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Abstract 

Malaria is a worldwide health problem that affects two thirds of the world 

population and kills approximately one million people annually. Infecting Anopheline 

mosquitoes is the essential step for malaria transmission. However, the molecular 

mechanisms of Plasmodium invasion of the mosquito midgut have not been fully 

elucidated. We identified that the genetic polymorphisms of fibrinogen-related protein 1 

(FREP1) gene are significantly associated with Plasmodium falciparum infection in 

Anopheles gambiae and essential for P. berghei infection in An. gambiae. Moreover, we 

identified that FREP1 was a tetrameric oligomer and secreted outside of cells. Notably 

FREP1 bound to the mosquito midgut peritrophic matrix (PM) through direct 

interaction to Plasmodium ookinetes that invade mosquitoes. Disrupting FREP1 

expression by RNAi or blocking endogenous FREP1 by antibodies significantly (p ≤ 

0.01) inhibited Plasmodium infection in mosquito midguts. Based on these, we propose 

that FREP1 mediates Plasmodium invasion of Anopheles midguts.  

Furthermore, nine P. berghei proteins were identified as candidate FREP1 

binding partners (FBP) through pull-down experiments followed by mass spectrometry 

assays. We cloned these genes and expressed them in insect cells and E. coli. All insect 

cell-expressed recombinant FBPs interact with FREP1. To test the role of FBPs in 

malaria transmission, E. coli expressed recombinant proteins were injected into mice to 

generate polyclonal antibodies. Six FBPs turn out to be strongly immunogenic as 

evidenced from high specific titers in mouse serum. We will examine activities of these 

antibodies in inhibiting P. falciparum transmission to An. gambiae in vivo.  
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Besides FREP1-mediated pathway, multiple pathways are hypothesized to 

involving malaria transmission. Through computational approaches based on protein 

sequences and gene expression profiles, 95 An. gambiae genes were selected, and 15 of 

them were cloned and expressed in insect cells. Ten of the recombinant proteins bound 

to Plasmodium parasites. RNA interference assays confirmed four related to P. 

falciparum transmission to mosquitoes.  

Collectively, mosquito midgut FREP1, secreted from the epithelium and 

functioning as tetramers, mediates Plasmodium invasion via anchoring ookinetes to the 

mosquito PM and facilitates parasite penetration into the epithelium. Our newly 

identified mosquito midgut proteins including FREP1 and parasitic binding partners 

will enable us to limit malaria transmission with novel intervention strategies. 
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Chapter 1 : Introduction 

 

1.1 Life Cycle of Malaria in Mosquitoes 

Malaria is an infectious blood disease transmitted through the bite of a 

mosquito, and a mosquito is the essential vector for malaria transmission. Malaria 

parasites undergo complex developmental processes in both humans and mosquitoes to 

complete their life cycles. In the mosquito, malaria transmission begins with genus 

Plasmodium-infected blood from a human host entering into the mosquito midgut[1]. 

(Fig. 1-1) Within the mosquito midgut, exflagellated male microgametes that formed 30 

minutes after temperature decreases[2] and female macrogametes fuse to form diploid 

zygotes. Surviving zygotes further develop and transform into banana-shaped motile 

ookinetes that penetrate the mosquito midgut peritrophic matrix (PM) and the midgut 

epithelium sequentially. After penetration, ookinetes reside between the midgut 

epithelium and the midgut basal lamina, and grow into sporozoite-producing oocytes. 

Following the stream of hemolymph, sporozoites reach the mosquito salivary gland, and 

can be co-injected with the saliva into another human host when the mosquito takes the 

next blood meal. The dissertation focuses on parasites in mosquitoes.  
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Figure 1-1. The life cycle of the malaria parasites. 
[Clin Microbiol Rev] REF. 1 © (2001). 

1.2 Malaria Infection in Mosquito Midgut 

Infecting the mosquito midgut and completing an elaborate developmental 

course are the mandatory steps for malaria transmission. For millions of years, the co-

existence and co-evolution of the malaria parasites and mosquitoes indicate that 

mosquito has been selected as an optimal host by the malaria parasites over time. It’s 

well known from genetic and genomic analyses that host-pathogen molecular 

interactions are involved in the processes of malaria parasites invading and infecting 

mosquitoes [3, 4].  



3 

1.2.1 Plasmodium Survival in the Mosquito Midgut Lumen  

The mosquito midgut lumen, the first contact of malaria parasites in the 

mosquito, presents a hostile environment for malaria parasties, due to the presence of 

diverse digestive enzymes secreted from the mosquito midgut after a blood meal and  

the high luminal pH [5]. But as an evasive strategy, the parasites located within the 

center of the blood bolus may remain sufficiently protected with enough time to 

develop into enzyme-nonsusceptible ookinetes comparing to parasites located close to 

the periphery of the blood bolus [6]. However, not many studies regarding parasites and 

mosquito molecular interactions have been reported [7]. 

Once malaria parasites develop into ookinetes, they need to escape from the 

blood bolus and invade midguts. One proposed mechanism is that plasminogen, 

captured by ookinete surface-expressed enolase, is converted to active plasmin, which 

can then act as a serine protease to dissolve fibrin blood clots and facilitate parasite 

escape from the blood bolus [8]. The interaction between enolase and plasminogen is 

mediated by a unique six amino acid lysine motif in enolase recognizing the Kringle 

domains of plasminogen. The deletion of this interaction leads to a strong inhibition of 

oocyst formation, confirmed the essential role of enolase and plasmingogen for the 

parasite development in the mosquito [8]. 

1.2.2 Mosquito Midgut PM Barrier 

The peritrophic matrix (PM), a non-cellular chitin-containing membrane, is 

formed by secretory materials including chitin from mosquito epithelial cells after a 

blood meal and envelops blood in the midgut. The PM becomes distended by the 

ingested blood meal, constructing one of the major physical barriers to ookinetes 
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invasion. In order to cross the PM, the ookinetes secrete chitinase that digests the chitin-

containing PM, creating an opening to help invasion [9, 10]. However, other hydrolytic 

enzymes, aside from chitinase may also participate in this process [6]. As part of my 

dissertation work within the group of Dr. Jun Li, the first mosquito PM protein, FREP1, 

was identified to be involved in the process of ookinete invasion [11]. Using RNA 

interference-mediated knockdown methods to reduce FREP1 causes a significant 

reduction in oocysts formation in the mosquito midgut [12].  

Although other PM proteoglycans have been proposed to function as recognition 

sites for P. falciparum ookinetes [13], complete mechanisms of mosquito-ookinete 

interactions remain to be explored and potentially offers additional tools for malaria 

control.  

1.2.3 Penetrating the Mosquito Midgut Epithelium  

After parasites overcome the mosquito PM barrier, the malaria ookinetes must 

cross midgut epithelium. The midgut epithelium surface is lined with mucins, which are 

composed of complex glycoproteins and carbohydrate molecules. Previous 

investigations explored interaction  between ookinetes and mucin molecules [14, 15]. A 

mosquito midgut proteoglycan chondroitin sulfate, localized to the microvilli, was 

found to be essential for P. falciparum ookinetes invasion [16]. Further, when the 

microvillar protein An. gambiae aminopeptidase N (AgAPN1) was blocked with 

antibodies, both P. berghei and P. falciparum development was strongly inhibited [17]. 

These studies indicate that the role of microvillar mucins could be anti-malarial targets 

in blocking the development of malaria parasites within the mosquito host [6]. 
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Parasite-mosquito molecular interactions are involved in parasite penetration of 

mosquito midgut epithelium [18]. One of the notions would be the observation that 

feeding the SM1 peptide, a 12-amino acid peptide selected from a phage display library, 

to mosquitos specifically inhibits the invasion of the midgut epithelium by P. berghei 

ookinetes [19]. Another evidence is that the venom phospholipase A2 strongly inhibits 

the avian malaria parasite P. gallinaceum invasion of mosquito midgut epithelium [20]. 

Notably, transgenic mosquitoes that synthesize SM1 or phospholipase A2 into the 

midgut cause severely impaired Plasmodium invasion of the midgut [21, 22]. While 

each of these studies further validates the concept of interfering with parasite invasion 

by altering or blocking the midgut epithelium molecules, only one example has 

demonstrated the specific interaction of a malaria parasite ligand (Pvs25) with a 

mosquito midgut protein (calreticulin) [23].  This highlights a pressing need for further 

investigations into specific interactions with a long-term aim of halting the malaria 

cycle at mosquito host invasion.  

Many ookinete proteins are also involved in the ookinete invasion process. The 

reported proteins include CTRP, SOAP, CDPK3, MOAP, PPLP4-5, CelTOS and 

P28/P25 (Fig. 1-2A). Disruption of a circumsporozoite- and TRAP-related (CTRP) 

ookinete microneme protein from P. berghei shows significant reduced ookinete 

motility and, consequently, failure of invasion [24]. SOAP, a secreted ookinete adhesive 

protein, interacts strongly with mosquito laminin in yeast-two-hybrid assays and plays a 

role in ookinete-to-oocyst differentiation [25]. A P. berghei calcium-dependent protein 

kinase (CDPK3) regulates the ookinete access to and penetration of the midgut 

epithelial cell [26]. P. berghei membrane-attack ookinete protein, MOAP, plays an 
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essential role in ookinete midgut invasion as evidenced by a loss of midgut infectivity 

after MAOP gene disruption [27]. Similar to MOAP, perforin-like proteins 4 (PPLP4) 

from P. falciparum and PPLP5 from P. berghei have also been found to be required for 

mosquito midgut invasion in Anopheles stephensi and An. gambiae, respectively [28, 

29]. Targeted disruption of a novel cell-traversal protein for ookinetes and sporozoites 

(CelTOS) reduced parasites infectivity in mosquito hosts by approximately 200 folds 

[30]. By using single and double knockouts of P. berghei ookinete surface proteins (P28 

and P25), redundant functions of P25 and P28 have been shown previously, but the 

oocysts transformation in ookinetes lacking both proteins were significantly inhibited 

[31].  

In contrast to parasite proteins, mosquito host proteins required for midgut 

infection are not well characterized. Previously, only a few host proteins have been 

suggested to be involved in the process of ookinetes midgut invasion: annexin-like 

protein [32], carboxypepetidase B [33], and croquemort scavenger receptor homolog 

[34]. Therefore, further investigations for this particular stage are desperately needed 

for the elucidation of detailed molecular mechanisms. 
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Figure 1-2. Representation of malaria parasite molecules currently implicated 
infection in mosquito host invasion. 
Malaria parasite molecules involved in host mosquito midgut infectivity, as defined in 
the recent literature (see text). Molecules are listed either on the surface or cytosol for 
both malaria ookinete (A) and sporozoite (B). 
 

1.2.4 The Mosquito Midgut Basal Side and Anti-Plasmodium Defense  

To successfully infect the mosquito midgut, malaria parasites need to evade the 

mosquito’s immunosurveillance, especially after penetrating the midgut epithelium. 

Lacking adaptive immunity, mosquitoes rely on innate immunity for pathogen clearance. 

Membrane-bound pattern recognition receptors (PPRs) were believed to recognize 

malaria parasites and mediate downstream immune activation [35], and complement-

like defense was considered to be a major mosquito immune response within the 

hemolymph-circulating system, the hemocoel [35].  

The first molecule identified was immune deficiency (IMD) pathway-regulated 

thioester protein 1 (TEP1), which was suggested to recognize and bind to the ookinetes 

surface and mark the parasite for lysis and melanization [36]. TEP1 is not alone in this 

process. Two leucine-rich repeat (LRR) proteins, LRIM1 and APL1, stabilize each 

other prior to the interaction with TEP1 [37]. Interestingly, another member of LRR 
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domain-containing protein, LRRD7 (or APL2), has also been shown to have anti-

Plasmodium activity, although the molecular mechanism has yet been reported [38]. In 

defense, P. falciparum has been reported to take advantage of Pfs47 to evade the 

mosquito immune system by disrupting JNK signaling, which is a key mediator of 

antiplasmodial immunity downstream of the PRR activation [39, 40].  

Another important mosquito PRR group is the fibrinogen-related protein family 

(FREP or FBN). As the largest PRR gene family in An. gambiae (59 putative members), 

FREPs have been implicated in mosquito defense rather than blood coagulation. FBN9 

has been identified as one of the most potent anti-Plasmodium FREP proteins through 

direct interaction with both P. berghei and P. falciparum [41]. FBN39, another 

immunolectin, together with an MD2-like receptor (AgMDL1) have been shown to 

influence mosquito resistance to malaria, but specifically in regulating only resistance to 

P. falciparum [38]. A polymorphism within FBN30, also known as FREP8, has also 

been linked to the inhibition of An. gambiae parasite infection through genome-wide 

association studies [11]. 

Melanization, as a ubiquitous insect immune response, is utilized by mosquitoes 

for anti-Plasmodium defense [42]. Melanizing malaria parasites is one big component 

of host innate immunity. After being melanized, malaria ookinetes are isolated from 

their surroundings and eventually undergo lysis. However, a mosquito C-type lectin, 

CTL4, has been shown to facilitate the development of P. berghei in An. gambaie 

through inhibiting melanization [43].  

Interestingly, studies on serine protease inhibitors (serpins, SRPN) identified 

two proteins, SRPN2 and SRPN6, which showed complete opposite functions. SRPN2 
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can facilitate midgut invasion by the malaria parasite P. berghei [44], in contrast, 

SRPN6 as an immune responsive protein was found to mediate mosquito defense 

against malaria parasites [45]. 

1.3 Malaria Vector Control  

Malaria transmission requires mosquitoes as a vector to progress through the 

parasite life cycles. Malaria intervention strategies have identified that mosquito midgut 

infection is a major bottleneck for malaria transmission [46]. While developing within 

mosquito midgut, malaria parasites encounter significant challenges, including physical 

barriers, mosquito active immune responses, digestive enzymes, and residing gut 

microbiota. These factors result in a thousand-fold reduction of parasites [35] (Fig. 1-3). 

This bottleneck during midgut mosquito infection has been used to develop anti-malaria 

strategies. 

 

Figure 1-3. Bottleneck of malaria transmission in mosquito midgut. 
Malaria parasites encounter a severe bottleneck in the mosquito midgut during the 
transmission cycle. Numbers shown in the figure are relative parasite quantification 
based on a previously published paper [18]. 
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1.3.1 Anti-Malarial Drug Development and Issues 

The traditional approach to develop anti-malarial drugs is to target parasites in 

malaria patients. The two most pervasive antimalarial drugs are artemisinin and 

chloroquine. Both drugs inhibit parasite growth through blockage of utilizing 

hemoglobin as a nutrient. However, the detailed molecular mechanisms of the two 

drugs still need further investigation [47]. Given the fact that parasites generation 

passages are fairly fast (typically a couple weeks), the emergence of drug–resistant 

mutations can be picked up rapidly within the population. Artemisinin resistance in 

southeast Asia was first reported in 2008 and then subsequently confirmed in other 

areas [48]. To circumvent this challenge while developing long-lasting and high-

efficacy anti-malarial drugs, other novel or combined therapies are required. 

