INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

300 N. Zeeb Road Ann Arbor, MI 48106

Shadfar, Saeed

DETERMINATION OF LIFETIMES, OPTICAL EXCITATION FUNCTIONS TRANSMITTED ELECTRON SPECTRA, OPTICAL SPECTRA AND QUENCHING CROSS SECTIONS

University
Microfilms
International son. zeeb foos, Amn Antor, M. 489106
-

THE UNIVERSITY OF OKLAHOMA

 GRADUATE COLLEGE
DETERMINATION OF LIFETIMES, OPTICAL EXCITATION FUNCTIONS TRANSMITTED ELECTRON SPECTRA, OPTICAL SPECTRA AND QUENCHING CROSS SECTIONS

A DISSERTATION
 SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the
 degree of DOCTOR OF PHILOSOPHY

By
SAEED SHADFAR
Norman, Oklahoma

1982

DETERMINATION OF LIFETIMES, OPTICAL EXCITATION FUNCTIONS

 TRANSMITTED ELECTRON SPECTRA, OPTICAL SPECTRA AND QUENCHING CROSS SECTIONS
A DISSERTATION

APPROVED FOR THE DEPARTMENT OF PHYSICS AND ASTRONOMY

Dedicated
to my wife
Fereshteh

ACKNOWLEDGEMENTS

I wish to express my gratitude to Dr. David E. Golden for pointing out the importance of this problem and for his patience and help during this research. My special thanks go to Dr. Bill Paske for his help, friendship, and many useful discussions regarding this research. Also to Gene Scott for construction of the apparatus, and Jaquine Littell for editing and preparing the manuscript. The United States Air Force provided financial support for this research.

I want to express very special thanks to my wife Fereshteh for her patience and support during the years of graduate school.

DETERMINATION OF LIFETIMES, OPTICAL EXCITATION FUNCTIONS TRANSMITTED ELECTRON SPECTRA, OPTICAL SPECTRA AND QUENCHING CROSS SECTIONS

BY: Saeed Shadfar
Major Professor: David E. Golden, Ph.D.

Abstract

An apparatus has been set up which allows the measurement of transmitted electron spectrum, radiative decay lifetimes and optical excitation functions of any gas molecules (atoms) in the region of visible and vacuum ultraviolet. For lifetime measurement a delayed coincidence photon counting technique has been used.

Transmitted electron current spectrum for He and N_{2} have been measured without modulating the electron gun and without using a phase sensitive detector. With this technique an instrumental resolution of 30 meV FWHM has been obtained.

Optical spectra of CO were mearsured in the region of interest at many different electron energies to determine the extent of possible spectra overlap and to aid in the indentification of week band.

The radiative decay lifetimes for the $a^{3} \Sigma^{+}(v=9,12-16)$ states of CO have been measured. The lifetimes, extrapolated to zero pressure for the $v=12-16$ vibrational levels have been found to be in the range of $4-5 \mu \mathrm{sec}$ and these results are consistent with a ν^{3} extrapolation of previous lifetime measurements of the lower vibrational levels. The collisional quenching cross sections were calculated from the pressure dependence of the measured lifetimes.

The optical excitation functions for these vibrational levels have also been measured. Multiple thresholds have been observed which appear to be due to overlapped vibrational levels of the $d^{3} \Delta$ and $e^{3} \Sigma^{-}$states. The thresholds obtained from emission functions agree with spectroscopically determined thresholds.

The optical emission function for Vacuum Ultra-Violet photons of H_{2} has been measured. $\mathrm{A} \mathrm{MgF}{ }_{2}$ window which allows the passage of VUV photon has been usead. Several new series has been observed.The lifetime of VUV photons at three different energies has also been measured.

TABLE OF CONTENTS

Page
Acknowledgements iv
Abstract v
List of Tables ix
List of Figures X
Chapter
I. INTRODUCTION 1
II. THEORY 7
III. APPARATUS 15
A. Vacuum System 15
B. Electron Gun 19

1) Introduction 19
2) Cathode, Pierce, Anode System 20
3) RPD Monochromator and Einzel Lens 20
4) Extraction Lens 23
5) Scattering Cell 24
6) Channel Electron Multiplier and Faraday Cup 25
Page
C. Photon Channel 30
D. Cleaning of the Electron Gun 32
E. Assembly of Electron Gun and Magnetic Shielding 34
F. Bake Out Procedure 35
G. Cathode Activation 37
IV. DATA ACQUISITION 56
A. Optical Alignment 56
B. Tuning of the Gun 60
C. Optical Excitation Funcation 62
D. Lifetime Measurement 65
E. Data Transfer and Storage 68
V. RESULTS AND DISCUSSION 79
References 121
Appendix 127

LIST OF TABLES

Page
3-1. Cathode Activation. 38
4-1. Sample of Analyzed Lifetime Data by LASL. 69
5-1. Threshold for $v=8-16$ Vibrational Levels of the $a^{3}{ }^{3}+$ Stãte. 89
$5-2$. Thresholds and Identification of Overlapping States. 90
5-3. Radiative Decay Lifetimes and Collisional Quenching Cross Sections for Asundi Band. 91
5-4. Calculated Thresholds for the $v=0-16$ Vibrationai Levels of the $a^{3} I I$ State. 92
5-5. Comparison of the Energy Values of the Resonance Bands
"a", "b", "c", "d", "e", "f", and "g" with other Experimental
Techniques. 93
5-6. Radiative Lifetimes for VUV photons 97

LIST OF FIGURES

Page
1-1. Energy Diagram of Carbon Monozide. 6
3-1. Experimental Apparatus. 39
3-2. Vacuum System. 40
3-3. Vacuum System Interlock. 41
3-4. DC Power Supply Rack Control. 42
3-5. Pulsed Electron Gun. 43
3-6. RPD Monochromator. 44
3-7. Electrical Connection of RPD. 45
3-8. Energy Distribution from Hot Metal. 46
3-9. Fraction of Electrons with Energy to Pass a Retarding Potential V_{r}. 47
3-10. Fraction of Electrons with Energy to Overcome a Retarding Potential V_{r} 48
3-11. Fraction of Electrons with Energy to pass a Retarding Potential $V_{r}+\Delta V_{r}$. 49
3-12. Time Varying Retarding Potential and Distribution of Energy
As Seen by Detector. 50
3-13. Cross Sectional View of a Straight Channel Electron Multiplier. 51

Page

3-14. Gain Curve for CEM. 52
3-15. Electrical Connection of CEM. 53
3-16. Cross Sectional View of Faraday Cup. 54
3-17. Schematic of a Typical Photomultiplier. 55
4-1 (a) Integrated Transmitted Electron Current Spectrum for N_{2}.
(b) Differentiated Current Spectrum for N_{2} (FWHM=40 mev). 70
4-2. (a) An Electron with Necessary Energy ($\left.E^{\prime}>\left|e V_{r}\right|\right)$ to
Pass the Grid R Will not Pass if $E^{\prime} \cos \theta<\left|e V_{r}\right|$.(b) Transmitted Electron Distribution $F\left(E^{\prime}-E\right)$ Resultingfrom Improper Tuning.(c) Electron Energy Distribution Function for Two SuccessiveEnergy Step of ΔE.
(d) Energy Difference Distribution Resulting from Part C. 71
4-3. Pulsed Electron Gun and Its Associated Electronics 72
4-4. Schematic of π Filter 73
4-5. Fast Timing Electronics for Recording Optical Emission Function 74
4-6. Fast Timing Electronics for Recording Lifetime Spectra 75
4-7. Energy Dependence of the Optical Spectra in the Region $6400 \AA \rightarrow 5400 \AA$ 76
4-8. Energy Dependence of the Optical Spectra in the Region $5600 \AA \rightarrow 4600 \AA$ 77
$5-1$. Cptical Emission Function for $b^{3} \Sigma+$ State of CO 98

5-2. Optical Emission Function for Asundi Vibrational Levels $v=9-1599$
5-3 (a) Radiative Decay Curve for $a^{3} \Sigma^{+}-a^{3} \amalg(12-2)$ Transition at Pressure of 4.1 mTorr 100
5-3(b) Radiative Decay Curve for $a^{3} \Sigma^{+}-a^{3} \Pi(12-2)$ Transition at Pressure of 12.0 m Torr 101
5-4. Reciprocal of Lifetime vs. pressure of the $v=9,12-16$ Vibrational Levels of Asundi Band 102
5-5. Reciprocal of Lifetime vs. ν^{3} 103
5-6. Quadratic Pressure Dependence of Long Lived Decay Component in the $a^{3} \Sigma^{+}-a^{3} \amalg(12-2)$ Transition 104
5-7. Reciprocal of Lifetime vs. Pressure of VUV photons for 11.83 eV Excitation Energy. (Medium Decay component) 105
$5-8$. Reciprocal of Lifetime vs. Pressure of VUV photons for 11.83 eV Excitation Energy. (Short Decay Component) 106
5-9. Reciprocal of Lifetime vs. Pressure of VUV photons for 13.13 eV Excitation Energy. (Short Decay Component) 107
5-10. Reciprocal of Lifetime vs. Pressure of VUV photons for 13.13 eV Excitation Energy. (Medium Decay Component) 108
5-11. Reciprocal Lifetime vs. Pressure of VUV photons for 13.13 eV Excitation Energy.(Long Lived Decay Component) 109
5-12. Reciprocal Lifetime vs. Pressure of VUV photons for 16.13 eV Excitation Energy.(Short Decay Component) 110

page

5-13. Reciprocal Lifetime vs. Pressure of VUV photons for 16.13 eV Excitation Energy.(Medium Decay Component) 111
5-14. Reciprocal Lifetime vs. Pressure of VUV photons for 16.13 eV Excitation Energy.(Long Lived Decay Component) 112
5-15. Reciprocal Lifetime vs. Pressure of VUV photons for 16.13 eV Excitation Energy.(Very Long Lived Decay Component) 113
5-16. Optical Excitation Function ofVUV photons for H_{2} in the Energy Interval 11.13-16.12 eV 115
5-17. Differentiated Optical Excitation Function of VUV photons 115
5-18. Optical Excitation Function for VUV photons for H_{2} in the Energy Interval 11.13-12.12 eV 116
5-19. Optical Excitation Function of VUV photons for H_{2} in the Energy Interval 12.13-13.12 eV 117
5-20. Optical Excitation Function of VUV photons for H_{2} in the Energy Interval 13.13-14.12 eV 118
5-21. Optical Excitation Function of VUV photons for H_{2} in the Energy Interval 14.13-15.12 eV 119
5-22. Optical Excitation Function of VUV photons for H_{2} in the Energy Interval 15.13-16.12 eV 120

DETERMINATION OF LIFETIMES, OPTICAL EXCITATION FUNCTIONS TRANSMITTED ELECTRON SPECTRA, OPTICAL SPECTRA AND QUENCHING CROSS SECTION

CHAPTER I

INTRODUCTION

Recent studies ${ }^{1,2}$ of the radiative decay of the $d^{3} \Delta$ and $e^{3} \Sigma^{-}$ states of CO have indicated that several of the higher vibrational levels of the Asundi bands $\left(a^{\prime 3} \Sigma^{+}-a^{3} \Pi\right.$) overlap some of the vibrational levels of the d and e states. While measured lifetimes for the lower ($v=3$ 9) vibrational levels of the a^{\prime} states are reasonably well known, ${ }^{3,4}$ the lifetimes for these upper vibrational levels ($v=10-16$) have not been previously measured. Previous estimations ${ }^{2}$ of the radiative lifetimes of the $a^{3} \Sigma^{+}(v=10-16)$ levels have been made based on a ν^{3} projection of the lower level lifetimes determined by Van Sprang et al. ${ }^{3}$ These estimates give a^{\prime} lifetimes which are only $20-30 \%$ longer than those observed for the d and e states. However neither the measured d and e state lifetimes nor the longer lived components found in the d and e state decay curves agree with the estimated lifetimes predicted for the upper vibrational levels for the $a^{\prime 3} \Sigma^{+}$state. ${ }^{2}$ The energy diagram of CO is shown in Figure 1-1.

