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ABSTRACT

In this investigation, the displacement response of a bounded
elastic medium is analyzed usinga ray-tracing method coupled to a Monte-
Carlo technique. The medium is an elastic, homogeneous, and isotropic
solid bounded by six arbitrarily inclined stress-free plane surfaces.

The wave-front curvature transformations due to the mode conversions at
the free surfaces are derived. For sampling the reflected rays at the
free surface, the Russian-roulette algorithm is utilized.

Numerical calculations are given for the following three models:

a) A two-dimensional plate with stress-free boundaries. The
force is an impulsive dilatational wave located at the point (0,0).

b) A two-dimensional plate with stress-free boundaries. The
force is a unit normal stress acting at the point (0,15) of the free sur-
face. The force and the receiver are located at the opposite sides of
the plate.

¢) A two-dimensional plate with stress-free boundaries. The
force is a unit normal stress acting at the point (0,15) of the free sur-
face. The force and the receiver are located at the upper surface of
the plate.

Computer algorithms are developed and the solutions of the dis-

placement-field components are plotted for three different locations of

iv



the receiver for each model. Numerical results are compared with the
generalized ray analyses conducted by Pao [4] and Pao et al. [5] for the

same geometry and the load conditions.
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CHAPTER I

INTRODUCTION

1.1 Literature Survey

In this chapter, the problem is defined with respect to non-
-~ destructive testing of materials followed by a review of early research
works in the literature. Moreover, both the geometrical ray approach
and the Monte Carlo techniques are explained with specific allusion to
their applications in fluid and solid acoustics, neutron transport, and

radiative heat transfer.

1.7.1 Problem Definition

The structural integrity of some materials can be character-
jzed through the stress waves generated from sources (cracks, growth of
defects) in the medium. In order to sense these waves, which are also
called acoustic emission, transducers are often located on the surface
of the medium. However, since the source is very often of a random
nature, the transducer can only pick up such signals after they have
gone through many reflections, see for example, Hsu [1] and Fig. 1.1.

In spite of the fact that cracks or defects are located in
the material in a random fashion, analytic representations of acoustic
emission signals are still based on deterministic functions. This often

leads to inaccurate results and grossly limits its exploitation as a



Fig. 1.1 Ray tracing in a bounded solid medium.

1 - transducer
0 - point of origin



nondestructive testing technique. Moreover, it is extremely difficult
to obtain details of the actual source of the mechanism.

Only recently has attention focused on representing acoustic
emission by random processes. Egle [2,3] and Pao et al. [4,5,6] have
suggested it might be best to correlate the wave behavior in the mate-
rial with the observation on the transducer in order to realize the
great potential of this technique in understanding mechanical properties
of solids. In order to quantitatively analyze the response of the trans-
ducer to the source function inside the elastic solid (material), it is
essential to simulate the source, identify the most predominant of the
body waves, and characterize the stress waves in a'probabi1istic form.

The present investigation applies a ray-tracing technique
coupled to the Monte Carlo method for determining the response at a
point on the surface of a bounded elastic body excited by a compres-
sional source. This method is further expanded to include other types

of sources and so provides a valuable aid in acoustic emission research.

1.1.2 Survey of Previous Research

Since Lamb's classic paper [7] in 1904 on the propagation of a
tremor over the surface of a semi-infinite elastic solid, tremendous
efforts have been devoted to the study of the elastic wave motion and
the resolving of the consequent complex integrals; see also [8,9].

Bromwich [10], for instance, expressed wave motion in a series
of pulses by expanding the formal solution of elastic waves in negative
powers of exponentials, a method which was used by Muskat and Pekeris
[11,12,13] to obtain formal solutions to elastic wave problems. This

method of expansion could be very tedious when solving the more complex but



but interesting problems. Also, in 1919, by representing sinusoidal
spherical waves in terms of plane waves, Weyl [14] was able to study
the propagation of radio waves generated by a dipole near the flat
earth. His method was later extended to arbitrary wave shapes by
Poritsky [15]. |
However, most of these techniques give solutions in a closed
form not amenable to numerical calculations, since many parameters intro-
duced can hardly be accounted for. Even after the development of
direct methods of inversion of the relevant integrals by Cagniard [16],
marly investigators, like Lapwood [17], Pekeris et al. [18] and Pinney
[19,20], still resorted to different asymptoti; techniques. One of these
methods often adopted by Pekeris uses plane-wave approximations which
assume that the source function is either of a short duration or of high
_frequency content. In this case like in Lamb's work, Bessel functions in
the integral are represented with their asymptotic expressions. In an
attempt to give numerical calculations in his work on surface motion due
to a point source in a semi-infinite elastic medium, Pinney [19,20], as
it was later shown by Pekeris and Longman [12], used a method of evalua-
tion of the integrals which became inaccurate just at the point of interest.
Knofoff, et al. [21] on the other hand adopted a generé]ized
ray approach, a technique which considers only the predominant part
of the wave motion near the arrival time. Both normal mode and the
generalized-ray methods also required the Bromwich expansion. Besides,
the generalized-ray method becomes increasingly inefficient for multi-
reflected rays since, as Pao [4] pointed out, the number of integrals

to evaluate increases as 2m + 1 where m is the number of reflections



of each ray path. This also Timits its use in studying long term
response.

Another interesting method is a geometrical-ray approach
which Chopra [22] used to give a formal solution for a compressional
point source in an internal stratum. In the same work, assuming a har-
monic source, he represented the potential for a point source of com-
pressional waves by Sommerfeld's integral. Since this integral for a
spherical point source can be regarded as a superposition of plane
waves [13], he expanded it using Bromwich's method. He later evaluated
the displacement corresponding to two of the successive terms in the
expansion by the saddle-point approximation. He did conclude, however,
that the two methods yielded the same result.

Although the geometric ray has some geometric involvement, it
gives a better insight into the mode conversion phenomenon and is

applied in this present research work.

1.2 Geometrical-Ray Approach

The geometrical-ray approach for solving wave propagation is
an asymptotic approximation valid only in the far field of the source.
The technique is well known and has been used extensively in optics
and fluid acoustics. In solid acoustics, the geometrical-ray approach
has not been as widely used as the more formal generalized-ray methods,
summarized by Pao [ 4] or the Bromwich-expansion method (see, for
example, Newlands [23], Hong [24,25]).

The major disadvantage of the simple ray-tracing approach is
that it cannot account for several near field effects, including coni-

cal or head waves, and the generation of surface waves. It is shown in



the later chapters that this approach, when the refraction of mode
conversions of waves transmitted into different media are properly
accounted for, does yield the correct far-field results for body waves.
This geometrical-ray approach, if modified to account for the genera-
tion of surface waves, can be used to compute the response at

any point on the surface of a solid bounded by planes.

Given a point source, the direction cosines of a ray, and the
defined geometry of the boundary planes, it is possible to determine
the point of intersection of the ray and the impinged plane. Because
of the mode conversion phenomenon in elastic waves after reflection
(see Fig. 1.2), it becomes necessary to pursue two rays: both P- and §-
waves after reflection. This makes the number of different rays to
trace down after a few reflections enormous and, hence, ray tracing in
the conventional sense becomes impracticable. This problem is avoided
by using the Russian-roulette method —a special form of importance-
sampling technique whereby functions of less importance are eliminated
and the resulting bias reduced by increasing the weight of the remain-
ing function. Thus, in this application, the Russian-roulette method
is applied to select one of the reflected rays to continue tracing.

This process is continued for a cumulative time te < thax where tax

m
is the predetermined time for ending the calculation (see Fig. 1.3).
This process of selecting a ray emanating from the source,
weighting according to the source type and tracing that ray as it re-
flects from the boundaries of the media is repeated many times. When-

ever a ray strikes the part of the surface on which the transducer is

located, the time of hit is recorded and the displacement components
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under the transducer are calculated. The cumulative dispiacement then

gives the response of the solid to the source being simulated.

1.3 Monte Carlo Techniqhe

This is a method of statistical trials used for solving prob-
lems of computational mathematics [26]. It involves the construction
of some random process for the problem at hand and equating its para-
meters to the required physical quantities in the problem. By calcula-
ting the statistical characteristics from the observation of the para-
meters of the random process, those of the physical quantities can also
be computed. '

This technique has recently received wide application in
neutron transport, fluid, and room acoustics [27,28]. Haviland et al.
[28] proposed it for determining the acoustical pressure-time history
in a spatial enclosure by tracing acoustical rays. They used it to
calculate the ultimate average pressure in a given rectangular room
and found their result to compare reasonably well with known solutions.
They have only considered a simple case of reflection instead of com-
plex cases like curved boundaries, cases involving refraction or elastic
waves where modes of reflection should be taken into consideration.
Stockham [29] and Turner [30] had also extended its application to

radiative heat transfer.

1.4 The Main Objective of Research

In light of the above, it was considered best to attack this
problem by combining the Monte Carlo method with a geometrical ray

tracing technique. Therefore, the following tasks are the objectives



of this research:

1)

2)

3)

Simulation of the compressional and the transverse
(shear) waves emitting from.an impulsive point source.
The solid is assumed to be elastic, isotropic, and
homogeneous.

The study of the response of a bounded elastic solid due

to an impulsive compressional point source with specific

reference to:

a. An isotropic and homogeneous solid body bounded by
six arbitrarily inclined planes. Surfaces are stress
free.

b. An isotropic and homogeneous elastic plate with the
stress-free surfaces

Determination of mode conversion after reflection on a

stress-free surface, using the Russian-roulette technique

and computation of the displacements for both incident
and reflected waves including P-P, P-SV, SV-SV, and SV-P.

Development of a computer algorithm for the ray tracing,

boundary reflections, and displacement computations.

Application of the above methodology to give numerical

calculations for:

a. The response of an elastic plate due to an impulsive
point source.

b. Response of a plate to a unit normal stress with a
square pulse time function applied to the surface of

the plate.



6) Analysis of the results, comparison with known existing
analytical and experimental results and recommendations for

future research.



CHAPTER I
PHYSICS OF THE PROBLEM AND MATHEMATICAL FORMULATION

One of the distinguishing characteristics in the study of
elastic waves in a bounded medium is the occurrence of the mode con-
version phenomenon whereby two different types of waves are generated
after reflection at a free surface. This does account for the relative
complexities of its problems as compared to those of either acoustic or
electro-magnetic waves. Therefore, due considerations are given to the
physics involved when theoretical bases are formulated.

With this understanding in mind, in this chapter, bases for
using a Monte Carlo approach for the ray emission from a point source
are examined, followed by the Russian-roulette method for selecting the
reflected ray, reflection of the plane waves at the free surface, and
the curvature due to reflection of waves. Applications to both two- and

three-dimensional cases are given.

2.1 Monte Cario Formulation

In this section, we make use of a random number generator to
determine the vector direction of each ray coming from a point source
in such a way that it possesses an equal distribution over all direc-

tions of a sphere.

Firstly, let us recount some relevant portions of the theory

12
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of probability (see Lindgren [31] and Shooman [32]).
A distribution function is defined as [31] the probability of

a random variable X(w) induced in a sample space ¢, i.e.,

-
—
b
~
1

P(X < x), F(x) = P(X = x)
or
F(q) = P(X < q)

and obeying the following axioms of a probability space.

(@) 0 <F(x) <1

(b) F(-=) =0, F(=) =1 2.1)
(c) F(x) < F(y) whenever x <y

(d) Tim F(y) = F(x)

+
y X

A distribution function could be discrete or continuous depending on
whether the probability is assigned in discrete amounts at isolated
places or 'spread' over an interval of values.

The derivative of a distribution function is called the

density function which can be expressed as

fix) =L F (x) = L p(x < x)

dx T ax -
f(x)dx = P(X < x + dx) - P(X < X) (2.2)
f(x)dx = P(x < X < x + dx)

In the case of a continuous function, the probability distribution can
be set by specifying the density function which should satisfy the

following properties:

f(x) >0 (2.3)
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and

Therefore, the distribution function can be defined as

X
F(x) = P(X < x) = J f(u)du

From here, it follows that

b
Pla <x <b) = f £()dx (2.4)
a
which shows that as a definite integral, a distribution function can be

interpreted as an area under a curve.
Similarly, in the case of a multiple random variable, we can
define a cumulative distribution function if the joint density function

¢(0,¢) satisfies the following conditions:

«®w W

J J $(0,¢)dody =1

-0 -0

and

¢(0,9) >0 for { (2.5)
- ¢

A
[ow)
| A
8

x x

1A
| A

The random variables u,¢ could be dependent or independent.

If it is assumed that 6 and ¢ are two independent random
variables, then their density functions can be written as the product
of the two marginal density functions.

o(u,4) = glo)f(e) (2.6)
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where g
g(o)de = [J o(0,¢)d¢ldo
8
fleddn = ] o(o.p)delep 2.7)

and g(8) and f(¢) are the marginal density functions. Hence, the
probability (cumulative) distribution functions can be determined as

0

a(e) = J a(0)de (.82)
0
and 6
F(o) = J f(o)de (2.8b)
0

2.1.1 Ray Emission from a Point Source
In this analysis, the above probability principles are applied
for both the three-dimensional and two-dimensional cases. See Turner
[30] and Stockham [29] for more details.

A Three-Dimensional Case. Let us assume that a ray emanating

from a point source at 0 is isotropic (see Fig. 2.1), i.e., both the
cosine of the polar angle, v, and the aximuthal angle, ¢, are considered

uniformly distributed in the interval (-1, +1) and (0.27), respectively

for
0

| A

0

A

n

0 2n

| A

¢

| A

Since the number of emissions from a point source

through a differential area on the surface of a sphere is directly
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- ¥

Fig. 2.1 Emission of ray from a point source.

- azimuthal angle
polar angle

position vector
point of origin

o5 <
¥
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proportional to the area of the surface, then the number of emissions

from a point 0 can be written as

_ dA' _ rsinod¢rdo _ sin d¢do
N = A~ 4nr? 4 (2.9)
where
N - total number of emissions
dA' - area of the differential surface
A - area of the sphere
Since
27w
sinodedy _ 1
4y
0o o0
and
sing

g, 20 for 0<o0<wn and 0 < ¢ <2n

then, we can define
sing
©(8,¢) = 21—
as the joint probability density function of the random variables ¢ and

¢ and determine its associated cumulative distribution function.

Determination of the Marginal Density Functions
and Their Probability Distribution Functions

If we assume that o and ¢ are two independent random vari-
ables, then their joint density function from equation (2.6) above,

becomes

¢(0,¢) = g(o)f(s)
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where 27
g(e)do = [f ¢(0,¢)d¢]de
0
and n
flp)de =

[J ¢(0,¢)dolde
0

g(e) and f(¢) are the marginal density functions

2
a(0) =Js12Ed¢ - 512 0
)
Similarly,
™
- sin 0
f((p) = J Tde
)
i.e.,
f(s) = 5%;

Therefore, the associated probability distributions can be
determined by integrating equations (2.1Q) and (2.11) over o and ¢,
respectively.

6

G(o) = j §ig—ﬁ-de = 1/2(1 - cos o)

(=]

(=8

6
Flo) = I L=t
0

where G(6), F(¢) are the probability distributions.
It could be observed that as cos 6 varies from -1 to +1,

G(e) varies from 1 to 0. Therefore, it is appropriate to set

(2.10)

(2.11)
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[1-G(8)] which varies in the interval [0,1] equal to a random number
Re[O,l], say.

