distribution on both layers—top and bottom—on the iVCCSeg?
board. The sensor’s PCB dimension is 45(L)x30(W)x6mm(H). Figure 3-13 depicts
interconnections between on-board components. Power lines are represented in orange
color; data/control busses are in green; and power switch control lines are in blue. The
selection criteria and a brief description of each component are discussed in the next

sections.
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Figure 3-11 iVCCSa:2 functional components block diagram
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3.8.1 A 32-bit Embedded Microcontroller
The selection of the right MCU is crucial for ULP embedded systems design. The
criteria for MCU selection was based on the following criteria:

e Supported multiple operational power modes

e Very low power consumption in active mode

e Tremendously high and efficient processing performance
e Particularly fast wake-up time

e Ultra-low power consumption in standby mode

e Rich peripheral with autonomous operation

e Industrial grade with wide operational temperature range

From among several industry-leading ULP MCUs (e.g., TI MSP430; Freescale
MKL; Renesas RL78; NXP LPC1lxxx; Atmel SAM4L; Microchip XLP; and Silicon
Labs EFM32), STMicroelectronics ultra-energy-efficient ARM  Cortex-M0+
STM32L071xB was selected. STM32L0 MCU series is ideal for energy-sensitive
applications, including wearable devices, medical implants, and smart-living devices.
STM32L0 MCUs have proven class-leading, energy efficiency of 135 ULPMark™-C
[94]. Moreover, STM32L0 MCUs are highly temperature-stable and have best-in-class
power consumption at 125°C, combining efficiency and robustness. Figure 3-14
illustrates a circuit block diagram of the selected STM32L071KB MCU [94], which has
the following energy-saving features:

— Seven power modes, including Run, Sleep, Stop, Standby, and others

— 139uA/MHz Run mode current and 76puA/MHz optimized Run mode

— Energy-saving modes, including 340nA Stop mode with full RAM retention
— Auto wake-up from Stop mode to Run mode (32MHz) in 3.5us

— Temperature operating range -40 to +125°C.

N

Optional low-power pulse counter available in ultra-low power mode
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— Low-power ADC, 41pA at 12-bit resolution and 10KSPS

— Interconnect matrix for data handling when CPU is idle

128-Kbyte
Flash memory (dual bank)

20-Kbyte SRAM

System
Power supply
1.8V regulator
POR/PDR/PVD/BOR
Xtal oscillators
32 kHz + 1 to 32 MHz

ARM® Cortex®-M0+ CPU
32 MHz

6-Kbytes EEPROM
20-bytes backup data
BOOT ROM

Nested Vector

Interrupt
Controller (NVIC)

Memory Protection Connectivity
LndtAES) 2x SPI, 3¢ I2C

ULP RC oscillator SW debug ax U’SART

64 kHz to 4 MHz LIN, smartcard, IrDA,

-Li i modem control
il ::;b:t::fg T T
SysTick timer P

2x watchdogs Up to 7-channel DMA

(independent and
window) Analog

27/37/51/84 1/0s 2x ultra-low-lower Control
Cyclic redundancy 1x ultra-low-power

Internal RC oscillators
38 kHz + 16 MHz

Internal multispeed

comparators

check (CRC) 16-bit timers

Voltage scaling
3 modes

1x 12-hit ADC SAR 6x 16-hit timer

16 channels / 1 ps

Figure 3-14 STM32L071KB MCU block diagram

Since ULP systems continually switch between Stop and Run modes, the ultra-fast
wake-up time is extremely important for minimizing inefficient wake-up switching
delay. The interconnect matrix allows CPU-independent, autonomous, inter-peripheral
signaling and data transfer between peripherals and memory in energy-saving modes.
3.8.2 Magnetometer & Accelerometer Sensors

Kionix KMX62 is a MEMS technology-based, high-performance, low-power,
inertial sensor that combines a tri-axial MAG and a tri-axial ACCEL coupled with an
advanced ASIC. This sensor was released in July 2016 as best-in-class. KMX62
magnetic and acceleration sensing technique is similar to FXOS8700CQ in that
acceleration is capacitance-based sensing and magnetic is impedance-based sensing.
Table 3-6 shows a comparison between the two industry-leading 6-axis MAG-ACCEL

SENSOrs.
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Table 3-6 Comparison between two industry-leading 6-axis MAG-ACCEL sensors

Control Interface

Dimensions
Update Rate (ODR)

ODR Accuracy
Magnetometer Range

Acceleration Range

ADC Resolution

Measurement Period
Magnetic Sensitivity
Acceleration Sensitivity
Magnetic Nonlinearity

Acceleration Nonlinearity

Acceleration Sensitivity

Magnetic Output Noise
Acceleration Output Noise
Maximum Exposed Field
Maximum Acceleration
Zero-Flux Offset

Flux Offset with Temp
Zero-g Level Offset
g-level Offset with Temp
FIFO Buffer

Power Consumption

Cost
Package

Freescale (NXP)
FXOS8700CQ

I2C/SPI + 2-INT

6-axis ACCEL-MAG

1.563Hz ~ 800Hz
400Hz in hybrid mode

5% over -40°C to +85°C
+1200 pT

+2g/ 149/ +8g

MAG: 14-bit
ACC: 16-bit

0.64s ~ 1.25ms
+0.1 UT/LSB
1 Milligauss
+1 %FSmac
0.5 %FSacc
+29— 0.244 mg/LSB
+4g9— 0.488 mg/LSB
+8g—> 0.976 mg/LSB
0.3~1.5 pT-rms@1.56~800Hz
126 ng/NHz
100,000 uT
10,000 Gauss
+10 uT
+0.8 uT/°C
+30 mg
+0.2 mg/°C
32 Samples (ACC only)

Idle Mode: 2pA
MAG: 40~575pA @ 12.5~400Hz
ACC: 10~240pA @ 12.5~800Hz

M&A: 40~440pA @ 12.5~200Hz

US$1.5/1KU
QFN-16 (3x3x1.2 mm)
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Kionix (ROHM)
KMX62-1031

12C + 2-INT
6-axis ACCEL-MAG

MAG: 0.781Hz ~ 1.60KHz
ACC: 0.781Hz ~ 25.6KHz

2% over -40°C to +85°C
+1200 pT

129/ 49/ +8g/ £16g
MAG: 16-bit
ACC: 16-bit

MAG: 1.28s ~ 625ps
ACC: 1.28s ~ 39us

+0.0366 pT/LSB

0.366 Milligauss
0.5 %FSmac
0.5 %FSacc

+2g— 0.06mg/LSB
+4g— 0.12mg/LSB
+8g— 0.24mg/LSB
+169— 0.49mg/LSB

0.2~1.4 uT-rms@0.78~1600Hz
106 pg/NHz
500,000 uT
50,000 Gauss
+0 uT
+0.3 uT/°C
+25mg
0.2 mg/°C
64 Samples (ACC&MAQG)

Idle Mode: 1pA
MAG: 1.6~292uA @ ODRyange
ACC: 1.6~156pA @ ODRyange
M&A: 1.6~385uA @ ODRyange

US$4.00/1KU
QFN-16 (3x3x0.7 mm)



Since MAG/ACCEL is a core component for iVCCSg», extended selection criteria
was necessary for decision-making. Table 3-6 shows that KMX62 outperforms
FXOS8700CQ in every factor except cost. Because low cost is essential and because
both sensors are pin-to-pin compliable, it was necessary that the final iVCCSeg design
ensured its ability to adapt to either sensor. Choice is based on desired performance, as
well as the application.

3.8.3 Embedded RF Engine

Among several promising loT wireless technologies (e.g., BLE, LoRa, DASH?7,
6LoWPAN, Bluetooth, and Z-Wave), ZigBee is at the forefront in terms of cost, power
efficiency, distance, and throughput [95]. ZigBee has the advantage of using mesh
networking topology, which eliminates single points of failure. Additionally, ZigBee is
well standardized at all network levels, allowing devices from different vendors to work
together seamlessly. ZigBee module selection criteria was developed to evaluate the
following key characteristics:

e Support for multiple-power modes, including idle and deep-sleep

e Power consumption during transmission, receiving, idle, and deep-sleep
e Maximum distance range in LOS

e Maximum data throughput

e Size, weight, and cost

The most power-consuming component on iVCCS is the wireless transceiver engine
(e.g., active current is 22mA). Power consumption is reduced, given a transition from
one state to another (e.g., power-down — Idle — Active), which is driven by interrupt
events. A transition from Power Down to Active mode is triggered by a vehicle arrival
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event wherein the MCU samples the magnetic field every Ts (i.e., Ts = 1.563Hz to
800Hz). A cyclic transition between Active < ldle modes occurs every Ts until a
transition from Active — Power Down mode is triggered by a vehicle departure event.
Table 3-4 details a comparison between the top four industry-leading ZigBee
modules for loT devices. All modules report comparable performance. However,

AWS5161POCF serves as the best candidate in terms of cost, size, and sleep current.

Table 3-7 Top ZigBee Module candidates for iVCCSa2

ATMEL Dresden Elektronik NXP ZLG
ATZB-S1-256-3-0-C  deRFmegal28- 22M00 JN5168-001-M00 AWS5161POCF

5

M

Voltage Range 1.8V ~3.6V 1.8V ~3.6V 2.0V ~ 3.6V 2.2V ~ 3.6V
Controller ATMEGA256RFR2  ATmegal28RFA1l NXP JN5168 NXP JN5161
Throughput 2Mbps 2Mbps 2Mbps 2Mbps

RX Sensitivity -97dBm -100dBm -95dBm -95dBm
TX Power +3.6dBm +3.0dBm +2.5dBm +2.5dBm
Link Budget 100.6dB 103.0dB 97.5dB 97.5dB
Distance 170 — 570 meter 200 meter 200 meter 500 meter
Sleep Current 0.6pA 1pA 0.7uA 0.1pA

RX Current 17mA 18mA 17mA 19mA

TX Current 16.4mA 18mA 15.3mA 16mA
Cost US$25/1KU US$15/1KU US$10/1KU US$5/1KU
Package 30%20x5 mm 23.7x13.2x3 mm 30%x16x3 mm 16.5%13.5x3 mm
Protocols ZigBit OLOWPAN, Zighee o 00% (U RRICE Al Low.Power

AWS5161P0 [96] is a low power, high performance, surface-mount ZigBee
module based on NXP JN5168. The sensor supports several protocol stacks, including
IEEE 802.15.4, JenNet-IP, ZigBee Light Link, ZigBee Smart Energy, and RF4CE (See

Figure 3-15). AW5161P0 has proven superior in all aspects of performance. For
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example, transmit power is +2.5dBm with range of 500 meter and data transfer rate up
to 2Mbps. More importantly, power consumption can be as low as 100nA in deep sleep.
AW5161P0 can be configured as an End-device, Router, or Gateway. Size is
16.5x13.5mm, and cost is less than $5, compared to $17.76 for SM200P81 installed in

iVCCSai.

ZigBee Pro Light Link

{ /, \ ZigBee Pro Home
ey Automation

Zigbee RFACE (L5 A

{ iz | ZigBee Pro Smart Energy

JenNet-IP | ] ok
B ZigBee-PRO

Figure 3-15 AW5161P0 support multi-wireless protocol stack [96]

3.8.4 Real-Time Clock

STM32L071KB combines an advanced internal RTC unit for providing a full-
feature calendar, alarm, periodic wakeup, digital calibration, timestamp, and
synchronization. The unit has a separate, accurate low speed external (LSE) oscillator
with the advantage of providing a low power yet highly accurate clock source for RTC
timing functions. LSE incorporates OSC32_IN and OSC32_OUT pins for crystal
connection.

To provide a highly accurate, external clock source for timestamping, SiT1552
(an ULP 32.768KHz MEMS TCXO [temperature compensated crystal oscillator]) was
routed directly to the OSC32_IN pin. SiT1552 is currently the smallest precision

32KHz TCXO [97] available (See Figure 3-16). SiT1552 has £5ppm frequency stability
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over a temperature range with ULP consumption of 990nA. According to SiTime Corp.,
SiT1552’s silicon is qualified for use at 105°C. SiT1552 was also selected due to its
resistance to shock and vibration, as larger TCXOs are extremely susceptible to
mechanical disturbances. In fact, each truck driving by or over the TCXO sensor is

known to negatively impact timing accuracy.

5 PPM, 1.2 mm?, | pA

1.5x0.8 mm

wuw g

0
%ﬂ

Figure 3-16 SiT1552, a world’s smallest 32.768KHz MEMS TCXO

3.8.5 Embedded GPS Modules
Selection criteria for a ULP GPS module included the following characteristics:
e Multiple-system support, including GPS and GLONASS
e Power consumption during tracking, acquisition, standby, and backup
modes
e Number of available PNR, tracking, and acquisition channels
e Sensitivity, positioning accuracy, and timing accuracy
e Size, weight, and cost
Quectel’s L76L-M33 GPS module [98] was selected among many commercially
available GPS modules. L76L-M33 is a ULP, extremely compact (10.1x9.7x2.5mm)

GNSS module, featuring <2.5m positioning accuracy, £10ns timing accuracy, and up to
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10Hz update rate at a cost of only $7.80. The module can monitor up to 210 channels,
99 of which are searchable, while simultaneously tracking another 33. L76L-M33
backup power mode consumes only 9uA for supplying the internal RTC when main
power is off. This feature aids in retaining satellite constellation information and
locking with satellites in less than 1-sec on power-up rather than performing a lengthy
cold-start satellite search. Power consumption is 19mA for tracking; 25mA for
acquisition; 2.8mA for locating; and 500pA in standby mode. Figure 3-17 illustrates

Quectel’s L76L.-M33 GPS module.

1 QUECTE*
L76-L

9.7 mm 2.5 mm

L76L-M33
L76LNRO1A01S

Figure 3-17 Quectel’s L76-L extremely compact GPS module

3.8.6 Data Logging Unit

IVCCSq2 integrates a micro-SD card and serial NOR flash for data logging.
SanDisk has the best industrial-grade microSD card for applications requiring
reliability, durability, and high intensity data logging, such as industrial 10T getaways
and transportation [99]. SDSDQAF-008G-I Class 10 8GB microSD card was selected.

To protect the card from electrostatic discharge (ESD), electromagnetic
interference (EMI), and transient voltage and current, TI TPD8F003 was added to the

design. TPD8F003 [100] is a highly integrated, eight-channel EMI filter with ESD
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protection (up to £20-kV air gap discharge). The chip is ultra-small (3.30x1.35 mm)
and has an ultra-low leakage current of 10nA per channel. Cost is US$0.25/1KU.

The purpose of adding a microSD card was to support raw data collection (e.g.,
flux magnitude and vertical acceleration), which is useful for research studies.
Advantages of microSD cards include its portability and large capacity. Disadvantages
include the fact that the cards are energy inefficient, large sized, and expensive.

Ultimately, only detection timestamps are necessary for essential traffic
monitoring (i.e., vehicle counting, speed estimation, or length-based classification). At
this point and for such applications, a more energy efficient, cheaper, and smaller
solution is crucial for iIVCCSg> design.

Serial NOR Flash memories are currently the best solution for logging detection
timestamps. The Macronix’s MX25R NOR Flash memories family [101] is specifically
designed for next-generation 10T consumer wearables. These devices feature a ULP
mode and density to 512Mbit. Active power consumption is 3.1mA for write and
1.9mA for read, which are 70% lower than other solutions. Deep-power-down mode
consumption is only 0.1pA, which is 90% lower than other available solutions. Cost for

MX25R6435F is US$1.0; size is 4x4mm.

Sanisk

1 Industrial

8cs M3
W e S

Figure 3-18 SanDisk SDSDQAF-008G-1, TI TPD8F003, and MX25R6435F

3.8.7 Power Management System
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Power management system (PMU) is the core of any modern EH system. The
IVCCSc2 PMS was designed to incorporate the most energy-efficient components
available in the market. The system is composed of 1) an EH for converting external
ambient energy sources to electricity; 2) EH management unit (PMU) with maximum
power point tracking (MPPT) and charge management controllers for collecting
electrical energy from the harvester, and then charging an energy storage device and/or
supplies other system components; 3) energy storage device for conserving harvested
energy; 4) voltage regulator for conditioning the system voltage and supplying sensor
components with appropriate operation voltage; 5) load switches for activating or
deactivating subsystems; and 6) battery fuel gauge for providing information about the
battery state. The sensor MCU has access to all PMS units, ensuring that PMU energy
use is minimized when energy is not available at the input. The following subsections

will discuss design aspects and selection criteria for each unit in the PMS.

3.8.7.1 Energy Harvesting Power Management Solutions

Several major semiconductor vendors, including Analog Devices, Texas
Instruments, Maxim Integrated, and STMuicroelectronics, offer energy-harvesting
power-management (EHPM) devices with different capabilities and features. The
selection process for the EHPM device was based on 19 criterions (See ).

Of the aforementioned devices, ADP5091 [102] was found suitable to the sensor
design in all aspects. The chip was released in late July 2016 as a ULP EHPM unit with
MPPT for thermoelectric and photovoltaic sources. ADP5091 has an optimized on-chip
boost-converter that can cold-start with only 380mV input, and then run from 80mV to

3.3V. Power can be harvested from sources with a 16pW to 600mW range. Internal
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150mA regulated output can be programmed by an external resistor. MPPT extracts the
maximum possible energy from the harvester, which has a varying impedance
dependent on physical parameter changes. MPPT maintains input voltage ripple in a
fixed range to maintain stable DC-DC boost conversion. A minimum operation
threshold can be programmed to enable boost shutdown during a low input voltage
condition (e.g., at night). Quiescent current is 450nA during DC-DC boost and 360nA
when the boost is in shutdown mode.

ADP5091 also has a charging control function to protect rechargeable energy
storage by monitoring battery voltage via the programmable charging termination
voltage and the shutdown discharging voltage. More importantly, ADP5091 can turn off
the DC-DC inverter, preventing interference with the RF engine during data
transmission. The chip costs only US$2.49 and is available in a 3x3mm 24-lead LFCSP
package; it is rated for a —40°C to +125°C temperature range. Figure 3-19 illustrates the

ADP5091/2 internal detailed functional block diagram.
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Figure 3-19 Energy Harvesting Transducers [102]

63

v Vv
et

ADP5091/ADPS5092
— sYs
LDO |—¢ O 1T
c R
REG_SWITCHES T Csvs }_ svs
[ » ] " L Back up = =
| t l A J:
L
[ I I BACK_UP <]
SWITCHES BACK_up | BKB
HYSTERESIS CONTROL [+
REGULATOR S5YS SWITCH
AND LDO I q
BAT SWITCHES
JApar
N
HS sDB J;-’
BAT -l-
VIN, COLD START
CHARGE PUMP LS PG
EF
h e svséa/ }R
MPPT 4 o
MPPT, CONTROLLER TERM REF—o"¢ 3 ;
- SETSD
I L EN_BST|  cuaRGE 56 .
CBP, BOOST CONTROL
CONTROLLER POWER PATH PGOOD
MANAGEMENT PG
MINO® — SETPG
PGB +—4
o~ LsETHYST
- -
== 5 PGB
(4]
BKB Em
ViNT_REF | SETBK
TERM (TERM
)
BIAS REFERENCE —* VRer

4145080



Price

Manufacturer
Packages

MPPT

Iq

Input Voltage Range
Harvesters

External
Components

Dc-Dc
LDO

Min Solar Voltage
Max Charge Cur.
Cold Start

Charge Efficiency
Temperature Range
Input Power

VBAT

Switching Frequency

Energy Storage

Table 3-5 Characteristics of Energy Harvesting PMU for WSN

MAX17710

$7.87 @ 1KU
MAXIM

12-UTDFN
3x3 MM

NONE
625nA
0.75V to 5.3V

PV, TEG

1xDIODE
1xINDUCTOR
2xRESITOR
3xCAPACITOR

NONE

1.8/2.3/3.3V
(75 MA)

220 MV
100 MA
750 MV
~95%
-40to 85
1 uW to 100 mW
22Vto43V
1 MHZz
Battery

BQ25504

$2.10 @ 1KU
TI

16-VQFN
3x3 MM

Programmable
330nA
80MVto3V
PV, TEG

1xINDUCTOR
9xRESISTOR
4xCAPACITOR

NONE
NONE

100 MV
110 MA
330 MV
~95%
-40to 85
400 mwW
25Vt0525V
1 MHzZ

Battery

BQ25570

$3.20 @ 1KU
TI

20-VQFN
3.5x3.5MM

Programmable
488nA
100 mVto 5.5V
PV, TEG

2xINDUCTOR
6xRESISTOR
5xCAPACITOR

BOOST/BUCK
NONE

100 MV
110 MA
330 MV
~93%
-40 to 85
5 uWto 510 mW
2Vto55V
1 MHZ

Battery

SPV1050

$1.15 @ 1KU
ST

20-VFQFPN
3x3 MM

Hardware Set
800nA
75mVto 18V
PV, TEG

1xINDUCTOR
6xRESISTOR
4xCAPACITOR

BOOST/BUCK

1.8V (100 MA)
3.3V (100 MA)

150 MV

70 MA

500 MV

~95%

-40°C to 125°C
up to 400 mw
26Vto53V

1 MHZ

Supercap/Battery

ADP5091/2

$2.49 @ 1KU
AD

24-LFCSP
4x4 MM

Hardware Set
260nA
80mVto33V
ALL

IXINDUCTOR
13xRESISTOR
4xCAPACITOR

BOOST

15-3.6V
(150mA)

80 MV

100 MA

380 MV

~97%
-40°C to 125°C
16 uW to 600 mW

22Vto52V

1 MHZ

Supercap/Battery

LTC3106

<*

357 @ 1KU
LT

16-QFN 3x4 MM
20-Pin TSSOP

Hardware Set
1.6pA
660 mVt05.5V
PV, TEG

1xINDUCTOR
3xRESISTOR
6xCAPACITOR

Buck-Boost

1.8/2.2/3.3/5V
(90/300 MA)

300 MV
100 MA
300mvV
~93%
—40°C to 125°C
10pW to 160mW
21Vto43V

Supercap/Battery

LTC3331

431 @ 1KU
LT

32-QFN
5x5 MM

NONE
950nA
3.0V to 19V

Vibration, PV

1xDIODE
2xINDUCTOR
1xRESISTOR
7xCAPACITOR

Buck-Boost

1.8V ~5Vv
50mA

10 MA
~93%
—40°C to 125°C
10uW to 50mW
4.2V

Supercap/Battery
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3.8.7.2 Energy Harvesting Transducers
EH transducers are used to collect ambient energy before converting it into
electrical power. The most promising and commonly used transducers are described in
[28]-[30]:
e Photovoltaic: converts light into energy using solar cells
e Piezoelectric: produces energy from kinetic sources, such as vibration
e Electromagnetic: converts inductive/RF radiation into power
e Thermoelectric: thermal-gradients energy from heat sources
Figure 3-20 shows commercially available energy transducers. A mind-map for

various types of energy harvesters and sources is illustrated in Figure 3-21 [30].

Solar Cells Piezoelectric Inductive Thermoelectric

Figure 3-20 Energy Harvesting Transducers

Electrostatic Piezoelectric Sol
(Capacitive) Ene Energy Harvesting olar o
Haprvesting NOdregy Node \ Artificial Light

Electromagnetic
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[ Photovoltaic Energy } [ Hybrid Energy }
Harvesting Node Harvesting Nodes

Harvesting Node Harvesting Node

Nano-sensor
Harvesting Node

Energy Harvesting Sensor Platforms

Inductive Coupling
Harvesting Node Biosensor
) / Harvesting Node
: Magnetic

_ Resonance _ Wireless Energy
o —~ Harvesting Nodes
Wind Energy
Harvesting Node
/ Thermal Energy 9
Harvesting Node
7 Ey Biochemical Energy
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l Electromagnetic
~_induction _~

Acoustic Noise
Energy Harvesting
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Harvesting Node

Figure 3-21 Different energy harvesters (rectangles) and sources (ovals)
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A comparison between power density and efficiency for various EH transducers is

shown in Table 3-9 [30]. Energy conversion Efficiency is defined as the ratio of

harvested energy at the harvester output to available energy at the harvester input.

Table 3-9 Characteristics of Energy Harvesting Transducers and Sources for WSN

Energy Harvester

Photovoltaic

Thermoelectric
Pyroelectric

Piezoelectric

Electromagnetic
Electrostatic

RF

Wind

Acoustic noise

Power Density

Outdoors (direct sun): 15-30 mwW/cm?
Outdoors (cloudy day): 0.15 mW/cm?
Indoors: 5-30 pW/cm?

Wearable: 50 pW/cm?
Industrial: 1 to 10 mW/cm?
8.64 uW/cm? at temperature rate of AT = 5°C/s

Human: 4 uw/cm?
Industrial: 1 mwW/cm?

Human motion: 1 to 4 pW/cm?
Industrial: 306 pW/cm?®to 800 pW/cm?®
50 to 100 pW/cm3
GSM 900/1800 MHz: 0.1uW/cm?
WiFi 2.4 GHz: 0.01 pW/cm?

380 uW/cm? at the speed of 5 m/s

0.96 pwW/cmsat 100 dB
0.003 pW/cmat 75 dB

Efficiency

Highest: 32 + 1.5%
Typical: 25 + 1.5%

+0:1%
+3%

3.5%

source dependent

source dependent
source dependent
50%

5%

Solar energy is more widely used in EH applications, as it is most prolific and

capable among other energy sources. It is inexpensive, easy-to-use, and has the highest

power density—up to 30mW/cm?. In general, monocrystalline solar cells are preferred

for outdoor applications, and amorphous solar cells are the best option in low-light

levels for indoor applications.

3.8.7.3 Energy Storage Devices

The most commonly used EH energy storage for WSN are rechargeable batteries,

supercapacitors, Thin-Film batteries, and Solid-State chips. Each technology has a
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unique advantage. The following criteria should be considered when selecting
rechargeable devices for energy-storage applications.

e Energy capacity

e Peak and continuous current

e Operation temperature (chemistries perform poorly at low temperature)
e Self-discharge

e Charge time

e Cycle life (number of discharge/charge before capacity drops to 70%)

e Cost, weight, size, shape
Table 3-10 presents a comparison between the essential characteristics of various
energy storage devices.

Table 3-10 Characteristics of energy storage devices for EH applications

Li-Po Thin-Film Super Solid-State
Batteries Batteries Capacitors Energy Storage
= W
WE‘”GY \i
’ ° :

Energy Capacity up to 10 Ah up to 3 mAh up to 1.5 mAh up to 50 pAh
Peak Current very high small high very small
Self-discharge 5% per month 2% per year 10% per minute negligible
Charge Time Hours 15 minutes Seconds 30 minutes
Cycle Life See Table 3-12 100,000 1,000,000 5000

Li-Po batteries were chosen primarily because they have superior chemistry for
small, self-powered devices. Also, they are a highly reliable power source for devices
that create a relatively high-peak, steep transient current (e.g., GPS module and wireless

transceiver). When compared with other technologies, Li-Po batteries have a relatively
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low self-discharge current—approximately 5% per month—and limited number of
cycles.

To maximize Li-Po battery cycle, especially in EH applications with daily charge-
discharge cycles, a battery with higher storage capacity could help reduce depth of
discharge (DoD), which is proportional to battery lifecycles. A battery with higher
capacity will have lower internal resistance, which allows more peak current to supply
the load. Reducing DoD to a partial discharge and avoiding over-charge can
significantly reduce stress and prolong the life of Li-Po batteries. Table 3-11 illustrates
a comparison between DoD level and corresponding numbers of discharge-charge
cycles before Li-Po battery capacity is diminished by 20%.

Table 3-11 Cycle life as a function of depth of discharge

Depth of discharge Discharge cycles
100% 300-500
50% 1200-1500
25% 2000-2500
10% 37504700

Most Li-Po batteries charge to 4.2V per cell; however, reducing peak charge
voltage by 0.10V per cell would double the battery cycle life [103]. Consequently, a
lower peak charge voltage will reduce the nominal capacity a battery can handle. For
example, a 70mV reduction in charge voltage would reduce overall capacity by 10%, as
shown in Table 3-12.

For battery longevity, it is recommended to set charge voltage to 3.92V per cell,

eliminating voltage-related stress [103].
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Table 3-12 Discharge cycles and capacity as a function of charge voltage limit.

Charge level (V/cell) Discharge cycles Capacity at full charge
4.30 150 — 250 ~114%
4.20 300 - 500 100%
4.10 600 — 1000 ~86%
4.00 1200 - 2000 ~72%
3.92 2400 - 4000 ~58%

3.8.7.4 Smart Battery Gauge

Protecting Li-Po battery from deep-discharging and over-charging is crucial for
battery longevity. BQ27621-G1 [104], a system-side fuel gauging device for single-cell
Li-Po batteries, was integrated into the design. This smart chip uses sophisticated
algorithms to calculate remaining battery capacity, state-of-charge, battery voltage, and
temperature. Data can be accessed by a MCU over serial interface (See Figure 3-22).

BQ27621-G1 is tiny (1.62x1.58x0.5 mm), inexpensive (US$1.25), power-
efficient (0.6pA in shutdown mode), and requires minimal configuration and firmware

development.

l Battery Pack
ADC BAT

Figure 3-22 T1 BQ27621-G1 Battery Fuel-Gauge [104]

3.8.7.5 Voltage Conditioning Unit

ADP165 was used to provide a regulated voltage—from the unregulated source at
ADP5092 system output to the system components and modules. ADP165 [105] is an

extremely low, quiescent-current, 150 mA voltage regulator. ADP165 has a shutdown
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current 50nA and operating temperature range from -40 to 125°C. The chip is very
small and costs only US$0.35/1KU.

3.8 76 Nano-Power Load Switches

For a more energy-efficient design, several TPS22860 [106]—small, ultra-low
leakage current load switch—were used to control the power supply to each ZigBee
module, GPS module, and microSD card. TPS22860 has a 12nA total leakage current
and can support 200mA maximum continuous current. Switch cost is US$0.22/1KU.
3.8.8 Wireless Charging Receiver

Wireless charging is an essential element in powering wearable devices and l0T.
Functionality is based on utilizing electromagnetic energy transmitted from a primary
coil of energy transmitter in the near-field across a gap to a secondary coil of an energy
receiver such that both coils are tuned to resonate at the same frequency [107]. The
receiver converts inductive current into energy that can be used to charge the battery or
power the device.