The first lifetime measurements for the $a^{\prime 3} \Sigma^{+}$state were reported by Wentink et al. ${ }^{4}$ who used a pulsed r_{f} discharge of 10μ s duration with a

40 ns cutoff in a glowing gas. The vibrational levels $v=3-9$ were stuaied over a pressure range from 10 to 70 mTorr . The decay curves for all of the transitions were reported as single exponentials. The measurement to check reproducibility on a relatively weak band, the (3-0) at ($9630 \AA$), yielded values within 7 percent. The lifetimes for $v=4,9$ vibrational levels were reported to be compromised due to possible overlap with other transitions. Measurement for $v=5$ level was reported to be perturbed in some unknown way, although it occurs at the expected (calculated) wavelength.

Another lifetime measurement of Asundi bands were made by Hartfuss and Schmiller ${ }^{5}$ using a high frequency modulated r_{f} discharge. These authors reported much shorter lifetimes for the $v=5-8$ vibrational levels of the $a^{3} \Sigma^{+}$state. They used an excitation power of 10 w at 80 MHz (about 130 eV) and studied the pressure dependence of the lifetimes over the pressure range from 150 to 800 mTorr. However, there are claims ${ }^{3}$ that Hartfuss and Schmillen ${ }^{5}$ have used comet tail emission instead of Asundi emission for their measurement. Their experimental conditions are very unfavourable for populating triplet states (too high incident electron energy). For an electron energy of 100 eV mainly comet tail radiation (CO^{+} $\left.A^{2} I I\right)$ is present. From comparison with Möhlman and deHeer ${ }^{6}$ results, it appears that Hartfuss and Schmillen ${ }^{5}$ have used comet tail emission instead of Asundi emission for their lifetime measurements. Although they have used other transitions than those mentioned in reference (6) it is remarkable that their values for the lifetimes of the $\mathbf{C O} a^{3} \Sigma^{+} v^{\prime}=5-8$ levels agree
very well with the $\mathrm{CO}^{+} \mathrm{A}^{2} \Pi_{i} v^{\prime}=0-3$ vibrational lifetimes of reîerence (6).

More recently the lifetimes of the $\nu=4-9$ vibrational levels of $a^{\prime 3} \Sigma^{+}$state of CO have been measured by Van Sprang et al. ${ }^{3}$ over a pressure range from 0.5 to 10 mTorr . In their work a delay coincidence technique was used with an electron gun pulse duration of $10 \mu \mathrm{sec}$. Their results agree within experimental uncertainty with the results of Wontink et al. ${ }^{4}$ and they attributed the shorter lifetimes observed by Hariuss and Schmillen ${ }^{5}$ to the presence of excited $A^{2} I I$.

Recent lifetime measurement of the $d^{3} \Delta$ and $e^{3} \Sigma^{-}$states of CO by W. C. Paske et al. ${ }^{1,2}$ have indicated the presence of a long lived (10-16 $\mu \mathrm{sec}$) decay component overlapping the shorter lived d and e state lifetimes which could possibly be due to the $a^{3} \Sigma^{+}$state. Threshold for many vibrational levels of the $a^{\prime 3} \Sigma^{+}$state of CO have been renorted by several authors, ${ }^{7-10}$ but discrepancies still exist between thresholds given by different groups. The present work was undertaken in order to precisely determine the lifetimes of the $a^{3} \Sigma^{+}(v=12-16)$ levels as well as optical excitation function ($v=9-16$) so as to be able to aroid confusion between the a^{\prime} lifetimes and possibly nearly similar lifetimes of the spectrally overlapping $d^{3} \Delta$ and $e^{3} \Sigma^{-}$states.

The resonance structure in H_{2} has been studied by a number of authors ${ }^{13-21}$ with varying results. Already an extensive literature has been generated on the resonance structure in the vicinity of the threshold of the $B^{1} \Sigma_{u}^{+}$state of \mathbf{H}_{2}.

More recently, resonance strucutre in the total optical excitation function of $B^{1} \Sigma^{+}$state of H_{2} has been studied by Böse et al. ${ }^{13}$ The observations were made by viewing the vacuum ultra-violet photons from the gas cell at 90° with respect to electron beam through a MgF_{2} window. They used a highly monoenergetic electron beam (20 meV resolution) and a delay coincidence technique. The excitation function of $B^{1} \Sigma_{u}^{+}$state was used for energy calibration. They set the first resonance peak at 11.30 eV . The change in the slope of excitation function of $B^{1} \Sigma_{u}^{+}$at about 14.7 eV was interpreted as the onset of a new process intensively producing VUV photons which coincides with dissociation limit $\mathrm{H}(1 \mathrm{~s})+\mathrm{H}(2 \mathrm{p})$. Since triplet states in hydrogen are found to exhibit large excitation cross sections, they stated that the production of $\mathbf{H}(2 \mathrm{p})$ could take place via predissociation of triplet states.

Another measurement of resonance structure in optical excitation function of $B^{1} \Sigma^{+}$state has been done by Elston et al. ${ }^{14}$ who used low energy pulsed electron gun. The pressure in the interaction region was 10^{-4} Torr and the incident electron current was $10^{-9} \mathrm{~A}$ with an energy resolution FWHM 40 meV . Their photon detector was covered by an MgF_{2} window. The energy scale was calibrated by setting the first resonance peak at 11.30 eV . They also used a mixture of CO and H_{2} for calibration of energy. The peak at 10.04 eV in the $A^{1} \Pi$ cross section fo CO was used to calibrate the position of the resonances in band "a" of H_{2} starting at 11.30 eV . They found the vibrational component of band "a" appears as the principal feature in $B^{1} \Sigma_{u}^{+}$excitation near threshold and the relative
intensity of band "c" being about a factor of 10 smaller. Their enersy position of the resonant peaks for the band "a" and "c" agree with results obtained by other experimental technique within experimental errors (0.02 eV).

A high resolution (60 meV) electron impact excitation on H_{2} esperiment has been done by McGowan et al. ${ }^{15}$ for measurement of structure in Lyman band. They used a methane filled gas cell as a filter for VUV photons and also their channeltron was covered by an MgF_{2} window. There are claims that their energy scale was not calibrated in proper way and with corrected energy scale their energy position of resonance structuies agree well with Elston et al. ${ }^{14}$ results.

There are a number of authors: Kuyatt et al. ${ }^{16}$, Heidman et al. ${ }^{17}$, Eliezeret al. ${ }^{18}$, Wiengartshofer et al. ${ }^{18}$, Comer and Read ${ }^{20}$, Sanche and Schulz ${ }^{21}$, and Golden et al. ${ }^{22}$ who have investigated the resonance structure in \mathbf{H}_{2} using a variety of techniques such as Energy Loss ${ }^{19}$, Vibrational Excitation ${ }^{20}$, Transmitted Electron Spectra ${ }^{18,21,22}$, and Elastic and Enelastic Scattering ${ }^{17,18}$. No attempt will be made to review the entire literature of this field but rather we will compare their result with ours.

Figure 1-1. Energy Diagram of CO.

CHAPTER II

THEORY

The measurement of the lifetimes of excited level of atoms, ions and molecules provides information which is directly useful in the field of spectroscopy, astrophysics and plasma physics. For instance, the ability to maintain a population inversion in many gas laser system depends on the total decay rate R_{n} of the lower laser level obeying the inequality $R_{n}>$ $A_{k n} g_{k} / g_{n}$, where $A_{k n}$ is the radiative transition probability of the laser line and g_{k}, g_{n} are the statistical weights of the upper and lower levels respectively. So in many laser systems there is a great need of knowing lifetime of excited state.

In this chapter, the concept of Einstein transition coefficient will be briefly discussed. Consider an atom in the state $\mid a>$ interactirg with a radiation field described by $\mid n_{\mathbf{k} \lambda}>$. The initial state of the entire system is $|A>=| a ; n_{\mathbf{k} \lambda}>$. If absorption takes place, the atom makes a transition to the state $\mid b>$ and there is one photon fewer in the field. Thus the final state of the system is $|B>=| b ; n_{\mathbf{k} \lambda}-1>$, and

$$
\begin{equation*}
E_{B}-E_{A}=E_{b}-E_{a}-h \omega_{\mathbf{k}}=h\left(\omega_{b a}-\omega_{k}\right) \tag{1}
\end{equation*}
$$

where E_{a} and E_{b} are the energies of the initial and final atomic states
respectively and

$$
\begin{equation*}
h \omega_{b a}=E_{b}-E_{a} \tag{2}
\end{equation*}
$$

Then the total probability per unit time for absorption of a photon will be

$$
\begin{equation*}
W_{\text {abstract }}=\left(4 \alpha \omega^{3} n / 3 c^{2}\right)|<b| R|a>|^{2} \tag{3}
\end{equation*}
$$

and for emission

$$
\begin{equation*}
W_{\mathrm{em}}=\left[4 \alpha \omega^{3}(n+1) / 3 c^{2}\right]|<b| \mathbf{R}|a>|^{2} \tag{4}
\end{equation*}
$$

Where $\alpha=e^{2} /$ hc is fine structure constant, and c is speed of light. Comparison of equation (3) and (4) reveals that absorption probability is proportional to n the number of photons of frequency ω while the emission provability is proportional to $(n+1)$. The emission probability can be written in terms of spontaneous emission and induced emission probability

$$
\omega_{\mathrm{em}}=\omega_{i}+\omega_{s}
$$

where
$\omega_{i}=$ induced emission probability per unit time
$\omega_{s}=$ spontaneous emission probability per unit time
Thus if $n=0$, there can be no absorption or induced emission; however, spontaneous emission can occur.

Let $W(k n)$ represent the transition probability per unit time from state $\mid \alpha_{n} J_{n} M_{n}>$ with degeneracy g_{n} to the state $\mid \alpha_{k} J_{k} M_{k}>$ with degeneracy g_{k}, then

$$
\begin{equation*}
W_{a b s}(k n)=\frac{1}{g_{n}} \sum_{M_{n} M_{n}} \frac{4 \alpha \omega_{k n}^{3}}{3 c^{2}}\left|<\alpha_{k} J_{k} M_{k}\right| \mathbf{R}\left|\alpha_{n} J_{n} M_{n}>\right|^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{e m}(k n)=\frac{1}{g_{n}} \sum_{M_{n} M_{k}} \frac{4 \alpha \omega_{k n}^{3}(n+1)}{3 c^{2}}\left|<\alpha_{k} J_{k} M_{k}\right| \mathbf{R}\left|\alpha_{n} J_{n} M_{n}>\right|^{2} \tag{6}
\end{equation*}
$$

where α_{n} and α_{b} represent the quantum number required to complete the specification of the state $\mid n>$ and $\mid k>$ respectively.