Similarly, since F(¢) varies in the interval [0,1] as ¢ varies
from 0 to 2, F(¢) can be equated to a random number R¢ in the interval

[1,0], i.e.,

Re =1 - G(v)
R0 =1 -1/2(1 - cos o)
R0 = 1/2(cos 6 + 1)
= 4
R¢ 5 (2.12)

The directions of emission can be determined by

cos 6 = 2R -1 (-1 <cos 8 <+ 1)

8 = Z‘an> (0 < ¢ < 2n) (2.13)

Hence, any ray emanating from the point, 0 can be represented by a
vector,

¥=ogi+ m3 + nk (2.14)

where ¢, m, and n are the direction cosines

£ =C0S ¢ Sin ¢
m=sin ¢ sin 0
n =cos o

A Two-Dimensional Case. In this case, the number of emissions

is given as (see Fig. 2.2)
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de

\
~

Fig. 2.2. Direction of emission -
two-dimensional case.

AS

AS p
S%ﬁ/
Sy

AS
0 Sy 2

O,

Fig. 2.3. Average cnergy transmission across
AS with incident shear waves.



1 oo
N~A'_=2-Yd0:g.(l
" A Y2 21
Since 21
do _
| -1
)
and
2_",n->o for 0<p <1

the density function f(6) is taken as 1/2m.
In order to find the distribution function, G(8), equation

(2.11) is integrated to give
_ do _ 8
G(e) = [ 2 2

Since G(o) varies within the limits [0,1/2] as @ varies
between (0 < 6 < ) and G(e) varies between [1/2,0] as ¢ varies be-
tween (v < 0 < 2u), we can equate G(8) to a random number R which

varies betweenRéo,l), see Fig.

Thus, if R falls between (0 <R,272),

therefore,

B = ZnR0
but if R falls between (172 < R, < 1), the ray is emitted outside the
plate.

Therefore, the directicn cosines are
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i

£
n

cos 0
(2.15)

sin ¢
Table 2.1 shows the summary of the distribution functions and the direc-

tion of emission.

2.1.2 Russian Roulette

The Russian-roulette technique is used in this work, as
mentioned earlier, to select and trace down the path history of the
more important of the two rays produced by each refiection. The fre-
quency of occurrence of the waveform chosen depends on both the nature
of the incident ray and the ratio of the energy distribution at the
point of reflection. As mentioned in the earlier chapter, the incident
ray on reflection at a free surface generates two other rays. There-
fore, for energy considerations, we can assume that there is no energy
loss at the point of reflection. Achenbach [33,34,35] represented this

for incident P-waves as

(A__]_Z + (A_2)2 _C_I_COS f
Ag Ag C cose

=1 (2.16)

where Ao, A], and A2 are the amplitudes of the incident P-wave, reflec-
ted P-wave and the reflected S-V wave, respectively.

CT’ CL are the torsional wave speed and the dilatational

wave speed, respectively.

e - angle of incidence for P-waves.

f - reflected angle for SV-waves.

Since in this work, the incident angle alternates after re-
flection depending on the reflected wave chosen, it is essential to

derive a similar equation for the incident shear waves.
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Table 2.1. Direction of Emission
MARGINAL
JOINT PROB | DENSITY DISTRIBUTION
FUNCTION FUNCTION FUNCTION DIRECTION
CASES ¢(0,9) g(9), f(9) G(o), F(9) OF EMISSION
g(\'))=§ﬂ2‘—ﬂ G(u)=]§(l -Ccos 0)| cos 0=2R0-1
(1-<cos <+1)
3D | o= s1'n40 da d¢,
m
= - b -
f(y) = 5- F(9) = 5~ $ = 2R,
(0 <¢<2n)
2-D | £(0) = A 6{o) = & 6 = 21R
20 2w 8
(0 <0 < 2m)
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Energy Decomposition due to an Incident

Shear Wave
Let us examine a beam of an incident SV-wave of cross-
sectional area ASO. After reflection, it generates both P- and SV-
waves of cross-sectional areas ASZ and AS], respectively. Assuming that
the surface is traction free and the energy is conserved after reflec-

tion, the energy transmissions across aS becomes (see Fig. 2.3, page 20).

< PT > incident = < PT > reflected + < PL > reflected (2.17)
i.e.,
2 2 2
L PN T B PR SO VAN AN
7 u CT (AO) ASO > 1 CT (A]) AS] + Z(A'FZu) ] (A2) AS2 (2.17a)

But AS0 = AS] AS cos f for both the incident and the reflected shear

AS cos e for the reflected P-waves where

i

waves and ASp
f = incident or reflected angle for shear waves
e = angle of reflection for P-waves

Therefore, equation (2.17a) becomes

0

2 2 2
%—u L (AO)ZAS cos f = %'u H—-(A1)2AS cos T + %{A-+2u) L (A2)2AS cos e
T T L
(2.17b)
L : 1w, 2
Dividing equation (2.17b) through by o (Ao) AS cos f and noting that
T
C, 2
O+ 2= (@) = o
T
we have
A 2 A, 2
1 k cos e 2y _
(A ) + coS .F (Ao) = ] (2.]8)



The terms AZ/Ao’ A]/A0 are in fact the coefficients of reflections of
the reflected P and SV waves, respectively. We would then rewrite the
equation as:
shese g (2182
where
RSP - coefficient of reflection of an incident shear wave
reflected as a dilatational wave.

RSS - coefficient of reflection of an incident shear wave

reflected without a mode conversion.

According to Achenbach [33],

Rsp = - 5in 2? Z}: gz + kZ cos? 2f (2.19a)
s = S or e se T e ot (2.19)

Similarly, equation (2.16) could be rewritten as
(Rpp)” + ¢ Soag (Rpg)® = 1 (2.16a)

where RPP’ RPS are the coefficients of reflection of P-waves reflected

as P- and SV-waves, respectively.

R = sin 2e sin 2f - k2 cos? 2f

PP~ sin 2e sin 2f + k2 cos? 2f (2.20a)
= 2k sin 2e cos 2f
Ros = STn 26 sin 2F + kZ cos? 2F (2.20b)

) . l .
For computation purposes, let us put cos e = (1-k? sin2f)? in
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equations (2.19a, b).

Therefore, equations (2.17a, b) become

4 sin f cos f (1 -2 sin?f)

Rsp = = TT=ZSnZf)2 + & sin?f cos f(aZ = sinZf)y;
R = - (1 -sin?f)2 - 4 sin?f cos f(a? - sin?f)%
SS (1-sin?f)? + 4 sin?f cos f(a?-sin®f)k

Similarly, by putting

sin f = sin e/k

cos f = (1-sin2e/k?)*
and noting that CT/CL = a, we can write equations (2.20a, b) as

R = - (1-2a2 sin%e) - 4a3 sin%e cos e(] -a? sin:’-efi
PP (1-2aZ sinZe) + 4a3 sin?e cos e(l -a% sin‘e)k

R = 4a sin e cos e(1 -2a2 sin2e)
PS = (1-2a¢ sin®e)” + 4a> sin?e cos e(l -a‘sin‘e)ks

e, f are the incident angles for P- and SV-waves, respectively.

2.2 Reflection of Plane Waves at a'Stress-Free Surface

(2.21a)

(2.21b)

(2.22a)

(2.22b)

In this section, equations are derived for locating the point

of reflection and for determining the direction of the ray path after

reflection.

Suppose that the equation of a plane is represented as

A]x + B]y + C]z +D=0

where A], B], and C] are the direction numbers. Then, the normal

vector to the plane is
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A]i + B1j + C1k

Therefore, the unit normal vector is

. A]€ + B]E + c]E
R = (2.23)
2 2 2
/3 + 82+

The equation of the straight line incident on the plane with the
direction numbers A, u, and v from the point (x], Yy z]) can be
written as

X=Xy Y-y, z-14

A u v

->
The unit vector U incident on the plane becomes

- g N e + E
y=AFu*y (2.24)
/}\2 + pz + V2

-
Having known the incident ray, U and the unit normal vector to the

->
plane, R then the reflected ray, V from Fig. 2.4 can be represented as

Y (2.25)

->
where AR = - U-R and

U.v
B, = 53—
ROV ¥
But
> -> > ->
Y=Rx (UxR) (2.26)
Therefore,
N NN O - > >
V=- (URR+U(RXUXRY (2.27)



Fig. 2.4.

Direction of the reflected ray.

(a) P-wave is incident and
SV-wave is reflected
(b) P-wave is incidert and reflected

8¢
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For a plane case,

R = (ﬁ,n)

>

us= (UaV)
Therefore,

-> > > -

Y=Rx (U xR)

[u(n)? = v(n)(£)13 - [ule) (n) + v(£)*Ik

-~y
n

But the vector R has no component in the j direction, i.e.,

> ~
Y = un? jJ
Hence,
s 2
S+ vk) s w(m)7§ oo 1
%~ et O3
[u(n)?]

- - :
(-0 - R) R+ &dn)d

n

=<3
1]

But n = - 1 for the upper plane.

-

. R
V= - vk (2.28)

2.2.1 Point of Intersection
We know from elementary geometry that the point of intersection

between a plane
Aix + Biy + Ciz + Di =0

and the line

X =x"'+2arg
y=y'tur,
z=17z"+vyr

0
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could be obtained by substituting for x, y, and z in the equation of the

former, i.e., Aj(x' + ar ) + B.(y' +ur ) + Ci(z' + vro) +D; = 0.

From here
. Aix + Biy + Ciz + Di (2.29)
0 A.x + B,y + C.v )
i i i
Therefore, the point of impingement becomes
x = x' 4 ar,
y =y +ur, (2.30)
z=2"+ v

It is worth noting here that since ﬁ is a directed ray, L is in fact
the radial distance from the origin to the point of impingement. This
fact is later used as a criterion for finding which of the six possible

inclined planes is impinged by the ray.

2.3 Wavefront Curvature Due to Reflection of

P-SV Wave at a Stress-Free Surface

The solution to the problem of reflection in an elastic homo-
geneous isotropic semi-infinite medium has been studied by Chopra [22].
In his work, he used harmonic point source and treated the problem by
using the Sommerfield technique of deforming the contours and approxi-
mating the branch line by saddle-point approximation. He has demon-
strated that the ray-theory approach gives the same result without the
complexity of the former.

Therefore, the application of the ray-theory approximation is
used in this section to calculate the displacements of an impulsive

P-SV wave reflected from an elastic isotropic plane and the result
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is extended to the form applicable ¥or our purpose.
For an isotropic solid body, the equation of the wave pro-

pagation can be represented as

(A+u)VV-0 + uV0 + PF = o (2.31)
where
U - displacement vector
p - density of the medium
u,A - Lamé's constants for the material
? - body force vector

For the case of an impulsive dilatational point source with axial
symmetry about the z-axis, the equation can be reduced in cylindrical

coordinates to (see [22,36,37]):

2924 4
Cevey f¢

1} 1
=: €

292y +
Cevey fw
where

2 = +li+
v ar2 r ar 20z”?

-
1]

MZ-ZON(M Hm-CLﬂ

f =0

¢, - are dilatational and shear wave displacement

potentials, respectively.

=§.‘1’._M w:-;)—(t’_q-ﬂ.}.g'.
ar 3z ° 9z r r

u,wWw - displacement cemponents
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2.3.1 Displacement Amplitude
Let us suppose that the displacement potential of a ray emana-

ting from a point source, 0 (see Fig. 2.5) is represented as

=1
% R H(R - CLt) (2.32)
H(t) - heaviside unit function
R - total distance from point, 0 to the point of impingement
CL - velocity of dilatation waves
t ~ time of arrival

At point A, the intersection of the ray and the plane boundary,

the displacement due to the wave is

M 1

R R s(R - CLt) - —RYH(R - CLt)

If it is assumed that the distance OA is very large as compared with
the wavelength of the waves, we can then assume that the term 1/R?tends

to zero. Therefore,

09

0.1, .
R - R Ry -Gt
where R] is the distance from the point 0 to the point of intersection
of the ray and the first plane. Therefore, the amplitude of the wave
at A is given as

-1 .
A = ] (2.33)

ARy
The displacement amplitude at A after reflection can be gotten by multi-
plying equation (2.33) by the appropriate coefficient of reflection.

The refiection at the free surface is treated as a plane wave

problem. The respective displacement amplitudes of the dilatational



33

Plane i

(%)

op_ \p -5//P,,,r

Fig. 2.5a. P-wave emitted from a point source.

Fig. 2.5b. Mode conversion and the imaginary
point source —P-5SV waves.
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and the equivoluminal waves are

A A

RPP (2.34a)

APP A

A A

APS RPS : (2.34b)

A
where
AAPP - displacement amplitude of the reflected P-P waves
at point A.
AAPS - displacement amplitude of reflected P-SV waves at
point A.

RPP’RPS - corresponding coefficients of reflection, see

equations (2.22a, b)

Therefore, it may be possible to find the displacement ampli-
tude at a point, E (see Fig. 2.5), once the amplitude at point A has been

determined. In other words, any subsequent amplitude can be written as

= k%, R

Aeps A Rps (2.35)

where K is the curvature factor which is the subject matter of the next

section.

2.3.2 Wavefront Curvature due to Reflection
If two close incident P rays, inclined at an angle de, and
originating at the same point, 0 are examined, it can be observed that
the reflected rays appear to have originated from the point 0], instead
of 0; see also [38] and Bremmer [39].
Suppose there is a mode conversion after reflection, i.e., the

P-waves are reflected as SV-waves (see Fig. 2.6). From geometry (see [40,41])
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Fig. 2.6. Displacement of the P-SV waves: geometrical derivation

0—real point source

0, —apparent point source

h, —distance of the apparent point source from the horizontal plane
h—distance of the true point source from the horizontal plane

e —incident angle of the P-waves

f —reflected angle of the S-waves
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R] de sec e = R' df sec f
But
R] = h sec e
and
R' = hy sec f
where

e - incident angle

f - reflected angle

2
df _ h sec 2e (2.36)

e
h] sec” f

From Snell's law

C; sin e =C sin f . (2.37)

By differentiating equation (2.37), we have

df _ CL cos e _ sin f cos e

de Cjcos f “sinecos f

(2.38)

By combining equations (2.36) and (2.38), we arrive at

3 .
hy = h cos™ f s;n e (2.39)

sin f cos” e

When the incident angle, e and reflected angle, f are equal, i.e., a

case of PP-waves, then
h] =h (2.39)
If the area O]EF is rotated about the z-axis, it could be seen

that the same quantity of energy passes through the areas of both sur-

faces generated, ABCD and EFGH per unit time.
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Therefore, the amplitudes in the ray P-SV of A and E after

reflection, are in the limiting ratio of the square roots of their areas.

area ABCD )l’2 A

Aeps = (11m Srea EFGR ) Aaps

where AEPS - amplitude of reflected P-SV waves at the point E. There-

fore,
o (0,A)(sA) 2

Agps * [(O]E)(PE)] Apps

h, sec f R, sin e dfdx 5
(h] sec f+-R2)(R] sin e+R, sin f)dfdx

APS

"

l/.
K* Apps

where
h] sec f R] sin e

K = (hy sec F+R,J(R, sin e + R, sin T) (2.40)

the wavefront curvature factor

=~
(3

By dividing numerator and denominator of equation (2.40) by sin f, we

can rewrite K as
C

L
h, sec f —R
1 CT 1

C
L

If we write,

Ri = h] sec f
R; = CL/CT R]
then
RRY
K= [ W (2.403)
(R + Ry)(Ry + Ry)
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For a P-P wave,

Therefore,
K= (ﬁ;‘;?jg;) (2.40b)

It is easily seen that the curvature factor attains its maximum

value when we have a direct hit (or a case of zero reflection). In that

case, R2 is zero in both equations (2.40a,b).