To enable wireless charging for iIVCCSe2, a BQ51051B [108] high-efficient, Qi-
compliant wireless power receiver with an integrated Li-Po battery charge controller
from T1 was included in the design. Qi is an international charging standard developed
by the Wireless Power Consortium (WPC). BQ51051B supports charging current up to
1.5A with 93% charging efficiency. The chip comes in 3.0x1.9mm package and costs
US$1.9/1KU. Vishay IWAS-4832FE-50 [109] was considered for the 10W shielded
receiver coil. The coil has a dimension of only 48x32x1.22mm. Figure 3-23 shows the

receiver chip and coil.
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Figure 3-23 T1 BQ51051B chip (left) and Vishay IWAS-4832FE-50 coil (right)
3.8.9 Road Surface Condition Sensors

Road surface temperature can rise to 200°C on a hot summer day. A cost-effective
method for measuring road surface temperature is using NTC glass-based Thermistors.
These sensors feature an extremely fast response time, high reliability, and an operating
temperature range between -50°C and +300°C. Note that the sensor glass should be
coated to ensure moisture-proof robustness. For iVCCSgz, an NTC with at least 100kQ
rated resistance at 25°C (e.g., Semitec’s 104NT-4-R025H43G [110] costing US$0.7
/1KU) is recommended to guarantee minimal power dissipation.

3.8.10 Passive Components Selection Does Matter

ULP design should consider leakage current from both active and passive
components (e.g., capacitors). It is also imperative to understand and evaluate the effect
of DC bias, temperature variation, and tolerance of the bypass capacitor, as well as the
technology of the selected capacitor.

TMJ S1gma™ SMD tantalum capacitors from AVX were used in iVCCSg. This
product has an extremely low DC leakage current (i.e., 0.001CV) and high stability over
an operation temperature ranging between -55 and +125°C [111].

3.9 1VCCSac2 Power Consumption and Battery Life Analysis

IVCCSc2 was designed as an autonomous sensor to harvest, buffer, and consume

available buffered energy in a highly efficient manner, especially when generated and

consumed energy profiles are completely different.
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Average power consumption of the sensor (i.e., Ph,g = Igyg.-Vpp) depends
primarily on system supply voltage (Vpp) and average consumed current (Ig,,), the
latter being the sum of average current in active (Iyctive) and stop (Is,p,) mModes. By
knowing time spent in active (Tgctive) and stop (Ts.,p) Modes, battery life (BAT;.) can

be estimated using Eq. 3-3, where a is the battery self-discharge rate.

BATCapacity
BATlife [hours] B IactiveXTactive + IstopXTstop xa Eq' 3-3

Tactive + Tstop

Accurately estimating battery life requires a sufficient characterization of all
components parameters that have a significant influence on the system’s power
consumption. These are discussed in the next sections and might vary for various
components.

3.9.1 Components Parameters Assessment

A comprehensive assessment for all components was performed to characterize
power consumption of each component under a variety of operating modes. Component
datasheets, application notes, user manual, Yokogawa DL9140 digital oscilloscope, true
RMS multi-meter, and NI vector signal analyser were analysed during the assessment
process.

1) Embedded MCU

MCU parameters with significant influence on power consumption are system
clock, core voltage, start-up and wake-up times, analog peripherals, and processing
efficiency. Table 3-13 shows power consumption and wake-up time for STM32L071 in

all supported modes [94]. RTC unit is enabled in all modes, and Vpp is 3.3V. Table
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3-14 shows the power consumption in active mode for all STM32L071 peripherals
essential for iVCCSeg: functions and other on-board components.

IVCCSc2 MCU control the power source of all power-hungry components (i.e.,
RF engine, GPS, and data logging units) via ultra-low power switches. MCU spends
most of its time in stop mode waiting for an event or interrupt to wake-up—for a short
period—and process a pre-specified computational task. MCU power consumption in
stop mode is 1pA and requires 3.5us to switch from stop to active state. The internal
system clock is set at 8BMHz.

Table 3-13 iVCCSc2 MCU power consumption in various power modes

Active Sleep LP-Active  LP-Sleep Stop Standby
Wakeup Time Ous 0.36us 3us 32us 3.5us 50us
Consumption  175uA/MHz = 35uA/MHz 8.551A 4.650A 1pA 655nA

Table 3-14 STM32L071 Peripheral power consumption in active mode

DMA UART1/2 TIM6/7 RTC 12C1 SPI GPIO

8uA/MHz 11.5uA/MHz 3uA/MHz 300nA 9.5uA/MHz 3uA/MHz 3uA/MHz

2) Serial Flash Memory (MX25R6435F - SFM)

Essential characterization parameters for MX25R6435F [112] are listed in Table
3-15. tpppp I the delay time for release from deep power-down mode; t,p is the time
CS# pin should be held high to enter deep-power down mode; t,, is self-timed page
(i.e., 256 bytes) program cycle time; tzpp IS recovery time for release from deep power
down mode; t-rpp IS CS# toggling time delay before release from deep power-down
mode; Iz, is standby current; Isg, IS deep power-down current; I, is read current; and

Ic¢4 is page-program current.
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Table 3-15 Serial Flash parameters

tprpp tpp tpp teop  tecror Ispr Isp; Iccr Icc
30us 10us 3.2ms 35us 20ns 24uA 050A  19mA  35mA

3) Magnetometer Sensor (KMX62)

KMX62 [113] MAG has four resolution modes to support various over-sampling
rates. Mode RES<0,0> was selected, as it has a standby current of 1uA and sampling
rate (fs) of 5pA and 30uA active current at 50Hz and 400Hz, respectively. fs is set to
50Hz when MCU in stop mode and to 400Hz given that MAG motion interrupt occurred
(i.e., vehicle in detection zone). Startup time is 1ms.

4) Voltage Supervisor (TPS3839)

TPS3839 [114] typically consumes only 100nA. However, this current rises to
15uA after power-up for 200us where TPS3839 samples the input voltage. Power-up
delay is 200ms, meaning that the power-up for any device connected with TPS3839’s
REST pin (i.e., RF Engine and GPS module) will be delayed for 200ms. The bypass
capacitor connected with the VDD pin maintains average current at 150nA.

5) 32.768KHz MEMS TCXO (SiT1552)

The SiT1552 active oscillator has 300ms start-up time at power-up, during which
time peak supply current reaches 28uA for 200ms before dropping to 0.99uA steady-
state core current. SiT1552 [97] total current (I,.) is the sum of core current in steady-
state, load current at 10pF load capacitance, and output driver current at 3.5pF drive
capacitance (i.e., I,sc = (0.99) + (0.23) + (0.08) = 1.3uA).

6) Load Switch (TPS22860)

74



Two load switches control power supply to the ZigBee module and data storage
unit. TPS22860 [106] has only 10nA quiescent current and 12nA shutdown leakage
current. Switching time is 4ns for turn-on and 9ns for turn-off.

7) 8-Channel EMI Filter (TPD8F003)

The TPD8FO003 chip consists of passive components (i.e., resistors and diodes).
Leakage current on each channel is 10nA [100]. Only seven channels are used in
IVCCSg: design.

8) Low-Dropout Linear Regulator (TPS782)

TPS782 [115] features 18nA shutdown current and 500nA quiescent current. The
chip has an enable pin that consumes 0.4nA. Startup time tstr or shutdown time tsypn IS
500us. Output power dissipation is calculated as PD = (Vi, — Voue) lout-

9) Battery Fuel Gauge (bq27621-G1)

The bg27621-G1 [104] has four operating modes. Power consumption in normal
mode is 27pA, 21pA in sleep, 9uA in hibernate, and 600nA in shutdown mode. Input
leakage current is 100nA. The chip requires 125ms to produce one conversion. Data
read time from the bus is 1ms.

10) Energy Harvesting PMU (ADP5092)

ADP5092 [116] is mainly comprised of two sides: one supplied directly from the
harvester input (i.e., solar cell) and the other relative to the output side (i.e., SYS and
BAT pins). The SYS pin has 650nA quiescent current in active state and 390nA in sleep

mode. In addition to 20nA for input pins, the BAT pin has a 3.5nA leakage current.
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11) GPS Module

Table 3-16 lists GPS module L76-M33 [98] essential parameters for power
consumption characterization. BAUS is the data baud rate for UART interface between
MCU and GPS; Iy, is the supply current for backup power supply to constantly
maintain GPS RTC domain running and achieve fast Time to First Fix (e.g., <lsec);
fur is GPS NEMA date update rate; Tpy,  Is start-up time at power-up; and I,., and
I, are current consumption during acquisition and trancing, respectively. L76-M33
has 465ms~ 485ms latency range after the rising edge of PPS (See Figure 3-24 [98]).
PPS duty-cycle is 1/10. A 200ms power-up delay generated by the voltage supervisor

(TPS3839) should be considered only when GPS load switch was in shutdown state.

|é UTC 12:00:00 I+ UTC 12:00:01
PPS ’ | | |
465ms~485ms
D —
UTC 12:00:00 UTC 12:00:01

Figure 3-24 PPS and NMEA timing for L76-M33

Table 3-16 GPS Module parameters

BAUD IVBCKP Istandby Iacq fUR TPWon

115200bps TpA S500pA 25mA 19mA 1Hz 2ms

12) RF Engine (AW5161POCF)
AWS5161POCF [96] power-related parameters are shown in Table 3-17. Current
consumption during transmission, receiving, in-sleep mode, and deep-sleep (stop) mode

are denoted as Irx, Irx, Isicep, aNd Is¢op, respectively. Tpy,  is the time delay required

for local oscillator to stabilize during power-on before radio activities can start. T,y qxeup
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is time delay wake-up from stop or sleep modes to active mode. During power-on, only
4.98mA is consumed because RF front-end is not operating. A 200ms power-up delay
generated by the voltage supervisor (TPS3839) should be considered only when RF
engine load switch is in shutdown.

Table 3-17 RF Engine parameters

BAUD I TX 1 RX I sleep 1 stop Twakeup TPW,m

57600bps 18mA 21mA 700nA 120nA 180us 1ms

Data frame transmission period (Trrq4ns) 1S @n important parameter that should
also be calculated. T4, depends on two factors: 1) configurations of RF engine and 2)
size of payload frame.

AWS5161POCF operates in the 2.4GHz band, which allows 250kbps over-the-air
data rate (i.e., 62500 symbols per second—each comprising 4bits). The MAC (medium
access control) layer header size (Hy,c) is set to 25 bytes for 64-bit source and
destination addresses. The physical layer header size (Hpyy) is fixed and equal to 6
bytes. Payload frame (Fpgy104q) Size depends on the amount of data to be transmitted; it
can be loaded up to 114 bytes. Total time required to transmit a single data frame can be
calculated as in Eq. 3-4. Given that Fpgyoqq = 1, then Trpqns = 1.024ms. For

Fraytoaq = 114, Trrans = 4.64ms.

T _ HMAC + HPYH + FPayload
Trans 250kbps

4.64ms represents the amount of time RF engine consumes Iy. This figure will

X 8bit Eq. 3-4

be used to calculate energy required to send a radio message. Notably, this amount was

determined under the assumption of an ideal scenario (i.e., interference-free and single-
hop).
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In a real world scenario, RF engine performs a Clear Channel Assessment (CCA)
before data transmission to determine an available channel. AW5161POCF implements
an unslotted CSMA/CA (carrier sense multiple access with collision avoidance)
algorithm instead of regular beacons. Two variables are set during configuration: 1)
number of back-offs (Nyqckorr) allowed to attempt a single radio message
transmission—one back-off period is T,qckorr 320us (i.e., 20 symbols, each 16ps) and
2) Retry interval (Tye¢ry), Which is how many back-off periods the engine should wait
before attempting another channel assess. Both Ny gcxorrand Theer, Were set to 3.

3.9.2 iVCCSg2 Power Consumption Assessment

Power consumption assessment was performed based-on the process and power
sequence flow diagram depicted in Figure 3-26, which represents an optimized
operation of iVCCSec: for vehicle detection applications. Component state and power

consumption during initialization sequence and process execution are shown in Table

3-18.
Table 3-18 Execution time and consumed current for iVCCSa2
Process Loy g(ma) T (ms)
1. iVCCSe Power-up — MCU only 1.456 300
2. Report node status, ID, and transfer data to access point 8.927 26.058
3. Setand calibrate RTC using GPS 11.129 3765
4. Run MAG @ 50Hz, Enable MAG EXIT, and set MCU in Stop mode 0.0347 Tstop
5. Motion interrupt — MAG @ 400Hz — set MCU in Stop mode 0.0597 Tiate
6. Read MAG Data and check for a vehicle departure 0.2785 Tyctive
7. Transfer Timestamps from SRAM to Flash 3.5587 3.3
8. Read Battery Status from the Fuel Gauge 1.5387 126
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The longest process time T is considered when two tasks occur simultaneously.

Total average leakage current for MCU decoupling capacitors (I.qp) is 500nA.
In process No. 1, I,,,;, and T are calculated as follows:

= Igyg = [175pAX8 (MCU | Active)] + [28pA (TCXO | Startup)] +
0.5pA (SFM | Igg,) + [12nAX2 (Load Switch | shutdown)] +
[1uA (MAG | standby)] + [500nA + 0.4nA (LDO | Enabled)] + [600nA +
100nA (Gauge | shutdown)] + [500nA (Igcqp)] + [650n4 + 3.5n4 +

20nA (Harvester | Active)].

= lieakage~4-70A
— T = 300ms (TCXO | Startup).
Assuming Fpqy100a = 114 bytes, process No. 2 is executed as follows:

e Enable Load Switch (U5, see iVCCSg, schematic diagram in appendix B) >
4ns switching time and 10nA quiescent current.

e Wakeup AW5161POCF > T\, qxeup *+ Tpw,, @ I;q;, = 4.98mA.

o Enable UART1 > 11.5uA%8 =92uA (See Table 3-14)

e Send data MCU — RF engine over UART > [, = 5.04mA and Tyspr =
[(1145y1esX8pir) + 114starepic + 1145t0ppic|/57600bps = 19.79ms

e RF engine perform CCA > Assuming Npqckor = 1 and the channel is free, then
Thackorf = 320ps @ 5.16mA and Teey = 128us @ Iy = 18mA.

e RF engine transmits data over-the-air > Tr.q s = 4.64ms @ Iy = 18mA.

o Disable Load Switch (U5) > 9ns turn-off time

e Disable UART1>Total run-time 19.79ms + 320us + 128us + 4.64ms = 24.878ms

= lgyg = [(10nA><4ns) + (4.98mA%x1180us) + (92uAx24.878ms) +
(5.04mAx19.79ms) + (5.16mAx320us) + (18mAx128us) + (Ileakagex
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26.058ms) + (18mAx4.64ms)|/(4ns + 1180us + 19.79ms + 320us +
128us + 4.64ms) = 7.499mA
— T =4ns+ 1180us + 19.79ms + 320us + 128us + 4.64ms = 26.058ms
Average current in process No. 2 is the sum of RF engine average current and
MCU current in steady-state, active mode (i.e., subtract 28uA TCXO0 during startup).
Process No. 3 is executed in the following manner:
e Enable External Interrupt 1PPS > 3uAx8 = 24pA
o Enable Load Switch (U3/DIS_SW, see iVCCSg, schematic diagram in appendix B)

> 200ms voltage supervisor delay 15pAx200ps + 150nA + 25mA (I,c,)

after200ms

e Set MCU in Stop mode > 1pA.

e  Wait until 1PPS rising edge wakeups the MCU > 1sec.

e Enable TIM6 > 3pAx8 = 24pA

e Set MCU in Stop mode > 1pA.

e Wait until 1PPS falling edge wakeups the MCU > 100ms.

e Disable TIM6 > TIM6 total runtime is 100ms

e Disable External Interrupt 1PPS > Total runtime is 1.3s

e Enable UART2 with Rx Interrupt > 11.5pAX8 = 92uA

e Set MCU in Stop mode > 1pA.

e Wait (~365ms as shown in Figure 3-24) until UART2 Rx interrupt wakeups the
MCU

e Search for $SGPRMC (recommended minimum specific GPS/Transit data) > 100ms

e Disable Load Switch (U3/DIS_SW) > Total runtime is 1.665s for GPS and 1.865s
for Load Switch.

e Disable UART2 > Total runtime for UART2 is ~465ms
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e Set RTC time and date registers

e Set MCU in Stop mode > 1pA.

e Wait for RTC interrupt > 1sec

e Enable TIM6 > 3pAx8 = 24pA

e Set MCU in Stop mode > 1pA.

e Wait for another RTC interrupt > 1sec

e Disable TIM6 > TIM6 total runtime is 1000ms

e Calculate the difference of RTC and PPS pulse duration and calibrate RTC

e Set MCU in Stop mode > 1pA. Total MCU active time is 120ms@1.428mA

- Ly = [(241AX1.35) + (150AX200ps) + (150nAX1.865s) + (25mAX
1.665s) + (1pAx1s) + (24pAx100ms) + (1pAx100ms) + (92pAX465ms) +
(1uAx365ms) + (1pAx1s) + (24pAx1s) + (1pAx1s) + (1.428mAx120ms) +
(leakageX3.7655)]/(3.765s) = 11.129mA

— T =3765ms

Process No. 4 is executed as follows:

e Run MAG @ 50Hz > 5pA

o Enable External Interrupts > 24uA

e Set MCU in Stop mode > 1pA

= lgpg = [1HA + SpA + 24pA + Lieqrage| = 34.71A

— T = Tstop (Tseop Can be found based on the number of vehicles per day)

Process No. 5 is executed as follows:
o If MAG Motion interrupt triggered — Run MAG @ 400Hz > 30uA
e Store Timestamp in SRAM

e Set MCU in Stop mode > 1pA
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— lapg = 59.7uA

— T =Tz (T can be found based on the number of vehicles per day)
Process No. 6 is executed as described below:

o If MAG Watermark interrupt triggered — Enable 12C1 > 76 A

e L1:Set MCU in Stop mode > 1pA

e Wait for MAG Data-ready interrupt (DRI) > 1/400Hz = 2.5ms

o DRI? — Read MAG ¥, y, and z registers (16-bit x 3) > 180us

o Compute magnetite — Vehicle departure? NO — go to L1

e Vehicle departure — Store Timestamp in SRAM — Disable 12C1

e Goto Process No. 4

— Igpg = (135.7u4%0.9) + (1.5637mAx0.1) = 0.2785mA

= T = Tyetive (Tactive €N be found based on the number of vehicles per day)
Process No. 7 is executed once every 64 vehicle detections as follows:

e Enable SPI1 Interface > 24pA @ 4Mbps

e Send wakeup command to serial flash > 65us delay

e Write data (Page Program command) from SRAM to SPI > 3.2ms / 3.5mA

e Disable SPI Interface and Set MCU in Stop mode > 1pA

— lgpg = 3.5587mA

— T =33ms
Process No. 8 is executed once each day:

e Enable I12C1 > 76pA

e Send conversion command to the Fuel Gauge > 27uA / 125ms for one conversion

¢ Read battery status data > 280us

o Disable 12C1 Interface and Store Data in SRAM to be sent to the access point
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Set MCU in Stop mode > 1pA

> gy = 1.5387m4

— T =126ms

3.9.3 Battery Life Estimation

Battery life depends on the amount of time the sensor spends in active state

compared to stop state. This primarily depends on the number of vehicles at a

designated detection point. When using 4000mAh Li-Po battery to power the sensor,

battery life can be calculated using Eq. 3-3 based on power consumption and time delay

assessment in Table 3-18. The following assumptions were made:

1)
2)
3)
4)

5)

6)

7)

Traffic volume at a highway designated detection point is 10,000 vehicles/day
Average vehicle speed is 60mph (i.e., 26.8224m/s).

Average vehicle length is 7m.

Battery state is checked once each hour.

Data is transmitted from iVCCSg2 to iAP once every 15min because traffic
volume data is reported in 15min bins.

RTC drift correction is performed once every 60min, guaranteeing
microsecond synchronization accuracy.

Per-vehicle data is uploaded from iVCCSg2 to iAP at midnight.

Based on these assumptions, average occupancy time is 7/26.8224 = 0.261s.

Hence, active time is 2610 second/day or 3% of total time. Stop time is 97% of total

time.

At

400Hz during 0.261s, MAG will sample approximately 105 data points.

Watermark interrupt occurs after 50 data points, during which time current consumption

is 0.0597mA and T = T;y.. Hence, Tig. = 0.4762 Tyctive- Watermark interrupt
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conserves 47.6% of the current consumed in active mode. A data point value of 50 was
determined statistically based on data collected from highways and urban roads. Given
a motorcycle traveling at 70mph , minimum number of data points should be greater
than 70.

To estimate the battery life, the following processes (See below) should be
calculated: hourly duty-cycle (DC), average current during RF transmission, RTC
calibration using GPS, data transfer from SRAM to serial Flash, and battery status

check processes should be calculated.

0.026058,,.x4
( 36OBeC runs) =0.0289% - I«EZ?—T}%F = 8.927mA><DC,[{}:°“T] = 0.259u4
sec

D C}[J}our] —

3.7655¢ X1
DCc[;}IlJ%ur] = ( secXLrun) =0.1046% - I(E?;Olirgps = 11-129mAXDCc[;};?9ur] =11.641pA
3600, g
00033, X157
pclhour] — ( secX157run) _ 01 4404 pthour] | = 3.5587,,,xDCAT] = 0,514
3600, g
012640 X1
DCpanir] = ( 000 run) _ 00359 - 1] s = 1.5387,,,XDClps"") = 0.054uA
sec

Next, average current in stop, idle, and active modes should be calculated.
DCigje = 1.4385% — I4pg—igie = 0.0597,,,4XDC;q1 = 0.859uA
DCoetive = 1.5823% = I4yg—qctive = 0.2785,,4XDCqcpive = 44067 A
DCyop = 97% = Igpg—stop = 0.0347,,4XDCpr, = 33.659A

Total average current is 51.3887uAh.

BAT, . = —000mAR 6 _ 62,270.499 [hour] = 7.1
life = 513887 08 = 62270, our| = 7.1 [year]

As such, the sensor should operate for over 7 years when powered by a 4000-mAh

battery with up to an 80% derating factor.
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3.9.4 Extending Battery Life

Note that estimated battery life detailed in previous section did not consider
energy generated by harvesting PMU, which is based on a highly efficiency solar-cell
(i.e., SLMD121HO04) utilized to charge the battery.

SLMD121H04 [117] has 2V typical voltage, 44.6mA typical current, and
89.2mW maximum power point (MPP). Cell size is 43x14x2mm, and cell efficiency is
approximately 22%. Performance is acceptable in even low light conditions.
SLMD121H04, iVCCSG2 final prototype, and the wireless charging receiver boards are
shown in Figure 3-25.

The process flow diagram depicted in Figure 3-26 demonstrates how the energy
harvesting PMU is operational from sunrise to sunset. Given that total run time is 8
hours and average harvested and converted energy is 18mWh (i.e., worst case scenario),
average generated energy—1.5mAh—should be sufficient to compensate for consumed

energy at output and to maintain longer battery life, thus sensor operations.
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Figure 3-25 iVCCSG2 Final Prototype PCB
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Figure 3-26 Sensor node processes and power sequence flow diagram
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3.10 Proposed Large-scale System Architecture and Networking

IVCCS nodes can operate in either online or offline modes. In offline mode,
traffic measurements, events, and magnetic signatures are logged into an on-board data
logging unit. Data can be accessed anytime via an available wireless link or be retrieved
by replacing the microSD card. In online mode, data are reported upon request to either
IAP or collaborative nodes. To conserve power, the data-logging unit remains in sleep
mode except when accessed by the host (i.e., MCU).

The network is organized in three tiers—iVCCS nodes, iAPs, and loT cloud
server, as illustrated in Figure 3-27. At the lowest tier lies the iVCCS nodes, each
equipped with a ZigBee RF module and a unique ID. The unique ID is reported with
node coordination—aobtained from an on-board GPS module—to a corresponding iAP
for mapping purposes. iAPs are located in the second tier, each equipped with a long-
range ZigBee transceiver and an embedded industrial GPRS module [118]. iAP has a
10MB data cache and a powerful operation system for facilitating rapid connection
timing to maximize traffic savings and minimize the cost of communication. Data can
be accessed via dynamic DNS or public IP.

System wireless networking between iVCCS nodes and iAP is facilitated through
IEEE 802.15.4 protocol with ZigBee on top. Wireless networking between iAP and the
server is managed over a cellular network assisted by a Quad-Band GSM/GPRS chipset
with an on-board GPS module.

Each iAP was set to manage up to 12 subordinate iVCCS nodes. Upon iVCCS

node startup, multicast remote procedure calls (RPCs) were sent to inquire about an iAP
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address to manage an identical channel and network. Only one iAP responded to the

call by sending its address to the originating iVCCS node.
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Figure 3-27 Architecture of the traffic surveillance system network

In the event that iAP fails to send a response after a number of inquiries within a
defined period, iVCCS node switches to offline mode. Given that a connection is
established, iIVCCS node switches to online mode wherein, upon request, data is
exchanged with the designated iAP. Data received by any iAP will be processed,
analyzed, and logged on a local memory. If there is an established connection,

processed data will be moved to an 10T cloud server over a cellular network. If not, data
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can be forcibly retrieved by the server at any time. The 10T cloud server lies in the third
tier wherein traffic data can be monitored anywhere in real-time. The cloud server can
also manage and control the network configuration, as well as facilitate a system’s over-
the-air firmware upgrade. This hierarchical topology allows a fully scalable, self-
configurable, and robust system network [119].

Once the connection is established (and upon request), iVCCS nodes exchange
data with designated i1AP. The request is managed by serial inquiry frames and
commands.

IAP uses Inquiry Frame ‘IQF’ to send an inquiry to either a specific node
(unicast) or all nodes (multicast) requesting information (e.g., battery health; memory
status; number of counted vehicles; time and date; sensor status, raw data, and
temperature). The corresponding node responds with Inquiry Response Frame ‘IQRF.’

IAP also uses Command Frame ‘CMDF’ to send a command to either a single
node (unicast) or all nodes (multicast) asking for a specific task to be executed by the
node (e.g., ‘configure magnetometer’, ‘do recalibration’). The corresponding node
responds with Command Confirmation Frame ‘CCF’ to confirm the task by writing the
binary value ‘10101010° in the CMD byte or deny it by writing the binary value
‘01010101.” Note that Sender/Receiver ID is software-coded and is not related to the

MAC address.
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Inquiry Frame (IQF)
1-byte 1-byte 1-byte 1-byte
Sip Rip 1Q CRC
Inquiry Response Frame (IQRF)
1-byte 1-byte 1-byte 1-byte 1-250 byte 1-byte

Sip Rip 1Q CNT DATA CRC

Command Frame (CMDF) / Command Confirmation Frame (CCF)

1-byte 1-byte 1-byte 1-byte
Sip Rip CMD CRC
Field Discerption
Sip Sender ID (software)
Rip Receiver ID (software)
1Q Inquiry
CMD Command
CNT Data bytes count
DATA Data stream
CRC 8-bit Cyclic Redundancy Check
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Chapter 4: ALGORITHMS DESIGN & FIRMWARE DEVELOPMENT

4.1 Introduction

Providing reliable traffic-monitoring data requires precise vehicle detection and
highly accurate speed estimation. Precise detection necessitates a consistent baseline
(i.e., maintain static localized geomagnetic field) and coherent sampling rate. Speed
estimation relies on precise time-stamping of vehicle arrival and departure, which is
dependent on the accuracy of the time-synchronization (T-Sync) algorithm. In this
chapter, the development and implementation of various distinctive algorithms for real-
time traffic monitoring will be discussed in detail. These include vehicle detection,
speed estimation, geomagnetic field baseline drift compensation, T-Sync, RTC drift
correction, and other functions. Figure 4-1 illustrates a block diagram of relationships
among various developed algorithms and associated interconnection with the system’s
hardware interfaces and physical components. Hieratical implementation shows three
levels. Peripheral algorithms and drivers, namely “Embedded Firmware,” are
implemented in the third level and interact with various “Physical World” components
and sensors in the first level through “Embedded Hardware ” peripherals in the second
level.

All algorithms discussed in this chapter are hardware independent, meaning they
perform the same intended objectives. Notably, execution performance is hardware
dependent (e.g., IVCCSe: has an advance performance MCU and more energy efficient
components than iIVCCSc:1). Firmware development experience also plays a major role
in algorithm efficiency during implementation. Pseudo-codes and flowcharts will be

provided to maintain efficient implementation of algorithms on various platforms.
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4.2 Real-Time Vehicle Detection & Counting Algorithm
4.2.1 An Overview on Implementation of Vehicle Detection Algorithms

In literature, fixed [43] or adaptive [57] thresholds have been proposed for
vehicle-detection algorithms. Adaptive algorithms are aimed at maintaining a detection
threshold above a reference level that could drift due to variations in temperature,
background noise, vibrations, aging, or relative earth magnetic field over time.

In this work, a multi-threshold-based detection algorithm was developed. Drift in
geomagnetic field baseline is adaptively auto-calibrated in real-time. This method aids
in solving problems reported in [53] by keeping magnetic signal variation at a
minimum, hence, providing reliable vehicle-speed estimation in low-speed, as well as
high speed, congested traffic.

4.2.2 Embedded Magnetometer Sensors

This work features a single MAG for measuring variations in geomagnetic field
components (Bx, By, and Bz) caused by an overpassing vehicle. Figure 4-2 and Figure
4-3 illustrate variations in three geomagnetic field components and the corresponding
flux magnitude (Fwm): square-root of Bx, By, and Bz for the Honda Accord 2004 EX-V6,

sampled at 200Hz; y-axis is the direction of the traffic.