It is often more convenient to work with quantities that do not contain the degeneracy factors g_{n} and g_{k} and are therefore symmetric in the initial and final states. Such a quantity is the line strength S defined by

$$
\begin{equation*}
S(n k)=S(k n)=e^{2} \sum_{M_{n} M_{k}}\left|<\alpha_{k} J_{k} M_{k}\right| \mathbf{R}\left|\alpha_{n} J_{n} M_{n}>\right|^{2} \tag{7}
\end{equation*}
$$

In terms of line strength the absorption probability can be written as

$$
\begin{equation*}
W_{a b s}(k n)=\left(4 \omega^{3} n / 3 h c^{3} g_{n}\right) S(n k) \tag{8}
\end{equation*}
$$

The probability per unit time $A_{k n}$ that the atom will decay spontaneously to a lower level (n) is given by

$$
\begin{equation*}
A_{k n}=\frac{1}{g_{k}} \sum_{M_{n} M_{n}} \frac{4 e^{2} \omega_{k n}^{3}}{3 h c^{3}}\left|\mathbf{R}_{k n}\right|^{2} \tag{9}
\end{equation*}
$$

where

$$
\mathbf{R}_{k n}=\int \Psi_{M_{k}}^{*} \mathbf{r}_{i} \Psi_{M_{n}} \mathrm{~d} \mathbf{r}
$$

If matrix element $\left|R_{k n}\right|^{2}$ of the electric dipole moment are zero the corresponding spectral line may still appear in absorption or emission if the matrix element of the magnetic dipole or quadrupole moment are
different from zero. Also when $\left|\mathbf{R}_{k n}\right|^{2}=0$ for an atom it may be dimerent from zero for a molecule.

If we have a system in which we excite $N_{k}(0)$ atoms into the level k at time $=0$ and we suppose that there is no mechanism, other than electric dipole radiation, which depopulates to level k, then the rate of change of the depopulation in level k is given by

$$
\frac{\mathrm{d} N_{k}}{\mathrm{~d} t}=-N_{k} \sum_{n} A_{k n}
$$

where sum is over all levels n with energy less than that of level k, and $A_{k n}$ is Einstein transition coefficient. The lifetime of state k is related to Einstein coefficient [Eq. (9)] by relation

$$
\begin{equation*}
\tau_{k}=1 / \sum_{n} A_{k n} \tag{10}
\end{equation*}
$$

then we have

$$
\begin{equation*}
N_{k}(t)=N_{k}(0) e^{-t / \tau_{k}} \tag{11}
\end{equation*}
$$

Now we consider electric dipole transitions from an excited level of a diatomic molecule. The total wavefunction can be written as product of three different wavefunctions $\Psi_{k}(r), \Psi_{n}, \Psi_{J^{\prime} m^{\prime}}$, if the electronic part of wavefunction $\Psi_{k}(r)$, does not depend appreciably on the internuclear separation $r,{ }^{11}$ then

$$
\begin{equation*}
\Psi=\frac{1}{r} \Psi_{n} \Psi_{v^{\prime}} \Psi_{J^{\prime} m^{\prime}} \tag{12}
\end{equation*}
$$

Under this assumption, the probability per unit time $A_{k n, v^{\prime} v^{\prime \prime}, J^{\prime} J^{\prime \prime}}$ that molecule with electronic quantum number k, vibration quantum number
v^{\prime} and rotational quantum number J^{\prime} decay spontaneously to a lower level with quantum numbers $n, v^{\prime \prime}, J^{\prime \prime}$ for electronic, vibration and rotational respectively, is

$$
\begin{equation*}
A_{k n, v^{\prime} v^{\prime \prime}, J^{\prime} J^{\prime \prime}}=\frac{4 e^{2} \omega_{k n, v^{\prime}, v^{\prime \prime}}}{3 h c^{3} g_{k}}\left|\mathbf{R}_{e}^{k n}\right|^{2}\left|\mathbf{R}_{\mathrm{vib}}^{v^{\prime} v^{\prime \prime}}\right|^{2} \frac{\mathbf{\Sigma}_{M^{\prime}, M^{\prime \prime}}\left|\mathbf{R}_{\mathrm{r} J^{\prime} J^{\prime \prime}}\right|^{2}}{2 J^{\prime}+1} \tag{13}
\end{equation*}
$$

where $M^{\prime}, M^{\prime \prime}$ are the magnetic quantum numbers associated with rotational levels $J^{\prime}, J^{\prime \prime}$ and

$$
\begin{gather*}
\mathbf{R}_{e}^{k n}=\int \Psi_{k}^{*} \sum_{i} \mathbf{r}_{i} \psi_{n} \mathrm{~d} \mathbf{r}_{i} \tag{14a}\\
\mathbf{R}_{\mathrm{vib}}^{v^{\prime} v^{\prime \prime}}=\int \Psi_{n^{\prime}}^{*} \Psi_{n^{\prime \prime}} \mathrm{d} \mathbf{r} \quad\left\{\left|\mathbf{R}_{\mathrm{vib}}^{v^{\prime} v^{\prime \prime}}\right|^{2} \equiv \text { (Franck-Condon factors) }\right\} \tag{14b}\\
\mathbf{R}_{\mathrm{rot}}^{J^{\prime} J^{\prime \prime}}=\int \Psi_{J^{\prime} M^{\prime}}^{*} \Psi_{J^{\prime \prime} M^{\prime \prime}} \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \tag{14c}
\end{gather*}
$$

Now, by summing over all transitions from a given vibrational level and using the sum rule

$$
\begin{equation*}
\sum_{J^{\prime \prime}} \sum_{M^{\prime} M^{\prime \prime}}\left|R_{\text {rot }}^{J^{\prime} J^{\prime \prime}}\right|^{2}=2 J^{\prime}+1 \tag{15}
\end{equation*}
$$

We have the transition probability $A_{k n, v^{\prime} v^{\prime \prime}}$

$$
\begin{equation*}
A_{k n, v^{\prime} v^{\prime \prime}}=\frac{4 e^{2} \omega_{k n, v^{\prime}, v^{\prime \prime}}}{3 h c^{3} g_{k}}\left|\mathbf{R}_{e}^{k n}\right|^{2}\left|\mathbf{R}_{\mathrm{vib}}^{v^{\prime} v^{\prime \prime}}\right|^{2} \tag{16}
\end{equation*}
$$

The lifetime of given vibrational level is determined by the relation

$$
\tau_{k}=1 / \sum_{v^{\prime \prime}} A_{k n, n^{\prime} n^{\prime \prime}}
$$

where it is assumed that n is only electronic level to which transition is allowed. In general, the relation between lifetime and Einstein coeficient is given by

$$
\begin{equation*}
\tau_{k}=1 / \sum_{n v^{\prime \prime}} A_{k n, v^{\prime} v^{\prime \prime}} \tag{17}
\end{equation*}
$$

The time rate of change of the population of a given excited level N_{k} can be written as

$$
\begin{equation*}
\frac{\mathrm{d} N_{k}}{\mathrm{~d} t}=-N_{k} \sum_{n} A_{k n}=-N_{k} / \tau_{k} \tag{18}
\end{equation*}
$$

which is simply

$$
\begin{equation*}
N_{k}(t)=N_{k}(0) e^{-t / \tau_{k}}=N_{k}(0) e^{-\sum_{n, v^{\prime \prime}} A_{k n, v^{\prime} v^{\prime \prime} t} t} \tag{19}
\end{equation*}
$$

The actual rate equation is when cascade, collision, diffusion, . . . effects are included

$$
\begin{align*}
\frac{\mathrm{d} N_{k}}{\mathrm{~d} t}= & -N_{k} \sum_{n} A_{k n}+\sum_{\ell} N_{\ell} A_{\ell k}-N_{k} \sum_{\ell} B_{k \ell} U\left(n_{k \ell}\right) \\
& +\sum_{n} N_{n} B_{n k} U\left(n_{n k}\right)-N_{k} \sum_{n} B_{k n} U\left(n_{k n}\right)+\sum_{\ell} N_{\ell} B_{\ell k} U\left(i_{\ell \ell}\right) \\
& -N_{0} v N_{k} \sum_{n} \sigma_{k n}+N_{0} v N_{k} \sum_{n} \sigma_{n k}-N_{0} v \sum_{\ell} \sigma_{k \ell} N_{\ell} \\
& +N_{0} v \sum_{\ell} \sigma_{\ell k} N_{\ell}+n_{e} N_{0} \sigma_{k} v_{e}+n_{e} v_{e} \sum \sigma_{k n} N_{n} \\
& -D_{k} \nabla^{2} N_{k}-\alpha_{a} N_{\ell} N_{k}-\alpha_{\tau} N_{\ell} N_{k} \tag{20}
\end{align*}
$$

where $B_{m n}=$ Einstein transition probability: induced absorption, $m<n$; induced emission, $m>n$, $A_{k n}=$ Einstein spontaneous emission transition probability,
$U\left(n_{k n}\right)=$ radiation density of photons,
$\sigma_{m n}=$ cross section for radiation less collisional transition from m to n,
$N_{0}=$ neutral ground state molecules,
$n_{e} v_{e}=$ excitation electric current density,
$\alpha_{a}=$ attachment coefficient (electron),
$v=$ mean velocity of neutral ground state molecules,
$\alpha_{r}=$ electron recombination coefficient,
$D_{k}=$ diffusion coefficient,
$\sigma_{k}=$ electron excitation cross section,
$\sigma_{n k}=$ electron excitation due to metastable or other excited states, and where ℓ refers to higher energy level, n refers to lower energy levels with respect to level k.

In words, the rate equation can be stated as
$\binom{$ rate of change of the }{ population of level K}$=$

- $\left.\begin{array}{c}\text { spontaneous emission from level } \\ \text { of interest to lower state }\end{array}\right)+\binom{$ spontaneous cascade from upper state }{ to level of interest }
- ($\left.\begin{array}{c}\text { induced emission from level } \\ \text { of interest to lower level }\end{array}\right) \quad+\binom{$ induced emission from higher lovel }{ to level of interest }
- (collisional depopulation from $\left.\begin{array}{c}\text { level of interest to lower level }\end{array}\right) \quad+\binom{$ collisional depopulation from }{ level of interest to higher level }
$+\binom{$ collisional population from lower }{ level to level of interest }$+\binom{$ collisional population from higher }{ level to level of interest }
$\notin\binom{$ production due to electron }{ bombardment of neutrals }\quad H($\left.\begin{array}{c}\text { production due to electron } \\ \text { bombardment of metastables }\end{array}\right)$
$-\binom{$ collisional depopulation due to }{ diffusion to walls }$-\binom{$ depopulation by }{ electron quenching }
- $\binom{$ depopulation due }{ to recombination } .

