INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Ewumi, Joseph Olukayode

THE STUDY OF WAVE MOTION IN A BOUNDED ELASTIC MEDIUM USING A MONTE CARLO RAY TRACING APPROACH

Copyright 1983

by
Ewumi, Joseph Olukayode
All Rights Reserved

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page(s) \qquad lacking when material received, and not available from school or author.
12. Page(s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other \qquad

University Microfilms
International

THE STUDY OF WAVE MOTION IN A BOUNDED ELASTIC MEDIUM USING A MONTE CARLO RAY TRACING APPROACH

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of
DOCTOR OF PHILOSOPHY

By
JOSEPH OLUKAYODE EWUMI
Norman, Oklahoma
1983

THE STUDY OF WAVE MOTION IN A BOUNDED ELASTIC MEDIUM
USING A MONTE CARLO RAY TRACING APPROACH
A DISSERTATION
APPROVED FOR THE SCHOOL OF AEROSPACE, MECHANICAL
AND NUCLEAR ENGINEERING

ACKNOWLEDGMENTS

I am very grateful to those individuals who have contributed very immensely to my academic career and most especially to my adviser, Dr. Davis M. Egle, who suggested this research topic and gave me consistent support, guidance, and encouragement. Other individuals worthy of special thanks include the members of my dissertation committee, Drs. Tom J. Love, Charles W. Bert, Maurice L. Rasmussen, and James N. Huffaker, from whose wealth of experience I greatly benefited.

Due acknowledgments are given to Drs. William D. Turner and L.W. Stockham whose dissertations I have used to enrich my understanding of the Monte Carlo method and to Ms. Rose Benda for the patience with which she typed this work.

I give due acknowledgment to the Federal Government of Nigeria and the University of Ife, Ile-Ife, Nigeria for their sponsorship. This research investigation could not have been possible without the computer time from the Merrick Computer Center at the University of Oklahoma. To this I am very grateful.

Finally, I do express my thanks and appreciation to my wife, Anu; daughters, Tayo and Yetunde; and my son, Segun, for their encouragement and sacrifices.

ABSTRACT

In this investigation, the displacement response of a bounded elastic medium is analyzed using a ray-tracing method coupled to a MonteCarlo technique. The medium is an elastic, homogeneous, and isotropic solid bounded by six arbitrarily inclined stress-free plane surfaces. The wave-front curvature transformations due to the mode conversions at the free surfaces are derived. For sampling the reflected rays at the free surface, the Russian-roulette algorithm is utilized.

Numerical calculations are given for the following three models:
a) A two-dimensional plate with stress-free boundaries. The force is an impulsive dilatational wave located at the point $(0,0)$.
b) A two-dimensional plate with stress-free boundaries. The force is a unit normal stress acting at the point $(0,15)$ of the free surface. The force and the receiver are located at the opposite sides of the plate.
c) A two-dimensional plate with stress-free boundaries. The force is a unit normal stress acting at the point $(0,15)$ of the free surface. The force and the receiver are located at the upper surface of the plate.

Computer algorithms are developed and the solutions of the dis-placement-field components are plotted for three different locations of
the receiver for each model. Numerical results are compared with the generalized ray analyses conducted by Pao [4] and Pao et a1. [5] for the same geometry and the load conditions.

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS iii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES x
NOMENCLATURE xiii
Chapter
I. INTRODUCTION 1
1.1 Literature Survey 1
1.1.1 Problem Definition 1
1.1.2 Survey of Previous Research 3
1.2 Geometrical-Ray Approach 5
1.3 Monte Carlo Technique 9
1.4 The Main Objective of Research 9
II. PHYSICS OF THE PROBLEM AND MATHEMATICAL FORMULATION 12
2.1 Monte Carlo Formulation 12
2.1.1 Ray Emission from a Point Source 15
2.1.2 Russian Roulette 22
2.2 Reflection of Plane Waves at a Stress-Free Surface 27
2.2.1 Point of Intersection 29
2.3 Wavefront Curvature Due to Reflection of P-SV Wave at a Stress-Free Surface 30
2.3.1 Displacement Amplitude 32
2.3.2 Wavefront Curvature due to Reflection 34
2.3.3 Wavefront Curvature for Multiple Reflected Rays 38
2.3.4 Wavefront Curvature due to Reflection: A Three-Dimensional Case 42
Chapter Page
III. COMPUTATION ALGORITHM AND NUMERICAL EXAMPLES 49
3.1 Computation Algorithm 49
3.2 Numerical Calculation 53
3.2.1 Response of a Plate to a Compressional Point Source: Numerical Calculations 53
3.2.2 Components of Displacement at the Boundary 64
3.3 Response of a Plate to a Unit Stress Normal to the Surface of the Plate 74
3.3.1 Derivation of the Far-Field Solution Compressional and Shear Waves 74
3.3.2 Unit Stress Normal to the Surface of the Plate: Numerical Calculations 78
IV. ANALYSIS OF THE RESULTS AND CONCLUSIONS 101
4.1 Results and Analysis 101
4.1.1 Case (i) Dilatation Point Source 101
4.1.2 Case (ii) Response Due to Surface Force (Source and Receiver on the Opposite Sides of the Plate) 102
4.1.3 Case (iii) Response Due to Surface Force (Source and Receiver at the Upper Plate Surface) 103
4.2 Comparison of Results and Conclusions 104
4.3 Recommendations for Future Research 105
REFERENCES 107
APPENDIX: COMPUTER PROGRAM 111
Computer Program List for Dilatational Case 117
Computer Program List for Surface Load 133

LIST OF TABLES

Table Page
2.1 Direction of Emission 23
3.1 Arrival Time ($\tau=t C_{\top} / 2 h$) Dilatation Point Source ($r=2$). 56
3.2 Arrival Time ($\tau=\mathrm{tC}_{\top} / 2 \mathrm{~h}$) Dilatation Point Source ($r=5, r=10$) 57
3.3 Peaks of the Displacement Field $(r=2)$ Point of Dilatation (0,0) 61
3.4 Peaks of the Displacement Field $(r=5)$ Point of Dilatation (0,0) 62
3.5 Peaks of the Displacement Field $(r=10)$ Point of Dilatation (0,0) 63
3.6 Arrival Time ($\tau=t C_{L} / 2 h$) Surface Loading - Source and Receiver on the Opposite Sides of the Plate 80
3.7 Peaks of the Displacement Field $(r=2)$ Surface Loading - Source and Receiver on Opposite Side 81
3.8 Peaks of the Displacement Field ($r=4$) Surface Loading -
Source and Receiver on Opposite Side 82
3.9 Peaks of the Displacement Field ($r=6$) Surface Loading - Source and Receiver on Opposite Side 83
3.10 Arrival Time ($\tau=t C_{L} / 2 h$) Surface Loading - Source and Receiver at the Upper Plate Surface 91
3.11 Peaks of the Displacement Field ($r=2$) Surface Loading - Source and Receiver on the Upper Plate Surface 92
3.12 Peaks of the Displacement Field ($r=4$) Surface Loading - Source and Receiver on the Upper Plate Surface 93
3.13 Peaks of the Displacement Field ($r=6$) Surface Loading - Source and Receiver on the Upper Plate Surface 94
Table Page
A-1 Computer Time (CPU . 112
Figure Page
1.1 Ray tracing in a bounded solid medium 2
1.2 Plane waves incident upon a stress-free surface 7
1.3a Conventional ray-tracing approach 8
1.3b Ray tracing with an application of Russian roulette 8
2.1 Emission of ray from a point source 16
2.2 Direction of emission - two-dimensional case 20
2.3 Average energy transmission across ΔS with incident shear waves 20
2.4 Direction of the reflected ray 28
2.5a P-wave emitted from a point source 33
2.5b Mode conversion and the imaginary point source - P-SV waves 34
2.6 Displacement of the P-SV waves: geometrical derivation 35
2.7a Mode conversion at a free surface. (a) PSP waves 39
2.7b Mode conversion at a free surface. (b) PSPS waves 40
2.8 Curvature due to reflection. (a) Location of $R_{j}^{\prime \prime}$, (b) Rotation about z-axis 44
2.9 Inclined planes of reflection 46
2.10 Lines of curvature. (a) Principal normal curvatures,
(b) Normal curvature in an arbitrary direction 47
3.1 Direct ray and a single reflected waveform 51
3.2 Monte Carlo decision variables. (a) For incident P-wave,
(b) For incident SV-wave 51

Page

3.3 Ray paths and the locations of the receiver. Source is
at point $(0,0), r=A Y / 2 h \cdots$.

Time function $[\Delta=f(\tau)]$. (a) Quadratic pulse,
(b) Saw-tooth shape function 58
3.5 Reflections of the PSP waves due to: (a) dilatational
force, (b) unit normal stress 60

Direction of the partical displacements. (a) Reflection
is at the upper surface, (b) Reflection is at the bottom
surface 65
3.7 Plates response to a unit dilatation point force. Point of
dilatation $(0,0)\left(t_{0}=t / \tau\right)$. Vertical components, $r=2$. . 67
3.7a $\begin{aligned} & \text { Responses due to dilatational point source obtained } \\ & \text { by Pao et al. [4] } 68\end{aligned}$
$3.8 \quad \begin{aligned} & \text { Plates response to a unit dilatation point force. Point of } \\ & \text { dilatation }(0,0)\left(t_{0}=t / \tau\right) . ~ H o r i z o n t a l ~ c o m p o n e n t s, ~ \\ & \end{aligned} \quad .29$
3.9 Plates response to a unit dilatation point force. Point of dilatation $(0.0)\left(t_{0}=t / \tau\right)$. Vertical components, $r=5$. . 70
3.10 Plates response to a unit dilatation point force. Point of
dilatation $(0,0)\left(t_{0}=t / \tau\right)$. Horizontal components, $r=5 . \quad 71$
3.11 Plates response to a unit dilatation point force. Point of
dilatation $(0,0)\left(t_{0}=t / \tau\right)$. Vertical components, $r=10 . .72$
3.12 Plates response to a unit dilatation point force. Point of
dilatation $(0,0)\left(t_{0}=t / \tau\right)$. Horizontal components, $r=10$.
3.13 Reflection of waves with: (a) odd number of. segments,
(b) even number of segments 79
$\begin{array}{ll}3.14 & \text { Plates response to a unit surface force at }(0,15) .\end{array}$
3.15 Plate response to a unit surface force at (0.15). Receiver
is located at point $(60,-15)$. Horizontal components, $r=2$.
$3.16 \quad \begin{aligned} & \text { Plate response to a unit surface force at (0.15). Receiver } \\ & \text { is located at point }(120,-15) \text {. Vertical components, } r=4 .\end{aligned} \quad 86$
3.16a Responses due to Surface Load by Pao [5] 87
Figure Page
3.17 Plate response to a unit surface force at $(0,15)$. Receiver is located at point ($120,-15$). Horizontal components, $r=4$ 88
3.18 Plate response to a unit surface force at (0.15). Receiver is located at point ($180,-15$). Vertical components, $r=6$ 89
3.19 Plate response to a unit surface force at $(0,15)$. Receiver is located at point ($180,-15$). Horizontal components, $r=6$ 90
3.20 Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(60,15)$. Vertical components, $r=2$ 95
3.21 Plate response to a unit surface force at $(0,15)$. Receiver is loacted at point $(60,15)$. Horizontal components, $r=2$ 96
3.22 Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(120,15)$. Vertical components, $r=4$ 97
3.23 Plate response to a unit surface force at $(0,15)$. Receiver is located at point (120,15). Horizontal components, $r=4$ 98
3.24 Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(180,15)$. Vertical components, $r=6$ 99
3.25 Plate response to a unit surface force at (0.15). Receiver is located at point $(180,15)$. Horizontal components, $r=6$ 100

NOMENCLATURE

a	radius of the circular disc
A	area of the sphere
$A_{i}, B_{i}, C_{i}, D_{i}$	coefficients
AY	horizontal distance of the receiver from the source
A_{0}, A_{1}, A_{2}	displacement amplitudes
C_{L}, C_{T}	dilatational and torsional wave speeds, respectively
$d A^{\prime}$	differential surface area
$d x, d y, d z$	differential elements
e	incident or reflected angle for a P-wave
f	incident or reflected angle for an SV-wave
$f(), g()$	density functions
$F(), G()$	cumulative distribution functions
h -	one-half of the thickness of the plane
h_{1}, h_{2}, h_{3}	distances of the apparent point sources from the
	reflecting planes
$H()$	heaviside unit step function
i	square root of -1
k	ratio of wave speeds
K	wavefront curvature factor
ℓ, m, n	direction cosines
n	number of reflections

N	total number of emissions
0	real point source
$0_{1}, 0_{2}, 0_{3}$	apparent point sources
P	dilatational wave
P_{i}, P_{r}	incident and reflected dilatational waves, respectively
$\mathrm{P}(\mathrm{l}$	probability function
r	horizontal distance of the receiver from the real point source (normalized)
r, z	cylindrical coordinates
r_{0}	radial distance between either the source and the pierce point or any two conservative points of reflection
\vec{R}	unit vector normal to the plane
$R_{\text {eff }}^{\prime} R_{\text {eff }}^{\prime \prime}$	effective radii of curvature
R_{θ}	random number
$R_{S S}, R_{P S}$,	coefficients of reflection
$\mathrm{R}_{\mathrm{PP}}, \mathrm{R}_{\text {S }}$	
S,SV	shear wave
S_{i}, S_{r}	incident and reflected shear waves
t	arrival time
t_{c}	cumulative time of arrival
t_{0}	the time it takes a wave, P or SV , to travel across the thickness of the plate
$t_{\text {max }}$	maximum time for ending the calculation
u,w	displacement components
u_{r}, u_{θ}	displacement components for P- and SV-waves, respectively
\vec{u}	incident vector

U_{R}, U_{θ}	radial displacement components for P - and SV-waves, respectively
$U_{R H} \cdot U_{\text {RV }}$	horizontal and vertical components of displacements with an incident P-wave
$U_{O H}, U_{U V}$	horizontal and vertical components of displacements with an incident SV-wave
$U_{O R}, U_{\theta i}$	rea? and imaginary parts of the displacement component of an SV -wave
$\begin{aligned} & U_{R P P}, U_{R P S}, \\ & U_{\text {OPP }}, U_{O P S} \end{aligned}$	displacement contributions of the reflected rays
x, y, z	system coordinates
$x()$	random variable
α	the Monte Carlo sampling parameter for an incident P-wave
β	Monte Carlo sampling parameter for an incident SV-wave
γ_{i}	ratio of the horizontal distance of the point of reflection to the horizontal distance of the transducer
δ	delta function
Δ	half duration of the source pulse
$\Delta S, \Delta S_{0}$, $\Delta S_{1}, \Delta S_{2}$	cross-sectional area
θ, ϕ	random variables
${ }^{\boldsymbol{i}}$	i-th angle of reflection
λ	Hooke's constant
λ, μ, v	direction numbers of a line
μ	Lamé's constant

$\xi \quad$ angle between two consecutive planes of reflection
$\pi \quad 3.1415927$
$\sigma \quad$ normal stress
$\tau \quad$ time of arrival (normalized)
$\Phi($) joint density function
$\phi_{0}, \phi, \psi \quad$ displacement potentials
$\omega \quad$ radial frequency of waves
$\omega_{i} \quad i-t h$ angle of incidence
$\Omega \quad$ sample space

CHAPTER I

INTRODUCTION

1.1 Literature Survey

In this chapter, the problem is defined with respect to nondestructive testing of materials followed by a review of early research works in the literature. Moreover, both the geometrical ray approach and the Monte Carlo techniques are explained with specific allusion to their applications in fluid and solid acoustics, neutron transport, and radiative heat transfer.

1.1.1 Problem Definition

The structural integrity of some materials can be characterized through the stress waves generated from sources (cracks, growth of defects) in the medium. In order to sense these waves, which are also called acoustic emission, transducers are often located on the surface of the medium. However, since the source is very often of a random nature, the transducer can only pick up such signals after they have gone through many reflections, see for example, Hsu [1] and Fig. 1.1.

In spite of the fact that cracks or defects are located in the material in a random fashion, analytic representations of acoustic emission signals are still based on deterministic functions. This often leads to inaccurate results and grossly limits its exploitation as a

Fig. 1.1 Ray tracing in a bounded solid medium.

1- transducer
0 - point of origin
nondestructive testing technique. Moreover, it is extremely difficult to obtain details of the actual source of the mechanism.

Only recently has attention focused on representing acoustic emission by random processes. Egle $[2,3]$ and Pao et al. $[4,5,6]$ have suggested it might be best to correlate the wave behavior in the material with the observation on the transducer in order to realize the great potential of this technique in understanding mechanical properties of solids. In order to quantitatively analyze the response of the transducer to the source function inside the elastic solid (material), it is essential to simulate the source, identify the most predominant of the body waves, and characterize the stress waves in a probabilistic form.

The present investigation applies a ray-tracing technique coupled to the Monte Carlo method for determining the response at a point on the surface of a bounded elastic body excited by a compressional source. This method is further expanded to include other types of sources and so provides a valuable aid in acoustic emission research.

1.1.2 Survey of Previous Research

Since Lamb's classic paper [7] in 1904 on the propagation of a tremor over the surface of a semi-infinite elastic solid, tremendous efforts have been devoted to the study of the elastic wave motion and the resolving of the consequent complex integrals; see also $[8,9]$.

Bromwich [10], for instance, expressed wave motion in a series of pulses by expanding the formal solution of elastic waves in negative powers of exponentials, a method which was used by Muskat and Pekeris [11,12,13] to obtain formal solutions to elastic wave problems. This method of expansion could be very tedious when solving the more complex but
but interesting problems. Also, in 1919, by representing sinusoidal spherical waves in terms of plane waves, Weyl [14] was able to study the propagation of radio waves generated by a dipole near the flat earth. His method was later extended to arbitrary wave shapes by Poritsky [15].

However, most of these techniques give solutions in a closed form not amenable to numerical calculations, since many parameters introduced can hardly be accounted for. Even after the development of direct methods of inversion of the relevant integrals by Cagniard [16], many investigators, like Lapwood [17], Pekeris et al. [18] and Pinney [19,20], still resorted to different asymptotic techniques. One of these methods often adopted by Pekeris uses plane-wave approximations which assume that the source function is either of a short duration or of high frequency content. In this case like in Lamb's work, Bessel functions in the integral are represented with their asymptotic expressions. In an attempt to give numerical calculations in his work on surface motion due to a point source in a semi-infinite elastic medium, Pinney [19,20], as it was later shown by Pekeris and Longman [12], used a method of evaluation of the integrals which became inaccurate just at the point of interest.

Knofoff, et al. [21] on the other hand adopted a generalized ray approach, a technique which considers only the predominant part of the wave motion near the arrival time. Both normal mode and the generalized-ray methods also required the Bromwich expansion. Besides, the generalized-ray method becomes increasingly inefficient for multireflected rays since, as Pao [4] pointed out, the number of integrals to evaluate increases as $2 m+1$ where m is the number of reflections
of each ray path. This also limits its use in studying long term response.

Another interesting method is a geometrical-ray approach which Chopra [22] used to give a formal solution for a compressional point source in an internal stratum. In the same work, assuming a harmonic source, he represented the potential for a point source of compressional waves by Sommerfeld's integral. Since this integral for a spherical point source can be regarded as a superposition of plane waves [13], he expanded it using Bromwich's method. He later evaluated the displacement corresponding to two of the successive terms in the expansion by the saddle-point approximation. He did conclude, however, that the two methods yielded the same result.

Although the geometric ray has some geometric involvement, it gives a better insight into the mode conversion phenomenon and is applied in this present research work.

1.2 Geometrical-Ray Approach

The geometrical-ray approach for solving wave propagation is an asymptotic approximation valid only in the far field of the source. The technique is well known and has been used extensively in optics and fluid acoustics. In solid acoustics, the geometrical-ray approach has not been as widely used as the more formal generalized-ray methods, summarized by Pao [4] or the Brormich-expansion method (see, for example, Newlands [23], Hong [24,25]).

The major disadvantage of the simple ray-tracing approach is that it cannot account for several near field effects, including conical or head waves, and the generation of surface waves. It is shown in
the later chapters that this approach, when the refraction of mode conversions of waves transmitted into different media are properly accounted for, does yield the correct far-field results for body waves. This geometrical-ray approach, if modified to account for the generation of surface waves, can be used to conipute the response at any point on the surface of a solid bounded by planes.

Given a point source, the direction cosines of a ray, and the defined geometry of the boundary planes, it is possible to determine the point of intersection of the ray and the impinged plane. Because of the mode conversion phenomenon in elastic waves after reflection (see Fig. 1.2), it becomes necessary to pursue two rays: both P - and S waves after reflection. This makes the number of different rays to trace down after a few reflections enormous and, hence, ray tracing in the conventional sense becomes impracticable. This problem is avoided by using the Russian-roulette method - a special form of importancesampling technique whereby functions of less importance are eliminated and the resulting bias reduced by increasing the weight of the remaining function. Thus, in this application, the Russian-roulette method is applied to select one of the reflected rays to continue tracing. This process is continued for a cumulative time $t_{c} \leq t_{\max }$ where $t_{\max }$ is the predetermined time for ending the calculation (see Fig. 1.3).

This process of selecting a ray emanating from the source, weighting according to the source type and tracing that ray as it reflects from the boundaries of the media is repeated many times. Whenever a ray strikes the part of the surface on which the transducer is located, the time of hit is recorded and the displacement components

Fig. 1.2 Plane waves incident upon a stress-free surface.
P_{i} - incident P-waves
S_{i} - incident $S V$-waves
S_{r} - reflected SV-waves
P_{r} - reflected P-waves
e - incident or reflected angle for P-waves
f - incident or reflected angle for SV-waves

Fig. 1.3a. Conventional ray-tracing approach.