Forward Reverse
2 A N

Magnetic Flux [uT]

Figure 4-2 Variations in By in forward and reverse driving directions
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Figure 4-3 Variations in Fu in forward and reverse driving directions

4.2.3 Detection and Counting using an iVCCS in Roadway Setup

A five-state machine process algorithm was developed for real-time vehicle
detection and counting, utilizing a single iVCCS node. The algorithm acts as an
observer for disturbance in the Earth’s magnetic field instigated by a passing vehicle.
Localized flux lines pull away from the sensor as a vehicle passes the sensor zone and
push back toward the sensor as the vehicle drives away (see Figure 1-3), creating
fluctuations in Fum. The five-state machine process analyzes fluctuations for valid
vehicle detection by leveraging three adaptive thresholds (TH) and three adaptive

debounce timers (DT), as shown in Figure 4-4.
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Figure 4-4 Detection Algorithm Parameters applied on a Vehicle Flux Magnitude
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Detection Thresholds are defined as follows:
1) Onset threshold (Otn): vehicle arrival
2) Holdover threshold (Htn): vehicle departure
3) Baseline threshold (Rrw): re-calibration call
Debounce timers are defined as follows:
1) Onset debounce timer (Opt): minimizes misdetection and false events due
to a glitch or transient state
2) Holdover debounce timer (Hpt): minimizes misdetection due to
fluctuations in Fm given that the vehicle has relatively small magnetic
density (e.g., long trucks)
3) Detection period debounce timer (Ppr): indicates stationary detection
The algorithm was developed based on MCU interrupts (INT) and an event
system to ensure real-time performance and CPU offloading to prolong battery life.
Figure 4-5 details a functional block diagram for the detection and counting algorithm.
Figure 4-6 illustrates a finite state machine (FSM) diagram for the five-state machine

process detection algorithm.

Bx(k), By(K), Bz(k) o—»| Internal Variables O—»Fm(K), Fumrer(k)
Orw, Hri, Rr, Qo Hor| - 5 Detection Flag
q
g

Inputs
Outputs

Sampling Rate O—{  |Fuwrer(k), Bxrer(K), Byrer(K),
D—>» Arrival Time

Bzret(K), Fum(K), 1, 6,
Timestamp O— RTC, INT Flags, b—> Departure Time

Figure 4-5 Vehicles detection and counting algorithm functional block

Upon system power up, an initialization process triggers a calibration state
wherein MAG samples localized reference magnetic field components (e.g., Bxref, Byref,
and Bzef) for a period Ts in the absence of vehicles. During this time the reference

magnetic field flux magnitude Fwrer is calculated using Eq. 4-1.
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Figure 4-6 State machine process for vehicle detection and counting

FMref(k) = \/BXref(k)Z + BYref(k)z + BZref(k)2 Eq. 4-1

Fwmret is normally distributed with a mean p and STD o such that Fy,.r «
N (u, o). After statistically analyzing Fwrer, baseline threshold Rrn is estimated using
Eqg. 4-2. Consequently, onset threshold Otw and holdover threshold Hry are calculated
according to Eqg. 4-3 and Eq. 4-4, respectively; a and S are experimentally defined
coefficients according to the detection zone and signal-to-noise ratio (SNR), and o > 8
provides a hysteresis property in detection. Fy,..r should be unilaterally and adaptively

tracked and compensated, as described below in section 0.

Rty =p+20 Eq. 4-2
OTH =u + aXo Eq 4_3

HTH =pu+ on_ Eq 4-4
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After calibration is complete, the node remains in idle state until MAG data-ready
interrupt (INT1) triggers onset debounce timer Opr, given that the state condition Fm(k)

> Orn (i.e., vehicle in detection zone) is true. Fum(k) is found using Eq. 4-5.

Ful) = | (Bx () = Byreg)” + (By () = Byreg)” + (BoK) ~ Brey)’ Eq. 45

This function simply compares the magnitude defined by Otn vector with the
difference of two vectors, namely sampled magnetic field Fy, (k) and localized magnetic
field reference Fy,..r (k). If the former is greater than the latter for a minimum duration
of time specified by Opr, then a true detection event is raised.

This event can be expressed using vectors, as in Eq. 4-6. MAG sample is denoted

by M, and M,.s is programmable offset. Eq. 4-6 can be rewritten as Eq. 4-7, where Fy,

and Fyer are magnitudes of M and M,.r, and a is the angle between vectors.

|M — Wefl = J(M - Mref)' (M - Mref) > OTH Eq 4-6

M.M —2.M.Myer + Myep. Myer = JFMZ + Fires” — 2FyFyrepcosa > Oty Eq. 4-7

A transition into detect state occurs after Opr is elapsed and the state condition
Fm(k) > Orh is still true. In detect state, the sensor samples the magnetic field, calculates
Fwm(k), and logs Bx(k), By(k) and Bz(k) into a storage memory.

To minimize double-detection errors resulting from fluctuations in Fw that could
possibly occur between OtH and Hrs—given that part of the vehicle has relatively small
magnetic flux density (e.g., long combination trucks), a holdover debounce-timer Hpr is

utilized. Hot plays a significant role in reducing detection errors.
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A transition from detect state to Hpr state occurs when Fu(k) < Hrw (i.e., vehicle
departed the detection zone). A transition into idle state occurs when INT4 triggers after
Hpr is elapsed and Fu(k) < Hth. Vehicle counter will then be incremented by one, and
vehicle arrival time (Ta) and departure time (Tp) will be logged. Ta and Tp are
accurately captured in exactly 12 CPU cycles when INT1 and INT3 triggers,
respectively. The system remains in idle state until INT1 is triggered again or Fu(k) >
Rrn (i.e., a drift in the localized magnetic field baseline).

Detection period debounce-timer Ppr can be configured according to the intended
application. For example, Ppr can be used as a watch-dog-time on highways to clear
errors resulting from an accidental change in field baseline during a detection event
(e.g., high speed loaded truck hitting a sensor) and to trigger recalibration. Ppr can also
be configured as a stationary detection timer for parking lot applications.

4.2.4 Detection and Counting using a iVCCS in Roadside Setup

iVCCS can be deployed on roadsides adjacent to the lane, in favor of a roadway
setup in the center of a lane. The system uses the algorithm indicated in Figure 4-6 for
vehicle detection. However, for a motorcycle or small vehicle driving on the far side of
the lane opposite the sensor side, SNR could be significantly low, causing misdetection.
Figure 4-7 shows variations in geomagnetic field components and magnitude caused by
the Honda Accord 2004 EX-V6 when passing adjacent to the sensor at a distance of 1
meter. Y-axis is the traffic direction. When compared with roadway setup in Figure 4-8,
it is clear that the magnitude in roadside setup is three times weaker. Moreover, signal

variations in roadside setup are relatively uniform when compared with roadway setup.
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Figure 4-7 Class 2 vehicle magnetic signature sampled by iVCCS on roadside

47 ik — Bx By
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Figure 4-8 Class 2 vehicle magnetic signature sampled by iVCCS on roadway

To mitigate this issue, a moving average filter (MAF) with gain coefficient w can
be employed to reduce signal fluctuations and detect the trend of the FMgain(k),

calculated using Eq. 4-8 and Eq. 4-9, which is the input of detection algorithm in Figure

4-6. One drawback of roadside setup is that it only works for roads with no more than

two lanes.
N-1
W .
Fitgen ) =3 > Fy(k=0); w=4, N=5 £q. 48
i=0
Fy(k)+Fy(k—1)+--+ Fy(k
WX m (k) + Fy( k) M(); k<N
Fu g (K) = Eq. 4-9
gain Fy()+Fy(k—1)++ Fy(k—N+1 Q.
WX m (k) + Fy( ) m( ) k>N

N )
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4.2.5 Adaptive Geomagnetic Baseline Drift Compensation

Variations in temperature, vibrations, and aging will cause a considerable drift in
the mean value of Fwmrer(k), Which causes detection errors and unreliable speed and
length estimation. Thus, Fmret(k) should be tracked so that Bxre, Byref, and Bzrer are
compensated for any drift. Tracking Fwmref(k) is achieved using a MAF when Fu(k) <
Oth. The algorithm computes new Bxref, Byrer, and Bzrs values, as in Eq. 4-10, when

Eq. 4-11 is satisfied.

M-1
1
Brey =MZ BN(k-1); y={XYZ}eR’ Eq. 4-10
i=0
M-1
1 -
3 [Futyer (k= D = Fugy o (0] = R Eq. 4-11
i=0

A high-level description of the baseline drift compensation algorithm is shown in
Figure 4-9. A flowchart is detailed in Figure 4-10.

The drift compensation algorithm simply tracks geomagnetic field over time to
maintain reference magnetic signal variations at a minimum. The function
stores By (k), By (k) and B,(k), and calculates F,,(k) when MAG data ready interrupt

(INT2) triggers. Fy,(k) MAF output is compared to baseline threshold Rtu. New

geomagnetic field reference level components BT(Z} are calculated and set using MAF

when Fyapg(k) > Rry.
MAF, although simple, was able to detect magnetic field disturbances caused by
factors not related to vehicle presence including temperature, road structure,

surrounding objects, etc. This work didn’t attempt to discover or model all possible drift
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causing disturbances that may occur at various locations besides those field testing

during this research.

Inputs: Bx(k), By(k), Bz(k)
Outputs: Bxret, Byrer, Bzrer

1: WHILE Fwm (k) < Ot
2: WAITFOR Magnetometer Data-Ready INT

3. BUFFER < COMPUTE Fu(K) <~ READ Bx(K), By(K), Bz(k)
4 ldx «— ldx + 1

5 IF ldx =M THEN

6: Fit.avg < 2! Fulk = j]

7 IF OtH >Fm-avg > RtH THEN

8 Bxress Byref) Bzrer F%Zﬁﬁl BW[k —i]

9 ENDIF

10: ldx <~ 0 : BUFFER «- 0

11: ENDIF

12: LOOP

13:1dx <~ 0 : BUFFER « 0

Figure 4-9 Adaptive Geomagnetic Baseline Drift Compensation Pseudocode
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BUFFER READ By(k). By(k), Bz(k)
By (K] 3
By[K]
B, [Kk] COMPUTE F) (k)
Fylk]
A
YES—
NO
\ 4
Idx=Idx+1

YES
h 4

B(Y)

1
) =57 ) BlUe=0; ¥ ={XY,2}

v

WRITE ref. Register

Idx=0
CLEAR BUFFER

Figure 4-10 Flowchart for adaptive compensation of geomagnetic baseline drift

v
A
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4.3 Vehicle Speed Estimation and Time Synchronization

In this section, the development and implementation of various algorithms for
real-time vehicle speed estimation and time synchronization are discussed.
4.3.1 Real-Time Vehicle Speed Estimation using Two Sensor Nodes

The most accurate method to measure vehicle speed is by calculating travel time
between two longitudinally positioned sensor nodes (Na—>Ng) separated by distance d,

as shown in Figure 4-11.

- 4 d >
— . Ny Np
il @ L)
w—l pzNA + 4—l DzNB —v

Figure 4-11 Speed estimation deployment setup

Two measures of speed can be identified: 1) per-vehicle or instantaneous speed
(7,), which is the attained speed of a vehicle at time instant t, and 2) aggregated or time-
mean speed (7;), which is the average speed of n vehicles v over time period t at a

specific location. v, and v, are calculated using Eq. 4-12 and Eq. 4-13, respectively.

Tis vehicle arrival time; T"? is the departure time; and q is number of vehicles

traveling at the same speed.

dNa—-NB) dWNa—-NB) dVa~-NB)
VR e S i i S 2T i L) v E9-4-12
TAB—TAA TDB—TDA TAB—TAA+TDB—TDA
n 17 -
- 1 —_ z:‘{lzlql"']l Z’{l:]_qlld ?zlqi.d(NA NB)
Ut = ; vi = n ] = Zn .t = n (NB) (NA) Eq 4'13
i=1 i=1 CIl i=1 CIl b ) i=1 ql (Tl — Tl )
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Timestamps TA(N")and TD(Ni)are sent by sensor nodes and received by an iAP,
which in turn process speed and length estimation and classification.

For reliable, accurate vehicle speed and length estimation, a high-precision time
synchronization must be considered. Failing to synchronize all sensor nodes within a
network will cause inaccurate measurements and confuse decision-making in the
intelligent controller. Such circumstances might lead to an unsafe condition as a
consequence of a false alarm. For instance, consider a vehicle travelling 90 mph on a
highway on which two sensor nodes are deployed on a single lane 6 meters apart. If a
required speed estimation error is anticipated to be less than e=£1%, maximum timing
error Tsync—err Should be less than 1.5ms, as indicated by Eq. 4-14 (1mph=0.44704m/s).

Separation distance between sensors depends on speed range. Increasing d would
reduce error. [120] recommends d=3.1—3.7 meter for arterial setup and d=6.1—7.3

meter for freeway setup.

Tsync—err = ; XE = mXOOl ~ 1.5ms Eq. 4-14

4.3.2 Real-Time Vehicle Speed Estimation using Single Sensor Node

Three interrelated parameters, namely vehicle magnetic length (VML), speed (v),

T(Ni)

Occ

and occupancy time ( ), can be directly estimated or measured for each passing

vehicle when two sensor nodes are used per lane, as in Eqg. 4-15. However, when using

Ny)

a single sensor node, only Técc

can be directly calculated, as in Eq. 4-16.

VML = 5XTon? Eq. 4-15
Ny _ (N (V) -
TN = M — 7 Eq. 4-16
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Several studies have reported different techniques for estimating vehicle speed
using a single IDL detector. One technique depends on assuming an average length and
aggregating a large number of estimated speed samples within a time window to reduce
estimation error resulting from uncorrelated length and speed measurements. However,
this method is prone to error when mean length deviates (i.e., too many long vehicles).

In this work, an improved speed estimation method developed in [121] for a
single IDL detector was adopted using single MAG. The first method employs a

moving median, as in Eq. 4-17.

" VMLgyerage
dian = -
median edian (TD(Nx) ﬁNx)) Eq. 4-17

The moving median method uses a fixed window of n samples (i.e., vehicle speed
values) centered on the current sample. The window moves one vehicle for each sample
and calculates median speed for the current vehicle, and so on. Sample buffer should be
selected with size enough to ensure minimal speed estimation error. Based on statistical
data collected using MAG, a fixed window of 37 samples and average length of 7.2m
was selected. A high-level description for moving median algorithm is shown in Figure
4-12.

Given that the ratio of short to long vehicle fluctuates, the sequence method can
be applied to further improve speed estimation. Because the sensor’s occupancy time
ratio between two successive vehicles should be proportional to their length, it is
possible to statistically determine a ratio threshold between the mean of long vehicles
(LV) and short (SV) vehicles based only on occupancy time, as in Eqg. 4-18. Authors in
[121] suggested a ratio 3.5:1 for IDL. The statistical analysis conducted in Chapter 6

revealed a ratio 3.7:1, LV for MAG. Given multiple sequences within the sample
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window, the algorithm estimates speed for each sequence and then assigns median
speed from all individual estimates to the sample. Otherwise, given no such sequences
within the sample window, the algorithm falls back to the moving median method. A
high-level description for the sequence method algorithm is shown in Figure 4-13.

Lsy Liy

Dsv = (TD(Nx) _ TA(Nx))SV; Oy = (TD(Nx) _ TA(Nx))

Eq. 4-18

LV

Inputs: window_size = 37, VM Lyerqge = 7.2m

Outputs: vyedian

1: WHILE (1)

2: Computer occupancy of each vehicle in the window of current
vehicle

Search for median value within all values in the window

Shift the window index to the right by 1

3
4: Vmedian$ VMLgyerage! Median occupancy
5
6: LOOP

Figure 4-12 Moving median speed estimation algorithm

Inputs: L4, = 6.6m, L4, = 15m, Occggeip = 3.7m
Outputs: ¥y, Dgy

1: WHILE (1)

2: Occ(i) <« Computer occupancy of vehicle i in the sample window

3: Occ(i+1) « Computer occupancy of vehicle i+1 in the sample window
4. IF Occ(i+1) / Occ(i) > Occryrio THEN

5: Dgy<— L4,/ Occ(i) : Dy« L,/ Oce(i+1)

6: ELSE

7 Compute moving median speed

8: END IF

9: Shift the window index to the right by 1

10: LOOP

Figure 4-13 Speed estimation algorithm using sequence method
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4.4  Time Synchronization using Embedded GPS Module

Each sensor node relies on an onboard GPS module and RTC unit to maintain an
independent local clock that is globally synchronized to the GPS pulse-pre-second
(PPS) signal. Therefore, wireless connectivity is not necessary for accurate functioning
of iIVCCS nodes. Time stamping, timekeeping, and failure recovery functions are
enabled by the MCU’s internal RTC unit, which is calibrated and aligned using the PPS
signal.

Upon iVCCS node power-up, the embedded MCU enables the GPS module via an
ultra-low, quiescent-current load switch. Once the GPS receiver is successfully locked
to available satellites, the Coordinated Universal Time (UTC) information packet is
used to set RTC time and date. The rising edge of PPS signal, which is globally
synchronized with +10ns timing accuracy, is used to align RTC clock phase and
independently synchronize all WSN-node RTC clocks to the same reference signal (i.e.,
PPS) on a global scale without exchanging messages over the wireless network.

Once RTC is synchronized, MCU sets the GPS module in backup mode. Location
coordination of the sensor node and its ID will be reported to the corresponding iAP for
mapping purposes. Procedure inputs and outputs are depicted in Figure 4-14. Time zone
is denoted by TZ, and daylight saving time is DST. A high-level description of RTC
settings and phase alignment using a GPS module is illustrated in Figure 4-15.

DST TZ

vy

UTC Time/Date ——p» 3 Local Time/Date
RTC
GPS-PPS = > Millisecond

32768Hz

Figure 4-14 GPS-based RTC clock setting and phase alignment block
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The method detailed above provides extremely accurate T-Sync, although RTC
phase alignment error calculated using Eq. 4-21 is subject to frequency tolerance fosc-tol
of the MCU oscillator. For iVCCS, fosc-tol = £5ppm and fosc = 32MHz. Another factor
affecting T-Sync accuracy is RTC frequency drift [122], [123], which is discussed in

the next section.

(MCU)
_ Josc—tol _ —-ppm

RTCphaseErr_ 106 - 106 zi—sﬂs

Eq. 4-19

Inputs: Time Zone, DST,

Outputs: Local Time/Date, Geographic coordinates,

DISABLE RTC clock, INITIALIZE GPS Module

WHILE GPS-3D-Fix IS BUSY LOOP

WHILE GPS-PPS IS INACTIVE LOOP

WHILE NMEA <> $GPRMC | $GNRMC LOOP

{UTC Time, Date, Coordinates} « READ $GPRMC|$GNRMC
COMPUTE Local Time/Date, Sec « Sec+1, DST, Leap Year
WAIT FOR GPS-PPS Rising Edge Interrupt

SET RTC(Time/Date) « GPS(Time/Date)

L 9 N o g k~ N R

ENABLE RTC clock, SET GPS Module into Power Saving mode

Figure 4-15 Pseudo-code for RTC setting and phase alignment using GPS-PPS
4.4.1 Adaptive Compensation of the RTC Frequency Drift
RTC accuracy is dependent on a 32.768KHz crystal oscillator (32KHzes) with
maximum resolution of 30.517us (i.e., 1/32769 = 30.517us). 32KHzqsc accuracy is
subject to several factors, including manufacturing tolerances in the 32KHzosc, passive
PCB components, temperature excursions, and aging. The primary T-Sync error when

using RTC is caused by the 32KHzosc uncompensated frequency drift.

109



IVCCSc1 uses ABS07-32.768KHZ-T—a 32.768KHz SMD low profile crystal—
which has an extended temperature operation from -55°C to +125°C for industrial
applications. Output of 32KHz.s has parabolic frequency dependence over temperature,
as depicted in Figure 4-16. Frequency drift at temperature T is expressed in Eq. 4-20,
where B is a temperature coefficient given in ppm/T2, which is always negative (i.e.,
RTC oscillator slows down at cold or hot temperatures around To). To is a turnover
temperature—25°C+5°C. If B=-0.036ppm/T?+15% and To = 25°C+5°C, the

corresponding frequency drift at T=50°C, for example, is found using Eq. 4-20.

0
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Figure 4-16 Frequency stability vs. Temperature characteristics for ABS07

A
& B(T — Ty)? = —0.036X(50 — 25)2 = —22.5 ppm Eq. 4-20

fo
A -22.5ppm with respect to time is equal to:

22.5 sec msec msec usec
———X60%x60x24 = —1.944 — = —-81 = —1.35—
106 day hour min sec

The 32KHzesc drift egzrc at constant T has a slope m=1, meaning that change in
Errc 1S constant over time at constant temperature. Measuring zr¢ at 26°C for one hour
showed a constant drift of 15us (i.e., 54ms/hour), which can be modeled as a linear

equation in Eq. 4-21, where current RTC time is denoted by tzr¢; corrected RTC time
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is trrc; GPS time at calibration moment is t;pg; and ng’g") is the accumulated error

at Tsc. Trrc 1S the compensated RTC time.

a T, T T 2
Brre = mXtere 2 Exie” 5 e = ene” (Brre —teps) , m= 1 Eq.4-21

Temperature variations will cause drift in 32KHzosc output. To maintain T-Sync
error in EqQ. 4-14 within an intended range, RTC drift should be tracked for
compensation, meaning it is possible to correct tgprc drift by knowing Tosc.
Corresponding frequency drift can then be calculated, with respect to time, using Eq.
4-20; gy value can be then found using Eq. 4-21.

The objective of this method is rejecting the disturbance (i.e., variations in Tosc).
Measuring Tosc is not possible, because oscillator does not have a built-in temperature
sensor. Nevertheless, and to a greater extent, under steady-state conditions Tosc can be
assumed equal to the temperature of surrounding components. In addition to an on-
board thermistor, MAG has an on-die temperature sensor that can be used to extrapolate
Tosc. This approach is appropriate, given that 32KHzesc output has a frequency
tolerance <+5us and aging factor of <t1°C@25°C/year. It is important to realign RTC
phase when temperature changes approximately 3°C. A re-synchronization using GPS
is also required every few hours to correct residual errors. Figure 4-17 illustrates the

RTC drift correction process.

leps
(TOSC) £
RTC trre At T|Errc A G Lrrc
RTC
A T
£Rre”
Disturbance —» | 32768Hz T-Sensor »{B(T —T)?

Figure 4-17 RTC drift correction system block diagram
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A second approach to correcting 32KHzqsc output drift was developed. RTC-1Hz

signal frequency fR(ﬁlCCU) was compared to an accurate reference frequency fp(gg ) PPS

signal frequency. In this scheme, both clocks are sampled using high frequency

clock £,MC%)  driven from the MCU’s 32MHz oscillator. £, ’has a tolerance +5ppm;

however, since both signals are measured using the same clock at the same time,
tolerance error is canceled out. If T,g. changes approximately 3°C, the algorithm

awakens the GPS module, aligns the RTC phase, and computes a new time correction

coefficient & ,gTT"gC). Figure 4-18 illustrates the RTC phase correction system.

f32Khz R(%CU) MCU

Tosc | | 32768Hz » RTC —> cnt"V”
mMcu)
TCLK T )

T 32MHz i (Tosc
Disturbance $ RTC
T L
GPS —>cntMY
Disturbance P(g;)S) Cntz

Figure 4-18 PPS-based RTC time drift correction system block diagram

Once RTC phase is aligned, the algorithm configures two 16-bit MCU counters
(Cnty and Cnto) in an overflow interrupt (OVI) mode. Cnty is triggered by an external
interrupt, generated on the rising edge of GPS-PPS signal. Cnt; is triggered by 1-sec
RTC timer interrupt, which is generated each time MCU’s RTC timer reaches the top
value 32,768 and then transitions to zero. Elapsed time at Cnty or Cnt> overflow
interrupt is calculated (See Eq. 4-22), where Dy is a clock divider and N is timer

precision.

- 2¥%xD.,  65536x%1
cnt® = Y =

Tmax = ((MCU) — 32x106
TCLK

= 2.048 msec Eq. 4-22
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Because 2.048ms is maximum count time for Cnty or Cnty, 488.28125 OVIs is
required to count 1-sec, as evident in Eq. 4-23. OVI fraction value is equal to
0.28125/65536=18432 count. Total number of counts, calculated in Eq. 4-24, is the

number of OVI multiplied by counter precision plus the residual value in the counter

register. A new time correction coefficient 5,27;9;0 is calculated, as in Eq. 4-25, where

Cntg,,)g Is the average count of n measurements (i.e., n-sec).
o (et - frarger 1€ ag 96125 2
1s cnt® —~ 2.048ms ' Eq. 4-23
Cnto,, = [2Vx0vIEn )] 4 cnt® Eq. 4-24
(2) 1) n
Cnt —Cnt . 1 )
(Tosc) _ avg avg o _ @
TCLK k=1
(TOSC)

rrc. Value represents timing error (i.e., drift) or, in other words, time difference
between measured periods of GPS-PPS-1Hz reference signal and RTC-1Hz signal.

Once the correction process is complete, GPS module is set to power-down mode.

Corrected timestamp is the instantaneous RTC value plus the accumulated correction

coefficient value over time.

Measurement resolution is one-cycle of £ Y which is equal to 31.25ns. The

correction algorithm should be executed at regular intervals (e.g., every hour) to adjust
and realign the RTC phase and keep nodes synchronized. A high-level description of
RTC frequency drift compensation using GPS-PPS signal is presented in Figure 4-19. A

flowchart representation is depicted in Figure 4-20.

113



Inputs: Sec, 60minCnt

Outputs: £/ RTC-CNT

1: IFSec=0THEN

2: T(k)« %Zfiﬁl T(k — i)« READ Temperature

3: IFT(k) >T(k—i)+30orT(k) <T(k—1i)— 3or60minCnt THEN
4: INITIALIZE GPS in Tracking Mode
5: WHILE GPS-3D-Fix IS BUSY LOOP
6: WAITFOR GPS-PPS Rising Edge Interrupt
7 RTC-CNT«1{Realign RTC Phase, Reinitialize RTC Reg.}
8: ovICnt) 0, cnt®@« 0, START Cnt®; i = {1,2}
9: WHILE n <2
10: WAITFOR GPS-PPS Rising Edge Interrupt, RTC-1sec Interrupt
11: Cntfo, () = [2Vx0vIE )] + cnt®; i = (1,2)
12: LOOP
13: GPS Module «— Power Saving mode, 60minCnt < 0
14: Cntlog = = Yoy Cntro g (K); i = {1,2)
15: Rre” = —Cm%)z"ﬂ;ccﬁt‘%
TCLK
16: ENDIF
17: ENDIF

Figure 4-19 PPS-based RTC frequency drift compensation algorithm
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$ INITIALIZE Cntl, Cnt2
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YES

READ T(K)

YES
; .
1
Cntigotal (n) Cnt Total (n)
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INITIALIZE GPS
GPS YES YES
_Fi )
D-Fix Done Cﬂtc(;?g Cntg,)g
NO | |
v
(2) (1)
(Tosc) Cntavg—Cntavg
RTC - Mcu)
freuk
' REALIGN RTC Phase ‘ POWEDOWN GPS
I
End

Figure 4-20 PPS-based RTC frequency drift compensation flowchart

A third approach to overcome 32KHzesc output drift was implemented in
IVCCSg2. IVCCSg2 uses SiT1552 [97]—an ULP 32.768KHz MEMS TCXO—to
provide highly accurate clock source to the MCU’s RTC unit. SiT1552 consists of
MEMS resonator and a programmable analog circuit, as depicted in Figure 4-21. Unlike
quartz crystals that have a classic tuning fork parabola temperature curve with a 25°C
turnover point, SiT1552 temperature coefficient is factory calibrated and corrected over

multiple temperature points using an active temperature correction circuit to ensure
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extremely tight frequency variation (i.e., £5ppm) throughout the -40°C to +85°C

temperature range (See Figure 4-22).

I
I
GNDO | : Control Regulators O Vdd
I
| |
| : Tomp l<— Temp-to-Digital NVM
| ) Control

Prog

S A Ultra-low
GND O ustaining Power Divider ) CLK Out
Amp Frac-n
PLL

Figure 4-21 SiT1552 MEMS TCXO block diagram

100
O Temperature
o 50k Ramp
S
ud
g of
E
]
'—
-500 50 100 150 200 250
Time (s)
10 T
- TCXO Response
T o
0 a
g2 O~
2z
80 Sl v syt ———————— o R e
Lo
-10 1 L 1 L
0 50 100 150 200 250
Time (s)

Figure 4-22 SiT1552 stability over temperature

Using SiT1552 will significantly improve 32KHzqsc output stability with £5ppm
frequency tolerance throughout the -40°C to +85°C temperature range. Notably, +5ppm
can be reduced to 0.9537ppm by employing the STM32LO MCU Digital Smooth
Calibration feature in iVCCSeco.

The STM32L0 MCU series implements an RTC calibration register (i.e., CALP-
CALM) that can be used to increase or decrease the RTC clock (i.e., 32768Hz) with a

fine resolution of 0.954ppm. An offset ranging from -511 to +512 RTC clock cycles can
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be added within a 32-second cycle (i.e., 2%2) calibration window (i.e., -487.1ppm to
+488.5ppm calibration range). Hence, after RTC phase is aligned using GPS, all nodes

can be kept synchronized by calculating RTC clock error when temperature changes,

and then adjusting RTC calibration registers as opposed to accumulating fg?g’“‘) to the

timestamp itself. For a given £\ o, RTC input clock, Eq. 4-26 can be used to calculate

effective calibrated frequency féff )

(RTC) _ (RTC) n (CALPXSlZ) — CALM
cat CLKIN= T 220 4 (CALM — CALP)X512

Eq. 4-26

4.4.2 Timestamps Matching Issues

As reported earlier, vehicle arrival and departure timestamps (TA(N Dand TlgN i)) are
sent by each sensor node to an associated iAP for vehicle speed and length estimation,
as well as, classification. In some cases—as a result of interference from other
technologies operating in the ISM band or from a large truck passing the sensor’s
detection zone—the radio channel might be degraded, resulting in delayed events (i.e.,
T and/or ")),

Furthermore, a miscalibration in MAG baseline might cause a missing, delayed,

or wrong TlgNi)event. This issue was solved by assigning a unique ID for each sensor

node, and then combining TA(N Yand TlgN 9 timestamps with identification characters sent
to the IAP at each event. Also, since sensor nodes N1 and N2 are placed at close
proximity (6~10 meter apart), the probability of error due to a delayed event is slim to
none. Given a missing T\ Por T timestamp, the corresponding T"?or TX? event

will be dropped.
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4.5 Real-Time Vehicle Magnetic Length Estimation
Vehicle length is important for vehicle classification [12]. Vehicle magnetic
length (VML) is defined as a disturbance in the Earth’s magnetic field caused by the

ferrous material structure of a vehicle. VML is estimated from the product of vehicle

speed and sensor occupancy time Té’c\'g'), as shown in Eq. 4-27. A Té’cvci) is defined as the

difference between vehicle departure and arrival times at a designated detection point;

both are influenced by magnetic field detection threshold.