In practice, however, the following simplification is usually used,
all other terms in Eq. (20) being ignored.

$$
\begin{equation*}
\frac{\mathrm{d} N_{k}}{\mathrm{~d} t}=-N_{k} \sum_{m} A_{k n}+\sum_{\ell} N_{\ell} A_{\ell k}-N_{k} N_{0}<v>\sum_{n} \sigma_{k n} \tag{21}
\end{equation*}
$$

where the first term is spontaneous emission from level of interest to lower level,second term is spontaneous cascade from upper state to level of interest and last term is collisional effect. In case of no cascade present, we have

$$
\begin{equation*}
N_{k}(t)=N_{k}(0) e^{-A^{\prime} t} \tag{22}
\end{equation*}
$$

where A^{\prime} now includes the pressure depopulation term. The initial effect of collision is to increase the decay rate from the spontaneous emission rate $A={ }_{n}^{\Sigma} A_{k n}$ to

$$
\begin{equation*}
A^{\prime}=\sum_{n} A_{k n}+N_{0}<v>\sum_{n} \sigma_{k n} \tag{23}
\end{equation*}
$$

This increase in apparent decay rate due to atomic collision is a very common phenomenon although the importance of the effect varies irom level to level due to the wide variation of the inelastic collision cross cections. The numerical value for the collision induced relaxation rate is

$$
\begin{equation*}
N_{0}<\sigma v>=1.404 P \sigma\left(\frac{m_{1}+m_{2}}{m_{1} m_{2} T}\right)^{1 / 2} \times 10^{23} \mathrm{sec}^{-1} \tag{24}
\end{equation*}
$$

where P is the pressure in Torr, cross section σ in $\mathrm{cm}^{2}, m_{1}, m_{2}$ are the atomic mass numbers of the two atoms involved in collision, and T is temperature in Kelvin.

This type of system will give a pressure dependent lifetime such that $1 / \tau_{k}$ plotted vs the pressure will yield a slope which is proportional to the collisional depopulation cross section and the intercept will be the zero pressure lifetime of the excited state.

CHAPTER III

APPARATUS

A. The Vacuum System

The experimental apparatus, shown schematically in Fig. 3-1, consists of an electron gun, a scattering cell, and a channel electron multiplier, all located in an ultra high vacuum system. This vacuum system is capable of a base pressure of $<1 \times 10^{-8}$ torr. These components, as well as the gas handling system, the construction materials, power distribution, cleaning and alignment of the gun and bake-out procedures, are disevesed in the sections 2-5. The associated electronics will be discussed in Chapter IV. The apparatus is basically that described by Twist, ${ }^{12}$ although some components have been modified for the present experiment. In some extent, a complete description of the experimental apparatus is given in the present work even though there is some duplication of the work of T_{i} wist. ${ }^{12}$

The vacuum chamber and associated pumps are shown in Fig. 3 -2. The ultra-high vacuum chamber is constructed entirely of 304 series stainless steel and is bakable to $250^{\circ} \mathrm{C}$. All demountable members дre tungsten-inert-gas (TIG) welded. All welds are inside where physically possible. The electrical vacuum feed throughs are ceramaseal MEV type connectors which are TIG welded into demountable flanges. The top and
bottom flanges are 9 -in. outside diameter and about $1 / 4$-in. thick 300 series stainless steel (SS). Most of the electrical connections to the electron gun, scattering cell, channel delectron multiplier, gas inlet, pressure measuring tubes and capacitance manometer are mounted on the top flange. The electron gun and magnetic shield are also attached to the top flange.

The main chamber is a 38 cm high cylinder with a 15.2 cm nutside diameter. The chamber has four access ports positioned 90° apart. One side arm has an ultraviolet grade quartz window mounted in a graded glass seal and non-magnetic mounting welded to the 5 -in. flange. The second port has a high vacuum triode ionization gauge connected to it. This gauge is on a $90^{\circ} 2$-in. O.D. elbow with light baflles to keep stray light out of the optical detection channel. The third side arm in use at the present time has a magnesium fluoride window, which allows the passage of the photons of interested wavelength (Lyman- α). The window is held between two 0 -rings by an aluminum flange inside of 5 -in. flange. This part of the system is pumped separately. The last side arm is not currently in use.

Three types of metal gaskets are used to seal the demountable flanges. Varian conflat flanges use knife edge seals which seal on soft copper gaskets. Cajun fittings are used on some of the small tubing. These use a ring of semicircular cross section to bite into soft aluminum gaskets. The third kind of gasket is a soft aluminum wire held between flat stainiess stell flanges. These gaskets are made from number 20 gauge dead soit aluminum wire. A wire of sufficient length is cut and cleaned by scrubbing with acetone and rinsing with clean acetone. The center of the wire is then twisted in a pigtail fashion to create an "ear" about 3 -in. long. The wire is
then positioned on the sealing surface and the ear taped down, away from the sealing surface, to hold the wire in place. The wire is then shaped into circle to conform with the sealing surface and the free ends are tristed to create another ear which is taped to hold the completed gasket in place. To complete a successful seal, care must be taken to apply uniform torque to the bolts holding the mating flanges; and a strict order of rotation hetween bolts must be used. This ensures that torque is applied uniformly about the entire circumference of the flanges. The top flange seals have to be replaced every time the system is opened to the air; the method for sealing is given here in detail. The eight bolts are numbered sequentially and torque is applied in the rotation order, 1-2-3-... etc. The torque is applied in four steps: $20,30,40$ and 50 ft -lbs. The order of rotation is then reversed and $53 \mathrm{ft}-\mathrm{lbs}$ is applied. When this procedure was followed, a good seal was always achieved.

Sorbent trap is located between the chamber and diffusion pump to eliminate both backstreaming and creep of oil from the pump into the chamber. The trap interior consists of a center basket and a wail liner constructed of stainless steel mesh. This mesh holds the sorbent material. The volume of trap is approximately 3 liters and is filled to half its volume with sorbent meterial. The sorbent material (ZEOLITE) is a molecular sieve with a pore diameter of $\sim 10 \AA$. The center basket forms an optically dense baffle which provides the major protection against backstreaming oil.

The Varian VHS-4 oil diffusion pump is used to evacuate the main chamber. The oil used in diffusion pump is convoil 20 pump oil and the
boiler takes 300 cc of oil to be filled. The exhausts of the diffusion pump is pumped by a Sargent-Welch 1397 mechanical rotary pump. A foreline valve is located between the mechanical pump and the diffusion pump, which is electrically operated in parallel with the mechanical pump. When power to the mechanical pump is shut off, the valve seals the diffusion pump eriausts and open the mechanical pump to the atmosphere. The foreline pressure is measured with a thermocouple gauge. The gauge is connected to a Varian ionization gauge controller number 840 . The controller contained several adjustable set point and optically activated meter relay.

In order to protect the vacuum system and associated experimental apparatus from interruptions of power, water or the failure of equipment, an electrical interlock system has been wired to turn off the D.C. rach which powers the electron gun and to turn off the power to the difitision pump heater and to cool the oil in the diffusion pump. The interlock wiring diagrams are shown in Figures 3-3 and 3-4.

Exposing the diffusion pump oil to atmospheric pressure while it is hot may cause oil to break down or to ignite. ${ }^{39}$ Operation of the diffusion pump at pressure above 10^{-3} Torr for enough long time may cause backstreaming of the oil into the ultra-high vacuum system. In orchar to avoid the above problems, an interlock system, which is shown in Fig. $3-3$, is wired to turn the diffusion pump heater power off and turn on the water into the quick cool lines, whenever foreline pressure rises above an adjustable certain level (100 mT).

The power to the D.C. rack is controlled by an interlock system
which is shown in Fig. 3-4. Whenever triode ion gauge pressure reads above a certain point (6) (adjustable) on any scale the interlock turns off the porrer to D.C. rack.

If a power outage occurs, the quick cool lines to the diffusion pump heater will be opened and this automatically turns off the difmusion pump. The relay in the power line to the D.C. rack will be opened too. When the power is returned, the fore linepump will be on, howerer, the relay in the D.C. rack and diffusion pump must be reset manually.

B. The Electron Gun

1. Introduction

The drawing of the electron gun (not to scale) is shown in Fig. 3-5. It is constructed of OFHC copper tubes $1.5-\mathrm{in}$. outside diameter with a 0.326 -in. I.D. bore. It is capable of delivering one to $2 \mu \mathrm{~A}$ of beam current inside the scattering cell at electron energies of 10 to 100 eV . At 15 eV the beam current is $2 \mu \mathrm{~A}$ into scattering cell and about 25 nanoamp at the collector ($F C$ or CEM) in the absence of target gas in the interacting region. The resolution of the present gun is as high as $0.008 \mathrm{eV} .{ }^{42,43}$

The basic construction and operating principles of the gun are described by Golden and Zecca. ${ }^{23}$ The gun consists of a cathode which is heated by a filament, followed by a Pierce element ${ }^{24}$ and an anode with a 0.04 -in. aperture. The RPD monochromator system consists of 2000, 3000, 4000 elements which are geometrically symmetric. The last Einzel lens (4000) is followed by elements 5000,6000 , and 7000 , which form a set of extraction lens. This set of extraction optics focus the image from the
element 4000 aperture into the scattering cell. The transmitted cirrent is collected by channel electron multiplier [or Faraday Cup (FC)].

2. Cathode, Pierce, Anode System

The cathode is an oxide coated nickel cup which is bonded to a ceramic disk about $1 / 2-\mathrm{in}$. O.D. The cathode is manufactured by RCA and the part number is FKS 623B-801R. The filament is also made by RCA and has part number MCH 8004D and NEB 261. The pierce element which first discuss by Pierce, ${ }^{24}$ is an equipotential surface, held at angle of 67.5° to the axis of the electron beam, which is followed by anode with an aperture. The diameter of aperture is small in comparison with the spacing of cathode and anode. Ideally the potential on pierce element should be zero with respect to cathode, however due to the construction tolerances and assembly, a small potential is applied to the pierce (~-2).

The heated cathode release electrons, and the electrons are made to a parallel beam by pierce element at the anode aperture. The anode is held at high potential ($\sim 120 \mathrm{~V}$) in order to accelerate electron toward next element. So the working philosophy of the cathode, pierce and anode system is the following: The pierce electrode can be used to make flectrous leave the anode hole in a parallel beam, so that the first lens makes a point image.

3. RPD Monochromator and Einzel Lens

The retarding potential difference (RPD) monochromator system is a high resolution electron energy analyzing device that operates by applying a low frequency modulation to a retarding element. ${ }^{48,50,88}$

Starting in 1951, Fox and co-workers ${ }^{25}$ described in several papers a retarding potential difference technique (referred to as the RPD method) of measuring ionization cross sections with electron beams of well defined energy (about 0.1 eV FWHM independent of the energy). ${ }^{25}$ The same hind of technique has been used by several researchers for the determination of various cross sections. ${ }^{28-29}$

The RPD monochromator consists of an electrically and geometrically symmetric Einzel lens (2000, 3000 and 4000 elements). Fig. 3-6 shows the construction details of the elements and Fig. 3-7 indicates its electrical connection. All elements have cylindrical symmetry and the dimensions were calculated using Spangenberg curves for tube-tube and tube-aperture cylindrical electron lenses. ${ }^{24}$ The agreement between calculated voltages and experimental values needed to get the beam throwgh is fairly good, giving a confirmation of the reliability of Spangenberg curves.