Developing novel drugs against parasites in humans is challenging due to the significant 

cost (billions of dollars) and vast timeframe (typically more than a decade). In contrast, 

the bottleneck of malaria transmission in the mosquito host has been considered a 

promising target for anti-malaria drug development. Multiple invasion processes in 

mosquitoes are vital to parasites’ survival and consequently proteins responsible for 

invasion are potential candidate drug targets. These drug-targeting proteins can be 

categorized based on the 3 stages of the invasion cycle they inhibit: lumen stage, midgut 

invasion stage, and salivary gland invasion stage. 

Since interactions between plasminogen and parasites enolase play critical roles 

to help parasites escape from the blood bolus, compounds that can disrupt this 

interaction would possibly sequester the parasites forever inside of the clotted blood and 

stop transmission at the lumen stage [8]. Targeting the process of ookinete PM invasion, 
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a fungal library-based high throughput screening study conducted by Prof. Li et al. 

(2015) identified one active antimalarial drug, p-orlandin, which reduced the prevalence 

of P. falciparum infection in An. gambiae by half with a drug concentration ≥ 8ug/ml 

[49]. The molecular target of this screening approach is a mosquito midgut PM protein, 

FREP1, discovered to mediate parasite invasion of the PM [12] (Fig. 1-4). Moreover, as 

summarized in section 1.2.3, other ookinete surface molecules and/or mosquito proteins 

showed indispensable roles during parasite midgut epithelium invasion (e. g. 

chondroitin sulfate, AgAPN1, CTRP, SOAP, CDPK3, MOAP, PPLP4-5, CelTOS, 

P28/P25, annexin-like protein, carboxypepetidase B); these molecules could also be 

exploited as potential drug targets. The development of antimalarial drugs that can 

target different stages of mosquito invasion, however, requires more active investigation. 

 

 

Figure 1-4. Proposed working model to illustrate mosquito midgut FREP1 
mediating Plasmodium parasites invading the peritrophic matrix (PM). 
Invasion of the mosquito midgut by the Plasmodium ookinete is mediated by FREP1. 
Interactions between FREP1 and FBPs can be interrupted by either anti-FREP1 
antibodies or p-orlandin, suggesting potential mosquito host anti-malarial intervention 
strategies.  
[J Biol Chem] REF. 12 © (2015). 
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Current approaches to antimalarial drugs development include high throughput 

screening from drug libraries and structure-based drug synthesis/design based on known 

anti-malarial compounds. Due to the fact that drug chemosynthesis processes typically 

take years to conduct and evaluate, robot-assisted high throughput technologies have 

recently been developed. For developing mosquito-based malaria prevention drugs, 

high throughput techniques would be the mainstream methods and first choice as they 

are less labor intensive and timesaving. For example, p-orlandin discovery process 

lasted less a year once the mechanism of its target FREP1 was explored [49]. The bases 

of performing high throughput drug discovery are target identification and selection, 

where reliability, efficiency and specificity of the interaction must all be evaluated.  

1.3.2 Transmission Blocking Vaccine and Obstacles 

 Vaccines are strong and efficient tools to combat diseases. Numerous efficient 

vaccines have been developed and have saved billions of human lives. The concept of 

vaccination was introduced late in the 18th Century; poliovirus and yellow fever 

vaccines were developed in the 1920s; chickenpox vaccine was developed in the 1950s 

and hepatitis A/B vaccines were developed during the last half-century (Wikipedia, 

Vaccine). However, there are still many diseases that are difficult to target, for example, 

no effective vaccine for malaria thus far. 

It is very difficult to develop effective malaria vaccines because of its low 

immunogenicity. Malaria vaccines directed against a single parasites antigen in human 

hosts are usually less efficient and greater likelihood for acquired resistance [50]. 

Transmission blocking vaccines (TBV), however, through targeting molecules that are 

unique to mosquitoes and sexual-stage parasites seems more promising as of the 
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transmission bottleneck in the mosquito midguts (Fig. 1-3). Antibodies against 

interacting molecules required for invasion (from mosquito and/or parasites) may block 

the development or invasion of malaria parasites in the mosquito midguts. FREP1, as 

the first discovered TBV target in the mosquito midgut PM, has shown its potential as a 

broad spectrum malaria TBV target after testing its protection of P. berghei/P. 

falciparum and P. vivax infection on An. gambiae and An. dirus, respectively [12] (And 

unpublished data). Other promising TBV targets involving mosquito midgut proteins 

are SM1/AgAPN1 [17, 51] and carboxypeptidase B [33, 52]. Mice immunized with 

recombinant P. falciparum enolase show protection against parasites infection, 

indicating enolase can also be exploited as potential protective antigen [53, 54]. Other 

parasite surface proteins with the prefix pfs or pbs, have been reported as TBV 

candidates, including a Phase 1 clinical trial Pfs25/Pvs25 [55]. 

As noted above, vaccines directed against a single midgut antigen may be not 

enough to completely abrogate parasites. Developing chimeric or poly antigenic targets 

may therefore prove to be more effective TBV targeting strategies. Sporozoites that 

evade TBV may multiple rapidly, giving rise to thousands of merozoites in just a few 

days. Therefore, ideal TBV vaccines would require being safe, efficacious and long-

lived, with a lengthy protection time after a single immunization. Although these 

challenges will not be easy to achieve [50], transmission blocking vaccine development 

will be a necessary addition to current mechanisms of malaria control.   

To summarize, we have seen significant advances in the field of mosquito-based 

malaria control in terms of both mosquito-malaria interacting molecular mechanisms 

and the development of intervention strategies. As mechanisms mediating parasite 
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development in mosquitoes are better understood, the transmission of malaria can be 

further limited through the combination of both TBVs and anti-malarial drugs.  

However, it remains too early to be optimistic, as myriad challenges and unforeseen 

setbacks come along the research road. The main challenge, again, is an incomplete 

understanding of the molecular interactions between parasites and mosquitoes, which 

has hindered the progress of malaria control for decades.  
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Chapter 2 : Mosquito Midgut FREP1 Mediates Plasmodium Invasion† 

 

2.1 Introduction 

Malaria remains a global public health crisis, and Anopheline mosquitoes 

transmit malaria parasites, of which P. falciparum is the most dangerous one [56]. 

Female mosquitoes need to feed on blood for egg production [57]. Feeding on 

Plasmodium-infected blood can result in the ingestion of male and female haploid 

gametocytes that fuse to form diploid ookinetes, a process that initiates Plasmodium 

infection of the mosquito vector. Ookinetes start invading mosquito midgut epithelial 

cells between 12 and 24 h after a blood meal feeding [58]. Un-fused gametocytes and 

ookinetes located near the periphery of the blood bolus in the mosquito midgut are 

susceptible to attacks by diverse digestive proteases and bacteria [6, 59, 60], whereas 

gametocytes and ookinetes inside the blood bolus are protected by blood. However, 

mature ookinetes must cross and exit the blood bolus to initiate invasion of the midgut 

epithelium. Blood feeding regulates mosquito gene expression [61, 62] and stimulates 

the formation of the peritrophic matrix (PM) within the midgut [63]. The newly formed 

PM completely surrounds the ingested blood, separating the blood bolus from secretory 

midgut epithelial cells, providing a second physical barrier that limits the infection by 

pathogens co-ingested with the blood meal [64]. The PM is composed of 3–13% chitin 

microfibrils and is embedded with many known [58] and unknown proteins [65]. 

Notably, when the ookinetes are mature 12 h after the blood meal [63], the PM also 

becomes visible in the midgut lumen. To infect mosquitoes, the motile ookinetes must 
                                                
† This work has been published on the Journal of Biological Chemistry. Zhang, G., et al., Anopheles 
Midgut FREP1 Mediates Plasmodium Invasion. J Biol Chem, 2015. 290(27): p. 16490-501. DOI: 
10.1074/jbc.M114.623165. 
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sequentially attach to and penetrate the PM and the midgut epithelium [18]. At present, 

the detailed molecular mechanisms involved in ookinete attachment to and penetration 

of the PM and the subsequent midgut invasion processes are unclear. 

We recently identified a mosquito midgut protein, fibrinogen-related protein 1 

(FREP1) that is implicated in Plasmodium infection in mosquitoes [11]. Specific 

genetic polymorphisms in FREP1 are significantly associated with P. falciparum 

infection intensity levels in wild An. gambiae populations from Kenya. The FREP1 is a 

member of the fibrinogen-related protein family (FREPs or FBNs) that contains a 

highly conserved C-terminal interacting fibrinogen-like (FBN) domain. In vertebrates, 

fibrinogen molecules usually associate as hexamers and are comprised of two sets of 

disulfide-bridged α, β, and γ chains that participate as a principal component of both 

cellular and fluid coagulation [66]. In invertebrates, FREPs/FBNs are common pattern 

recognition receptors [67, 68] responsible mainly for initiating innate immune responses 

[69]. For instance, tachylectin proteins in the horseshoe crab regulate host defense by 

recognizing bacterial lipopolysaccharides [70]. Previous work examining the role and 

function of FREP/FBN family members in Anopheles mosquitoes has shown that two 

family members, FBN9 and FBN30, appear to restrict Plasmodium infection of midgut 

epithelial cells. Silencing the expression of either FBN9 or FBN30 in mosquitoes 

increased Plasmodium infection [11, 41]. Here, we report the role and function of a 

third FREP/FBN family member, FREP1, during P. falciparum infection of Anopheles 

mosquitoes. Our genetic and biochemical assays reveal that FREP1 functions as a 

critical molecular anchor in the PM that facilitates Plasmodium invasion and infection 

of mosquito midguts. In contrast to FBN9 and FBN30 that inhibit Plasmodium 
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infection, our results show that FREP1 is an important host factor that promotes 

infection of mosquito midguts by the major human pathogen, P. falciparum. 

Collectively, our data reveal new insight into Plasmodium-Anopheles interactions and 

identify FREP1 as a promising transmission-blocking target. 

2.2 Experimental Procedures 

2.2.1 Rearing An. gambiae Mosquitoes 

An. gambiae G3 strain was maintained at 27°C, 80% humidity with a 12-h 

day/night cycle. Larvae were reared on ground KOI fish food supplements (~0.1 

mg/larvae per day). Adult mosquitoes were maintained with 8% sucrose and fed on 

ketamine/xylazine-anesthetized mice for egg production. 

2.2.2 Expressing Recombinant FREP1 in Insect Cells 

The complete FREP1 coding sequence was PCR amplified using primers shown 

in Table 2-1 from an adult An. gambiae cDNA library. Products were cloned into 

plasmid pIB/V5-His (Life Technologies) to generate pIB-FREP1 (encoding FREP1) 

and pIB-FREP1-His (encoding FREP1 with a 6×His tag) expression constructs. 

Constructs were amplified in E. coli DH5α and then purified with endotoxin-free 

plasmid preparation kits (Sigma). Cabbage looper ovarian cell-derived High Five cells 

[71] were used to express recombinant FREP1 according to the manufacturer’s 

instructions [72]. In brief, endotoxin-free plasmids were mixed with Cellfectin® 

Reagent (1 μl of Cellfectin/μg of plasmids, Invitrogen) in 5–6 ml of Express Five® SFM 

medium (Invitrogen). Cells were cultured in 25 cm2 cell culture flasks (Greiner Bio-

One, Monroe, NC) for 48 h at 27°C. Medium and cells were separated by centrifugation 

at 300 ×	g for 5 min. The proteins in the medium were concentrated using Amicon® 
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ULTRA-4 Centrifugal Filter Devices (Milipore, Billerica, MA) by centrifugation at 

5,000 ×	g for 10 min. The 6×His-tagged FREP1 was purified using a Ni-NTA column 

using a standard protocol [73]. In total, 0.3 mg of insect cell expressed recombinant 

FREP1 was purified from 50 ml of culture medium with an initial amount of ~1.0 mg of 

FREP1 in culture supernatant (estimated based on SDS-PAGE). The yield was ~30%. 

 
Table 2-1. FREP1-related PCR primers 
 

Purpose Primer 
Name Primer sequence 

In vitro 
synthesis of 

FREP1 
dsRNA 

Forward 5’- TAATACGACTCACTATAGGAGCTCGAGGTGAAGCAGAG-3’ 

Reverse 5’-TAATACGACTCACTATAGGTTCTCCAGCCGGTTGTGT-3’ 

Verify 
FREP1 
mRNA 

expression 

Forward 5’-ACAGGGCAAGTTCGAGAAGA-3’ 

Reverse 5’-AAGTCAACCGTACCGTCCTG-3’ 

AgS7 gene Forward 5’-GGCGATCATCATCTACGTGC-3’ 
Reverse 5’- GTAGCTGCTGCAAACTTCGG-3’ 

In vitro 
synthesis of 

GFP 
dsRNA 

Forward 5’-TAATACGACTCACTATAGGCAAGTTTGAAGGTGATACCC-3’ 

Reverse 5’-TAATACGACTCACTATAGGCTTTTCGTTGGGATCTTTCG-3’ 

Clone 
FREP1 

gene into 
pQE30 

Forward 5’-ACCCGGGCACTGCCCTGAACGGTGCAG-3’ 

Reverse 5'-GGCAAGCTTCGCGAACGTCGGCACAGTC-3’ 

Clone 
FREP1 

gene into 
pIB/V5-His 

Forward 5’-TCAAAGCTTCACCATGGTGAATTCATTCGTGTCG-3’ 

Reverse 5’-ACTCTAGATTACGCGAACGTCGGCACAGTCGTG-3’ 

Note: The italic and underlined sequences are restriction recognition sites. The underlined sequences are 
T7 promoter. The bold sequence is Kozak consensus sequences. 
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2.2.3 Gel Filtration Chromatography to Determine the FREP1 Size 

Using standard protocols [74], 0.03–1.0 mg of purified High Five-expressed 

recombinant FREP1 in 0.1 ml of 1×PBS with or without 0.1% Triton X-100 was 

subjected to fast protein liquid chromatography gel filtration (Bio-Rad). Sephadex G-

200 columns (30 cm in length, 1.0 cm in diameter, 5 to 600 kDa resolution) were used 

with flow rates regulated to 0.2 ml/min. The void volume (V0) of this column is about 

8.0 ml, and the total elution volume (Vt) is about 24.0 ml. Fractions of ~0.1 ml were 

collected. Absorbance (A280) was monitored constantly, and ELISA was used to detect 

recombinant FREP1 in each fraction. Briefly, 50 μl of sample from each fraction was 

coated per well onto an immunoGrade microplate (Brand, Wertheim, Germany) and 

incubated overnight at 4°C. Wells were blocked for 1.5 h with 100 μl of 1.0% BSA in 

1×PBS (BSA-PBS), followed by sequential incubation for 1 h with 100 μl of anti-

FREP1 antibody (diluted 5,000-fold in 0.2% BSA-PBS to a concentration of 0.1 μg/ml) 

and then 1 h in 100 μl of alkaline phosphatase conjugated anti-rabbit IgG (Sigma, 

1:20,000 dilution with 0.2% BSA-PBS). Wells were washed three times with PBST 

(0.2% Tween 20 in 1×PBS) between incubations. Wells were developed with 100 μl of 

p-nitrophenyl phosphate solution (Sigma). When colors in wells were visible, the 

optical density absorbance at 405 nm was measured. A set of molecular weight 

standards was used to establish standard curves of molecular masses for the gel 

filtration columns (aprotinin (6.5 kDa), ribonuclease A (13.7 kDa), carbonic anhydrase 

(29 kDa), canalbumin (75 kDa), and ferritin (440 kDa)). The elution (retention) 

volumes were measured to be 21.05, 18.34, 16.91, 13.65, and 9.38 ml, respectively. The 

linear regression equation of standard curve based on these standards was y=-6.32x + 
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44.86, where x is log10 transformed molecular mass in daltons and y is elution volume 

in milliliters. The correlation coefficient between x and y was 0.99. 