2.3.3 Wavefront Curvature for Multiple Reflected Rays

In the case of multiple reflected rays, the curvature factor
has the same form as the equation (2.40) above with the only difference
that in addition to the radial distance R2’ other distances like Rs, R4,
and so on, are present in equation (2.40) as well.

Let us examine the expression for K for a PSP wave, a case of a

double reflected ray (see Fig. 2.7a). From the figure

0] A x SA 02 E x PE

Ky = (0] ExPE)(OzMxSM)
O1 A x SA x 02 E 0] A x 02 E x SA
=0]Ex02Mx$M =0]Ex02MxSM

(h] sec f)(h2 sec e)(R] sin e)
(h] sec f+R2)(h2 sec ei-R3)(R] sin e+R, sin f+R3 sin e)

(2.41)

The above equation is similar in form to equation (2.40).
Similarly, for a PSPS wave with triple reflections, the

expression for the wave curvature becomes from Fig. 2.7b,
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Fig. 2.7a. Mode conversion at a free surface.
(a) PSP waves



Fig. 2.7b.

Mode conversion at a free surface.
(b) PSPS waves

0P
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h2 sec f h2 sec e h3 sec f
=y
3 3 (h] sec f + Rz)(h2 sec e + R3)(h3 sec f + R4f

(2.42)

R] sin e

’Y 0 v 0 3
3 R] sine + R2 sin f + R3 sin e + R4 sin f

the ratio of the horizontal distance of the first point of

<
]

reflection from the source to the horizontal distance of the
transducer (receiver) from the source (see Fig. 2.7).
In general for a two-dimensional case, the curvature factor

can be written by induction as

n
Yiizl h1 sech,
Ki ol (2.43)
T (hi secoi-rRi+])
i=]
and )
) R] sin Wy
Yi - n -
R] SN wy + izl Ri+1 sin ei
85 - the i-th angle of reflection
[:e-if the reflected ray is a P-wave
0, =
! f-if the reflected ray is an S-V wave
hi - the perpendicular distance from the i-th imaginary
(apparent) source to the i-th reflecting plane
wy - the incident angle at the point of first reflection

sin w. cos3o.
nw]C 01

hi " sin 0 cos3wi (hi-] + R; cos wi) i=2,...,0




[.e-if the incident ray is a P-wave

f-if the incident ray is an SV-wave

number of reflections

n
When there is no reflection, hi = 0.
h] is as given in equation (2.39)

; 3
hy = sin w, €0s%

sin o, C055w2 (hl * R, cos “2)

The above expression for K is generally true for both reflection and
refraction of P and S-V waves on the plate provided the successive
planes of reflection are the same or parallel.

Therefore, the amplitude of displacement at a point on the

plate in general becomes

n L,
Ay = Ay Z K% Rpp. (2.44)
i=1 1
where
RAPPi = Rpps Rpgs Rgps or Reg

depending on the waveform of the chosen ray at the i-th point of

reflection.

2.3.4 MWavefront Curvature due to Reflection:
A Three-Dimensional Case
It is interesting to note that the two curvatures formed as a
result of the mode conversion at the reflecting surface, can be charac-
terized by the variables: the dilatational wave speed, CL’ equivolum-

inal wave speed, CT and the radial distances, Ri‘ When there is no mode
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conversion, the radii of curvature can be determined by the radial dis-
tances (see equation (2.40b) for the P-P waves). These two curves form
an orthogonal set with one directly on the plane of reflection while the
other is perpendicular to it.

In order to facilitate our analysis further, let us examine in
detail the two variables Ri and R?. Let us consider the reflection of
an incident ray of P-P waves (see Fig. 2.8). It can be easily

observed that

R; sin f = R] sin e
Therefore,
CL

R]=_R

Ct 1 (2.45a)

i.e., R{ = g](R]). Similarly, from equation (2.40a), we see that
Ri = h] sec
By virtue of equation (2.39)

3 .
R! = h cos” f sin e

sec f
sin f cos™ e
But h = R1 cos e, therefore,
2 £ si
Ri - R] cos 512 e
sin f cos™ e
2
= R cos, I (2.45b)
cos e

where k = CL/CT. Equations (2.45a, b) show that both Ri and R? are

functions of the radial distance, R], the incident angle e, reflected angle

f, and k. In the general case where the bounding planes are inclined, a



Fig. 2.8. Curvature due to reflection.

(a) Location of R'.I'
(b) Rotation about z-axis
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situation may arise where we have more than one reflection and the
consecutive planes of reflection are also inclined. In this regard,
it is essential to map the curvature into the subsequent plane of
reflection before calculating the curvature factor. See for instance
Fig. 2.9.

Let us assume that these lines of curvature represent para-
metric 1ines, U and V. Then, their directions at a point constitute
the principal directions at that point (see [42,43] and Fig. 2.10).

Therefore, the principal curvatures at the subsequent plane of
reflection which is inclined at an angle, ¢ to the former can be found

by using Euler's equation, as

1 _ cos?¢ sin?¢

—F o + T (2.466)
"1 Rerr  Rerr

1 _ cos?(e+n/2) 4 Sin?(e4n/2)

- T T (2.46b)
P2 Rees Rats

where Réff, R;ff are the corresponding radii of curvature.

Reer = k Ry/vs

n
Rerr = 1, (M secti * Ryyy)
i} R.I sin wy
Yy n

R] SN wy + izl Ri+] sin Qi
From the above equations, it thus becomes apparent that the
curvatures only switch positions when the consecutive planes of reflec-

tion are inclined at an angle of 90° to each other. Furthermore, when
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Fig. 2.9.

Inclined planes of reflection.
ny - initial plane of reflection
m, - subsequent plane of reflection

H] - the normal to the plane m,;
ﬁz - the normal to the plane =,



u = constant

v =const

(a)

Fig. 2.10. Lines of curvature.

(a) Principal normai curvatures
(b) Normal curvature in an arbitrary direction

dv
du
2
= dv=0
(b)

LY
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the planes of reflections are parailel, or coplanar

ry = Rere
and
= U
Fo = Rags
In general, n
% i h, seco.
ioa_
K. = i=]
i "

It is easily seen that once the radial distances are calculated,
the radii of curvature and hence the curvature factor are determined,
we can calculate the displacement amplitude as mentioned above by
"marching forward" and considering both the respective contributions at

every point of reflection and the nature of the waves.



CHAPTER III

COMPUTATION ALGORITHM AND NUMERICAL EXAMPLES

In the last chapter, some theoretical cases were considered
and the conditions under which they could be utilized were given. In
this chapter, that discussion will be supplemented with the development
of a computer algorithm for the tracing of the rays and the reflections
at the boundary as well as the computation of the displacements.

Finally, numerical examples are given with specific references
to the elastic waves in the plate due respectively to an impulsive point
source and a point force acting normally to the free surface with a

square pulse time function.

3.1 Computation Algorithm

For this work, three models were considered:

a) The first model defines a solid metai with six inclined
bounding planes using the direction numbers of the bounding planes, Ai’
Bi’ Ci' The wave speeds and other elastic properties are taken with
respect to iron [44]. The surfaces are stress free.

b) The second one defines a two-dimensional plate with
stress-free boundaries using the coordinates of the edges. The force

is an impulsive P-wave.

c) The third model also defines a two-dimensional plate using

49



the coordinates of the edges. The forces are due to a unit normal
stress acting at the free surface.

For the first two cases, a ray is generated at a point (0,0)
within the material, and the vector direction of the ray is determined
using the Monte Carlo sampling technique having the same distributions in
all directions as discussed in the earlier chapters. Because the
boundaries are inclined to one another, the ray can possibly hit all
the planes within or outside the solid. For our purpose, the point of
impingement should occur within the specimen. The above problem is
peculiar to the three-dimensional case only since in the plate problem,
the two surfaces (upper and bottom surfaces) are parallel and so the
ray will always hit the boundaries from within the plate.

This problem is avoided by using the parameter, o expressed by
equation (2.29) in the last chapter and noting that ro should be positive
i.e., ro > 0. This parameter is calculated for each of the six possible
planes (see subroutine UI in the Appendix). The smallest of all the o
values gives the shortest radial distance either from the origin to the
first pierce point or between any two consecutive points of reflection.

The ray is then tested to determine whether it hits the trans-
ducer the base of which is defined within + 1 mm from its location. If
the ray hits the test cell, the amplitude of displacement is calculated
and recorded by the subroutine AMPLCO and another ray is again generated
at the point source for the next trial. Figure 3.1 shows a ray with a
direct hit and a double reflected ray hitting the test cell.

But, if on the other hand no hit is recorded, the energy ratios

of the reflected rays to the incident ray are calculated by the
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;ﬁ 2 mm

Fig. 3.1. Direct ray and a sinale reflected waveform.

——

Fig. 3.2 Monte Carlo decision variables.

(a) For incident P-wave
(b) For incident SV-wave
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subroutine ERATIO. Then the Russian-roulette test is conducted to
choose the reflected wave at the surface. As mentioned earlier, every
ray incident at a free surface generates two reflected rays —the com-
pressional wave and the shear wave. The frequency of occurrence of the
reflected ray chosen depends on the mode of the incident ray and the
random number generated.

For instance, if the incident ray is a P-wave (see Fig. 3.2),
then the energy ratio of the reflected P-wave, o« is used as a sampling
parameter in the Monte Carlo operation, i.e., if

0 <Ry <a—the reflected P~wave is chosen,
but if

a < Ry < 1, the reflected shear wave is chosen

where Re is the random number generated. The same is true in the case
of an incident shear wave where 3, the energy ratio of the reflected
shear wave is utilized as the sampling parameter (see the subroutine
CHOREF).

Finally, once we have chosen one of the reflected rays and cal-
culated its angle of reflection, we can then determine its direction
using the transformation matrix, equation (2.27). See the subroutine
REFLEC in the appendix.

Then this ray becomes the incident ray to any subsequent
reflecting surface. The tracing process continues until either the
maximum time for the simulation, Tmax is reached or the ray passes the
range where it no longer contributes to the response at the point of
interest.

Unlike cases (a) and (b) in which only the P-waves are emitted,
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both P-waves and SV-waves are emitted in case (c). Such difference in
the waveform emitted is accounted for in the subroutine UI by introducing
an additional Monte Carlo operation for case (c) to choose the mode of
the waves to be emitted. Moreover, the initial amplitude is calculated

for case (c) by an additional subroutine UTHETA.

3.2 Numerical Calculation

In this section, the above theory is used to give numerical
calculations for finding the response of a plate to a point source com-
pressional wave and the vibration of a plate due to a normal point load.
For the two cases, the thickness of the plate is 2h, the wave speeds for

irrotational and equipotential waves are CL and CT, respectively.

3.2.1 Response of a Plate to a Compressional Point
Source: Numerical Calculations
For the purpose of the calculation, the following material con-
stants are given:

CL = 5.1 mm/usec CT = 3.05 mm/usec

2h = 30 mm

The plate material is iron and it is assumed to be elastic,
isotropic and homogeneous.

An impulsive force is located in the plate at the point, 0(0,0)
and the transducer is placed at three different locations: r=2; r=5;
r=10 at the upper surface of the plate (see Fig. 3.3). The parameter, r
is normalized with respect to 2h, the thickness of the plate; r = AY/2h;
AY is the horizontal distance of the receiver.

There are many different rays which can possibly hit the



AY
h
0,0 - —_— Y
-h
(a)
z
4 AY

Fig. 3.3. Ray paths and the locations of the receiver.
Source is at poirt (0,0), r = AY/2h.

129



55

receptor point; these rays range from a P-wave with a direct hit to a
multiple reflected ray, Tike PS, PSP, PSPP, and so on. These rays do
arrive at the receptor point at different times. See Tables 3.1 and
3.2 for the arrival times for the case with r=2, r=5, and r=10.
Since the ray directions are randomly sampled with the angle ¢
varying within the interval [0,24], many rays do repeat with the same
path history. To register only the first of the ray hits with the same

path history and eliminating the others, the following binary expression

is used:
8A = N o 23*1 4+ 220 (3.1)
j=1 '
where
n - the number of reflections
IBA - unique number
\ [: 0,if the mode of the ray is P

1, if the mode is SV
[: 0 , if the mode of the ray is SV
NN =

ntl, if the mode of the ray is P

The source function used in this investigation is represented
by a Heaviside unit function. The displacement is then convoluted with
the time function of the parabolic ramp type resulting in a saw tooth
shape solution (see Pekeris et al. [18] and Fig. 3.4).

The minimum arrival times are normalized with respect to the
time it takes the equivoluminal wave S, to traVe] across the depth of
the plate, 2h, i.e.,

T = t/t0



Table 3.1.

Arrival Time (t = tCy/2h)
Dilatation Point Source

r=2 r=2
Arrival Arrival
Waveform Time, 1 Waveform Time, T
p 1.22 PSZPS 4.2407
p2 1.5 - 4.333
P3SPSP
|
2.04 | Ps2psp 4.7673
PS :
2.055 ps2p 4.891
2.061 | 4.90]
2.373 \ 5.199
2.376 PS*P 5.20]
PSP 2381 p10 5.803
2.399 PYS 6.2158
p4 2.406 phgh 6.286
11
b2sp g.ggz L 6.392
) ' P352p5 6.619
P | 2.9 PS4p2s 6.712
3.292 30
PSPS 3.30 PSP 7.03
Epsspg 3.303 P56 7.125
PPSS 3.306 rerniico
3308 p ?:P“S 7.441
p 7.571
» 3.363
3
PSP 3.375
po 3.50
pe 3.795
P=3-p 3.803
p7 4.065
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Table 3.2. Arrival Time (t=tCy/2h)
Dilatation Point Source
r:5 Y"-']O T
Arrival Arrival
Waveform Time, Waveform Time,
p 2.98 p 6.0
PS 3.82 PS 6.8
3.92 7.64
PSP 3.94 pSPS 7.65
p252 4.78 7.67
p3gz 5.05 PSPSP 7.79
p3s3 5.93
6.3
463
PESS 1 630
pugH : 7.21
psst i 7.68
P7s3 i 7.72
p9s2 } 7.82
piss 8.14
P5S5 8.62
p7sH 8.67
p8so 9.12




(a)

Fig. 3.4.

(b)

Time function [a = f(1)].

(a) Quadratic pulse

(b) Saw-tooth shape Function

Z46 is the measure of the sharpness
of the pulse
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where

to = 2h/CT

The wave field consists of many waveforms having different seg-
ments. The direct P-wave which hits the transducer directly from the
point of dilatation has only one segment. PP and PS,which are reflected
once, consist of two segments. When the receptor is located at the upper
surface of the plate, such reflection takes place only at the Tower sur-
face. Multiple reflected waves like PSP, PPS do arrive at the trans-
ducer after two reflections: first at the upper surface and then at the
lower surface of the plate. These multiple reflected waves can be
grouped in accordance with the number of P and S wave modes they con-
tain. For instance, PSP and PPS do have P and S wave modes in the ratio
of 2:1 though in different combinations. They do have the same time
history and they arrive at the transducer simultaneously. Contributions
of such waves are summed together when computing the amplitude at the
point of interest. Belonging to this class of waves are the PSPS, PSSP,
and P252 which form another group.

Because of the fact that a hit is considered to occur if the
ray falls within + 1 wm of the actual location of the transducer, the
arrival time of some waveforms are spread within certain ranges. Typi-
cal of these is the wavelet PSP (see Fig. 3.5 and Table 3.1). In such cases,
it might be possible for the waveform close to them to arrive with them
at the target almost simultaneously. Notably, the arrival time of the

PSP waves from the table ranges from 2.372871 to 2.3994t while that of

the four segmented wave P4 is 2.406¢. In such cases, their



(0,0) - - P Y .