At the center of the element 3000 , a 1 in . D. molybdenum mesh of 90% transmission is mounted. The lens is also symmetric about a plane through the retarding grid. The molybdenum grid is insulated from the outside OFHC copper shield of the RPD and is held in place inside the cavity by six small sapphire balls which are $0.125-\mathrm{in}$.O.D. Opposite the constant impedance connector which attaches the coaxial line to the RPD is a coaxial 50Ω terminator. The terminator is connected to the molybdenum screen by a constant impedance coaxial line and fitting. The 50Ω resistor used in RPD monochromator is a metal film resistor with its epoxy coating stripped off.

The pulse applied to the retarding element is supplied by a Tektronix PG502 puiser via a coaxial connector on the top flange of the main chamber through a 50 ohm vacuum coax and into the cavity containing the RPD grid. The pulser is placed inside a well-shielded metal box to reduce stray noise pick-up. ${ }^{30}$ The parallel beam from the pierce cathode and anode arrangement impinges on the first Einzel lens aperture (element 2000). Selected voltage on 2000 element, slow down the beam as it goes into the region of the retarding grid. The symmetry constraints imposed by first and second Einzel lens (elements 2000 and 4000, respectively) insures the electrons cross the retarding plane perpendicularly. The importance of crossing the grid perpendicularly will be discussed in detail in Chapter V, Section B. The Einzel lens is designed to take an object at infinity (parallel beam) and image it on the exit aperture.

A brief analytical description of the RPD monochromator will be given here, however for details refer to previous publications. ${ }^{12,23,28,31}$ The electrons leaving cathode are formed into a parallel beam, and accelerated toward retarding plane. These charged particles travel toward electrode (R) with some axial energy distribution $N(v)$.The electrons that are $\begin{gathered}\text { emitited }\end{gathered}$ from a hot metal surface have Maxwellian velocity distribution as was shown by Richardson, ${ }^{32,33}$. A typical energy distribution at $T=1700^{\circ} \mathrm{K}$ is shown in Fig. 3-8.

Assume electrode (R) is at some potential V_{r}, so those charged particles with energy smaller than $\left|e V_{r}\right|$ are repelled and those with energies greater than $\left|e V_{r}\right|$ are transmitted. The fraction of electrons with energy
to pass a retarding potential V_{r} at $T=1700^{\circ} \mathrm{K}$ is shown in Fig. 3-9. In Fig. 3-10 the particles represented by the area under the hatched part of the distribution curve would be transmitted and those under unhatched part of curve repelled. Notice that in Figs. 3-10 and 3-11, Gaussian distribution are drawn instead of Maxwellian just for simplicity. Now if V_{r} is made more positive by an amount of ΔV_{r}, then energy necessary for transmission will increase by $\left|e \Delta V_{r}\right|$, as it is shown in Fig. 3-11. The difference current between the two settings V and $\left(V_{r}+\Delta V_{r}\right)$ will be composed of particles in the energy range $e V_{r}$ and $e\left(V_{r}+\Delta V_{r}\right)$.

Now if the voltage on electrode R is varied from V_{1} to $V_{1}+\Delta V_{r}$ as a function of time, as is shown in Fig. 3-12, and if a detector sensitive oniy to the alternating part of the current is used after the electrode P (Faraday cup, ...), then the distribution of charged particles seen by the detector will in principle be that represented by the latched part of Fig. 3-12. The description of RPD requires that the electrons cross the retarding plane with velocities perpendicular to the plane. So in practice, the degree to which the RPD monochromator works depends upon the degree to which a parallel beam of electrons can be made at retarding plane.

4. Extraction Lens.

The extraction optic lens elements $5000,6000,7000$, are used as focusing elements. They are made of OFHC copper tubes $1.5-\mathrm{in}$. O.D. and they are cylindrically symmetric.

The image of the last Einzel lens (4000) aperture is focused into the scattering cell by the extraction optics lens system. The 7000 element
has an aperture of 0.035 -in. O.D. This aperture is mounted ≈ 0.1-in. Arom the entrance aperture of the scattering cell. The main purpose of this aperture is to eliminate those charged particles in beam which make large angle with main axis and strike on the outer aperture of scattering cell. Usually the last element of the extraction optic lens sytem (7000) is held at the potential very close to the scattering cell voltage in order to aroid field penetration into the interaction region.

5. The Scattering Cell.

The interaction between electron and gas sample takes place in the scattering cell. The scattering cell is made of OFHC copper tubing $1.5-\mathrm{in}$. O.D. The scattering cell is $1.82-\mathrm{in}$. long (inside) and $0.7-\mathrm{in}$. I.D. There are two apertures of 0.040 -in. I.D. which are on the beam line. One allows the beam to enter the interaction region and the other one allo:is the unscattered portion of the beam to be collected by channel electron multiplier (or Faraday CUP).

The UV (visible light) photons from the decay of excited molecules are observed through a quartz window on the optical axis. The 1 -in. O.D. UV grade quartz window is epoxied into the scattering cell with Varian torr seal TM. The quartz window is shielded from the interaction region by two 95% transmission copper mesh, spaced $1 / 16$-in. apart by a copper ring. A lens is mounted to the scattering cell, in order to focus the U.V. photon into the photomultiplier tube outside the vacuum system. A quartz window on a 8 -in. sidearm flange completes the optical path.

The $0.5-\mathrm{in}$. magnesium fluoride (MgFl) window, mounted op-
posite the grade quartz window, allows the passage of photon of interested wave length (Lyman α). The magnesium fluoride window is shielded in the same fashion as quartz window and is epozied into the scattering cell.

Two $1 / 8$-in. copper tubes, which are epoxied with Torrseal to the scattering cell are used for gas handling and pressure measurement in the scattering cell. One is connected to the MKS' Baratron type 227 pressure gauge outside of the vacuum system and the other one is attached to a $1 / 2$-in. O.D. SS tube outside which is connected to a Granville Phillips leak valve. The change in pressure in scattering has been done by the leak valve.

6. Channel Electron Multiplier (and Faraday Cup).

Channel electron multiplier have undergone a rapid increase in use in modern scientific equipment. They are commonly used when very small electron (or ion) currents must be measured. They are also used in quadrupole and magnetic sector mass spectrometers. A brief description of characteristic and general operation principle, efficiencies for various types of inputs and electrical connections is given here.

An electron multiplier consists of several electrodes (dynodes) with secondary emission coefficients greater than unity. Many materials have been used for the dynodes of electron multipliers, $\mathrm{Cs}_{\mathrm{C}} \mathrm{Cs}_{2} \mathrm{O}-\mathrm{f} \mathrm{n}$, ${ }^{34,85}$ BaO on nickel, ${ }^{36} \mathrm{Be}$-coated nickel, ${ }^{37} \mathrm{Ag}-\mathrm{Mg}$ alloy, ${ }^{38,38} \mathrm{Be}-\mathrm{Cu}$ alloy, ${ }^{40,41}$ brass ${ }^{42}$ and aluminum. ${ }^{43}$ The characteristics of channel electron multipliers are excellent signal to noise capability (dark counts of less than 0.5 count/sec); stable dynode surface that can be exposed to air without
degradation; lower power requirements for operation; and narrow gain distribution of output pulses. A further advantage of an electron multiplier is its fast response.

Channel electron multipliers are non-magnetic devices fabricated from a special formulation of glass which is heavily lead-covered. ${ }^{4}$ When properly processed, the glass exhibits useful secondary emissive and resistive characteristics. Channel electron multipliers typically exhibit resistance in the range of 10^{8} to 10^{9} ohms. ${ }^{44}$ Electrical contacts, usually chrome, are deposited onto both ends of the channel. This allows good electrical contact between an external voltage source and the CEM. The external voltage source serves a dual purpose. First, the channel wall replenishes its charge from the voltage source. Second, the applied voltage accelerates the low energy secondary electrons to a level where, upon collision with the surface, they will create more secondaries efficiently. Depending on the applied voltage and the secondary emission coeffcients of the dynodes, the current gain of the multiplier may range from about 10^{3} to greater than 10^{8}. The secondary emission coefficient of the dynodes depends both on the surface condition and on the electron (photon) energy. As a function of electron energy, the secondary emission coefficient îor most of the common dynode material has a broad maximum in the range of 300 to 500 eV , the maximum value being about 3 to 5 secondary electrons per primary electron. ${ }^{45}$

Basic Principles of Operation:

A straight channel electron multiplier is shown in Fig. 3-13. A potential of a few thousand volts is applied between the ends of the multiplier. This operation should be performed in a vacuum of 10^{-6} torr or better, since higher pressure operation increase background and can result in shortened life. If high voltage is applied at pressures greater than 10^{-4}, the multiplier will be destroyed since arcing can occur at that presture.

An electron (ion) or photon of sufficient euergy will be datecied when it is incident onto the first dynode of the CEM and causes the emissinn of at least one secondary electrons. The resultant secondary electrons are accelerated by the electrostatic field within the channel until they hit the interior surface of the channel. This process occurs 10 to 20 times in a channel electron multiplier, depending on its design and use.

Straight channel electron multipliers (CEM) are not usually stable at gain above 10^{4}. The main reason for this instability is the phenomenon which is called ion feedback. At the end of CEM a large number of electrons are traveling through the channel. In this region, there is a high probability of ionization of some of the residual gas molecules within the channel. These positive ions will be accelerated toward the input, because of potential applied on ends of CEM. Some of these ion hit the surface of dynode, causing emission of electrons that are not related to input. These electrons are multiplied in the normal fashion, causing spurious outpulses (noise). Other ions may exit to input of the CEM, causing damage to a material under investigation or to a photocathode.

One of the methods used for elimination of the ion feedback instability is adding curvature to the channel electron multiplier. ${ }^{46,47}$ The advantage of adding curvature is to limit the curvature put on distance which an ion can travel towards the input ends of the multiplier. Since the highest probability of generating ions exists near the output end of the CEM, and the distance toward the input that these ions can travel is limited, the gain of pulses due to these ions is very low in comparison to the overall gain of the CEM. Elimination of ion feedback allows channel of appropriate design to operate at gain in excess of $10^{8} .48,40$

The range of input current for which the output current is linearly proportional to the input current is an important parameter of CEM, which is called Dynamic Range. The dynamic range is defined as

$$
\log _{10}(\text { max. linear output current }) /(\min . \text { out put current }) .
$$

The CEMs which are manufactured during last 10 years have a considerably great dynamic range. The lifetime of CEM depends upon seve:al factors, such as accumulated charge from the CEM, ${ }^{50,51}$ the residual gas environment ${ }^{52,53}$ and the duration of transient signal. It has been shown that the reduction in lifetime of CEM can be lessened by minimizing the CEM's exposure to the overdriving input. ${ }^{44}$

Figure 3-14 shows the gain versus accumulated output charge of pulse-counting channeltrons. The initial gain drop, labeled clean-up phase, is due to gases being desorbed from the surface of the channel. This will occur to some extent whenever the CEM is exposed to air and gases are adsorbed on the surface. So it is necessary to check the CEM occasionally
to ensure that it is operating in the saturated mode when CEM is new and undergoes initial gain drop due to surface gas desorption.