VML = oxTynt = ox (TS"0 - )

Occ

Eq. 4-27
y TD(NA) _ TA(NA) + TlgNB) _ TA(NB)

2

=7

Because disturbance level to the Earth’s magnetic field depends on vehicle

composition of ferrous materials, VML can theoretically be longer than its actual
physical length (i.e., bumper-to-bumper length).

Nevertheless, under the assumption that 1) symmetrical detection zone and 2)

sensor sensitivity are independent of vehicle structure, vehicle physical length can be

estimated using Eq. 4-28, where I, is the estimated length of sensor’s detection zone

(See Figure 4-11).

b=lu— 190 100~ g [ — 1] — g Eq. 4-28
4.6 Real-Time Magnetic Length-based Vehicle Classification

In this section, the implementation algorithm for several LBVC schemes for
MAG will be discussed. However, scheme development, including field testing and data

collection, as well as extensive data analysis, will be introduced in Chapter 5 and 6.
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Three distinctive LVBC schemes were developed, as illustrated in Figure 4-23.
Vehicles were grouped in each bin based on structural similarity and statistical data,
which are discussed in Chapter 6. The PV group includes passenger cars, pickups, and
SUVs. The short-trailer (ST) group includes busses, light-trucks, and single-unit-trucks.
The long vehicle (L/LT) group includes single-trailer and multi-trailer trucks. Length
decision boundaries for 4-Gsx using different thresholding methods (i.e., ¥, ar, and og)
are shown in Table 4-1 (Refer to Chapter 7 for more details). These boundaries can be

easily implemented in real-time using if-then conditions.

3-Gg, IMC S L
3-Ggy PV ST LT
4-Gg, IMC| PV ST LT
S e N )
han B o IR o - BN ST ¢ B~ B - I N I
L T I O T T T < < T <
W H W ] “ T - < z A
] o ~ Q4 - - Q Q Qo Q Q Q
- X ;J 8 2 2 2 5 B 2 2 2 B
> 8 2 4 B E 2 & &€ £ & £ £
Q S ) |l 1 ] 1 1 ] 1
5 2 F T o X 5 5 5B E E E
s &~ S B @B 2 3 F =
2 A, S|

Figure 4-23 Proposed LBVC Schemes for MAG

Table 4-1 Length boundaries for 4-Gsx using different thresholding methods

4G-Sx MAG
Group FHWA-Sk ) o OE
Gl F1 0.7—2.984m 0.7—3.736m 0.7-2.9107m
G2 Fo—Fs3 2.984—10.971m 3.736—7.7516m 2.912—7.427m
G3 Fs—F7 10.971—14.727m 7.7516—14.95m 7.427—15.136m
G4 Fe—F13 >14.727m >14.95m >15.136m

The implementation model for LBVC scheme using MAG is depicted in Figure
4-24. A vehicle actuation will trigger the detection algorithm at the upstream sensor

node (Na) and again at the downstream sensor node (Ng). Both nodes send arrival and
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departure times to i1AP, which computes speed and magnetic length. The vehicle is then

classified by comparing computed length to decision boundaries in Table 4-1.

N, (upstream) |« Vehicle Actuation > Np (downstream)
TA(NA) 2 % d(Na=Np) TA(NB)
| _
Vi T Ng) _ N2, (Np) _ (Na)
7 TV — M) B 7o)
Na) _ (N2 _ (N 7 o Vi o (Ng) | (Np) Np) _ m(Ng) _ (V)
Toce =Tp “ =Ty " L, = 2 (Toce” + Toee ) Toce =Tp " =Ty"
Group FHWA-S; ¥
Gl F, 0.7—2.984m
G2 F, F, 2.984—10.971m
G3 F, F, 10.971—14.727m
G4 F, F, >14.727m

Figure 4-24 Implementation model for LBVC Scheme using MAG
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Chapter 5: FIELD TESTING & DATA COLLECTION

Several field studies and tests were conducted during this research—many of
which were in parking lots at the University of Oklahoma-Tulsa campus. Additionally,
eight major field tests were conducted on highways and urban roads throughout the
state of Oklahoma. The objectives of these studies were to test sensor hardware,
validate various developed algorithms, evaluate overall sensor real-time performance,
and collect data for further analysis.

5.1 Data Collection Methodology

This section will report on major field studies conducted on the following

Oklahoma highways and roadways:

e Field Test 1 to 3—U.S. 412, Chouteau, OK 74337 USA

e Field Test 4—S. Yale Ave., Tulsa, OK 74135 USA

e Field Test 5 —Lake Hefner Pkwy, U.S. 74, OK 73120 USA

e Field Test 6—536 W State Hwy 152, Mustang, OK 73064 USA

e Field Test 7—Will Rogers Expy, OKC, OK 73108 USA

e Field Test 8—5959 Northwest Expy, OKC, OK 73132 USA
5.1.1 Field Test1

The first field study was conducted March 31%, 2015, from 10:55 to 13:15 at U.S.
412, Chouteau, OK 74337 USA, to evaluate the detection algorithm. iVCCS nodes were
deployed in two setups: 1) roadway surface at lane center, and 2) roadside surface
adjacent to rightmost and leftmost lanes. In both setups, MAG sensor x-axis was

alongside traffic direction; y-axis was perpendicular to traffic lane; and z-axis was
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pointing upward, perpendicular to the ground. Two iAPs were installed by the roadside.
The system was configured so that each iAP sent configuration and initialization
commands to its iVCCS nodes cluster. In turn, iVCCS nodes sent vehicle counts in real
time to their corresponding iIAP. Two video cameras were used as ground-truth for data
validation and performance evaluation. Vehicle classes and counts were manually
extracted from video images by counting axel number per FHWA Scheme F with 13
classes. To reduce human error, the extraction process was validated by comparing
extracted classes with collected data from a nearby WIM site. Video-based validation is
considered the most accurate ground-truth, notwithstanding the fact that this method
requires intensive labor.

Although only one iVCCS node is needed in each lane for vehicle detection, six
nodes were deployed in each lane to study detection algorithm portability, as well as
repeatability of vehicle magnetic signature. Cameras, iVCCS nodes, and iAPs were
synchronized using a GPS-based clock to aid in data analysis and validation.
Deployment setup is depicted in Figure 5-1. Figure 5-2 shows the initial prototype
enclosure for the iVCCS node, where a is top view, and b and ¢ are bottom views.
Enclosure size was 15.24(L)x15.24(W)x2.54(H) cm. The prototype was printed on a
desktop 3D printer using PVC materials. Of interest is that many nodes were cracked
during the test as a result of enormous dynamic load caused by heavily loaded trucks
traveling at 70mph speed. Figure 5-3 shows the placement of iVCCS nodes, iAP, and
cameras at the deployment site. The objectives of this field test were to:

e Evaluate hardware reliability and system performance in a real-life scenario

e Evaluate the detection algorithm
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o Evaluate the initial enclosure prototype

e Collect vehicle signature data for further analysis
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Figure 5-1 System setup layout on roadways (S1-S12) and roadsides (S13-S16)

Figure 5-2 iVCCS enclosure—1st prototype

S

Figure 5-3 Field Test 1 deployment site
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5.1.2 Field Test 2

A second field study was conducted August 3-, 2015, from 8:50 to 12:50 at U.S.
412 near Chouteau, OK, 74337 USA. The overall purpose was to evaluate detection,
synchronization, and speed estimation algorithms in two scenarios. Several iVCC nodes
were installed on the roadway surface of the left lane center and adjacent to the left
lane. The right lane was blocked using a closure so that traffic was forced to travel only
on the left lane. All nodes for MAG axis (i.e., X, y, and z) were positioned identical to
those in Field Test 1. The system was configured so that iVCC nodes reported vehicle
count and timestamp to a corresponding iAP in real-time. A video camera, as well as
Road Runner 3 Kit [124] from Diamond Traffic, were used as ground-truth for data
validation and performance evaluation. The Road Runner kit is a road tube-based
vehicle counting and classification device. The kit reports 2-channel event timestamp
data at a resolution of 30.5us. Vehicles classes were manually extracted from video
images by counting the number of axles for each vehicle. The effect of potential human
error resulting from the extraction process was significantly reduced by comparing
extracted classes from video with the number of axels counted by Road Runner.
Estimated speed and length from the Road Runner device were used to validate
estimated speed and length reported by iVCCS.

Cameras, along with the Road Runner kit, iVCCS nodes, and iAPs, were
synchronized using a GPS-based clock. The deployment setup is depicted in Figure 5-4.
Figure 5-5 shows the second prototype enclosure for iVCCS node: again, a is the top
view, and b and c are the bottom views. Enclosure size is 12.5(L)x12.5(W)x2.54(H)

cm. Prototype shells were imported from China. A bucket for housing the sensor PCB
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inside the shell was designed and printed on a desktop 3D printer. The shell was filled
with epoxy after installing the battery and sensor bucket. Unfortunately, some nodes
were cracked during the test, primarily because the epoxy material was not hard enough
to withstand the dynamic load of heavy-loaded trucks. Figure 5-6 depicts the

deployment site.

Figure 5-6 Field test 2 deployment site
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The objective of field test 2 was to evaluate the following improvements:

Holdover de-bounce time was based on the developed statistical modeling
for detection error.

An adaptive algorithm for geomagnetic baseline drift compensation was
implemented to compensate for drift resulting from variations in
temperature, vibrations, and aging.

An algorithm for time synchronization using the on-board embedded GPS
module and RTC unit was implemented to estimate speed.

In this test, each sensor node maintained its own independent local clock that
was globally synchronized to a PPS (pulse-per-second) signal generated by

the on-board GPS module.

5.1.3 Field Test 3

The third field study was conducted October 8, 2015, from 8:22 to 14:00 at U.S.

412, Chouteau, OK 74337, USA. In this test, an incredibly hard epoxy-filling material
was used for more durable enclosure. The left lane center was populated with six nodes
(Sa, Sg, Sc, Sp, Sk, and Sg) installed on the roadway surface and separated by 2 meters.
Six additional nodes (SH, Sg, SL, Se, Si, and Sk) were installed on the roadway surface
sides of the left lane. Two nodes (Sm, and Sn) were also installed between left lane
center and the lane edge to accommodate a vehicle magnetic signature diversity study.
The right lane was blocked using a closure so that traffic was forced to only use the left
lane. A single node (So) was deployed in right lane center to study interference from the

adjacent lane. All nodes were positioned the same as the MAG axis in the first field test.
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Nodes were operated by three iAP installed on the road shoulder at a separation distance
of 10 meters. Sensors were configured to report vehicle count and timestamp to a
corresponding i1AP in real-time. A video camera, speed radar, and Road Runner 3 Kit
were used as ground-truth for data validation and performance evaluation. Vehicles
class was manually extracted from video images by counting axel number for each
vehicle. Estimated speeds and vehicle lengths reported from the Road Runner Kit were
used to validate iVCCS data. The deployment setup layout is depicted in Figure 5-7.

Figure 5-8 depicts the field test 3 deployment site, installed sensors, and equipment.
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Figure 5-7 Field test 3 system setup layout

Figure 5-8 Field test 3 deployment site
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The objective of field test 3 was to collect additional data about various classes
for a vehicle classification analysis study and to evaluate the following improvements:
e An optimization programming was applied to improve detection algorithm
performance at higher sampling rates (400Hz and 800Hz).
e An algorithm for adaptive compensation of RTC frequency drift resulting
from temperature variations was developed and implemented.
e The T-synch algorithm was improved to correct residual errors.
e Arrival- and departure-detection time stamp procedures were optimized and
improved for more accurate and consistent time-stamping.
e On-board ACCEL was activated to collect vehicle axle data for future
vehicle classification and axle detection data analysis.
514 Field Test4
Field study 4 was conducted October 15, 2015, from 9:30 to 17:30 on an urban
road at 41% South Yale Ave, Tulsa, OK 74135 USA. Eight iVCC nodes were installed—
six nodes (Sa, Se, Sr, Sc, SH, and Si) on the roadway surface center of each lane and
two nodes (Sg, and Sk) on roadsides surface adjacent to the right lane. All nodes were
operated using a single iAP. A video camera and Road Runner Kit were employed as
ground truth for data validation and performance evaluation. Vehicle classes were
manually extracted from video images by counting axel number for each vehicle. The
same testing methodology was followed for this test as was for the first three tests.
Deployment setup layout is depicted in Figure 5-9. Figure 5-10 pictures the field test 4
deployment site, as well as installed sensors and equipment. The objective of this test

was to evaluate sensor performance and accuracy at traffic signals on an urban road.
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Figure 5-10 Eight iVCCS nodes deployed on an urban road

515 Field Test5

Field test 5 was conducted April 21, 2016, from 10:52 to 13:23 at Britton Bridge
on Lake Hefner Pkwy, U.S. 74, OK 73120. Several iVCC nodes were deployed on the
north side of the highway. A video camera was installed on the shoulder and employed

as ground truth for data validation and performance evaluation (See Figure 5-11).
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The primary objective of this study was to collect VMS sampled using MAG and
IDL for a post-processing analysis aimed at identifying the differences between the two
VMS sampled using MAG vs. IDL. The deployment location had been recently
equipped by IDLs connected to a Phoenix Traffic Classifier from Diamond Traffic
Products, Inc. This classifier device samples VMS from IDL at a sampling rate of

1KHz.

1}

_1.., i
= ~ : \ /. y

Camera

Node 3 . —
Figure 5-11 Field test 5 deployment site

5.1.6 Field Test 6

Field test 6 was conducted June 06, 2016, from 14:00 to 15:00 at 536 W State
Hwy 152, Mustang, OK 73064 USA. Several iVCC nodes were deployed to measure
traffic traveling on the highway in both directions (See Figure 5-12). A tubes counter
was also installed 20 feet from the sensors. A nearby AVC station was also employed in
the study. ODOT personnel used a manual counter as ground truth for performance
evaluation.

The objective of this study was comparing tube-count, AVC station-count, and
iIVCC-count performance with manual count. Initial data analysis was conducted by

ODOT.
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Figure 5-12 Field test 6 deployment site

5.1.7 Field Test7

Field test 7 was conducted in June 06, 2016, from 09:00 to 10:00 at Will Rogers
Expy, OKC, OK 73108 USA. A single iVCC node was placed on the far most left lane
without traffic interruption (See Figure 5-13). A video camera deployed for an ODOT
contractor was installed on the shoulder. A nearby AVC station was also employed in
the study. ODOT personnel used a manual counter as ground truth for performance
evaluation. The objective of this study was to compare performance between deployed

technologies and manual count (i.e., ground truth data).
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Figure 5-13 Field test 7 deployment site

5.1.8 Field Test8

Field test 8 was conducted June 06, 2016, from 11:00 to 12:00 at 5959 Northwest
Expy, OKC, OK 73132 USA. Three iVCC nodes (A, B, C) were deployed at three points
in the intersection (See Figure 5-14). A video camera for an ODOT contractor was
installed on the shoulder, referenced to point A. A nearby AVC station was also
employed in field test 8. A tube counter was installed 10 feet from the sensors at points
B and C. ODOT personnel used a manual counter as ground truth for performance
evaluation. The objective of this study was comparing the performance of employed

technologies at intersection with the manual count of the ground truth.
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Figu're 5-14 Field test 8 deployment site

5.2 Log Data File Format and Structure

The data-logging unit stored raw data on the microSD card using either an ASCII
(American Standard Code for Information Interchange) or Binary format. ASCII format
is a text-based representation of data, which is more intuitive and easy to read for
humans. However, ASCII is a memory-consuming technique, as each single digit
requires one byte in memory (e.g., the value 123 is represented in ASCII format using
three bytes). Alternatively, binary format is a non-text file that might include any type
of data encoded in a binary representation (e.g., the value 123 is represented in binary
format using one byte). Besides efficient data storage, binary is energy conserving,

permitting raw data transfer over the wireless link. One disadvantage of Binary format
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is that data files require processing (i.e., format conversion) before humans can be read
the data as text.
5.2.1 ASCII Log File Structure

An ASCII log file consists of a header, body, and an end of file (EOF) line. The
header includes information about data log time and data, node ID, and sensor
configuration settings. The body includes raw MAG (Bx, By, Bz) and ACCEL (Ax, Ay,
Az) data, timestamps (i.e., vehicles arrival and departure times), instantaneous vehicle
count, and reference timestamp, which is logged each minute.

Table 5-1 illustrates ASCII file fields and corresponding values range. The
MAG/ACC setting field indicates which sensor is active—“1” MAG only, “2” ACCEL
only, “3” MAG and ACCEL are active. Given MAG/ACC=1, only Bx, By, and Bz are
logged. For MAG/ACC=2, only Ax, Ay, and Az will be logged. The ALL/VDT field
indicates whether raw data are continually stored (i.e., ALL/VDT = 1) or only vehicle
signature and/or acceleration data (i.e., vehicle detection) are stored (i.e., ALL/VDT=2).
At midnight (i.e., 00:00:00), the current file will automatically close and a new file will

be created. Figure 5-15 shows two examples of an ASCII data log file.
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Table 5-1 Log file structure in ASCII format

Field Format Value
Open Log File Time-Data [hh:mm:ss dd\mm\yy]
S
5 Senor’s ID [ID-Nx] x>» [A.Z]or[a..z]
IS
T [ODR = xxxHz] xxx>» [12.5..800]
Settings [MAG/ACC = x] x> [1,2,0r 3]
[ALL/VDT = x] x> [1 or 2]
MAG BX By BZ SXXXX SXXXX SXXXX SXXXX SXXXX SXXXX Bx By Bz Ax Ay Az
ACCEL Ax Ay Az s:t, xxxxx:0..16384
. Vehicle Arrival Time [Nx TA@secofday.RTCreg] Secofday:0.86399
§ Vehicle Departure Time [Nx TD@secofday.RTCreg] RICreg: 0.32767
Vehicle Number [Nx N#XXxxXXXXX] [1..4294967295]
Reference Timestamp [t@hh:mm:ss]
w Close Log File Time-Data [hh:mm:ss dd\mm\yy]
O
W' Total Number of Vehicles [Nx NT#XXXXXXXKX] [1..4294967295]
[10:44:02 10\15\15] [00:00:00 10\15\15]
ID-NK, ODR=400Hz, MAG/ACC=1, | ID-NK, ODR=400Hz, MAG/ACC=3,
ALL/VDT=1 ALL/VDT=1
-10 3 -1 -10 3 -1 -3 9 -4
NK_TA@38828.10391 NK_TA@107.581
30 =32 57 30 -32 57 2 5 8
NK_TD@38828.21667 NK_TD@107.17633
NK_N#1 NK_N#1
-3 -6 -8 -3 -6 -8 75 -4
2 58 -9 5 -7 -2 -58
t@10:48:00 t@16:30:00
-1 8 -4 -8 7 -4 -3 9 -4
-3 9 -4 -39 -4 1 10 -9
[17:33:00 10\15\15] [23:59:59 10\15\15]
NK_VC#1352 NK_VC#18109

Figure 5-15 Example of ASCII data log file
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5.2.2 Binary Log File Structure

In general, the binary file structure is similar to the ASCII file structure—both

contain header, body and EOF sections. However, binary file format lacks control

characters (e.g., CR) for separating data lines; thus, prefix [P] and suffix [S] binary

values are used to differentiate between various data values. For data format of type

Word or Integer, the order is always [MSB] then [LSB]. The sign is assigned as the last

bit of the MSB byte; a ‘0’ indicates positive number and ‘1’ indicates negative number.

The ODR is assigned a value from 1 to 7 as a reference to 25, 50, 100, 200, 400, 800, or

1600Hz, respectively. The header section starts with a prefix value [00] and ends with a

suffix value [00]. The number of bytes in the header is fixed to 50 bytes; 40 bytes are

reserved for future development purpose. Table 5-2 shows binary file format structure.

Header

Body

EOF

Table 5-2 Log file structure in Binary format

Field
Open Log File Time-Data
Senor’s ID
ODR
MAG/ACC
ALL/VDT
Reserved

MAG Bx By Bz
ACCEL Ax Ay Az

Vehicle Arrival Time
Vehicle Departure Time
Vehicle Number
Reference Timestamp
Close Log File Time-Data

Total Number of Vehicles

Format

(001 [-1..[-1

[FA][-]..[-]1 [FB] [FF]
[FCI[-1..[-]1[FD] [FF]
[(FE][-1[-1[FE] [FF]
(F8][-1..[-1[F9] [FF]
(F6][-1..[-1[F7] [FF]

(F4]T[-1[-1[F5] [FF]
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Value
hhmmssDDMMYY
ID>» (01..99)

[01..06]
[01,02, or 03]
[01 or 02]

R[255]

[MSBx«] [LSB«]..[MSB,] [LSB,]
[SFFF]MSB>> S+=O, s =1

Secofday (0..86399) >3-bytes
RTCreg (0..32767) »>2-bytes

VN> (1..65536)
Secofday (0..86399) »3-bytes
Secofday (0..86399) >3-bytes

TVN> (1..65536)

bytes
06
01
01
01
01

40

6/12



An example shows the order of data bytes in Binary format for MAG/ACC = 1 is

as follows:

[0x00] [hh] [mm] [ss] [DD] [MM] [YY] [ODR] [MAG/ACC] [ALL/VDT] [0x00]
[40 reserved byte.. 0xFF] [MSBx] [LSBx] [MSBy] [LSBy] [MSB.] [LSB:]
[0xFF] [OxFF] [MSBx] [LSBx] [MSBy] [LSBy] [MSB-] [LSB:] [OXFF] [OXFF]
------ [OXFA] [MSBHSecofday] [MSBLSecofday] [LSBSecofday] MSBRTCreg] [LSBRTCreg]
[0xFB] [OxFF] [MSBx] [LSBx] [MSBy] [LSBy] [MSB;] [LSBz] [OxFF] [OXFF]
------ [OXFC] [MSBHSecofday] [MSBLSecofday] [LSBSecofday] MSBRTCreg] [LSBRTCreg]
[OxFD] [OxFF] [xFE] [MSByn] [LSByn] [OXFE] [OxXFF] [MSBx] [LSBx] [MSBy]
[LSBy] [MSB.] [LSB;] [OXFF] [OXFF].... [0xF6] [MSBisecorday] [MSBrsecorday]
[
]

—/ o/ o/

LSBsecofday] [MSBrrcreg] [LSBrrcreg] [0xE7] [OxFF] [0xF4] [MSBrvn] [LSBrvn
[OXF5] [OXFF]

An example shows the order of data bytes in Binary format for MAG/ACC = 3 is

as follows:

[0x00] [hh] [mm] [ss] [DD] [MM] [YY] [ODR] [MAG/ACC] [ALL/VDT] [0x00]
[40 reserved Dbyte OxFF] [MSBY;] [LSBYx] [MSBM,] [LSBY,] [MSBM,]
[LSBM,] [MSB2«] [LSBA:] [MSBA,] [LSB2,] [MSBA,] [LSB2,] [OXFF] [OXFF] [M
SBY,] [LSBY ] [MSBY,] [LSBY,] [MSBY,] [LSBY,] [MSB?] [LSBA] [MSBA,] [LS

B2y] [MSB2;] [LSB2,] [OxFF] [OXFF]..[0xFA] [MSBisecorday] [MSBrsecofday] [

LSBsecofday] [MSBrrcreg] [LSBrrcreg] [0XFB] [OXFF] [MSBYx] [LSBYx] [MSBY,]

[LSBY,] [MSBY,] [LSBY,] [MSBA ] [LSBA,] [MSBA,] [LSBA,] [MSB2,] [LSB2,] [

OXFF] [OXFF][OXFC] [MSBHSecofday] [MSBLSecofday] [LSBSecofday] [MSBRTCreg
] [LSBrrcreg] [0XFD] [OXFF] [xFE] [MSByn] [LSBux] [OXFE] [OXFF] [MSBx] [
MSBM,] [LSBY,] [MSBY,] [LSBY,] [MSBY,] [LSBY,] [MSB2,] [LSBA,] [MSBA,] [L

SB2,] [MSB?,] [LSB2;] [OXFF] [OXFF].... [0xF6] [MSBEsecorday] [MSBlsecorday]
[LSBsecofday] [MSBrrcreg] [LSBrrcreg] [0xF7] [0xFF] [0xF4] [MSBrvn] [LSBrvy
] [0xF5] [OXFF]

Figure 5-16 illustrates geomagnetic field components (Bx, By, and Bz) and
corresponding flux magnitude (Fwm) for vehicles of various classes and speeds that were

collected by iVCCS in roadway setup.
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Figure 5-16 Vehicles signatures, iVCCS on roadway — B (left) and Fwm (right)
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Chapter 6: DATA ANALYSIS & PERFORMANCE EVALUATION

6.1 Overview

This chapter provides detailed information about various statistical data analysis

studies applied on field test data reported in Chapter 5 that were collected using MAG

sensors. Additionally, performance evaluation of developed algorithms—including field

test results—are presented. Both data analysis and performance evaluation is illustrated

in Figure 6-1.

Collected Data

l

RoadTubes Data

l

Data Extraction
[Detection, Speed,
Number of Axles|

I

IDL Data MAG Data
| !
Data Extraction Data Extraction
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I I

Data Alignment

!

Data Validation & Evaluation

|

Data Post-Processing

|

Video Images Data

}

Video Extraction
[Time, Count, Type
FHWA-13 Class]

l

Figure 6-1 Flow diagram for data validation and performance evaluation

Data collected using MAG sensors, as well as ground truth data from Road

Runner Kit and video cameras, was pre-processed to extract detection information (e.g.,

count, speed, length, detection time). This information had been extracted from video

data and aligned—sample by sample—into a reference detection timestamp.
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6.2 Magnetometer Sensor Characterization Analysis
6.2.1 Sampling Rate in Active Detection

Fixed sampling rates, ranging from 8Hz to 200Hz, for vehicle detection using
MAG have been reported in literature [44], [47], [53], [125], [126]. Unlike other
platforms, iVCCS, sampling rate can be configured on-the-fly within a range
0.781Hz~1.60KHz to best-fit application functionalities and power constraints.
Increasing sampling rate will increase resolution of sampled VMS. Notably, sensor
noise output and power consumption will also increase. FXOS8700CQ has an output
noise range 0.3~1.5uT-rms@1.56~800Hz, while output noise range for KMX62 is
0.2~1.4 uT-rms@0.78~1600Hz. In terms of power consumption vs. sampling rate,
FXOS8700CQ requires 40~575uA@12.5~400Hz, while KMX62 consumes
1.6~292uA@0.78~1600Hz (See Table 3-6).

6.2.2 MAG Output Noise Characterization

Knowledge about the distribution of MAG output noise at different sampling rates
is important for setting MAG reference level and Baseline threshold (RtH).

MAG noise characteristics defined in Table 3-6 do not reflect the effect of
additional components on PCB. An experimental test was conducted to define noise
characteristics and gain better understanding of MAG at various sampling rates in the
presence of other active components on iVCCS board.

An iVCCS was tightly fixed on a wooden table in the absence of any ferrous
objects. Eight sampling rates—from 1.56Hz to 800Hz—were tested. Each experiment
had 50000 samples; each was a 3x16-bit. Flux magnitude (Fm) was calculated from

geomagnetic field components to find histogram and standard deviation (STD) of Fw.
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Table 6-1 and Figure 6-2 show that noise mean at 400Hz sampling rate was
approximately 30, with peak noise at 55. Hence, if 400Hz was set, Baseline threshold
(RTH) should consider a value higher than noise peak.

Table 6-1 Field Magnitude STD for Different Sampling Rates

Sampling Rate STD Sampling Rate STD
1.5625 2.58 100 5.57
6.25 3.39 200 7.46
12.5 3.51 400 9.88
50 4.63 800 13.04
500 - T T T T T T ]
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O | | | |
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Figure 6-2 Field magnitude histogram at different sampling rates

6.2.3 MAG Sampling Rate Setting
To determine suitable sampling rate for a particular application, let’s assume that

a vehicle travels on a highway at a maximum speed of 140kmh and that the number of
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samples represents the vehicle’s magnetic signature Svms for a given sampling rate fs
and vehicle length Iy, as in Eq. 6-1.

lLige™ Lige™ by

” )stxa Eq. 6-1

SVMS: 3.6 X(

VMS is subject not only to the disturbance in the Earth’s magnetic field caused by
a passing vehicle structure, but also to the sensor’s detection zone. The leading and
trailing detection edge of this zone is denoted as /,,;, and [,,,, respectively. A correction
factor is denoted by a. Assuming that lv = 5 meters; fs = 200Hz; /;;,=1.1 m; and /,;,= 1.1
m, by substituting in Eq. 6-1, Svs. = 37 samples.

Although knowing minimum number of Svs. and low fs (e.g., 100Hz) might be
sufficient for vehicle detection applications, a higher sampling rate is needed for
accurate estimation, and a unique features extraction is needed for speed estimation,
vehicle classification, or re-identification applications based on magnetic signature or
magnetic length.

6.2.4 Effect of MAG Rotation Around z-axis

Vehicles can be modeled magnetically as an infinitely large number of magnetic
dipoles, each with their own moment and direction in a three-dimensional space. MAG
measures geometric sum of all dipoles on x, y, and z-axes. As a result, a vehicle can be
considered a single dipole with a moment equal to the geometric sum of all dipoles.
Hence, Fm will be the same regardless of sensor orientation. However, Bx, By, and Bz
will be different for rotation angle 6. If 6 is known, component values can be calculated

before and after rotating sensor 8 radians around z-axis using Eq. 6-2.
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By cosf sin@ 0]1|Bx
By, | = [sin 6 cos 9 ol By Eq. 6-2
B,’ 1|8,

Figure 6-3 illustrates the test setup where nine iVCCS nodes were rotated around

z-axis and the rotation of first node (6=0°) components by 135°, compared to original

node at 135°.