(a)
(b)

Fig. 3.5. Reflections of the PSP waves due to:

a) Dilatational force
b) Unit normal stress
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Table 3.3. Peaks of the Displacement Field (r=2)
Point of Dilatation (0,0)

Amplitude of Displacement

Arrival \Vertical Components | Horizontal Components
Time, t (mm) (mm)

1.32 0.972 x 1072 2.81 x 1072
1.58 -0.024 0.0369

2.01 0.0191 0.182

2.13 -1.68 2.65

2.48 1.51 1.3

2.95 -0.969 ~0.558

3.05 0.286 0.0472

3.40 0.0202 1.82

3.47 0.804 0.708

3.59 -0.263 -0.113

3.89 0.15 -0.654

4.02 -0.644 -0.053

4.16 0.246 0.090

4.57 0.514 -0.17

4.74 -0.253 -0.024

4.86 0.199 -0.4-41

5.15 -0.433 0.0241
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Table 3.4. Peaks of the Displacement Field (r=5)
Point of Dilatation (0,0)
Amplitude of Displacement

Arrivail Vertical Components Horizontal Components
Time, 1 (mm) (inm),

3.1 2.6 x 1073 0.849 x 1072

3.42 0.137 0.0287

3.91 -2.8 1.0

4.02 3.4 1.31

4.29 1.2 0.23

4,87 -6.7 0.664

5.13 4.63 1.01

5.52 -1.46 -0.20

5.71 2.33 -0.3496

5.93 1.48 0.164

6.03 -5.34 0.86

6.41 4.77 0.062

6.85 -4.38 0.16

7.31 5.54 0.4

7.81 -4.81 -0.25
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Table 3.5. Peaks of the Displacement Field (r=10)
Point of Dilatation (0,0)

Amplitude of Displacement

Arrival {Vertical Components | Horizontal Components
Time, t (mm) . (mm)

6.09 0.856 x 1073 2.86 x 1073
6.95 1.37 7.24

7.76 -2.23 5.13

7.9 0.81 6.33

8.08 0.814 3.14
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contributions are also added together to accurately determine the dis-

placement at the receiver point; see Tables 3.3 - 3.5.

3.2.2 Components of Displacement.at the Boundary
In resolving the radial displacement into the horizontal and
vertical components, due considerations are given to the mode and
. direction of both the incident and the reflected rays and the location
of the receiver. MWhen the receiver is located, for example, at the
bottom surface of the plate, the corresponding displacement components
are given by the following equations. Assuming the incident wave is of a

P mode, we have (see Fig. 3.6)

URH = UR sin e + URPP sin e - URPS cos f
(3.2)
URV = - UR cos e + URPP cos e + URPS sin f
When the incident wave is an SV mode,
UoH = Uo cos f + Uopp sin e - UePS cos f
(3.3)
qu = UO sin f + UoPP cos e + UoPS sin f

If the transducer is located at the upper surface of the plate,

the corresponding displacement components become (see Fig. 3,6):

URH = UR sin e + URPF sine + U cos f

RPS

URv = UR cos e - URPP cos e + URPS sin f

U

oH =" Ue cos f + UOPP sin e + UOPS cos f

U

oV U0 sin f - UOPP cos e + UOPS sin f

where
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Fig. 3.6.

P 777777777 /77777 7777727/ /77,7777

(b)

Direction of the particle displacements.

(a) Reflection is at the upper surfaceée
(b) Reflection is at the bottom surface
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respective radial displacements for P and SV waves
respective horizontal and the vertical components of
displacement with a P-wave incident

respectively the horizontal and the vertica]icom—
ponents of displacement with an incident SV wave
incident or reflected angle for a P wave

incident or reflected angle for an SV wave
corresponding displacement contributions of the
reflected rays. They are functions of the correspond-
ing radial displacements and the coefficient of
reflection

U,R

R"PP

URRPSE

UoRSS
UgRspe
+ 1 depending on whether or not the ray is in the +

z-direction

RPP’ RPS’ RSP’ and RSS are the corresponding coefficients of reflection.

The complete responses due to acompressional point source are

given in Figs. 3.7 -3.12 for the three different locations of the

transducers. The results obtained by Pao et al. are shown in Fig.

3.7a for the purpose of comparison.
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Responses due to dilatational point source obtained

Fig. 3.7a.
by Pao et al. [4].
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3.3 Response of a Plate to a Unit Stress Normal

to the Surface of the Plate

The response of a plate to a circular disk vibrating nor-
mally to the surface of the plate was studied by Miller and Pursey
[45,46]. In these works, they adapted- Lamb's method to derive
definite integrals for the displacement field in a semi-infinite iso-
tropic solid due to a periodic normal stress. More recent investi-
gations were conducted by Pao [4] and Pao et al. [5]. In these studies,
they considered the response due to a concentrated normal Toad located
at the surface of a plate using a square pulse time function.

In this section, the response of a plate due to a unit normal
stress located at the surface of the plate is investigated using the
Monte Carlo technique. The solutions of Miller and Pursey are adapted

to derive a far-field impulsive response.

3.3.1 Derivation of the Far-Field Solution
Compressional and Shear Waves

The far-field response to a periodic load according to Miller

and Pursey [45] is given as

_ _ 3% cos e(k?-2 sinZe) -iR (3.5)
u = - = e .
r 2CW R Fe(s1n e)

_ _ ia%k?  sin 2f/(k%sin?f-1) _-ikR 3.6
g = - 2, R F (k sin 1) € (3.6)

The response of a plate to a periodic force,

£(t) = pelut

can be written as
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Up = Y (3.7)
jw(t-R/Cs)
Yo Ue e T (3.8)
Since -
5(t) = —— J e ot 4
o)
=L [J cos wt dw - J i sin wt dw]
2n ]
But w
J sin wt dw = 0, being an odd function
therefore, -
1 ~wt
8(t) = —R J e " du (3.9)
/Zr €

-00

Therefore, for an impulsive response of the plate, we are only

concerned with the real part of U, OF Ug, i.e.,

0

oo

_ 1 iw(t-R/C,)

b= L R [y € L) 1de (3.10)
ol jw(t-R/C.)

b= f R U, e T do (3.11)

But Ur is real for all incident angles under consideration, and U0 is

complex.
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Therefore,

iw(t-R/C])]

Re[UR e = Uy cos w(t-R/CL)

R [U eiw(t-R/Cz)] = U

olUg oR €08 w(t-R/CT) - U

01 sin w(t-R/CT)

<]

1 .
u = —1U J cos w(t-R/C,) (3.12)
r /2—7—; R L
.l J
u, = —U cos w(t - R/C;)dw (3.12)
) /é; 8R ) T
] J .
- —U.. sin w(t - R/C.)dw
for 01 T

00

Since the second expression on the right hand side is an odd function,

-]

= -
ug = /Q;.USR J cos w(t R/CT)dm , (3.13)
Therefore,
ur(t) = Uﬂa(t-R/CL)
ue(t) = UeRG(t-R/CT)

But by Miller and Pursey [45],

. a2 cos e(k?-2 sin2e)
U= - 2R F,(sin e (3.14)
and
U = - ia2k? sin 2f/(k? sin?f-1)

6~ " 2R F,(k sin f) (3.15)
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where
a = radius of the circular disk
p = shear modulus
R = radial distance
e = the incident angle for a P-wave

k = CL/CT, ratio of the wave speeds

Fo(X) = (2X% - k2)% - ax2(X2 - 1)5(X2 - k2)*2

For a unit force, we assume o = 1, therefore

P = gna? = na?

a2 =P/m = 1/k

According to Pao for a unit force, the 'i* term in the equation (3.6)

should be dropped. Therefore,

_ 1 cos e(k? -2 sinZe)

Up = - 7o F (sin e)
U = - k sin f/(k?sin%f - 1)
0 2muR Fe(k sin f)

[ ==
n

rR* Yo displacement amplitudes for a P-wave and SV-wave,
respectively.

For a direct P- or SV-wave, the above amplitudes are used

appropriately. But in case of waves with multiple segments, the ampli-

tudes are then multiplied by the appropriate.curvature factors, Ki and

the coefficients of reflection, R .
APPi
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3.3.2 Unit Stress Normal to the ﬁurface of
the Plate: Numerical Calculations

The material constants given are the same used in Section 3.2.1.
In addition, the Lamé's constant, u is taken as .25. The unit force is
placed at the point (0,15) at the upper surface of the plate. The
transducers are located at three points, r = 2, r = 4, and r = 6 where
r is normalized with respect to the thickness of the plate. There are
two cases considered for the location of the receiver. In the first
case, the source and the receiver are located at opposite sides of the
_plate. In the other case, the source and the receiver are located at
the upper surface of the plate. In both cases, the source function is
a unit normal force and the time function is a square pulse, see [18],
f(t) = H(t) - H(t-a) where H(t) is a step function and & = 0.8r.

For comparative purposes, the force is normalized with respect
to 1/(2hmy). The time is also normalized with respect to T, where t
= 2h/CL.

In the first case with source and receiver at the opposite side,
only wavefields with odd number of segments like P, S, PSP, SPS, and PPP
arrive at the receiver. On the contrary, the waves with even number of
segments are recorded at the receiving post after reflection when the
source and the receiver are at the upper surface (see Fig. 3.13). The
times of arrival for the two cases with r=2, r=4, and r=6 are shown
in Tables 3.6 - 3.9 and 3.10 - 3.13. The complete responses at three
locations for the first case are shown in Figs. 3.14-3.19. Figures
3.20 - 3.25 show the responses of the plate due to the second case —

source and receiver at the same side of the plate.
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Fig. 3.13. Reflection of waves with:
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Arrival Time (<t =tC/2h)

Surface Loading - Source and Receiver on the Opposite Sides of the Plate

r=2 r=4 r=6
Arrival Arrival Arrival
Waveform Time, 1t Waveform Time, 1 Waveform Time, Tt
2.21 - 4.1 p 6.11
P 2.22 4.14 PSP 7.68
2.26 psp 5 g8 (SPP) 7.73
p3 3.62 (PPS) 5.91 SPS 8.79
s 3.7 PSS 6.85 (SSP) 8.8
SPS 6.87 9.54
SPP 4.34 690 PSPSP 9.56
SPS 5.16 S e (PSPPS) 9.57
P 5.37 sSSP 7.23 sSSP 563
pus 6.07 ) .
p7 7.27 '
$sS, 8.17 S 10.12
PS2pS 7.53 .
§2pS? 8.38 SPSPS 10.46
NE 7.97 '
. 525 3 8.53 (SSPSP) 10.51
Pz . 8.26 ¢ 8.61 $2p25 2 11.15
PS=P 9.35 SPSPS -8 | s 11.34
PS2pS2p 10.06 .
PS3PSZ 10.75 P"-SPSP"’- 9.55 SZSC 11.39
ol1 11.17 PSPSPSP 10.29 SPSPSP2 11.61
11.18 SPSPS2P 11.05
p3s3p3 11.26 pIsp2gp2 11.27
$6p 11.45 P2Sp3SPS 11.98
P3s2ps2p |  11.95
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Table 3.7. Peaks of the Displacement Field (r=2)
Surface Loading —Source and Receiver
on Opposite Side

Amplitude of Displacement

Arrival [Vertical Components| Horizontal Components
Time, T

2.26 0.11 x 10-1 0.234 x 107!

3.63 -0.141 -0.114

3. -3.94 -3.91

4,37 -4.265 -4.6

4.43 -4.12 -4.49

4,51 -0.33 -0.69

5.18 -0.04 0.07

5.38 -0.28 -0.039

6.1 -0.65 -0.61

6.18 -0.42 -0.5




Table 3.8.
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Peaks of the Displacement Field (r=4)

Surface Loading—Source and Receiver

on Opposite Side

Ampiitude of Displacement

Arrival [Vertical Components | Horizontal Components
Time, t '

4.1 0.067 x 107! 0.195 x 10-1

5.91 0.0268 0.04

6.85 -0.022 0.034

6.92 -1.04 -0.98

7.19 -1.073 -1.02

7.23 -2.19 -4.78

7.65 -2.17 -4.82

7.72 -1.15 -3.8

8.03 -0.068 -0.194

8.07 -0.08 -0.2

8.17 -2.07 1.09

8.87 -2.06 1.24
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Table 3.9. Peaks of the Displacement Field (r=6)
Surface Loading —Source and Receiver
on Opposite Side

Amplitude of Displacement

Arrival [Vertical Components | Horizontal Components
Time, 7

6.12 0.035 x 107! 0.11 x 107

6.72 0.035 0.1

6.92 0.0007 0.0016

7.75 0.05 0.0776

8.8 -0.002 0.002

9.6 0.008 0.010

9.69 -0.27 -0.93

10.12 0.7 1.42

10.51 -1.96 -2.1

10.92 -1.48 -1.62

11.31 0.268 0.98

11.39 -0.25 1.52

11.64 -0.28 1.43
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Fig. 3.16 a. Responses due to Surface Load by Pao [5].
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Table 3.10. Arrival Time (T==tCL/2h)
Surface Loading - Source and Receiver at the Upper Plate Surface

r=2 r=14 r==6
Arrival : Arrival Arrival
Waveform Time, 1 Waveform Time, T Waveform Time, t
p2 2.84 5.47 PP 6.32
PS 3.65 PS §°g? PS 7.45
SP 3.67 - 0 06
p 4.46 SPSP 7.33 PSPS 9.10
17 PSPS 7.34 52p2 9.11
§2 : 9.6
4.75 PSPS 7.36 3-8,
p2sp 5.18 ss 7.5 S5 10.53
3 $2ps 10.56
2Ess Z.Zz szsp iyl P 10:57
: P 7.56
PSPS 5.94 §2ps 7 g7 55 10.6
gggg 5.95 c -9 SPS. 10.74
. :'ZZ sips 8.26 SPSPSP  10.99
asss o PSP:CZ 8.64 PSPSPS  11.02
$7ps eS SPSP 8.74 $25.,2P2 11,15
o X PSPSPS 9.5 S2PSPS.  11.19
g 02 SPSPSP 9.51 s2p6 11.68
zﬂs 7.1 $PS2PS 10.3 e .71
ps2p2s ot PsP2spsP | 11.12 SPPSPS - 11.94
p7s 8.93 SP2sps2p | 11.85
S2ps2p 9.14 PS2PSP2S 11.87
p10 10.19
PSp4s2 10.3
sp9 10.88
Spus3 10.998
S2phsg2 11.00
p8s2 11.56
p2s5p 11.69
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Table 3.11. Peaks of the Displacement Field (r=2)
Surface Loading —Source and Receiver
on the Upper Plate Surface.

Amplitudes of Displacement

Arrival Wertical Components | Horizontal Components

Time, t ’ _ B

2.85 -0.215 x 107 -0.259 x 107"
3.7 -1.082 1.666
4.48 -1.364 1.496
4.5 -0.281 -0.169
5.19 -0.685 -0.441
5.2 -1.229 -0.301
5.24 -0.948 -0.132
5.94 -1.367 0.87
6.0 0.1348 0.997
6.34 -0.119 0.894
6.68 -0.231 1.127
6.75 -0.366 0.13
7.04 -0.946 0.147
7.14 -0.69 0.25
7.48 -0.58 0.0164
7.83 0.095 0.294
8.24 -0.138 0.225
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Table 3.12. Peaks of the Displacement Field (r=4)
Surface Loading —Source and Receiver
on the Upper Plate Surface

Amplitudes of Displacement

Arrival |Vertical Components { Horizontal Components
Time, < - ‘

4.5 0.0525 x 107" 0.111 x 107

5.5 -0.3014 - 0.524

6.5 -0.0789 -0.1088

7.32 -0.4435 0.6866

7.49 -2.253 -5.407

7.97 -2.372 -5.51

8.12 -1.928 -6.196

8.29 -0.118 -0.103

8.61 -4.263 1.954

8.77 -4.55 - 1.957

8.95 -4.57 1.944

9.41 -0.427 -0.112

9.55 0.0171 0.5867




Table 3.13.
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Peaks of the Displacement Field (r=6)

Surface Loading —Source and Receiver
on the Upper Plate Surface

Arrival | Vertical Components | Horizontal Components
Time, T

6.32 0.031 x 107! 0.081 x 107!