The electrical connection for pulse counting or analog operations of typical CEM is shown in Figure 3-15.

Faraday Cup Collector:

Faraday cups (FC), called also Faraday cylinders or cages, have been used to collect electron beams since the earliest days of electron beam work. The Faraday cup as a collector of charged particle beams was originated by Perrin, ${ }^{54}$ who used it to demonstrate that cathode rays carried a negative charge and that anode rays carried a positive charge. Figure 3-16 shows the schematic of Faraday cup collector (not to scale).

Electrons that are transmitted through the scattering cell are collected by the Faraday cup collector, which is shielded. The Faraday cup entrance aperture has 0.1-in. I.D. and is spaced approximately $0.2-$ in. from the Faraday cup shield. The Faraday cup shield is at the same potential as the scattering cell and it has an entrance aperture of $0.6-\mathrm{in}$. I.D. The Faraday cup outer shield serves two purposes. One is shielding the interaction region from the collector voltage and secondly, it is served as a mount for all FC parts (inner FC and collector) which are inisulated from the shield by Macor ${ }_{\text {тм }}$ spacers as is shown in Figure 3-15.

The solid angle that the entrance aperture subtends at the collector is made as small as possible in order to decrease the probability of going through the entrance aperture of the Faraday cup for those electrons which are scattered off the collector surface.

The inner Faraday cup and collectors are connected to a Tieithly electrometer. When the current in the Faraday cup is maximized by tuning each lens voltage at a given electron energy of the scattering cell, the focus of the electron beam is in the center of the scattering cell, and the gun is tuned for maximum transmitted beam through the scattering cell.

C. Photon Channels

The resultant photon from the decay of the excited state are cbserved through two photomultiplier tubes (PMT) with different wavelength sensitivity. The PMT used for visible light has a wavelength response of $2200 \AA$ to $8000 \AA$, and the other one has a wavelength response of $900 \AA$ to $1800 \AA$. A brief description of how the photomultiplier works is given below.

Photomultipliers convert incident radiation in visible, infrared and ultraviolet region into electrical signals by use of the phenomenon of photoemission and then amplify the signals by means of secondary emission.

A basic component arrangement of typical photomultiplier is shown in Figure 3-17.

Photons with energy $h \nu$ enters the evacuated enclosure through a "window" which has a semitransparent photocathode deposited upon its inner surface. The photocathode emits photoelectrons by the process of photoemission. Photoelectrons from all parts of the photocathode are focused and accelerated by an electric field so as to strike a small area on the first dynode. Secondary electrons resulting from the process of emission are
accelerated toward the second dynode by an electric field between dynode no. 1 and no. 2 and impinge on second dynode. The impact of the second secondary electrons on dynode no. 2 results in the release of more secondary electrons which are then accelerated toward dynode no. 3. This process is repeated until the electrons leaving the last dynode are collected by tie anode and leave the photomultiplier as the output signal. If, on the average, four secondary electrons are liberated at each dynode for each electron striking that dynode, the current amplification for a 12 -stage PMT is 4^{12}, or approsimately 17 million.

The visible photon from the decay of excited state are passed through a U.V. grade quartz window and a U.V. grade quartz lens, which is attached to the scattering cell. This lens has a 1 -in. focal leisth and a diameter of $1-\mathrm{in}$. The resultant visible optical signals are observed through a $1 / 4$ meter Jarrell-Ash monochromator with $33 \AA / \mathrm{mm}$ and detected by PMT.

The PMT used for detection of light in visible region is an RCA type C31034A02 with a Galleum Arsenide photocathode. This tube must be cooled to $-20^{\circ} \mathrm{C}(-30)$ to reduce the noise generated by the photo cathode when it is at room temperature. The photomultiplier tube is rated at 1470 volts for a gain of 10^{6} and 11 noise counts per second at cathode temperature of $-30^{\circ} \mathrm{C}$.

Exposure of the PMT to room lights tends to cause high dark count rates when the tube is returned to the dark and turned on. PM tubes also exhibit timing changes with wavelength and timing distortion when
high background light levels are present. ${ }^{55}$
All signal leads from the photomultiplier tube must be well shielded coazial transmission lines terminated on both ends. Amplifier must be placed as close as possible to the detector.

The PMT is installed in a Products for Research cooler. This cooler, in addition to cathode cooling, provides magnetic shieldiag, EF shielding, shielding from moisture (moisture increases dark comnt), and stray light, as it is discussed by Mietex. ${ }^{56,57}$

The other PM tube in use is an EMR 510G-09-13 with a Cesium Iodide photo cathode. The 6.4 mm diameter photocathode has a typical quantum efficiency of 18% at Lyman α and a typical room temperature anode dark current of 3×10^{-12} ampere at a multiplier gain of 10^{β}. Tile voltage required for gain of 10^{7} is 2570 volts with 1.0×10^{-11} ampere dark current. Its operational temperature range is from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and it is extremely "solar-blind" (cut off wavelength angstroms).

The tube is installed inside of one of the arms of the main chamber (180° opposite of the visible PMT) which is separated from the main vacuum system by magnesium flouride window and it is pienped separately. Tube and all transmission lines are well shielded.

D. Cleaning of the Electron Gun

The choice of copper, makes it easy to clean all parts of the electron gun and besides nonmagnetic property of the copper makes it ideal for construction of electron gun. The purpose of cleaning the gun is to remove all extra material from the copper and leaving a clean crystal
copper. The cleaning procedure described here has been adopted from that of Sutcliffe ${ }^{58}$ and that of Rosebury. ${ }^{58}$ The copper cleaning consists of several steps. The following are the steps used in cleaning.

1. Clean container with deterdent. Rinse with tap water several times and then rinse with distilled water three more times.
2. Clean with abrasive pad and detergent in tap water to remore scale, oxide and grease. Rinse and scrub at same time to remove detergont.
3. Leaving element in acetone for 1-3 minutes (degrease)
4. Mix formic acid (HCOOH) 10% by volume, and hydrogen peroside $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right) 5 \%$ by volume, and 85% distilled water. Leave element in solution until surface shows a uniformly fine etch. Depending upon the conciition of surface, this step takes 5-15 minutes. If fine etch was not achiered, repeat steps 2-4. When the solution changes color to dark blue or a dark residne is formed on the work surface, replace the solution.
5. Leave in distilled water for 4 minutes; rinse.
6. Mix hydrocloric acid (HCl) 15% by volume and distilled water 85% by volume. Leave the work in solution for $5-10$ minutes. This step stops the action of formic acid on copper. If the finished pieces become dark or change color to yellow when it is exposed to the air, leave work in HCl bath for 10 more minutes.
7. Rinse in distilled water.
8. Acetone rinse with ultrasonic cleaner for 10 to 15 minutes.
9. Repeat step 8 (new acetone bath).
10. Blow dry (do not heat).
11. Store clean copper, wrapped in Kimwipes, in a covered box.
12. Handle pieces only with chemically clean plastic gloves.

E. Assembly of the Electron Gun and Shielding

In order to achieve maximum current, the proper assembly of the gun's elements is required. Each element should be spaced on the preceding element about 0.03 " . The ceramic rods should not dig into soft copper, since this would cause the axis of the element to be not colinear with the axis of the other elements. In order to avoid this problem, a small light is shined between the copper element and ceramic rods. If the entire lengin of the element is touching both rods, a uniform reflection of light can be seen. So care must be taken to insure that entire length of the element is in touch with ceramic rods. There should be 0.032 -in. space betreen the last two elements. Also all elements should be spaced so that there will be no optical path for the beam to any insulators.

The end of the gun near the cathode is at a higher temporature than the scattering cell and Faraday cup. Therefore the mounting bolts for these elements near the cathode are bigger and must be tightened more than those farther away. This will insure that these elements will not move or slip during the temperature cycling.

The apertures are aligned by using a machined stainless steel guide. The guide is inserted into the bore of the element and the pin of the guide is inserted into the aperture and will insure correct alignment of the aperture.

After all elements are assembled, each element should be checked
for possible short to ground or all other elements. Each element lead is checked for continuity from the element to the connector on the top flange. Also each connector is tested for high resistance leaks to the ground which can upset sensitive electrometer reading. The RPD element impedance measured from the coaxial fitting on the top flange should be 50 ohin.

Magnetic Shielding:

The entire electron gun, scattering cell and channel electron multiplier (or Faraday cup) are surrounded by a magnetic shield. The shield is made of 0.1 -in. thick molypermalloy and has been commercially hijdrogen fired to give the shield its excellent magnetic properties. The shield is a cylinder 18 -in. long by 6 -in. in outside diameter. It has two tightly fitting end caps by which it is mounted to the electron gun mounts. There are tro holes on the shield which permit the passage of the light along the optical axis. The magnetic shield can be cleaned by mild detergent solution followed by several distilled water rinse and acetone rinses. The shield must be protected from sharp blows, dropping and rough handling since these will tend to magnetize it.

F. Bake Out Procedure

When electron gun is placed inside the main chamber and all sealing have been done, the forepump can be turned on. Leak checking is performed by spraying acetone around all flanges where aluminum sealing has been done. No increase in pressure on the ionization gauge (thermocouple l; TC1) indicade big leak is not present. When pressure on TC1 reads
below 100 mT , the diffusion pump can be turned on. After one hour, the filament of ionization gauge is turned on. To find small leaks, acetone are sprayed around the suspected area and watch for an increase in pressure on the ionization gauge. If no large leaks are present, the vacuum system pressure should reach 2×10^{-7} Torr, depending upon how long the system has been exposed to the atmosphere the pump down is achieved from one to three days.

Before bakeout started, all vacuum interlock circuits should be tested. High temperature bakeout is the process of pumping the system to low pressure at elevated temperature in order to remove water and gases which are absorbed by the surface of element, and the wall of the vacuum system.

When pressure on TCl reads below 100 mT , the difusion pump can be turned on. To find small leaks, acetone are spaced around the suspected area and watch for an increase in pressure on the ionization gauge. If no large leaks are present, the vacuum system pressure should reach 1×10^{-6} Torr. Depending upon how long the system has been exposed to the atmosphere, this pump down is achieved in from one to tino days.

Before bake out started, all vacuum interlock circuits should be tested. High temperature bake out is the process of pumping the system to low pressure at elevated temperatures in order to remove water and gases which are absorbed by the surface of elements from the vacuum system.

Heating tapes are used and power is supplied through Variacs
so the temperature can be changed. Bake out is accomplished by beating the main chamber first. Because of the existence of Viton o-rings on one of the arms, the main chamber should be heated slowly and temperature should not exceed $300^{\circ} \mathrm{F}$. For a system opened to the air for more than several days, 12 hours is enough to reach this temperature. When this temperature is reached, the trap heaters are turned on. The system is left for one to two days. When a pressure of 1×10^{-6} is reached, the trap heaters are turned off. The system is left overnight so the sorbent trap may cool completely. The pressure at this time is about 10^{-7} Torr and the main chamber taps are turned off. After about four hours the pressure wiil be down to $\sim 1.9 \times 10^{-8}$ Torr and at this stage the cathode activation may begin.