2.2.4 Preparation of P. falciparum Gametocytes and Ookinetes 

P. falciparum parasites (NF54 strain from MR4) were propagated in O+ fresh 

human blood (4% red blood cells (RBC), 0.25-0.5% parasitemia). Cultures were 

maintained in 6-well plates (Corning Inc., Costar) with 5.0 ml of complete RPMI 1640 

medium supplemented with 10% heat-inactivated human AB type serum (Interstate 

blood bank, Memphis, TN) and 12.5 μg/ml of hypoxanthine. The plates were 

maintained under 37°C in a candle jar [75] and the medium was replaced daily until 

days 15–17. The parasitemia or gametocytemia was checked every other day by Giemsa 

staining of thin blood smears. For ookinete enrichment, P. falciparum cultures 

harboring stage V gametocytes were diluted 10-fold in complete RPMI 1640 without 

sodium bicarbonate and incubated at room temperature for 24 h as described [76]. P. 

falciparum culturing and infection experiments were conducted in the biosafety level 2 

(BSL2) laboratory at the University of Oklahoma. 

2.2.5 Indirect Immunofluorescence Assays (IFA) to Examine the Binding Between 

Parasites and Insect Cell-expressed Recombinant FREP1 

Standard IFA was performed as described previously [77]. In brief, P. 

falciparum cultures were deposited on coverslips (Fisher Scientific). Cells and parasites 

were immediately fixed in 4% paraformaldehyde in 1×PBS at room temperature for 30 

min, which preserved intact (non-permeabilized) cell membranes. Cells were then 

sequentially incubated with 100 mM glycine in 1×PBS for 20 min, 0.2% bovine serum 

albumin (BSA) in 1×PBS for 90 min, High Five cell-expressed FREP1 (10 μg/ml) in 
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0.2% BSA-PBS for 2 h, enhancer (Alexa Fluor® 594 goat anti-mouse SFX kit, 

Invitrogen) for 30 min, 5 μg/ml of anti-FREP1 antibody in 1×PBS containing 0.2% 

BSA for 1 h, and 2 μg/ml of secondary antibody (Alexa Fluor® 594 goat anti-rabbit 

antibody, in 1×PBS containing 0.2% BSA, Invitrogen) for 30 min in the dark. Between 

each incubation, the cells were washed 3 times for 3 min in 1×PBS containing 0.2% 

BSA. Coverslips were rinsed in distilled water for 20 s and mounted on glass slides 

using 50 μl of Vectashield mounting media (Vector Laboratories, Burlingame, CA). 

Cell staining was examined using a Nikon Eclipse Ti-S fluorescence microscope. The 

fluorescence (pixel) intensity was measured as described above. The fluorescence 

intensity of a target region of an image was calculated by subtracting the mean 

background fluorescence intensity (gray values) from the mean target fluorescence 

intensity (gray values). The fluorescence intensity values from three independent 

experiments or three controls were measured to calculate the mean ± S.D. 

2.2.6 Binding Assay Between FREP1 and Midgut PM by ELISA 

Three- to five-day-old mosquitoes were fed on anesthetized mice and then 

maintained with 8% sugar. About 18 h after the blood meal, the engorged mosquitoes 

were dissected in 1×PBS supplemented with protease inhibitors (PBSI) (Pierce Protease 

Inhibitor Mini Tablets, EDTA-free, Thermo Scientific, Rock- ford, IL). The blood bolus 

in each midgut was removed manually. The dissected midguts were washed three times 

with PBSI. Each replicate contained at least 10 midguts. The same number of unfed 

(control) mosquito midguts was examined in parallel. Insect cell-expressed recombinant 

FREP1 (0.75 μg in 100 μl of PBSI) was incubated with experimental and control 

midguts for 1.5 h. An equivalent amount (0.75 μg in 100 μl of PBSI) of BSA was used 
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as an additional control. The midguts were then washed three times with PBSI, and 

shredded with a micro-pestle in PBSI containing 0.5% Tween 20 in 1.5-ml tubes. The 

insoluble materials were removed by centrifugation at 8,000 × g for 2 min. Supernatants 

(100 μl) were added into immuno-Grade microplates and the plates were incubated 

overnight at 4°C. ELISA was used to quantify the relative amount of FREP1 in each 

reaction. 

2.2.7 Ablating FREP1 Expression by dsRNA to Verify Its Function on 

Susceptibility to P. falciparum Infection in An. gambiae Mosquitoes 

FREP1 was cloned from an An. gambiae mosquito cDNA library as described in 

our previous work [11]. Briefly, nested PCR using the primers listed in Table 2-1 was 

used to generate a DNA template for synthesis of double-stranded RNA (dsRNA) using 

the in vitro transcription system T7 Megascript (Amibon, TX). The non-mosquito, 

negative control sequence was amplified from the Aequoria green fluorescent protein 

(GFP) gene using the primers listed in Table 2-1. dsRNA was synthesized from these 

gene fragments using the in vitro transcription system T7 Megascript (Amibon, TX). 

The FREP1 targeting construct spans a unique sequence from nucleotide 791 to 1,268, 

corresponding to amino acids 263 to 423 of FREP1. Blast analyses confirmed that no 

other genes in An. gambiae share significant DNA sequence identity with the targeted 

sequence of FREP1. The dsRNA was purified with a Qiagen RNA purification kit. 

Approximately 207 ng of dsRNA in a 69 nl solution was injected into the hemocoel of 

each cold-anesthetized, one-day-old An. gambiae G3 female mosquitoes. 

Approximately 100 mosquitoes per treatment were used for the RNAi knockdown 

experiments. Thirty-six hours after dsRNA injection, the treated mosquitoes were fed 
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with P. falciparum- infected blood containing 0.2% gametocytes in standard membrane 

feeding assays [78]. Seven days post-infection and feeding, treated mosquitoes were 

dissected in 1×PBS and oocysts numbers were counted using light microscopy after 

staining with 0.1% mercury dibromofluorescein disodium salt in 1×PBS. In the negative 

control groups, ~100 mosquitoes injected with dsRNA targeting GFP were exposed to 

the same parasite cultures, and were processed identically to the experimental groups. 

The transcript knockdown efficiency was confirmed by the quantitative RT-PCR in five 

treated mosquitoes that were taken randomly 12 h after infection. In parallel, reductions 

in FREP1 in mosquito midguts were confirmed using immuno-histochemical (IHC) 

assay, except replacing secondary reagents with Alexa Fluor® 594-conjugated goat anti-

rabbit antibody. Fluorescent staining intensity was quantified as described above. 

2.2.8 Antibody Blocking Assays of P. falciparum Infection in An. gambiae 

Mosquitoes 

P. falciparum-infected blood cultures containing mature stage V gametocytes 

were diluted with the fresh O+ type human blood to get the 0.2% final concentration of 

stage V gametocytes. An equal volume of heat-inactivated (65°C for 15 min) AB-type 

human serum was added. Identical volumes of 1×PBS (1/10 volume of blood) 

containing different concentrations of rabbit polyclonal anti-FREP1 anti-body (5, 4, 2, 

1, and 0.5 mg/ml) were added to the gametocyte cultures. Artificial membrane feeding 

was conducted using three-day-old female naive mosquitoes. After feeding for 15 min, 

engorged mosquitoes were separated and maintained with 8% sugar in a BSL2 insectary 

(28°C, 12-h light/dark cycle, 80% humidity) at the University of Oklahoma. Seven days 

after infection, midguts were dissected, stained with 0.1% mercury dibromofluorescein 
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disodium salt in 1×PBS, and examined using light microscopy to count the number of 

oocysts. Equivalent amounts of purified pre-immune rabbit antibody (Thermo 

Scientific) were used as controls. 

2.3 Results 

2.3.1 Recombinant FREP1 Is Secreted from Insect Cells and Forms Tetramers 

To begin to understand the basic biochemical characteristics of FREP1, we first 

examined its functional domains. According to our previous genome annotation [79], 

full-length FREP1 comprises 738 amino acids, including a 22 amino acid signal peptide 

at the N terminus, three coiled-coil regions, and a conserved ︎200 amino acid FBN 

domain at the C terminus (Fig. 2-1A). All six cysteine amino acid residues are within 

the C-terminal FBN domain.  

 

 

Figure 2-1. FREP1 is secreted from insect cells and forms tetramers.  
A, FREP1 has an N-terminal signal peptide, three coiled coils, and a C-terminal FBN 
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domain. B, SDS-PAGE (left) and Western blotting (right) showing that the recombinant 
FREP1 is secreted from High Five cells into the culture medium. S and P represent 
supernatant and cell pellet and correspond to 1 and 20 µg of protein loaded in gels, 
respectively. Only one band was detected by anti-FREP1 antibody (0.2 µg/ml). C, the 
purified recombinant FREP1 expressed in High Five insect cells was subjected to 
reducing (lane 1, 1.9 µg of protein) and non-reducing (lane 2, 1.9 µg of protein) 12% 
SDS-PAGE and stained with Coomassie Brilliant Blue. D, the UV280 absorbance 
profile of the purified insect cell-expressed recombinant FREP1 in 1×PBS using 
Sephadex G-200 gel filtration chromatography. E, ELISA analysis using anti-FREP1 
antibody confirmed that the FREP1 peaks match those identified using gel filtration. 
The molecular mass (MM) were calculated based on the equation of [(10)]((44.86 - 
y)/6.32), as described under “Experimental Procedures,” where y is the elution volume 
in ml. F, the UV280 absorbance profile of the purified FREP1 in 1×PBS containing 
0.1% Triton X-100 using Sephadex G-200 gel filtration chromatography.  
 
 

We next examined cellular FREP1 expression patterns in vitro. Full-length 

FREP1 was expressed in High Five insect cells as described under “Experimental 

Procedures.” We found that FREP1 was exclusively detected in the cell culture 

supernatants and absent from the cell pellets (Fig. 2-1B), supporting that FREP1 is a 

secreted protein. Notably, Western blotting using the anti-FREP1 antibody identified 

only a single band, indicating the anti-FREP1 antibodies recognize FREP1 specifically. 

Next we determined whether in vitro-expressed FREP1 form distinct quaternary 

structures. When supernatants were subjected to SDS-PAGE, the purified insect cell-

expressed recombinant FREP1 exhibited identical molecular mass under both reducing 

(with 2-mercaptoethanol) and non-reducing conditions (Fig. 2-1C), indicating that 

insect cell-expressed recombinant FREP1 exists as either monomers or multimers that 

associate via non-covalent bonds. The observed molecular mass of insect-expressed 

recombinant FREP1 (~95 kDa, Fig. 2-1C) is greater than the predicted molecular mass 

(83.5 kDa), suggesting post-translational modification of secreted FREP1. Gel filtration 

chromatography was then utilized to separate recombinant FREP1 and protein 
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complexes, and ELISA was subsequently used to quantify amounts of recombinant 

FREP1 in each fraction. The profile of UV absorbance at 280 nm from FPLC (Fig. 2-

1D) matched the ELISA result (Fig. 2-1E). Based on the gel-filtration standard curves, 

the dominant recombinant FREP1 peak eluted between 328 and 408 kDa (Fig. 2-1, D 

and E). Given that the observed molecular mass of recombinant FREP1 is ~95 kDa, 

these data support that the majority of the secreted, insect cell-expressed FREP1 exists 

as tetramers (~380 kDa). In addition to monomers and tetramers, FREP1 dimers and 

trimers were also apparent (Fig. 2-1D). Coiled-coil proteins tend to be elongated and 

yield aberrant molecular masses when subjected to gel filtration, particularly when the 

calibration standards are globular proteins. For these reasons, we repeated our gel 

filtration studies and included a non-ionic detergent to confirm the quaternary structure 

of the FREP1. We found that addition of 0.1% Triton X-100 to FREP1 eliminated the 

higher-ordered structures (Fig. 2-1F). To exclude the possibility that the 6×His tag 

contributed to the formation of FREP1 quaternary structures, we additionally examined 

highly concentrated, non-tagged recombinant FREP1 in gel-filtration studies. These 

analyses were consistent with Fig. 2-1E (data not shown). Together, these data show 

that FREP1 is a secreted mosquito protein that likely forms tetramers through non-

covalent hydrophobic interactions. 
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2.3.2 FREP1 Binds PM 

 

Figure 2-2. Blood-fed mosquito midguts bind FREP1. 
Blood-fed mosquito midguts bound significantly (p < 0.001) more High Five cell-expressed 
recombinant FREP1 compared with unfed (naive) mosquito midguts. Purified recombinant 
FREP1 or irrelevant protein (BSA) was incubated with midguts and the midgut-bound FREP1 
was quantified by ELISA. Data (mean ± S.D.) are from three independent experiments.  

 
To verify FREP1 association with the PM, we analyzed the interactions between 

mosquito midguts and FREP1. The insect cell-expressed recombinant FREP1 was 

incubated with midguts from naive and blood-fed mosquitoes. The ELISAs were then 

used to quantify the relative amount of FREP1 that bound midgut preparations. We 

found that significantly more FREP1 was bound in blood-fed mosquito midguts 

compared with unfed mosquito midguts (p <0.001, Fig. 2-2). Substituting recombinant 

FREP1 with BSA eliminated the binding signals. The pattern was consistent in three 

experiments. Collectively, these results support that FREP1 localizes to and specifically 

interacts with the mosquito midgut PM. 