7.46 -0.119 0.283

8.15 -0.066 0.388

8.26 0.0533 0.105

9.1 -0.248 0.2406

9.66 -1.054 -2.52

9.93 -0.815 -2.746

10.14 -0.8565 -2.806

10.46 -0.0415 -0.06

10.58 0.0505 -5.84

10.94 0.092 -5.78

11.03 -0.165 -5.407

11.35 0.466 -3.281

11.38 -0.257 0.373

11.53 -0.2637 0.3665

11.79 -0.256 0.379

11.9 -1.458 -1.162
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CHAPTER IV
ANALYSIS OF THE RESULTS AND CONCLUSION

In this chapter, the results are examined and analyzed. Com-
parisons are made with the previous investigation by Pao [4] and Pao et

al. [5]. Finally, recommendations are made for future research.

4.1 Results and Analysis

In this section, analyses are made for the following results:
(i) The displacement field due to a dilatational point source.
(1) The response of the plate due to a unit normal stress,
with the source and the receiver on opposite sides of the
plate.
(i11) The response of the plate due to a unit normal stress,
with the source and the receiver at the upper surface of

the plate.

4.1.1 Case (i) Dilatation Point Source
It can be observed from Figs. 3.7 and 3.8 that the first arrival
observed at the receiving point (when r=2) is the source ray, P at time
1 = 1.22 followed by the PP, PPP, PS, PSP, and subsequently by multiple
reflected rays. The parameter, r, and the variable, t, are dimension-

less.
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Featuring prominently with the vertical components of displace-

2 m, 1.51 x 1072

ment of -1.68 x 10 mm, and 0.97 x 10~ mm are PS, PSP,

and P, respectively. Their corresponding horizontal peaks are 2.65
x 107 mm, 1.3 x 1072 mm, and 2.8 x 1072 mm. This shows that at r=2,
the source ray gives the largest contribution to the displacement field
in the horizontal direction, strongly followed by PS rays. However, as
the distance of the receiver from the source point increases, the contri-
bution of multiple reflected rays with multiple mode conversions, PZS2
predominates in the vertical direction. This is evident in Fig. 3.9

when r=5 anpd Fig. 3.11 with r=10. It is interesting to note that the
peak of the displacement for the source ray, P, decreases approximately
by a factor of 0.66 for all the three locations. The contributions from

the rays without mode conversion like PP, P3, and others are very

gible.

4.1.2 Case (ii) - Response Due to Surfaée Force

(Source and Receiver on the Opposite Sides of the Plate)

From Table 3.6, it is easily seen that the early arrivals at
the receiving point with r=2 are P-waves at 2.211, P3-waves at 3.62t,
and S-waves at 3.7t followed by other multiple reflected waves 1ike SPP
(r=4.34), SPS (t=5.16), and the others. It is interesting to note
that for all the three locations of the transducer, the waves with the
source ray in an SV mode predominate. See Tables 3.7 -3.9. This fact
can be utilized to identify the dominant of the source rays for the case
in which both P- and S-waves are emitted from the source point. Typical

of these are the SPP and S at r=2 with the peak amplitudes of



1

-4.265 x 10" and -3.93 x 10'], respectively in the vertical direction

1

and -4.6 x 10'] and -3.91 x 10" 1in the horizontal direction. The dis-

3

placement amplitude due to the rays, P, P" are negligible. As the dis-

tance of the transducer increases to r=4 and r=6, the contributions
from the multiple reflected waves with odd number of segments become

predominant.

4.1.3 Case (iii) - Response Due to Surface Force

(Source and Receiver at the Upper Plate Surface)

From Table 3.10, we can see that the PP, PS, P4, 52 waves

arrive in succession at the receiver followed by some complex multiple
reflected ways. Since the source ray can either be a P or S mode, the

multiple waves formed thus possess the appropriate mode of the emitted

2.2

ray. For example, the P™S” and PZSP waves show that the source rays are

of a P mode while SP, SS, and SPPS indicate that their source rays are

of an S mode.

When r=2, PZSZ, P4, P3S, and PS arrive at the receiver at the

time t = 5.94, v = 4.48, v = 5.2, and v = 3.7, respectively with very

1 1

strong peaks of -1.367 x 10" ', -1.364 x 10", -1.229 x 10'], and -1.082

-1

x 10 " in the vertical direction. A major contribution to the displace-

ment in the horizontal direction comes from the PS-waves (1.666 x 10'])

followed by P4 with 1.496 x 10']. As the distance of the receiver from

the source increases to r=5, the contribution from the PZS2 waves in

the horizontal direction significantly increases to -2.25 x 10'] but

1

returns to -1.054 x 10” ' at r=10.

2

At r=4,the major contributions come from P4S and SZSC2 at



104

t = 8.77 and t = 8.61, respectively (see Table 3.12). At r=6, major
contributions to the horizontal displacement come from S3P (-5.84 x 10'])

10.58, S35 (-5.78 x 10°1) at © = 10.94, and P3s3 (-5.407 x 107")

at t

at © = 11.05 (see Table 3.13).

4,2 Comparison of Results and Conclusions

In this work, the propagation of the elastic waves in a plate
due to a dilatational point source and two types of surface point force,
have been investigated using the proposed Monte Carlo/ray tracing techni-
que.

The theoretical formulations are given for both the two- and
three-dimensional cases. In the plate case, numerical calculations are
made for determining the horizontal and vertical components of displace-
ment field for the three cases mentioned above.

In case (i), the dilatational point source, comparison with the
generalized ray analysis of Pao [4] for similar geometry and the same
load condition shows a very strong agreement in spite of the difference
in the basis of normalization and in the wave speeds used (see Fig. 3.7a)
In case (ii), the surface load with a source Qnd receiver on opposite
sides, an interesting result comes to light. For the case with r=4 which
is used for comparison purposes, the strongest motion with an amplitude
of -0.219 arrives at the time, t = 7.23 followed by another strong wave
of less magnitude (of amplitude, -0.217) at t = 7.65 as compared to the
waves with the peak of -0.21 and -0.12, respectively reported by Pao [5].
Similarly, in case (iii), with the force and receiver on the same sur-

face of the plate, a good agreement has been found (see Fig. 3.16a).



In essence, the results shown in Figs. 3.7-3.12, Figs. 3.14-
3.19,and Figs. 3.20-3.25 have demonstrated the effectiveness of the
Monte Carlo/ray tracing technique in determining the displacement
fields of a plate due to different loading conditions. Moreover, unlike
~ the generalized ray method, it is effective for investigating long-term

responses as well.

4.3 Recommendations for Future Research

As mentioned earlier, in order to characterize accurately the
structural integrity of a material using acoustic emission as a non-
destructuve testing technique, it is essential to be able to identify
the mode of the dominant wave emitted and locate the source of the
mechanism (defects, voids). Although it has been shown that the Monte
Carlo ray~-tracing technique can be used to answer some of these ques-
tions, nonetheless, further investigations need to be conducted.

As a result, the following recommendations are made for future
research:

a) The study of the wave motion in a plate having wedge-
shaped surfaces and with the assumption that after the wave passes
the receiver location, it can still possibly contribute to the dis-
placement field after reflecting at the farther end of the plate.

b) Wave motion in a multilayered isotropic medium
This could be extended to a case where scattering effects are assumed
to occur. Such investigations will undoubtedly be useful. in study-

ing solids with welded joints.
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c) Numerical solution for the three-dimensional case already
developed.
d) Finally, experimental investigations should be conducted

to justify the applicability of these theoretical results.
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APPENDIX: COMPUTER PROGRAMS

The two programs which are used for this Monte Carlo ray-
tracing investigation and included in this appendix are as follows:

a) The INCPLATE which is used for the dilatational case where
the source ray emitted from the source point is a P-wave.

b) The INCPLATE which is used for calculating the response
due to the surface loading. In this case, the emitted waves are dila-
tational and equivoluminal waves from the same point source.

Since there are two rays emitted in case (b) and the Monte
Carlo ray-tracing technique can only account for a single ray at a time,
an additional Monte Carlo decision is taken in the UI Subroutine to
choose one of those rays to pursue. Moreover, Subroutine UTHETA is also
added to calculate the amplitude at the first pierce point. When cal-
culating the horizontal and the vertical components, it is essential to
use the appropriate expression to account for the fact that the re-
ceiver is either at the upper or the bottom surface.

The programs are written in FORTRAN IV G1 language (FORTGCLG)
compatible with the IBM system 3081 having 24 million bytes of main
storage. The plots are implemented on the electrostatic Versatec V80
plotter having 200 dots/inch resolution.

The generation of the random number was obtained from the

m
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IBM scientific subroutine using the 'DSEED' of 731540.DD for double
precision on the random number generator of the multiplicative con-
gruent type. Any number generated was found not to repeat in 239
generations, see Turner [30] for details.

The computer time has been large, though not as large as other
cases where Monte Carlo have just been utilized. Table A.1 shows the
computer time (CPU) for the dilatational case for the three locations

of the transducer and the surface case for some locations of the trans-

ducer.
Table A.1. Computer Time (CPU)
Type of Location/ | No. of Max. No./
- |Force Receiver | Trials Reflections CPU Time
Ditatational 2 100,000 18 2 min, 30.92 sec
300,000 18 29 min, 38.98 sec
500,000 18 77 min, 39.22 sec
5 100,000 18 2 min, 28.30 sec
300,000 18 9 min, 36.41 sec
500,000 18 19 min, 51.32 sec
10 100,000 18 2 min, 26.51 sec
300,000 18 7 min, 5.71 sec
500,000 18 1T min, 53.39 sec
Surface force 2 300,000 18 6 min, 14.91 sec
(Force & 4 300,000 18 4 min, 56.90 sec
Receiver on .
Opposite Sides) 6 300,000 18 4 min, 21.61 sec
4 10,000 18 10.72 sec
100,000 18 1 min, 22.40 sec
300,000 18 4 min, 56.90 sec
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The number of the trials required in using the Monte Carlo
technique to solve a problem cannot be easily determined. Although it
is a well-known fact that where the conventional techgniues are very
difficult to apply or cannot be applied to solve a problem as ip this
case, the use of Monte Carlo is unquestionable, see Busienko [26]. In
this investigation, the number of trials is dictated by the appearance
of all the necessary waveforms and the stability of their amplitudes.

A list of the symbols used for thé dilatational case is as
follows:

ISUMT1 - number of hits

TIME1(ISUMT1) - time of arrival (normalized)

M - number of reflections minus one

VCDAT1(ISUMT1) - vertical component of displacement recorded
HCDAT1(ISUMT1) - horizontal component of displacement recorded
R1(M), R2(M-1) - two consecutive radial distances

AY ~ horizontal distance of the receiver from the z-axis
YTB1,YTBZ - Timit of + 1 mm determining the base of the transducer
IT,YT - coordinates of the transudcer

NL - number of trials (emissions)

NT - maximum number of reflections

CL,CT - speeds of the P- and SV-waves, respectively

TMAX - maximum time of ending the calculation

IBA - a number which makes a ray-path history unique, Eq. (3.1)
GAM1,TET - incident angles (for either P- or SV—wave)'

GAML - reflected angle for P-wave
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GAMT - reflected angle for SV-waves

ET - reflected angle (for either P- or SV-wave)

GCO - y-value in Eq. (2.43)

ZI1,YI - coordinates of the points of reflection starting with the source
point

TIME - time a ray takes to travel between two reflection points

SUM(M) - cummulative time between reflections

N1 - number of hits

AR1(M) - variable R;

RC(M) - coefficients of reflection

UM,UN - direction cosines of the incident ray

VM,VN - direction cosines of the reflected ray

AKT11 - amplitude at the point of hit (location of the transducer)

ARPP - displacement contribution of the P-wave

ARPS - displacement contribution of the SV-wave

PHI - angle of emission

P1 - 3.1415927

RPHI,RPHA,RAND - random numbers generated

Z - the upper or the lower surface of the plate

RM,RN - direction cosines of the normal to the planes of the plate
AT - parameter, L
TET1 - incident or reflected angle for P-wave
TETT1 - reflected angle for SV-wave

TET2 - incident or reflected angle for SV-wave

TETL - reflected angle for P-wave



ENRLLI ,ENRTLI - energy ratio of the reflected P-wave and SV-wave to the
incident P-wave, respectively

ENRLTI,ENRTTI - energy ratio of the reflected P- and SV-waves to the
incident SV-wave, respectively

ADENR - summation of the energy ratios

RPSD,RPPD,RSSD,RSPD - coefficients of reflection of P-SV, P-P, SV-P,

and SV-SV waves, respectively

WFN - weighting function (taken = one in this calculation)

AH1 - distance of the imaginary source from the reflecting plane

K - ratio of the wave speeds, CL/CT

AK(I) - wave front curvature factor

AI(I) - radial amplitude at the receiving point

DI - time interval

X1(I) - the vertical components of displacement

Y2(I) - the horizontal components of displacement

X(I) - the arrival time

SUBROUTINE UI - subroutine for choosing the direction of emission

SUBROUTINE HITPLN

subroutine which determines the point of reflection

SUBROUTINE REFLEC - subroutine which determines the direction of the
reflected ray

SUBROUTINE ERATIO

subroutine which calculates the coefficient of
reflection and the energy ratio

SUBROUTINE CHOREF

subroutine which chooses the reflected ray and the
reflected angles

SUBROUTINE AMPLCO

subroutine which calculates the radial amplitude

at the receiving point
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SUBROUTINE UTHETA ~ subroutine which calculates the amplitude at the
initial point of reflection (for the case with the
surface force)

SUBROUTINE PP - the plotting subroutine

The following pages contain the 1ist of the programs used.
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COMPUTER PROGRAM LIST FOR
DILATATIONAL CASE



'L CLASS=R, TY2r00=C0GPY,

(€
[

//INCPLATE JOb ¢+éssf6s,! EXUN
// KEGION=20435K
/*JO5PARY P=PROTOV1,LINES=10,F=
/7 EXEC FORT3CLG,PARN.LKED='SIZ
//FOET.SYSIN DD *
REAL PI,K,KAY
DUUBLE PRECISION DSELD
DIMENSION TIMET[30000),VCDAT1{300u0),H2IDATI(30000)
DIMENSION E1!130),AK{100) ,5C{10J),AI{100),A817100),482{12J)
DIKENSION &2 (150) ,AKD (150),2Ki (150) ,SIE (139),I(150)
DIYENSIOK X (1500) ,X1.1500),YZz {1500)
DIMENSIGA GCG (100)
IKTEGER P{30000),0{30000) ,2E,A4RA
COM®ON/CCKY/U%,UN,21,YI,%2,242,82,53,L
CCYMON/COM2 /AT, RH,ATET2,APP,APS, AR
COKMUN/CUB3/VRK,VH,1E1,51,C01, hDELE,CISIN,CISE
CG8%ON/CONY /WFN,ENFTTI,ENRLTI ,ENRLLI,ENRTLI ,n,C5,C%,CL,1
CONNUK/CONS/EL,GANY, GANT,GAKL,4H1,CCA, 2r1, 8050, KPSL, 553D,
18SED, KCC
CO#SGR/CUME/RT, AK,RC, A1, BR2,T
COMMON/CONT/DSEED
COMBON/COLN8/X1,Y2,P
COMNMON/CUNS/TI%EY,TINE2,VCDATI,ECDATI,VCDATIZ,5IDAT2
COMMOK/COMIO/KYE, 1T, BAT, TIT,KAY,Z0Ln, ARA
CO¥MON/COEY1/5C
CALL CPUIINM
DSEED=731549.D0
CL=5.1 : _
CC AY-~HOXIZONTAL DISIANCE OF TRANSIJUCERS F204 POLKT OF OnlsIR
AY=300.
YTE1=RY-1.
YTB2=AY+1.
YT=AY
ZT=15.
YIB3=7T-1.