40 S T X |DR1357) Y [01R1357]
: e, ——X[1359] —— ¥ [1359]

Magnetic Flux [uT)

Figure 6-3 Orientation setup and Bx and By with 8=0° were rotated by 135°

6.2.5 Repeatability of VMS and MAG Sensors Output

The objective of this analysis was finding the degree of similarity of several
magnetic signatures produced by multiple MAG sensors for the same vehicle under
identical testing conditions.

Data collected in field test 3 was used to verify MAG output consistency. Data
from only the first four sensor nodes, namely Sa, Sg, Sc, and Sp, each separated by 2m
(See Figure 5-7), were used in this analysis. The dataset included 1655 vehicles, ranging
from class 1 to 10. Cross-correlation data analysis was used to find the statistical
relationship of generated signatures between four aligned sensors.

This method can be used to measure the similarity of two waveforms as a function

of a time lag applied to either. Correlation between signals can be linear (e.g., impulses
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signals) or circular (e.g., periodic signals). A correlation coefficient R was used to
express correlation strength between signals. Pearson’s correlation coefficient is the
most common measure of linear dependency between two random variables, A and B,
as in Eq. 6-3. A uaand oa are mean and STD of A, and ug and og are mean and STD

of B.

p(4,B) = Eq. 6-3

040p 040p

N
cov(4,B) 1 Z (A; — 1a)(Bi — tip)
N —1¢4
i=1
Given that our investigation had four sensors, R for pairwise signals was first
found using Eqg. 6-3, and then the correlation coefficient matrix for all signals was found

by combining the Rs of all pairwise variable, as in Eq. 6-4. Diagonal entries are always

equal to 1, as all signals are directly correlated to themselves.

P(Ng,Ng)  p(Ng,Ng) p(Ng,Nc)  p(Ng, Np)
p(Ng,Ny) p(Ng,Ng) p(Ng,Nc) p(Ng,Np)

= p(Ne,Ng)  p(Ng,Ng)  p(Ne,N¢)  p(Ne, Np) £a.6-4
p(Np,Na) p(Np,Ng) p(Np,Nc) p(Np,Np)
/ 1 P By (Y Fy ) p(Eg B
o | PR 1 P LB o BN | 6
p(E RS p(RS, ) 1 P, By )
PR o BT (BN 1

Initially, correlation coefficient matrices of magnetic magnitudes Fu (See Eq. 4-5)
obtained from the four sensor nodes were found, as in Eq. 6-5. Histograms for the first
three pairwise signals, Na-vs-NB, Na-vs-Nc, and Ng-vs-Nc, are shown in Figure 6-4,
Figure 6-5, and Figure 6-6, respectively. The CDF for all pairwise combinations is
shown in Figure 6-7. The histogram shows that most correlation coefficients range
between 0.9 and 1 (i.e., 1462 out of 1655 values), indicating high similarity between

sensor output across multiple nodes (See Figure 6-8). A p-values matrix was also found
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for all pairwise combinations. The matrix returned noticeably small p-values (e.g., 2e-

138), rejecting the null hypothesis and identifying significant correlations.
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Figure 6-8 Magnetic magnitudes for class 2 vehicle obtained from all Nodes

Alternatively, approximately 11% (i.e., 193 out of 1655 values) of magnetic
signatures had R < 0.9. In a real-world environment (e.g., highway), multiple factors

could prevent repeatable results. Including pavement temperature, changes in vehicle
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trajectory during passage, traffic interference from adjacent lanes, and data loss due to
jittery sampling rate, are among the most significant factors. A sample set of vehicle
signatures with low correlation coefficient value was visually inspected and compared
to identify the cause for 11% degradation in sensor output similarity. Primary causes for
sensor output variations proved to be either 1) running over the sensors, creating
significant vibrations and, in some rare cases, data loss in sensors output or 2) changing
vehicle trajectory during passage time. Figure 6-9 shows a class 3 vehicle traveling at
72mph driving over the edge of all four sensors. Data loss and noisy signal was

observed in sensor Ng.

Vector Magnitude [uT]

Samples

Figure 6-9 Magnetic magnitudes for class 3 vehicle driving over all sensors

Figure 6-10 depicts correlation coefficient CDFs for X, Y, and Z-axis,

respectively. Clearly, the Y component (i.e., By) demonstrates the highest consistency
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among the three axis; X and Z components (i.e., Bx, Bz) diverge and spread over many
lower values. This phenomenon confirms that the major contributor for inconsistency is
running over the sensor, which creates a huge vertical acceleration and random
magnetic distortion on X and Z-axis. Higher correlation coefficients for Fm were

observed, when compared with correlation coefficients for Bx, By, and Bz individually.
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Figure 6-10 Correlation coefficients CDFs for all pairs on x, y, and z-axis

Small variations between different sensor outputs are considered a noise source

with minimal effect on detection accuracy.
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In conclusion, CDF for all pairwise combinations revealed that most R values are
between 0.9 and 1, indicating high similarity in sensor output across multiple nodes.
Furthermore, the p-value matrix returned insignificant p-values (i.e., 2e-138), which
reject the null hypothesis and indicate significant correlations. Hence, each vehicle has a
unique magnetic signature that can be utilized for vehicle re-identification applications.
6.3 Vehicle Detection
6.3.1 Optimal Detection Thresholds Analysis

Fm measurements for 12000 vehicles classified among various FHWA F scheme
classes [13] via iVCCS on highway and urban roads were statistically analyzed to
determine optimal Otn, HTH, and Rtw values—defined by Eq. 4-2, Eq. 4-3, and Eq. 4-4,
thus guaranteeing optimal detection performance. Optimality was determined
empirically.

Fm measurements are normally distributed with a mean p and STD 0—F,; «
N(u, o). Fm measurements can be represented as two Gaussians of a single dimension
dataset—one representing noise and the other representing vehicle signatures. Since no
information was provided with regard to which points belong to which distribution, a
Gaussian Mixture Model (GMM) was used to separate the two distributions, assuming
both are normally distributed.

GMM is a parametric probability density function (PDF) of continuous
measurements represented as a weighted sum of M component Gaussian densities
(CGD), as in Eq. 6-6, where x is a data vector of d-dimensional continuous
measurements such that x = [x,x?,..,x%]T; ¥ is the covariance matrix of the

Gaussian; M is the number of Gaussians; w; is the weight of Gaussiani such that
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Yiw;=1,w0; >0, and N (x|y;,%;); andi =1..M is the CGD given by Eq. 6-7.
GMM parameters are estimated from a training dataset by maximum likelihood using
expectation-maximization (EM) algorithm or maximum a posteriori (MAP) estimation.
An iterative Expectation-Maximization (EM) algorithm was used to fit two
GMMs to Fm components, which assumed to be normally distributed. Using initial
values for covariance matrixes, components means, and mixing ratio, the EM algorithm
iterates in two steps, namely Expectation step (E-Step) and Maximization step (M-
Step). In E-Step, the algorithm computes posterior probabilities of component
memberships for each observation. In M-Step the algorithm applies maximum
likelihood to estimate covariance matrixes, components mean, and mixing ratio by
using the component membership posterior probabilities found in the E-Step as weights.
The new estimated parameters then become the initial parameters for the next iteration,

and the process iterates until convergence. The initial condition parameter was set to

random.
M
pGID) = ) 0 N (i %) .
i=1
N(xl,ui,zi) = ;e—%(x_ﬂﬂzﬂ(x_m
(2m)a/2 1% Eq. 6-7

Since d=1 and M=2, Eq. 6-7 can be rewritten as given in Eg. 6-8 and Eq. 6-9,
where x; is a vector of Fyu readings (32,905,300) and p,,, 62 and us, o2 are the mean and
variance of noise and vehicle signature, respectively.

These equations can be solved using Bayesian’s role by calculating the likelihood
to which Gaussian each value of Fm belongs, using Eq. 6-10 and Eq. 6-11. The result is

two distributions (as shown in Figure 6-11), where u,,=18.6; 0,,=8.24; u,=153.5; and
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0,=153.3. By substituting u,, o, in Eqg. 4-2, Eq. 4-3, and Eq. 4-4, and by considering
B=5 and a=6 (i.e., 60 represents 99.999% confidence level), we find Rt3=35; Ory=68;

and Hry=60 are the optimal thresholds.

1 (x; — ps)?
. 2) = 2t Bss
N('xl I”Sl GS) 27'[0% eXp { 26% Eq- 6_8

N(xil.un' 0721) =

1 exp 4 — (xi - :un)z

p(xi I.us: O-s.z)p(,usr 05,2)

2
p(ps, 05 |x;) = 5 P Eq. 6-10
p(xilus, 02)p (s, 02) + p(xilitn, 0P (Un, 02) q
2 _ 2
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Figure 6-11 Distribution of magnetic noise and signature separated using GMM
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6.3.2 Optimal Holdover Debounce-time Value

Three detection errors can be observed if MAG is used for vehicle detection:

a) Misdetection: Two successive vehicles at close proximity grouped as one

b) Double detection: Long vehicle has insignificant ferrous composition in center

c) False detection: Interfering from adjacent lanes caused by large trucks.

Mis-, double-, and false-detection errors are illustrated in Figure 6-12, Figure
6-15, and Figure 6-16, respectively. Both mis- and double-detection errors can be
eliminated using Holdover debounce timer (Hpr).

Misdetection occurs when two vehicles driving at close proximity, bumper-to-
bumper, are grouped as one when the condition gt < Hpr is true (See Figure 6-12),
where gt is the gap time between departure of vehicle i and arrival of vehicle i+1 at a

designated detection point x, as depicted in Figure 6-13; and where sensor detection

zone, vehicle length, headway, gap, and clearance are denoted by lg;‘), Iy, h, g,and ¢,

respectively.
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Figure 6-12 Miss-detection caused by two vehicle driving at close proximity
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Figure 6-13 Speed estimation deployment setup

Double-detection error is observed with combination trucks (i.e., long trucks), as
their structure can be magnetically divided into three sections: lead, center, and tail.
Figure 6-14 illustrates the magnetic signature for a class 9 vehicle: lead section engine
and first three axles, which contain the majority of the vehicle’s ferromagnetic mass.
The tail section includes two axles. The central section S@ has a relatively small
ferromagnetic mass, making Fw(k) < Hru true for duration S@t > Hpr, given truck
speed is relatively slow so that the vehicle is double detected, as shown in Figure 6-15.

This phenomenon is referred to in literature as pulse break-up [127]-[131].
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Figure 6-14 Magnetic Flux and Sections of a class 9 vehicle

During the early stages of developing the detection algorithm, Tafish [132], [133]
developed an analytical model to describe detection error as function of debounce time
Tq based on vehicle detection data collected using an inductive loop deployed on a
highway. The probability of detection error was found as the weighted sum of the pulse

break-up and tailgating probabilities. A Poisson processes was used to model vehicle
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arrival and inter-arrival time. Vehicle inter-arrival time PDF, representing a Gamma
distribution, was used to model waiting times between Poisson arrivals. To find pulse
break-up probability, four assumptions were made: 1) magnitude signature of the
central section of long truck will fall below detection threshold; 2) length of the central
section is equivalent to the spacing between axle 3 and 4 of class 9 vehicles, thus
assumed normally distributed; 3) radius r of detection zone is known; and 4) vehicle
speed when passing over detection zone is constant. The probability of pulse break-up
was found as the probability that passage time of a class 9 vehicle central section is
more than the debounce time Tq. Optimal value of Tq that minimizes both pulse breakup
and tailgating for data collected in field Test 1 and presented in Table 6-3 was found
using the Golden Section Search algorithm. Simulation results showed that Tq = 385ms
is the optimal debounce time value, given that speed mean is 70mph and vehicle arrival

rate is 10 vehicles per minute.
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Figure 6-15 Double detection caused by class 9 vehicle
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The developed model in [132] is valid for free flow traffic and IDL. The inter-
arrival time distribution model was found to vary depending on traffic characteristics
(i.e., low, medium, and high volume traffic) and location (e.g., on-ramp, off-ramp,
intersection, stop-and-go, free flow) [134], [135]. Radius r for IDL is constant and equal
to the loop radius. However, MAG r is characterized by the amount of furious materials
in a vehicle structure because MAG, unlike IDL, are passive sensors.

The following sections introduce statistical data analysis applied on a dataset that
included 30580 records collected on highways and urban roads under various traffic
conditions in the state Oklahoma. The objective was to find Hpt values that satisfy the
condition gr >Hpr >S?%r (i.e., minimize mis- and double-detection errors). No
assumptions where made in this analysis.

6.3.2.1 Minimizing misdetection error

Minimizing misdetection errors was achieved by statistically analyzing gr,
computed in Eg. 6-12. The objective was to determine optimal value of Hpr, thus
minimizing misdetection error such that gr > Hpt. The longer the gap time, the larger
debounce time, and vice versa. gr values were computed from historical data collected
using iVCCS (See Chapter 5). Dataset included 13400 records collected on Oklahoma
highways, in addition to 17180 records collected on urban roads in Tulsa. PDF and
cumulative distribution function (CDF) were subsequently found (See Figure 6-17).
CDF showed that setting Hpt to 370ms for the highway setup and 430ms for the urban

road setup reduced misdetection error to 0.1865% and 0.5065%, respectively.
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6.3.2.2 Minimizing double-detection error

To define optimal value of Hpt that minimizes double-detection error such that
Hot > S%r, PDF and CDF of S®@r for 1770 vehicle of class 8, 9, and 10 were found from
data collected using iVCCS on highway and urban roads at a speed range between 25
and 88mph. The computation process for S?r is depicted in Figure 6-18. CDF in Figure
6-19 indicates that the longest S%r is 500ms. Error probability distribution showed
0.004% and 0.005% probability of double-detection error when setting Hpo>400ms and

Hpr>370ms, respectively (See Figure 6-20).
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6.3.2.3 Minimizing false-detection error

False-detection error is the result of a magnetic disturbance in the adjacent lane
caused by a vehicle with high magnetic flux density traveling at the edge of lane. Such a
disturbance will be detected by sensors in both lanes.

False-detection can initially be eliminated by defining sensor detection zone (DZ).
In general, DZ can be defined at five detection edges (see Figure 6-21): 1) leading, 2)
trailing, 3) right-side, 4) left-side, and 5) elevation edge. An empirical test was
conducted to find the relationship between distance and magnetic disturbance
magnitude. Results are illustrated in Table 6-2. Notably, leading edge has the highest
magnetic disturbance because vehicles contain most ferromagnetic mass in the front
section (e.g., engine).

Table 6-2 Detection zone characteristics based on Class 2 vehicle

Leading Edge Trailing Edge Side sensitivity
Distance (m) Fwm (UT) Distance (m) Fm (UT) Distance (m) Fm (UT)
2.50 3 2.50 1 2.00 3
2.20 4 2.20 2 1.30 7
1.25 6 1.16 4 0.90 10
1.10 7 1.10 6 0.60 18
0.90 10 0.90 7 0.30 30
0 70 0 10 0.20 40
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Detection zone can be controlled by either changing MAG sensor sensitivity or
changing detection thresholds, Otn and Htu, where a and B (See Eq. 4-2, Eq. 4-3 and
Eq. 4-4) can be calibrated to control detection zone and to eliminate interference outside

the detection region.
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Figure 6-21 Detection zone edges was found to be symmetric

Analyzing the vehicle magnetic signatures dataset revealed that increasing OtH to
9uT and Hn to 6uT prevents false detection. However, increasing Ot or Hyw results in
the loss of a portion of the vehicle magnetic signature, hence, rendering an unreliable
estimation of vehicle length and loss of important features for vehicle classification.
Conversely, reducing sensitivity might cause motorcycle mis- and delayed-detection.

To solve this issue, variations in Bx, By, and Bz components were analyzed to
measure the interference on each component from a vehicle traveling in an adjacent
lane. Analysis showed insignificant interference effect on Bz. Thus, by using 10-tap
MAF, calculating Bz(k) mean—as in Eq. 6-13—and comparing uB;, for each detected
vehicle (1},) with a threshold IrH, a decision can be made as to whether 1}, is a real

detection or an interfering signal. Itw =80 was statistically found from dataset. Figure
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6-22 shows variations in BY), their magnitude (B®m), and after MAF (B ma) for

class-3 with trailer detected in the right lane and an interfering vehicle in adjacent lane.
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Figure 6-22 Variations in B®™caused by interfering (left) and detection (right)

6.3.3 Adaptive Geomagnetic Baseline Drift Compensation Performance

To evaluate adaptive baseline drift compensation algorithm performance, a sensor
node was deployed on pavement in the absence of ferrous materials over the course of
the day. Notably, algorithm testing for one day when sensor is deployed on one site is
not enough to reach a general conclusion about its worthiness. However, the developed
algorithm repeatedly and indirectly was evaluated during many field testing campaigns
throughout the study.

Distribution of noise was found with and without the use of the baseline drift
compensation algorithm. Figure 6-23 shows drift in Furer over 240 minutes without
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(yellow) and with (blue) the geomagnetic baseline compensation algorithm. Figure 6-24
shows vector magnitude normalized distributions without (yellow) and with (blue)
compensation. Given no compensation is applied, mean is p=7.67uT and STD is
0=1.6319uT. Given the application of compensation algorithm, mean and STD are

pU=1.79uT and 6=0.7uT, respectively.
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Figure 6-23 The drift in Furer with and without adaptive compensation
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6.3.4 Detection and Counting Accuracy
Counting accuracy was evaluated using the mean absolute percent error (MAPE),

computed as in Eg. 6-14.

n

1 Count,,; — Count;

MAPEZ—Zl video lVCCSlxloo Eq. 6-14
n n ICountvideol

Field Test 1 resulted in high detection ratio with overall 2% relative error. Dataset
was limited to 463 vehicles. Classes 4, 7, 10, 11, 12, and 13 were not observed during
this test. Remaining classes were correctly detected, with the exception of class 9,
which was double detected with 9% error, as presented in Table 6-3.

Table 6-3 Detection MAPE for Roadway Setup—TField Test 1

Vehicle Class Video Count iVCCS Count MAPE
Fo1 1 1 0.0%
F02 247 247 0.0%
FO3 65 65 0.0%
FO05 65 65 0.0%
FO06 8 8 0.0%
Fo8 2 2 0.0%
F09 75 82 9.0%
Total 463 470 2.0%

Double-detection is one of three detection errors detailed in Section 6.3.2; these
can be observed when using MAG for vehicle detection. As stated earlier, double
detection occurs when signal magnitude drops below Holdover Threshold (Htw) for
duration S*r > Hpr and crosses Hry again while the same vehicle remains in the

detection zone. Finding optimal Hor value that satisfies the condition Hpt > S?r would
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solve this problem. Section 6.3.2 provides a detailed analysis for optimal Hpr value that
minimizes double-detection error.

Field Test 2 had two deployment setups—roadway and roadside. Roadway setup
resulted in 99.90% detection accuracy for dataset with 2007 vehicles. Class 1, 4, 11, 12,
and 13 vehicles were not observed during this test (See Table 6-4). Unlike Field Test 1,
all class 9 vehicles were correctly detected, primarily because a new Hrn value based on
the analysis study in Section 6.3.2 was implemented for this test. However, a
misdetection of two class 2 vehicles occurred when two successive vehicles located
within close proximity of one another were grouped as one. This could occur given that
Hpr > gr. Hence, to reduce the probability of double-detection and mis-detection,
optimal Hpr value for satisfying the condition gr > Hpr > S?r should be found This
requirement is well-detailed in Section 6.3.2.

The Roadside setup in Field Test 2 confirmed 99.95% detection accuracy (See
Table 6-5). Flux magnitude variations in roadside setup were relatively uniform when
compared to roadway setup, which accounts for slightly improved accuracy.

Table 6-4 Detection MAPE for Roadway Setup—Field Test 2

Vehicle Class Video Count iVCCS Count MAPE
F02 624 622 0.32%

FO3 1027 1027 0.00%

F05 97 97 0.00%

FO06 32 32 0.00%

FO7 1 1 0.00%

F08 8 8 0.00%

F09 213 213 0.00%

F10 5 5 0.00%
Total 2007 2005 0.099%

164



Table 6-5 Detection MAPE for Roadside Setup—Field Test 2

Video Count iVCCS Count Detection MAPE
2044 2045 99.951% 0.0489%

Field Test 3 resulted in a high detection ratio with only 0.0363% MAPE. Dataset
included 2754 vehicles. Class 11, 12, and 13 vehicles were absent. Detection results per
class are shown in Table 6-6.

Table 6-6 Detection MAPE for Roadway Setup—TField Test 3

Vehicle Class Video Count Roadrunner iVCCS Count MAPE

1 10 10 8 10%

2 919 919 918 0.10881393%
3 1287 1287 1287 0

4 13 13 13 0

5 133 133 133 0

6 48 48 48 0

8 13 13 13 0

9 327 330 329 0.6116208%
10 4 4 4 0

Total 2754 2757 2753 0.036311%

Field Test 4 proved excellent in-lane detection. However, unlike the first three

highway-based field tests, Field Test 4 was conducted on an urban road. Doing so
introduced a new false-detection error resulting from interfering vehicles on an adjacent
lane. This error was specifically caused due to the following scenarios:

1) Dissimilar lane widths: highway lanes measured at least 12 feet (3.7 m) wide

and urban road lanes measured 9 feet (2.7 m) wide
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2) Trucks traveling at the edge of a detection lane (See Figure 6-25, Figure 6-26,
and Figure 6-27) or hybrid cars traveling on an adjacent lane (See Figure

6-28)

3) Vehicles with a significant amount of steel in their structure

W nenaiay

’}.'

Figure 6-26 Class 6 truck on the edge of lane 2, detected in both lanes
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Figure 6-28 Class 2 hybrid car on the edge of lane 2, detected in both lanes

Results for in-lane detection errors (i.e., errors resulting from adjacent lane
interference are not considered) are illustrated in Table 6-7. All classes were detected
correctly, with the exception of two class 9 vehicles and one class 8 vehicle that were
double-detected when traveling at very low speeds (e.g., 10 mph). Mean Absolute Error
(MAE) for per class detection is 0.25% for Lane 1 and 0% for Lane 2. MAPE is 0.058%

for Lane 1 and 0% for Lane 2. Classes 7, 10, and 13 were not observed during this test.
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Table 6-7 Number of detections In-Lane per-class—Field Test 4

Video iVCCS MAPE
Class Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2
1 7 4 7 4 0 0
2 2607 2552 2607 2552 0 0
3 793 817 793 817 0 0
4 1 2 1 2 0 0
5 39 24 39 24 0 0
6 4 0 4 0 0 0
8 3 2 3 2 0 0
9 6 0 8 0 33.33% 0
Total 3460 3401 3462 3401 0.058% 0%

Table 6-8 shows overall detection error when vehicles detected from adjacent
lanes are considered in the error analysis. Overall MAPE is 1.676%. Out of 6976
detected by iVCCS on both lanes, 115 vehicles (either trucks or hybrid cars) were
falsely detected from an adjacent lane. False-detection caused by hybrid cars can be
attributed to the large amount of metal located in the stack of battery elements, as well
as a large magnet in the electric engine router.

Table 6-8 Total Detection Error—Field Test 4

iVCCS Video MAE MARE
Detection
Lanel Lane2 Lanel Lane2 Lanel Lane2 Lanel Lane?2
In-Lane 3462 3401 3460 3401
Adj-Lane Trucks 23 56 - - 4.02% 6.45% 1.27%  2.088%
Adj-Lane Hybrid 19 15 - -
Total 6976 6861 5.24% 1.676%

False-detection error can be eliminated, as described in Section 6.3.2, by

computing uB; using Eq. 6-13, and then comparing uB, for each detected vehicle (1},)

168



with threshold Itw. A decision can be made whether V, is an actual in-lane vehicle or an
interfering signal from an adjacent lane.

Field Test 5 results (See Table 6-9) demonstrated outstanding detection
performance. Notably, several class 1 (i.e., motorcycles) were detected, albeit falsely
from adjacent lane interference) by i1VCCS, because they had an insignificant
ferromagnetic mass and passed near detection zone (See Figure 6-29). Some class 2 and
3 vehicles were not detected because iVCCS was in calibration state when the vehicle
passed over the nodes. Vehicles traveling between lanes were considered false-detection
by iVCCS sensors in both lanes.

Table 6-9 Detection MAPE—Field Test 5

Video iVCCS MAPE
Class
Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2

1 3 9 2 7 33.3333 22.2222

2 2062 947 2059 943 0.1454 0.42234

3 582 289 581 287 0.17186 0.6922

4 6 0 6 0 0 0

5 40 11 40 11

6 14 4 14 4 0 0

7 1 1 1 1 0 0

8 2 0 2 0 0 0

9 15 6 15 6 0 0

10 1 1 1 1 0 0

12 3 0 3 0 0 0
Total 2729 1268 2724 1260 0.1832%  0.6309%
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Figure 6-29 Motorcycle considered as False-detection

Field Test 6 and 7 results were evaluated by ODOT to determine the accuracy of
the OU-developed wireless sensor. Real-time implementation and off-line detection
accuracy were examined. ODOT used automatic vehicle count based on embedded
inductive loops as ground truth. ODOT-reported results are listed in Table 6-10 and
Table 6-11. In Field Test 6, iIVCCS outperformed AVC and video-based counting

methods with 0.639% MAPE. In Field Test 7, iVCCS achieved 98.5% detection

accuracy.
Table 6-10 Detection MAPE—Field Test 6
Detection Method Manual Video AVC23 iVCCS
Total Count 1252 1227 1263 1260
Table 6-11 Detection MAPE—Field Test 7
Detection Method Manual Tubes AVC04 iVCCS
Total Count Lane 1 314 314 307 302
Total Count Lane 2 286 292 293 289
Total Count Lane 3 228 226 225 224
Total 828 832 825 815

6.3.5 Detection in Stationary-state and Stop-and-go Scenarios
Stationary state occurs when a vehicle stops completely (e.g., parking lots) or

travels in stop-and-go traffic conditions (e.g., traffic signals and intersections). The
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developed detection algorithm was tested for both scenarios. Achieved detection
accuracy was 100% when the sensor was deployed in either a roadside or roadway
setup. Figure 6-30 and Figure 6-31 show go-stop-go detections for Honda Accord 2004
in both roadside and roadway setups. R1 represents vehicle arrival; R2 represents steady
state (stop); and R3 represents departure. Figure 6-32 shows Fw for go-stop-go scenario
in both roadside and roadway setups. Ga, Ss, and Gp represent vehicle arrival section
(go-in), vehicle in steady state (stop); and vehicle departure section (go-out).
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Figure 6-30 Go-Stop-Go detection using sensor in roadside setup
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Figure 6-31 Go-Stop-Go detection using sensor in roadway setup
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Figure 6-32 The FM and detection flag in Go-Stop-Go scenario

6.4 Assessment of Time Synchronization Algorithm
To assess T-Sync algorithm performance and evaluate drift error on each node, as
well as over a network, the following test was conducted.

RTC-1Hz signal duration T}g?’f”) = 1/f,$4€cu) was compared to GPS-PPS signal

duration T 52> = 1/£%S) over the course of 24 hours. Both clocks were sampled

using the MCU’s high frequency clock at f;mo.’ = 32MHz. Measurement resolution is

one-cycle of f;gﬁj’), which is equal to 31.25ns. fT(Z(;{U)has a tolerance +5ppm; however,

since both signals are measured instantaneously using the same clock, tolerance error is
differentiated and canceled. Differences between measured durations were logged.

This particular test was implemented instantaneously on five different iVCCS
nodes. RTC drift for each node was calculated separately and compared statistically
with other node drift(s) to find over-network T-Sync error. Drift dataset included 86400
measurements from each sensor. Temperature measurements were also combined on a
one-minute basis. Figure 6-33 shows a histogram for absolute error between RTC-1Hz
and GPS-PPS signals over the course of day for three iVCCS Nodes—A, B, and C.

Consistent drift between RTC-1Hz and GPS-PPS signals with mean 20~25uSec can be
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observed for all nodes. Figure 6-34 shows distribution of T-Sync error between two

nodes. Drift with a mean of 2~4uSec can be observed among Nodes A, B, and C.
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Figure 6-33 Histogram of T-Sync error between RTC and GPS
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Figure 6-34 Histogram of absolute error of RTC between two nodes

6.4.1 Evaluation of Timestamps Consistency

GPS-PPS signal was used to synchronize spatially distributed sensor nodes that
share a globally synchronized timestamp. However, error in arrival and departure
timestamps might be driven by factors other than T-Synch error (e.g., delay in MCU’s

interrupt routine and instruction execution).
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Delay in executing arrival and departure timestamps is nondeterministic. Rather,
it is subject to frequency tolerance fosc-toi of MCU’s oscillator and priority of task being
executed by MCU at the moment of a timestamp event. Arrival timestamp event is
triggered by MAG Magnitude Interrupt over the MC’s external interrupt INTO.

To evaluate consistency and determine time-stamping delay while MCU is
executing its typical cycles, a highly accurate signal generator was used to trigger INTO
at consistent frequency frrigger. Trigger time was logged, and delay between each two
consecutive triggers was calculated. The test was repeated for different frrigger, ranging
1~1600Hz, each with 108 samples. The test resulted in trivial delay (i.e., tens of
nanosecond) at various frrigger Values.

6.5 Vehicle Speed Estimation

Speed estimation accuracy was evaluated against Road Runner 3 kit with 30.5us
event timestamp resolution. Two statistical measurements were used: 1) Mean Absolute
Percentage Error (MAPE), which measures systematic bias to error such that estimated
speed values are consistently high or low (Eq. 6-15) and 2) Root Mean Square Error
(RMSE), which measures mean deviation of estimated speed values (Eg. 6-16). Speed
analysis is shown in Table 6-12.