2.3.3 FREP1 Binds P. falciparum 

We next sought to determine whether FREP1 could interact with the sexual 

stage P. falciparum parasites. We fixed non-permeabilized P. falciparum gametocytes 
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and ookinetes on coverslips and then probed the cells with insect cell-expressed 

recombinant FREP1. Anti-FREP1 antibody and fluorescence-conjugated secondary 

antibodies were used sequentially to determine whether FREP1 bound to gametocytes 

and ookinetes. In our fluorescence assays, the bound FREP1 appeared red and cell 

nuclei stained with 4,6-diamidino-2-phenylindole (DAPI) appeared purple. Our results 

consistently showed that the fluorescence intensity of P. falciparum gametocytes (Fig. 

2-3, row B) and ookinetes (Fig. 2-3, row C) were significantly (p<0.01) higher than 

those of healthy (non-infected) human RBC (Fig. 2-3, row A), supporting that the 

recombinant FREP1 can specifically bind both sexual stage (gametocytes) and mosquito 

midgut stage (ookinetes) P. falciparum. Of note, non-infected RBCs do not contain 

nuclei and are therefore not stained by DAPI. To confirm that addition of FREP1 is 

necessary to generate the signals in the IFA assays, we performed the same experiments 

omitting FREP1 and using only secondary reagents (Fig. 2-3, rows D and E). The 

absence of the detectable fluorescence signal further supports that FREP1 binds to the 

sexual stage of P. falciparum parasites or mosquito invasion stage ookinetes.  
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Figure 2-3. Interaction between the recombinant FREP1 and P. falciparum 
demonstrated by immunofluorescence assays. 
Images in row A depict healthy, non-infected human RBC. Images in rows B and E 
depict sexual stage gametocytes. Images in the rows C and D are diploid ookinetes. 
Images in the rows D and E were obtained by conducting the same procedures as rows 
A–C except no recombinant FREP1 was added. Image F depicts the anti-actin antibody 
staining of gametocytes that were fixed with 100% methanol. Image G shows that anti-
actin antibody does not stain malaria actin within gametocytes that were fixed with 4% 
paraformaldehyde. Of note, numerous DAPI-positive spots in rows F and G represent 
extracellular merozoite forms of P. falciparum, which become abundantly released after 
10 days of culture. The first and second columns depict FREP1 and nuclear staining, 
respectively. Merging the first and second columns generated the third column. The last 
column shows cells under bright field. The numbers within parentheses after the cells 
are the average fluorescence signal intensity values (± S.D.) for three replicates. 
 
 

Finally, to confirm that our non-permeabilized fixation approaches maintain cell 

membrane integrity, we stained parasite preparations with antibodies against 
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Plasmodium actin [80]. Cells containing gametocytes were fixed separately with either 

4% paraformaldehyde or 100% methanol on dry ice for 5 min. The results showed that 

the anti-actin antibody could only stain cells fixed in methanol (Fig. 2-3F), whereas the 

fluorescence intensity of gametocytes fixed with 4% paraformaldehyde was similar to 

the background (Fig. 2-3G). Together, these data support that both recombinant FREP1 

and anti-FREP1 reagents were reacting extracellularly. Thus, FREP1 binds molecules 

on the surface of the gametocytes and ookinetes. 

2.3.4 Ablating FREP1 Expression Reduced P. falciparum Infection 

To determine whether FREP1 directly regulates P. falciparum infection of 

Anopheles mosquito vectors, we used a standard dsRNA-mediated gene-silencing assay 

to knockdown FREP1 mRNA in live mosquitoes, and analyzed the impact of this 

silencing on P. falciparum infection of mosquito midguts. One-day-old adult female An. 

gambiae were injected with FREP1 dsRNA and subsequently fed on cultured P. 

falciparum gametocytes 36 h post-dsRNA injection. Because blood meal feeding 

increases FREP1 expression, we analyzed the efficacy of FREP1 mRNA knockdown 12 

h post-blood meal/infection. Quantitative RT-PCR data show that FREP1 dsRNA 

injection reduced (~20-fold) FREP1 mRNA to nearly undetectable levels 12 h post-

blood meal feeding (Fig. 2-4A, lane 2). As a control, we injected mosquitoes in parallel 

with dsRNA corresponding to an irrelevant target, GFP (Fig. 2-4A, lane 1). 

Furthermore, the AgS7 gene, which is constitutively expressed in mosquitoes, was used 

as a control in the quantitative RT-PCR assays (Fig. 2-4A, lanes 3 and 4). We also 

compared both total protein and FREP1 protein expression levels in control and 

experimental mosquito midguts using Western blotting and IHC assays. The total 
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protein concentration and composition in FREP1 dsRNA-treated mosquito midguts 

(Fig. 2-4B, lane 1) was similar to that of control midguts (Fig. 2-4B, lane 2). However, 

Western blotting results from five mosquitoes showed that the FREP1 protein was 

reduced >3-fold in FREP1 dsRNA-treated mosquito midguts, compared with GFP 

dsRNA-treated mosquito midguts (compare Fig. 2-4C, lanes 1 and 2). 

 
 

Figure 2-4. Impact of dsRNA-mediated knockdown of FREP1 on P. falciparum 
infection in mosquitoes.  
A, quantitative RT-PCR detection of FREP1 mRNA in dsRNA-treated experimental 
and control mosquitoes. Lane order: M, DNA ladder; 1, FREP1 expression in GFP 
dsRNA-treated mosquitoes; 2, FREP1 expression in FREP1 dsRNA-treated mosquitoes; 
3, Ags7 expression in GFP dsRNA-treated mosquitoes; 4, Ags7 expression in FREP1 
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dsRNA-treated mosquitoes. All primer sequences are shown in 2-1. B, GFP dsRNA-
treated (lane 1) and FREP1 dsRNA-treated (lane 2) mosquito midgut proteins 
fractionated on 10% SDS-PAGE and stained with the Coomassie Brilliant Blue. 
Approximately 10 µg of total protein, extracted from 2 to 3 midguts, was loaded per 
lane. C, gels were loaded as in B, and proteins were transferred to membranes and 
probed with 0.2 µg/ml of anti-FREP1 antibody. GFP dsRNA- treated (control, lane 1) 
and FREP1 dsRNA-treated mosquito (lane 2) midgut proteins are shown. The average 
pixel intensity values of the FREP1 signal in panel C are 15.93 and 4.24 for the control 
and experimental group, respectively. D and E, immunohistochemical analysis of 
midgut tissue sections from GFP dsRNA-treated (D) and FREP1 dsRNA-treated (E) 
mosquitoes. Sections were probed with anti-FREP1 followed by Alexa Fluor® 594 goat 
anti-rabbit antibody. The fluorescence intensities of control sections (D) were 17.93 ± 
1.77, whereas the fluorescence intensities of FREP1 dsRNA-treated experimental 
sections (E) were 6.32 ± 0.11. The mean fluorescence intensities and standard 
deviations were obtained from three sections. F and G, enumeration of oocysts (round 
red spots) in GFP dsRNA-treated (F) and FREP1 dsRNA-treated (G) mosquito midguts. 
H, summary data and statistical analyses of the number of oocysts in mosquitoes treated 
with the dsRNA targeting GFP or FREP1, respectively. y axis represents the number of 
oocysts per midgut and x axis indicates the treatment groups. The black bars represent 
the mean oocysts per midgut. The p values between two groups were calculated using 
Wilcoxon-Mann-Whitney test. Data are representative of two independent experiments.  

 
Given these results, we next examined whether knockdown of FREP1 impacted 

P. falciparum midgut infection. Seven days post-blood meal/infection, we compared the 

number of oocysts in FREP1 dsRNA-treated and control GFP dsRNA-treated 

mosquitoes. The data show that significantly (p < 0.04) fewer oocysts developed in 

FREP1-depleted An. gambiae midguts (Fig. 2-4G), compared with the GFP dsRNA-

treated mosquitoes (Fig. 2-4F). Consistent results were observed in two independent 

dsRNA-mediated gene expression-silencing experiments (Fig. 2-4H). Together, these 

data show that FREP1 facilitates P. falciparum infection of the An. gambiae midgut and 

the expressed FREP1 in the mosquito midgut PM serves as an agonist for P. falciparum 

invasion. 

2.3.5 Anti-FREP1 Antibody Blocks P. falciparum Parasite Infection in Mosquitoes 

Our data suggest that FREP1 likely exerts its function through direct interaction 
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with both Plasmodium parasites and the mosquito PM. Thus, we hypothesized that 

interfering with these interactions would inhibit parasite infection of the mosquito 

midgut. To test this hypothesis, rabbit anti-FREP1 polyclonal antibody was mixed with 

P. falciparum gametocyte cultures (0.2% gametocytes, 0.5 mg/ml of antibody) prior to 

their use in mosquito membrane feeding-based infection assays. An equivalent amount 

of purified pre-immune rabbit antibody was used as a negative control. Strikingly, co-

ingestion of gametocytes mixed with anti-FREP1 antibody significantly (p <10-7) 

reduced the number of P. falciparum oocysts per midgut by 25- and 60-fold, compared 

with control antibody-treated cultures in two replicate experiments (Fig. 2-5A). The 

infection prevalence also decreased from 85 and 82% to 35 and 16%, respectively (Fig. 

2-5A). To examine dose-dependent effects of anti-FREP1 antibody on blocking P. 

falciparum infection, we tested a dilution series (0.4, 0.2, 0.1, and 0.05 mg/ml) of 

antibodies. The results (Fig. 2-5B) show that as the concentration of anti-FREP1 

antibody decreased, the number of oocysts in mosquito midguts increased. Notably, 

antibody concentrations as low as 0.1 mg/ml, which is 5 times lower than the antibody 

concentration in the original undiluted rabbit serum, still mediated significant (p 

<0.003) reductions in Plasmodium parasite infection in mosquitoes. Thus, vaccination 

with FREP1 can potentially elicit physiologically relevant titers of anti-FREP1 

antibodies capable of exerting transmission-blocking activity in blood feeding 

mosquitoes.  
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Figure 2-5. The anti-FREP1 antibody blocks P. falciparum parasite invasion in 
mosquitoes.  
Three-day-old female An. gambiae were fed with P. falciparum-infected blood 
containing 0.2% stage V gametocytes and 0.5 mg/ml of purified anti-FREP1 antibodies 
(A) or a series of dilutions of anti-FREP1 antibodies (0.4, 0.2, 0.1, and 0.05 mg/ml) (B). 
Midguts from engorged (fed) mosquitoes were dissected 7 days post-infection and the 
numbers of oocysts in mosquito midguts were counted microscopically. N represents 
the number of mosquitoes and the blue bars represent the mean number of oocysts per 
midgut in each group. Control in panels A and B represent mosquitoes fed on infected 
blood treated with purified preimmune rabbit antibodies (0.5 and 0.4 mg/ml in A and B, 
respectively). The p values between experimental and the control groups were 
calculated using Wilcoxon-Mann-Whitney tests. Data represent two independent 
experiments. 
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To exclude the possibility that the rabbit anti-FREP1 antibody affected parasite 

viability before feeding, we examined P. falciparum viability following addition of 

purified anti-FREP1 antibody. Anti-FREP1 was added into cultures at 0.4 mg/ml and an 

equivalent amount of the purified pre-immune rabbit antibody was used as a control. 

Twenty-four hours later, the number of P. falciparum-infected cells was counted. In 

three independent experiments we observed equivalent parasitemia (in percentage) in 

non-treated cultures and cultures containing anti-FREP1 or pre-immune antibody 

(6.2±0.53, 7.2±0.81, and 6.4±1.32, respectively). No statistical differences in viable 

parasite numbers were observed among the three groups (p = 0.20). Therefore, anti-

FREP1 antibodies do not impact parasite viability outside of the mosquito host. 

Collectively, these data support that anti-FREP1 antibodies can inhibit Plasmodium 

infection in mosquitoes via disruption of FREP1-parasite interactions within the PM of 

mosquito midguts. 

2.4 Discussion  

Based on our experimental data, we propose a molecular model for FREP1 

activity during Plasmodium invasion (Fig. 2-6). FREP1 is up-regulated and expressed in 

midguts after a blood meal and our new data support that FREP1 is secreted into the 

mosquito midgut lumen. In the lumen, the FREP1 may form tetramers through 

interactions between coiled-coil regions of FREP1 monomers. Our data suggest that 

FREP1 tetramers are an integral component of the mosquito PM. Thus, FREP1 is likely 

to be a structural component of the PM, and the tetramerization of FREP1 may perhaps 

increase the binding affinity between FREP1, the PM, and Plasmodium parasites. We 

speculate that the interactions between ookinetes and FREP1 may facilitate localization 
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and positioning of ookinetes within the PM, which may further potentiate the enzymatic 

activities of the chitinase secreted by ookinetes [9]. These interactions and the activity 

of chitinase, coupled with the digestive activity of plasmin on the ookinete surface [81], 

may result in a disruption of the PM structure, ultimately facilitating parasite invasion. 

After ookinetes cross the PM to invade midgut epithelial cells other proteins in 

mosquito hemolymph may perhaps interact with parasites and impact infection intensity 

[82, 83]. 

 

 
 

Figure 2-6. Working molecular model for FREP1-mediated Plasmodium parasite 
invasion in Anopheline mosquitoes.  
After a blood meal, FREP1 is secreted into mosquito midgut lumen and associated with 
the newly formed PM. PM-associated tetrameric FREP1 binds a putative FREP1-
binding partner(s) expressed on the surface of Plasmodium parasites, thereby anchoring 
the parasite within the PM. Stoichiometry of these interactions is under investigation. 
Continuous secretion of chitinase by anchored ookinetes digests chitin in PM, which 
results in disruption of PM. Dissolution of the PM enables ookinetes to eventually 
escape and overcome the PM barrier and subsequently invade the midgut epithelium.  
 
 
 

By extension, our model predicts that blocking FREP1 activity or interaction 

with Plasmodium parasites will significantly reduce the capacity for mosquitoes to 
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transmit malaria. Consistent with this prediction, our published study [11] and new 

experimental data show that Plasmodium infection in mosquitoes is markedly reduced 

following genetic ablation of FREP1 expression or targeting FREP1 by antibodies. It is 

worth noting that if the concentration of mature gametocytes in a blood meal is low (i.e. 

capable of generating less than 100 oocysts per mosquito midgut), blocking FREP1 by 

RNAi or antibodies rendered the majority of mosquitoes wholly resistant to P. 

falciparum (Fig. 2-5A) and P. berghei infection [11]. On the other hand, when the 

density of gametocytes in blood is high, the infection intensity is still significantly lower 

in mosquitoes treated with dsRNA (Fig. 2-4H) or anti-FREP1 antibodies, compared 

with control groups (Fig. 2-5B). Importantly, physiological parasite densities observed 

in wild P. falciparum-infected An. gambiae is usually very low, e.g. resulting in less 

than 10 oocysts per midgut [11]. Thus, FREP1 remains a critical component of 

pathways for parasite invasion at physiological parasite densities and targeting FREP1 

represents a potentially viable strategy to reduce Plasmodium transmission. 