Fig. 1.3b. Ray tracing with an application of Russian roulette.
under the transducer are calculated. The cumulative displacement then gives the response of the solid to the source being simulated.

1.3 Monte Carlo Technique

This is a method of statistical trials used for solving problems of computational mathematics [26]. It involves the construction of some random process for the problem at hand and equating its parameters to the required physical quantities in the problem. By calculating the statistical characteristics from the observation of the parameters of the raridom process, those of the physical quantities can also be computed.

This technique has recently received wide application in neutron transport, fluid, and room acoustics $[27,28]$. Haviland et al. [28] proposed it for determining the acoustical pressure-time history in a spatial enclosure by tracing acoustical rays. They used it to calculate the ultimate average pressure in a given rectangular room and found their result to compare reasonably well with known solutions. They have only considered a simple case of reflection instead of complex cases like curved boundaries, cases involving refraction or elastic waves where modes of reflection should be taken into consideration. Stockham [29] and Turner [30] had also extended its application to radiative heat transfer.

1.4 The Main Objective of Research

In light of the above, it was considered best to attack this problem by combining the Monte Carlo method with a geometrical ray tracing technique. Therefore, the following tasks are the objectives
of this research:

1) Simulation of the compressional and the transverse (shear) waves emitting from an impulsive point source. The solid is assumed to be elastic, isotropic, and homogeneous.
2) The study of the response of a bounded elastic solid due to an impulsive compressional point source with specific reference to:
a. An isotropic and homogeneous solid body bounded by six arbitrarily inclined planes. Surfaces are stress free.
b. An isotropic and homogeneous elastic plate with the stress-free surfaces
3) Determination of mode conversion after reflection on a stress-free surface, using the Russian-roulette technique and computation of the displacements for both incident and reflected waves including P-P, P-SV, SV-SV, and SV-P.
4) Development of a computer algorithm for the ray tracing, boundary reflections, and displacement computations.
5) Application of the above methodology to give numerical calculations for:
a. The response of an elastic plate due to an impulsive point source.
b. Response of a plate to a unit normal stress with a square pulse time function applied to the surface of the plate.
6) Analysis of the results, comparison with known existing analytical and experimental results and recommendations for future research.

CHAPTER II

PHYSICS OF THE PROBLEM AND MATHEMATICAL FORMULATION

One of the distinguishing characteristics in the study of elastic waves in a bounded medium is the occurrence of the mode conversion phenomenon whereby two different types of waves are generated after reflection at a free surface. This does account for the relative complexities of its problems as compared to those of either acoustic or electro-magnetic waves. Therefore, due considerations are given to the physics involved when theoretical bases are formulated.

With this understanding in mind, in this chapter, bases for using a Monte Carlo approach for the ray emission from a point source are examined, followed by the Russian-roulette method for selecting the reflected ray, reflection of the plane waves at the free surface, and the curvature due to reflection of waves. Applications to both two- and three-dimensional cases are given.

2.1 Monte Carlo Formulation

In this section, we make use of a random number generator to determine the vector direction of each ray coming from a point source in such a way that it possesses an equal distribution over all directions of a sphere.

Firstly, let us recount some relevant portions of the theory
of probability (see Lindgren [31] and Shooman [32]).
A distribution function is defined as [31] the probability of a random variable $X(\omega)$ induced in a sample space Ω, i.e.,

$$
F(\lambda)=P(X \leq \lambda), F(x)=P(X \leq x)
$$

or

$$
F(q)=P(X \leq q)
$$

and obeying the following axioms of a probability space.
(a) $0 \leq F(x) \leq 1$
(b) $F(-\infty)=0, F(\infty)=1$
(c) $F(x) \leq F(y)$ whenever $x<y$
(d) $\lim F(y)=F(x)$

$$
y \rightarrow x^{+}
$$

A distribution function could be discrete or continuous depending on whether the probability is assigned in discrete amounts at isolated places or 'spread' over an interval of values.

The derivative of a distribution function is called the density function which can be expressed as

$$
\begin{align*}
f(x) & =\frac{d}{d x} F(x)=\frac{d}{d x} P(X \leq x) \\
f(x) d x & =P(X \leq x+d x)-P(x \leq x) \tag{2.2}\\
f(x) d x & =P(x<X<x+d x)
\end{align*}
$$

In the case of a continuous function, the probability distribution can be set by specifying the density function which should satisfy the following properties:

$$
\begin{equation*}
f(x) \geq 0 \tag{2.3}
\end{equation*}
$$

and

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Therefore, the distribution function can be defined as

$$
F(x)=P(x \leq x)=\int_{-\infty}^{x} f(u) d u
$$

From here, it follows that

$$
\begin{equation*}
P(a \leq x<b)=\int_{a}^{b} f(\lambda) d \lambda \tag{2.4}
\end{equation*}
$$

which shows that as a definite integral, a distribution function can be interpreted as an area under a curve.

Similarly, in the case of a multiple random variable, we can define a cumulative distribution function if the joint density function $\Phi(0, \phi)$ satisfies the following conditions:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(0, \psi) \mathrm{d} \theta \mathrm{~d} \psi=1
$$

and

$$
\varphi(0, \phi) \geq 0 \quad \text { for } \quad \begin{array}{r}
-\infty \leq 0 \leq \infty \tag{2.5}\\
-\infty \leq \phi \leq \infty
\end{array}
$$

The random variables \forall, ϕ could be dependent or independent.
If it is assumed that θ and ϕ are two independent random variables, then their density functions can be written as the product of the two marginal density functions.

$$
\begin{equation*}
\phi(\theta, \phi)=g(0) f(\phi) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& g(\theta) d \theta=\left[\int_{\alpha}^{\beta} \varphi(\theta, \phi) d \phi\right] d \theta \\
& f(\phi) d \phi=\left[\int_{\alpha}^{\beta} \Phi(\theta, \phi) d \theta\right] d \phi \tag{2.7}
\end{align*}
$$

and $g(\theta)$ and $f(\phi)$ are the marginal density functions. Hence, the probability (cumulative) distribution functions can be determined as

$$
\begin{equation*}
G(\theta)=\int_{0}^{\theta} g(\theta) d \theta \tag{2.8a}
\end{equation*}
$$

and

$$
\begin{equation*}
F(\phi)=\int_{0}^{\phi} f(\phi) d \phi \tag{2.8b}
\end{equation*}
$$

2.1.1 Ray Emission from a Point Source

In this analysis, the above probability principles are applied for both the three-dimensional and two-dimensional cases. See Turner [30] and Stockham [29] for more details.

A Three-Dimensional Case. Let us assume that a ray emanating from a point source at 0 is isotropic (see Fig. 2.1), i.e., both the cosine of the polar angle, θ, and the aximuthal angle, ψ, are considered uniformly distributed in the interval $(-1,+1)$ and (0.2π), respectively for

$$
\begin{aligned}
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi \leq 2 \pi
\end{aligned}
$$

Since the number of emissions from a point source through a differential area on the surface of a sphere is directly

Fig. 2.! Emission of ray from a point source.

中. .- azimuthal angle
θ - polar angle
r - position vector
0 - point of origin
proportional to the area of the surface, then the number of emissions from a point 0 can be written as

$$
\begin{equation*}
N=\frac{d A^{\prime}}{A}=\frac{r \sin \theta d \phi r d \theta}{4 \pi r^{2}}=\frac{\sin d \phi d \theta}{4 \pi} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& N \text { - total number of emissions } \\
& d A^{\prime} \text { - area of the differential surface } \\
& A \text { - area of the sphere }
\end{aligned}
$$

Since

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin \theta d \theta d \phi}{4 \pi}=1
$$

and

$$
\frac{\sin \theta}{4 \pi} \geq 0 \quad \text { for } \quad 0 \leq 0 \leq \pi \quad \text { and } \quad 0 \leq \phi \leq 2 \pi
$$

then, we can define

$$
\phi(\theta, \phi)=\frac{\sin \theta}{4 \pi}
$$

as the joint probability density function of the random variables 0 and ϕ and determine its associated cumulative distribution function.

Determination of the Marginal Density Functions

and Their Probability Distribution Functions

If we assume that θ and ϕ are two independent random variables, then their joint density function from equation (2.6) above, becomes

$$
\phi(\theta, \phi)=g(\theta) f(\phi)
$$

where

$$
g(\theta) d \theta=\left[\int_{0}^{2 \pi} \phi(0, \phi) d \phi\right] d \theta
$$

and

$$
f(\psi) d \phi=\left[\int_{0}^{\pi} \varphi(\theta, \psi) d 0\right] d \phi
$$

$g(e)$ and $f(\phi)$ are the marginal density functions

$$
g(\theta)=\int_{0}^{2 \pi} \frac{\sin \theta d \psi}{4 \pi}=\frac{\sin \theta}{2}
$$

Similarly,

$$
f(\phi)=\int_{0}^{\pi} \frac{\sin 0}{4 \pi} d \theta
$$

i.e.,

$$
\begin{equation*}
f(\phi)=\frac{1}{2 \pi} \tag{2.11}
\end{equation*}
$$

Therefore, the associated probability distributions can be determined by integrating equations (2.10) and (2.11) over θ and ϕ, respectively.

$$
\begin{aligned}
& G(\theta)=\int_{0}^{\theta} \frac{\sin \theta}{2} d \theta=1 / 2(1-\cos \theta) \\
& F(\phi)=\int_{0}^{\phi} \frac{d \phi}{2 \pi}=\frac{\phi}{2 \pi}
\end{aligned}
$$

where $G(\theta), F(\phi)$ are the probability distributions.
It could be observed that as $\cos \theta$ varies from -1 to +1 ,
$G(\theta)$ varies from 1 to 0 . Therefore, it is appropriate to set
[1-G($\theta)$] which varies in the interval $[0,1]$ equal to a random number $R_{\theta}[0,1]$, say.

Similarly, since $F(\phi)$ varies in the interval $[0,1]$ as ϕ varies from 0 to $2, F(\phi)$ can be equated to a random number R_{ϕ} in the interval [1,0], i.e.,

$$
\begin{align*}
& R_{\theta}=1-G(\theta) \\
& R_{\theta}=1-1 / 2(1-\cos \theta) \\
& R_{\theta}=1 / 2(\cos \theta+1) \\
& R_{\psi}=\frac{\phi}{2 \pi} \tag{2.12}
\end{align*}
$$

The directions of emission can be determined by

$$
\begin{align*}
\cos \theta & =2 R_{\theta}-1 & (-1 \leq \cos \theta \leq+1) \\
\theta & =2 \pi R_{\phi} & (0 \leq \phi \leq 2 \pi) \tag{2.13}
\end{align*}
$$

Hence, any ray emanating from the point, 0 can be represented by a vector,

$$
\begin{equation*}
\vec{r}=\ell \hat{i}+m \hat{j}+n \hat{k} \tag{2.14}
\end{equation*}
$$

where ℓ, m, and n are the direction cosines

$$
\begin{aligned}
& \ell=\cos \phi \sin \theta \\
& m=\sin \phi \sin \theta \\
& n=\cos \theta
\end{aligned}
$$

A Two-Dimensional Case. In this case, the number of emissions is given as (see Fig. 2.2)

Fig. 2.2. Direction of emission -two-dimensional case.

Fig. 2.3. Average cnergy transmission across ΔS with incident shear waves.

$$
N \simeq \frac{A^{\prime}}{A}=\frac{\frac{1}{2} r^{2} d \theta}{\pi \gamma^{2}}=\frac{d \theta}{2 \pi}
$$

Since

$$
\int_{0}^{2 \pi} \frac{d \theta}{2 \pi}=1
$$

and

$$
\frac{1}{2 \pi}>0 \quad \text { for } \quad 0 \leq \theta \leq 1
$$

the density function $f(\theta)$ is taken as $1 / 2 \pi$.
In order to find the distribution function, $G(\theta)$, equation (2.11) is integrated to give

$$
G(\theta)=\int_{0}^{\theta} \frac{d 0}{2 \pi}=\frac{\theta}{2 \pi}
$$

Since $G(\theta)$ varies within the limits $[0,1 / 2]$ as θ varies between $(0 \leq \theta \leq \pi)$ and $G(\theta)$ varies between $[1 / 2,0]$ as θ varies between $(\pi<0<2 \pi)$, we can equate $G(\theta)$ to a random number R which varies between $R_{\theta}(0,1)$, see Fig.

Thus, if R_{0} falls between $\left(0 \leq R_{\theta} \leq 1 / 2\right)$,

$$
\frac{0}{2 \pi}=R_{\theta}
$$

therefore,

$$
\theta=2 \pi R_{\theta}
$$

but if R_{0} falls between $\left(1 / 2<R_{\theta}<1\right)$, the ray is emitted outside the plate.

Therefore, the direction cosines are

$$
\begin{align*}
& \ell=\cos \theta \\
& n=\sin \theta \tag{2.15}
\end{align*}
$$

Table 2.1 shows the summary of the distribution functions and the direction of emission.

2.1.2 Russian Roulette

The Russian-roulette technique is used in this work, as mentioned earlier, to select and trace down the path history of the more important of the two rays produced by each reflection. The frequency of occurrence of the waveform chosen depends on both the nature of the incident ray and the ratio of the energy distribution at the point of reflection. As mentioned in the earlier chapter, the incident ray on reflection at a free surface generates two other rays. Therefore, for energy considerations, we can assume that there is no energy loss at the point of reflection. Achenbach [33,34,35] represented this for incident P -waves as

$$
\begin{equation*}
\left(\frac{A_{1}}{A_{0}}\right)^{2}+\left(\frac{A_{2}}{A_{0}}\right)^{2} \frac{C_{T}}{C_{L}} \frac{\cos f}{\cos e}=1 \tag{2.16}
\end{equation*}
$$

where A_{0}, A_{1}, and A_{2} are the amplitudes of the incident P-wave, reflected P -wave and the reflected $\mathrm{S}-\mathrm{V}$ wave, respectively.
C_{T}, C_{L} are the torsional wave speed and the dilatational wave speed, respectively.
e - angle of incidence for P-waves.
f - reflected angle for $S V$-waves.
Since in this work, the incident angle alternates after reflection depending on the reflected wave chosen, it is essential to derive a similar equation for the incident. shear waves.

Table 2.1. Direction of Emission

CASES	JOINT PROB FUNCTION $\Phi(\theta, \phi)$	MARGINAL DENSITY FUNCTION $g(\theta), f(\phi)$	DISTRIBUTION FUNCTION $G(\theta), F(\phi)$	OIRECTION OF EMISSION
$3-D$	$\Phi=\frac{\sin \theta d \theta d \phi}{4 \pi}$	$g(\theta)=\frac{\sin \theta}{2}$	$G(u)=\frac{1}{2}(1-\cos 0)$	$\cos \theta=2 R_{0}-1$ $(1-\leq \cos \leq+1)$
$2-D$	$f(\theta)=\frac{1}{2 \theta}$			$F(\phi)=\frac{1}{2 \pi}$

Energy Decomposition due to an Incident

Shear Wave

Let us examine a beam of an incident SV-wave of crosssectional area ΔS_{0}. After reflection, it generates both P - and SVwaves of cross-sectional areas ΔS_{2} and ΔS_{1}, respectively. Assuming that the surface is traction free and the energy is conserved after reflection, the energy transmissions across $\Delta \mathrm{S}$ becomes (see Fig. 2.3, page 20).

$$
\begin{equation*}
\left.<P_{T}\right\rangle \text { incident }=\left\langle P_{T}\right\rangle \text { reflected }+\left\langle P_{L}\right\rangle \text { reflected } \tag{2.17}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{1}{2} \mu \frac{W^{2}}{C_{T}}\left(A_{0}\right)^{2} \Delta S_{0}=\frac{1}{2} \mu \frac{W^{2}}{C_{T}}\left(A_{1}\right)^{2} \Delta S_{1}+\frac{1}{2}(\lambda+2 \mu) \frac{W^{2}}{C_{L}}\left(A_{2}\right)^{2} \Delta S_{2} \tag{2.17a}
\end{equation*}
$$

But $\Delta S_{0}=\Delta S_{1}=\Delta S \cos f$ for both the incident and the reflected shear waves and $\Delta S_{p}=\Delta S$ cos e for the reflected P-waves where $f=$ incident or reflected angle for shear waves $\mathrm{e}=$ angle of reflection for P -waves

Therefore, equation (2.17a) becomes

$$
\begin{equation*}
\frac{1}{2} \mu \frac{W^{2}}{C_{T}}\left(A_{0}\right)^{2} \Delta S \cos f=\frac{1}{2} \mu \frac{W^{2}}{C_{T}}\left(A_{1}\right)^{2} \Delta S \cos f+\frac{1}{2}(\lambda+2 \mu) \frac{W^{2}}{C_{L}}\left(A_{2}\right)^{2} \Delta S \cos e \tag{2.17b}
\end{equation*}
$$

Dividing equation (2.17b) through by $\frac{1}{2} \frac{W^{2}}{C_{T}}\left(A_{0}\right)^{2} \Delta S \cos f$ and noting that

$$
(\lambda+2 \mu) / \mu=\left(\frac{C_{L}}{C_{T}}\right)^{2}=k^{2}
$$

we have

$$
\begin{equation*}
\left(\frac{A_{1}}{A_{0}}\right)^{2}+\frac{k \cos e}{\cos f}\left(\frac{A_{2}}{A_{0}}\right)^{2}=1 \tag{2.18}
\end{equation*}
$$

The terms $A_{2} / A_{0}, A_{1} / A_{0}$ are in fact the coefficients of reflections of the reflected P and SV waves, respectively. We would then rewrite the equation as:

$$
\begin{equation*}
\left(R_{S S}\right)^{2}+\frac{k \cos e}{\cos f}\left(R_{S P}\right)^{2}=1 \tag{2.18a}
\end{equation*}
$$

where
$\mathrm{R}_{S P}$ - coefficient of reflection of an incident shear wave
reflected as a dilatational wave.
R_{SS} - coefficient of reflection of an incident shear wave

reflected without a mode conversion.

According to Achenbach [33],

$$
\begin{align*}
& R_{S P}=-\frac{k \sin 4 f}{\sin 2 f \sin 2 e+k^{2} \cos ^{2} 2 f} \tag{2.19a}\\
& R_{S S}=\frac{\sin 2 f \sin 2 e-k^{2} \cos ^{2} 2 f}{\sin 2 f \sin 2 e+k^{2} \cos ^{2} 2 f} \tag{2.19b}
\end{align*}
$$

Similarly, equation (2.16) could be rewritten as

$$
\begin{equation*}
\left(R_{P P}\right)^{2}+\frac{1}{k} \frac{\cos f}{\cos e}\left(R_{P S}\right)^{2}=1 \tag{2.16a}
\end{equation*}
$$

where $R_{P P}, R_{P S}$ are the coefficients of reflection of P-waves reflected as P - and SV -waves, respectively.

$$
\begin{align*}
& R_{P P}=\frac{\sin 2 e \sin 2 f-k^{2} \cos ^{2} 2 f}{\sin 2 e \sin 2 f+k^{2} \cos ^{2} 2 f} \tag{2.20a}\\
& R_{P S}=\frac{2 k \sin 2 e \cos 2 f}{\sin 2 e \sin 2 f+k^{2} \cos ^{2} 2 f} \tag{2.20b}
\end{align*}
$$

For computation purposes, let us put $\cos e=\left(1-k^{2} \sin ^{2} f\right)^{\frac{1}{2}}$ in
equations (2.19a, b).
Therefore, equations (2.17a, b) become

$$
\begin{align*}
& R_{S P}=-\frac{4 \sin f \cos f\left(1-2 \sin ^{2} f\right)}{\left(1-2 \sin ^{2} f\right)^{2}+4 \sin ^{2} f \cos f\left(a^{2}-\sin ^{2} f\right)^{\frac{1}{2}}} \tag{2.21a}\\
& R_{S S}=-\frac{\left(1-\sin ^{2} f\right)^{2}-4 \sin ^{2} f \cos f\left(a^{2}-\sin ^{2} f\right)^{\frac{1}{2}}}{\left(1-\sin ^{2} f\right)^{2}+4 \sin ^{2} f \cos f\left(a^{2}-\sin ^{2} f\right)^{\frac{1}{2}}} \tag{2.21b}
\end{align*}
$$

Similarly, by putting

$$
\begin{aligned}
& \sin f=\sin e / k \\
& \cos f=\left(1-\sin ^{2} e / k^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and noting that $C_{T} / C_{L}=a$, we can write equations (2.20a, b) as

$$
\begin{align*}
& R_{P P}=-\frac{\left(1-2 a^{2} \sin ^{2} e\right)-4 a^{3} \sin ^{2} e \cos e\left(1-a^{2} \sin ^{2} e\right)^{\frac{1}{2}}}{\left(1-2 a^{2} \sin ^{2} e\right)+4 a^{3} \sin ^{2} e \cos e\left(1-a^{2} \sin ^{2} e\right)^{\frac{1}{2}}} \tag{2.22a}\\
& R_{P S}=\frac{4 a \sin e \cos e\left(1-2 a^{2} \sin ^{2} e\right)}{\left(1-2 a^{2} \sin ^{2} e\right)^{2}+4 a^{3} \sin ^{2} e \cos e\left(1-a^{2} \sin ^{2} e\right)^{\frac{1}{2}}} \tag{2.22b}
\end{align*}
$$

e, f are the incident angles for P - and SV-waves, respectively.