9032,UCS=Tn,FCB=60ue
£E=12048) ¢

Juo 20L49

Ll



26
27

221

122

ISUMT1=C

JJ=0.

NT=18
DO30UL=1,5J0000
DO1IJK=1,RT
E1{IJK) =0.
RE1(1JK) =0.
CONTINUE

AR1=0.

YI=0.

21=0.

SUM (1) =0.

IBA=0

CT=3.05
TMAX=B.*2.%ZT/CT
CS=CL

CALL I

IF (4%%.5y.1) 5010300
DO4OOK=1,NT

IF {C5.EQ.CL)GOTO26
N=1

PE=N* {2%%)
GOT027 ‘

K=0

PE=H* (2%%20)
IBA=IBA+PE

IF (M.EQ.1)50T0221
G0T0122

ET=TET

GAM1=0.

IF (UN.EQ.9.)GUT0300
CONTINUE

SN1=YI

CALL HITPLN

IF (UN.LT.0) GOTO10

IF{YI1.GE.YTB1.AND.YI.LE.YTB2)GOTO12zp

6Ll
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251

253

234

233
235

263

2b4

IF(YI.GT.YTE2) 3070300
R1{M)=AT

TIME=E1 (4) /CS

IF {M.ED.1)GOTO251

STM(N)= SUM(X-1)+TIdE

GD=YI

3CO (#) =3H1/3D

G0T0253

CUNTINUE

SU% /M) =TIME

CUNTINUE

IF (SU%(H) -3E.THAX)50T0300

IF (UN.LT.0)GUT0233
IF{YI.GE.YTIB1.AND.YI.LE.YT82)G0T0234
30T0233

ISUMT1=ISUNT1+1

P(ISUXT1)=IBA

BAT=1.
TIMEV(ISUMi1) =SUM (M) *CT/(2.*.T)
NN=M

K1=NN

G0T0Z35

BAT=0.

CALL ERAIID

CALL CHOKEF

T {M)=TAT

KC (M) =kCC

AR1!M) =Lk

CONTINUE

IF'UN.LT.9Q) GOTG264

IF (YI.GE.YTB1.AND.YI.LE.YTB2) 3010600
CONTINUE

CALL REFLEC

IF{(VN.LT.0.)G0T029

UM=SIN(ET

UN=COS (ET)

0¢lL
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311
400

600

30T0311

EEK=AKCIS {VN)

ETER= (TET-ET) +£R

UM=SIN /ETER)

UN=COS (ETEK)

TET=ET

IF( SUM(Y) .GT.THMAX) S0T0300
CGNTINUE

50T0300

CONTINUE

CC CALCULATIOSN UF AMPLITUDZE CULF. ,AK

300

S000

IF!N1.Eg. 1) GOTO4
CALL A#4PLCU
AKT11=aI{KR1)
AEP2=APP*AKI1
ARPS=APS*AKT11
30T07
AKT11=1./E1{1)
ARDPP=APP*AKT11
ARPS=APS*AKT11
CORTINUE
IF{CS.E2.CT)GOTO8

HCDAT1(1SJINT1) =RAKT11*%SIN(GAN1) +ARPP*SIN (GA%L) +ARPS*CIS /3ANT)
VCDAT1(ISUNT1)=AKT11%#COS (GA41) -AEPF*C05 (GA3L) +AKPS*SIN (GANT)

G0TU300

HCDAT1(ISJAT1)=-AKT11%COS (3AK1) +ARPP*SIN (GANL) +AAPS*COS (GANT)
VCDATV1/ISUMT1)=+AKT11*#3IN{54K1) =ARPP*CUS (Ght.) +AKPS*SIN (GA%T)

CONTINUE
N2=JJ

N3=ISUKT

WRITE {6,9000) ISUNTI
FORMAT (4X,I10)

CALL PP

STOP

EXND

SUBROUTIKE UI

et



cC Ul
CC UM

141

271

143
144

142

CALCULATES DIRECTION COSINZ CF INCIDENT KAY
LUN ~DIRZCTION COSINIS

REALPI, PiiI

DOUBLE PRECISIGN DSEED

DISENSION R1{100) ,AK{100) ,RC{100) ,4I(100) ,a&x1(10J),A82(1J0)
DIMENSIOM R2‘150) ,AKD {150), AKE {150) ,5J¥ 1153),T {150}

INTEGER P(30000),92(30000),PE,ARA
COMMON/CGK1/Ud4,UN,21,Y1,4,22,82,K3,L
COMMOK/CUK2/AT,AH,ATEL2,APP,AP5,AR
COMMON/CUM3/VN, VY%, TET,N1,C0I,ADENR, COSLN,COSx

COMNMUL/COMU/WFN,ENRITI, ENRLTI , ENRKLLI,E5RTLI,K,CS,C1,C L, PETTT,I24

COMMON/COM5/ET, GA%M1,GAMT, GAML,AK1,CCA, AR, RP»D, 525D, RSSD,
1RSPD, RCC

CO%MON/COMG/RT, AK,RC,AI ,AR2,T
CGMMON/CUMT/DSEED
COMMON/COM1J/%4%,TaT,BAT, TiT,KAY, 201k, ARA
PI=3.1415927

EPHI=GGUCFS 'DSEED)

IF (RPHI.3T.0 .AMD. EPHI.LT.1.)30Iu271
ME¥=1

GOTO142

CONTINUE

MNM=0

PHI=PI*KPAI

IF (PAI.GT.PI/2.)GOTI143

TET=PHI

S0TO144

TET=PI-PHI

CONTINUE

UN=COS (PHI)

UM=SIN (2HI)

CONTINJE

RETUKN

END

SUBROUTINE HITPLN

CC AT-PARAMETEK=DISTANCE FLKOY ORIGIN OnFI1RS1 PIERCE POINT TOIHZ NEXT

acl
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11

DINESSION R (100) ,AR(102) ,KC(100) ,AI(100),4217100),452.104)
DIMENSIUN r2(150), AnD(130),Ahh(150),SU1(130), 7(150)
DOUBLE PrECISION DSEED
COMKON/CONT/UN,UN,2T,Y1,2,42,82,N3,L
CCMMON/COM2/AT,AH,ATET2 ,APP ,APS ,Ak
CoM4UN/COK3/VH,VM,TET,N1,COI,ADENZ,CUS1IN,CU3A
COMMON/COMU4/KFK,ENRTTII, ENRLTL1,ENKLL1,E8RTLI,,K,CS,C1,CL, TETIY,TETL
COMMON/COM5/ET,GANY,GAMT,GAHL,AH1,CCA,aARTY,6PPD,2S55,R35D,
188PD, KCC

COHﬁOH/CUﬂ6/51,AK,RC,AI,Aﬂz,I

CCANOK /COMT/DSEED
COMMUN/CCGAV0/H4MH, T4, 8T, TIT,KAY,Z2D1k, ARA

AH=15.

IF(UN)7,11,9

Z=-AH

ZpIn=1,

GoTo10

Z=AH

ZDIE=0.

AT= (Z2-21) /UK

ZI=ZI+UN¥AT

YI=YI+Uh*AY

CONTINUE

RETOEN

END

SUBKOUUTINE REFLEC

ccC CALCULATION OF REFLECTED EAY, VI

REALPI,PH1
DIMENSION K1/100) ,4£({100) ,BC{100),AI{100) ,a%1(100),ak2(100)
DIXENSIUN E27150) ,AKD(150), AKN {150) ,SU% {150),T {150)

DOUBLE PRECISION DSEED
COMMUN/COX1/U%,UN,Z21,¥1,%,22,82,63,L

CONMON/COM2/AT ,AH,ATEL2, APP, APS, Ak
coanox/con3/vn,vu,TEI,N1,C01,ADENB,cos:n;cu5¢
CUMMCN/CUM4 /WP, EN&TTI, ENRLII,cK&LLI, E62TLI,K,C5,C1,CL, IETT1,TELL
COXMOK/COM5/ET, GAM1,GAMT,GANL,AHY,CCh,AK?,k2FD, KPSD,RS5D,
1RSPD,ECC

£l
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283

COMMON/COX6 /R, AK,KC,AI ,AR2,T
CONMOL/CUKT/DSEED
COMMON/CCH10/%4%, TAT, BAT,TIT,KAY,2D1a,AKA
IF (Z.EQ.AE) GUTO281

RE=0

EN=1.

GOTC283

CONTINUE

EM=0.

EN=-1.

CONTINUE

VM=-UN*IM*RH+UY

VN=-UN®*EN*EKN

RETULN

END

SUBKUUTIINE ESAILO

CC CALCULATIGH OF THE ENZxGY RATIGS

DIMENSIUN K1(100) ,AK(10v) ,AC{1Ju) ,a1215G),&&1°10d), 482 1ud)
DIMENSION E2(150) ,AKD (150) ,AKN(150) ,SU% (15¢),1(150)

DOUBLE PEECISION DSEED

REAL PI,K,KAY

COMMON/CGM1/UN,UN,21,YI,2,22,82,N3,L
CO4MON/CUK2/AT ,AH, ATET 2, APP, APS, AR
COMMON/COK3/VK,V¥,TET,N1,C0I,ADENR, COSIN, CO3n

COMEON/CUM4/&FN,ENRTTL, ENRLT1, ENcLLY, ENXTLI,&,CS,Ci,CL, TEXi1,TE1

CONMON/COMS/ET,GANY ,GANT,5ANL,AHY,CCA,ARY,KPrD,R250,KS5D,

1RSPD,ECC

CO%MON/COM6/R1,AK ,RC,AL,AR2,T
COMMON/COMT/DSEED
COMMON/COH10/%4%, TAT,BAT, TIT,KAY,ZDIkK,ARA

K=CL/CT

IF{CS.EQ.CT)GOTG11]

CALCULATE ENERGY RATIOS 10 LONSITUDINAL INCiDEMNCE
TET1=TET

CCA=0.

vel
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NISOZ/M+8S00x03SE«qdSA=TITING
CSSH*CSSY=IIL a3
SYITIA/SSd=assy
SYIT3q/dSu=0dsy

(STSUN®) TUTSANISOCO+OSKAx "h+S20VxSII¥=SV1ITaa
{(cBSkNY) INTSANTISONxTCHRE S h~SIIY %SIIV¥) —-=58X
(¥/S00¥*NIS0D2Z13LVx*h) -=GSH
CShOx"2-"1=5S20¥%

(Mx¥) /(Zx2¥22~-"1) =STCSUNY
Z2ITIV4Z1I31¥=0SAnN
(TI21)sCI=8S0D
(7131)S02=%IS0D
(¥22)NTSEY=TIAL

tezorco(*L 19" ¥H2) 4T
YZITLV¥=VID

(z13I)NTIS=ZI31IV

I7r=2131

LLLt0I09

ITTINZ+TTIINTI=GNIAY
aadg+addv=11TTaINg

NISCD*N) /C0SdT+ASaE»ESOI=ITINNT
¥113a/8d49=0aay

¥I134/¢89=0asdy

(10VY) ITYCS*IDDV+D0V430V=YIT3C
{(LoVY) 1828C%13D¥-20¥%D2V) -=ad¥
B/ (DOV4RISCO%LITLVx "t +=5ar
(Yx¥ad) / (HISOZATSEN%"h, =130%
OSHLV-"{=10%

CSWN¥x*Z-"L =20V

Zax N/ I5IY) =0SRNY

LTIVl I2LY=TCKN

(t1Z1) S0D=NISOD
{LIIZT)S0D=9S02
(LITI)NISHY={ 124
M/LICLY=ITT

(LI5I)NTS=1LIZIV

oLt



ADENR=ENRLTI+ENRITI
GOTC111

251 CONTINUE
ENRTTI=1.
EKNRLTI=0.
ESSD=1.
BRSP?D=0.

111 CONTINUE
RETUKN
END
SUBROUTIAE CHOKEF

CC CHOREF CHOOSES DIRECTION OF REFLECTED RAY
DINENSIGE k1(100) ,AK(100) ,RC(100),A1{133),AR1{1u0),aR2.100)
DIMENSIOL E2(150) ,AKD (150) ,AKN(150) ,SUN({150) ,T(150)
REAL PI,K,KAY
DOUBLE PRECISIGN DSEED
COMMON/COM1/UY,UKN,21,Y1,2,22,N2,K3,L
CGMMON/CON2/AT ,AH, ATET2, APP, h2S, AR

COMMON/COM3/VN,VN,TET,N1,C0I,ADENE,COSLN,COSK
COMHON/CGM4/WEN,ENRTTI, ENELTI, ENRLLI, ENRTLI,K,CS,CT,CL, TETTY,1ETL
COMMON/COM5/ET,GAMY,GAMT,GAKL,AE1,CCA,ARY,REDPD, K2S3,RSSD,
1RSPD,RCC
COXMOK/CON6 /K1, AK,KC,AI ,AR2, T
CUMHON/CUON7/DSEED
COMMON/COM10/K%M, TAT, bAT, TIT,KAY,2D1k,ARA
PI=3.1415927
BEAND=GGUnFS {DSEED)
COET=COS (ET)
COCUSR=COET*COET*COET
COSDRI=COS {GAN1) *CUS {GAn1) *COS [GANT)
AHIN=COCUBR*SIN (GAX1)
AH1D=COSEI*SIN (ET)
IF (AH1D.EQ.0.)GUTO113
AHI1=AHIN* {AH1+ABS (ZI)) /AH1D
AR=AH1/COET
GOT0113

921
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AR=0.

118 CONTINUE

222

224

114

IF(CS.E2.CTI)30Tu 114
BETA=ENRLLI
BET=1./3ETA

IF{{1.-BETA).LT.0.00001)50T0222
BETT=1./(1.-BEIA)

IF(BAT.Eyv.1.)GOTC224

IF (RAND.LE.BETA)GOT0222
TaT=1.

WF4=BETII

CS=CT

KAY=K

RCC=kPSD

ET=TZTT1
IF/2DIE.EQ.0.)50Tu224
RECC=-RCC

GOTOZ24

COSTINUE

TAT=0.

WEN=BEI

CS=CL

RCC=EPPD

ET=TET

CONTINUE

GAM1=TET

GAMT=TETI1

GAML=TET

APP=LPPD

APS=RPSD

G0T0120

ALFA=ENRTTI
ALF=1./ALFaA

IF (ALFA.EQ.1.)50T0232

ALFL=1./(1.-AKLFA)

50T0234

LZ1



232

234

242

244

120

252

129

CONTINUE
ALFL=0.

API=PI*.5

TETL=API

CONTINUE

IF !5AT.Ey.1.) GOTO244
IF (RAND.LE.ALFA)GUTU242
TAT=1.

KAY=1./K

WFN=ALFL

CS=CL

RCC=RSPD

ET=TETL
IF'ZDIR.E0.0.) GOTO244
RCC=-KCC

GCTO244d

CURTINUE

TAT=0.