G. Cathode Activation

The activation is accomplished by increasing the filament current in steps of about 0.05 Amp . at 15 to 20 minute intervals. A typical activation schedule is given in Table 3-1. During activation, the pressure is monitored and care is taken that it does not exceed 5 on 5 times $10^{-} 4$ scale; if it does, the power to the filament will be turned off. The emission of electrons from cathode detected by monitoring the current to the anode. The filament power then increased by $\sim 15 \%$ for ~ 10 minutes to ensure that the oxide coating is completely reduced. The filament power is then reduced to its activation value. Some potential is applied to anode and the gun is left in this configuration for 24 hours to stabilize electricâlly aild thermally.

Table 3-1. Cathode Activation Schedule.

Elapsed	Pressure at	Filament
Time	Power Change	Current
(min)	$\left(10^{-8}\right.$ Torr)	$($ Amp $)$
5	2.0	0.10
15	2.0	0.20
20	2.4	0.25
35	2.5	0.35
50	3.2	0.20
60	3.2	0.42
75	6.0	0.44
90	10.0	0.46
100	12.0	0.47
120	12.0	0.48
133	8.0	0.50
140	4.6	0.55
145	3.2	0.60
		0.65

Fig. 3-1. Experimental Apparatus.

Fig. 3-2. Vacuum System.

Fig. 3-3. Vacuum System Interlock.

Fig. 3-4. DC Power Supply Rack Control.

Fig. 3-5. Pulsed Electron Gun.

Fig. 3-6. RPD Monochromator.

Fig. 3-7. Electrical Connection of RPD.

Fig. 3-8. Energy Distribution from Hot Metal.

Fig. 3-9. Fraction of Electrons with Energy to Pass a Retarding Potential V_{r}

Fig. 3-11. Fraction of Electrons with Energy to Pass a Retarding Potential

$$
V_{r}+\Delta V_{r}
$$

Fig. 3-13. Cross Sectional View of a Straight Channel Electron Multiplier.

Fig. 3-14. Gain Curve for CEM.

Fig. 3-15. Electrical Connection of CEM.

Fig. 3-16. Cross Sectional View of Faraday Cup.

Fig. 3-17. Schematic of typical photomultiplier showing some electron trajectories. 1-12: Dynodes. 13: Anode. 14: Focusing electrocles.

15: Photocalhode.

CHAPTER IV

DATA ACQUISITION

A. Optical Alignment

Initial optical alignment was accomplished before turning the electron beam on by shining a small beam of laser through monochromator (setting at $6310 \AA$) and adjusting monochromator to get laser light at the center of scattering cell. Fine adjustment is performed after the electron beam turned on, the fine adjustment includes the focussing of the epticeal system aligning the axis of the optical system to go through the center of the scattering cell, setting the slit of the monochromator so that it is parallel to the electron beam and focusing of the light from the quartz condensing lens so it falls onto the monochromator entrance slit. After the above adjustment have been made, the PMT is rotated in its holder to maximize the photon rate. Finally, the slits are closed down to the desired resolution, and a final check of the alignment is made.

Monochromator Adjustment

The optical monochromator is adjusted by the following procedure. With the electron beam set to an appropriate energy, a scan of the wavelength interval of interest is made. By comparing the position of known lines with wavelength reading of which they appear, the calibration of the monochro-
mator wavelength dial may be checked. We found the reading dial is nbout $30 \AA$ off. The proper slit size is determined by the optical resolution desired. The reciprocal dispersion of the monochromator times the exit slit width gives the wavelength spacing at which two lines will just be resolved. The front slit is chosen for optimum intensity for a given monochronator. This assumes that the light source is properly focused on the monochromator with the condensing lens matching the f-number of the monochromator and the entrance slit filled with light.

All lifetime measurements of the $a^{3} \Sigma^{+}$state were made with a 25 mm exit slit and with .5 mm entrance slit, which gives about $20 \AA$ resolution.

Photomultiplier Tube (PMT)

Before installing PMT, all surfaces of the tube base are cleaned with reagent grade acetone and blown dry. The RCA C31034A02 PMT, which is to be handled in total darkness at all times, is mrapped with black insulation tape at the factory. The tape is not to be removed nor should any device which exerts pressure on the tube except for the tube base be utilized to hold the tube in place in the PMT cooler housing. The PMT is pushed straight into the tube base (in total darkness) with gloved bands and installed in the cooler after the air is purged from the interior for at least 30 seconds by dry nitrogen. The quartz window and lens set that matches the monochromator to be used is installed in the cooler, and the cooler is turned on. After about two hours of cooling the PMT cathode is cooled to the selected temperature $\left(-30^{\circ} \mathrm{C}\right)$.

Initial Powering of PMT

After the housing is securely attached to the monochromator and any possible sources of light leaks are covered by Apiezon Q, an electrometer set on the 100 nanoamp scale is connected to the anode of the FriT and voltage is applied to the PMT in 100 volt steps. Each time the yoltage is increased, the electrometer is checked to insure that the maximum 100 nanoamp, averaged over any 30 -second time period, is not exceeded. ${ }^{60}$ If the current is low enough, the voltage to the PMT may be incremented by the next 100 V . In the case of excessive anode current, the voltage must be immediately decreased until the anode current is less than 100 nano?mp or until the voltage is turned off. Initially, the PMT voltage is increased up to that voltage specified on the tube specification sheet supplied by the manufacturer when the tube is purchased. By choosing the rated voltase, the dark current and PMT gain will be known and any excess counts may be attributed to amplifier noise, light leaks or electrical discharge on the tube base. The PMT anode pulses are next examined by connecting the PMT to a fast (300 MHz band width)oscilloscope using a terminated 50 ohm coax. The light level can be increased slightly by uncovering the monochromator front slit to make viewing on the scope trace easier as long as the maximum anode current of 100 nanoamps is not exceeded. The anode pulses wiil be negative, going with rise and fall times of approximately 2.5 nanoser and n amplitude of -5 to -10 millivolts. The presence of larger amplitude signals with widths much larger than 5 nsec will indicate the presence of discharges around the resistor chain or tube base. Continued cooling of the PMT with
voltage applied for 10-30 hours will sometimes remove water from the base. The water is pumped to the colder surfaces of the PMT cooler from warm region around the dynode resistor chain and the tube base. Extremely large discharges around the PMT must be eliminated right away, since the light from these discharges may easily overcurrent the last dynode stages and anode of the PMT, reuslting in serious if not permanent damage.

Light leaks are detected by covering the front slit and noting any decrease in dark count rate as the room lights are turned nif. Iight leaks are eliminated by taping, covering with Apiezon Q, installing bafiles, covers or sheet metal housings. When the dark count rate reaches the rate specified by the manufacturer at the operating temperature of the PMT cathode, adjustment of the amplifiers and discriminators is periormed. After exposure to room light during installation, the dark counts of the PMT will slowly decrease while the tube is in operation for the next 1 to 3 days. The tube should never be exposed to room level lights while porer is applied to the dynode resistor chain.

A constant light signal from the scattering cell is used for checking the signal to noise ratio of the photon channel. By varying the PMT voltage, amplifier gain, and discriminator setting, the signal/dark count rate is maximized. Generally, the best operating point is found by using a higher than normal voltage on the PMT to increase its gain within the maximum allowable PMT cathode to anode voltage and installing a low noise wide band preamp on the output of the PMT. It was found that the C31034A02 performed best with 1660 V into a low noise preamp ${ }^{61}$ rith
the discriminator set as low as possible. The coax used in this cbannel is RG-58 with polyethylene foam dielectric for low loss. A PMT anode pulse height spectrum was used to adjust the discriminator levels. This spectrum shows that the electronic noise occurs at low pulse height level and may be easily discriminated against. The total number of counts in the spectrum minus the noise will indicate the signal rate that should be observed on a rate meter connected to the photon channel. Adjustment of the Constant Fraction Discriminator is made until the proper signal rate is reached, that is, the rate where the noise is excluded.

B. Tuning of the Electron Gun

The proper tuning of the electron gun is critical and proceeds in two parts. First, the tuning of the electron monochromator (including the cathode, pierce and anode elements, elements 2,3 and 4) and second, the adjustment of the output optics, elements 5,6 and 7 , to focus the beam into the desired region either the scattering cell (in case of lifetime and optical excitation measurement) or the Faraday cup (transmitted electron experiment). The choice of anode voltage is within limits arbitrary. A voltage of between 60 and 120 works well. If more beam current is needed then the anode voltage can be increased up to 200 V . It has been found that the higher anode voltages require larger negative voltage on the pierce element to maximize the Faraday cup or scattering cell current. The pierce element voltage is adjusted to produce a DC current at the scattering cell which is between 10 and 20 volts (all voltages are measured with respect to cathode unless otherwise specified).

Next, the DC voltage on the RPD is set between 1.7 and 2.9 V , while V_{2000} and V_{4000} are both set to the same voltage between 9 and 20 volts (preferably 10 volts). The elements 5,6 and 7 are set to 50 V , 100 V and 15 V respectively, and $\mathrm{V}_{\text {anode }}$ is set as discussed above. A DC current should now be detected at the scattering cell. The voltages on all the elements evcept the RPD are set to maximize the current on the scattering cell. The Keithley electrometer (KE) is set on its most sensitive scale while $V_{\text {RPD }}$ is adjusted until the KE reads maximum current. Once the signal is detected on KE, by any combination of lens voltages similar to those above, tuning of the gun proceeds routinely. The pierce and RiPD voltages are set to maximize the current collected by (FC) and the roltages on the 5,6 and 7 elements are adjusted to maximize the current. Various combination voitages on the 2000 and 4000 element may now be studied.

Setting proper voltage on the anode, pierce, 2000 and 4000 elements are critical in order to ensure that electrom beam crosses the rêtarding plane perpendicularly. If a significant fraction of the electron beam do not approach the retarding grid perpendicularly, then the sharp cutoff on the energy distribution will not occur, Fig. (4-2b). Then electrons with sufficient energy $\left(E^{\prime}>\left|e V_{r}\right|\right)$ for passing the retarding plane will be repelled if the approach angle θ be such that $E \cos \theta<\left|e V_{r}\right|$. This has चifect on the resolution of the electron gun. Figure (4-2c) shows the two distribution functions when difference is taken between steps of ΔE the resultant energy distribution in Fig. (4-1d) is obtained. The additional width ΔE is added due to the lack of a sharp cutoff of the transmitted energy distribution and
it varies non-linearly with step size.
The best resolution and lens transmission function of the gun as the beam energy is varied can judged by examining electron transmission spectra with and without gas in the scattering cell. By scanning the scattering cell voltage through region containing resonances of known energy and width, the performance of the gun may be determined. The measured width of known resonances may be compared to the width determined by high resolution differential cross section measurement. The desired result of the tuning procedure is a large throughput of the electron optics in the energy interval of interest along with a resolution sufficient to resolve any structure to be studied. The 5, 6 and 7 elements may be adjusted to focus the beam in the scattering cell or into the Faraday cup after the abore adjustment have been made without upsetting the operation of the REiD monochromator. The location of the focus is determined by the type of experiment performed, e.g. either optical emission function or transmitted electron measurement. The energy resolution of the present electron gun was measured by study of known resonance in N_{2} as it is shown in Fig. 4-2, and it was found that the best resolution we can get (for N_{2}) is 40 meV FWHM.