2.2 Reflection of Plane Waves at a Stress-Free Surface

In this section, equations are derived for locating the point of reflection and for determining the direction of the ray path after reflection.

Suppose that the equation of a plane is represented as

$$
A_{1} x+B_{1} y+C_{1} z+D=0
$$

where A_{1}, B_{1}, and C_{1} are the direction numbers. Then, the normal vector to the plane is

$$
A_{1} \hat{i}+B_{1} \hat{j}+C_{1} \hat{k}
$$

Therefore, the unit normal vector is

$$
\begin{equation*}
\vec{R}=\frac{A_{1} \hat{i}+B_{1} \hat{j}+C_{1} \hat{k}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}} \tag{2.23}
\end{equation*}
$$

The equation of the straight line incident on the plane with the direction numbers λ, μ, and v from the point $\left(x_{1}, y_{1}, z_{1}\right)$ can be written as

$$
\frac{x-x_{1}}{\lambda}=\frac{y-y_{1}}{\mu}=\frac{z-z_{1}}{\nu}
$$

The unit vector \vec{U} incident on the plane becomes

$$
\begin{equation*}
\vec{u}=\frac{\vec{i}+\mu \vec{j}+v \vec{k}}{\sqrt{\lambda^{2}+\mu^{2}+v^{2}}} \tag{2.24}
\end{equation*}
$$

Having known the incident ray, \vec{u} and the unit normal vector to the plane, \vec{R} then the reflected ray, \vec{V} from Fig. 2.4 can be represented as

$$
\begin{equation*}
\vec{V}=A_{R} \vec{R}+B_{R} \vec{Y} \tag{2.25}
\end{equation*}
$$

where $A_{R}=-\vec{U} \cdot \vec{R}$ and

$$
B_{R}=\frac{\vec{U} \cdot \vec{Y}}{\vec{Y} \cdot \vec{Y}}
$$

But

$$
\begin{equation*}
\vec{Y}=\vec{R} \times(\vec{U} \times \vec{R}) \tag{2.26}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\vec{V}=-(\vec{U} \cdot \vec{R}) \vec{R}+\frac{\vec{U} \cdot(\vec{R} \times \vec{U} \times \vec{R}) \vec{Y}}{\vec{Y} \cdot \vec{Y}} \tag{2.27}
\end{equation*}
$$

Fig. 2.4. Direction of the reflected ray.
(a) P-wãve is incident and

SV-wave is reflected
(b) P-wave is incident and reflected

For a plane case,

$$
\begin{aligned}
& \vec{R}=(\xi, n) \\
& \vec{U}=(\mu, v)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\vec{Y} & =\vec{R} \times(\vec{U} \times \vec{R}) \\
\therefore \quad \vec{Y} & =\left[\mu(n)^{2}-v(n)(\xi)\right] \hat{j}-\left[\mu(\xi)(n)+v(\xi)^{2}\right] \hat{k}
\end{aligned}
$$

But the vector R has no component in the j direction, i.e.,
$\vec{R}=(0, n)$

$$
\therefore \quad \vec{y}=\mu \eta^{2} \hat{j}
$$

Hence,

$$
\begin{aligned}
B_{R} & =\frac{(\mu \hat{j}+v \hat{k}) \cdot \mu(n)^{2} j}{\left[\mu(n)^{2}\right]^{2}}=\frac{1}{(n)^{2}} \\
\vec{V} & =(-\vec{U} \cdot \vec{R}) \vec{R}+\frac{\mu(n)^{2} \hat{j}}{(n)^{2}}
\end{aligned}
$$

But $n=-1$ for the upper plane.

$$
\begin{equation*}
\therefore \vec{v}=\mu \hat{j}-\hat{v} \tag{2.28}
\end{equation*}
$$

2.2.1 Point of Intersection

We know from elementary geometry that the point of intersection between a plane

$$
A_{i} x+B_{i} y+C_{i} z+D_{i}=0
$$

and the line

$$
\begin{aligned}
& x=x^{\prime}+\lambda r_{0} \\
& y=y^{\prime}+\mu r_{0} \\
& z=z^{\prime}+\nu r_{0}
\end{aligned}
$$

could be obtained by substituting for x, y, and z in the equation of the former, i.e., $A_{i}\left(x^{\prime}+\lambda r_{0}\right)+B_{i}\left(y^{\prime}+\mu r_{0}\right)+C_{i}\left(z^{\prime}+\nu r_{0}\right)+D_{i}=0$.
From here

$$
\begin{equation*}
r_{0}=-\frac{A_{i} x^{\prime}+B_{i} y^{\prime}+C_{i} z^{\prime}+D_{i}}{A_{i} \lambda+B_{i}{ }^{\mu}+C_{i}} \tag{2.29}
\end{equation*}
$$

Therefore, the point of impingement becomes

$$
\begin{align*}
& x=x^{\prime}+\lambda r_{0} \\
& y=y^{\prime}+\mu r_{0} \tag{2.30}\\
& z=z^{\prime}+\nu r_{0}
\end{align*}
$$

It is worth noting here that since \vec{U} is a directed ray, r_{0} is in fact the radial distance from the origin to the point of impingement. This fact is later used as a criterion for finding which of the six possible inclined planes is impinged by the ray.

2.3 Wavefront Curvature Due to Reflection of

P-SV Wave at a Stress-Free Surface
The solution to the problem of reflection in an elastic homogeneous isotropic semi-infinite medium has been studied by Chopra [22]. In his work, he used harmonic point source and treated the problem by using the Sommerfield technique of deforming the contours and approximating the branch line by saddle-point approximation. He has demonstrated that the ray-theory approach gives the same result without the complexity of the former.

Therefore, the application of the ray-theory approximation is used in this section to calculate the displacements of an impulsive P-SV wave reflected from an elastic isotropic plane and the result
is extended to the form applicable for our purpose.
For an isotropic solid body, the equation of the wave propagation can be represented as

$$
\begin{equation*}
(\lambda+u) \nabla \nabla \cdot \vec{u}+\mu \nabla \vec{u}+\overrightarrow{P_{f}}=\rho \vec{u} \tag{2.31}
\end{equation*}
$$

where

$$
\begin{aligned}
& \vec{u} \text { - displacement vector } \\
& \rho \text { - density of the medium } \\
& \mu, \lambda \text { - Lamé's constants for the material } \\
& \vec{f} \text { - body force vector }
\end{aligned}
$$

For the case of an impulsive dilatational point source with axial symmetry about the z-axis, the equation can be reduced in cylindrical coordinates to (see [22,36,37]):

$$
\begin{aligned}
& C^{2} \nabla^{2} \phi+f_{\phi}=\ddot{\phi} \\
& C^{2} \nabla^{2} \psi+f_{\psi}=\ddot{\psi}
\end{aligned}
$$

where

$$
\begin{aligned}
& \nabla^{2}= \frac{\partial^{2}}{\partial r^{2}}+\frac{l}{r} \frac{\partial}{\partial r}+\frac{\partial}{\partial z^{2}} \\
& f_{\phi}= \delta\left(z-z_{0}\right) \delta(r) H\left(R-C_{L} t\right) \\
& f_{\psi}= 0 \\
& \psi, \psi-\text { are dilatational and shear wave displacement } \\
& \text { potentials, respectively. } \\
& u= \frac{\partial \psi}{\partial r}-\frac{\partial \psi}{\partial z \quad, \quad w=\frac{\partial \psi}{\partial z}+\frac{\partial \psi}{\partial r}+\frac{\psi}{r}} \\
& u, w=\text { displacement components }
\end{aligned}
$$

2.3.1 Displacement Amplitude

Let us suppose that the displacement potential of a ray emanating from a point source, 0 (see Fig. 2.5) is represented as

$$
\begin{equation*}
\psi_{0}=\frac{1}{R} H\left(R-C_{L} t\right) \tag{2.32}
\end{equation*}
$$

$H(t)$ - heaviside unit function
R - total distance from point, 0 to the point of impingement
C_{L} - velocity of dilatation waves
t - time of arrival
At point A, the intersection of the ray and the plane boundary, the displacement due to the wave is

$$
\frac{\partial \Phi_{0}}{\partial R}=\frac{1}{R} \delta\left(R-C_{L} t\right)-\frac{1}{R^{2}} H\left(R-C_{L} t\right)
$$

If it is assumed that the distance $O A$ is very large as compared with the wavelength of the waves, we can then assume that the term $1 / R^{2}$ tends to zero. Therefore,

$$
\frac{\partial \Phi_{0}}{\partial R}=\frac{1}{R} \delta\left(R_{1}-C_{L} t\right)
$$

where R_{1} is the distance from the point 0 to the point of intersection of the ray and the first plane. Therefore, the amplitude of the wave at A is given as

$$
\begin{equation*}
A_{A}=\frac{1}{R_{1}} \tag{2.33}
\end{equation*}
$$

The displacement amplitude at A after reflection can be gotten by multiplying equation (2.33) by the appropriate coefficient of reflection.

The reflection at the free surface is treated as a plane wave problem. The respective displacement amplitudes of the dilatational

Fig. 2.5a. P-wave emitted from a point source.

Fig. 2.5b. Mode conversion and the imaginary point source - P-SV waves.
and the equivoluminal waves are

$$
\begin{align*}
& A_{A P P}=A_{A} R_{P P} \tag{2.34a}\\
& A_{A P S}=A_{A} R_{P S} \tag{2.34b}
\end{align*}
$$

where
$A_{\text {APP }}$ - displacement amplitude of the reflected P-P waves at point A.

A APS - displacement amplitude of reflected P-SV waves at point A.
$R_{P P}, R_{P S}$ - corresponding coefficients of reflection, see equations (2.22a, b)

Therefore, it may be possible to find the displacement amplitude at a point, E (see Fig. 2.5), once the amplitude at point A has been determined. In other words, any subsequent amplitude can be written as

$$
\begin{equation*}
A_{E P S}=K^{1 / 2} A_{A} R_{P S} \tag{2.35}
\end{equation*}
$$

where K is the curvature factor which is the subject matter of the next section.

2.3.2 Wavefront Curvature due to Reflection

If two close incident P rays, inclined at an angle de, and originating at the same point, 0 are examined, it can be observed that the reflected rays appear to have originated from the point 0_{1}, instead of 0; see also [38] and Bremmer [39].

Suppose there is a mode conversion after reflection, i.e., the P-waves are reflected as SV-waves (see Fig. 2.6). From geometry (see [40,41])

Fig. 2.6. Displacement of the P-SV waves: geometrical derivation
0 -real point source
0_{1}-apparent point source
h_{1}-distance of the apparent point source from the horizontal plane
h-distance of the true point source from the horizontal plane
e-incident angle of the P-waves
f-reflected angle of the S-waves

$$
R_{1} \text { de } \sec e=R^{\prime} d f \sec f
$$

But

$$
R_{1}=h \sec e
$$

and

$$
R^{\prime}=h_{p} \sec f
$$

where

> e - incident angle
f - reflected angle

$$
\begin{equation*}
\frac{d f}{d e}=\frac{h \sec ^{2} e}{h_{1} \sec ^{2} f} \tag{2.36}
\end{equation*}
$$

From Snell's law

$$
\begin{equation*}
C_{T} \sin e=C_{L} \sin f \tag{2.37}
\end{equation*}
$$

By differentiating equation (2.37), we have

$$
\begin{equation*}
\frac{d f}{d e}=\frac{C_{L} \cos e}{C_{T} \cos f}=\frac{\sin f \cos e}{\sin e \cos f} \tag{2.38}
\end{equation*}
$$

By combining equations (2.36) and (2.38), we arrive at

$$
\begin{equation*}
h_{1}=\frac{h \cos ^{3} f \sin e}{\sin f \cos ^{3} e} \tag{2.39}
\end{equation*}
$$

When the incident angle, e and reflected angle, f are equal, i.e., a case of PP-waves, then

$$
\begin{equation*}
h_{1}=h \tag{2.39a}
\end{equation*}
$$

If the area $\mathrm{O}_{1} \mathrm{EF}$ is rotated about the z-axis, it could be seen that the same quantity of energy passes through the areas of both surfaces generated, $A B C D$ and EFGH per unit time.

Therefore, the amplitudes in the ray P-SV of A and E after reflection, are in the limiting ratio of the square roots of their areas.

$$
A_{E P S}=\left(1 i m \frac{\text { area ABCD }}{\text { area EFGH }}\right)^{\frac{1}{2}} A_{\text {APS }}
$$

where $A_{E P S}$ - amplitude of reflected P-SV waves at the point E. Therefore,

$$
\begin{aligned}
A_{E P S} & =\left[\frac{\left(0_{1} A\right)(S A)}{\left(0_{1} E\right)(P E)}\right]^{\frac{1}{2}} A_{A P S} \\
& =\left[\frac{h_{1} \sec f R_{1} \sin e d f d x}{\left(h_{1} \sec f+R_{2}\right)\left(R_{1} \sin e+R_{2} \sin f\right) d f d x}\right]^{\frac{1}{2}} A_{\text {APS }} \\
& =K^{\frac{1}{2}} A_{A P S} .
\end{aligned}
$$

where

$$
\begin{aligned}
& K=\frac{h_{1} \sec f R_{1} \sin e}{\left(h_{1} \sec f+R_{2}\right)\left(R_{1} \sin e+R_{2} \sin f\right)} \\
& K=\text { the wavefront curvature factor }
\end{aligned}
$$

By dividing numerator and denominator of equation (2.40) by $\sin f$, we can rewrite K as

$$
K=\frac{h_{1} \sec f \frac{C_{L}}{C_{T}} R_{1}}{\left(n_{1} \sec f+R_{2}\right)\left(\frac{C_{L}}{C_{T}} R_{1}+R_{2}\right)}
$$

If we write,

$$
\begin{aligned}
& R_{1}^{\prime}=h_{1} \sec f \\
& R_{1}^{\prime \prime}=C_{L} / C_{T} R_{1}
\end{aligned}
$$

then

$$
\begin{equation*}
K=\frac{R_{1} R_{1}^{\prime \prime}}{\left(R_{1}^{\prime}+R_{2}\right)\left(R_{1}^{\prime \prime}+R_{2}\right)} \tag{2.40a}
\end{equation*}
$$

For a P-P wave,

$$
R_{1}^{\prime}=R_{1}^{\prime \prime}=R_{1}
$$

Therefore,

$$
\begin{equation*}
k=\left(\frac{R_{1}}{R_{1}+R_{2}}\right)^{2} \tag{2.40b}
\end{equation*}
$$

It is easily seen that the curvature factor attains its maximum value when we have a direct hit (or a case of zero reflection). In that case, R^{2} is zero in both equations (2.40a,b).

2.3.3 Wavefront Curvature for Multiple Reflected Rays

In the case of multiple reflected rays, the curvature factor has the same form as the equation (2.40) above with the only difference that in addition to the radial distance R_{2}, other distances like R_{3}, R_{4}, and so on, are present in equation (2.40) as well.

Let us examine the expression for K for a PSP wave, a case of a double reflected ray (see Fig. 2.7a). From the figure

$$
\begin{align*}
& K_{2}=\left(\frac{0_{1} A \times S A}{0_{1} E \times P E}\right)\left(\frac{0_{2} E \times P E}{0_{2} M \times S M}\right) \\
&= \frac{0_{1} A \times S A \times 0_{2} E}{0_{1} E \times 0_{2} M \times S M}=\frac{0_{1} A \times 0_{2} E \times S A}{0_{1} E \times 0_{2} M \times S M} \\
&=\left(h_{1} \sec f\right)\left(h_{2} \sec e\right)\left(R_{1} \sin e\right) \tag{2.41}\\
&\left(h_{1} \sec f+R_{2}\right)\left(h_{2} \sec e+R_{3}\right)\left(R_{1} \sin e+R_{2} \sin f+R_{3} \sin e\right)
\end{align*}
$$

The above equation is similar in form to equation (2.40).
Similarly, for a PSPS wave with triple reflections, the expression for the wave curvature becomes from Fig. 2.7b,

Fig. 2.7a. Mode conversion at a free surface.
(a) PSP waves

Fig. 2.7b. Mocie coaversion at a free surface.
(b) PSPS waves

$$
\begin{equation*}
K_{3}=\gamma_{3} \frac{h_{2} \sec f h_{2} \sec e h_{3} \sec f}{\left(h_{1} \sec f+R_{2}\right)\left(h_{2} \sec e+R_{3}\right)\left(h_{3} \sec f+R_{4}\right)} \tag{2.42}
\end{equation*}
$$

where
$\gamma_{3}=\frac{R_{1} \sin e}{R_{1} \sin e+R_{2} \sin f+R_{3} \sin e+R_{4} \sin f}$
γ - the ratio of the horizontal distance of the first point of reflection from the source to the horizontal distance of the transducer (receiver) from the source (see Fig. 2.7).

In general for a two-dimensional case, the curvature factor can be written by induction as

$$
\begin{equation*}
K_{i}=\frac{{ }_{\gamma_{i}}{ }_{i=1}^{n} h_{i=1}^{\pi}\left(h_{i} \sec \theta_{i}\right.}{\left.\sec _{i}+R_{i+1}\right)} \tag{2.43}
\end{equation*}
$$

and

θ_{i} - the i-th angle of reflection $0_{i}=\left[\begin{array}{l}\text { e-if the reflected ray is a P-wave } \\ f-\text { if the reflected ray is an S-V wave }\end{array}\right.$ h_{i} - the perpendicular distance from the $i-t h$ imaginary (apparent) source to the i-th reflecting plane ${ }^{\omega} 1$ - the incident angle at the point of first reflection

$$
h_{i}=\frac{\sin \omega_{i} \cos ^{3} \theta_{i}}{\sin \theta_{i} \cos ^{3} \omega_{i}} \quad\left(h_{i-1}+R_{i} \cos \omega_{i}\right) \quad i=2, \ldots, n
$$

$$
\begin{aligned}
\omega_{\mathrm{i}} & =\left[\begin{array}{l}
e-\text { if the incident ray is a P-wave } \\
\mathrm{f}-\text { if the incident ray is an SV-wave }
\end{array}\right. \\
\mathrm{n} & =\text { number of reflections }
\end{aligned}
$$

When there is no reflection, $h_{i}=0$.

$$
\begin{aligned}
& h_{1} \text { is as given in equation (2.39) } \\
& h_{2}=\frac{\sin \omega_{2} \cos ^{3} \theta_{2}}{\sin \theta_{2} \cos ^{3} \omega_{2}} \quad\left(h_{1}+R_{2} \cos \omega_{2}\right)
\end{aligned}
$$

The above expression for K is generally true for both reflection and refraction of P and $S-V$ waves on the plate provided the successive planes of reflection are the same or parallel.

Therefore, the amplitude of displacement at a point on the plate in general becomes

$$
\begin{equation*}
A_{i}=A_{A_{i=1}} \sum_{i}^{n} K^{\frac{1}{2}} R_{A P P_{i}} \tag{2.44}
\end{equation*}
$$

where

$$
R_{A P P_{i}}=R_{P P}, R_{P S}, R_{S P} \text {, or } R_{S S}
$$

depending on the waveform of the chosen ray at the i-th point of reflection.

2.3.4 Wavefront Curvature due to Reflection:
 A Three-Dimensional Case

It is interesting to note that the two curvatures formed as a result of the mode conversion at the reflecting surface, can be characterized by the variables: the dilatational wave speed, C_{L}, equivoluminal wave speed, C_{T} and the radial distances, R_{i}. When there is no mode
conversion, the radii of curvature can be determined by the radial distances (see equation (2.40b) for the P-P waves). These two curves form an orthogonal set with one directly on the plane of reflection while the other is perpendicular to it.

In order to facilitate our analysis further, let us examine in detail the two variables R_{j}^{\prime} and $R_{j}^{\prime \prime}$. Let us consider the reflection of an incident ray of $\mathrm{P}-\mathrm{P}$ waves (see Fig. 2.8). It can be easily observed that

$$
R_{1}^{\prime \prime} \sin f=R_{1} \sin e
$$

Therefore,

$$
\begin{equation*}
R_{1}^{\prime \prime}=\frac{C_{L}}{C_{T}} R_{1} \tag{2.45a}
\end{equation*}
$$

i.e., $R_{p}^{\prime \prime}=g_{p}\left(R_{p}\right)$. Similarly, from equation (2.40a), we see that

$$
\mathrm{R}_{1}^{\prime}=\mathrm{h}_{1} \sec \mathrm{f}
$$

By virtue of equation (2.39)

$$
R_{j}^{\prime}=\frac{h \cos ^{3} f \sin e}{\sin f \cos ^{3} e} \sec f
$$

But $h=R_{1} \cos e$, therefore,

$$
\begin{align*}
R_{j}^{\prime} & =R_{1} \frac{\cos ^{2} f \sin e}{\sin f \cos ^{2} e} \\
& =R_{1} \frac{\cos ^{2} f}{\cos ^{2} e} \tag{2.45b}
\end{align*}
$$

where $k=C_{L} / C_{T}$. Equations (2.45a, b) show that both R_{j}^{\prime} and $R_{j}^{\prime \prime}$ are functions of the radial distance, R_{1}, the incident angle e, reflected angle f, and k. In the general case where the bounding planes are inclined, a

Fig. 2.8. Curvature due to reflection.
(a) Location of R ${ }_{1}^{\prime \prime}$
(b) Rotation about z-axis
situation may arise where we have more than one reflection and the consecutive planes of reflection are also inclined. In this regard, it is essential to map the curvature into the subsequent plane of reflection before calculating the curvature factor. See for instance Fig. 2.9.