WFN=ALF

CS=CT

BRCC=KSSD

ET=TET

CONTINUE

GAM1=IET

GAML=TETL

GAMI=TET

APP=RSPD

APS=RSSD

CUNTINUE
IF{CCA.GT.1.)GIT0252
50T0129

CONTINUE
CCT=CT/AIET2

CT=CCT

COBTINUE

RETURN

8¢l



END
SUBRQUTIKE AMPLCO
DIMENSIOK R1{100) ,AK(100) ,&C(130) ,AI(100),As1{102),A32/100)
DIMENSION R2(150) ,AKD (150) ,AKN(150) ,5U% (15J) ,T(150)
DIMENSIGN GCG {103)
DOUBLE PRECISION DSEED
COMMON/COMY /UK, UN,21,Y1,2,22,N2,083,L
COMMUN/CON2/AT,AH,ATEI2,APP,APS, AR
COMMON/COU3/VN, VY, TET,N1,COL,ADENR,CCS1N,CGSR
COXMON/CUM4 /WFN,ENKTTI, ENALTI,CNELLI, £85TL1,K,C5,CT,CL, TETI1,PETL
COMMON/COM5/ET, GAM1,GAMT,GANL,AH1,CCA,aR,528D, kPSD,RS5D,
18SPD, RCC
COYMON/COMo/R1,AK,RC,AL ,AR2,T
COMMOK/COMT/DSEED
COMMON/CONIG,/%4M, TAT, AT, TIT,KAY,ZDIk,ARA
CUMMON/CON11/GCG
NIT=H1-)
DO551IK=1,NIT
K2 1IK)=K1({IK+1)

551 CONTINUE
DG5551=1, K1
IF(I.Eg.1)GOTU262
. AR2{I)=ARY[I) +R2(I-1)
AER=AK1 (1) /AR2 (I)
AK {I) =AER*GCO {I)
AT (I)=SQET (AK (1)) *AI(I-1) #KC(I-1)
GOT0555

262 CONTINUE
AI{1)=1./R11I)

555 CONTINUE
RETURN
END
SUBRGUTINE PF
DIMENSION TIME1 (30000),VCDATT(30000),HCDATT {30J00)
DIMENSION X (1500) ,X1(1500),Y2(1500)
INTEGER P(30000),2(30000),PE,AKA

6cl



10

15

4y

40
41

DCUBLE PREECISION DSEEL
COMMON/CONY /0%, UK ,21,Y1,2,22,82,03,L
CUMMOGN/COM2/AT, AH,AYET2,APP,4P5,AR
COMMGN/COM3/VN,VX,TET,N?,CO1,ADENR,COSLIN,CUSE
COMMON/COH 4/hFh,uthIl,“unLEI,LNLuLL,HNBTLI K,’S5,C1,lL,Tz1T1,1214
CGMMON/COMT /DSEED

CUHﬁON/CUSS/X1 Y2, P

COMMON/COXS /TI4ET1,TINE2,VCOATT,HCDATY,VCDAT ., HLDATL
N=840

N=850

DG1J0I=1,8

X1/1)=

Y2 (1)=0.

CONTINUE

DI=.01

Iw=290

KJ=0

DO15I=1,N3

2(I)=P (D)

CONTIKRUE

DO4 1K=1,N3

DO40J=1,N3

IF(2(K) « Eva 2(J))G0TOHY

GGTOuG :
IF(K.EQ.J)GOTOuU2

0{J) =0.

G0TJ40

Q{K) =0.

KJ=KJ+1

TIMET{KJ)=TIMET (K)
VCDATY(KJ)=VCDAT1 {K)

HCDAT1{KJ) =HCDAT1 {K)

CORTINUE

CONTINUE

DO100K=1,KJ

11=INT{TINLV{K) /DI)

0¢l



11
13

100

27
200

D0O1001I=1,20
IF(I.LE.10)G0TO11
R={IwW-I)/10.

GOTO13

K=1/10.

JIJ=1+11

X1(JJ)=VCDATVT(K) *s+x1(JJ)
Y2(JJ)=HCDATV (K) *w+Y2(JJ)
CONTINJUE

I=0

DO2GOK=100, N

I=1I+1

X{I)=x*.01

X1/I)=X1K)

Y2(I)=Y. (K)
WEITE0,27)%X!1) ,X111),Y2!.1)
FORMAT (4X,3F15.6)
CONTINUZ

Nu=I

F=3€./49.

CALL PLOT(0.U,2.0,-3)
CALL FACTOR!F)

X(N4+1) =1,

X[N4+2) =1,

X1 (N4+1)=-,.002¢4

XV {NL+2)=.0003

Y2 (N4+1)=~-.002

Y2 {N4+2)=,002

CALL AXIS(0.,0.,'TINE OF HBITS',-12,7.,0.,X{54+1),%5/N4+2))

CALL AXI1Is(0.,0.,'VERT. Co%P.
S5X1{Nu+1) ,X1{Nu+2))

CALL LINE(X,X1,N4,7,0,0)
CALL PLOT{12.,0.,-3)

QF Dlse.

IRANS.#2',29,5.,90.,

CALL AXIS(0.,0.,"TIME GF HIIS',=12,7.,0.,4 c4+1),Kh4+2))

CALL AXIS(0.,0.,'HORZ. CONP.
bY2 [Ru+ 1) ,Y2 (N4+2))

Or DI1ISP.

TRANS. #2' '29' So '90- s

Let



CALL LISE(X,Y2,KN4,1,0,0)
CALL PLOT (6.,-3.,999)
EETURN

DEBUG SUBCHK

END

5308 CAnDS KREAD
U SYS0UT PRIKI KECORDS
0 SYSOUT PUNCH RECORDS

0.00 MINUTES EXECUIION TINE

eel
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COMPUTER PROGRAM LIST FOR
SURFACE LOAD



//INCPLATE JOb ###§#488,'  EaUNI ' ,CLAS3=N,TYPcUN=CUPY, Job
// REGION=2043K
/*J0BPARA P=PKCCO1,LINES=10,F=9002,UCS=TN,FCB8=bluc
// EXEC FOKRTGCLG, PAiM.LRKEZU='SIZE= (2J48) ', PAR4.GU='DEVICE=PLITIVSU"
//FORT.SYSIN DD *
EEAL PI,K,KAY
DOUBLE PRE"ISIOK DSEED
DIMENSION TIXEZ1(30000),VCDAT1(30000),HCDATT I300w))
DIMNZKSION n1(100),AK(100),nC(103) AI(100) ,ar1(10J), AR2(10V)
DIMEKSION 52(150),AKD(150),AKN(150),SUX(13&),I(130)
DIMENSIGN X (2240),X1(2240),¥2(2240)
DIMENSIOE &CO {100)
INFESEE P(30009),Q(30000) ,2E, ARA
CONNON/CON1/UN, UN,21,Y1,2,22,N2,53,L
CO440N/COMZ /AT, AH,ATET2,APP,L25,AR
COMMOMN/COM3/VH,VM,TET,N1,C0I,AJdENR,COSIN,COSE
COKMON/COHL /W Fn,ENRTTI, ENELI1,ENALLI, 24RTLI,X,CS,
COMMOK/COM5/ET,GAH#1,GAMT,GANL,Ad1,CCA,ARY,ERPD, EP
18SPD,RCC
COMMOK/COM6/R1,AK ,RC,AL ,AK2,T
CUNMON/CONT/DSEED
CO#%ON/COAB/X1,Y2,P
COMMON/CUMS/TINE1,TINEZ,VCDAL 1, HCDAT1,VCLAT 2, HCCATZ
COMMON/COM1)/%4%, TAT,BAT, TIT,KAY,2D1E, kA ,ICS
COMMUK/COM11/GCO
COMMON/CCM12/TETTA
CALL CPUTIXN
DSEED=731549.DJ
CL=5.1
CC AY~HOEIZONTAL DISTANCE OF TRANSJUCERS FKOY POINT OF OxIGIw
AY=120.
YTB1=AY-1.
YIB2=AY+1.

2¢5H2

veEl



26

27

221

122

YT=AY
ZI=15.

Z7T=-21T
YIB3=ZT-1.
ISUMTI1=0

33=9.

NT=18

NL=500000
D0300L=1, XL

YI=0.

21=15.
DO1IJK=1, N1
R1!{IJK)=0.

AE1 (IJK) =0.
CCNIINUE

AE1=0.

SUM (1) =0.

1EA=0

CT=3.05
TMAX=12.%2.%2ZT/CL
CALL UI

IF (MEM.EJ.1)GOT0300
LO#00M=1,NT

IF (CS.EQ.CL)GUTG26
N=1

PE=N* (2%*H)
GOT027

N=0

PE=M¥ {2%%20)
IBA=IBA+PE
IF{M.EQ.1) 6070221
GOT0122

ET=TET

TETTA=TET

GAX1=0.

CONTINUE

GN1=YI

Gel



10
126

251

253

23o

234

233
235

2b3

264

CALL HITPLR
IF{YI.GE.YTB1.AND.YI.LE.YT52)GOT0O1z06
IF (Y1.6T.YTB2)GOI3330
R1!/M) =AT
TIME=%1 () /CS
IF {M.ED.1) GOT0OL51
SUM(N)= SUM(%-1)+IIHE
GD=YI
GCO (M) =3N1/5D
GOT0253
CONTINUE
SUM ‘™) =TIME
CONTINUE
IF{SUHIM) .GE.THAX)GOT0O300
IF(YI.GE.YTB1.ANS.YI.LE.¥TB2) Guid230
G070233
IF (AB5(21-21T).LE.a01)30T0234
GOTO233
ISUHTI1=ISUNIT+1
P({ISINTI1)=1IBa
BAT=1.
TIAZ1{ISUSTI)=SUN{M)*CL/(2.%5T)
NN=N
N1=NN
GOT0Z35
BAT=0.
CALL EERATIU
CALL CHOKEF
T{8)=TAT
RC {M) =RCC
AR1 (M) =A%
CONTINUE
IF (UN.EQ.0.)GUT0300
IF{UN.5T.0.)GOTO264
IF(YI.GE.YTB1.AND.YI.LE.YTBE2) GOTU600
CONTINUE

9¢c1



29

311
400
600

CC CALCULATION OF

300

9000

CALL REFLEC
IF{VN.LT.0.)G0T029
UM=SIN(ET)

UN=COS {ET)

30T0311

ER=ARCOS [ VH)

ETER= (TET-ET) +EK

UM=SIN {EIER)

UN=COS (ETER)

TET=ET

IF( Su¥(¥).GT.THAX)GOTO3UD
CONTINUZ

3070300

CONTINUE

CALL UTHZTA
IF (I (1)«E32.0.)GCTO300
IF(N1.EQ. 1) GOTO4

CALL AMPLCC
ART11=A1!K1)
ARDP=APD*AKT11
AEPS=ADPS*AKT11

IF (C5.EJ.CT)GOTO8

A4PLITIDE CUxF. ,AK

HCDATV(ISUMT1) =AKT11%SIN!GAMT) +AL2P*SIN (GAML) ~ARDPS*COS (GANT)
VCDAT1 {ISUMT1)=—AKT11%C0S {GA41) +ARPP*CUS [GAML) +ARPS*SIN (34A47)

GOTO3v0

HCDAT1{ISUNT1)=+AKT11*COS(5AM1) +AKPP*S5IN
VCDAT1 (ISUMTT1)=+AKT11%SIn (GAN1) +ARPP*CUS

CONTINUE
N2=JJ

N3=ISUMT1

WEITL (6,9000) ISTAI
FORMAT [4X,I10)

CALL PP

STO?

DEBUS SUBCHK

(G
(G

A6L) —ARPS*COS {GAXT)
AAL) +ARPS*®SIN (GAAT)

LE1



END
SUBROUIINE UI
CC UI CALCULATES DIRECIION COSINE OF INCIDENT EAY
ZC U4,UN ~DIRECTIUN CGSIWNES

BEALPI,PHI
DUYBLE PRECISION DSEED
DIMENSIUN E1{100) ,AK{100) ,&C{100) ,AI{160) ,ar1 (10J),Ak2(139)
DIMENSIUN X27150) ,AKD {150), AKN {150) ,50% {150),T [159)
INTEGER P (30000),¢(30000) ,PE,AkA
COMMON/COM1/UN,UN,21,Y1,2,22,82,53,1
CGMMUN/CUH2/AT,AE,ATET2,APP,APS, AR
COMMON/CON3/Vi,VK,1ET,N1,C01,ADEKE, COSLN,CUSK
COMHON/CuY /KFN, ENETTI, EKRLTI, ENRLLI, EnR{L1,K,CS8,C0,CL, TS111,T2T.
COMMOK/COM5/ET, GAM1,GAXT,GANL,AH1,CCA,ARY,5PPD, 825D, HSSD,
1RS2D,RCC
CO4YON/COMb/R1,AK,EC, AL ,AR2,T
COMMON/CUM7/DSEZD
CO4BON/CUMT0/M%M,TAT,BAT,TIT,KAY,ZDIR,ARKA,ICS
2I=3.1415927

141 EPHI=GGUEFS ‘DSEED)
IF (RPHI.GT.U -AKD. EPHI.LE.1.)30Iu271
MMN=1
GGTO142

271 CONTIKUE
PHI=PI*RPHI
IF!{PHI.3T.PI/2.)60T0143
ARd=1
GUTO142

143 TET=PI-PHI
HEM=0
UN=COS (PEI)
UM=S1K {PHI)
RPH{a=GGUBFS (BSEED)
IF ‘EPHA.LE..5)GOTO144
cs=C1
ICS=0

8el



5070142

144 CS=CL
ICS=1

142 CONTINUE
EETTaN
DEBUG SUBCHE
END
SUBROUTINE HITPLN

ZC AT~PARAMETLE=DISTANCE FRON ORIGLIN ORFIRST PI:PCE POIGT TUIHD w4l
DIMEKSIOK K17100) ,AK{100) ,RC{130) ,AL(130) ,4:1 (100),AR2(1J0)
DIAENSIuUE E27150) ,AKD {159), AKE 1150) ,SUM {150),1 L150)
DOUBLE PKECISIOM DSEED
COM%0k/COM1 /U, UK, 21,Y1,Z,52,82,53,L
CUMMON/CUM2/AT, A ,ATET2,APP, A5, Ak
COMFON/COM3/VN, VS, TET,N1,C01,a0EL%,CCSIN,COSu
CUNMOL/CON4/WiN,ERRTLI, SWkLTI, ENKLLI, ENRZL1,%,05,C1,CL, T2I21,TE
COMBGN/CON5 /5T, GAKT, GRMT, GAML,AH1,CCh, Ak ,h2PD, sPSS, 5850,
125PD,&CC
CU4¥%0K/COM&/EV,AK,EC, AL ,AE2,T
CGXMOK/CONT/DSEED
CONMON/COK10/MMM, TAT, 84T, TiT,KaY,Z0IR,ARA,LCS
AH=15.
IF(UN)7,11,9
7 Z=-hH
ZDIR=1.
G0TO010
9 Z=kH

ZDIR=0.