Three separations between the nodes, namely 6-, 8-, and 10-meters, were
investigated. Better results occurred when 8 meters was used to separate two nodes.
Notably, increasing separation distance between sensor nodes reduces the effect of
MAG sampling rate tolerance between different nodes. Roadside setup demonstrated a
higher speed estimation error when compared to roadway setup. This phenomenon can

be attributed to lower SNR in the roadside scenario.
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True Speed;y — Estimated Speed,;

1
MAPE = —Z
n

i=1

True Speed ;)

n
1
RMSE = £Z(True Speed;y — Estimated Speed(i))z
i=1

Table 6-12 Speed Estimation Accuracy

Setup MAPE
Roadside (d=6m) 6.4603 mph
Roadway (d=6m) 3.2064 mph
Roadway (d=8m) 2.9281 mph
Roadway (d=10m) 2.9867 mph

RMSE
6.5001%
2.6585%
2.5773%
2.5218%

Eq. 6-15

Eq. 6-16

Speed Accuracy
93.5012%
97.3415%
97.4227%
97.4782%

Speed estimation using MAG is subject to several inaccurate factors (e.g., sensor

sampling rate (fs), T-Sync error, and defined vehicle detection zone, among others).

Nondeterministic error &rs could occur as the result of a delay in sampling the

exact instant of vehicle arrival or departure. Maximum &t is equal to the period of pre-

defined sampling rate (e.g., if fs=100Hz, then &rs=10ms). Assume a vehicle with 5-

meter average length travels at 90mph (i.e., 40m/s). Occupancy time on each sensor

Toce = 5/40 = 125ms. Hence, maximum error in Ta and Ta timestamps is 2&1s/Tpc. =

320us, which accounts for 0.256% error in speed estimation.

Based on data observations and statistical analysis, the following issues must be

considered for more accurate speed estimation.

1) The higher the sampling rate, the higher the speed estimation accuracy.

2) All sensor nodes should implement the same detection reference thresholds

(O1H, HTh, and Rtw) and debounce timers (Opt, Hot, and Ppr); any difference

in thresholding between nodes will add a detection timestamp error.
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3) Tolerance error in sensors sensitivity—due to environmental factors—can be
reduced by using higher sampling rates; however, this error can be neglected
without need for compensation. The reason for this phenomenon is that the
sensor has only 2% maximum sampling rate tolerance. Moreover, this error
depends on the accuracy of MAG internal clock, and it might be practically
infeasible to characterize this error over operating temperature range.

4) Changes in vehicle trajectory at detection point might result in a Ta and Ta
timestamp error; however, this error is rare, trivial, and can be neglected.

6.6 Vehicle Magnetic Length Estimation

Vehicle magnetic length (VML) is estimated from the product of vehicle
estimated speed and occupancy time using Eq. 4-27. The highway dataset includes 4178
VML measurements; urban road dataset includes 6856 VML measurements. Figure
6-35 and Figure 6-36 show the distribution of VML by FHWA F Scheme with 13
classes for tests conducted on highway and urban roads, respectively. Combined
distribution is shown in Figure 6-37.
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Chapter 7: 1VCCS APPLICATIONS IN TRAFFIC SURVEILLANCE

7.1 Overview

In addition to the applications presented in previous chapters, several traffic
monitoring applications can be implemented using the developed platform, for example,
in atypical situations for uneventful traffic management of an unplanned evacuation
path using localized traffic management. Intelligent parking lot management is another
application wherein the sensor can be used to manage traffic by reporting
occupied/vacant parking spots and their locations. Other applications include automatic
garage doors, automatic gates, drive thru vehicle detectors, ramp metering, travel time
estimation, traffic data collection, intersection capacity, collision avoidance, and
highway design.

This chapter provides a detailed study of two particular applications, including the
development of vehicle classification schemes and re-identification models using
iVCCS.

7.2 Introduction to Vehicle Classification Schemes
7.2.1 Axle-based Vehicle Classification Scheme

In general, vehicle class data is collected from WIM and AVC sites, which use
inductive loops (IDL) and piezoelectric sensors to report vehicle class according to
FHWA Scheme F with 13 classes, as depicted in Figure 7-1.

Scheme F was developed during the 1980s and is based on manual classification
of visually identifiable vehicle characteristics. The scheme was later amended to
provide computational classification based on number of axles and wheelbase axle

spacing. Such axle-based vehicle classification (ABVC) systems require intrusive
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sensors that are plagued with a number of drawbacks, chiefly their reliance on pavement
geometry. This means that pavement deterioration will cause unreliable ABVC data. A
study [136] conducted by WECAD center at the University of Oklahoma reported high
classification inaccuracy rates resulting from sensor misconfiguration at Oklahoma
AVC sites. ABVC schemes have proven problematic due to overlapping among vehicle
classes, especially with regard to vehicles pulling one-, two-, or three-axle trailers [136].
For example, in one study, 43% of class 3 vehicles were falsely classified as class 2,
and 45% of class 5 were falsely classified as class 3. In fact, three- or four-axle class 3
trucks often overlap with class 8 trucks, which—upon sensor overpass—causes class 3
to be classified as class 8. Class 6 trucks also overlap with class 4 three-axle buses.
Significant overlap has been observed for three- or four-axle class 5 with trailers and

classes 8 and 5, as well as buses [136].

ot ‘o o # oofle F——lo o

F1: Motorcycle: F2: Passenger Cars | 2 axles @ﬁ_ﬁ F4: Buses | 2 or 3 axles
2 axles 4-Tire, with 1- or 2-axle full length
Trailers F3: Pickup, Van, SUV | 2 axles

with 1- or 2-axle Trailers

B oo

F6: Single Unite 3-axle Trucks F7: Single Unite 4- or more axle Trucks

F5: Single Unite 2-axle Trucks, 6-Tire (dual rear tiers)

F8: Single Trailer 3- or 4-axle Trucks F9: Single Trailer 5-axle Trucks F10: Single Trailer 6- or More-axle Trucks
F11: Multi-Trailer 5- or Less-axle Trucks I ! ll I I
F13: Multi-Trailer 7- or More-axle Trucks F12: Multi-Trailer 6-axle Trucks

Figure 7-1 U.S. FHWA Classification Scheme F with 13 class
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As stated earlier, high costs associated with ABVC scheme technologies, as well
as high regular maintenance and calibration costs, limit spatial distribution of such
systems. As such, they are often installed only at strategic points. Thus, the availability
of ABVC data is limited. Additionally, the feasibility of collecting ABVC data in urban
areas is significantly hindered by bumper-to-bumper congestion during peak hours.
Vehicle acceleration/deceleration and stop-and-go scenarios at signals are factors
contributing to erroneous data. ABVC using MAG remains challenging and warrants
ongoing research.

7.2.2 Available Length-Based Vehicle Classification Schemes

Traffic flow characteristics are directly affected by long vehicles (i.e., trucks),
which have a major impact on road service life [137]. Hence, it is crucial for U.S. DOT
agencies to estimate percentage of roadway damage. Accordingly, the FHWA Traffic
Monitoring Guide [13] provides a generic length-based vehicle classification (LBVC)
scheme based on nationwide IDL data. Even so, it is practically impossible to define
LBVC boundaries for FHWA F Scheme with 13 classes. Clearly, vehicle magnetic
length (VML) overlapping occurs between a number of classes (e.g., class 2 through 5
and class 8 through 10). The proposed LBVC scheme [13] categorizes vehicles into four
groups, namely passenger vehicles (PV), single-unit trucks (SU), combination-unit
trucks (CU), and multi-unit trucks (MU). The scheme is inexpensive and works best
with dual-IDL stations. Notably, the FHWA guide permits states to develop their own
LBVC scheme and define length threshold boundaries that best fit vehicle

characteristics that vary among states.
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Since there is no generic definition for LBVC boundaries, several states have
begun to adopt a LBVC scheme that replaces outdated ABVC and is based on local
vehicular data collected from AVC and WIM sites located throughout a state’s
roadways [138], [139]. Many states have defined different length boundaries for their
developed schemes. Some have adopted a four-group LBVC scheme; others use a three-
group scheme by combining group 3 and 4. For example, the Ohio DOT has adapted a
statewide three-group LBVC scheme that bins FHWA Scheme F vehicles into PV, SU,
and MU [140], [141]. Florida, lllinois, Washington, and Idaho have also adopted three-
group LBVC schemes that classify the same Scheme F vehicles into PV, short trucks
(ST), and long trucks (LT) [142]. Minnesota’s DOT (MDOT) proposed a four-group
LBVC scheme (e.g., motorcycles [MC], short [S], medium [M], and long [L] vehicles)
and recognizes a fifth-group, namely very long (VL), in areas with significant numbers
of seven-or-more axle, multi-trailer trucks [138]. Table 7-1, Table 7-2, and Table 7-3
summarize LBVC schemes from a number of states and provide a list of boundaries.
This information was identified from data collected using IDLs. Notably, very few
efforts attempt to assess the feasibility of defining magnetic length boundaries based on
data collected using wireless MAG.

Table 7-1 Three-group LBVC schemes boundaries for different states

Description FHWA 1linois Washington ldaho Florida Ohio New York
Passenger Car(PV) F1—F3 0—6.7m 0—6.1m 0—7m 0—6.52m 0—8.53m 0—6.7m
Short trucks (ST) F4—F7 6.7—>11.9m 6.1—12.8m 7—122m | 6.52—129m 8.53—14m  6.7—11.9m
Long trucks (LT) F8—F13 >11.9m >12.8m >12.2m >12.9m >14m >11.9m
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Table 7-2 Four-group FHWA-LBVC scheme boundaries

Description of Vehicles FHWA-ABVC FHWA-LBVC
Passenger vehicles (PV) F1—F3 0—3.96m

Single unit trucks (SU) FA—F7 3.96—10.67m
Combination trucks (CU) F8—F10 10.67—18.59m
Multi-trailer trucks (MU) F11—F13 18.59—36.58m

Table 7-3 MDOT-LBVC scheme boundaries

Description of Vehicles FHWA-ABVC Minnesota
Motorcycle (MC) F1 0—1.98m
Short vehicle (S) F2—F3 1.98—6.55m
Medium vehicle (M) F4—F7 6.55—14.93m
Long vehicle (L) F8—F13 14.93—36.58m

Unlike VMS produced by IDL, vehicle signatures sampled using MAG have less
consistent peak magnitude due to several factors, such as differences in sensitivity,
vehicle trajectory, and non-symmetry of detection zone. Moreover, IDLs are active
magnetic sensors, meaning that they generate magnetic field in the IDL zone and
resonate at a constant frequency that increases when the generated field is induced by a
passing vehicle. When this occurs, a detection state is triggered. Unlike IDLs, MAG are
passive sensors that rely on the disturbance of the Earth’s magnetic field relative to the
presence of a metallic object (i.e., vehicle). Hence, the amount of preamble ferrous
materials in a vehicle structure plays a major role in the sensor’s detection range [122],
[123], [143]. A vehicle with a large amount of steel can be detected from quite a lengthy
distance, creating significant variations in VML per class. These factors make using

MAG for LBVC extremely challenging. The development and implementation of

182



computationally efficient, real-time LBVC schemes for wireless MAG will be
introduced in the next section.
7.3 Development of Real-Time Length-Based Vehicle Classification

LBVC algorithm using two timely, synchronized MAG nodes was developed and
implemented by means of machine learning (ML) and probabilistic modeling. Several
classification schemes are proposed. The developed algorithm enables real-time,
computationally efficient vehicle classification based on VML.

Classification based on VML requires precise vehicle detection and highly
accurate speed estimation. Precise detection demands a consistent baseline (i.e.,
localized geomagnetic field) and coherent sampling rate. Speed estimation accuracy
relies on the precision of time-stamping (i.e., vehicle arrival and departure time), which
is dependent upon the accuracy of a time synchronization algorithm. All algorithms are
well detailed in companion publications [122], [123], [143].

7.3.1.1 Vehicle Magnetic Length

Before developing any classification scheme that bins multiple classes, it is
important to understand the underlying statistical distribution of each class, as well as
the overlap among various classes. Classes that show significant overlapping should be
grouped into the same bin. Significant overlap between two groups will result in a high
misclassification rate.

In this study, the combined VML dataset (11034 sample) was considered for data
analysis and classification study. Vehicles in classes 11, 12, and 13 were missing from
dataset, as they were not observed during the field studies. Figure 7-2 shows VML

scatter plots for the dataset used to develop the LBVC schemes. Table 7-4 presents five
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essential statistical measurements for each class, namely mean, standard deviation
(STD), and variance (Var), as well as maximum and minimum values. Notably, a
significant overlap is observed among classes 2 and 3, classes 5 through 7, and classes 8
through 13. Additionally, significant variations in VML per class are attributed to
differences in the amount of permeable ferrous materials in each vehicle structure.
Vehicles with a large amount of steel in their structure can be detected from a longer
distance; hence, their magnetic length will be longer. There is no way to find a general
dipole model for all vehicles, even for those within the same class. Figure 7-3 illustrates

the histograms of VML by FHWA Scheme F with 13 classes.

4 l] T T T T T T T T

5t O WMM-VML

b
=
T

[
L7.1]
T

th
T
i1t g8

[T T [T O
— = (Waismiima i |
0 T OO

Magnetic Length [m]|
=
O [T
O
OCIOTIDOO - &

=
T
L | Jlisi]

n

DE i Il Il i Il Il i Il
1

2 3 4 5 0 7 8 9 10
Class

Figure 7-2 VML scatter plots for dataset that used to develop LBVC schemes

Table 7-4 VML statistical measurements

FHWA Mean Star_lda}rd Variance Minimum Maximum

Class Length (m) Deviation Length (m) Length (m)
FO1 1.7629 0.7156 0.5120 0.5370 2.9106
F02 5.9383 0.8190 0.6708 2.7606 11.0377
FO03 6.6140 1.0713 1.1477 3.5516 12,5161
FO4 15.2446 1.3782 1.8996 13.3784 17.9241
FO5 9.2552 1.9270 3.7132 6.2894 16.3884
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F06 10.9073 1.6149 2.6078 6.8855 15.4366

FO7 12.4458 NA NA 12.4458 12.4458
F08 18.8185 3.2396 10.4950 12.0606 25.0102
F09 21.3425 2.9298 8.5840 13.5164 34.6607
F10 20.3949 3.5930 12.9097 12.9307 23.3700
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Figure 7-3 Histograms of VML by FHWA F Scheme Classes
7.3.1.2 Proposed Classification Schemes
According to the FHWA’s traffic monitoring guide, “If length-based
classification is used, it should accommodate motorcycle identification as one of the
groups” [13]. Based on a) visual observation of VML data shown in Figure 7-2 and
Figure 7-3, b) statistical measurements presented in Table 7-4, as well as c) structural

similarity of vehicles, three distinctive LBVC schemes are proposed, as in Figure 7-4.
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MC group includes only motorcycles. PV group includes passenger cars, pickups,

and SUVs. Short-trailer group (ST) includes buses, light-trucks, and single-unit-trucks.

Long vehicles (L/LT) group includes single-trailer and multi-trailer trucks.

The main objective of the Three Groups LBVC Scheme A (3-Gsa) is providing a

general distinction of long and heavy commercial vehicles, which includes buses, semi-

trailer (ST) trucks, and multi-trailer (MT) trucks. The 3-Gsg and 4-Gsx provide further

distinction between Passenger Vehicles (PV) and Single-Unit Trucks (SU).
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Figure 7-4 Recommended Classification Schemes

Scatter plots for datasets based on proposed LBVC schemes are shown in Figure

7-5. A histogram and statistical measurements for 3-Gsa are illustrated in Figure 7-6

and Table 7-5, respectively. Statistical measurements for 3-Gsg are illustrated in Table

7-6. A histogram and statistical measurements for 4-Gsx are illustrated in Figure 7-7 and

Table 7-7, respectively.
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Figure 7-5 Dataset scatter plots for 3-Gsa; 3-Gss; and 4-Gsx
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Figure 7-6 Histograms of VML by 3-Gsa

Table 7-5 VML statistical measurements for 3-Gsa

Mean Staljda}rd Variance Minimum
Length (m) Deviation Length (m)
1.6863 0.7899 0.6239 0.8112
6.2912 1.2165 1.4799 2.7606
21.2157 2.9961 8.9765 12.0606

Table 7-6 VML statistical measurements for 3-Gss

Mean Star_lda}rd Variance Minimum
Length (m) Deviation Length (m)
6.1681 0.9949 0.9898 0.8112
9.9333 2.2571 5.0944 6.2894
21.2157 2.9961 8.9765 12.0606
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Table 7-7 VML statistical measurements for 4-Gsx

Group Mean Star_mda}rd Variance Minimum Maximum
Number Length (m) Deviation Length (m) Length (m)
Gl 1.6863 0.7899 0.6239 0.8112 2.9106
G2 6.1783 0.9720 0.9447 2.7606 12.5161
G3 9.9333 2.2571 5.0944 6.2894 17.9241
G4 21.2157 2.9961 8.9765 12.0606 34.6607

7.3.1.3 LBVC Model using Machine Learning

Intelligent classification algorithms learn to classify vehicles into predefined
classes by statistically modeling the relationship between vehicle class and probabilistic
distribution of features set (or predictors) extracted from VMS. Several ML
classification methods (e.g., Decision Trees [DT], Support Vector Machine [SVM], k-
Nearest Neighbor [KNN], and Naive Bayes Classifier [NBC]) were evaluated,
investigating best practices to build a system classification model and to infer optimal
length boundaries of a real-time LBVC using MAG or IDL. Optimality was determined

empirically.
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VML dataset was divided into two subsets—training and testing. The first was
used for training the intelligent classifier and the other for assessing its performance.
Predictive accuracy of fitted models was examined using 10-fold cross-validation. This
method builds k-different test sets from the same training set; trains all models based on
the remaining training dataset; and utilizes best performing hypothesis on average to
avoid over-fitting.

All classification methods attempt to maximize total classification accuracy.
However, each method implements different techniques. ML methods and their
techniques are not the focus of this dissertation; interested readers can review details in
[144]. Greatly important is that Radial Basis Function (RBF) kernel SVM outperformed
other kernel types. Since SVM is a binary classifier, a one-vs.-all approach was used.
This means that m-class models are fitted to the training data—one model for every
class. When fitting the model for the mth class, training dataset labels are changed.
Thus, the model is fitted to distinguish among two classes at once. During validation
with the test dataset, m-individual scores are estimated—one for each model. The class
with the highest score is chosen as the predicted class. For DT, a J84 version was
implemented. This algorithm optimizes the tree size using “pruning” (i.e., cease
splitting if the number of objects in a branch is smaller than a predefined value).
Optimal values for other parameters (e.g., k-value in kNN; size of the tree and number
of leaves in DT; C and gamma in SVM) were found using hyper-parameter
optimization algorithms.

Classifier performance was assisted using 10 commonly-used metrics (See Table

7-8), namely, classification rate (Cr), MAPE, RMSE, root relative squared error
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(RRSE), true positive rate (TPR), false positive rate (FPR), F-measure (F1), Matthews’s
correlation coefficient (MCC), area under receiver operating characteristic (ROC) curve
(AUC), and confusion matrix (CM), denoting the True Class as ¢* and Predicted Class
as ¢. Cr indicates the efficacy of classifier to assign a correct vehicle class, where N is
the number of classified vehicles and 6,,(¢,) is a binary indicator function. MAE is a
linear average of classification error magnitude. RMSE measures the distance from
¢ to c*. RRSE reports the relative amount a predicted class differs from itself. TPR
indicates the number of vehicles correctly classified. FPR is an indicator of how many
vehicles were classified incorrectly. F1 measures harmonic mean of the precision or
positive prediction value (PPV) and FPR. MCC is an important balanced measure of
classification quality even if classes are imbalanced. AUC measures overall classifier
quality. CM includes True Classes in rows and Predicted Classes in columns. CM
diagonal shows the match between true class and predicted class; values outside the
diagonal indicate a misclassification. TPR, FPR, F1, MCC, and AUC will be reported
from this point as a weighted average score instead of per-class score.

Table 7-8 Performance metrics used to evaluate built classification models

Metric Formula
1w 1 5 .
_ AN, PN ) Cn = Cn _
Cr =g @i &@)={y o Eq. 7-1
n=1

1 N

MAPE MAE = Nan e Eq. 7-2
n=1

RMSE MSE = Eq. 7-3
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N A A*)2
RRSE RSE = M Eq 7-4

ﬁ:l(fn - C;)z

TP

TPR b -
TPR TPEFN Eqg. 7-5

FP

FPR = -

FPR = Eq.7-6
PPVXFPR TP

F1 =2 . = . 7-

FL=2oowrrrr PPV =Tpirp Bq. 71
(TPXTN) — (FPXFN)

MCC Mcc Eq. 7-8

- J(TP + FP)(TPXFN)(TN + FP)(TNXFN)

Table 7-9 presents performance results of all classification methods applied on the
proposed LBVC schemes using the MAG dataset. Notably, all classification methods
showed comparable accuracy when correctly assigning vehicle to a class. Results can be
attributed to parameter optimization (i.e., hyper-parameter optimization), which was
conducted for each ML classification method. DT models were adopted primarily to
identify length boundaries using a generated decision tree, primarily because it is quite
easy to implement and it is very memory efficient. 3G-Sa slightly outperformed 3G-Sg,
as the later had more overlap between group 1 and group 2. 3G-Sa provides a general
distinction of long- and heavy-commercial vehicles from other small and medium
vehicles. 3G-Sg, on the other hand, provides further distinction between PV, pickups,
and SUVs in one group, and SU trucks and buses in another group. 4G-Sx provides an
important distinction for motorcycles and outperforms 3G-Sg due to the fact that there

is no overlap between group 1 and group 2.
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Table 7-9 LBVC Schemes performance results for MAG Dataset

Classification Method & Classification Scheme

DT NN C-SVM NBC

Criteria
3G-Sa | 3G-Se | 4G-Sx | 3G-Sa | 3G-Se | 4G-Sx | 3G-Sa | 3G-Ss | 4G-Sx | 3G-Sa | 3G-Ss | 4G-Sx
Cr 99.82% | 97.70% | 97.69% | 99.82% | 97.80% | 97.79% | 99.83% | 97.83% | 97.78% | 99.83% | 97.59% | 97.75%
| MAE | 00022 | 00274 | 0022 | 00021 | 00226 | 00171 | 00012 | 00145 | 00111 | 00025 | 0022 | 0.0173
.W RMSE | 0.0342 0.1185 0.1057 | 0.0338 0.1082 0.0963 | 0.034 0.1202 0.1054 | 0.0323 0.117 0.0932
RRSE | 1019% | 5407% | 54.94% | 18.94% | 49.35% | 50.08% | 10.08% | 54.84% | 54.80% | 18.12% | 5335% | 48.47%
TPR 0998 | 0977 | 0977 | 0998 | 0978 | 0978 | 0998 | 0978 | 0978 | 0998 | 0976 | 0977
$| FPR 0016 | 0220 | 0238 | 0017 | 0199 | 0195 | 0016 | 0209 | 0206 | 0012 | 0144 | 0.204
m PPV 0.998 0.973 0974 | 0998 | 0975 | 0975 | 0998 | 0975 | 0974 | 0998 | 0975 | 0974
W F1 0.998 0.973 0971 | 0998 0.975 0975 | 0998 0.975 0.974 | 0998 0.975 0.974
S| mce 0981 | 0841 | 0838 | 0981 | 0846 | 0849 | 0982 | 0847 | 0848 | 0983 | 0838 | 0.846
AUC 0997 | 0912 | 0864 | 0999 | 0967 | 0963 | 0991 | 0.885 | 0886 | 0999 | 0987 | 0.987
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Length boundaries (¥) found by DT models for all LBVC schemes are presented
in Table 7-10 relative to corresponding FHWA Scheme F classes.

Table 7-10 Decision boundaries for proposed LBVC Schemes—unites are in meter

3G-Sa 3G-Ss 4G-Sx
Group
FHWA ¥»-MAG FHWA »-MAG FHWA »-MAG
Gl F1 0.7—2.984 Fi—Fs 0.7—10.971 F1 0.7—2.984

G2 Fr—F; 2.984—14.727 Fi—F7 10.971—14.727 Fo—F3 2.984—10.971
G3 Fs—Fi3 >14.727 Fs—Fi3 >14.727 Fi—F7 10.971—14.727
G4 — — — — Fe—Fis >14.727

One important observation from Table 6-18 is that MCC for 3G-Sg and 4G-Sy
was slightly degraded in all classifiers. As stated earlier, MCC is a balance measure of
statistical correlation between a true class and predicted class. A correlation coefficient
of “+1’ represents perfect agreement between prediction and observation; a ‘0’ indicates
nothing but random prediction; and ‘—1’ indicates total disagreement between
prediction and observation. Declining MCC value, notwithstanding extremely high
classification rate, is attributed to class imbalance in the training set. CM for 3G-Sg
illustrates 32.7% classification accuracy for group 2 compared to 99.75% classification
accuracy for group 1 and 97.15% for group 3. The same can be seen in 4G-Sx CM. The
primary problem with ML algorithms is that researchers try to maximize total
classification accuracy while imbalanced class distributions increase sensitivity of ML
algorithms towards overrepresented class [145].

Imbalanced data is very common in data analysis using machine learning. A
powerful method to accommodate strongly imbalanced data is leveraging algorithms
that combine boosting and data sampling, such as RUSBoost and SMOTEBoost [145].

SMOTEBoost (Synthetic Minority Oversampling Technique) works in direct contrast to
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RUSBoost (Random Under-sampling). However, both techniques implement multiple
learners to produce a more intelligent classifier. In this study, RUSBoost was
investigated. This iterative method creates a model, examines instances misclassified,
assigns more weight, under-samples the overrepresented class, and produces a revised
model. After all iterations are complete, trained models vote on which class each
observation should belong, and predicted outputs are based on a weighted majority.
Ninety-one percent classification accuracy was obtained when using the
RUSBoost technique with 4G-S, as opposed to 97.7% classification accuracy using DT.
MCC for RUSBoost was 0.93, showing a more balanced measure when compared to
0.83 with DT. A 0.9119 TPR and 0.0322 FPR were observed using RUSBoost. Figure
7-8 presents CM for RUSBoost using 4G-Sx dataset. Class 1 was correctly classified
with 100% TPR. Although 91% of observations in class 2 where correctly classified, 30

observations were misclassified as class 1 and 894 observations where misclassified as

class 3.
4GS/MWMM Predicted Class
RUSBoost [ c1 | c2 | c3 | c4 [ PNR | TPR | Total [ FNR  TPR
Jlct ] 220 0 0o i oo 0 : 2 | 2 | 0% 100%
CER BN SN RE A R
2l ca | o i 4 i 248 | 5 51 : 165 | 209 | 17% = 83%
Pl ca | o T 0 U7 Usa |7 U sa | sa | 1% s

Figure 7-8 Confusion Matrix for RUSBoost using 4G-S/MAG dataset

Classification error for class 3 dropped to 17% compared to 74% using DT,
indicating a classification balance between groups. However, this method is
computationally inefficient, requiring10 learners, each composed of a decision tree with
11 split to implement the intelligent classifier. Thus, probabilistic modeling is proposed

to empirically achieve optimal solutions, as presented in the next section.
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The fact that vehicle class distributions are imbalanced is not unique to
Oklahoma, where more than 97% of vehicles belong to classes 2, 3, 5, 6, 8, and 9, as
seen in our vehicle data collection (See Figure 7-9) and in another dataset collected over
three months from IDL. Similar results can be found in [12], [43], [53], [59], [146]-
[150], although none considers this fact and most studies reported classification rate

only as an overall measure of classifier performance.
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Figure 7-9 Class distribution in Dataset collected using MAG
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Figure 7-10 Class distribution in Dataset collected from IDL
7.3.1.4 LBVC Model using Probabilistic Modeling
Separating two neighboring classes from each other can be treated as a binary
problem. As such, probabilistic models can be employed to empirically determine

optimal boundary decisions to separate neighboring classes whose vehicles have
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overlapping lengths [151]. These methods can be implemented in real-time, require no
training sets, and improve classification accuracy by minimizing classification errors.
This section describes the implementation of probabilistic models and optimization
theory.

Let x be the vehicle magnetic length, and C; and C> represent two vehicle classes.
The probability of error between two distributions, as shown in Figure 7-11, include
P(C4C2) and P(C2|Cy), given in Eqg. 7-9 and representing probability of error for

classifying C> as C1 and C; as Co.

0.45 T -
aiil P(x,Cy)
0.35
03+
8 0.25
\X/ 0.2
A P(,\',C:)
0.15
0.1
0.05 |
0 i ! i .
2 4 6 8 10 12 14 16 18
X
Figure 7-11 Two overlapped Gaussian distributions with an unknown decision
threshold o
[24 + oo
P(error) = f P(x|C,)P(Cy)dx + f P(x|C)P(Cy)dx Eq. 7-9
0 p

Distributions P(x, C1) and P(x, C2), shown in Figure 7-11, statistically describe
random variable, X, corresponding to VML for vehicles traveling on Oklahoma

roadways. In accordance with central limit theorem and law of large numbers, these
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distributions can be approximated as Gaussian distribution models, per Eq. 7-10, Eq.

7-11, and Eq. 7-12, where k is the class number.

1 _(x_”ck)z

2 -
X < N (uc,0c,) =~ p(xlpey 0c,) = ——c 20¢, Eq. 7-10
C v

n
1
o =250 o jz (1)’ o, 11

=1
(x—uzcz)2
P(error) = P(C;) f 20¢2 .dx
Oc2V2
Eq. 7-12
(x—HZC1)2
+ P(Cy) f 20¢1 . dx
’ Oc1V2

The integration of a probability distribution function (PDF) is a cumulative

distribution function (CDF) represented by the error function erf, as given in Eq. 7-13.

P(error) = P(Cy) = ll + erf{ \/ll_cz}l
Oc2

+P(C2)<1 G I“erf { acj‘c 1}D>

Optimal threshold ar can be empirically found by taking the derivative of Eqg.

Eq. 7-13

7-13 and equating the outcome to 0, as presented in Eq. 7-14.