Let us assume that these lines of curvature represent parametric lines, U and V. Then, their directions at a point constitute the principal directions at that point (see $[42,43]$ and Fig. 2.10).

Therefore, the principal curvatures at the subsequent plane of reflection which is inclined at an angle, ξ to the former can be found by using Euler's equation, as

$$
\begin{align*}
& \frac{1}{r_{1}}=\frac{\cos ^{2} \xi}{R_{\text {eff }}^{1}}+\frac{\sin ^{2} \xi}{R_{\text {eff }}^{11}} \tag{2.46a}\\
& \frac{1}{r_{2}}=\frac{\cos ^{2}(\xi+\pi / 2)}{R_{\text {eff }}^{1}}+\frac{\sin ^{2}(\xi+\pi / 2)}{R_{\text {eff }}^{11}} \tag{2.46b}
\end{align*}
$$

where $R_{e f f}^{\prime}, R_{e f f}^{\prime \prime}$ are the corresponding radii of curvature.

$$
\begin{aligned}
R_{\text {eff }}^{\prime} & =k R_{1} / \gamma_{j} \\
R_{\text {eff }}^{\prime \prime} & =\sum_{i=1}^{n}\left(h \sec \theta_{i}+R_{i+1}\right) \\
\gamma_{i} & =\frac{R_{1} \sin \omega_{1}}{R_{1} \sin \omega_{1}+\sum_{i=1}^{n} R_{i+1} \sin \theta_{i}}
\end{aligned}
$$

From the above equations, it thus becomes apparent that the curvatures only switch positions when the consecutive planes of reflection are inclined at an angle of 90° to each other. Furthermore, when

Fig. 2.9. Inclined planes of reflection.
π_{1}.- initial plane of reflection
π_{2} - subsequent plane of reflection
\vec{n}_{1} - the normal to the plane π_{1}
\vec{n}_{2} - the normal to the plane π_{2}
$\mathrm{u}=\mathrm{cons} \tan t$

(a)

(b)

Fig. 2.10. Lines of curvature.
(a) Principal normai curvatures
(b) Normal curvature in an arbitrary direction
the planes of reflections are parallel, or coplanar

$$
r_{1}=R_{e f f}^{\prime}
$$

and

$$
r_{2}=R_{e f f}^{\prime \prime}
$$

In general,

$$
k_{i}=\frac{\gamma_{i}^{n} \sum_{i=1}^{n} h_{i} \sec \theta_{i}}{r_{1}}
$$

It is easily seen that once the radial distances are calculated, the radii of curvature and hence the curvature factor are determined, we can calculate the displacement amplitude as mentioned above by "marching forward" and considering both the respective contributions at every point of reflection and the nature of the waves.

CHAPTER III

COMPUTATION ALGORITHM AND NUMERICAL EXAMPLES

In the last chapter, some theoretical cases were considered and the conditions under which they could be utilized were given. In this chapter, that discussion will be supplemented with the development of a computer algorithm for the tracing of the rays and the reflections at the boundary as well as the computation of the displacements.

Finally, numerical examples are given with specific references to the elastic waves in the plate due respectively to an impulsive point source and a point force acting normally to the free surface with a square pulse time function.

3.1 Computation Algorithm

For this work, three models were considered:
a) The first model defines a solid metal with six inclined bounding planes using the direction numbers of the bounding planes, A_{i}, B_{i}, C_{i}. The wave speeds and other elastic properties are taken with respect to iron [44]. The surfaces are stress free.
b) The second one defines a two-dimensional plate with stress-free boundaries using the coordinates of the edges. The force is an impulsive P-wave.
c) The third model also defines a two-dimensional plate using
the coordinates of the edges. The forces are due to a unit normal stress acting at the free surface.

For the first two cases, a ray is generated at a point $(0,0)$ within the material, and the vector direction of the ray is determined using the Monte Carlo sampling technique having the same distributions in all directions as discussed in the earlier chapters. Because the boundaries are inclined to one another, the ray can possibly hit all the planes within or outside the solid. For our purpose, the point of impingement should occur within the specimen. The above problem is peculiar to the three-dimensional case only since in the plate problem, the two surfaces (upper and bottom surfaces) are parallel and so the ray will always hit the boundaries from within the plate.

This problem is avoided by using the parameter, r_{0}, expressed by equation (2.29) in the last chapter and noting that r_{0} should be positive i.e., $r_{0}>0$. This parameter is calculated for each of the six possible planes (see subroutine UI in the Appendix). The smallest of all the $r_{0}{ }^{-}$ values gives the shortest radial distance either from the origin to the first pierce point or between any two consecutive points of reflection.

The ray is then tested to determine whether it hits the transducer the base of which is defined within $\pm 1 \mathrm{~mm}$ from its location. If the ray hits the test cell, the amplitude of displacement is calculated and recorded by the subroutine AMPLCO and another ray is again generated at the point source for the next trial. Figure 3.1 shows a ray with a direct hit and a double reflected ray hitting the test cell.

But, if on the other hand no hit is recorded, the energy ratios of the reflected rays to the incident ray are calculated by the

Fig. 3.1. Direct ray and a single reflected waveform.

Fig. 3.2 Monte Carlo decision variables.
(a) For incident P-wave
(b) For incident SV-wave
subroutine ERATIO. Then the Russian-roulette test is conducted to choose the reflected wave at the surface. As mentioned earlier, every ray incident at a free surface generates two reflected rays - the compressional wave and the shear wave. The frequency of occurrence of the reflected ray chosen depends on the mode of the incident ray and the random number generated.

For instance, if the incident ray is a P-wave (see Fig. 3.2), then the energy ratio of the reflected P -wave, a is used as a sampling parameter in the Monte Carlo operation, i.e., if

$$
0<R_{\theta} \leq \alpha \text { - the reflected } P \text {-wave is chosen, }
$$

but if

$$
\alpha<R_{\theta} \leq 1 \text {, the reflected shear wave is chosen }
$$

where R_{θ} is the random number generated. The same is true in the case of an incident shear wave where β, the energy ratio of the reflected shear wave is utilized as the sampling parameter (see the subroutine CHOREF).

Finally, once we have chosen one of the reflected rays and calculated its angle of reflection, we can then determine its direction using the transformation matrix, equation (2.27). See the subroutine REFLEC in the appendix.

Then this ray becomes the incident ray to any subsequent reflecting surface. The tracing process continues until either the maximum time for the simulation, $T_{\text {max }}$ is reached or the ray passes the range where it no longer contributes to the response at the point of interest.

Unlike cases (a) and (b) in which only the P-waves are emitted,
both P-waves and $S V$-waves are emitted in case (c). Such difference in the waveform enitted is accounted for in the subroutine UI by introducing an additional Monte Carlo operation for case (c) to choose the mode of the waves to be emitted. Moreover, the initial aniplitude is calculated for case (c) by an additional subroutine UTHETA.

3.2 Numerical Calculation

In this section, the above theory is used to give numerical calculations for finding the response of a plate to a point source compressional wave and the vibration of a plate due to a normal point load. For the two cases, the thickness of the plate is 2 h , the wave speeds for irrotational and equipotential waves are C_{L} and C_{T}, respectively.

3.2.1 Response of a Plate to a Compressional Point

 Source: Numerical CalculationsFor the purpose of the calculation, the following material constants are given:

```
\(C_{L}=5.1 \mathrm{~mm} / \mu \mathrm{sec} \quad C_{T}=3.05 \mathrm{~mm} / \mu \mathrm{sec}\)
\(2 h=30 \mathrm{~mm}\)
```

The plate material is iron and it is assumed to be elastic, isotropic and homogeneous.

An impulsive force is located in the plate at the point, $0(0,0)$ and the transducer is placed at three different locations: $r=2 ; r=5$; $r=10$ at the upper surface of the plate (see Fig. 3.3). The parameter, r is normalized with respect to $2 h$, the thickness of the plate; $r=A Y / 2 h$; AY is the horizontal distance of the receiver.

There are many different rays which can possibly hit the

Fig. 3.3. Ray paths and the locations of the receiver. Source is at poir.t $(0,0), r=A Y / 2 h$.
receptor point; these rays range from a P-wave with a direct hit to a multiple reflected ray, like PS, PSP, PSPP, and so on. These rays do arrive at the receptor point at different times. See Tables 3.1 and 3.2 for the arrival times for the case with $r=2, r=5$, and $r=10$.

Since the ray directions are randomly sampled with the angle 0 varying within the interval [$0,2 \pi$], many rays do repeat with the same path history. To register only the first of the ray hits with the same path history and eliminating the others, the following binary expression is used:

$$
\begin{equation*}
I B A=N \sum_{j=1}^{n} 2^{j+1}+N N \times 2^{20} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& n \text { - the number of reflections } \\
& \text { IBA - unique number } \\
& N=\left[\begin{array}{l}
0, \text { if the mode of the ray is } P \\
1, \text { if the mode is } S V
\end{array}\right. \\
& N N=\left[\begin{array}{l}
0, \\
n+1,
\end{array}\right] \text { if the mode of the ray is } S V \\
&
\end{aligned}
$$

The source function used in this investigation is represented by a Heaviside unit function. The displacement is then convoluted with the time function of the parabolic ramp type resulting in a saw tooth shape solution (see Pekeris et al. [18] and Fig. 3.4).

The minimum arrival times are normalized with respect to the time it takes the equivoluminal wave S, to travel across the depth of the plate, $2 h$, i.e.,

$$
r=t / t_{0}
$$

Table 3.1. Arrival Time ($\tau=\mathrm{t}_{\mathrm{T}} / 2 \mathrm{~h}$) Dilatation Point Source

$r=2$		$r=2$	
Wave form	Arrival Time, 1	Waveform	Arrival Time,
P	1.22	PS ${ }^{2}$ PS	4.2407
P^{2}	1.5	P^{3} SPSP	4.333
P^{3}	1.9	P SPS	4.346
PS	2.04 2.049	PS ${ }^{2}$ PSP	$\begin{aligned} & 4.7673 \\ & 4.77 \end{aligned}$
PS	2.055 2.067	PS ${ }^{2} \mathrm{p}^{4}$	4.891 4.901
	2.373 2.376	PS ${ }^{4} \mathrm{P}$	$\begin{aligned} & 5.199 \\ & 5.201 \end{aligned}$
PSP	2.381 2.393	P10	5.803
	2.399	pgs	6.2158
P^{4}	2.406	$\mathrm{P}^{4} \mathrm{~S}{ }^{4}$	6.286
$\mathrm{P}^{2} \mathrm{SP}$	$\begin{aligned} & 2.84 \\ & 2.852 \end{aligned}$	Pli	6.392
		$\mathrm{P}^{3} \mathrm{~S}^{2} \mathrm{P}^{5}$	6.619
p^{5}	2.94	PS ${ }^{4}{ }^{2}$ S	6.712
PSPS	3.292 3.30	$p^{3} S^{3} p^{4}$	7.03
(PSSP)	3.303	$\mathrm{P}^{2} \mathrm{~S}^{6}$	7.125
(PPSS)	3.306	$p^{2} S^{2} p^{4} S^{2}$	7.441
		P13	7.571
P ${ }^{3} \mathrm{SP}$	$\begin{aligned} & 3.363 \\ & 3.375 \end{aligned}$		
P6	3.50		
$\mathrm{P}^{2} \mathrm{~S}^{2}=\mathrm{P}$	$\begin{aligned} & 3.795 \\ & 3.803 \end{aligned}$		
P^{7}	4.065		

Table 3.2. Arrival Time ($\tau=\mathrm{tC}_{\mathrm{T}} / 2 \mathrm{~h}$) Dilatation Point Source

$r=5$		$r=10$	
Waveform	Arrival Tine,	Waveform	Arrival Time,
P	2.98	P	6.0
PS	3.82	PS	6.8
PSP	$\begin{aligned} & 3.92 \\ & 3.94 \end{aligned}$	PSPS	7.64 7.65
$\mathrm{p}^{2} \mathrm{~S}^{2}$	4.78		7.67
P3 ${ }^{2}{ }^{2}$	5.05	PSPSP	7.79
P3S 3	5.93		
P4S ${ }^{3}$	$\begin{aligned} & 6.3 \\ & 6.32 \end{aligned}$		
$\mathrm{P}^{4} \mathrm{~S}^{4}$	7.21		
P5 S^{4}	7.68		
$\mathrm{P}^{7} \mathrm{~S}^{3}$	7.72		
$\mathrm{P}^{9} \mathrm{~S}^{2}$	7.82		
P4 ${ }^{5}$	8.14		
Pbs ${ }^{5}$	8.62		
P7 ${ }^{4}$	8.67		
$p^{8} S^{5}$	9.12		

Fig. 3.4. Time function $[\Delta=f(\tau)]$.
(a) Quàdratic pulse
(b) Saw-tooth shape function
2Δ is the measure of the sharpness of the pulse
where

$$
t_{0}=2 h / C_{T}
$$

The wave field consists of many waveforms having different segments. The direct P-wave which hits the transducer directly from the point of dilatation has only one segment. PP and PS, which are reflected once, consist of two segments. When the receptor is located at the upper surface of the plate, such reflection takes place only at the lower surface. Multiple reflected waves like PSP, PPS do arrive at the transducer after two reflections: first at the upper surface and then at the lower surface of the plate. These multiple reflected waves can be grouped in accordance with the number of P and S wave modes they contain. For instance, PSP and PPS do have P and S wave modes in the ratio of $2: 1$ though in different combinations. They do have the same time history and they arrive at the transducer simultaneously. Contributions of such waves are summed together when computing the amplitude at the point of interest. Belonging to this class of waves are the PSPS, PSSP, and $\mathrm{P}^{2} \mathrm{~S}^{2}$ which form another group.

Because of the fact that a hit is considered to occur if the ray falls within $\pm 1 \mathrm{~mm}$ of the actual location of the transducer, the arrival time of some waveforms are spread within certain ranges. Typical of these is the wavelet PSP (see Fig. 3.5 and Table 3.1). In such cases, it might be possible for the waveform close to them to arrive with them at the target almost simultaneously. Notably, the arrival time of the PSP waves from the table ranges from 2.3728 t to 2.3994 while that of the four segmented wave p^{4} is $2.406 i$. In such cases, their

Fig. 3.5. Reflections of the PSP waves due to:
a) Dilatational force
b) Linit normal stress

Table 3.3. Peaks of the Displacement Field $(r=2)$ Point of Dilatation $(0,0)$

Arrival Time, r	$\|c\|$ Amplitude	
	0.972×10^{-2}	2.81×10^{-2}
	-0.024	0.0369
2.01	0.0191	0.182
2.13	-7.68	2.65
2.48	1.51	1.3
2.95	-0.969	-0.558
3.05	0.286	0.0472
3.40	0.0202	1.82
3.47	0.804	0.708
3.59	-0.263	-0.113
3.89	0.15	-0.654
4.02	-0.644	-0.053
4.16	0.246	0.090
4.57	0.514	-0.17
4.74	-0.253	-0.024
4.86	0.199	$-0.4-41$
5.15	-0.433	0.0241

Table 3.4. Peaks of the Displacement Field $(r=5)$ Point of Dilatation (0,0)

Arrival Time, τ	Amplitude of Displacement	
	Vertical Components (mm)	Horizontal Components (imm).
	2.6×10^{-3}	0.849×10^{-2}
3.42	0.137	0.0287
3.91	-2.8	1.0
4.02	3.4	1.31
4.29	1.2	0.23
4.87	-6.7	0.664
5.13	4.63	1.01
5.52	-1.46	-0.20
5.71	2.33	-0.3496
5.93	1.48	0.164
6.03	-5.34	0.86
6.41	4.77	0.062
6.85	-4.38	0.16
7.31	5.54	0.4
7.81	-4.81	-0.25

Table 3.5. Peaks of the Displacement Field $(r=10)$ Point of Dilatation (0,0)

Arrival Time, τ	Amplitude of Displacement	
	Vertical Components (mm)	Horizontal Components (mm)
	0.856×10^{-3}	2.86×10^{-3}
6.95	1.37	7.24
7.76	-2.23	5.13
7.9	0.81	6.33
8.08	0.814	3.14

contributions are also added together to accurately determine the displacement at the receiver point; see Tables 3.3-3.5.

3.2.2 Components of Displacement.at the Boundary

In resolving the radial displacement into the horizontal and vertical components, due considerations are given to the mode and direction of both the incident and the reflected rays and the location of the receiver. When the receiver is located, for example, at the bottom surface of the plate, the corresponding displacement components are given by the following equations. Assuming the incident wave is of a P mode, we have (see Fig. 3.6)

$$
\begin{align*}
& U_{R H}=U_{R} \sin e+U_{R P P} \sin e-U_{R P S} \cos f \tag{3.2}\\
& U_{R V}=-U_{R} \cos e+U_{R P P} \cos e+U_{R P S} \sin f
\end{align*}
$$

When the incident wave is an SV mode,

$$
\begin{align*}
& U_{\theta H}=U_{\theta} \cos f+U_{\theta P P} \sin e-U_{\theta P S} \cos f \tag{3.3}\\
& U_{U V}=U_{\theta} \sin f+U_{\theta P P} \cos e+U_{\theta P S} \sin f
\end{align*}
$$

If the transducer is located at the upper surface of the plate, the corresponding displacement components become (see Fig. 3.6):

$$
\begin{align*}
& U_{R H}=U_{R} \sin e+U_{R P F} \sin e+U_{R P S} \cos f \\
& U_{R V}=U_{R} \cos e-U_{R P P} \cos e+U_{R P S} \sin f \tag{3.4}\\
& U_{U H}=-U_{\theta} \cos f+U_{\theta P P} \sin e+U_{\theta P S} \cos f \\
& U_{\theta V}=U_{\theta} \sin f-U_{\theta P P} \cos e+U_{\theta P S} \sin f
\end{align*}
$$

where

Fig. 3.6. Direction of the particle displacements.
(a) Reflection is at the upper surface
(b) Reflection is at the bottom surface

$$
\begin{aligned}
& U_{R}, U_{\theta}=\text { respective radial displacements for } P \text { and } S V \text { waves } \\
& U_{R H}, U_{R V}=\text { respective horizontal and the vertical components of } \\
& \text { displacement with a } \mathrm{P} \text {-wave incident } \\
& U_{U H}, U_{\theta V}=\text { respectively the horizontal and the vertical com- } \\
& \text { ponents of displacement with an incident SV wave } \\
& \mathrm{e}=\text { incident or reflected angle for a } \mathrm{P} \text { wave } \\
& f=\text { incident or reflected angle for an SV wave } \\
& U_{\text {RPP }}, U_{R P S} \text {, }=\text { corresponding displacement contributions of the } \\
& U_{\text {OPP }}, U_{\text {OPS }} \text { reflected rays. They are functions of the correspond- } \\
& \text { ing radial displacements and the coefficient of } \\
& \text { reflection } \\
& U_{R P P}=U_{R} R_{P P} \\
& U_{R P S}=U_{R} R_{P S}{ }^{\varepsilon} \\
& U_{\theta P P}=U_{\theta} R_{S S} \\
& U_{\theta P S}=U_{\theta} R_{S P} \varepsilon \\
& \varepsilon= \pm 1 \text { depending on whether or not the ray is in the } \pm \\
& \text { z-direction } \\
& R_{P P}, R_{P S}, R_{S P} \text {, and } R_{S S} \text { are the corresponding coefficients of reflection. } \\
& \text { The complete responses due to a compressional point source are } \\
& \text { given in Figs. 3.7-3.12 for the three different locations of the } \\
& \text { transducers. The results obtained by Pao et al. are shown in Fig. } \\
& \text { 3.7a for the purpose of comparison. }
\end{aligned}
$$

Fig. 3.7. Plates response to a unit dilatation point force. Point of dilatation $(0,0)\left(t_{0}=t / \tau\right)$.

Fli. 21. Suriace displationcilts vi a plate at variuus rangis $1 \mathrm{~J}=011$.

Fig. 3.7a. Responses due to dilatational point source obtained by Pao et al. [4].

Fig. 3.8. Plates response to a unit dilatation point force. Point of dilatation $(0,0)\left(t_{0}=t / \tau\right)$.

Fig. 3.9. Plates response to a unit dilatation point force. Point of dilatation $(0,0)\left(t_{0}=t / \tau\right)$.

Fig. 3.10. Plates response to a unit dilatation point force. Point of dilatation $(0,0)\left(t_{0}=t / \tau\right)$

Fig. 3.11. Plates response to a unit dilatation point force. Point of dilatation $(0,0)\left(t_{0}=t / \tau\right)$.

Fig. 3.12. Plates response to a unit dilatation point force. Point of dilatation $(0,0)\left(t_{0}=t / \tau\right)$.

3.3 Response of a Plate to a Unit Stress Normal
 to the Surface of the Plate

The response of a plate to a circular disk vibrating normally to the surface of the plate was studied by Miller and Pursey [45, 46]. In these works, they adapted Lamb's method to derive definite integrals for the displacement field in a semi-infinite isotropic solid due to a periodic normal stress. More recent investigations were conducted by Pao [4] and Pao et al. [5]. In these studies, they considered the response due to a concentrated normal load located at the surface of a plate using a square pulse time function.

In this section, the response of a plate due to a unit normal stress located at the surface of the plate is investigated using the Monte Carlo technique. The solutions of Miller and Pursey are adapted to derive a far-field impulsive response.