10 AT='2-21I) /UN
ZI=2I+UK*AT
YI=YI+UM*AT

11 CONTINOE
RETURN
DLBUG SUBCHK
END
SUBEVUTINE REFLEC

[
t

6t



CC CALCULATION OF KEFLECTED RAY, Vi

REALPI,PHI
DIMENSION R11100) ,AX{100),RC{100) ,AL{100) ,A81(103),ARZ(1JI)
DIMENSION R2{150) ,AKD {150), AKN [150) ,5d% {150} ,1 {150)

DOUBLE PEECISION DSEED
COMMON/COM1 /UM, UN,21,Y1,4,22,82,K3,L
COX4OK/CON2/AT ,AH, ATET2, A2P,APS, AR
COMMOK/COM3/Vi, V%, TET,N1,COI, ADENR,COSLN,CUSK

COKMON/COAU /W FN,ENRIIT, EdRLTI, ZNaLLI, ENRTLI K, 8,05 ,CL, TETi Y, ixTL
CONXON/CONS/ET,GA4Y,GANT, GAUL,ANY,CCA,ART ,RE2D, R2SD,ES3D,

1RSPD,5CC

COMMON/COML/RY, AR, nC, AL, AR2, I

CONMUN/CONT/DSEE

COMMON/COMI0/%4%, TAT,BAT,T1I,KAY, 201k, AKA,LCS

IF (2.E£2.AH) GOTU281

RM=0

3N=1.

G0T0233

CONTINUE

’N=0.

RN=-1.

CONTINUE

VH=-UM*RA*nM+UH

VN=-UN*EK*EN

RETURN

DEBUG SUBCHK

END

SUBROUTIKE EEATIO

CC CALCULATION OF THE ENERGY ERATIOS

DIMENSION E1(100) ,AK{100) ,RC{10U),AL(100) ,AR1(100),AaR2(100)
DINEKSIOK R2(150) ,AKD(150),AKN (150} ,SU5 {150),T {150)

DOUBLE PRECISION DSEED .
REAL PI,x,RAY
COXMON/COM1 /Ui, UN,2T,YI,2,22,82,03,L

COMMON/COM2/AT ,AH,41ET2,A2P,APS, AR
COMMON/COK3/VN, VK, TET,K1,COI, ALEKE, CUS1k, CUSE

ovl



cc

113

COANON/CUNS/ET, GA
1KSPD,kCC
COAMOK/COMG/R1,AK,rC,AL,AR2,1
CCMMON/COMT/DSEED
COMMON/COM10,/854,TA.,BA7,TIT,KAY,4D1In, 424,105
K=CL/CT

IF{(CS.EQ.CT)GUTO110

CALCULATE ENERGY RATIOS TO LONSITUDINKAL 1INCIDE

TET1=TEI
cca=9.

ATET1=SIN(ZET1)
TETT=ATEZT1/K
TETT1=AKSIN(TZIT)

COSB=COS {TETT1)

COSIN=COS5 (TET1)
UMSQ=ATET1*ATET 1

AUMSD= {ATET1/K) %2
ACC=1.-2.%AUMS2
ARC1=1.-20UMSy

ACCT= (4.*UMSQ*COSIN) / (K*K*K)
RPS=+ (4. *ATET1*COSIN*ACC) /K

"RPP=- {ACC*¥ACC-ACCT*S)KT (AC1))

DELTA=ACC*ACC+ACCT*SQRT (AC1)
RPSD=EPS/DELTA

RPPD=RPP/DELTA
ENRTLI=COSR*RPSD*2PSD/ (K*COSIN)
ENRLLI=KPPD*RPZD
ADENR=ENRILI+ENKLLI

30T0111

TET2=TET

ATET2=SIN(IET2)

CCA=ATET2%*K

IF(CCA .GT. 1.)GUT0291
TETL=AKSIN {CCA)

COSIN=COS (TET2)

8I,GAML,AHT1,CCA,ART,KEP2D,R2SD,855D,

NCE

COMMON/COMU/WEN,ENRTITI,ENRLT] ,ENRLLY, ENKTLI ,K,CS,07,CL,TELILID,
*1,52

-
-

Lty

i da
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291

CGSR=CUS5 {TETL)
UMSO=ATET2*%ATZEI2

AUMSQS= (1.-CCA¥*2) / (K*K)

ACCS=1.-2.%UN52

RSP=- (4.%ATET2*¥COSIN*ACLCS/K)
RSS5=-[ACCS*ACCS-4.*¥UMSQ*COSIN*SIRT {AURS US))
DELTAS=ACCS*ACCS+U.*UFS%COSIN*5,51 (AUNSJS)
RSPD=RSP/DELTAS

RSSD=RSS/DELTAS

ENRTTI=RSSD*kSSD
EXRLTI=RSPD*LSPD*COGSR¥K/COS IN
ADENE=ENELTI+ENKTTI

30T0111

CONTINUE

ENETTI=1.

ENRLTI=D.

RS3D=1.

®SPD=0.

CONTINKUE

RETURN

DEBUG SUBCHK

END

SUBROUTINE CHOREF

CC CHOREF CHOOSES DIRECIION OF RZFLECTED RAY

DIMENSION Kk1(100),AK(100) ,RC(130),AI[150),AK1/109),a827100)
DIMENSION £2(150) ,AKD (150) , AKN (150) ,SUN (150) , I (150)

REAL PI,K,KAY

DOUBLE PKECISION DSEED

COKMON/COX1/U%,UN,2I,Y1,2,22,N2,53,L

COMEON/CGM2/AT ,AH,ATET2,A2P, APS, AR
COMMON/CUM3/VN,V4,TET,N1,COI,ADENZ,COSLN,COSkK
CUOMBON/CUMY/WFN,ENRTTI, EKRLTI,ENKLLI, ENRTLI,K,58,C0,CL, TEITY, D271
COMMOK/COM5/ET,GAM1,GAMT,GAML,AHY,CCA,AKY,RPPD, KPSD,KSSU,
1RSPH,RCC

COMMON/COME /KT, AK,KC, AL ,AR2,T

CUAMON/COM7/DSZED

vt



113
118

COMNON/CCM10,/MMY, TAT,BAT,TIT,KAY,2DIK,ARA,ICS

PI=3.1415927
EAND=GGUBFS {DSEED)

COET=COS (ET)
COCUBR=COET*COET#*CCET
COSQRI=COS {GAN1) *CUS (GAK1) *COUS ‘GAanI)
AHIN=COCUEK*SIK (GAX1)
AH1D=COSQRI*SIN (ET)

IF (AH1D.EQ.0.)GUTIG113
AH1=AHIN* {AH1+ADS {ZI)) /Add 1D
AEK=AH1/CCE1

G0T0118

Ak=0.

IF/CS.EG.CT)GOIu 114
BETA=ENKLLI

BEIr=1./bETA
IF((1e~5ETA).LT.0.00U01)30T0222
BETT=1./.1.~-EETA)

IF (BAT.Ey.1.)GOT0224

IF {RAND.LE.BETA) GUTD222
TALI=1.

WFN=BETT

CS=CT

KAY=K

BCC=RPSD

- BI=TETT1

222

224

IF (ZDIR.ED.J.)GOT0224
RCC=-&CC

50T0224

CONTINUE

TAT=0.

KFN=BET

Cs=CL

RCC=KPPD

E1=TET

CONTINUE

Y
o



114

232

234

242

244

GAN1=TEIL
GANT=TEII

GAXL=TET

APP=RPPD

APS=EPSD

G0OT0120

ALFA=ENKRTTI
ALF=1./ALFA

IF (ALFA.EQ.1.)GOT0Z232
ALFL=1.//1.-ALF2a)
3610234

CCNTINUE

ALFL=0.

API=PI*.5

TETL=API

CONTINUE

IF (BAT.E2.1.) GOTO2u44
IF {RAND.LE.ALFA) GOTO242
TAT=1.

KAY=1./K

WFN=ALFL

Ccs=CL

ECC=ESPD

ET=TETL
TF(ZDIR.ED.0.)GOTU24k4
ECC=-ECC :
S0TU244

CONTINUE

TAT=0.

KFN=ALF

CS=CT

ECC=RSSD

ET=TET

CONTINUER

vl



120

252

551

GAM1=TEI
GAML=TETL

GAMT=TET

APP=RSPD

APS=RESSD

CONTIKUE

IF (CCA.GT.1.) GOT0252

GUT0129

CONTINUE

CCT=CT/ATETZ

CT=CCT

CONTINUZ

RETURN

DEBUG SJIBCHK

END

SUBROUTINE AMPLCO

DIMENSION R1(100),AK(100) ,RC(190),AI(100),A51!100
DIMENSION 2(150) ,AKD(150) ,aKN(150) ,SU%{150),5(15
DIKENSIGN GCO100)

DOUBLE PHECISIUN DSEED
COMMON/COM1 /UM, UN,2%,Y1,4,22,N2,53,L
COMMON/COB2/AT,AH,ATET2 ,AP2 ,APS , AR
COMMOK/COM3/VN,VN,TET,N1,C01,ADENR,CO51N,CUSA
COMMUK/COM4/NF¥,ENRTTT, ENBLTI, ENKLLT, ENXTLI,K,C5,C1,CL, TETI1,1£TL
COMMOK/COK5/ET,GAMY,GANT,GAML,AH1,CCA,ARY ,kP2D, RPSD,ESSD,
1RSPD,RCC

COMMOK/COM6/R1,AK,EC,AL ,AR2,T

COMMOKN/COMT/DSEED

COMMON/COM10/M%K, TAT,BAT, TIT,KA4Y,2DIk,ARA,ICS .
COMBUN/COM11/5CO

NIT=N1-1

DO551IK=1,NIT

R2 (IK)=R1(IK+1)

CONTINUE

D0555I=1,N1

IF (I.2Q.1)G0OT0555

) »AR2{130)
0)

Gbl



AR2(I)=AR1{I)+k2!I~-1)
ARR=AR1(I) /AK2 (I)

AK!I) =ARA*GCO {I)

AI(I)=S2RT (AK (I)) *AI (1-1) *XC(1-1)

CONTINUE

RETURN

DEBUG SUBCHK

END

SUBROUTINE UTHETA

REAL PI,K,K2,K3

COMPLEX UTTA

DGUBLE PRECISION DSESED

DIMNENSION E1({100) ,AK{100) ,RC{100) ,A1{100),aE1(109), ARZ (199)
COMMON/COM1/U%,UN,21,Y1,2,22,N2,N3,L
COMMON/COM3/VN,VM,TET,N1,C0I,ADENR, COSIN,COSE

ty

COMMON/COMY /WFK ,EWRITI, ZNRLTI ,ENALLLI,ERRTLI ,K,-S5,CT,CL,I8IT,T

COMMON/COM6/R1,AK,EC, AL, A2
COMMON/COX7/DSEED
COXMON/CUM1U/HMM, TAT, BAT,TIT,KAY, 201,454, ICS
CO4¥ON/COMI12/TETTA

Ctuy=.25

PI=3,1415927

A=K

K2=A%A

K3=A%A*}

AP2=R1{1) *CU44*SIRT(2.%P1) / (Cu4*PI*30.)
IF!ICS.E{.1)GGT0121

X=A*3SIN (1ETTA)

X2=2.*%TETTA

AB=X*X

SX2=SIK (X2)

X0=2.#%AB-K2

XSQ=XQ*XQ

XS=(AB-1.) * (AB-K2)

IF(AB.LT.1.)GOI0123

XK3QR=SQRT (AB-1.)

9t1



124

123

125

121

122

XSR=K3*SX2*XKSQk
IF (AB<GE.71..AND.AB.LT.K2) GUuTU124
XSQE=SQET {X5)
FTHETA=XSQ-4.*AB*XS 3k
UITETA=-XSK/{AP2¢FTHETA)
30T0125
XS2E=CHPLX {0.,SQRT (~XS) ) *CMPLX {4.,0.) *C4PLX (A5, 0.)
FTHETA=CMPLX’XS5Q,0.) -XS Q&
UTTA=CMPLX (XSK,0.) *CMPLX (-1.,0.) /(FTAETA*CH LA (AP2,0.))
UTTETA=HEEAL (UTTA)
30T0125
XKSQE=SORT {AES [Ab-1.))
XS2R=SQXT (XS)
FTHETA=XSQ+4.*AD* XS K
XR=(~K3*5X2)
UITA=CMPLX (X&,0.) *CHPLX (0« , XKS3R) / (CHPLX (AP 2, U.) #*CLPLX(FLLUZTA,0.))
UTTETA=KEAL {UTTA)
AI (1) =UTIETA
30T0122
X=SIN(TETTA)
AB=X*X
Y=COS (TETTA)
£S={AB-1.) * (AB-K2)
XSIR=SQKT (XS)
XC=12.*A5-K2)
XSQ=X{*XD
FTAETA=XSQ+4.*AB*XSQK
UR=+ (Y* (-Xy)) / (AP2*FTHETA)
AI(1)=UK
CONTINUE
RETURN
DEBUG SUBCHK
END
SUBKOGUTINE PP
DIMENSIO# TIMEZ1(30000),VCDAT1(30009),HIDATI (30000)
DIMENSION X (2240) ,X1(2240),Y2 (2249)

Ad



INTEGER P'30000),Q'30000),PL,ARA
DOUBLE PRECISIUN DSEED

COMMGN/CGK1/U%, UN,ZE,YL,2,22,82,83,1
CO4MON/CCGK2 /AT, AH,ATET2,AP2,APS, AR
COMMCN/COM3/VN, VM, TET,N1,C0L,ADENE,COSIN,CUSK

COMMON/CUM4 /¥FN,ENRTII, ENRLTI, ENRLLI, ENKTLI,4,C5,CT,CL, IEIT1, 1871

10

15

44

42

40

41

COMMON/COM7/DSEED
COMMUN/CUONB/X1,Y¥2,P

CO4MGN/COM9 /TINEY, TINE2,VCDATY,dCDATY,VCDATIZ,HCDATZ

N=1200
DO10I=1,N

X1(I)=0.

Y2/1)=

CONTINDE

DI=.01

I¥=80

KJ=0

DO15I=1,N3

QI)=P(I)

CONTINUE

DO41K=1,N3
DO40J=1,K3

IF{P{K) «EQ.2{J))GOTOu4
GOTO40

IF{K.EQ.J) GOTOu42
2(J)=0

GOTOU40

Q (K) =0.

KJ=KJ+1

TIME1 (8J)=TIKE1 (K)
VCDAT1({KJ)=VCDAT1{K)
HCDAT1 (KJ)=4CDAT1 (K)
CONTINUE

CONTINUE
DG100K=1,KJ

ITI=INT (TIME1(K)/DI)

8rl
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11
13

100

DO10VI=1,IK
IF(I.GE.1.AND.I.LE.IN)GUTOT1
W=0,

GGTO13

w=1.

JI=TI+11

X113J)=VCDAT1!K) *k+X1{3J)
Y2{JJ)=HCDAT1{K) *&+Y2 {J J)
CONTINUE

D0200I=1,N

X (I)=1*DI

X171)=X1.I)

YZ(I)=Y2 (1)
WRITE6,27) X(I; ,E1{1),¥2.I)
FORMAT (4X,3F15.06)

CONTINUE

Nag=X

CALL PLOT!0.0,2.0,-3)

CALL SCALE(X,8.,N4,1)

CALL A¥IS(0.,0.,'TIME OF HuaTSY,-12,8.,0.,A(dd+1),5(54+2))

CALL SCALE{X1,5.,%4,1)

CALL BAXIS(Ce,0.,'VERT. CUNP.
5X1!N4+1) ,X1N4+2))

CALL LINE{X,X1,N4,1,0,0)
CALL PLOT(12.,0.,-3)

CALL SCALE(X,8.,N4,1)

OF DISP.

TRASS.52',29,5.,90.,

CALL AXIS{0.,0.,'TIKE OF HIIS',-12,8.,0.,K{K++1) ,X(Na+2))

CARLL SCALE(Y2,5.,N4,1)

CALL AXIS(0.,0.,'HORZ. COM2.
Y2 (Nd+1) ,Y2{NU+2))

CALL LINE(X,Y2,K4,1,0,0)
CALL PLOT(8.,-3.,999)

EETURN

DEBUG SUBCHK

END

OF DIsp.

TRANS.#2¢

029,5.,90.,
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