Ookinetes have to overcome and exit the blood bolus barrier before reaching 

PM. Previous reports showed that mammalian plasminogen can be captured by enolase 

on the surface of ookinetes [8]. Plasminogen is an essential serine protease pre-cursor in 

vertebrate blood. After activation, plasminogen becomes plasmin that can cleave fibrin 

or fibronectin to free ookinetes in the blood bolus, thereby facilitating their migration to 

the midgut PM. After traversing the PM, many ookinetes will manage to invade and 

cross the mosquito midgut epithelium through multiple pathways [84]. Parasite 

invasion- induced apoptosis of midgut epithelial cells will further determine survival 

and/or successful ookinete infection [85]. Therefore, interactions between the PM and 
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Plasmodium parasites (i.e. the “interactome”) mediated by FREP1 is important for 

parasite invasion, and targeting this interaction may prove effective for limiting malaria 

transmission. It is worth emphasizing that proteins in the PM are readily accessible by 

antibodies co-ingested after a blood meal [57]. Thus, FREP1 may serve as an excellent 

potential antigen for inclusion in experimental malaria transmission blocking vaccines. 

Consistent with this notion, and as we demonstrated in this report, anti-FREP1 

antibodies significantly reduced the mosquito vectorial load of malaria parasites. These 

antibody protection assays further support our proposed molecular model of FREP1 

activity during Plasmodium invasion. 

In summary, here we describe a novel molecular mechanism and function of the 

mosquito FREP1 during Plasmodium infection of the mosquito midgut. We propose 

that FREP1 acts as an anchor to facilitate ookinete penetration of the PM in mosquito 

midguts. Consistent with the concept that the PM protects mosquitoes from pathogen 

infection or invasion, pathogens like Plasmodium have also evolved mechanisms to 

overcome these physical barriers by exploiting the specific constituents of the PM. 

Understanding the mechanisms of Plasmodium parasite invasion of mosquito midguts 

will identify new opportunities and targets for malaria control. 
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Chapter 3 : Identification of FREP1 Binding Partner(s) from P. 

berghei 

 

3.1 Introduction 

Mosquitoes are the essential vectors for malaria transmission to humans. 

According to the WHO report in 2016 [86], malaria kills approximately one million 

people annually, mainly in sub-Sahara Africa. As summarized in Chapter 1, 

Plasmodium parasites have to invade the mosquito midgut epithelium in order to 

establish an infection in mosquitoes. However, the molecular interactions inside of the 

mosquito midgut remain largely unknown.  

We determined the molecular functions of FREP1, which binds parasites and 

mediates both P. berghei and P. falciparum infection in the mosquito midgut 

peritrophic matrix. However, the FREP1 binding partner(s) (FBPs) in Plasmodium have 

not been identified yet. The goal of this chapter is to identify the binding partner(s) of 

FREP1 from P. berghei. 

Since FREP1 binds parasites [12], FBPs might exist on the surface of the 

parasites. There are three known secretory pathways in Plasmodium. In the first 

pathway, proteins encode a short (5-30 amino acids long) signal peptide to target the 

protein to the secretory pathway [87]. The fates of these proteins are either secretion 

from the cell, insertion into cellular membranes or placement within certain organelles 

(ER, golgi or endosomes) after typical post-translational modifications [87]. In the 

second mechanism, Plasmodium parasites may utilize an unconventional pathway to 

export proteins onto the host cell surfaces when such proteins contain a Plasmodium 
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export element (PEXEL) motif (a conserved five amino acids sequence, namely RX [L, 

I] X [D, E, Q]) in the sequence [88]. In the third secretory mechanism, an extended 

apical pellicle (EP), a large opening required for midgut invasion [89], is formed during 

ookinete maturation and secretes digestive enzymes like chitinase. Thus, ookinetes 

harness multiple pathways for secreting proteins, and the identification of more 

ookinetes surface proteins may lead to a better understanding of Plasmodium invasion 

mechanism.  

Previously, several ookinete surface proteins have been characterized and 

exploited as potential targets for developing anti-malarial tools. The ookinete surface 

proteins P25/28 and enolase were targeted to develop transmission-blocking vaccines 

[84, 90]; the Plasmodium ookinete apical surface aspartic protease, plasmepsin 4, was 

also characterized as a potential transmission-blocking target [91].  

In this chapter, we identified nine FREP1 binding partner candidates from P. 

berghei lysates using pull-down assays followed by mass spectrometry assays. We 

cloned these genes from P. berghei and expressed them in insect cells and E. coli. After 

immunizing these E. coli-expressed recombinant proteins in mice, six proteins show 

high immunogenicity as measured by mouse serum antibody titers. We are still working 

on the identification of FBPs. 

3.2 Experimental Methods 

3.2.1 FREP1 Expression in Insect Cells and Purification Using Ni-NTA 

The complete FREP1 coding sequence was PCR amplified using primers as 

shown in Table 2-1 from an adult An. gambiae cDNA library. Products were cloned into 

plasmid pIB/V5-His (Life Technologies) to generate pIB-FREP1 (encoding FREP1) 
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and pIB-FREP1-His (encoding FREP1 with a 6×His tag) expression constructs. 

Constructs were amplified in E. coli DH5α and then purified with endotoxin-free 

plasmid preparation kits (Sigma). Cabbage looper ovarian cell-derived High Five cells 

[71] were used to express recombinant FREP1 according to the manufacturer’s 

instructions [72]. In brief, endotoxin-free plasmids were mixed with Cellfectin® 

Reagent (1 μl of Cellfectin/μg of plasmids, Invitrogen) in 5–6 ml of Express Five® SFM 

medium (Invitrogen). Cells were cultured in 25 cm2 cell culture flasks (Greiner Bio-

One, Monroe, NC) for 48 h at 27°C. Medium and cells were separated by centrifugation 

at 300 ×	g for 5 min. The proteins in the medium were concentrated using Amicon® 

ULTRA-4 Centrifugal Filter Devices (Millipore, Billerica, MA) by centrifugation at 

5,000 ×	g for 10 min. The 6×His-tagged FREP1 was purified using a Ni-NTA column 

using a standard protocol [73]. In total, the yield was ~30%, as 0.3 mg of insect cell 

expressed recombinant FREP1 was purified from 50 ml of culture medium with an 

initial amount of ~1.0 mg of FREP1 present in the culture supernatant (estimated based 

on SDS-PAGE gel).  

3.2.2 Enzyme-linked Immunosorbent Assay (ELISA) to Detect the Interaction 

Between Recombinant FREP1 and P. berghei 

P. berghei (ANKA strain) was used to infect mice through i.p. injection. The 

parasitemia (percentage of the parasite-infected cells) was checked every other day by 

Giemsa staining on thin blood smears. When the parasitemia reached 10%, gametocytes 

formation was induced by treating mice with 60 mg phenylhydrazine hydrochloride 

(Santa Cruz Biotechnology, Dallas, Texas) per Kg body weight (4mg/mL, dissolved in 

1×PBS). P. berghei-infected red blood cells and uninfected red blood cells were 
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collected, washed three times with 1 × phosphate buffered saline (1×PBS), and re-

suspended in 1×PBS containing 0.2% Tween-20 (PBST). The lysates were prepared by 

ultrasonication of cells for 10 s 6 times with 50 s intervals on ice, and then centrifuged 

at 8,000 ×	 g for 5 min to remove intact cells and cellular insoluble aggregates. The 

proteins in supernatants were used for ELISA assays. A 96-well plate (Brand, 

Wertheim, Germany) was coated with 2 mg/ml lysates (Measured by Bradford assay) 

and incubated overnight at 4°C. The next day, each well was then incubated with the 

following solutions: 1) 200 µL blocking buffer (2 mg/mL BSA in 1×PBS) for 1.5 h; 2) 

100 µL recombinant FREP1 protein (100 µg/mL) at RT for 1h; 3) 100 µL of purified 

anti-FREP1 antibody (1:2,000 dilution with blocking buffer) for 1 h at RT; and 4) 100 

µL of alkaline phosphatase-conjugated anti-rabbit IgG (1:20,000 dilution with blocking 

buffer) for 45 min at RT. The wells were washed with PBST (0.2% Tween-20) three 

times between incubations. In the end, the plates were developed with 100 µL of p-NPP 

solution (Sigma-Aldrich, St. Luis, MO) until the colors appeared. Finally, the 

absorbance OD405 was measured. 

3.2.3 Indirect Immunofluorescence Assay (IFA) to Determine the Interaction 

Between Recombinant FREP1 and P. berghei  

Standard IFA was performed as described previously [77]. In brief, P. berghei 

cultures were deposited on coverslips (Fisher Scientific). Cells and parasites were 

immediately fixed in 4% paraformaldehyde in 1×PBS at room temperature for 30 min, 

which preserves intact (non-permeabilized) cell membranes. Cells were then 

sequentially incubated with 1) 100 mM glycine in 1×PBS for 20 min; 2) 0.2% bovine 

serum albumin (BSA) in 1×PBS (BSA-PBS) for 90 min; 3) High Five cell-expressed 
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recombinant FREP1 (10 µg/ml) in 0.2% BSA-PBS for 2 h; 4) enhancer (Alexa Fluor® 

594 goat anti-mouse SFX kit, Invitrogen) for 30 min; 5) 5 µg/ml of anti-FREP1 

antibody in BSA-PBS for 1 h; and 6) 2 µg/ml of secondary antibody (Alexa Fluor® 594 

goat anti-rabbit antibody, in BSA-PBS, Invitrogen) for 30 min in the dark. Between 

incubations, the cells were washed 3 times with BSA-PBS for 3 min each time. 

Coverslips were rinsed in distilled water for 20 s and mounted onto glass slides using 50 

µl of Vectashield mounting media (Vector Laboratories, Burlingame, CA). Cell staining 

was examined using a Nikon Eclipse Ti-S fluorescence microscope.  

3.2.4 FREP1 Immobilization onto Magnetic Support  

Three hundreds microliter of N-hydroxysuccinimide (NHS) ester-activated 

magnetic beads (Thermo Fisher) were placed into a 1.5 mL microcentrifuge tube on a 

magnetic stand, and the supernatant was discarded after beads immobilization. Beads 

were then washed with 1 mL of ice-cold 1 mM hydrochloric acid with gentle vortexing 

for 15 s; the supernatant was discarded, followed by immediate addition of 300 µL of 

FREP1 (~0.3 mg/ml in 50 mM borate, pH 8.5) with 30 s of gentle vortexing. FREP1 

was incubated with the magnetic beads on a rotator for 1.5 h at room temperature (RT). 

During the first 30 min of the incubation, the tube was vortexed for 15 s every 5 min. 

For the remaining time, the tube was vortexed for 15 s every 15 min until the incubation 

was complete. FREP1-coupled magnetic beads were then washed sequentially twice 

with 1 mL 0.1 M glycine, pH 2.0 for 15 s and one time with 1 mL ultrapure water for 15 

s. Lastly, 1 mL of the quenching buffer (3 M ethanolamine, pH 9.0) was added to the 

beads and the tube was vortexed for 30 s before incubating 2 h at RT on a rotator. After 

quenching, the FREP1-coupled magnetic beads were stored in 300 µL of the storage 
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buffer (50 mM borate with 0.05% sodium azide) at 4°C until ready for use. The 

coupling efficiency was assessed using the Bradford assay measuring the amount of 

FREP1 protein within the solution before and after coupling. 

3.2.5 Pull-down Assay and Quantitative Mass Spectrometry 

 P. berghei infected cell lysate was incubated with FREP1-coupled magnetic 

beads at 4°C for 2 h with gentle rotation. The beads were washed 3 times with Pierce™ 

IP Lysis Buffer (Catalog number: 87787) to remove unbound or weakly bound proteins. 

Any retained proteins were disrupted from the magnetic beads with 6 M urea, followed 

by SDS-PAGE analysis to visualize differences in the specific protein bands retained 

between the control and experimental groups. In the control group, procedures were 

almost the same as the experimental group except NHS ester-activated magnetic beads 

quenched with ethanolamine rather than FREP1-coupled magnetic beads were used.  

Specific protein bands from the SDS-PAGE gel were excised and analyzed by 

quantitative mass-spectrometry methods (serviced by Oklahoma State University 

Proteomics Center). Briefly, the same amount of protein eluted from experimental and 

control groups were loaded onto the mass spectrometer with three independent 

replicates. After analyzing the difference of peptide abundance within the eluted 

samples of the two groups with student’s t-test, unique proteins in the experimental 

group were identified. 

3.2.6 Baculovirus Expression of Identified FBPs and ELISA Confirmation of the 

Interactions with FREP1 

Oligomers were designed and synthesized (Invitrogen) for identified FBP genes 

(see Table 3-1), and the coding regions of FBP genes were PCR-amplified from a P. 
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berghei cDNA library. A baculovirus expression system was used for FBP protein 

expression, following standard procedures [92]. In short, PCR products were digested 

with restriction enzymes, and ligated into pFastBac1 plasmid (6×His tag was added to 

the C-terminal of cloned genes). Positive recombinant plasmids were transformed into 

component E. coli DH10Bac strains to generate recombinant bacmids. Positive bacmid-

containing colonies were selected by blue-white colony selection. Once bacmids were 

isolated, the commercially available Sf9 cell line was used for bacmid transfection. 

Isolated viruses were then used to infect the High-Five insect cell line to generate high-

yields of expressed membrane proteins. Three passages later, protein expression was 

confirmed with ELISA through detecting the 6×His tag at the protein C-terminus. The 

expression levels of different FBPs in the cell lysate were normalized and then a 96-

well plate was coated overnight with 100 µl cell lysate to detect interactions with 

FREP1. After blocking the plate with 0.2% BSA in 1×PBS, recombinant FREP1 was 

introduced onto the wells and incubated for 1.5 h with the plate at RT. Purified anti-

FREP1 antibody was used to detect any retained FREP1. The plates were developed 

with 100 µL of p-NPP solution (Sigma-Aldrich, St. Luis, MO) until the colors appeared. 

Finally, the absorbance at 405 nm was measured using plate reader. For the control 

group, same amount of expressed CAT protein (Chloramphenicol acetyltransferase, 

containing a 6×His tag at C-terminus) was used to coat plate wells. 

 
Table 3-1. Primers for FBPs expression using baculovirus system. 
 