3.3.1 Derivation of the Far-Field Solution
 Compressional and Shear Waves

The far-field response to a periodic load according to Miller and Pursey [45] is given as

$$
\begin{align*}
& u_{r}=-\frac{a^{2}}{2 C_{\psi \psi}} \frac{\cos e\left(k^{2}-2 \sin ^{2} e\right)}{R F_{\theta}(\sin e)} e^{-i R} \tag{3.5}\\
& u_{\theta}=-\frac{i a^{2} k^{2}}{2 C_{\psi \psi} R} \frac{\sin 2 f \sqrt{\left(k^{2} \sin ^{2} f-1\right)}}{F_{\theta}(k \sin f)} e^{-i k R} \tag{3.6}
\end{align*}
$$

The response of a plate to a periodic force,

$$
f(t)=p e^{i \omega t}
$$

can be written as

$$
\begin{align*}
& u_{r}=U_{R} e^{i \omega\left(t-R / C_{L}\right)} \tag{3.7}\\
& u_{\theta}=U_{\theta} e^{i \omega\left(t-R / C_{T}\right)} \tag{3.8}
\end{align*}
$$

Since

$$
\begin{aligned}
\delta(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i \omega t} d \omega \\
& =\frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{\infty} \cos \omega t d \omega-\int_{-\infty}^{\infty} i \sin \omega t d \omega\right]
\end{aligned}
$$

But

$$
\int_{-\infty}^{\infty} \sin \omega t d \omega=0 \text {, being an odd function }
$$

therefore,

$$
\begin{equation*}
\delta(t)=\frac{1}{\sqrt{2 \pi}} R_{e} \int_{-\infty}^{\infty} e^{-\omega t} d \omega \tag{3.9}
\end{equation*}
$$

Therefore, for an impulsive response of the plate, we are only concerned with the real part of u_{r} or u_{θ}, i.e.,

$$
\begin{align*}
& u_{r}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} R_{e}\left[U_{R} e^{i \omega\left(t-R / C_{L}\right)}\right] d \omega \tag{3.10}\\
& u_{\theta}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} R_{e}\left[U_{\theta} e^{i \omega\left(t-R / C_{T}\right)}\right] d \omega \tag{3.11}
\end{align*}
$$

But U_{r} is real for all incident angles under consideration, and U_{0} is complex.

Therefore,

$$
\begin{align*}
& R_{e}\left[U_{R} e^{i \omega\left(t-R / C_{1}\right)}\right]=U_{R} \cos \omega\left(t-R / C_{L}\right) \\
& R_{e}\left[U_{\theta} e^{i \omega\left(t-R / C_{2}\right)}\right]=U_{\theta R} \cos \omega\left(t-R / C_{T}\right)-U_{\theta i} \sin \omega\left(t-R / C_{T}\right) \\
& u_{r}=\frac{1}{\sqrt{2 \pi}} U_{R} \int_{-\infty}^{\infty} \cos \omega\left(t-R / C_{L}\right) \tag{3.12}\\
& U_{\theta}=\frac{1}{\sqrt{2 \pi}} U_{\theta R} \int_{-\infty}^{\infty} \cos \omega\left(t-R / C_{T}\right) d \omega \tag{3.12}\\
& \quad-\frac{1}{\sqrt{2 \pi}} U_{\theta i} \int_{-\infty}^{\infty} \sin \omega\left(t-R / C_{T}\right) d \omega
\end{align*}
$$

Since the second expression on the right hand side is an odd function,

$$
\begin{equation*}
u_{\theta}=\frac{1}{\sqrt{2 \pi}} U_{\theta R} \int_{-\infty}^{\infty} \cos \omega\left(t-R / C_{T}\right) d \omega \tag{3.13}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
& u_{r}(t)=U_{R} \delta\left(t-R / C_{L}\right) \\
& u_{\theta}(t)=U_{\theta R} \delta\left(t-R / C_{T}\right)
\end{aligned}
$$

But by Miller and Pursey [45],

$$
\begin{equation*}
U_{R}=-\frac{a^{2}}{2 \mu R} \frac{\cos e\left(k^{2}-2 \sin ^{2} e\right)}{F_{\theta}(\sin e)} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{\theta}=-\frac{i a^{2} k^{2}}{2 \mu R} \frac{\sin 2 f \sqrt{\left(k^{2} \sin ^{2} f-1\right)}}{F_{\theta}(k \sin f)} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=\text { radius of the circular disk } \\
& \mu=\text { shear modulus } \\
& R=\text { radial distance } \\
& e=\text { the incident angle for a P-wave } \\
& k=C_{L} / C_{T} \text {, ratio of the wave speeds } \\
& F_{\theta}(X)=\left(2 x^{2}-k^{2}\right)^{2}-4 X^{2}\left(X^{2}-1\right)^{\frac{1}{2}}\left(X^{2}-k^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

For a unit force, we assume $\sigma=1$, therefore

$$
\begin{aligned}
P & =\sigma \pi a^{2}=\pi a^{2} \\
\therefore \quad a^{2} & =P / \pi=1 / k
\end{aligned}
$$

According to Pao for a unit force, the ' j ' term in the equation (3.6) should be dropped. Therefore,

$$
\left.\begin{array}{l}
\qquad \begin{array}{l}
U_{R}=-\frac{1}{2 \pi \mu R} \frac{\cos e\left(k^{2}-2 \sin ^{2} e\right)}{F_{\theta}(\sin e)} \\
U_{\theta}=
\end{array} \\
U_{R}, U_{\theta}= \\
\text { displacement amplitudes for a P-wave and SV-wave, } \\
\text { respectively. } \\
\text { For a direct } P \text { - or SV-wave, the above amplitudes are used } \\
F_{\theta}\left(k \sin \sin ^{2} f-1\right)
\end{array}\right] \text { But in case of waves with multiple segments, the ampli- }
$$

3.3.2 Unit Stress Normal to the Surface of the Plate: Numerical Calculations

The material constants given are the same used in Section 3.2.1. In addition, the Lamé's constant, μ is taken as .25 . The unit force is placed at the point $(0,15)$ at the upper surface of the plate. The transducers are located at three points, $r=2, r=4$, and $r=6$ where r is normalized with respect to the thickness of the plate. There are two cases considered for the location of the receiver. In the first case, the source and the receiver are located at opposite sides of the plate. In the other case, the source and the receiver are located at the upper surface of the plate. In both cases, the source function is a unit normal force and the time function is a square pulse, see [18], $f(t)=H(t)-H(t-\Delta)$ where $H(t)$ is a step function and $\Delta=0.8 \tau$.

For comparative purposes, the force is normalized with respect to $1 /\left(2 h_{\pi \mu}\right)$. The time is also normalized with respect to τ, where τ $=2 h / C_{L}$.

In the first case with source and receiver at the opposite side, only wavefields with odd number of segments like P, S, PSP, SPS, and PPP arrive at the receiver. On the contrary, the waves with even number of segments are recorded at the receiving post after reflection when the source and the receiver are at the upper surface (see Fig. 3.13). The times of arrival for the two cases with $r=2, r=4$, and $r=6$ are shown in Tables 3.6-3.9 and 3.10-3.13. The complete responses at three locations for the first case are shown in Figs. 3.14-3.19. Figures 3.20-3.25 show the responses of the plate due to the second case source and receiver at the same side of the plate.

Fig. 3.13. Reflection of waves with:
(a) Odd number of segments
(b) Even number of segments

Table 3.6. Arrival Time ($\tau=t C_{L} / 2 h$)
Surface Loading - Source and Receiver on the Opposite Sides of the Plate

$r=2$		$r=4$		$r=6$	
Waveform	Arrival Time, τ	Waveform	Arrival Time, τ	Waveform	Arrival Time,
	2.21		4.1	P	6.11
P	2.22	P	4.14	PSP	7.68
	2.26	PSP	5.88	(SPP)	7.73
P^{3}	3.62	(PPS)	5.91	SPS	8.79
S	3.7	PSS	6.85	(SSP)	8.8
SPP	4.34	SPS	6.87		9.54
SPS	5.16	S	6.90	PSPSP (PSPPS)	9.56
P^{4}	5.37				
4S	5.37	SSP	7.23	SSP	9.69
P4S	6.07	P^{2} SPS	7.996	$S^{2} p^{3}$	
P7	7.27		8.17	$S^{2} \mathrm{P}^{3}$	9.92
PS ${ }^{2}$ PS	7.53	${ }^{\text {SSS }}{ }_{\text {c }}$	8.17	S	10.12
PSP ${ }^{5}$	7.97	$\mathrm{S}^{2} \mathrm{PS}^{\text {c }}$	8.38	SPSPS	10.46
PS ${ }^{4}$	8.26	$S^{2} S_{C}{ }^{3}$	8.53	(SSPSP)	10.51
PS ${ }^{2} \mathrm{P}^{4}$	9. 35		8.61	$S^{2} P^{2} S_{C} \mathrm{P}^{2}$	11.15
PS ${ }^{2} 4$	9.35	SPSPS	8.8 8.81	$S^{2} S_{C}{ }^{2} P$	11.34
PS ${ }^{2}$ PS ${ }^{2} \mathrm{P}$	10.06			${ }^{\text {c }}$	
PS ${ }^{3} \mathrm{PS}^{2}$	10.75	P^{2} SPSP ${ }^{2}$	9.55	$S^{2} S_{c}$	11.39
pll	11.17	PSPSPSP	10.29	SPSPSP ${ }^{2}$	11.61
pli	11.18	SPSPS ${ }^{2}$ P	11.05	SPSPP	11.61
$\mathrm{P}^{3} \mathrm{~S}^{3} \mathrm{p}^{3}$	11.26	$\mathrm{P}^{3} \mathrm{SP}^{2} \mathrm{SP}^{2}$	11.27		
$S^{6} P$	11.45	$\mathrm{P}^{2} \mathrm{SP}{ }^{3} \mathrm{SPS}$	11.98		
$\mathrm{P}^{3} \mathrm{~S}^{2} \mathrm{PS}^{2} \mathrm{P}$	11.95				

Table 3.7. Peaks of the Displacement Field $(r=2)$ Surface Loading-Source and Receiver on Opposite Side

Arrival Time, τ	Amplitude of Displacement	
	0.11×10^{-1}	0.234×10^{-1}
3.63	-0.141	-0.114
3.71	-3.94	-3.91
4.37	-4.265	-4.6
4.43	-4.12	-4.49
4.51	-0.33	-0.69
5.18	-0.04	0.07
5.38	-0.28	-0.039
6.1	-0.65	-0.61
6.18	-0.42	-0.5

Table 3.8. Peaks of the Displacement Field ($r=4$) Surface Loading-Source and Receiver on Opposite Side

	Amplitude of Displacement	
Arrival Time, τ	Vertical Components	Horizontal Components
4.11	0.067×10^{-1}	0.195×10^{-1}
5.91	0.0268	0.04
6.85	-0.022	0.034
6.92	-1.04	-0.98
7.19	-1.073	-1.02
7.23	-2.19	-4.78
7.65	-2.17	-4.82
7.72	-1.15	-3.8
8.03	-0.068	-0.194
8.07	-0.08	-0.2
8.17	-2.07	1.09
8.87	-2.06	1.24

Table 3.9. Peaks of the Displacement Field ($r=6$) Surface Loading - Source and Receiver on Opposite Side

	Amplitude of Displacement	
Arrival Time, τ	Vertical Components	Horizontal Components
6.12	0.035×10^{-1}	0.11×10^{-1}
6.72	0.035	0.11
6.92	0.0007	0.0016
7.75	0.05	0.0776
8.8	-0.002	0.002
9.6	0.008	0.010
9.69	-0.27	-0.93
10.12	0.7	1.42
10.51	-1.96	-2.1
10.92	-1.48	-1.62
11.31	0.268	0.98
11.39	-0.25	1.52
11.64	-0.28	1.43

Fig. 3.14. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(60,-15)$.

Fig. 3.15. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(60,-15)$.

Fig. 3.16. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(120,-15)$.

Fig. 6. Surface Response of a Plate due to a Vertical Force.
(A) Source and Receiver at the Same Side, (B) Source and

Receiver at the Opposite Sides, (C) A buried Vertical Force
Fig. 3.16 a. Responses due to Surface Load by Pao [5].

Fig. 3.17. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(120,-15)$.

Fig. 3.18. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(180,-15)$.

Fig. 3.19. Plate response to a unit surface force at $(0,15)$. Receiver is located at point (180,-15).

Table 3.10. Arrival Time ($\tau=t C_{L} / 2 h$) Surface Loading - Source and Receiver at the Upper Plate Surface

$r=2$		$r=4$		$r=6$	
Waveform	Arrival Time,	Waveform	Arrival Time, τ	Waveform	Arrival Time,
P^{2}	2.84		5.47	PP	6.32
PS	3.65	PS	5.49	PS	7.45
SP	3.67				9.08
P^{4}	4.46	SPSP	7.33	PSPS	9.10
		PSPS	7.34	$S^{2} p^{2}$	9.11
S^{2}	4.75	PSPS	7.36		9.6 9.65
$\mathrm{P}^{2} \mathrm{SP}$	5.18	SS	7.5	SS	10.53
SP3	5.2	SS	7.51	$\begin{aligned} & S^{2} P S \\ & S^{3} P \end{aligned}$	10.56 10.57
PPSS	5.92	SSPP	7.56	SS	10.6
PSPS	5.94		7.97	SS	10.6
SPPS	5.95	$S^{2 P S}{ }_{C}$	7.97	$S P S_{c}$	10.74
PSSP	5.95	SSPS	8.26	SPSPSP	10.99
P6	6.32	$S^{2} S_{C}$	8.64	PSPSPS	11.02
PSSS	6.67	PSPSP ${ }^{2}$	8.74	$S^{2} S_{c r}{ }^{2 p}{ }^{2}$	11.15
$\mathrm{S}^{2} \mathrm{PS}$	6.7	PSPSPS	9.5	$\mathrm{S}^{2} \mathrm{PS}_{\mathrm{c}}{ }^{\text {P }} \mathrm{S}_{\mathrm{c}}$	11.19
$\mathrm{P}^{2} \mathrm{SP}{ }^{3}$	7.02	SPSPSP	9.51		11.68
$\mathrm{P}^{3} \mathrm{SPS}$	7.71	SPS ${ }^{2}$ PS	10.3	S2p6	11.71
P^{8}	8.24	P^{3} SPSP ${ }^{2}$	10.39.	$S^{2} \mathrm{PS}_{\mathrm{c}}{ }^{3}$	11.82
$\mathrm{P}^{3} \mathrm{~S}^{3}$	8.41	PSP ${ }^{2}$ SPSP	11.12	S^{2} PSPS	11.94
PS ${ }^{2} \mathrm{P}^{2} \mathrm{~S}$	8.43	SSP ${ }^{2}$ SPSS ${ }^{2}$	11.12		
P7S	8.93	SP^{2} SPS $^{2} \mathrm{P}$	11.85		
$S^{2} \mathrm{PS}^{2} \mathrm{P}$	9.14	PS ${ }^{2}$ PSP ${ }^{2}$ S	11.87		
plo	10.19				
PSP4 ${ }^{\text {S }}$	10.3				
SP9	10.88				
$\mathrm{SP}^{4} \mathrm{~S}^{3}$ $S^{2} p^{4} S^{2}$	$\begin{aligned} & 10.998 \\ & 11.00 \end{aligned}$				
$\mathrm{P}^{8} \mathrm{~S}^{2}$	11.56				
$\mathrm{P}^{2} \mathrm{~S}^{5} \mathrm{P}$	11.69				

Table 3.11. Peaks of the Displacement Field $(r=2)$ Surface Loading - Source and Receiver on the Upper Plate Surface

	Amplitudes of Displacement	
 Arrival	Vertical Components	Horizontal Components
2.85	-0.215×10^{-1}	-0.259×10^{-1}
3.7	-1.082	1.666
4.48	-1.364	1.496
4.5	-0.281	-0.169
5.19	-0.685	-0.441
5.2	-1.229	-0.301
5.24	-0.948	-0.132
5.94	-1.367	0.87
6.0	0.1348	0.997
6.34	-0.179	0.894
6.68	-0.231	1.127
6.75	-0.366	0.13
7.04	-0.946	0.147
7.14	-0.69	0.25
7.48	-0.58	0.0164
7.83	0.095	0.294
8.24	-0.138	0.225

Table 3.12. Peaks of the Displacement Field ($r=4$) Surface Loading-Source and Receiver on the Upper Plate Surface

Arrival Time, τ	Amplitudes of Displacement	
	Vertical Components	Horizonta1 Components
	0.0525×10^{-1}	0.111×10^{-1}
5.5	-0.3014	0.524
6.5	-0.0789	-0.1088
7.32	-0.4435	0.6866
7.49	-2.253	-5.407
7.97	-2.372	-5.51
8.12	-1.928	-6.196
8.29	-0.118	-0.103
8.67	-4.263	1.954
8.77	-4.55	1.957
8.95	-4.57	1.944
9.41	-0.427	-0.112
9.55	0.0171	0.5867

Table 3.13. Peaks of the Displacement Field $(r=6)$ Surface Loading-Source and Receiver on the Upper Plate Surface

Arrival	Vertical Components	Horizonta1 Components
Time, τ	0.031×10^{-1}	0.081×10^{-1}
6.32	-0.119	0.283
7.46	-0.066	0.388
8.15	0.0533	0.105
8.26	-0.248	0.2406
9.11	-1.054	-2.52
9.66	-0.815	-2.746
9.93	-0.8565	-2.806
10.14	-0.0415	-0.06
10.46	0.0505	-5.84
10.58	0.092	-5.78
10.94	-0.165	-5.407
11.03	0.466	-3.281
11.35	-0.257	0.373
11.38	-0.2637	0.3665
11.53	-0.256	0.379
11.79	-1.458	-1.162

Fig. 3.20. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(60,15)$.

Fig. 3.21. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(60,15)$.

Fig. 3.22. Plate response to a unit surface force at $(0,15)$. Receiver is located at point (120,15).

Fig. 3.23. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(120,15)$.

Fig. 3.24. Plate response to a unit surface force at $(0,15)$. Receiver is located at point $(180,15)$.

Fig. 3.25. Plate response to a unit surface force at $(0,15)$. Receiver is located at point (180,15).

CHAPTER IV

ANALYSIS OF THE RESULTS AND CONCLUSION

In this chapter, the results are examined and analyzed. Comparisons are made with the previous investigation by Pao [4] and Pao et a1. [5]. Finally, recommendations are made for future research.

4.1 Results and Analysis

In this section, analyses are made for the following results:
(i) The displacement field due to a dilatational point source.
(ii) The response of the plate due to a unit normal stress, with the source and the receiver on opposite sides of the plate.
(iii) The response of the plate due to a unit normal stress, with the source and the receiver at the upper surface of the plate.

4.1.1 Case (i) Dilatation Point Source

It can be observed from Figs. 3.7 and 3.8 that the first arrival observed at the receiving point (when $r=2$) is the source ray, P at time $\tau=1.22$ followed by the PP, PPP, PS, PSP, and subsequently by multiple reflected rays. The parameter, r, and the variable, τ, are dimensionless.

Featuring prominently with the vertical components of displacement of $-1.68 \times 10^{-2} \mathrm{~mm}, 1.51 \times 10^{-2} \mathrm{~mm}$, and $0.97 \times 10^{-2} \mathrm{~mm}$ are PS, PSP, and P , respectively. Their corresponding horizontal peaks are 2.65 $\times 10^{-2} \mathrm{~mm}, 1.3 \times 10^{-2} \mathrm{~mm}$, and $2.8 \times 10^{-2} \mathrm{~mm}$. This shows that at $r=2$, the source ray gives the largest contribution to the displacement field in the horizontal direction, strongly followed by PS rays. However, as the distance of the receiver from the source point increases, the contribution of multiple reflected rays with multiple mode conversions, $\mathrm{P}^{2} \mathrm{~s}^{2}$ predominates in the vertical direction. This is evident in Fig. 3.9 when $r=5$ and Fig. 3.11 with $r=10$. It is interesting to note that the peak of the displacement for the source ray, P, decreases approximately by a factor of 0.66 for all the three locations. The contributions from the rays without mode conversion like PP, P^{3}, and others are very gible.
4.1.2 Case (ii) - Response Due to Surface Force (Source and Receiver on the Opposite Sides of the Plate) From Table 3.6, it is easily seen that the early arrivals at the receiving point with $\mathrm{r}=2$ are P -waves at 2.21τ, P^{3}-waves at 3.62τ, and S-waves at 3.7τ followed by other multiple reflected waves like SPP ($\tau=4.34)$, SPS ($\tau=5.16$), and the others. It is interesting to note that for all the three locations of the transducer, the waves with the source ray in an SV mode predominate. See Tables 3.7-3.9. This fact can be utilized to identify the dominant of the source rays for the case in which both P - and S-waves are emitted from the source point. Typical of these are the SPP and S at $r=2$ with the peak amplitudes of
-4.265×10^{-1} and -3.93×10^{-1}, respectively in the vertical direction and -4.6×10^{-1} and -3.91×10^{-1} in the horizontal direction. The displacement amplitude due to the rays, P, P^{3} are negligible. As the distance of the transducer increases to $r=4$ and $r=6$, the contributions from the multiple reflected waves with odd number of segments become predominant.
4.1.3 Case (iii) - Response Due to Surface Force (Source and Receiver at the Upper Plate Surface)
From Table 3.10, we can see that the PP, PS, P^{4}, s^{2} waves arrive in succession at the receiver followed by some complex multiple reflected ways. Since the source ray can either be. a P or S mode, the multiple waves formed thus possess the appropriate mode of the emitted ray. For example, the $P^{2} S^{2}$ and $P^{2} S P$ waves show that the source rays are of a P mode while SP, SS, and SPPS indicate that their source rays are of an S mode.