To ensure classification error will not change at various times when new values
are added to either group—as not all groups have the same number of vehicle instances
per unit of time—weights, P(C;) and P(C,), that are proportional to the number of

instances in each class group are calculated, as in Eq. 7-15. It is worth mentioning that
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optimal threshold found empirically by solving Eq. 7-14 is global minima, which can be

verified using the second derivative test, as in Eq. 7-16, such that ar > 0.

dP(error) _ 0o p(c,) -t pcy -lerda)

e 20’%2 — e 20(2,‘1 =0 Eq 7-14
dar OcoV 21 Oc1V2em
Length(C,) Length(C,)
P = ;P = Eq. 7-15
() Length(C; + C,) (2) Length(C; + C,) a
d2P(error)
da?
(ar—#cy)?
—q) -er=hca)”
- P(Cl)(‘uC;—T)e 20t Eq. 7-16
Oc V2T
(ar—pc1)?
— ) -ler—#c)”
— p(CZ)(‘uC;—T)e 20, =
oo V2T

The ae uses equal weights (P(C;) = P(C,)) but implements a classification error
minimization algorithm among groups. In other words, ae is found by solving Eq. 7-17
such that probability of error for C; classified as C; is equal to probability of error for
C> classified as Ci; € is a precision value (e.g., 0.001). Equating classification errors
would result in a decreased classification error for one particular group (i.e., the one
with fewer instances), but will increase classification error for the second group (i.e.,

the one with more instances), and, hence, increase overall system classification error.
P(ag, C) — P(ag, C;) < ¢ Eq. 7-17

Developed models can now be applied on all overlapping problematic LBVC
schemes (e.g., 4G-Sx and 3G-Sg) that have imbalanced data, as well as high overlap
ratio among neighboring groups.

1) Decision Boundaries for 3G-Sg:

198



Figure 7-12 shows the fitted Gaussian distribution models and found decision
thresholds for MAG 3G-Sg dataset. Misclassification occurs between problematic

groups G1 and G2, as high overlapping is observed.
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Figure 7-12 Gaussian distribution models and decision thresholds for the MAG
3G-Sg dataset

Table 7-11 presents a comparison between decision boundaries found by various
proposed thresholding methods for 3G-Sg dataset. Corresponding classification rates in
each group (i.e., how many where correctly classified as Gx out of the total number of
instances in Gx) and classification errors between groups (i.e., how many were
incorrectly classified out of the total number of instances in both groups) for pairwise
overlapped groups are shown in Table 7-12. Table 7-13 presents a comparison between
classification rates for different thresholding schemes applied onto the 3G-Sg dataset.

Decision threshold vy, found using ML methods, was 10.97m, which maximizes
total classification accuracy at the expense of misclassifying more instances in G2.
Optimal threshold for achieving balance among groups—regardless of instances in each
group, ar—was set at 7.76m, which significantly reduces G2 misclassification error at
the expense of decreasing accurate classification rate for G1. See Table 11 (Cr-c1-vs-G2).

Because the number of instances in G is considerably larger than G2 (See Figure 7-2),
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overall classification accuracy was decreased (See Table 7-13). Optimal threshold for
equal error among overlapping groups’ scenario ae Was 7.43m, which rendered an equal
classification rate Cr-c1-vs-G2 at the expense of reducing overall classification accuracy to
90.2314%, compared to 99.70% and 93.8077% for y and ar, respectively. For
classification rates between G2 and G3 (Cr-c2-vs-G3), all scenarios achieved comparable
performance primarily because a minimum overlapping could be observed.

Table 7-11 Decision boundaries found by different thresholding methods for 3G-Ss

3G-Ss MAG
Group FHWA-Sr ¥ o OE
G1 Fi—Fs 0.81—10.971m 0.81—7.761m 0.81—7.4286m
G2 Fi—F7 10.971—14.727m 7.761—14.9504m 7.427—15.136m
G3 Fe—Fia >14.727m >14.9504m >15.136m

Table 7-12 Pairwise classification rates and errors for different decision
boundaries applied on 3G-Sg dataset

3G-Ss MAG
Threshold CRr-61-vs-G2 /Cerr (%) CRr-62-vs-G3/Cerr (%)
¥ 99.9109 vs. 29.8077 / 2.1906 96.7949 vs. 98.6667 / 2.0311
ar 93.9778 vs. 83.9744 / 6.3221 97.1154 vs. 98.0952 / 2.2700
oE 89.9366 vs. 90.0641 / 10.059 97.4359 vs. 97.5238 / 2.5090

Table 7-13 Comparison between classification rates by different thresholding
methods for 3G-Se LBVC

3G-Ss MAG
Group FHWA-Sk ¥ ar OE
G1 Fi—Fs 99.70% 93.9778% 89.9366%
G2 Fi—Fr 32.70% 81.0897% 87.5000%
G3 Fe—F13 97.10% 98.0952% 97.5238%
Overall Cr 97.70% 93.8077% 90.2314%
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2) Decision Boundaries for 4G-Sx:
Figure 7-13 illustrates fitted Gaussian distribution models and decision thresholds

for MAG 4G-Sy dataset.

e e

P(x,Gy) :.:g;

Probability

Probability
g

’;j

3

&

T
|
I
|
|
I
|
I
I
I
I
I
|
I
I
|
I
|
|
I
|

0 2 4 6 8 10 2 4 6 8 10 12 14 16 18 20 25 30
Magnetic Length [m] Magnetic Length [m] Magnetic Length [m]

Figure 7-13 Gaussian distribution models and decision thresholds for the MAG
4G-Syx dataset

Problematic groups in 4G-Sx are G2 and G3, which have more significant overlap
in MAG dataset when compared to IDL dataset, as seen in Figure 7-13/b. Table 7-14
presents a comparison between decision boundaries determined by various proposed

thresholding methods for MAG and IDL 4G-Sx datasets.

Table 7-15 presents the corresponding classification rates and errors for pairwise
overlapping groups. A comparison between classification rates for various thresholding
methods applied on the 4G-Sx dataset is presented in Table 7-16.

Table 7-14 Decision boundaries found by different thresholding methods for 4G-Sx

4G-S« MAG
Group FHWA-Sk ¥ or OE
G1 Fi 0.7—2.984m 0.7—3.736m 0.7—2.9107m
G2 Fr—Fs 2.984—10.971m 3.736—7.7516m 2.912—7.427m
G3 Fo—F7 10.971—14.727m 7.7516—14.95m 7.427—15.136m
G4 Fe—Fi3 >14.727m >14.95m >15.136m
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Table 7-15 Pairwise classification rates and errors for different decision
boundaries applied on 4G-Sx

4G-Sx MAG
Threshold Cr-G1-vs-G2 /Cerr (%) Cr-G2vs-G3/Cerr (%) Cr-G3-vs-G4 /Cerr (%)
¥ 100 vs. 99.98 / 0.0198 99.91 vs. 29.81/2.196 96.79 vs. 98.67 / 2.031
ar 100 vs. 99.69 / 0.307 93.86 vs. 84.29/ 6.423 97.115 vs. 98.09 / 2.27
OE 100 vs. 99.99 / 0.0099 89.90 vs. 90.06 / 10.09 97.44 vs. 97.52 / 2.509

Table 7-16 Comparison between classification rates by different thresholding
methods for 4G-Sx

4G-Sx MAG
Group FHWA-Skr ) o OE
Gl F1 91.30% 100% 100%
G2 F—F3 99.90% 93.557% 89.8938%
G3 Fo—F7 26.30% 81.4103% 87.5%
G4 Fe—Fi3 98.70% 98.0952% 97.5238%
Overall Cr 97.6951% 93.4419% 90.2131%

For G1 and G2, an insignificant overlapping rendered comparable high rates for
all thresholding methods. However, G2 and G3 demonstrated a significant overlap, as
G3 included SU (e.g., class 5), which are highly overlapped in length with class 3
included in G2. ML methods set y at a value that maximizes total classification
accuracy at the expense of misclassifying most instances in the other groups (G3
classification error 73.7%) because the number of instances in G is considerably larger
than Ga. Classification error for G3 was significantly reduced to 18.5897% when using
at. However, overall classification accuracy was decreased. Classification rate for G3

improved when using ae to achieve balanced classification rates among all groups (See
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Table 7-15) at the expense of reducing overall classification accuracy to
90.2131% when compared with 97.6951% and 93.4419% for vy and ar, respectively. All
scenarios achieved comparable classification performance for G3 and G4, as a
minimum overlapping can be observed. Also, number of data points in both groups is
relatively comparable.

7.3.1.5 Discussion on LBVC Models

A comparison between LBVC scheme boundaries developed for MAG in this
study and in alternative schemes based on IDL data developed by various states
throughout the U.S. can be seen in Figure 7-14 and Figure 7-15. Observations include
the following:

— Vehicle length boundaries detected in a number of states throughout the U.S.
vary because vehicle and traffic characteristics differ per road type, region, state,
and other factors; hence, LBVC boundaries developed in one state might require
adjustment to remain applicable in another.

— Boundaries defined for MAG detectors are longer in length than those detected
by IDL detectors; this is primarily due to the fact that MAG estimate VML,
which is longer than the physical length (See Figure 7-14 and Figure 7-15).

— Defining an accurate detection zone for MAG is challenging, as disturbance to
the Earth’s magnetic field depends upon detection; this is proportional to vehicle
length, height of vehicle chasse above ground, and vehicle structure composition
of ferrous materials.

— Analyses demonstrated the importance of investigating not only the

classification rate for evaluating classification models, but also other
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performance metrics (e.g., CM and MCC) for identifying bias in the model as a
result of imbalanced class distributions; this increases sensitivity of ML
algorithms toward overrepresented classes.

Three algorithms developed for identifying length boundaries for LBVC
schemes resulted in three very different sets of thresholds (y, ar, and ag): 1) y
maximizes classification accuracy at the expense of minority classes; 2) or
achieves balance among overlapped groups regardless of number of instances in
each group; and 3) ae tries to equate classification error between two overlapped
groups despite group population size. The question remains as to which
algorithm is suitable. The answer depends exclusively on the objective of the
LBVC system. If traffic engineers are more concerned with vehicles in higher
classes (i.e., trucks that are generally highly underrepresented), then it is
important to utilize a method that achieves balance among classes (i.e., o).
However, if classification accuracy is paramount regardless of classification rate
per group, then y method would be suitable. For balanced classification error

among groups, oe should be implemented.
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Figure 7-14 Decision boundaries for 3G-Sg LBVC for several states

Decision Boundaries for Four-group LBVC Schemes
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Figure 7-15 Decision boundaries for 4G-Sx LBVC for several states

7.4 Introduction to Vehicle Re-ldentification and Travel Time Estimation

Vehicle re-identification provides important information about link Travel Time
(TT) distribution between two detection points (i.e., origin and destination) of an
individual path. TT is a reciprocal of average speed and can be defined as a measure of
traffic congestion between two points on a road segment. TT has been identified as a
time-based performance measure of transportation quality and level of service. This
information is highly beneficial for travelers, operations, and Traffic Management
Centers (TMC). TMC uses TT for traffic prediction and analyses. Accurate and reliable
TT information can aid in reducing congestion, improving safety, and enhancing traffic
flow (e.g., informing commuters to avoid congested roadways, assisting transportation
agencies to optimize traffic planning).

Measuring TT requires speed estimation and vehicle re-identification. Several
technologies have been used by transportation agencies to estimate TT. These include
Bluetooth and Wi-Fi identification detection, toll tag reader, in-pavement magnetic
detectors, automatic license plate reader, machine vision, radar equipment, inductive
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loops, crowdsourcing, and cell phone signal monitoring. A detailed description of these
technologies and best practices for TT implementation and data collection can be found
in [152][153]. A comprehensive study for evaluating various TT estimation
technologies was reported in [154]. The study showed that TT estimation accuracy
depends heavily on the average penetration rate. Each TT technology was shown to
have advantages and disadvantages (e.g. accuracy, coverage, cost, portability, and other
factors) that should be considered when designing a scheme to evaluate technology
reliability. Final conclusions indicated that the most overall reliable TT estimation can
be achieved by employing multi-sensor technologies.

A limited number of publications focus on vehicle re-identification using MAG.
Most investigations implement re-identification algorithms based on multi-sensor array.
This technology is used to overcome the degradation in re-identification rate due to
change of vehicle orientation or speed between the two detection points. The most
notable work centered on TT was proposed by the University of California, Berkeley
[155], [156] Researchers matched vehicle magnetic signatures obtained from an array of
seven wireless magnetic sensors positioned perpendicular to the road lane. A dynamic-
time warping algorithm (DTW) was used to calculate the distance between VMS
obtained from the sensor array at upstream point with another sensor array downstream.
Minimum distance was selected and compared to a threshold statistically determined
individually for each location (i.e., mean and standard deviation serve as functions of
algorithm parameters that must be determined beforehand for each site, primarily
because traffic characteristics vary from place to place). The test was conducted on a

road with a 0.9-mile distance between the two points. A 64~74% matching rate, 15%
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mismatching rate in free flow, and 20~60% mismatching rate during congestion was
found. A vehicle re-identification algorithm based on multi-sensor correlation was also
proposed in [157]. The correlation of signatures from multiple sensor nodes was
calculated, and a maximum likelihood estimation was applied to fuse data from multiple
sensors to correct errors due to vehicle trajectory or speed change. A 77.6% to 92.8%
re-identification rate was reported. In [158], Euclidean distances between VMS
collected using several three-axis magnetic sensors at a sampling rate of 200Hz was
implemented from vehicle re-identification. Ten sensors were fixed on a 0.6m wide
plastic plate in the lane center. The algorithm was tested on only 25 vehicles. A
90~100% re-identification rate was reported.
7.5 Development of Vehicle Re-l1dentification Algorithm using MAG

Vehicle re-identification provides realization on the link TT distribution,
TTyni = {TTy, TT,, ..., TT,}, between two detection points (i.e., original and
destination) of an individual path. TT of a vehicle i between two detection points,
namely Upstream (u) and Downstream (d), can be simply found using Eq. 7-18, where
Ta and Tp are the time of arrival and departure, respectively. Total and average TT for n
vehicles traveled over link segment s within time window W; is given by Eq. 7-19 and

Eq. 7-20, respectively.

TTa = TL@) — Ti () = THE) — TA®) Eq. 7-18
TTyoar = ) (TH0) = TE()) £q. 7-19
k=1
i (T4 - TEW))
TTavg = n Eq. 7-20
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Vehicle re-identification using MAG is dependent upon matching an individual
vehicle signature at two detection points. In this work, two models were developed,
namely, Thresholding and Majority Voting, for vehicle re-identification based on
matching VMS from a single MAG.

Vehicle re-identification in both models involves three high-level steps, each
consisting of several low-level steps. The first high-level step is VMS processing, which
includes time coding, signal smoothing, magnitude computation, signal windowing, and
amplitude normalization. The second step includes unique features extraction. The third
step is the matching process, where unique features being extracted from a VMS at the
downstream node is compared to a buffer of unique features for vehicles detected at the
upstream node. Both upstream and downstream nodes are globally synchronized to the
same reference clock (i.e., GPS).

7.5.1 Vehicle Magnetic Signature Processing

Vehicle Magnetic Signature Processing will apply on VMS collected at both

detection points. The magnetic signature for each vehicle S&fy) : {kT(Ni), ...,kT(Nl,)} IS
A D

simply extracted by means of arrival and departure times at each detection point, where
Vn is vehicle number; BY is geomagnetic flux magnitude sampled using MAG in three
axles—y = {x,y, z} € R3; and k is number of samples in VMS at detection node N;.
Observing vehicle signatures revealed that moments of vehicle arrival and
departure create transient state in the signal, which appear as small peaks that cause a
larger feature set and could possibly degrade re-identification algorithm performance. A
windowing is applied to remove transient state samples from the right and left tails of

the signal, which represents 10msec of the signal at each tail.
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MAG was configured to run at 400Hz sampling rate, resulting in a significant
fluctuation in VMS. For a more consistent signal, it is highly recommended to apply a
smoothing algorithm on the signal using MAF, as in Eq. 7-21, to filter out fast signal
fluctuations that are not necessary for vehicle re-identification processes. M is the total
number of samples in a VMS. Using eight-point MAF was empirically found to be the
suitable setting for signal sampled at 400Hz. The smoothing algorithm has a significant
impact on feature extraction algorithm performance, hence, re-identification accuracy.

Once the signal is smoothed, signal magnitude Fw is computed using Eqg. 4-5.

M-1
Y 1 Y .
Striterea = M Z Spy e =05 y={xyz €R® Eq. 7-21
i=0

Because vehicle trajectory might not be identical at the two detection points, the
summation (Hy, ), difference (I, ), and ratio (R, ) of Séfx), as well as Slgfy) were also
calculated in this step (See Eq. 7-22). As stated in Chapter 5, MAG sensor x-axis was
alongside traffic direction; y-axis was perpendicular to traffic lane; and z-axis was
perpendicular to the ground pointing upward in all field test setups. Recalling “1.5.1
Magnetometer Sensor Theory of Operation” in Chapter 1, B,, vector is described using
seven components in the field coordinate plane (See Figure 1-2). Horizontal intensity H
is the magnitude of B* and B”. The ratio of B* and BYrepresents magnetic variation
between Geographic North and horizontal intensity. Considering these components can
solve the problem of changing vehicle trajectory between points to a certain level (e.g.,

relatively small change and MAG is not captured near the wheels).

B* BY

Hy, riterea = Slgn )+Slgn .
Eq. 7-22
B* BY
LVnFiltered = Sén ) S!Sn )
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BY B*
RVnFiltered = S}Sn )/Slgn .

Next, amplitude normalization is performed to individually rescale each signal,

including the magnitude Fwm, by the range of its elements prior to further calculations.
S‘S:M) was rescaled between [0, 1], as in Eq. 7-23, and signals S‘Sfx), 555"), séfx), Hy,,

Ly ,and Ry, were rescaled between [-1, +1], as in Eq. 7-24.

(Fum) : (Fm)
(Fm) _ SVnII:[iltered — min (SVnII:Iiltered)
SVnNormalized = S () Eq. 7-23
mnax VpFiltered )] — min ( VnFiltered
(BY) : (BY)
BY SVnFiltered —mn (SVnFiltered)
S =—-1+2 Eq. 7-24
VnNormalized S(By) ] S(By) '
max ( VnFiltered) —mn ( VnFiltered)

The result is seven normalized signals for each vehicle at each detection point (P),
as in Eq. 7-25, where (N) is either the upstream (u) or downstream (d) detection node;
Xy, Yy, and Z, is the normalized vector of measurements for a vehicle Vn on x-axis,

y-axis, and z-axis, respectively; and FMVnis the normalized vector of magnitude values.

S‘Sfy) and S‘SZM) are illustrated in Figure 7-16 and Figure 7-17, respectively; (a) raw

signal, (b) signals after smoothing, and (c) signals after normalization. HIE:'), LE,’Z), and

R‘(,’:) are depicted in Figure 7-18.

ng) = {x}i,
YV(:I) = vz
ZI(/,IX) = {z i'c=1
Eq. 7-25
Hg:’) = {hi}i‘(zl
LE/Z) = {li}le

N
Rl(ln) = {n; {'(=1

210



FMSZ) = {FMi}{';l

Raw Signature, Geomagnetic Field Components, Class 9

300 | { { T
_ ¢(Bx)
° Sve
_ gBy
3 S
‘2 B
E W V6
AV A
= WA AARA TN o S XA S caY =
z e \ WA
= o E
=
2
= -
300 \ I | | | |
0 50 100 150 200 250 300 350
Samples
300 Smoothed Signature, Geomagnetic Field Components, Class 9
T T T T
N B
/\ V6
g 200 - /\ N
= /\ \ V6
= L 7 \ . (Bz) |_|
5 100 j \x B e B si5
= R R A e - fi*i{X; SN
E \ L\~ \\ yan =
= L \ 7 -
= -100 \/
=
B 200 - .
300 \ \ | \ \ |
0 50 100 150 200 250 300 350
Samples
| Normalized Smoothed Signature, Geomagnetic Field Components, Class 9
\ \ \ \
. gBx
° Sy
gy
ERX s |
g B9
=) Ve
<
E 0 —
s}
=
=
=
s 05 _
=
-1
350

Samples

Figure 7-16 VMS components before and after smoothing and normalization
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Figure 7-17 VMS magnitude before and after smoothing and normalization
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Figure 7-18 VMS different combinations of B* and BY.

7.5.2 Features Extraction & Data Transformation

Vehicle magnetic signature (VMS) can be represented as a time series. Over the

last decades, a variety of algorithms have been proposed in literature for time series
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segmentation or representation. For example, authors in [159] used Perceptually
Important Points (PIP) to dynamically segment the price time series into subsequences
and then identify similar historical subsequences using Dynamic Time Warping (DTW).
The PIP process was first introduced and used for pattern matching of in financial
applications [160]. Piecewise Linear Representation (PLR) is another technique that is
widely used as an approximation of a time series (e.g., Electrocardiogram time series).
An extensive review and empirical comparison of several techniques for segmenting
time series can be reviewed in [160], [161].

In this work, PIP was used as data transformation to reduce the dimension of
VMS by preserving the salient points for each signal in Eq. 7-25. The extracted salient
points maintain the unique characteristics of signal while reducing the amount of data to
be processed or transferred from the sensor node to iAP.

To find PIP for a VMS, each point is compared with neighboring points. Given a
normalized signal Sg:'), which includes k sample point, we can say that S‘Sr’:') [k]is a
peak if its neighboring points within a moving window w at y-axle are smaller than its
value. Séﬁ')[k] is a valley if its neighboring points are larger than its value. The
algorithm also includes the first and last points of the VMS. The generated features
vector EV[i] includes the value of each PIP point (i), which represents variations in y

coordinate. The w value can be calculated using Eq. 7-27, where a is a coefficient that

was found experimentally.

peak, Sy Tk —w] < SPVTk] > Sp Tk + w]

EV =
valley, Sy [k —wl > SV [k] < 5[k +w]

Eq. 7-26
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a
max (ng)) — min (515:’)); a=6 Eq. 7-27

w =

The difference between consecutive PIP points, which represents variations in x
coordinate, was also taken into consideration to improve vehicle re-identification
accuracy in the event that signal amplitude is different at the two detection points (i.e.,
vehicle trajectory changed). Doing so eliminates the need for deploying more sensors
laterally, as proposed [155], [157], [158]. Spacing difference vector (TS) between PIP
points was calculated by taking the difference between PIP point indices.

Finally, Piecewise Linear Representation (PL) of the PIP points was found. PL
consists of slope values in [0, 1], which represent the linear relationship between
amplitude and spacing between PIP points.

The result of this step is three sets of features (i.e., EV[i], TS[i], and PL[i]), each
consisting of seven vectors (See Eq. 7-25), as in Eq. 7-28. The sets are computed for
each vehicle (Vn) at each detection point (N). Figure 7-19 and Figure 7-20 depict the PIP
points, spacing, and PL extracted from magnitude and geomagnetic field components
for a class 9 vehicle.

B = {BV(X(°) BV (r0), BV (250), BV (RL), BV (), BV (1), BV (RY))}
TS = {Ts(x), TS(4), TS (25), TS (F), s (H), TS(L9Y), TS(RY)}  Eq. 7-28

pLY = {PL(XI"), PL(%), PL(Z), PL(E("), PL(H"), PL(LSY), PL(REY) )
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Figure 7-20 Field components PIP, spacing, and PL

7.5.3 Matching Process
A large number of methods for calculating distance between two time series
signals X = [xq,x5,...,x,] and Y = [y3,¥,,...,¥,] In an n-dimensional space are

detailed in [160], [162]. Euclidean distance (See Eq. 7-29), Manhattan distance,
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Minkowski distance, Chebyshev distance, and Cross-correlation are among the most
common methods for calculating the distance between two signals. All methods align
the i-th point on a time series signal with the i-th point on the other signal. However,
they require compared signals X and Y of the same length (i.e., time normalization).
Moreover, the methods are sensitive to any change in trajectory and/or acceleration of a
vehicle overpassing sensors in a detection zone, primarily because disturbance to the
earth’s magnetic field is dependent upon the relative position of the vehicle to the
sensor’s detection zone, where any change in vehicle lateral position will cause
variations in VMS amplitude, hence, the number of points. This effect can be clearly

observed on the z-axis.

dist(X,Y) = IX = YIl = G —y)? + (g = y2)? + -+ (tn — y)?  EQ.7-29
Dynamic time warping (DTW) [163] is a non-linear alignment method measuring
similarity between two temporal time series sequences that might vary in speed (i.e.,
sequences are out of phase in the time axis). The DTW algorithm compresses or
expands in time to find optimal mapping between two signals so that their difference is
minimized.
To align two time series, C and Q, of lengths m and n, using DTW, an mxn
matrix is first constructed, where the i*"* and jt* element of the matrix contains the
distance dist(q; c;) between the two points g; and c;. The Euclidean distance

corresponds both to the alignment between points q; and ¢; (i.e., dist(q;c;) =

(ai - Cj)z)-
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Warping path W = {wy, ..., wy}. k™" element is defined as wy = (iy, i), and
max(m,n) < K <m+n—1 defines mapping between C and @, such that the
distance between them is minimized (See Eq. 7-30).

K
DTW(Q,C) = mvgn [Z dist(wk)] ;
k=1 Eq. 7-30
dist(wy) = dist(qik,cik) = (qik — cl-k)z

In reality, the signature matching process is performed within a time window that
matches vehicle signature detection at a downstream point with a number of signatures
in a candidate vehicle set detected by the upstream point. The matching process is
always one (in current time)-vs.-all (past time). The number of vehicles in a matching
window depends on traffic flow, distance, and segment low speed limit between
upstream and downstream points (See Table 7-17). The longer the distance, the larger
the number of vehicles in the window buffer and the less the re-identification rate. In
general, TT is estimated based on 0.5-mile spacing between detectors on urban roads
and 5- to 10-mile spacing between detectors on highways.

Table 7-17 Matching window size for different distances between detection points

Flow (VPH) 1200
Distance (mile) 0.50 1.00 5.00 10.00

Avg. Speed (mph) 20 40 30 50 40 70 50 80
Time Interval (Min) 15 075 2 12 75 43 12 15
Window Size (Vehicle) 30 15 40 24 150 86 240 150

In this work, the matching process implements DTW algorithm for calculating
distance (i.e., similarity) between corresponding extracted features at upstream and
downstream detection points. DTW is applied in a single-dimension manner, such that
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DTW distance is calculated for PIP feature vectors corresponding to x-axis at both
. L (dN) (uN) i

detectors (i.e., dist = DTW [EV(XVn ) EV(XVn )]) The same applies for other axles

and feature vectors. The smaller the dist(g;, c;), the more likely Q; and C; belong to the

same vehicle. Figure 7-21 illustrates extracted features and calculated distances between

upstream and downstream detection points for vehicle sample number 8.
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Figure 7-21 Extracted features at upstream and downstream for Vs
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The decision whether a calculated dist(q;,¢;) value can be classified as

“Identical” or “Different” can be made using one of two methods, namely Threshold-

based and Majority Voting-based re-identification. Figure 7-22 illustrates the re-

identification process for both methods.
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Figure 7-22 Re-identification algorithm block diagram

The first eight steps are applied for both methods; the only difference between

Threshold-based and Majority Voting-based algorithms is that the first implements a

decision threshold aq), to compare VMS distances and classify them into one of two
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classes, “ldentical” or “Different.” The Majority Voting-based algorithm makes a
decision based on maximum number of minimum distances for 21 features, requiring
more processing when compared to the Threshold-based method. Notably, re-
identification accuracy is much higher when using Majority VVoting-based algorithm.

7.5.3.1 Threshold-based Vehicle Matching

The objective of Threshold-based Vehicle Match is finding an efficient matching
function & for classifying a calculated distance dist(qi, cj) between upstream and
downstream points into “ldentical” (i.e., §(i) = 1) or “Different” (i.e., §(i) = 0), as in
Eq. 7-31. A statistical model of distance matrix between upstream and downstream

detection points is proposed in this study to find a decision threshold a,.

1; dist(qi, cj) < arp

Eqg. 7-31
0; dist(qic) > ar g

5(@) = {

To do so, a distance matrix Ag;g; IS constructed of all pairwise signature distances
dist(qi, cj) calculated between upstream and downstream detection points (See Eq.
7-32). M is the number of vehicles at upstream point; N is the number of vehicles at
downstream point; and O is the number of features. The dataset used in this study at
upstream and downstream included 5154 VMS matched using video images as a ground
truth. The dataset was collected from a highway during peak (congested) and free flow
hours. A feature wise rescaling step was performed to normalize A,;s: values calculated
for each feature between [0,1], as in Eq. 7-23. Next, arithmetic mean of smallest 12
distance values of 21 features for each dist(qi, cj) was found. Doing so reduced A ;¢
dimension into MxN, where dist(q; c;) has become the mean of the smallest 12

distance values found in Eqg. 7-28. This number was experimentally found based on a
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grid search (i.e., exhaustive search) approach. Figure 7-23 illustrates distance matrixes
for EV(FV(:’ )), TS(FV(:’ )), and PL(FV(:’ )). The distance matrix for the mean of the lowest

12 first features is illustrated in Figure 7-24.

dist(qi¢;), 5 1<M<i

Agist = Eq. 7-32
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Figure 7-23 Distance matrixes for EV(F&,'Z)), TS(FE,’Z)), and PL(F,(,?)
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Agise IS @ 2577x2577 matrix. Ag;s, diagonal, such that dist(q;,¢j) and V i = j,
consists of all pairwise matched vehicles (i.e., “ldentical”). The lower and higher
triangular parts of Ay, such that dist(qi,cj) and Vi # j, consist of all pairwise
“Different” vehicles.

Next, two histograms were extracted for “ldentical” and “Different” values of
Agise, @s depicted in Figure 7-25. In accordance with central limit theorem and law of
large numbers, distributions of “ldentical,” denoted by f, and “Different,” denoted by g,
statistically describe random variable corresponding to dist(qi, cj). Hence, these can be
approximated using Gaussian distribution models. Clearly, g consists of two
distributions, which can be attributed to the fact that the dataset includes a significant

number of trucks (e.g., classes 6, 7, 8, 9, and 10), where diSt(CIi, Cj) is larger between

VMS for class 2 or class 3 and VMS for trucks, compared to dist(qi, cj) between two
vehicles of the same class. To find an accurate and realistic approximation, GMM was
used to separate g into two distributions, g1 and gz, assuming both are normally
distributed, as depicted in Figure 7-25.