Gene ID Primer 
Name Primer Sequence 

PBANKA_
1365500 

Forward 5’-CGGGATCCATGAAGAAAGGAAATAACG-3’ 

Reverse 5’-CGCTCGAGCATAGGTTTTGCTCTAC-3’ 
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PBANKA_
0701600 

Forward 5’-CGGGATCCATGCCGCAATGGGGGACTGGTA-3’ 

Reverse 5’-GCTCTAGAATCCTTTTGATTCATTGGGT-3’ 

PBANKA_
0417700 

Forward 5’-CGGGATCCATGAGAGAAGTAATAAGTATAC-3’ 

Reverse 5’-GCTCTAGAATAGTCTGCCTCATATCCTTC-3’ 

PBANKA_
1316400 

Forward 5’-CGGGATCCATGGAAGAAATGCGATCATTAC-3’ 

Reverse 5’-GCTCTAGATCGTCGTCTACTGGATCGATTC-3’ 

PBANKA_
1309700 

Forward 5’-CGGGATCCATGAAAGGTTTTAATAATTTTC-3’ 

Reverse 5’-GCTCTAGAGTAATATTTATTTCCGCCTC-3’ 

PBANKA_
0711900 

Forward 5’-CGGGATCCATGGCTAACGCAAAAGCAAAGC-3’ 

Reverse 5’-GCTCTAGAATCAACTTCTTCAACAGTTGGTC-3’ 

PBANKA_
0307800 

Forward 5’-CGGGATCCATGAAAGCTGCTAAAAATGAG-3’ 

Reverse 5’-GCTCTAGATTCATTCTTTTTCACAG-3’ 

PBANKA_
1133300 

Forward 5’-CGGGATCCATGGGAAAAGAAAAAACTCAC-3’ 

Reverse 5’-GCTCTAGATTTTTTTGCTGGTGCTTTAGC-3’ 

PBANKA_
1234500 

Forward 5’-CGGAATTCATGGCAAAAATTACAAAAATCG-3’ 

Reverse 5’-GCTCTAGATTCACCCATTTTATTAAATCCTTC-3’ 
    Note: The underlined sequences are restriction recognition sites.  
 
3.2.7 Anti-FBP Antibody Production in Mouse. 

After confirming interactions with FREP1, FBPs were then PCR-amplified with 

primers (shown in Table 3-2) from the P. berghei cDNA library. The sequence-verified 

PCR products were digested with the corresponding restriction enzymes (can be found 

in Table 3-2) and the digested products were ligated into the pQE30 expression plasmid 

and eventually transformed into the E. coli M15 strain. Gene expression in E. coli M15 

transformants was induced with 1 mM isopropyl 1-thio-β-D-galacto-pyranoside (IPTG). 

After 3-4 h induction at 37°C, cells were pelleted and lysed in buffer B (8 M urea, 100 

mM NaH2PO4 , 10 mM Tris-Cl, pH 8.0). Recombinant FBPs were purified on Ni-NTA 

column using a standard protocol [73]. 12% SDS-PAGE and Coomassie Brilliant Blue 

R-250 staining confirmed the purity of recombinant FBPs. Customized polyclonal anti-
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FBPs antibodies were generated in mouse by priming the mice with 20 µg purified 

recombinant FBPs in Complete Freund’s Adjuvant (CFA, v/v, 1:1), followed by another 

two boosts (2 weeks interval) with 20 µg proteins in Incomplete Freund’s Adjuvant 

(IFA, v/v, 1:1). Identical volumes of Buffer B with the same adjuvant as FBP proteins 

were used as negative immunization controls. ~50 days later, mouse sera were 

collected. Antibody titer was checked using enzyme-linked immunosorbent assay 

(ELISA). The 96-well plate was coated with purified FBP antigens prior to probing with 

serial dilutions of the collected sera. The rest ELISA was subsequently preformed 

similar to procedures described in section 3.2.6. Equivalent amounts of control mouse 

serum were used as negative controls. 

Table 3-2. Primers for FBPs expression in E. coli 
 

Gene ID Primer 
Name Primer Sequence 

PBANKA_
0701600 

Forward 5’-CGGGATCCATGCCGCAATGGGGGACTGGTA-3’ 

Reverse 5’-CGCAAGCTTTTAATCCTTTTGATTCATTGGGT-3’ 

PBANKA_
0417700 

Forward 5’-CGGGATCCATGAGAGAAGTAATAAGTATAC-3’ 

Reverse 5’-GCTCTAGAATAGTCTGCCTCATATCCTTC-3’ 

PBANKA_
1309700 

Forward 5’-CGGGATCCATGAAAGGTTTTAATAATTTTC-3’ 

Reverse 5’-GCTCTAGAGTAATATTTATTTCCGCCTC-3’ 

PBANKA_
0711900 

Forward 5’-CGGGATCCATGGCTAACGCAAAAGCAAAGC-3’ 

Reverse 5’-CGCAAGCTTTTAATCAACTTCTTCAACAGTTGGTC-3’ 

PBANKA_
0307800 

Forward 5’-CGGGATCCATGAAAGCTGCTAAAAATGAG-3’ 

Reverse 5’-CGCAAGCTTTTATTCATTCTTTTTCACAG-3’ 

PBANKA_
1133300 

Forward 5’-CGGGATCCATGGGAAAAGAAAAAACTCAC-3’ 

Reverse 5’-CGCAAGCTTTTATTTTTTTGCTGGTGCTTTAGC-3’ 

PBANKA_
1234500 

Forward 5’- CGGGTCGACTGATGGCAAAAATTACAAAAATCG-3’ 

Reverse 5’- CGGAAGCTTTTATTCACCCATTTTATTAAATC-3’ 
    Note: The underlined sequences are restriction recognition sites.  
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3.3 Results 

3.3.1 FREP1 Could Bind P. berghei Infected Cells. 

Prior to testing P. berghei parasites proteins for binding to FREP1 in pull-down 

assays, we need to confirm FREP1 can interact with the P. berghei parasite infected 

cells in a similar manner to P. falciparum (see Chapter 2). 

First, an enzyme-linked immunosorbent assay (ELISA) was used to check the 

interactions between FREP1 and P. berghei parasite infected cell lysates. Results show 

that compared with negative controls, heat-inactivated FREP1 and normal cell culture 

medium, P. berghei infected mouse blood cell lysate containing the sexual stages of the 

parasite could capture insect cell-expressed recombinant FREP1 (Fig. 3-1A). 

Furthermore, when a serial dilution of P. berghei infected cell lysates were coated onto 

the plate, decreasing interacting signals were observed, validating that the binding 

signals were arising from specific interactions of binding between FREP1 and P. 

berghei infected cell lysate, which contains the sexual stages of the parasite (Fig. 3-1B).   

 
 

Figure 3-1. ELISA verified that FREP1 interacts with P. berghei infected blood 
cells. 
A) Plasmodium berghei infected cell lysates were coated onto 96-well plates and 
incubated with insect cell expressed recombinant FREP1, heat-inactivated FREP1 and 
normal cell culture medium; B) Serial dilutions of P. berghei infected cell lysate was 
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coated onto 96-well plates, and similar to panel A, heat-inactivated FREP1 was used as 
negative control. Decreasing trend was observed between the interactions of P. berghei 
infected cell lysate and recombinant FREP1. 
 
 

Second, we validated the specific binding interaction(s) between FREP1 and P. 

berghei gametocytes and ookines by IFA. We fixed non-permeabilized P. berghei 

gametocytes and ookinetes onto coverslips and then probed the cells with insect cell-

expressed purified FREP1. Purified anti-FREP1 antibodies and fluorescence-conjugated 

secondary antibodies were used sequentially to determine whether FREP1 bound to 

gametocyte and ookinete surfaces. In our fluorescence assays, the bound FREP1 

appeared red and cell nuclei stained with 4,6-diamidino-2-phenylindole (DAPI) 

appeared purple. Results consistently revealed that the fluorescence intensity of P. 

berghei sexual stage parasites with recombinant FREP1 (Fig. 3-2, row C) were 

significantly (p<0.01) higher than those of healthy (non-infected) mouse red blood cells 

(RBCs) or parasites without incubation with FREP1 (Fig. 3-2, row A), indicating that 

the recombinant FREP1 can specifically bind sexual stage P. berghei. Of note, non-

infected RBCs do not contain nuclei and are therefore not stained by DAPI. Together 

with the ELISA results, these data consistently support the conclusion that recombinant 

FREP1 binds P. berghei and the potential binding molecules are likely to locate on the 

surface of the gametocytes and ookinetes. 

 



50 

 
 
Figure 3-2. Interaction between the recombinant FREP1 and P. berghei 
demonstrated by immunofluorescence assays. 
Images in rows B and C depict sexual stage parasites incubated with heat-inactivated 
FREP1 and active recombinant FREP1, respectively. Images in row A were obtained 
using the same procedures as rows B–C except no recombinant FREP1 was added. The 
first (GFP) and second (DAPI) columns depict parasites and nuclei staining, 
respectively; and the third column (Alex Fluo-594) shows FREP1 locations. Merging 
the first, second and third columns generate the fourth column. The last column shows 
cells under bright field. Scale bars were added onto the first column panels to be used 
for each row. 
 

 
3.3.2 FREP1 was Covalently Coupled onto NHS-activated Magnetic Supports 

Insect cell-expressed FREP1 was secreted into the culture medium. The purity 

of Ni-NTA purified FREP1 was verified using 12% SDS-PAGE gels, which 

demonstrated an ~95% purity level (Fig. 3-3A). Through interacting with primary 

amines on the FREP1 surface, N-hydroxysuccinimide (NHS) ester-activated magnetic 

beads were covalently coupled to FREP1 (Fig. 3-3B). The assessment of coupling 

efficiency was calculated from FREP1 concentration differences before and after the 

coupling process. As shown by SDS-PAGE, FREP1 was depleted after coupling, as 

indicated on silver staining SDS-PAGE (Fig. 3-3C). The calculated coupling efficiency 

was determined to be ~13 µg of FREP1 protein bound to one milligram of the beads, 
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consistent with the manufacturer’s published coupling capacity and at a level of 

acceptable for the downstream pull-down assays.   

 

 
 

Figure 3-3. FREP1 was covalently coupled onto a magnetic support. 
A, Purified recombinant FREP1 was checked on 12% SDS-PAGE gel and stained with 
coomassie brilliant blue. B, Diagram showing mechanism for FREP1 covalent 
immobilization onto a magnetic support. C, FREP1 protein levels within the 
supernatant examined on 12% SDS-PAGE gel. Annotations “Before” and “After” 
represent supernatant before and after coupling, respectively.  
 

3.3.3 Specific Proteins Were Pulled Down and Identified Using MS 

In a pull-down assay, FREP1-coupled magnetic beads were incubated with P. 

berghei infected mouse blood lysate an experiment. Glycine-coupled magnetic beads 

were incubated with P. berghei infected mouse blood lysate as a negative control. The 

resulting silver-stained SDS-PAGE gel clearly shows multiple specific protein bands, 

ranging from 15 kDa to 60 kDa, in the experimental group (P. berghei infected blood 

cell lysate) when compared with the control group (highlighted with rectangles in Fig. 

3-4A).  
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Figure 3-4. Pull-down of P. berghei iRBC lysate using FREP1 immobilized 
magnetic support and mass spectrometry identification result. 
A, Proteins resolved on 12% SDS-PAGE following by silver staining. Areas 
highlighted with rectangles were enriched with specific protein bands only showing up 
in the experimental group. Lanes 1: P. berghei  iRBC lysate without FREP1 
immobilized NHS-ester activated beads, used as negative control; 2: P. berghei  iRBC 
lysate pulled down with FREP1 immobilized NHS-ester activated beads; 3: Protein 
standard; 4: Purified FREP1. B, Mass spectrometry identification results in the 
experimental group after comparing with the control. “Accession Number” is consistent 
with the annotation on PlasmoDB P. berghei ANKA strain. And “+” represents “has 
this feature”, “-” represents “no such a feature”. 
 

 
The protein bands from 15-60 kDa for both the control and experimental groups 

in Figure 3-4A were excised and analyzed, and a quantitative mass spectrometry 

approach was used to identify peptides within both groups. The peptides identified in 

these analyses were queried against the P. berghei (ANKA strain) protein database 
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(downloaded from PlasmoDB, http://plasmodb.org) and a list of protein “hits” was 

generated. After extensive comparison of these “hits” with the control group, and 

combining this with the protein identification confidence scores, nine specific FBPs 

were identified in the experimental group (Fig. 3-4B).  

Five of these FBPs contain either a PEXEL motif or trans-membrane (TM) 

domains, indicating they are potential surface proteins, consistent with our indirect 

immunofluorescence assay (IFA) demonstrating that FREP1 interacts with surface 

molecules of P. berghei parasites. Out of the nine identified proteins, four of them have 

unknown functions and the remaining five are annotated with putative functions based 

on predictions. One of these annotations indicates a tubulin protein, PBANKA_0417700. 

This seems highly relevant as previously researchers have observed the Plasmodium 

ookinete ultrastructure has microtubules extended through the apical polar ring towards 

the extracellular space [89, 93]. This implies that tubulin proteins may potentially 

interact with FREP1 at the apical end, strongly supporting our proposed FREP1 

working model in Chapter 2.   

3.3.4 Insect Cell-expressed FBPs Interact with FREP1  

The nine genes were cloned into bacmids, transfected into Sf9 cells, and 

expressed in High Five cells. After the third passage, cells were analyzed for FBP 

expression levels and the ELISA assay was performed to validate the interactions 

between FREP1 and recombinant FBPs. Surprisingly, all nine expressed FBPs bind 

FREP1 with varying binding affinities (Fig. 3-5A) after normalization, with FBP #3 

being the strongest FREP1-binding factor. To further validate that the observed signals 

result from FBP-FREP1 interactions; an ELISA-format protein binding competition 
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assay was conducted. The results demonstrated that six FBPs could reduce the binding 

signals with FREP1 significantly (≥ 2 fold) when the FBP-FREP1 mixture was 

incubated in the plate, as compared to FREP1 alone (Fig. 3-5B). The remaining three 

FBPs had low expression levels (#5, #7, and #8) and did not show significant 

competition; the main reason is likely attributed to the small amount of protein present.   

 
 

Figure 3-5. Validation of the interactions between FBP candidates and FREP1. 
A, ELISA approach to detect the interactions between insect cell expressed FBPs and 
FREP1. Negative control was performed using an irrelevant protein (CAT) expressed 
from the same insect cell line, and positive control was added using P. berghei infected 
RBC lysate. The correspondence of the numbers with the genes was shown in the right 
table, “N” represents negative control and “P” represents positive control. B, Protein 
binding competition assay was conducted using ELISA approach. Six highly expressed 
FBPs were coated onto a 96-well plate, and incubated with either FREP1 or 
FREP1/FBPs mixture (1:1 molar ratio). The gene and number correspondence are 
identical to panel A, with 1’ represents the inhibition group for gene 1 and same 
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depictions for the rest genes/treatments. For both panel A and B, three replicates were 
performed. *p<0.05, **p<0.01,***p<0.001, NS: Not Significant; Student’s t test. 
 