When $r=2, p^{2} s^{2}, p^{4}, p^{3} S$, and $P S$ arrive at the receiver at the time $\tau=5.94, \tau=4.48, \tau=5.2$, and $\tau=3.7$, respectively with very strong peaks of $-1.367 \times 10^{-1},-1.364 \times 10^{-1},-1.229 \times 10^{-1}$, and -1.082 $\times 10^{-1}$ in the vertical direction. A major contribution to the displacement in the horizontal direction comes from the PS-waves (1.666×10^{-1}) followed by P^{4} with 1.496×10^{-1}. As the distance of the receiver from the source increases to $r=5$, the contribution from the $p^{2} s^{2}$ waves in the horizontal direction significantly increases to -2.25×10^{-1} but returns to -1.054×10^{-1} at $r=10$.

At $r=4$, the major contributions come from $P^{4} S^{2}$ and $S^{2} S_{c}{ }^{2}$ at
$\tau=8.77$ and $\tau=8.61$, respectively (see Table 3.12). At $r=6$, major contributions to the horizontal displacement come from $S^{3} p\left(-5.84 \times 10^{-1}\right)$ at $\tau=10.58, \mathrm{~s}^{3} \mathrm{P}^{3}\left(-5.78 \times 10^{-1}\right)$ at $\tau=10.94$, and $\mathrm{P}^{3} \mathrm{~S}^{3}\left(-5.407 \times 10^{-1}\right)$ at $\tau=11.05$ (see Table 3.13).

4.2 Comparison of Results and Conclusions

In this work, the propagation of the elastic waves in a plate due to a dilatational point source and two types of surface point force, have been investigated using the proposed Monte Carlo/ray tracing technique.

The theoretical formulations are given for both the two- and three-dimensional cases. In the plate case, numerical calculations are made for determining the horizontal and vertical components of displacement field for the three cases mentioned above.

In case (i), the dilatational point source, comparison with the generalized ray analysis of Pao [4] for similar geometry and the same load condition shows a very strong agreement in spite of the difference in the basis of normalization and in the wave speeds used (see Fig. 3.7a) In case (ii), the surface load with a source and receiver on opposite sides, an interesting result comes to light. For the case with $r=4$ which is used for comparison purposes, the strongest motion with an amplitude of -0.219 arrives at the time, $\tau=7.23$ followed by another strong wave of less magnitude (of amplitude, -0.217) at $\tau=7.65$ as compared to the wáves with the peak of -0.21 and -0.12 , respectively reported by Pao [5]. Similarly, in case (iii), with the force and receiver on the same surface of the plate, a good agreement has been found (see Fig. 3.16a).

In essence, the results shown in Figs. 3.7-3.12, Figs. 3.143.19, and Figs. 3.20-3.25 have demonstrated the effectiveness of the Monte Carlo/ray tracing technique in determining the displacement fields of a plate due to different loading conditions. Moreover, unlike
... the generalized ray method, it is effective for investigating long-term responses as well.

4.3 Recommendations for Future Research

As mentioned earlier, in order to characterize accurately the structural integrity of a material using acoustic emission as a nondestructuve testing technique, it is essential to be able to identify the mode of the dominant wave emitted and locate the source of the mechanism (defects, voids). Although it has been shown that the Monte Carlo ray-tracing technique can be used to answer some of these questions, nonetheless, further investigations need to be conducted.

As a result, the following recommendations are made for future research:
a) The study of the wave motion in a plate having wedgeshaped surfaces and with the assumption that after the wave passes the receiver location, it can still possibly contribute to the displacement field after reflecting at the farther end of the plate.
b) Wave motion in a multilayered isotropic medium This could be extended to a case where scattering effects are assumed to occur. Such investigations will undoubtedly be useful. in studying solids with welded joints.
c) Numerical solution for the three-dimensional case already developed.
d) Finally, experimental investigations should be conducted to justify the applicability of these theoretical results.

REFERENCES

1. Hsu, N.H., 1978. "Experiments in Acoustic Emission Waveform Analysis for Characterization of AE Sources, Sensors and Structures." Elastic Waves and Nondestructive Testing of Materials. Applied Mechanics Division, ASME, Vol. 29, pp. 85-106.
2. Egle, D.M., 1979. "A Stochastic Model for Transient Acoustic Emission Signals." Journal of Acoustical Society of America, Vol. 65, No. 5, pp. 1198-1203.
3. Egle, D.M. and Ewumi, J.0., 1983. "A Monte-Carlo/Geometric Ray Technique for Wave Propagation in Plates." Paper to be presented at the 20th Annual Meeting of the Society for Engineering Science, University of Delaware, August 1983.
4. Pao, Y. and Gajewski, R.R., 1977. "The Generalized Ray Theory and Transient Responses of Layered Elastic Solids." Physical Acoustics, Vol. 13, pp. 183-265.
5. Pao, Y., 1978. "Theory of Acoustic Emission." Elastic Waves and Nondestructive Testing of Materials. Applied Mechanics Division, ASME, Vol. 29, pp. 107-128.
6. Pao, Y., Gajewski, R.R., and Ceranoglu, A.N., 1979. "Acoustic Emission and Transient Waves in an Elastic Plate." Journal of Acoustical Society of America, Vol. 65, No. 1, pp. 96-105.
7. Lamb, H., 1904. "On the Propagation of Tremors over the Surface of an Elastic Solid." Philosophical Transactions of the Royal Society (London), Series A, Vol. 203, pp. 1-42.
8. Lamb, H., 1916. "On Wave Patterns Due to a Travelling Disturbance." Philosophical Magazine, Series 6, Vol. 31, pp. 539-548.
9. Ewing, W.M., Jardetzky, W.S., and Press, F., 1957. Elastic Waves in Layered Media. New York: McGraw-Hill Book Company, Inc.
10. Bromwich, T.J.Ia., 1916. "Normal Coordinates in Dynamical Systems." Proceedings, London Mathematical Society, Series 2, Vo1. 15, pp. 401448.
11. Pekeris, C.L. and Lifson, H., 1957. "Motion of the Surface of a Uniform Elastic Half-Space Produced by Buried Pulse." Journal of Acoustical Society of America, Vol. 29, pp. 1233-1238.
12. Pekeris, C.L. and Longman, I.M., 1958. "The Motion of the Surface of a Uniform Elastic Half-Space Produced by a Buried Torque-Pulse." Geophysical Journal, Vol. 1, pp. 146-153.
13. Pekeris, C.L., Alterman, Z., and Abramovici, F., 1963. "Propagation of an SH- Torque Pulse in a Layered Solid." Bulletin of the Seismological Society of America, Vol. 53, pp. 39-57.
14. Weyl, H., 1919. "Ausbreitung Electromagnetischer Wellen Uber Einen Ebenen Leiter," Annalen der Physik, Vol. 60, pp. 481-500.
15. Poritsky, H., 1951. "Extension of Weyl's Integral for Harmonic Spherical Waves to Arbitrary Wave Shapes." Symposium on the Theory of Electromagnetic Waves, p. 97. Interscience Inc., New York.
16. Cagniard, L., 1962. Reflection and Refraction of Progressive Seismic Waves. Translated by Flinn, E.A. and Dix, C.H. McGrawHill Book Company, Inc., New York.
17. Lapwood, E.R., 1949. "The Disturbance Due to a Line Source in a Semi-Infinite Elastic Medium." Philosophical Transactions of the Royal Society (London), Series A, Vol. 242, pp. 63-100.
18. Pekeris, C.L., Alterman, Z., Abramovici, F., and Jarosch, H., 1965. "Propagation of Compressional Pulse in a Layered Solid." Review of Geophysics, Vol. 3, No. 1, pp. 25-47.
19. Pinney, E., 1951. "A Theory of Use in Wave Theory." Journal of Mathematics and Physics, Vol. 30, pp. 1-10.
20. Pinney, E., 1954. "Surface Motion Due to a Point Source in a SemiInfinite Elastic Medium." Bulletin of the Seismological Society of America, Vol. 44, pp. 571-596.
21. Knopoff, L., Gilbert, F., and Pilant, W.L., 1960. "Wave Propagation in a Medium with a Single Layer." Journal of Geophysical Research, Vol. 65, No. 1, pp. 265-278.
22. Chopra, S.D., 1958. "On the Equivalence of Saddle Point Approximations and Ray Theory in Elastic Wave Problems." Geophysical Journal, Royal Astronomical Society, Vol. 1, pp. 164-179.
23. Newlands, M., 1952. "The Disturbance Due to a Line Source in a Semi-Infinite Elastic Medium with a Single Layer." Philosophical Transactions of the Royal Society (London), Series A, Vol. 245, Pp. 213-308.
24. Hong, T.-L. and Helmberger, D.V., 1977. "Generalized Ray Theory for Dipping Structures." Bulletin of the Seismological Society of America, Vol. 67, No. 4, pp. 995-1008.
25. Hong, T.-L. and Helmberger, D.V., 1978. "Glorified Optics and Wave Propagation in Nonplanar Structure," Bulletin of the Seismological Society of America, Vol. 68, No. 5, pp. 1313-1330.
26. Buslenko, N.P., Golenko, D.I., Shrieder, Yu.A. Sobol', and Sragovich, V.G., 1966. The Monte Carlo Method. Translated from Russian. New York: Pergamon Press.
27. Dunens, E.K. and Lambert, R.F., 1977. "Impulsive Sound-Level Response Statistics in a Reverberant Enclosure." Journal of Acoustical Society of America, Vol. 61, No. 6, pp. 1524-1532.
28. Haviland, J.K. and Thanedar, B.D., 1973. "Monte Carlo Applications to Acoustical Field Solution." Journal of Acoustical Society of America, Vol. 54, No. 6, pp. 1442-1448.
29. Stockham, L.W., 1967. "Radiative Heat Transfer from a Finite Cylindrical Particle Cloud." Unpublished Ph.D. dissertation. University of Oklahoma.
30. Turner, W.D. 1969. "Directional Emittance of Emitting, Absorbing and Scattering Media." Unpublished Ph.D. dissertation. University of Oklahoma.
31. Lindgren, B.W., 1965. Statistical Theory. The Macmillan Company, New York.
32. Shooman, M.L., 1968. Probabilistic Reliability: An Engineering Approach. New York: McGraw-Hill Book Company, Inc.
33. Achenbach, J.D., 1973. Wave Propagation in Elastic Solids. NorthHolland, Amsterdam.
34. Achenbach, J.D., Gautesen, A.K., 1977. "Geometrical Theory of Diffraction for Three-D Elastodynamics." Journal of Acoustical Society of America, Vol. 61, pp. 413-421.
35. Achenbach, J.D., Gautesen, A.K., and McMaken, H., 1982. Ray Methods for Waves in Elastic Solids. Pitman Advanced Publishing Program, Boston, London, Melbourne.
36. Graff, K.F., 1975. Wave Motion in Elastic Solids. Ohio State University Press, Columbus, Ohio.
37. Bath, J., 1968. Developments in Solid Earth Geophysics 4 Mathematical Aspects of Seismology. Amsterdam, England, and New York. Elsevier Publishing Company.
38. van der Pol, B. and Bremmer, H., 1937. "Diffraction of Electromagnetic Waves from an Electrical Point Source." Philosophical Magazine, Series 7, Vol. 24, pp. 825-864.
39. Bremmer, H., 1949. Terrestial Radio Waves. Elsevier Publishing Company, New York.
40. Ewumi, J.0., 1980. "The Study of Wave Motion in a Bounded Elastic Medium Using Monte Carlo Tracing Approach." A doctoral proposal for research, submitted to the Graduate Faculty, School of Aerospace, Mechanical and Nuclear Engineering, University of Oklahoma, Norman, OK.
41. Ewumi, J.0., 1982. "Wave Motion in a Bounded Elastic Medium Using Monte Carlo Tracing Approach." Proceedings, Thirteenth Southwestern Graduate Research Conference in Applied Mechanics, Norman, Oklahoma, pp. 79-96.
42. Granstein, W.C., 1935. Differential Geometry. The Macmillan Company, New York.
43. Struik, D.J., 1961. Lectures on Classical Differential Geometry. Addison-Wesley Publishing Company, Inc., Reading, MA, USA, London, England.
44. Bolz, R.E. and Tuve, G.L., 1976. Handbook of Tables for Applied Engineering Science. CRC Press, CTeveland, OH.
45. Miller, G.F. and Pursey, H., 1954. "The Field and Radiation Impedance of Mechanical Radiators on the Free Surface of a SemiInfinite Isotropic Solid." Proceedings, Royal Society (London), Series A, Vol. 223, pp. 521-541.
46. Miller, G.F. and Pursey, H., 1955. "On the Partition of Energy Between Elastic Waves in a Semi-Infinite Solid." Proceedings, Royal Society (London), Series A, Vol. 233, pp. 55-69.

APPENDIX: COMPUTER PROGRAMS

The two programs which are used for this Monte Carlo raytracing investigation and included in this appendix are as follows:
a) The INCPLATE which is used for the dilatational case where the source ray emitted from the source point is a P -wave.
b) The INCPLATE which is used for calculating the response due to the surface loading. In this case, the emitted waves are dilatational and equivoluminal waves from the same point source.

Since there are two rays emitted in case (b) and the Monte Carlo ray-tracing technique can only account for a single ray at a time, an additional Monte Carlo decision is taken in the UI Subroutine to choose one of those rays to pursue. Moreover, Subroutine UTHETA is also added to calculate the amplitude at the first pierce point. When calculating the horizontal and the vertical components, it is essential to use the appropriate expression to account for the fact that the receiver is either at the upper or the bottom surface.

The programs are written in FORTRAN IV Gl language (FORTGCLG) compatible with the IBM system 3081 having 24 million bytes of main storage. The plots are implemented on the electrostatic Versatec V80 plotter having 200 dots/inch resolution.

The generation of the random number was obtained from the

IBM scientific subroutine using the 'DSEED' of 731540.DD for double precision on the random number generator of the multiplicative congruent type. Any number generated was found not to repeat in 2^{39} generations, see Turner [30] for details.

The computer time has been large, though not as large as other cases where Monte Carlo have just been utilized. Table A.l shows the computer time (CPU) for the dilatational case for the three locations of the transducer and the surface case for some locations of the transducer.

Table A.1. Computer Time (CPU)

Type of Force	Location/ Receiver	No. of Trials	Max. No./ Reflections	CPU Time
Dilatational	2	100,000	18	$2 \mathrm{~min}, 30.92 \mathrm{sec}$
		300,000	18	$29 \mathrm{~min}, 38.98 \mathrm{sec}$
		500,000	18	$77 \mathrm{~min}, 39.22 \mathrm{sec}$
	5	100,000	18	$2 \mathrm{~min}, 28.30 \mathrm{sec}$
		300,000	18	$9 \mathrm{~min}, 36.41 \mathrm{sec}$
		500,000	18	$19 \mathrm{~min}, 51.32 \mathrm{sec}$
	10	100,000	18	$2 \mathrm{~min}, 26.51 \mathrm{sec}$
		300,000	18	$7 \mathrm{~min}, 5.71 \mathrm{sec}$
		500,000	18	$11 \mathrm{~min}, 53.39 \mathrm{sec}$
Surface force (Force \& Receiver on Opposite Sides)	2	300,000	18	$6 \mathrm{~min}, 14.91 \mathrm{sec}$
	4	300,000	18	$4 \mathrm{~min}, 56.90 \mathrm{sec}$
) 6	300,000	18	$4 \mathrm{~min}, 21.61 \mathrm{sec}$
	4	10,000	18	10.72 sec
		100,000	18	$1 \mathrm{~min}, 22.40 \mathrm{sec}$
		300,000	18	$4 \mathrm{~min}, 56.90 \mathrm{sec}$

The number of the trials required in using the Monte Carlo technique to solve a problem cannot be easily determined. Although it is a well-known fact that where the conventional techaniues are very difficult to apply or cannot be applied to solve a problem as in this case, the use of Monte Carlo is unquestionable, see Buslenko [26]. In this investigation, the number of trials is dictated by the appearance of all the necessary waveforms and the stability of their amplitudes.

A list of the symbols used for the dilatational case is as follows:

ISUMTI - number of hits
TIMEI(ISUMTI) - time of arrival (normalized)
M - number of reflections minus one
VCDATI(ISUMTI) - vertical component of displacement recorded
HCDATI (ISUMT1) - horizontal component of displacement recorded
$R 1(M), R 2(M-1)$ - two consecutive radial distances
AY - horizontal distance of the receiver from the z-axis
YTB1,YTB2 - limit of $\pm 1 \mathrm{~mm}$ determining the base of the transducer
ZT,YT - coordinates of the transudcer
NL - number of trials (emissions)
NT - maximum number of reflections
CL,CT - speeds of the P - and SV-waves, respectively
TMAX - maximum time of ending the calculation
IBA - a number which makes a ray-path history unique, Eq. (3.1)
GAMI,TET - incident angles (for either P- or SV-wave)
GAML - reflected angle for P-wave

GAMT - reflected angle for SV-waves
ET - reflected angle (for either P-or SV-wave)
GCO - γ-value in Eq. (2.43)
ZI, YI - coordinates of the points of reflection starting with the source point

TIME - time a ray takes to travel between two reflection points
SUM(M) - cummulative time between reflections
NI - number of hits
AR1 (M) - variable R_{1}^{1}
RC(M) - coefficients of reflection
UM,UN - direction cosines of the incident ray
VM,VN - direction cosines of the reflected ray
AKT11 - amplitude at the point of hit (location of the transducer)
ARPP - displacement contribution of the P-wave
ARPS - displacement contribution of the SV-wave
PHI - angle of emission
P1 - 3.1415927
RPHI,RPHA,RAND - random numbers generated
Z - the upper or the lower surface of the plate
RM, RN - direction cosines of the normal to the planes of the plate
AT - parameter, r_{0}
TETI - incident or reflected angle for P-wave
TETT1 - reflected angle for SV-wave
TET2 - incident or reflected angle for SV-wave
TETL - reflected angle for P-wave

ENRLLI, ENRTLI - energy ratio of the reflected P-wave and SV-wave to the incident P -wave, respectively

ENRLTI, ENRTTI - energy ratio of the reflected P - and SV-waves to the incident SV-wave, respectively

ADENR - summation of the energy ratios
RPSD,RPPD,RSSD,RSPD - coefficients of reflection of P-SV, P-P, SV-P, and SV-SV waves, respectively

WFN - weighting function (taken $=$ one in this calculation)
AH1 - distance of the imaginary source from the reflecting plane
K - ratio of the wave speeds, C_{L} / C_{T}
AK(I) - wave front curvature factor
AI(I) - radial amplitude at the receiving point
DI - time interval
XI(I) - the vertical components of displacement
Y2(I) - the horizontal components of displacement
X(I) - the arrival time
SUBROUTINE UI - subroutine for choosing the direction of emission
SUBROUTINE HITPLN - subroutine which determines the point of reflection
SUBROUTINE REFLEC - subroutine which determines the direction of the reflected ray

SUBROUTINE ERATIO - subroutine which calculates the coefficient of reflection and the energy ratio

SUBROUTINE CHOREF - subroutine which chooses the reflected ray and the reflected angles

SUBROUTINE AMPLCO - subroutine which calculates the radial amplitude at the receiving point

SUBROUTINE UTHETA - subroutine which calculates the amplitude at the initial point of reflection (for the case with the surface force)

SUBROUTINE PP - the plotting subroutine The following pages contain the list of the programs used.