Statistically, there is no overlap between f and gz, as shown in in Figure 7-25 and
Table 7-18. These statistics were estimated based on a distribution f of 2577 “Identical”
pairs and distribution g of 6,638,352 “Different” pairs (See Eq. 7-33). Therefore, g2 is
not of interest for the developed model. Only f and g: are used to characterize the

distance matrix and find a7y; g1 will be denoted hereafter as g.
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Figure 7-25 The empirical distributions and their Gaussian approximations

Table 7-18 Statistical characteristics of fitted distributions

f 01 02
U 0.0169 0.0510 0.1105
0.0064 0.0089 0.0275
dist(q,c)  dist(quey) - dist(@y Casr)
Nasapimmrnay = | BEGE) At e distlay ) £q. 7-33
dist(qzs77,¢1)  dist(qas77,¢) -+ dist(qu577,Co577)

The objective was finding a;, that maximizes probability of correct matching and
minimizes probability of incorrect matching. In other words, a;, should not
compromise between correct and incorrect re-identification; rather it should minimize
false negative rate (FNR) (i.e., incorrect matching). FNR has significant impact on TT
reliability. The proposed algorithm estimates TT in real-time. A 50% re-identification

rate was found sufficient to accurately estimate a distribution of TT for a given route.
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To minimize FNR, ay, must be computed such that the probability of Type Il
error is zero (See Figure 7-26). Optimal threshold a;;, is empirically found by taking

the derivative of Eq. 7-34 and equating the outcome to 0.
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Figure 7-26 Illustration of different Errors for two overlapped distributions

P(FN) = f P(x|C,)P(Cy)dx = f (dist(g;, ¢;)|C;)P(Cy)dx
0

aTh

_ P(Cy) f _ (dist(qi ;) — ch) Eq. 7-34

exp
OcoV2m 208,

= P(C,)) = <1+ f[ . \/li”)
Cc2

Based on the statistical model in Eq. 7-34, which was estimated from distributions
of 2577 “Identical” pairs and 6,638,352 “Deferent” pairs. Subsequently, determining
“Identical” or “Different” can simply be made using Eq. 7-31.

Estimated value of a, was found to accurately model signature distances for
both urban roads and highways, as shown in Table 7-19. This is true for two reasons: 1)
statistical characteristics of fitted distributions are obtained from the mean of smallest
distance values for 21 unique features, which was empirically found to have less
overlap between “Identical” and “Different” distributions; and 2) ar, was chosen to

identify “Identical” classes at the cost of having unmatched vehicles, rather than
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compromising between correct and incorrect re-identification, which is highly
dependent upon traffic characteristics. Unmatched signatures in this case will be
considered “Different” or will be discarded after matching window time (e.g., W, >
TTay) 1S elapsed.

Re-identification performance was evaluated using six metrics, namely, 1) true
positive rate (TPR =TP/(TP + FN)): “ldentical” correctly identified as “ldentical”; 2)
false positive rate (FPR =FP/(FP+TN)): “Different” incorrectly identified as
“ldentical”; 3) true negative rate (TNR = TN /(TN + FP)): “Different” correctly identified
as “Different”; 4) false negative rate (FNR =FN/(TP + FN)): “ldentical” incorrectly
identified as “Different”; 5) positive predictive value (PPV =TP/(TP + FP)). the
probability that “ldentical” was truly identified as “ldentical”; and 6) negative
predictive value (NPV =TN/(TN + FN)): the probability that “Different” was truly
identified as “Different.” Table 7-19 presents Threshold-based re-identification results
for various window sizes. Narrowing the search window reduces FPR impact. When
search window includes 25 vehicles, an “Identical” decision is made when distance
between feature sets for a vehicle detected at downstream point and any vehicle in the
window meet the condition dist(g;, ¢;) < arp. In this case the probability that FN
occurs is less compared to a window size equal to 100 vehicles where probability of
having vehicles that have high similarity is much higher. Notably, vehicles in the

window will be discarded if no matching was found within the window specified time.
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Table 7-19 Threshold-based re-identification evaluation results

Evaluation Window Size (Vehicle)

Metric 25 50 100 500
TP/FP 211 43/2 80/3 321/9
TPR 100.0% 86.00% 80.00% 65.25%
TNR 84.00% 99.84% 99.92% 99.99%
FPR 0.330% 0.160% 0.080% 0.010%
FNR 16.00% 14.00% 21.00% 34.76%
PPV 95.45% 95.56% 95.18% 97.27%
NPV 98.68% 70.59% 99.58% 99.86%

7.5.3.2 Majority Voting-based Vehicle Matching

Unlike the Threshold-based algorithm described in the previous section, Voting-
based algorithms do not implement a decision threshold; rather the algorithms make a
decision as to which VMS in a window buffer should a current VMS be matched based
on maximum number of minimum distances calculated for the 21 features.

The algorithm simply compares the distance for M upstream VMS (gq;) in a
window to a downstream VMS (c;) just detected; stores the indices of minimum
distance values for each feature (I) of the 21 (0 = 21) in MX2 matrix A,,:. (See Eq.
7-35); and then votes for a matching decision based on maximum number of similar

indices. Figure 7-27 depicts indices of minimum distance of 21 features for 25 vehicles.
Apote(val;, idx;) = min (dist(qi, cj)l) ;Vje[1:M],VIe[1:0],i=1 Eq.7-35
If maximum number of similar indices Nyaxiax) < & then the vehicle will be
considered unmatched. 1f more than one VMS share the same Npax(iax), Which is a rare

case, then a decision is based on which VMS with the same Nyax(iax) has the smallest

val; mean in Aype.
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Figure 7-27 Indices of minimum distance of 21 features for 25 vehicles

Table 7-20 details evaluation results for various window sizes. Clearly, re-
identification accuracy was improved using Majority Voting-based algorithm. It is
worth mentioning that this method requires more processing power when compared to a
Threshold-based method. However, processing is not a concern if it occurs on the server
side, while dynamic programming can be used to optimize computation speed.

Table 7-20 Voting-based re-identification evaluation results

Evaluation Window Size (Vehicle)

Metric 25 50 100 250 500
Matched 25 50 97 239 451
Mismatched 0 0 0 1 3
Unmatched 0 0 3 10 46
Re-identification Rate 100% 100% 97% 95.6% 90.2%
Mismatching Rate 0% 0% 0% 0.4% 0.6%
Unmatching Rate 0% 0% 3% 4% 9.2%
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Chapter 8: CONCLUSION

8.1 Research Outcomes

With the approaching era of 10T (Internet of Things) and smart cities, market
demand will likely drive innovation toward more autonomous and self-powered
wireless sensors. Combining advancements in state-of-the-art ultra-low-power
embedded systems, smart physical sensors, WSN, and EH will enable fully autonomous
loT devices that remain operational—ideally without battery replacement—for decades.
This technological breakthrough is the key enabler for smart cities, smart homes, and
smart energy, among many other perspective innovations.

Real-time traffic monitoring systems play a major role in the transition toward
smart cities and more efficient ITS. Autonomous traffic sensing is at the heart of smart
cities infrastructure, wherein smart wireless sensors are used to measure traffic flow,
predict congestion, and adaptively control traffic routes. Such information enables a
more efficient use of resources and infrastructure.

This dissertation introduces the design, development, and implementation of a
novel, fully-autonomous, self-powered, intelligent wireless sensor for various traffic
surveillance applications. The sensor integrates state-of-the-art, embedded components,
featuring ultralow power, high-performance 32-bit embedded microcontroller, energy-
efficient wireless transceiver, smart embedded sensors (i.e., 3D MAG and ACCEL),
highly-accurate low-power embedded Global Positioning System (GPS) receiver, dual
data storage units, an ultralow power EH power management unit (PMU) with
maximum power point tracking (MPPT) and charge management controllers, battery

fuel gauge, wireless power charging receiver, and atmospheric sensors. All components

228



are managed by distinctive algorithms designed for implementation in various traffic
monitoring applications.

The developed sensor is portable, self-powered (e.g., primary battery and solar
cell), inexpensive (e.g., $30 per node), easy-to-install into highway surfaces, roadways,
or even roadsides without intrusive roadwork, and able to accurately detect, count,
estimate speed and length, classify, and re-identify vehicles in real-time. The sensor can
be used for short-term deployment (e.g., work zone safety, temporary roadway design
studies, traffic management in atypical situations such as evacuations) and long-term
deployment (e.g., traffic management, turn movement, collision avoidance).

A reliable and distinctive computationally efficient algorithm for real-time traffic
monitoring was developed, integrated, and validated. Optimization programming tasks
were applied to improve detection algorithm performance at higher sampling rates and
compensate for drift in the geomagnetic reference field. An algorithm for adaptive
compensation of RTC Frequency Drift resulting from variations in temperature was
implemented. Each sensor node relies on an onboard GPS module and RTC unit to
maintain an independent local clock that is globally synchronized to the GPS pulse-per-
second (PPS) signal. Wireless connectivity is not necessary for accurate iVCCS node
functioning. Time stamping, timekeeping, and failure recovery functions are enabled by
the MCU’s internal RTC unit, which is calibrated and aligned using the PPS signal. A
time-synchronization algorithm based on GPS-PPS signal was developed and evaluated.
Results indicated 2~4uSec consistent T-Sync accuracy among the internal RTC of

several nodes.
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Several field studies and evaluation tests were conducted during this research,
many of which were conducted in parking lots at the University of Oklahoma-Tulsa
campus. Eight additional field tests were conducted on highways and urban roads under
various traffic conditions throughout the state of Oklahoma. System performance
evaluation was conducted using real-time data, offline data, video images, and reports
from the highly accurate Roadrunner Kit 3.

Repeatability of VMS and consistency of MAG sensor output were investigated.
The objective was to find degree of similarity of several magnetic signatures produced
by multiple MAG sensors for the same vehicle under like-testing conditions. Cross-
correlation was used to measure the similarity of two VMS as a function of a time lag
applied to one or the other. A correlation coefficients matrix of VMS magnitudes
obtained from four sensor nodes was constructed. CDF for all pairwise combinations
revealed that most correlation coefficients range between 0.9 and 1, indicating high
similarity between sensor outputs across multiple nodes. Furthermore, the p-value
matrix returned insignificant p-values (i.e., 2e-138), which rejects the null hypothesis
and identifies significant correlations. Hence, each vehicle has a unique magnetic
signature that can be used for vehicle re-identification applications.

Three detection errors were observed during this study: 1) Misdetection error, in
which two successive vehicles at close proximity are grouped as one; 2) Double-
detection error, in which a long vehicle with insignificant ferrous composition in its
center is detected as two vehicles; and 3) False-detection error caused by an
interference from large trucks traveling in adjacent lanes. Both misdetection and

double-detection errors were reduced by using statistical analysis to find an optimal

230



holdover debounce timer (Hpt). Optimality was determined empirically. False-detection
error analysis showed insignificant interference effect on the z-axis. This observation
was used to reduce false detection by comparing the mean of vertical components to a
statistically determined threshold.

Vehicle detection and counting accuracy was evaluated using MAPE. Validation
studies showed MAPE between 0.4% and 0.7% for detection of all vehicle classes at
various traffic conditions and speeds in both roadside and roadway setups.

Speed estimation was evaluated using MAPE and RMSE, indicating 97.4782%
speed estimation accuracy with 2.9867mph MAPE and 2.5218% RMSE.

Two methods for vehicle classification using MAG are proposed, namely length-
based (LBVC) and magnetic signature-based vehicle classification (SBVC). Several
LBVC schemes were developed, implemented, and evaluated via machine learning
algorithms and probabilistic modeling of VML. A case study of Oklahoma
classification stations using wireless MAG sensors was performed. This study serves as
the first LBVC scheme for the state of Oklahoma; the intended purpose is
supplementing or replacing axle-based data collection methods. The developed LBVC
models are computationally efficient and can provide real-time data. The methodology
and work process proved to be adaptable, thus, can be of a great benefit for other states
and territories interested in developing LBVC schemes. This work can be extended for
gathering LBVC data using non-intrusive technologies, such as vision systems and
microwave radars. An LBVC evaluation study resulted in 97.6951% classification rate

when vehicles are binned into four groups based on their magnetic length.
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Two vehicle re-identification models based on matching VMS from a single
MAG were also developed. Features extraction was performed on each sensor node to
determine three sets of features for each normalized signal. These included Perceptually
Important Points (PIP), Time Spacing between consecutive PIP, and Piecewise Linear
Representation (PLR). Notably, the objective of data transformation is reducing the
dimensionality of the data while maintaining the unique characteristics of signal, thus,
reducing the amount of data processing or transfer from the sensor node to iAP. The
matching process implemented a DTW algorithm to calculate distance (i.e., similarity)
between corresponding extracted features at upstream and downstream detection points.
The decision whether a calculated distance value can be classified as “ldentical” or
“Different” was made using one of two methods, namely Threshold-based and Majority
Voting-based re-identification. A statistical model of distance matrix between upstream
and downstream detection points was proposed to determine a decision threshold that
maximizes the probability of correct matching and minimizes the probability of
incorrect matching. A majority voting-based algorithm makes a decision based on the
maximum number of minimum distances for 21 features, which requires more
processing when compared to a threshold-based method. Re-identification accuracy
depends on window size (i.e., the number of vehicles compared to one another).
Threshold-based re-identification evaluation results revealed 65.25%~100%
identification rate for the 25~500 vehicle window size. VVoting-based re-identification
evaluation results showed 90~100% identification rate for 25~500 vehicle window size.

System functionality testing revealed consistent behavior and accurate

performance that can be exploited for more advanced applications. System cost was
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estimated at less than $1000 for eight sensor nodes and an access point, meaning that
the system could be promoted as a replacement for expensive and invasive traditional
traffic surveillance systems that depend on piezoelectric sensors, magnetic loops, and
pneumatic tubes.
8.2 Future Work Plan

Currently, vehicle classification based on VMS collected using MAG is not
feasible for more than 5classes. The reasoning behind this conclusion centers on the fact
that each vehicle has a unique composition of furious materials causing a unique VMS.
Characteristics of VMS for vehicles of the same class are quite different. During this
research, several methods where exhausted, including neural networks and deep
learning. It is nearly impossible to cluster vehicles based on their classes by only
analyzing VMS. Hence, two approaches are proposed for more accurate vehicle
classification. The first takes advantage of the highly sensitive, low noise 3D
accelerometer sensor in iVCSSe, design and investigates sophisticated signal
processing and data analysis methods for fusing accelerometer and MAG data toward
achieving axle-based classification. In a late stage of this research work, measuring road
surface vertical acceleration using accelerometer for data collected from a sensor node
placed adjacent to the road demonstrated a clear indication of vehicle axle positions.
Exploiting this phenomenon to detect and count axles improves classification accuracy
and allows the measurement of several vehicle dynamics (e.g., axle spacing), given that
vehicle speed is known. The second approach proposes taking advantage of VMS

uniqueness for implementing a classification model based on encoding an enormous
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number of labeled VMS and storing them into a database. Euclidian distance measure
can be used to compare a real-time VMS with database and identify a class of vehicles.
Additionally, two areas of interest relative to this research are presented. These
include enabling a scalable implementation of the system’s wireless sensors network
through self-configuration; optimizing sensor node power consumption while
maximizing network lifetime by analyzing power consumption characteristics of a
sensor node; and then incorporating an energy-awareness algorithm to maintain high

performance and operation fidelity.
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1 ATxmegaAd ATXMEGAGB4A4U-MH QFN44 IC1 Atmel XMega A4 serie digikey $3.00 |ATXMEGA128A4U-MHRCT-ND
1 FXOS8700CQ FXOS8700CQ QFN-16_0.5MM IC6 FXOS8700CQ 6-Axis Se digikey $1.80 |FXOS8700CQR1CT-ND
1 MAX1704X MAX17043 TDFN-8 IC4 MAX17043/MAX17044: B digikey $1.20 [MAX17043G+T-ND
1 MicroSD USD-SOCKETNEW MICRO-SD-SOCKET-PP IC2 microSD Socket digikey $1.84 [101-00581-59-1-ND
1 TPS78333 TPS783XXS0T23-5 SOT23-5 IC3 Voltage Regulator digikey $0.92 [296-27178-1-ND
1 W25Q256FV W25QXXXS08-208 S0O08-208 IC5 SpiFlashR Memories w digikey $2.76  |W25Q128FVSIG-ND
1 BAT BAT NA BAT 3.7V/2000mA Li-Po Battery China $5.00 |NA
1 NA Shell NA NA Enclosure China $2.00 |NA
1 FR4 PCB Fabrication NA NA Printed Circuit Board China $0.25 |NA
1 Lead-Free PCB Assembly NA NA Assembly China $1.50 [NA
TOTAL $57.48
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Weather Sensing Module BOM

Qty Value Device Package Identifier Description Supplier Price Part number

1 NA LEDO0603 LED-0603 PW LEDs digikey $0.17 |475-2506-1-ND

2 NA M12-2MM 1X12-2MM J3,J4 Male Header 2mm digikey $0.77 |3M9330-ND

1 1.5K R-EU R0603 R4 RESISTOR, European s digikey $0.01 |311-1.50KHRCT-ND

4 100K R-EU R0603 R5, R6, R7, R27 RESISTOR, European s digikey $0.04 |311-100KHRCT-ND

11 100nF C-EUC603 C0603 % Hpm_a Mmpwom HMmOMw mm CAPACITOR, European digikey $0.50 [399-1096-1-ND

1 100pF C-EUC603 C0603 C11 CAPACITOR, European digikey $0.10 |399-8926-1-ND

3 10K R-EU R0603 R1,R2, R3 RESISTOR, European s digikey $0.10 |311-10.0KHRCT-ND

2 10uF CPOL-EUCT3216 CT3216 C4,C8 POLARIZED CAPACITOR, mouser $0.10 |74-TL3A106K016C1700
1 InF C-EUC603 C0603 C10 CAPACITOR, European digikey $0.10 [399-7835-1-ND

2 1uF CPOL-EUCT3216 CT3216 C9,C15 POLARIZED CAPACITOR, mouser $0.10 |74-TL3A105K035C6000
1 2K2 R-EU R0603 R15 RESISTOR, European s digikey $0.10 |[311-2.20KHRCT-ND

1 AS3935 AS3935 16LDMLPQ IC1 IC SENSOR LIGHTNING digikey $8.12 |AS3935-BQFTCT-ND
1 HTU21D HPP828E031 HTU21D IC3 Digital Relative Hum digikey $8.31 |223-1144-1-ND

1 MABS532-AE MADB532-AE COILCRAFT L1 MAB5532-AE; RFID Tran coilcraft $1.50 [MAS5532-AEB

1 MAX44009 MAX44009 6-UTDFN 1C6 Ambient Light Sensor digikey $3.57 |MAX44009EDT+TCT-ND
1 MAX4466 MAX4466SC70 SC70 1C2 Single gate rail-to- mouser $0.69 [700-MAXA4466EXKT

1 MPL3115A2LGA8 MPL3115A2LGA8 LGA8 IC4 Altimeter/Pressure S digikey $2.88 |MPL3115A2-ND

1 100K OHM 1% @ 25C NTC Thermistors * NTC NTC Thermistors digikey $0.90 [490-5631-ND

1 SPV0840LR5H SPV0840LR5H SPV0840LR5H IC7 Omnidirection bottom mouser $1.82 |721-SPV0840LR5H-B
1 TMP102 TMP102 SOT563 I1C5 12C degC temp sensor digikey $1.72 [296-26834-1-ND

1 TPS78333 TPS783XXS0OT23-5 SOT23-5 1C8 Voltage Regulator digikey $0.92 [296-27178-1-ND

1 FR4 PCB Fabrication NA NA Printed Circuit Board China $0.25 [NA

1 Lead-Free PCB Assembly NA NA Assembly China $1.00 [NA

TOTAL 33.77
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iVCCSe,

Description QTY/PCB |Ref Des Manufacturer Mfg P/N # Distributor | Distributor P/N #
GPS+Glonass Ceramic Chip Antenna 1 ANTL INPAQ Technology ACM4-5036-A1-CC-5 x ACM4-5036-A1-CC-5
CAP CER 0.1UF 16V X7R 0402 18 MwmﬁmewOMM MMHOMMmOMMmOMMmﬁMMnﬁNq Murata Electronics GRM155R71C104KA8B8) digikey 490-6328-6-ND

CAP CER 10UF 10V X5R 0603 5 C4, C8, C11, C32, C38 Murata Electronics GRM188R61A106MEGSD digikey 490-10475-6-ND

CAP CER 4.7UF 10V X75 0503 2 c8, €37 Murata Electronics GRM188C71A475KEL1D digikey  |490-11992-6-ND

CAP CER 10nF 10V X5R 0402 1 C13 Murata Electronics GRM155R61A103KA01D digikey 490-6296-6-ND

CAP CER 100UF 6.3V X6T 1206 1 cl4 Murata Electronics GRM31CD80J107ME3SL digikey 490-10525-6-ND

CAP CER 1UF 10V X7R 0603 9 C1s, C18, C20, C22, CB, C16, C17, C26, C21 |Murata Electronics GRM188R71A105KAB1D digikey 490-3899-6-ND

CAP CER 0.47UF 10V X7R 0603 1 c1s Murata Electronics GRM188R71A474KABLID digikey 490-6420-6-ND
Ferrite Bead 1 FB1 Murata Electronics BLM18KG331BH1D digikey 490-14030-2-ND
CONN HEADER .050" 6P0S PCB GOLD 1 1S Sullins Connector Solutions GRPBOG1IVWVN-RC 59014E-06-ND

2 Paositions Header, Shrouded Connector 0.032" (1.00mm) Surface Mount, Right Angle 2 18, 19 ST SMO02B-SRSS-TB{LF)(SN) 455-1802-5-ND

10 (8 + 2] Position Card Connector Secure Digital - microSD™ Surface Mount, Right Angle Gold 1 112 Hirose Electric DM3C-5F digikey HR1940CT-ND

Green 570nm LED Indication - Discrete 1.7V/2mA 0603 1 PW OSRAM Opto Semiconductors |LG L29K-F2)1-24-7 Digi-Key A75-3118-1-ND
Inductor LP54018-223MR 1 L1 coilcraft LP54018-223MRC coileraft LP54018-223MRC

RES SMD 1K OHM 1% 1/16W 0402 3 R1, R30, R31, R33 Yageo RCO402FR-071KL digikey 311-1.00KLRDKR-ND
RES SMD 10K OHM 1% 1/16W 0402 2 R2, R17 Yageo RCO402FR-0710KL igikey 311-10.0KLRCT-ND
RES SMD 47K OHM 1% 1/16W 0402 3 R3, R4, R16 Yageo RCO402FR-0747KL digikey 311-47.0KLRCT-ND
RES SMD 4.7M OHM 1% 1/16W 0402 1 RS Yageo CRCWO04024M70FKED digikey 541-4.70MLCT-ND
RES SMD 5.49M OHM 1% 1/16W 0402 3 R6, R7, RS Vishay 541-5.49MLDKR-ND igikey  |CRCWO4025MA9FKED
RES SMD 18M OHM 1% 1/16W 0402 1 R9 Yageo RC0402JR-0718ML-ND digikey RC0402JR-0718ML
RES SMD 100K OHM 1% 1/16W 0402 8 R10, R18, R19, R21, R22, R23, R24, R25 Yageo RCO402FR-07100KL digikey 311-100KLRDKR-ND
RES SMD 55.6K OHM 1% 1/16W 0402 1 R11 Yageo 311-56.0KLRDKR-ND digikey RCO402FR-0756KL
RES SMD 150K OHM 1% 1/16W 0402 1 R12 Yageo RCO402FR-07150KL digikey 311-150KLRDKR-ND
RES SMD 2.37M OHM 1% 1/16W 0402 1 R13 Vishay 541-2.37MLDKR-ND CRCW04022M37EKED
RES SMD 3.09M OHM 1% 1/16W 0402 1 R14 Wishay 541-3.09MLDKR-ND CRCWO04023MOSFKED
RES SMD 2.67M OHM 1% 1/16W 0402 1 R15 Vishay 541-2.67MLDKR-ND CRCWO04022M67FKED
RES SMD 15K OHM 1% 1/16W 0402 1 R20 Yageo RCO402FR-0715KL digikey 311-15.0KLRDKR-ND
RES SMD 18.2KOHM 0.5% 1/16W 0402 1 R26 Yageo RTO402DREO718K2L digikey 311-2235-6-ND

RES SMD 0.00HM JUMPER 1/16W 0402 1 R27 Yageo RC0D402JR-070RL digikey  |311-0.0JRDKR-ND

RES SMD 100 OHM 1% 1/16W 0402 2 R28, R29 Yageo RC0402FR-07100RL digikey 311-100LRDKR-ND
SWITCH TACTILE SPST-NO 0.05A 12V 3 51,52,53 Omron Electronics B3U-1000P igikey SW1020CT-ND
SIT1552A1-JE-DCC-32.768 1 u1 SITIME e digikey  [1473-1318-1-ND
MCU 32-bit STM32 ARM Cortex MO+ RISC 128KB Flash 2.5V/3.3V 32-Pin UFQFPN, -40 to 125 degC 1 u2 STMicroelactronics STM32L071KBUB arrow STM32L071KBUB
Ultralow Power Energy Harvesting PMU with MPPT, Charge Management and Input Power Monitor 1 u3 Analog Devices ADPS092ACPZ-1-R7 digikey ADPS092ACPZ-1-R7CT-ND
Very Low Quiescent Current, 150 mA, LDO Regulator, Industrial, S-pin 50T23 (UJ-5), Reel 1 u4 Analog Devices/TI TPS78233DDCT digikey 296-24120-1-ND
Ultra-Low Leakage Load Switch, TP522860DBVR 2 us, U7 Texas Instruments TPS22860DBVR digikey 296-43882-1-ND
ULTRA LOW POWER, System-Side Fuel Gauge with Dynamic Voltage Correlation, Battery Gas Gauge 1 us Texas Instruments BQ27621YZFR-G1A digikey 296-37460-1-ND
Digital Tri-axis Magnetometer/ Tri-axis Acceleromater 1 us Kionix KMXB2-1031 X KMXB2-1031

EMI Filter for Display Interface, 8 Channels, -40 to +85 degC, 16-pin WSON (DQD) 1 U9 Texas Instruments TPDSFOO3DADR 296-25803-1-ND
ULTRA LOW POWER, 64M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY 1 u10 Macronix MX25R6435FZAIHO 1092-1173-ND

ZigBee Wireless Module 1 Uil LG AWS161POCF b AWS161POCF
Ultra-Low 150nA, Ultra-Small Voltage Supervisor 2 U12, Ul4 Texas Instruments TPS3839L30DBZR digikey 296-35473-1-ND
Quectel L70 Compact GPS Module 1 ui3 Quectel L76L-M33 X L76L-M33
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Wireless Charging Receiver

Description QTY/PCB| RefDes |Manufacturer Mfg PIN # Distributor | Distributor PIN #
0.068pF +10% 50V Ceramic Capacitor X7R 0402 2 C1,C7 Murata Electronics GRM155R71HB33KEL4D  |Digi-Key 490-12709-6-ND
0.022pF +10% 16V Ceramic Capacitor X7R 0402 1 ca Murata Electronics GRM155R71C223KA01D |Digi-Key 490-3256-6-ND
0.022pF £10% 30V Ceramic Capacitor X7R 0402 2 C2,Cl4 Murata Electronics GRMI155R71H223KA12D |Digi-Key 480-3884-1-ND
0.047pF +10% 50V Ceramic Capacitor X7R 0402 1 C3 Murata Electronics GRM155R71H4A73KELAD |Digi-Key 490-10702-6-ND
0.47uF +10% 25V Ceramic Capacitor X5R 0402 2 C4,C15  |Murata Electronics GRT155RE61E474KE0LD  |Digi-Key 490-12269-6-ND
0.10uF £10% 10V Ceramic Capacitor X7R 0402 1 C5 Murata Electronics GRM155R71A104KAQ1ID |Digi-Key 490-6321-2-ND

A4, 7uF £10% 10V Ceramic Capacitor X5R 0402 2 Cce, C10 Murata Electronics ZRB15XRE1A4T75KEQLD Digi-Key 480-13252-6-ND
10000pF 5% 50V Ceramic Capacitor X7R 0402 2 C8,C13  |Murata Electronics GRM155R71H103JA88D |Digi-Key 490-7763-6-ND
1800pF +5% 50V Ceramic Capacitor X7R 0402 1 C11 Murata Electronics GRM155R71H182JA01D |Digi-Key 490-12535-6-ND
100pF +5% 50V Ceramic Capacitor COG, NPO 0402 1 c12 Murata Electronics GRM1555C1H101JA01D  |Digi-Key 490-5922-6-ND
Green 569nm LED Indication - Discrete 2.1V 0603 1 D1 Lite-On LTST-C1S50GKT Digi-Key 160-1133-1-ND

RES SMD 1.5k OHM 1% 1/16W 0402 1 R1 Yageo RCO402FR-071K5L Digi-Key 311-1.50KLRDKR-ND
RES SMD 2.43K OHM 1% 1/16W 0402 1 R2 Yageo RCO402FR-072K43L Digi-Key YAG3101DKR-ND
RES SMD 10K OHM 1% 1/16W 0402 1 R3 Yageo 311-10.0KLRDKR-ND Digi-Key RCO402FR-0710KL
RES 5MD 422 OHM 1% 1/16W 0402 1 R4 Yageo RCO402FR-07422RL Digi-Key YAG3158DKR-ND
RES SMD 200 OHM 1% 1/16W 0402 1 RS Yageo RCOA02FR-07200RL Digi-Key 311-200LRDKR-ND
RES SMD 20K OHM 1% 1/16W 0402 1 RE Yageo RCO402FR-0720KL Digi-Key 311-20.0KLRDKR-ND
Wireless Power Receiver PMIC 20-VOFN 1 Ul Texas Instruments BQS1050BRHLR Digi-Key 296-35066-2-ND
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APPENDIX C: IVCCSg2 DESIGN PROCESS
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