 
3.3.5 FBPs Were Purified in E. coli and Used to Raise Antibodies in Mouse 

 Next, we examined whether anti-FBPs could block Plasmodium transmission to 

mice. Seven out of the nine FBPs were successfully expressed and purified from E. coli; 

the protein purities and sizes were verified on SDS-PAGE gels (Fig. 3-6A). The 

undetectable expression of the remaining two FBPs may be caused by the 

incompatibility of the expression system (like codon bias and usage). Based on the 

protein purification results, five of these 7 proteins were highly expressed (#2, #3, #6, 

#7, #8). Although two FBPs (#5 and #9) had lower expression, with a large-scale 

culture volume sufficient proteins (>20ug) were obtained for immunizing mice. After 

two boosts, day 50 sera were collected. Antibody titers were measured with an ELISA 

approach (Fig. 3-6B). Results show that FBP #3, #5-#8 have high immunogenicity with 

FBP #3 antibody titer reaching 6×106. Although FBP #2 has the best protein yield, it 

has the lowest antibody titer, indicating this protein is low immunogenic.  

Further experiments of examining antibodies in blocking Plasmodium 

transmission is ongoing. 
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Figure 3-6. Purification of FBP proteins from E. coli and anti-FBP antibodies 
production in mice. 
A, The purification of seven FBPs after being over-expressed in E. coli were checked 
using 12% SDS-PAGE gel, and the calculated protein sizes that correspond with the 
gene IDs are shown in panel C. B, Anti-FBP antibodies were raised in mouse and 
antibody endpoint titer (day 50) was checked using ELISA approach after two boosts. 
X-axis coordinates correspond with the gene IDs within panel C. 
 

3.4 Discussion 

Mosquito midgut peritrophic matrix FREP1 was discovered to facilitate P. 

falciparum infection in An. gambiae mosquitoes through binding to P. falciparum 

ookinetes [11, 12]. We hypothesized that P. falciparum ookinete surface molecules 

should be involved in binding with mosquito FREP1. This chapter demonstrate that P. 

berghei parasites also bind FREP1, highlighting the conservation of this invasion 
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mechanism. Moreover, we tried to identify the FREP1 binding partner(s) from P. 

berghei using a pull-down approach followed by identification using mass spectrometry 

analysis. Mass spectrometry comparative analysis identified nine candidate FBPs from 

pull-down assays. We cloned and expressed these FBPs in insect cells. Surprisingly, all 

of the nine recombinant FBP proteins interacted with FREP1 in ELISA assays, although 

the apparent strength of interaction did vary. While it is difficult to imagine that all nine 

FBP proteins characterized by pull-down interact with FREP1, it is possible that FREP1 

binds to a common motif among all FBPs, such as a lipid or a carbohydrate post-

translational modification. Continued study will be needed to understand the molecular 

mechanism of FREP1-mediated Plasmodium invasion pathways.  

Plasmodium surface molecules have been recognized as promising anti-malarial 

targets. Research has focused on the merozoite stage surface proteins for decades [94-

98]. However, malaria vaccines or anti-malarial drugs targeting these antigens had poor 

outcomes in clinical trials due to their low immunogenicity and protection from red 

blood cell membrane [50]. In contrast, malaria transmission blocking vaccines (TBV) 

have shown more promising results because these take advantage of the malaria 

transmission bottleneck in the mosquito midgut. Furthermore, molecules from both of 

the sexual-stage malaria parasites and the mosquito midguts can act as candidate targets 

for developing TBVs. A mosquito midgut protein, FREP1, has been discovered and 

characterized as one of the best TBV candidates [12]. From this study, we have 

identified nine FREP1 binding partners from P. berghei parasites. More efficient anti-

malarial strategies could be developed if both FREP1 and FBPs were targeted with 

combination therapies.  



58 

Chapter 4 : Interactome of Mosquito Midgut and Plasmodium 

Parasites 

 

4.1 Introduction 

Mosquito species are an essential vector for malaria transmission, and 

Plasmodium parasites have to survive in the hostile environment of the mosquito 

midgut to progress to infection [5]. Previously, mosquito midgut proteins were found to 

be essential for parasite infection of the mosquito midgut [11, 12, 20, 23, 33]. In 

addition, some Plasmodium ookinete proteins, including CTRP, SOAP, CelTOS, PPLP-

4/5, have been discovered to be important or even indispensable for parasite infection in 

the mosquito midgut [24, 25, 28-30]. Protein-interactions between Plasmodium 

parasites and the mosquito midgut have critical roles for successful Plasmodium 

transmission to mosquitoes.  

Despite many decades of research, the molecular mechanisms of Plasmodium 

invasion in mosquito midgut remain largely unknown. In recent years, high-throughput 

scientific methods have been developed to rapidly optimize the study of large numbers 

of molecules; for instance, DNA microarray techniques have been widely applied to 

identify transcription factor binding sites or to detect gene mutations and deletions in 

genome-wide research [99, 100]. Similarly, with the increasing development of 

proteomics, large-scale investigation of proteins has become highly desired, 

necessitating advances in high-throughput protein interaction techniques. The first 

“proteome library” and its use in protein microarray were achieved in yeast by Heng 

Zhu and colleagues [101]. Continual improvements in the protein microarray technique 
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have facilitated studies of protein-protein interactions [102], protein-DNA interactions 

[103], protein-receptor interactions [104] and antigen-antibody interactions [105].  

In this chapter, the goal was to identify additional mosquito midgut proteins that 

interact Plasmodium falciparum by 1) establishing a computational database that 

contains An. gambiae midgut secretory proteins; 2) expressing selected identified 

mosquito midgut proteins in insect cells; and 3) identifying mosquito midgut proteins 

that interact with Plasmodium falciparum. 

4.2 Experimental Materials and Methods  

4.2.1 Computational Approach to Predict An. gambiae Mosquito Midgut Proteins 

that Potentially Interact with P.  falciparum Parasites 

A An. gambiae secretory midgut protein database (“secretome”) was established 

based mainly on three criteria: a) the presence of a signal peptide or transmembrane 

domain(s) based on the bioinformatic resource VectorBase [106]; b) up-regulation by a 

blood meal; and c) preferential expression in the midgut, with the latter two criteria 

based on published RNA microarray data [107]. Either signal peptide or transmembrane 

domains should present within the candidate proteins because we are seeking secretory 

proteins in the mosquito midgut. Blood meals affect mosquito gene expressions [108], 

some of which are involved in Plasmodium invasion. These upregulated genes may be 

used as a means of mosquito defence and parasites may take advantage of these 

molecules for their invasion. Some of these up-regulated gene products are responsible 

for digesting blood in the mosquito midgut lumen [109]. We have focused on gene up-

regulation happening 12-24 h after a blood meal because this correlates with ookinete 
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maturation and invasion. Using the above criteria, we created a comprehensive set of 

candidate Anopheles genes for further analysis. 

4.2.2 Expression of Recombinant Proteins in Insect Cells.  

PCR oligos were designed (see Table 4-1) to amplify candidate genes from the 

cDNA library of An. gambiae adult female mosquitoes. PCR products were digested 

with restriction enzymes, and ligated into pFastBac1 plasmid (a 6×His tag was added to 

the C-terminus of each expressed protein); recombinant plasmids were transformed into 

E. coli DH10Bac competent cells. Blue-white colony selection was used for 

recombinant bacmid verification, and isolated bacmids were used to transfect an Sf9 

insect cell line. For high secretory protein yield, a High Five insect cell line was used 

for downstream infection. Protein expression was confirmed with an ELISA approach 

based on recognition of the engineered 6×His-tag by a monoclonal anti-His antibody. 

Table 4-1. PCR primers of 15 An. gambiae midgut genes.  
 

Gene ID Primer 
Name Primer Sequence 

AGAP00
3573-PA 

Forward 5’-CGGAATTCGCCCAAAGCTTTAAAATGCGTATCCT-3’ 
Reverse 5’-GCTCTAGAGTTGGTAAGCATTTTCTTCAG-3’ 

AGAP00
6972-PA 

Forward 5’-CGGAATTCATGTTTAAGTTCGTTGCCGTG-3’ 

Reverse 5’-GCTCTAGATCCGTGATGGTGATGGTGGTG-3’ 

AGAP00
8463-PA 

Forward 5’-CGGAATTCATGAAGGGATTCATCGCGATCG-3’ 
Reverse 5’-GCTCTAGACGCCACAATCGACTTCTGGTTG-3’ 

AGAP00
1508-PA 

Forward 5’-CGGAATTCATGAAGTCCTTCTCGTGTCTG-3’ 

Reverse 5’-GCTCTAGATCCTCCGAACGACTGGGCAC-3’ 

AGAP01
1006-PA 

Forward 5’-CGGAATTCGTAGCACAGATCACGATGAACG-3’ 
Reverse 5’-GCTCTAGAATCGTCAATTGGTACTCTTTTCAGC-3’ 

AGAP00
8138-PA 

Forward 5’-CGGAATTCATGCTGCTAAAATCGGCACTAC-3’ 

Reverse 5’-GCTCTAGAAACAGCCACCGGTCCGGTGAG-3’ 

AGAP00
6425-PA 

Forward 5’-CGGAATTCTTAGCAAGATGAGACGAATCG-3’ 
Reverse 5’-GCTCTAGAATGATCTCCCGGAATCAACAC-3’ 

AGAP00 Forward 5’-CGGAATTCACCACAACCATGTACAAGTTC-3’ 
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1956-PA Reverse 5’-GCTCTAGAACCGACGATCGCTGCATCGATTTC-3’ 

AGAP00
2848-PA 

Forward 5’-CGGAATTCGCAAGGATTGCAAGATGTTC-3’ 
Reverse 5’-GCTCTAGACAGCAGCGTCACGGT-3’ 

AGAP00
1240-PA 

Forward 5’-CGGAATTCAAACGTGATGAAATCTC-3’ 
Reverse 5’-GCTCTAGAGGCTAGCCATTTCTTTACCAG-3’ 

AGAP00
3629-PA 

Forward 5’-CGGGATCCATGGCACGGAGAACAACACAC-3’ 
Reverse 5’-CGGAATTCCTAGTAGTTGCCGTGACAGCAGTGTG-3’ 

AGAP00
3926-PA 

Forward 5’-CGGGATCCATGCGTATAGTCATGTTGTG-3’ 
Reverse 5’-GCTCTAGATTGGTGCCCTTCCCGCTCGTAAATG-3’ 

AGAP00
2851-PA 

Forward 5’-CGGAATTCATGCAGCTCCTAGTGGCAGTGTTG-3’ 
Reverse 5’-GCTCTAGAGACTACTTTCGCTTCCAGCTG-3’ 

AGAP00
4918-PA 

Forward 5’-CGGGATCCATGTTTAAAACGTGTTTAGGGATTG-3’ 
Reverse 5’-CGGAATTCCAGCTCGCAGCCATTTGGGCCTTAT-3’ 

AGAP00
1193-PA 

Forward 5’-CGGAATTCGCTACAACTTTTAGAAATGAA-3’ 
Reverse 5’-GCTCTAGACGTGCGAAAAATTAGACCAAC-3’ 

   Note: The underlined sequences are restriction recognition sites.  
 
 
4.2.3 ELISA and IFA approaches to Verify Protein-Parasite Interactions 

Similar to the ELISA protocol in Chapter 3, day 15 in vitro cultured P. 

falciparum gametocytes were harvested and lysed in cell lysis buffer, and the protein 

concentration in the lysate was measured using the Bradford method [110]. P. 

falciparum parasite protein mixture (50 µL at 3 µg/mL) was coated onto clear 96-well 

plates overnight at 4°C; the plate was blocked with 1 % BSA for 2 h at room 

temperature (RT), and then washed three times with 1×PBS containing 0.05% (v/v) 

Tween-20 (PBST).  Expressed recombinant proteins (500 ng) were added into wells to 

react with the coated lysate: an equivalent amount of CAT protein (Chloramphenicol 

acetyltransferase with a C-terminal 6×His-tag) was included as negative control. After 1 

h incubation, three washes were performed with PBST before incubating with 1:1,000 

diluted anti-His monoclonal antibody (LifeTein, LLC, New Jersey, USA) for 1 h, 

washed with PBST and followed by a 1:10,000 diluted goat anti-mouse IgG (conjugated 
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with alkaline phosphatase) for 1 h.  Plates were developed with p-nitrophenylphosphate 

(pNPP) for 30 min. and the absorbance was measured at 405 nm. 

For indirect immunofluorescence assay (IFA), day 15 in vitro cultured P. 

falciparum gametocytes were harvested and coated onto glass coverslips and then 

sequentially: 1) fixed with 4 % paraformaldehyde for 30 min, 2) quenched with 100 

mM glycine in 1×PBS for 20 min, 3) washed three times with 1×PBS, 4) blocked with 

1 % BSA overnight at 4°C. The next day, the coverslip was incubated with 100 mg 

expressed candidate protein for 2 h, and probed for 1 h with 1:1,000 diluted anti-His 

monoclonal antibody (LifeTein, LLC, New Jersey,USA). After washing three times 

with 1×PBS, bound protein signals were further amplified by incubating with 1:10,000 

diluted Alexa Fluor 555 Goat Anti-Mouse antibody (Invitrogen, Carlsbad, USA) for 30 

min. Then, the coverslips were air-dried for 30 min after being washed three times with 

1×PBS. A small drop of mounting medium containing 4', 6-Diamidino-2-Phenylindole 

(DAPI) (Vector laboratories, Inc. Burlingame, CA) was placed onto glass slides, and 

coverslips were mounted on top of the slides. Finally, the results were visualized using a 

Nikon Eclipse Ti-S fluorescent microscope. 

4.2.4 in vitro Synthesis of dsRNA and SMFA 

Oligomers were designed for RNA interference of the candidate genes using the 

E-RNAi web server, ensuring they contained a T7 promoter sequence (Horn, 2010) 

(Table 4-2). Double stranded RNAs (dsRNA) were synthesized with the MEGAscript 

Kit (Life Technology). One-day-old adult female mosquitoes were used for dsRNA 

microinjection, wherein ~67 nL of 3 µg/µL of dsRNA was injected into the thorax of 

each adult mosquito using a Nanoject II micro-injector (Drummond Scientific 
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Company). Approximately 100 female mosquitoes were injected for each candidate 

gene, and an equivalent amount of GFP dsRNA was injected into mosquitoes as a 

negative control. 