COMPUTER PROGRAM LIST FOR
DILATATIONAL CASE


```
// KEGION=2045k
```



```
// EXEC FORTJごG,PAKS.LKED='SILE=(2048)'
//EOET.SYSIN DD *
        REAL PI,K,KAY
        DUUBLE PGECISIUN ¿Sと&う
        DIMENSION TIME1(300UO),VこDAI1(3OUUO), RこDAI1(3COJO)
```



```
        DI:ENSEOK X(1500),X1:1500),Y(:15Ũ0)
        DIMENSIUG GCU(100)
```



```
        COMMUR/COM2/AT,AG,暞T2,APB,APS,AR
```



```
        1RSED,FCC
```



```
        COMNON/COK7/DSEED
        COMMON/CG:18/X1,Y2,P
        COKMON/CUצG/IIME1,TIEE2,VCDAT1,GこDAT1,VCDAZZ,GこDAT2
```



```
        COMMOR/COE11/GこO
        CALL CPJIIM
        DSEED=731549.DO
        CL=5.1
CC AYqHOEIZONIAL DISIANCE OF TRAKS`OLEnS FEOA POINI OF OnIGIN
            AY=300.
            YTEY=AY-1.
            YT合2= LY +1.
            YT=AY
            ZT=15.
            YTB3=2T-1.
```

ISUMI $1=0$
$\mathrm{JJ}=0$ ．
$N T=18$
DO 300L $=1,500000$
DO1IJK＝1，iii
E 1 （IJK）$=0$ ．
RE1 $(I J K)=0$ ．
1 CONIINUE
AH $1=0$ ．
$Y I=0$ ．
$\mathrm{ZI}=0$ 。
$\operatorname{SUM}(1)=0$ 。
I $B A=0$
$C T=3.05$
TMAX＝8．＊2．＊2T／CT
$C S=C L$
CALi UI
IF：3MM．Eマ．1） 0010300
DO400 $4=1$ ，NT
IF（CS．EQ．Ci）GOTO26
$N=1$
$\mathrm{PE}=\mathrm{N}^{*}(2 * *(4)$
GOT027
$26 \quad \mathrm{~N}=0$
PE＝i＊（2＊＊20）
27 IbA＝IBA＋PE
If（M．EQ．1）GUTO221
GOZO122
221 ET＝TET
GAM1 $=0$ ．
IF（UN．E2．0．）GUTO300
122 CONTINUE
GN1＝YI
CALL HITPLN
IF（UN．LT．U）GUTO10
IF（YI．GE．YTB1．AND．YI．LE．YTB2）GUTO120

1U IF (YI.Gi.YIE2) 3010300
$126 \mathrm{R} 1(\mathrm{M})=\mathrm{AT}$
TIME=E $1(\mathrm{M}) / C S$
IF (M.E2. 1) GOTO251
$\operatorname{SOH}(K)=\operatorname{SUN}(M-1)+T I H E$
$G D=Y I$
GCO (M) = Gli/GD
GOTO253
251 CONTINUE
SUS $(M)=$ - $I M E$
253 CGNTINJE
IF (SUM (M) - GE. TMAX) GOTO 300
IF (UN.iT.0) GUTO233
IF (YI.GE.YTB1.AND.YI.IE.YZB2) GOTO234 GOTO233
234 ISUMI $1=$ ISUMT $1+1$
$\mathrm{P}(\operatorname{ISUMI} 1)=I B A$
BAT=1.
TIME1(ISUMi1)=SUM(H)*CI/(2.*टT)
$\mathrm{N} N=\mathrm{M}$
$\mathrm{k} \uparrow=\mathrm{Nk}$
GOTOZ35
233 БAT=0.
235 CALL ERAIO
CALI CHOEEF
$T(M)=T A T$
$\mathrm{FC}(\mathrm{M})=\mathrm{FCC}$
AF $1(M)=4 E$
263 CONTINUE
IF:UN.LT.0) GOTO 264
IF (YI.GE.YTB1.AND.YI.LE.YTB2) GUT 3600
264 CONTINUR
CALL FEFLEC
IF (VN.LT.0.) GOIO2
$U M=S I N(E T)$
$\mathrm{UK}=\operatorname{CoS}\left(\mathrm{ET}^{\mathrm{I}}\right)$

```
- SOTU311
    29 EE=AKCOS!VN)
        EIER=(TEI-ET) +EE
        UM=SIN(ETEK)
        UN=COS (ETER)
    311 TET=ET
        IF( SUM(H).GT.TMAX) GOTO 300
    400 CCNTINUE
        GOTO300
    600 CONIINUE
こC こaLCULATIOG UF AMPLITUDE COEF.,AK
    IF!N1.EQ. 1) GOIO4
    CALL ArPiCu
    AKT11=AI(N1)
    AEPP=APP*AKT11
    AFPS=APS*AKI11
        30T07
    4 AKT11=1./E1!1)
        AEPR=APP*AKT11
        ARPS=APS*AKT11
    7 COIVINUE
        IF(CS.E.2.CT) GOTO8
        HCDAT1(ISJMT1)=AKT11*SIN(GAM1) +AEPP*SIN:GANL) +AR2S*CJS (3AMI)
        VCDAT1(ISUMT1)=AKI11*COS(GAM1) - AEPE*こOS(GA.jL) +AKPS*SIN(GA:M)
        GoTu300
    8 HCDAT1(ISJAT1) = -AKI 11*COS(GAM1) +AEPP*SIN(GAKL) + ARPS*COS (GAMT)
```



```
    300 CONTINUE
        N2=JJ
        N3=1SUMT1
        WEITE{6,9000} ISUMT1
9000 FORMAT(4&,I10)
    CALL PP
    SIOP
    END
    SUBEOUTINE UI
```

CC UI CALCULATES DIEECiIUN COSINE CE INCIDENT fay
こC UM, UN \rightarrow DIRECTIOM COSIN:S
REALPI, 2LI
DOUBLE 2ñECISLúh USEED

DIMENSION K2: 150), AKD (150), AKLi (150), SUM:150), T:150)
INTEGEE P (30000), 2(3UJJO), PE, ARA
COMMON/COM1/UK, UN, ZI,YI, L,Z2,N2,N3,L

COMMON/COM3/VK, VK,TET,N1, COI, ADELIR,COSIN, COSK
 COYMON/COM5/ET, GAY1,GAME,GAML,AE1, CCA, A\&1, RPDD, aDSD, ESSD,
1RS?D, BCC
COSMUN/COMO/R1, AK, RC, AI, AR2,T
COMMON/CUM7/DSEED

$P I=3.1415927$
141 hedI=GGUEFS:DSEED)
IF (EPHI.GT. O . ANJ. EPHI.LT.1.) GUTU271
ME $y=1$
GOTO142
271 CONTINUE
MMM=0
PEI=PI*KPHI
IF (PHI.GT.PI/2.) GOTJ143
TET=PHI
GOTO144
143 TET=PI-PEI
144 CONTINUE
$\mathrm{UN}=\operatorname{COS}(\mathrm{PHI})$
$U M=S I N(2 H I)$
142 CONTINJE
RETUKN
END
SUBROUTINE HITPLI
CC AT PABGMETEK=DISTANCE FEOM ORIGIN OAFIHSI PIEECE POINT TOTHE NEXI

DIMENSIUN i 2 （150），AR̃（150），AKN（150），SUY（150），T（15U）
DUUBLE PAECISION DSEED
COMEON／COMT／UK，UN，ZI，YI，Z， $22, N 2, N 3, L$
COMMON／COM2／AT，AH，ATET2，APP，APS，AK
COMGUN／CUM3／VN，VM，TET，N1，COI，ADEMZ．CUSIN，COSA
COMMON／COM4／EFB，ENRTTI，ENRLTL，ENGLLI，EARTLI，K，OS，CL，CL，IETIT，TEML
COMMON／COM5／ET，GAA1，GAMT，GAML，AH1，CCi，AR1，RPPD，EこSJ，RSSD．
1FSPD．RCC
COHSON／COAG／A1，AK，RC，AI，4H2，I
COMッOK／COM7／DSEED
COMMUN／COA10／MMM，EAT，BLT，TIT，KAY，ZDIK，ARA
$\mathrm{A} A=15$ ．
IF（UN）7，11．9
7 2＝－AH
ZDIA＝1．
gomolo
ZDIF＝0．
$10 \mathrm{AT}=(\mathrm{Z}-\mathrm{ZI}) / \mathrm{UN}$
$\mathrm{ZI}=\mathrm{ZI}+\mathrm{UN}_{\mathrm{N}} \mathrm{A}_{\mathrm{A}} \mathrm{T}$
$\mathrm{YI}=\mathrm{II}+\mathrm{U} \mathrm{H}=\mathrm{AT}$
11 CONTINUE
GETUEA
END
SUBFUUTINE EEFLEC
CC Calculation of reflected eay．VI
REALPI，FHI
DIMENSION K1：100），AK（100），BC（100），AI：100），AF1（100），AK2（100）
DIMENSIUN E2：150），AKD（150），AKN（150），SUK（1うO），T（15J）
DOUBLE PEECISIJN DSEED
COMMON／COH $1 / \mathrm{UK}, \mathrm{UN}, \mathrm{ZI}, \mathrm{YI}, \mathrm{Z}, \mathrm{Z} 2, \mathrm{~N}, \mathrm{~A} 3, L$
COMAON／COM2／AT，AH，ATET2，APP，AZS，AK
COAMON／COM3／VN，VM，TET，N1，COI，ADENE，COSIN，CUSA

 1RSPD．ECC

```
        COMMON/COSG/G1,AK,HC,AI,AR2,I
        COEMOL/COKT/DSEED
        COMKON/COH1O/MMM,TAT,EAT,TIT,KAY,ZDIn,AEA
        IF(Z.EQ.RE) GUTO281
        RN=0
        EN=1.
        GOTC283
    281 CONTINOE
    EM=0.
    E. N=-1.
    283 CONTINUE
```



```
    VN=-UW*&S*GN
    EETUEN
    END
    SUbinUUTILGE EshTIU
cc calcuiatioli of the enEmgy fatigos
    DIMENSIUN F1(100), AK(1UU), AC(1JU),AI:100), cax 1:10J), A&2:1U0)
    DIMENSION &2(150), AKD(150), AKN(150),SUM(150), I(150)
    DOUBLE PEECISION DSEED
    REAL PI,K,KAY
    COMMON/COH1/UN,UN,ZI,YI,Z,Z2,N2,N3,L
    COBMON/COM2/AT,AH,ATET2,APP,APS,AF
COMBON/COM 3/VR,V年,TET,N1,COI,ADENR,COSIL,COSa
COMLON/COM4/KFL,ENETIT, ESNLIL,EN&ILI,ENGTLI,K,こS,CT,CL,TENET,TEIL
    COMMON/COKS/ET,GA:H1,GAMI,GAHL,AH1,CCA,AR1,&PrD,K3SO,HSSD,
    1RSPD,ECC
    COMMON/COM6/E1,AK,RC,AI,AK2,T
    COMMON/COMT/DSEED
    COMMON/COM10/MAK,TAT,EAT,TIT,KAY,ZDIR,AKA
    K=CL/CT
    IF(CS.EQ.CT)GOTO110
zC CALCULATE EMERGY EATIOS TO LONGIfUDINAL INCidence
    TET1=TET
    CCA=0.
```


 ENKTLI=COSR*RPSD*EPSD/(K*COSIN)
ENRLLI $=\pi$ APD*EPPD

ATET2=SIN: (2ET2)

\#2
 **2)/($k * K$)

4.*ATET2*COSIN*ACCS/Ki)


```
        ADENR=ENELTI+ENRTAI
        guTo111
    291 CONTINUE
        ENGTTI=1.
        ENKLTI=0
        ESSD=1.
        BSPD=0.
    111 CONTINUE
        RETUKN
        END
        SUBRUUTIAE CHOEEE
CC こHOREF CHOUSES DIRECTION OF fEFLECTED RAY
    DIMENSIULG F1(100),AE(100),RC(100), AI:100), AE1!1UU), AR2(100)
    DIMENSIOR E2(150),AND(150),AKN(150),SUM(150),T(130)
    REAL PI,K,KAY
    DUUBLE PaECISION DSEED
    COMMON/COM1/OM,UN,ZI,YI,Z,Z2,N2,H3,i
    CUQNON/CON2/AT,AH, ATET 2,AP?, H2S,AK
COMAON/COMS/VN,VM,TET,N1,COI,ADENE,COSIN,COSK
COMHON/COM4/GFN,EARTTI,ENDLTI,ENZLLI,ENETLI,K,ES,CI,CL,TETTI,NETL
COMMON/COMS/ET,GAM1,GAMT,GABL,AE1,CCA,AR1,REPD,EPSJ,ENSD,
1RSPD,RCC
    COHMON/COS6/\hbar1,AK,KC,hI,AR2,T
    CUMHON/COMT/DSEED
    COMMON/COM10/K&M,TAT,DAT,TIT,KAY,ZDIム,A&A
    PI=3.1415927
    GAND=GGUDFS(DSEED)
    COET=CUS(ET)
    COCUSR=COET*COET*COET
    Cos2AI= COS(GAM1)*CUS (GAG1)*COS (GAS1)
    AH1N=COCUSP*SIN(GAK1)
    AK1D=COS〈EI*SIN(ET)
    IE(AH1D.Eर.O.)GOTO\13
    AH1=AH1K*(AE1+ABS(ZI))/AH1D
    AR=AH1/CUET
    GOTO118
```

$113 \mathrm{AK}=0$.
118 CONTINUE
IF (CS.E2.CT) GOTU 114
BETA=ENELLI
BET=1./BETA
IF: (1.-BETA) -LT. 0.00001$)$ जOTOL22
EET: $=1 . /(1 .-$ EETA)
IF (BAT. Ex. 1-1GOTO 224
IF (RAND.LE. BETA) GOTO22
TAT=1.
WFil $=\mathrm{EET}$
$\operatorname{CS}=C$ I
$K \mathrm{~K} Y=\mathrm{K}$
RCC=KPSD
ET=TETI 1
IF!2DIE.EQ.0.) GUTU224
ECC=-RCC
GOTOZ24
222 COnTINUE
TAI = 0 .
ME $\mathrm{A}=\mathrm{BET}$
$C S=C L$
RCC=FPPDD
ET = TET
224 CONTINUE
GAM1=TET
GAMI=TETE1
GAML=TET
$A P P=A P P D$
APS=RPSD
GOT0120
114 ALFA=ENETTI
$A L F=1 . / A L E L$
IF!ALFA.EQ.1.) GOTO232
ALPL=1./(1.-ALFA)
GOTO234

```
22 CONTINUE
    ALFL=0.
    API=PI*.5
    TETL=API
234 CONTINUE
    IF(DAT.Eと. 1.)GOTO244
    IF (BAND.LE. ALFA)GUTU242
    TAT=1.
    KAY=1./K
    WFN=ALFL
    CS=CL
    RCC=RSPJ
    ET=TETi
    IF'ZOIR.EQ.O.)GOTO244
    RCC=-5CC
    GOTO244
242 COLTINJE
TAT=0.
#FN=ALF
CS=CT
BCC=币SSD
ET=TET
244 CONTINUE
GAM1=TET
GAML=TETi
GAMT=TET
APP=RSPD
APS=RSSD
120 CONTINUE
IF(CCA.GT.1.)GOTO252
GOTO129
252 CONTINUE
CCT=CT/AIET2
CT=CCT
129 COBTINUE
EETURN
```

END
SUBROUTINE AMPLCO
DIMENSION R 1 (100), AK (100), HC(100), AI (100), AE1:10J), AE2:100)
DIMENSION $\mathrm{EZ}(150)$, AKD (150), AKN(150), SUM (15J), T(15U)
DIMENSIUN GCU(100)
JOUBLE PAECISION JSEED
COMYON/COM1/UA, UR, ZI,YI, Z, Z2, N2,N3, L
COMMUN/COM2/AT,AH,ATET2,APP,AFS,AR
COMYON/COM3/VN,VM,TET, N1,COI, $\angle D E N A, C O S I M, C O S E ~$
COMMON/CUM4/GFN, ENETTI, EVGLTI, ENELLI, ENEILI, R, こS, CT, CL, TETIT, TETL

1RSPD,RCC
COMMON/COMG/R1, AK, RC, AI, AR2. T
COMMON/COM7/DSEED

cummon/COs11/ECO
NLT=N1-1
D05511K=9.NIT
$\mathrm{K} 2(\mathrm{IK})=\mathrm{K} 1(\mathrm{IK}+1)$
551 CONTINUS
DO555I $=1$, N 1
IF (I.EQ.1) GOTU 262
$A E 2(I)=A E 1(I)+R 2(I-1)$
$A E R=A E 1(I) / A R 2(I)$
$A K(I)=A E K * G C O(I)$
AI (I) $=$ SQET (AK (I))*AI (I-1)* *C(I-1)
GOTO555
262 Continue
$A I(1)=1 . / R 1$: I)
555 CONTINUE
EETJEN
EAD
SUEFOUTINE PE
DIMENSION TIME1 (30000), VCDAT1 (30000), HこDET1 (300UJ)
DIMENSION X(1500), X1(1500), Y2(1500)
INTEGER $P(30000), 2: 30000)$, PE,AKA

DCJBLE PEECISIUN DSEE
COMMON/COM1/JK, UL, ZI,YL,Z,2Z,NL, H3, L
CCIMMON/COM2/AT, \&H,AIET2,APP,APS,AR
COMMON/CUM3/VN, VK, IET,N1, COI, ADENR, COSIN, COSE

CG A YN/ COM / DSEED
CUMmON/Cus8/ג1,Y2.P
COMYON/COM9/TEME1,TIME2,VCDAT1, HCDAT1,VCDAI<, FCDAL2
$\mathrm{N}=840$
$\mathrm{N}=850$
DO10I=1, N
$X 1: I)=0$.
Y $2(I)=0$.
10 CONTINJE
$D I=.01$
$I_{K}=20$
$\mathrm{KJ}=0$
DO $15 \mathrm{I}=1$, N 3
Q $(I)=P(I)$
15 CONTINUE
DO4 1K=1,N3
DO40J=1,N3
IF (2 (K). Ex. 2 (J)) GOTU44
GOTO40
44 IF (K.EV.J) GOTO4 2
$Q(J)=0$.
GOT340
$42 Q(K)=0$.
$K J=K J+1$
TIME1\{KJ)=TIMET(K)
VCDat $1(\mathrm{KJ})=\operatorname{VCDAT1}(\mathrm{K})$
HCDAT 1 ? $K J)=$ HCDAT1 $\{K)$
40 CONTINUE
41 CONTINUE
DO100 K=1. KJ
$I I=I N I(I I M E 1(K) / D I)$

DO100I $=1,20$
IF (I.LE. 10) GOTO11
$\mathrm{H}=(\mathrm{I} W-I) / 10$.
GOTO 13
$11 \mathrm{H}=\mathrm{I} / 10$.
$13 \mathrm{JJ}=\mathrm{I}+\mathrm{I} \mathrm{I}$
$X 1(J J)=V C D A T 1(K) * \pi+\pi 1(J J)$
$Y 2(J J)=\operatorname{HCDAT} 1(\mathrm{~K}) * i+Y 2(J J)$
100 CONTINJE
$\mathrm{I}=0$
DO200K=100,
$I=I+1$
$X(I)=\mathbb{K}+01$
$X 1$ (I) $=X 1$ (K)
$Y 2(I)=Y<(K)$
WEITE: 0,27) $\mathrm{X}:(1), X 1$ (I), Y 2 :I)
27 FORMAT (4i, 3F15.6)
200 CONTINUE
N4=I
$\mathrm{F}=36 . / 40$.
CALL PLOT (0.0.2.0, 03)
CALL FACTOí?
$X(N+1)=1$
$X(N 4+C)=1$
$\mathrm{X} 1(\mathrm{~N} 4+1)=-.0024$
$X 1(N 4+2)=.0003$
$Y 2(N 4+1)=-002$
$Y 2(N 4+2)=.002$

 $5 X^{1}(N 4+1), \mathbb{X}\left(\left\{N^{4}+2\right)\right)$
CALL $\operatorname{LINE}(X, X 1, N 4,1,0,0)$
CALL PLOT $(12.00,-3)$

GY2:(N4+1),Y2(N4+2)\}

CaLL iIAE ($\mathrm{A}, \mathrm{Y} 2, \mathrm{~N} 4,1,0,0)$
CALL PLOI (6., $-3 ., 999$)
EETUKi
DEBUG SUECHK
END

JES2 JOB STASISTICS ------

508 CAKDS HEAD

U SYSOUT PEINT FECOKDS

0 SySOUT PUNCH KECORDS
0.00 MINUTES EXECUTION TIME

COMPUTER PROGRAM LIST FOR
SURFACE LOAD

```
//INCHLAIE JOD ########,' EnUMI
    ',CLASS=N,TYPgUN=COPY,
    J0y 2c52
// REGION=2048K
/*JDEEAKA P=2EOCO1,LINES=10,F=90J2,UCS=TN,FOS=0000
// EXEC FCKTGCLG,PArM.LKEv='SIZE=(2U43)',PAZA&Gu='j#VICE=PLこTVou'
//FORT.SYSIN DD *
    EEAL PI,K゙,KAY
    DOUELE SFECISIOR DSEED
    DIMEASIUN TIME1(300J0), VCDAT1(30JUO), GCDAI1:3J0uv)
    DIMENSION R1(100),AK(100), तC(10J), AI(100),A&1(10J),A&2(1JU)
```



```
    DIMENSIUN A(2240),X1(2240),Y2(2240)
    DIMENSIOL (GCO:100)
    INIEGEE P(30000), Q(30000), PE,AZA
    COYSON/CON1/UN,UN,ZI,YI,Z,Z2,N2,N3,L
    COSHON/COM2/AT,AH,ATET2,APP,APS,AR
    COMMON/COM3/VN,VM,TET,N1,COI,ADEKIN,COSIH,COSE
```



```
    COMMOK/COM5/ET,GAM1,GAMT,GAML,AA1,CCA,AR1,FPPD,FPSD,ESSD,
    1RSPD,RCC
    COKMON/COMG/R1,AK,RC,AI,AK2,I
    CUMMON/COM7/DSEED
    COM#ON/CO:4/X 1,Y2,P
```



```
    COBYON/COM10/E##,TAT,BAT,TIT,KAY,ZDIE,LEA,ICS
    COMBuli/COm11/GCO
    COMMON/CCM12/TETIA
    CALL CPUTIM
    DSEED=731549.DJ
    CL=5.1
CC AY\rightharpoondownHOEIZONTAL DISTANCE OF TRANSJUCEENS FKOK ROINI OF OEIGIN
    AY=120.
    YTB1=AY-1.
    Y'B2=AY+1.
```

$\mathrm{YT}=\mathrm{A} \mathbf{Y}$
$Z I=15$.
$2 \mathrm{~T}=-2 \mathrm{~T}$
YIB3=ZT-1.
ISUMI $1=0$
JJ $=$,
$\mathrm{NT}=18$
$N I=500000$
DO 300L=1, NL
$\mathrm{YI}=0$.
$Z I=15$.
DOIIJK=1, N1
R1 $(I J K)=0$.
AE $1(I J K)=0$.
1 CCNIINUE
AE1=0.
SUM (1) $=0$.
IEA=0
$C T=3.05$
TMAX=12.*2.*2T/Ci
CALL UI
IF (MKM.EZ. 1) GOTO300
LO $400 \mathrm{M}=1, \mathrm{NT}$
IF (CS.E2.CL) GUTO26
$\mathrm{N}=1$
PE=N* (2**M)
GOTO27
$26 \quad \mathrm{~N}=\mathrm{J}$
$P E=M *(2 * * 20)$
27 IBA=IBA+PE
IF:M.EQ.1) GOMO221
GOTO122
TETTA=TET
GAM1=0.
122 CONTINUE
GH1=YI

CALL HITPLA
IF (YI.GE.YIB1.AND.YI.LE.YTí2) GOTO1<0
10 IF (YI.GT.YTB2) GOTO3J0
$126 \mathrm{~K} 1(\mathrm{M})=\mathrm{AT}$
TIME=51(M)/CS
IF (M.EQ.1) GOIO<51
$\operatorname{sjM}(N)=\operatorname{SUH}(\mathrm{M}-1)+\operatorname{IIME}$
$G D=Y I$
GCO (K) =SN1/GD
GOTO253
251 CONTINUE
SUY (M) $=$ TIME
253 CONTINUE
IF (Sije (M). GE. TyAX) GUTO 300
IE (YI.GE.YTZ1.AṄ.YI.IE.YTB2) SUTO230 GOTO233
230 If (AÖS (LI-2IT).LE.. O1) SOTO234
G0T0233
234 ISU日T1=ISUMA1+1
$\mathrm{P}($ ISJMT 1$)=$ IBA
$B A T=1$.
TIAE1 (ISUME1) =SUM (M)*CL/(2.*二T)
$\mathrm{N} N=\mathrm{M}$
$\mathrm{N} 1=\mathrm{NN}$
GOTO235
$233 \mathrm{BAT}=0$.
235 CALL EFATIO
CALL CHOEEF
$T(\mathbb{T})=\mathrm{TAT}$
$\mathrm{KC}(\mathrm{M})=\mathrm{ECC}$
AE1 $(M)=A K$
2b3 CONTINUE
IF (UN.EZ.0.1GOE0300
IF (UN.GT.0.) GOTO264
IF (II.GE.YTB1.AND.YI.LE.YTB2) GOTU600
264 CONTINUE

```
CALI KEFLEC
IFiVN.LT.O.) GOTO29
UM=SIN(ET)
UN=COS(ET)
30T0311
    29 ER=ARCOS:VN)
ETEK=(TET-ET) +EK
UM=SIN (EIER)
UA=COS(ETEN)
    311 TET=ET
    IF( SU台(M).GT.TMAX)GUTU3UO
    400 CONTINUS
    GuT0300
    6 0 0 ~ C O N T I N U E ~
こC こAiCULATION OF ASPlITJDE COZF.,AK
CALL UTHETA
    IF(AI (1).EN.O.)GOTO300
    IF(N1.EQ.1)GUTO4
    CALI AMPLCO
    4 AKT11=AI(N1)
    AEPP=APP*AKT11
    AEPS=A卫S*AKT11
    IF (CS.E2.CF) GOTO8
    HCJAT1(ISUMT1)=AKT11*SIN{GAMT)+AEアj*SIN(GAML)-AEPS*COS(GAMI)
```



```
        GOTO3uO
```



```
        VCDAT1(ISUMT1)=+AKE11*SIA(GAN1) +ARPP*COS{GA&L} +ARPS*SIN(GAST)
    300 CONTINUE
    N2=JJ
    N3=ISUMT1
    #EITE(6,90JJ) ISJMI1
9000 FOBMAT(4X,I10)
    CALL PP
    STO?
    DEDUG SUBCHK
```

```
END
SUBẼUUTINE UI
~C UI CALCJLATES DIGECIION COSINE OF iNOIDENI EAY
こC UM,UN 子DIAECTION CGSINES
    FEALPI,PaI
    UGUBIE PAECISION DSEED
```



```
    DIGENSIUK F2!(150), AKD(150),AKA(150),SUM(150),T:1כ0)
    INTEGER P(30000),Q(30000),PE,AKA
    COMMON/CUM1/UN,UN,Z1,YI,Z,Z2,N2,N3,L
    COMMUN/CUM2/AT,AR,ATET2,APP,AFS,AR
    COMYON/COM3/Vi, VE,IET,N1,COI, ADENE,COSIN,CGSE
```



```
    COMMON/COM5/ET,GAM1,GAMT,GAML,A#1,CCA,AR1,GPRD,ENSD,FSSD,
    1RSPD,RCC
    CO{YON/COMO/R1,AK,EC,AI,AE2,I
    COMMON/CUMT/DSEED
    CO:AMON/COM10/AMM,IAI,EAT,IIT,KAY,ZDIR,AIAA,ICS
    PI=3.1415927
141 EPAI=GGUEFS (DSEED)
    IF(APHI.GT.U.ANE. EPHI.LE.1.) SOIUC71
    MMS=1
    GOTO142
271 CONTINUE
    3HI=PI*RPEI
    IF(PHI.GT.FI/2.)GOTO143
    M#y=1
    GOTO142
143 TET=PI-PHI
    MMM=0
    UN=COS (PFI)
    UM=S1H:PHI)
    RFHA=GGUEFS(DSEED)
    IF!EPHA.LE..5) GOTO144
    CS=Cl
    ICS=0
```

gutol42
$144 \mathrm{CS}=\mathrm{CL}$
ICS=1
142 CON:INJE
IETJiN
debug suích:
END
SUBFoutine hifpln

DOURLE PEECISIOn DSEED

COMYON/COM3/VN,VA,TEI,N1,COI, ADEAE,COSIL, COSA

12SPD, ECC
COAMOLICOHE/E1,AK,EC,AI,AE2,T
COMMOH/COM7/DSEED

$A H=15$.
IF!(UN) 7,11,9
$7 \mathrm{Z}=-\mathrm{RH}$
ZDIR=1.
GOTO10
9 2=R H
ZDI $\mathrm{E}=0$.
10 AT $=(\mathrm{Z}-\mathrm{ZI} \mid / \mathrm{UN}$
$2 I=2 I+U l i * A T$
$\mathrm{YI}=\mathrm{YI}+\mathrm{UM} \mathrm{H}_{\mathrm{A}} \mathrm{A}$
11 continue
fETJEN
debjg sjbchk
END
subeuutine refiec

```
CC CALCULATION OF kEFLECTEJ Kay, Vi
    REAEPI,PHI
    DIMENSION R 1:100),AK(100),Hこ(100),AL(100),AE1(100),AG2(100)
    DIMENSION R2:150),AKD(150),AKN:150),SJM(150), (1:150)
    DOJELE PFECISION DSEED
    COH3ON/COM1/O#, UN,ZI,II,ZZ,22,N2,N3,L
        COHMOL/COH2/AT,AH, ATET2,APP,APS,AK
    COMMON/COM3/V i, VM,TET,N1,CUI,ADEUR,COSIN,CUSK
```



```
    1RSPD, ECC
    COMMON/COMG/R1,AK,AC,AI,AR2,I
    COMMON/COM7/DEEED
```



```
    IF(Z.\overline{EQ.AH)GOTU281}
    RM=0
    SN=1.
    GOmO283
281 COnTINuE
    RM=0.
    RN=-1.
    283 CONTINUE
    VM=-UH*RM*公M+UK
    VN=-UN*卮紬FN
    RETUEN
    DEbJG SUECAK
    END
    SUbROUTINE EEAIIO
cC CAlCULATION OF fHE ENERGY RATIUS
    DIMENSIUN E1(100), AK(100),RC(1JU),AI(100),AE1(100),AEL(100)
    DIMEKSIOR R2(150), AKD(150), AKN(150),SUS(150), I(150)
    DOUBLE PEECISION DSEED
    REAL PI,A,RAY
    COEMON/COM1/JH,UN,ZI,YI,Z,Z2,N2,N3,I
    COMAON/COM2/AT,AL,ATET2,APP,APS,AE
    COMNON/COE3/VA,VK,TET,N1,COI, ALENE,CUSIN,COSE
```


1ESPD, ECC

COMMON/CORG/E1, AR, ECC,AI, AE2, I
COMMOL/COM7/DSEED

$K=C L / C T$
IF (CS.EQ.CT) GUT 0110
cc Calculate enekgy ratios tó lungitudikal lnaidence
TET1=TET
CCA=0.
ATET1=SIN(2ET1)
TETI=ATET1/K
TETT1=AKSIN(TEIT)
Cosp=cositeTt 1)
$\cos \mathrm{N}=\cos (\operatorname{cic} 1)$
UMSQ=ATET1*AEET
AUMSQ=́ATET1/K) **2
ACC=1.-2.*AUMS2
AC $1=1$. -A UMS X
ACCT=(4.*UMS2*COSIii) $/(K * K * K)$
RPS $=+\left(4 . * \operatorname{ATET} 1 * \operatorname{COSI} \mathrm{i}^{*} * \mathrm{ACC}\right) / \mathrm{K}$
RPP=-(ACC*ACC-ACCT*SQFT (AC1))
DELTA=ACC*ACC+ACCT*SQRT (AC1)
RPSD=EPS/DELTA
RPPD=EPP/DELTA
ENRTLI=こOSB*RPSD**PSD/(K*COSIN)
ENRLLI=FPPD*RPED
ADENR=ENRTLI+ENHLII
GOTO111
110 TET2=TET
ATET2=SIN(IET2)
CCA=ATET2*K
IF (CCA.GT. 1.) GOTO291
TETL=AKSIN(CCA)
$\operatorname{COSIN}=\operatorname{COS}(\mathrm{TET} 2)$

```
        COSR=CUS(TETL)
        UMSQ=ATET2*ATEI2
        AUYSQS=(1.-こCA**2)/(K*K)
        ACCS=1.-2.*UMS2
        RSP=-(4.*ATET2*COSIN*ACCS/K)
        RSS=-(ACCS*ACCS-4_*UMSQ*COSIN*SQET(AU4S2S))
        DELTAS=ACCS*&CCS+4.*URS2*COSIN*S2おI(AUYS2S)
        RSPD=KSP/DELTAS
        RSSD=RSS/DELTAS
        ENRTTI=RSSD*KSSD
        ENRLTI=RSPD*FSTU*COSR*K/COSIA
        ADENK=ENELTI+ENRTTI
        SOTO111
    291 CONTINUE
    ENETTI=1.
    ENRITI=0.
    ESSD=1.
    TSDD=0.
    111 CONTINUE
        RETUKN
        DEDUG SUBCHK
        END
    SUBEOUTINE CHOREF
CC CHOKEF CHOOSES UIRECTION OF REFLECTED RAY
    DIMENSION K1(100),AK(100), सC(100),AI(100),AE1:100),AB2:100)
    DIMENSION &2(150),AKD(150),AKN(150),SUK(150),I(150)
    REAL PI,K,KAY
    DOUBLE PEECISION DSEED
    COMBON/COM1/U#,UN,ZI,Y1,Z,Z2,N2,N3,L
    COMBON/COM2/AT,AH,ATET2,A2P,APS,AK
    COMMON/CUM3/VN,VM,TET,N1,COI,ADENA,,COS1N,COSi،
    COMMON/COM4/GFN,ENRTTI,ELKLTI,ENKLLI,ESGTLI,K,こS,こI,CL,TETIT,METL
    COKMOK/COMS/ET,GAM1,GAMI,GAML,AM1,CCA,AE1,FFPD,EPSO,HSSI,
1RSDE,FCC
    COMMON/COME/E1,AK,EC,AI,AR2,T
    CUMMON/COM7/DSEED
```

```
COMMON/COM10/MAX,TAT,EAT,IIT,KAY,ZDIEA,ARA,ICS
PI=3.1415927
EAND=GGUBFS{DSEED\
COET=CUS(ET)
COCUBR=COET*COET*CCET
COS2aI=COS(Ghm1)*COS(GAK1)*CUS (GA&1)
AH1N=COCUEE*SIN(GAK1)
AH1D=COSQEI*SIN(ET)
IF(AH1D.E2.O.)GOTO113
AH1=AH1N*(AB1+AES(Z1))/AG1D
AF=AH1/CCEE
GOTO118
113 AK=0.
118 IF!CS.EQ.CT)GOTU 114
BETA=ENHLLI
EET=1./\overline{ETA}
IF((1.-5ETA).LT.0.0UUO1):GORO222
BEIT=1./:1.-EEIA)
IF (BAT.Eq.1.) GOTO224
IF(KAND.LE.EETA)GOTO222
TAI=9.
WFN=BETT
CS=CT
KAY=K
RCC=RPSD
EI=TETT1
IF(ZDIE.EQ.J.)GOTO224
    RCC=-{乐C
    GOTO224
222 CGNTINUE
    TAT=0.
    kFN=BEI
    CS=CL
    ECC=EPPD
    ET=TET
224 CONTINUE
```

```
    GAH1=TEI
    GANT=TEIT!
    GAML=TET
    APP=KPPD
    APS=EPSD
    GOTO120
114 ALFA=ENETST
ALF=1./ALFA
IF(ALFA.EQ.1.) GOTOL32
ALFL=1./(1.-ALFA)
GOIO234
232 CCNTINUE
ALFL=0.
API=PI*.5
TETL=API
34 CONTINUE
    IF(BAT.E2.1.) GUTO244
    IF(KAND.LE.ALFA)GOTO24
    TAT=1.
    KAY=1./K
    WEN=ALFi
    CS=Cl
    &CC=ES%D
    ET=TETL
    IF(ZDIÃ.E2.0.) GOTU244
    #CC=-5CC
    GOT0244
242 CONTINUE
    TAT=0.
    &FN=ALF
    CS=CT
    ECC=RSSD
    ET=TET
244 COHTINOE
```

GAy $1=\mathrm{TEI}$
GAML＝TETL
GABT＝TET
$A P P=R S P D$
$A P S=E S S D$
120 CONTIINE
IF（CCA．GT．1．）GUTO252
GUEO129
252 COHTINUE
$C C T=C T / A T E T 2$
CT＝CCI
129 CONTINUE
RETUN゙N
DEBUG SJBCHK
END
SUBROUTINE AMPLCO

DIMENSION $\overline{\mathrm{I}} 2(150), \operatorname{AKD}(150), \operatorname{AKN}(150), S \mathrm{~S} \times(150), 2(150)$
DIMENSIGN GCO（100）
JOUBLE PKECISIUN ISEED
COHHON／COM1／UM，UN，ZI，YI，Z ，Z2，N2，N3，L
COBHON／COH2／AT，AH，ATET2，Aアコ，ARS，AR
COHMON／COM3／VN，VM，TET，N1，COI，ADENR，COSIN，COSA

COMMOH／COM5／ET，GAM1，GAMT，GAML，AK1，CCA，AR1，K22D，KPSJ，HSSD，
1RSPD，RCC
COMMON／COMÓR1，AK，EC，AI，AR2，T
COMMON／COMT／DSEED
COMMON／COM10／MYE，TAI，BAT，TIT，KAY，ZDIE，AEA，ILS
COMMON／COM11／GCO
NIT＝N1－1
DO551IK＝1，NIT
R2（IK）＝R1（IK＋1）
551 COATINUE
DO555I＝1，N1
IF（I．EQ．1）GOT0555

```
    AZ2(I)=An`(I)+E2(I-1)
    AER=AR1(I)/AE2(I)
    AK!I) =ARA*GCO (I)
    AI(I)=SQKT(AK(I))*AI (I-1)*ZC(I-1)
555 CONTINUE
    RETUEN
    DEBUG SUBCHK
    END
SUBROUTINE UTHETA
REAL PI,K,K2,K3
COMPLEX UTTA
DGUSLE PKECISIUN DSEED
DIMENSION E1(100),AK!100),RC(1UU),AI!100),AE1(100),AN2(1JU)
COMMON/COM1/UN,UN,ZI,YI,Z,Z2,N2,N3,L
COMBON/COM3/VN,VM,TET,N1,CUI,ADENR,COSIN,CUSE
```



```
COHMON/COMG/A1,AK, пC,AI,AE2
COMMON/COMT/DSEED
COSMON/CUMTU/MMM,TAT, EAT,TIT,KAY, Zこİ,d^A,ICS
COMMON/COM12/IETTA
C44=.25
PI=3.1415927
A=K
K2=A*A
K3=A*A*A
AP2=R1:1)*C44*SQRT(2.*P1)/{C44*PI*30.)
IF!ICS.EE. 1) GGT0121
X=A*SIN (IETTA)
X2=2.*TETTA
AE}=|*
SX2=SIN(X2)
XQ=2.*AB-K2
ZSQ=XQ*XQ
XS=(AB-1.)*(AB-K2)
IF(AE.LT.1.)GOTO123
XKSQ&=S2ET(AB-1.)
```

XSR=K3*SX2*XKS2k
IF (AB.GE.1..AND.AB.LT.K2) GUIO124
$X S Q E=S Q E T(X S)$
FTHETA $=\mathrm{XSQ}$-4. $\mathrm{FAB}_{\mathrm{A}} \mathrm{XS}$ 2
UTTEIA $=-X S E /$ (AP2*ETAETA)
SOTO125

FTHETA=CMPLX(XSQ, O-) -XSQE

UITETA=EEAL (UTTA)
GOTO125
$123 \times K$ S2F=S2KT:AES (Ab-1.))
xS2K=SQ2T(XS)
FTiEEA $=X S Q+4 . * A D * X S Q E$
XR=(-K3*SX2)

UTTETA=EEAL; UTIA)
125 AI (1) =UTIETA
SOTO122
$121 \dddot{A}=S I N(T$ етTA)
$A B=\mathrm{X} * \mathrm{X}$
$Y=\operatorname{Cos}(T E T T A)$
$X S=(A B-1) *.(A B-K 2)$
$X S \sum R=S Q R T(X S)$
$X Q=(2 . * A \bar{j}-K 2)$
$X S Q=X \mathcal{Q} * Q$
FTAETA=XSQ+4.*AB*XSQK
$\mathrm{UR}=+\left(\mathrm{Y} *\left(-\mathrm{X}_{\dot{*}}\right)\right) /(\mathrm{AP} 2 *$ FTEETA $)$
AI (1) $=0$ K
122 CONTINUE
GETURN
DEBUG SJBCHK
END
SUDGUUTINE PE
DIMENSIOK TIME1 (30000), VCDAT1(300JJ). HCDAT1 (30000)
DIMENSION X(2240),X1(2240),Y2(2240)

```
INIEGER P(30000), Q(30000), PE,AKA
UOUELE PFECISIUN DSEED
COMMON/COM1/US, UN,ZI,Y1,Z,こ2,N\angle,N3,I
COAMON/COK2/AT,AE,ALET2,APZ,ARS,AR
COMMON/COM3/VN,VM,TET,N1,CUI,ADENE,COSIN,COSA
COYMON/CUM4/GFN,EHETII, ENALTI,ENGLLI,ELGTLI,K,こS,CT,CL,IEIIT,IEIL
COHMON/COMT/DSEED
COMMCN/COM8/X1,Y2.E
COMMGL/COM9/IIME1,TIME2,VEDAT1, ACDAT1,VCDAT2,HCDAT2
N=1200
D010I=1.N
X1(I)=0.
Y 2:I) =0.
10 CGNTINUE
DI=.01
Ik=80
KJ=0
DO15I=1.N3
Q!I)=P(I)
15 CONTINUE
DO41K=1,N3
D040J=1.N3
IF(P(K).EQ.Q(J))GOTO44
GOTO40
4 4 ~ I F ( K . E Q . J ) G O T O 4 2 , ~
Q (J)=0.
GOTO40
42 2(K)=0.
KJ=KJ+1
TIME1(KJ)=TIME1(K)
VCDAT1 (KJ) = VCDAT1 {K)
HCDAT1(KJ)=HCDAT1(K)
40 CONTINUE
41 CONTINOE
DO 100K=1,KJ
II=INT(TIME1(K)/DI)
```

```
        DO10UI=1,I%
        IF(I.GE.1.AND.I.LE.IN)GUTOT1
        M=0.
        GOTO13
    11 k=1.
    13 JJ=I +i I
        X1:JJ)=VCD&T1(K)*(K+X1 (JJ)
        Y2(JJ)=HCEAT {(K)*&+Y2(JJ)
    100 CONTINUE
    DO2OOI=1,N
    X(I) =I*DI
    X1:(I)=X1:I|
    Y2(I)=Y2(I)
    HEITE:O,27)XiI;, E1'I),Y2!I)
    27 FORMAT(4X,3F15.6)
    200 CONTINUE
    N4=N
    EALL PLOT:0.0,2.0,-3)
    CALL SCALE(X,8.,N4,1)
    CALI AXIS(0.,0.,'TIME OE H&TS',-12,8.,0.,i(iN+1), &(N++2))
    CALI SCALE{X1,5.,N44,1)
    CALL EXIS(0.,O.,'VEAT. COMP. OE DISP. TAGNS.E<',29.5.,90.,
5X:{N4+1), X1:(N4+2)}
    CALL LINE(X,X1,N4,1,0,0)
    CALL PLOT(12.,0.,-3)
    CALL SCALE(X,5.NN4,1)
    CALL AXIS(O.,0.,'mIME OF KIIS',-12,8.,0.,A(K++1),X(N4+2))
    CALL SCALE(Y2,5.,N4,1)
    CALL AXIS(0..0..inORZ. COMP. OF DISE. INANS.#2',29,5.,90.,
bY2(N4+1),Y2(N4+2))
    CALL LINE(X,Y2,K4,1,0,0)
    CALL PIOT(8..,-3..999)
    EETUEN
    DEBUG SUBCiK
    END
/1
```