 
Table 4-2. Primer table for dsRNA synthesis 
 

Gene ID Primer 
Name Primer Sequence 

5070 

RNAi-
Forward TAATACGACTCACTATAGGGGGCGGTAGTAGTTACAGCACG 

RNAi-
Reverse TAATACGACTCACTATAGGGGTCAGCGGACAGGAAGTGTT 

9641 
 

RNAi-
Forward TAATACGACTCACTATAGGGATCGTTCGATCTGGTCGATAA 

RNAi-
Reverse TAATACGACTCACTATAGGGAGGGTCAACCGATCGAGAAT 

2367 
 

RNAi-
Forward TAATACGACTCACTATAGGGGTGCAGATTCGCTTCCTTTC 

RNAi-
Reverse TAATACGACTCACTATAGGGGACTGTCCTGGGACTCTTGG 

5073 
 

RNAi-
Forward TAATACGACTCACTATAGGGCCATTCCGTACCATCACATTC 

RNAi-
Reverse TAATACGACTCACTATAGGGCACATGCCCCCTACAAGC 

  Note: The underlined sequences are T7 promoter. 
 

Treated mosquitoes were fed at 48 h post-injection with 0.2 % P. falciparum 

gametocytes (day 15 in vitro cultured) using a standard membrane feeding assay 

(SMFA) [78]; engorged mosquitoes were maintained at 27°C and 80% humidity with 

10% sugar for 7 days. Mosquito midguts were then dissected and stained with 0.1% 

mercury dibromofluorescein disodium salt in 1×PBS, and the number of oocysts in each 

midgut was counted using a light microscope. 

4.3 Results 

4.3.1 Compilation of An. gambiae Midgut Secretory Proteins  

Ninety five genes were predicted as candidates for interactions between a An. 

gambiae midgut and a Plasmodium parasite (see Appendix Table). Distribution of the 
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predicted candidate genes shows high variability with respect to their presumed 

functions (Fig. 4-1). Of these candidates, 21% of the genes have predicted protease 

activity, which correlates closely with the increased digestion demands in the mosquito 

midgut lumen after a blood meal.  Among the other identified candidates, 12% of the 

genes have predicted defense functions, and 5% have lipid/chitin binding functions. 

These two groupings are interesting candidates for further functional studies because 

they are likely to be involved in parasite-mosquito interactions. The remaining 36% of 

the compiled genes’ functions are unknown. It is worth noting that the FREP1 is among 

predicted candidate genes.  

 

 

Figure 4-1. Predicted functions for candidate An. gambiae midgut secretome. 
95 mosquito midgut proteins are candidates and the corresponding percentage for each 
category is indicated relative to the total.  
 
4.3.2 Four Expressed Proteins Were Found Interacting with P. falciparum by Both 

ELISA and IFA 

Out of the 95 genes, 15 genes were chosen arbitrarily, mainly from the defense 

or lipid/chitin binding predicted functions, for further study. The 15 proteins were 
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expressed in High Five cells based on ELISA utilizing the anti-His antibody because all 

of the recombinant proteins have 6×His tag at the protein C-termini. Notably, 10 out of 

these 15 proteins show significant interacting signals with P. falciparum parasite lysate 

through ELISA compared with negative control (Fig. 4-2). To assess if these interacting 

molecules come from the parasite cell membrane, a non-permeabilized IFA approach 

was used. P. falciparum parasites were fixed on glass slides and monitored for 

interactions with ten candidate proteins. Four of them showed co-localization with the 

parasites (Fig. 4-3), supporting them on P. falciparum infected cell surface, which will 

be further analyzed. 

 

 
 
Figure 4-2. ELISA verification of the interactions between 10 candidate genes and 
P. falciparum infected cell lysate. 
X-axis represents the name of candidate genes (using gene ID from omics.fiu.edu), 
whose correspondence with vectorbase gene ID can be found in the Appendix Table. Y-
axis shows the absorbance value under 405 nm with subtraction of the absorbance under 
405 nm. Using Student’s t test, all ten genes show significant (p<0.01) higher 
interacting signals than the negative control (“Con”). 
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Figure 4-3. IFA experiments of four proteins that interact with P. falciparum 
surface molecules. 
4% paraformaldehyde-fixed P. falciparum gametocytes were incubated with candidate 
proteins and negative control (CAT). The first (TRITC) and second columns (DAPI) 
depict candidate protein locations and parasite nuclear staining, respectively. Merging 
the first, second columns generated the third column. The last column shows parasites 
under the bright field.  
 

4.3.3 Assessing Candidate Gene Function in Parasite Invasion using RNAi 

From the identification results in section 4.3.2, four genes were further analyzed 

using RNA interference for their functional roles in malaria infection. Double-stranded 

RNA for each of the four candidate genes was injected into female mosquitoes, and a 

CAT gene was used as the negative control. Seven days later, mosquito midguts were 

dissected and oocyst numbers per midgut were compared with the control. The normal 

function of gene 2367 and 5070 was likely to be inhibitory of P. falciparum infection, 

indicated by a significant (p<0.01) increase of the oocyst infection in the mosquito 
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midgut after gene knockdown as compared to the control group (Fig. 4-4C and D). In 

contrast, the other two genes, 5073 and 9641, showed completely opposite results, 

suggesting that the normal function of these two genes is to facilitate Plasmodium 

infection (Fig. 4-4A and B). Accordingly, this indicates that mosquito genes can be 

involved in parasite infection through either facilitating or inhibiting invasion. This is 

consistent with our previous observation that despite being from the same family, the 

FBN30 and FREP1 proteins have opposite effects during malaria parasite infection of 

mosquitoes [11]. In summary, the four Plasmodium–interacting mosquito midgut 

proteins we have identified can either promote or inhibit malaria parasite infection in 

mosquitoes: however, the detailed molecular mechanisms remain unknown. 

 

 
 

Figure 4-4. RNAi experiments demonstrate the effects on P. falciparum infection 
after candidate gene knockdown.  
Data summary and statistical analyses of the oocyst numbers in mosquitoes treated with 
either GFP dsRNA or candidate gene dsRNA (Panel A-D). Y-axis represents the 
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number of oocyst per midgut and x-axis indicates treatment groups. The black bars 
represent the mean of oocyst numbers per midgut, and p values between two groups 
were calculated using Wilcoxon-Mann-Whitney test. Data are consistent with two 
independent experiments. 

 
4.4 Discussion 

A mosquito midgut secretory protein database, potentially useful for examining 

Plasmodium infection mechanisms in the mosquito midgut, was generated using 

computational approaches. These approaches resulted in approximately one hundred 

midgut proteins after screening the An. gambiae genome that contains ~13,000 coding 

genes. In our study, computational approaches narrowed down the gene pool of interest 

dramatically and improved the working efficiency by two orders of magnitude. 

Experimental validation of candidate protein interaction by ELISA and IFA 

identified 4 mosquito midgut proteins that may interact with the P. falciparum cell 

surface (Fig. 4-3). RNA interference showed two genes (5073 and 9641) facilitated P. 

falciparum infection while other two (2367 and 5070) inhibited P. falciparum infection.   

Two mosquito midgut genes, 2367 and 5070, served to inhibit P. falciparum 

infection in mosquitoes; they have been putatively annotated as keratin associated 

protein (KRTAP) and epididymal secretory protein E1, respectively. Epididymal 

secretory protein E1 controls sterol homeostasis and steroid biosynthesis in Drosophila 

[111], however, it is not established whether it is needed for mosquito species. Unlike 

most animals, insects lack the capacity to synthesize sterols, which are essential in lipid 

bio-structures and are required as precursors of important steroid hormones; therefore 

insects must acquire sterols from their diet [112]. In our study, the results (Fig. 4-4D) 

lead us to speculate that it might be easier for malaria parasites to infect mosquitoes 

after the sterol hemostasis disruption as we hypothesize that the sterol homeostasis and 
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steroid biosynthesis of mosquitoes might be affected once the expression of the 

Epididymal secretory protein E1 gene was reduced. Keratin associated proteins 

(KRTAPs) are one of the major components of hair-like structures and play essential 

roles in the formation of rigid and resistant hair shafts [113]. However, little research 

has been done on their functions in insects. In our study, the results (Fig. 4-4C) revealed 

that the knockdown of keratin-associated protein gene expression increases P. 

falciparum parasites infection, suggesting that this protein family may not only be a 

component of mammalian hair, but also be endowed with some malaria infection-

relevant roles in mosquitoes. 

In contrast, the other two mosquito midgut genes, 5073 and 9641, were 

identified to facilitate P. falciparum infection in mosquitoes. Gene 5073 was annotated 

as a Niemann-Pick C2 (NPC2) protein in our protein database. It is generally known 

that cholesterol is an important precursor for numerous biologically active molecules, 

and it plays a major role in membrane structures and functions. NPC2 protein has been 

characterized as a cholesterol-binding and -transport protein, whose function loss 

typically leads to NPC2 disease (an inherited neurodegenerative disorder) [114, 115]. In 

this study, the mean number of P. falciparuam oocysts per midgut was significantly 

reduced in gene knockdown mosquitoes than that in control, implying that Plasmodium 

infection might need the homeostasis of cholesterol. Gene 9641 was predicted as 3-

phosphoshikimate 1-carboxyvinyltransferase (also known as 5-enolpyruvylshikimate-3-

phosphate synthase, EPSP), which is an enzyme in biosynthesis of aromatic amino acids 

in plants, many bacteria, and microbes, and also a prime target for drugs and herbicides 

[116]. Our results indicated that P. falciparuam oocyst numbers per midgut were 
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significantly reduced when gene 9641 was silenced in mosquitoes (Fig. 4-4A). Since 

malaria parasites have limited capabilities to biosynthesize amino acids [117], we 

speculate that the knockdown of gene 9641 might damage the biosynthesis of aromatic 

amino acids in Anopheline mosquitoes, and as a consequence, the Plasmodium infection 

in mosquito midguts was impaired because of a lack of sufficient aromatic amino acids 

for parasite development.	

In summary, we developed a computational approach and identified 95 

mosquito midgut secretory proteins that may potentially interact with Plasmodium and 

affect its ability to effectively invade and develop in mosquitoes. Based on the 

experimental results, 4 (out of fifteen) proteins were identified to interact with 

Plasmodium surface molecules and play either facilitating or inhibitory roles for 

parasite propagation in the mosquito midgut. Following a similar approach, more 

mosquito midgut proteins that are implicated in malaria transmission may be discovered, 

precipitating a more comprehensive understanding of the molecular mechanisms of 

malaria transmission. 
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Appendix 

Table of An. gambiae Midgut Proteins that Potentially Interact with P. falciparum 
Parasites. 
 

# Vectorbase Gene ID Omics Gene ID Predicted Functions 
1 AGAP003781-PA 6161 amylase 
2 AGAP012263-PA 9055 amylase 
3 AGAP009102-PA 10764 amylase 
4 AGAP000862-PA 14156 amylase 
5 AGAP006268-PA 1663 chitin 
6 AGAP001203-PA 3197 chitin binding 
7 AGAP001005-PA 14321 chitin binding  
8 AGAP007016-PA 2412 Deaminase 
9 AGAP011476-PA 8202 defense 

10 AGAP005416-PA 742 defense 
11 AGAP006425-PA 1794 defense 
12 AGAP007197-PA 2608 defense 
13 AGAP001956-PA 4007 defense 
14 AGAP002796-PA 5011 defense 
15 AGAP002848-PA 5070 defense 
16 AGAP002870-PA 5092 defense 
17 AGAP011325-PA 8009 defense 
18 AGAP001873-PA 10494 defense 
19 AGAP004632-PA 16151 defense 
20 AGAP007182-PA 2593 egg production 
21 AGAP007672-PA 3066 lipase 
22 AGAP009101-PA 10761 lipase 
23 AGAP010820-PA 14774 lipase 
24 AGAP003573-PA 5915 lipid binding 
25 AGAP013327-PA 7447 peroxidase 
26 AGAP008398-PA 9923 pheromone 
27 AGAP004054-PA 6449 phophatase 
28 AGAP006400-PA 1764 phosphatase 
29 AGAP008487-PA 10035 phosphatase 
30 AGAP007140-PA 2551 phosphatase and nucleotase 
31 AGAP007677-PA 3070 protease 
32 AGAP005686-PA 1019 protease 
33 AGAP005691-PA 1024 protease 
34 AGAP006534-PB 1027 protease 
35 AGAP006144-PA 1531 protease 
36 AGAP006210-PA 1595 protease 
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37 AGAP007262-PA 2674 protease 
38 AGAP001245-PA 3253 protease 
39 AGAP013377-PA 3662 protease 
40 AGAP013155-PA 3930 protease 
41 AGAP005093-PA 4785 protease 
42 AGAP011434-PA 8151 protease 
43 AGAP011442-PA 8160 protease 
44 AGAP011908-PA 8664 protease 
45 AGAP011920-PA 8680 protease 
46 AGAP008176-PA 9685 protease 
47 AGAP008999-PA 10642 protease 
48 AGAP000476-PA 13675 protease 
49 AGAP004900-PA 15223 protease 
50 AGAP013078-PA 15853 protease 
51 AGAP011379-PA 8079 signal transduction 
52 AGAP006972-PA 2367 structural 
53 AGAP001509-PA 3536 structural 
54 AGAP008463-PA 12734 structural 
55 AGAP005795-PA 1149 transport 
56 AGAP004323-PA 5418 transport 
57 AGAP002094-PA 4180 transport 
58 AGAP013451-PA 4760 lipid binding 
59 AGAP004367-PA 17225 transport 
60 AGAP001183-PA 3169 UMP hydrolase 
61 AGAP008678-PA 10230 unknown 
62 AGAP006484-PA 1864 unknown 
63 AGAP001508-PA 3535 unknown 
64 AGAP011006-PA 7653 unknown 
65 AGAP008138-PA 9641 unknown 
66 AGAP005899-PA 1268 unknown 
67 AGAP006256-PA 1646 unknown 
68 AGAP007077-PA 2486 unknown 
69 AGAP007370-PA 2775 unknown 
70 AGAP007564-PA 2945 unknown 
71 AGAP007606-PA 2994 unknown 
72 AGAP001171-PA 3156 unknown 
73 AGAP002577-PA 4740 unknown 
74 AGAP002974-PA 5229 unknown 
75 AGAP003010-PA 5273 unknown 
76 AGAP003255-PA 5555 unknown 
77 AGAP003499-PA 5832 unknown 



84 

78 AGAP004035-PA 6433 unknown 
79 AGAP004303-PA 6737 unknown 
80 AGAP011371-PA 8071 unknown 
81 AGAP011378-PA 8077 unknown 
82 AGAP011646-PA 8387 unknown 
83 AGAP007924-PA 9434 unknown 
84 AGAP008190-PA 9700 unknown 
85 AGAP009240-PA 10924 unknown 
86 AGAP009805-PK 11565 unknown 
87 AGAP001608-PA 11610 unknown 
88 AGAP010151-PA 11879 unknown 
89 AGAP000014-PA 13104 unknown 
90 AGAP000168-PA 13288 unknown 
91 AGAP000307-PA 13471 unknown 
92 AGAP000550-PA 13778 unknown 
93 AGAP008670-PA 4788 unknown 
94 AGAP008552-PA 10104 unknown 
95 AGAP007031-PA 2434 FREP1 
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