C. Optical Excitation Function

A schematic of the electron gun elements and its associated power supplies and electronic is shown in Fig. (4-3). Not detailed in the diagram are the π filters on 2000, 4000 and cathode elements to reduce high frequencies. The schematic of the π filters is shown in Fig. 4-4. They reduce
all observable noise components to less than 5 mV peak to peak. The filters are contained in well-shielded metal boxes to reduce stray noise pick-up. ${ }^{62}$

Fig (4-5) shows block diagram for recording optical emission functions. The photon from decay of the excited state are passed through a high efficiency UV visible monochromator and detected by PMiT. Fast negative pulses from PMT are amplified by two amplifiers. The constant fraction discriminator generates a fast negative -0.5 volt timing pulee rene the input pulse reaches 60% of its full amplitude. In all otical excitation functions measurements the entrance and the exist slits of monochromator were 0.5 mm , which gives a band pass of $25 \AA$.

The monochromator is set at interested wavelength and the energy of the electron is scanned. The total photon from the output of rate meter is recorded in MCA. The electron gun is stepped at approximately 20 mcVici and dwell time was either $128 \mathrm{sec} / \mathrm{ch}$ or $64 \mathrm{sec} / \mathrm{ch}$ when measuring optical emission function.

In this work, the optical emission function have been measured and used to determine the threshold energies of the various overlapping states present in the lifetime measurement. If two thresholds are present in the optical emission function and two decay components are observed in the radiative decay curve, we may identify the levels from which the two different decay components originate by comparing the relatire decay amplitudes in the decay curve to the relative strengths of the coss sections in the optical emission function. If the energy separation of the two overlapping states is greater than the energy spread of our electron gun (.5
eV) we can lower the excitation energy below the threshold of the higher energy state to see which decay component vanishes from the decay curve and consequently identify both processes. Determination of the thresholds of the states present in the optical excitation functions have been done by a computer technique which fit an energy distribution function and up to three straight line segments to the emission function data near onset. The computer code is based on folding a Maxwellian energy distribution into 1, 2 or 3 lines using non-linear least square fit. This computer code is listed in the Appendix. When the threshold of states are determined we identined the states present and then we measured the radiative decay liferimes for the $\mathrm{v}=9,12-16$ vibrational levels of $a^{13} \Sigma^{+}$state. Our threshold results are in good agreement with the spectroscopically determined thresholds previously reported. ${ }^{10}$

Calibration of Energy Scale

The energy scale calibration is necessary, due to the difficulty in determining the potential difference between the cathode surface from which the electrons are emitted and the scattering cell. The potential between the metal base of the cathode and scattering cell is measured by a digital multimeter (Racal Danna 4003) and it determiend within \pm $.1 \%$. However, the electrons are emitted from oxide layers that hare been deposited on the cathode in the form of carbonates or hydroxides of the alkaline-earths barium, strontium and calcium. ${ }^{62,68}$ These deposits are further reduced to oxides by a heating process, and it is the free metals that coat the oxide layers on the cathode that provides the high electron
current density over that of the uncoated metal. There is a potential drop across the oxide layers that can amount to several volts ${ }^{62}$ and which is dependent on past history of the cathode and its present condition. It is this cathode potential drop that makes direct measurement of the beam energy dificult and results in the need for energy caiibration. When the RPD is tuned to maximize the signal on Faraday cup, the voltage are set so that the electrons cross the RPD grid with almost zero energy (refer to RPD principal). Thus, the potential difference between RPD screen and the scattering cell is an accurate determination of the energy scale.

The energy scale is calibrated by comparison of the position of structure on measured optical emission function to those taken on high resolution experiment. Spectroscopic data ${ }^{12}$ gives accurate position of threshold and peaks and thus provides a low energy calibration point on all optical emission functions.

D. Lifetime Measurement

In order to record time spectra, to measure excited state lifetimes MCA (Multichannel Analyzer) is connected to the time amplitude convertor (TAC) and is set to record in the pulse height mode. The energy of the electrons in the scattering cell is held fixed at some appropriate energy and monochromator is set at the desired frequency then time spectra is collected. The method used for lifetime measurement is called Delay Coincidence Technique. This method first was used by Heron et al. ${ }^{63,64}$ and Bennett. ${ }^{65}$ The technique is possibly the most accurate and widely applicable of the methods currently available for lifetime measurement.

The experimental arrangement for coincidence technique is sbown in Fig (4-6). The Tektronix PG502 pulser generators pulses to the RPD element and the same voltage pulse after differentiation is applied simultaneously to the stop input of a Time-To-Pulse Height Converter ($\mathrm{T} A \mathrm{C}$). This initiates the charging of a capacitor by a constant current sowice. Sometime after the excitation pulse, a molecule in the sample emits a photon on the decay transition of interest which is detected by the photomultiplier. The resulting voltage pulse is amplified and is applied to the input of Gate-Delay Generator (GDG). Finally the GDG is connected to the start input of the TAC. At this instant the capacitor stops charging and a voltage pulse, whose amplitude is proportional to the time interval which has elapsed between excitation and the detection of the first photon is delivered to the MCA. The nth channel of the MCA corresponds to a voltage interral between V_{n} and $V_{n}+\Delta V_{n}$ and if the incoming voltage pulse lies within this interval one count will be added in this particular channel. Thus each channel is made to correspond to a finite time interval after the removal of the excitation pulse. This technique can suffer from several kinds of systematic errors. For an extensive discussion of these errors see Corney, ${ }^{76}$ Imhof and Read ${ }^{77}$ and Perrin. ${ }^{54}$

Time Calibration of Multichannel Analyzer

Fluorescence decay curves were accumulated in MCA. The channel of the recorded count is proportional to time, and the height of the histogram is the number of counts detected at that time. The time per channel was calibrated before each lifetime measurement by an Or^{2} ec ${ }^{4} 62$
time calibrator. The MCA did not show more than one channel difit in 1024 channels during the time that data was collected (60 days). Most of the decay curves were obtained using a $40 \mu \mathrm{sec}$ time window.

Optical Spectral:

Spectral overlap due to the finite resolving power of the optical monochromator is an important factor in any lifetime measurement. Blended lines can sometimes mistakenly be interpreted as cascades and spectral overlaps can be an important consideration in the study of miverelar systems where vibrational band system may overlap eachother.

In addition to the identification of states from their threshold extracted from optical emission function, wavelength scans at diferent energy were made in the region of interest $4600-6400 \AA$ to determine if the transitions monitored were free of spectral overlap. The waielength spectra were obtained with $20 \AA$ resolution and electron beam energies of $8-11 \mathrm{eV}$. See Figs. 4-7 and 4-8.

A computer program, LASL, which is more fully described by Paske ${ }^{66}$ and Thompson ${ }^{67}$ was used to extract the lifetimes and amplitudes from data. This program fit the data by a technique of non-linear least square. The prograin can fit up to four exponential plus a constant background, and it is listed in the Appendix. A sample of analyzed data by LASL is shown in Table 4-1. In all data analysis the first and last channel included in the analysis were varied to ascertain if another component which has not been identified or accounted for in the fitting function was distorting the lifetimes.

E. Data Transfer and Storage

The recorded decay curve in MCA are transferred to a Reltronix 4052 minicomputer via the "type" output of the MCA. The data on 1024 channels are stored in files on a magnetic tape cartridge. The data recquire a file with 19520 bytes ailocated. A data cartridge can hold 18 êles of this length. The program for transferring data from MCA to Tektronix is !isted in the Appendix.

INT. CURRENT (ARB. UNITS)

Fig. 4-2.

Fig. 4-3. Pulsed Electron Gun and Its Associated Electronics.

Fig. 4-4. Schematic of π Filter.

FIGURE 4-5

Fig. 4-7. Energy Dependence of the Optical Spectra in the Region

6400
6000
5600

Fig. 4-8. Energy Dependence of the Optical Spectra in the Region $5600 \AA \rightarrow 4600 \AA$

$e^{3} \Sigma^{-}=a^{3} \Pi_{r}{ }^{(3-0)}$
(4-0)
(5-0)
(6-0)

CHAPTER V RESULTS AND DISCUSSION

Optical Emission Functions

CO
The energy scale was calibrated by observing the position of the shape resonance at $10.66 \mathrm{eV}^{9}$ in the emission function of the $b^{3} \Sigma^{+}$state of CO. This emission function was obtained by monitoring the $b-a(0-2)$ transition at $3134 \AA$ and sample calibration curve is shown in Fig. $5-1$. The computer code CHI used for determination of threshold gives a result which is in good agreement with previously reported threshold. ${ }^{68,70}$

The optical emission functions obtained for the Asundi vibrational levels $v=9$ through $v=15$ are shown in Fig. 5-2. The intensity scale for each emission function shown is different and therefore an amplitude comparison between the various curves is not meaningful. Every emission function studied indicated the presence of at least two thresholds and in some cases, such as in $a^{\prime}-a(10-1)$ transition, there are three thresholds.

In the $a^{\prime}(15)$ and $a^{\prime}(13)$ emission function obtained by monitoring $a^{3} \Sigma^{+} \rightarrow a^{3} \Pi(15-3)$ and (13-3) transition, the presence of threshold due to the spectral overlap of the $B^{\prime} \Sigma^{+}$state at $10.77 \mathrm{eV}^{9}$ provide us with additional energy calibration check. The identification and measured energy
thresholds for the $v=8$ to $v=16$ vibrational levels are tabulated in Table 51. The result agrees well with the spectroscopically determined thresholds previously reported by Tilford and Simmons. ${ }^{8}$ The errors listed in the table represent two standard deviation from the mean after multiple determination of the thresholds. The identification and thresholds of the additional state observed to overlap the Asundi levels are tabulated in Table 5-2. We did not find the $a^{\prime}(10)$ threshold when we observed the transition (10-1) at $6115 \AA$. Instead we saw the thresholds for the $e(1)$, the $d(7)$ and the $a^{\prime}(15)$ states. The $a^{\prime}-a(10-1)$ transition is probably too weak to be seen in the presence of the other three transitions. A transition identified as the $d-a$ (7-2) has been reported for this region. ${ }^{12}$ However the $a^{\prime}(10)$ threshold bas been observed at $6820 \AA$ and the threshold in the table (5-2) is based on this measurement.

Hydrogen Molecule

The optical excitation function for VUV photon (Lyman Alpha) at pressure of 41.1 mTorr , energy step of $20 \mathrm{meV} / \mathrm{ch}$ with the Dwell time of $3 \mathrm{sec} / \mathrm{ch}$ have been measured. Fig. 5-16 shows this Optical Emission Function. The vibrational component of band "a" appear as the principal feature in $B^{1} \Sigma^{+}$excitation near threshold.

The energy scale was calibrated by measuring the threshold (13.63 eV) in the emission function of the $d^{3} \Pi$ state of H 2 . This emission function ras obtained by monitoring the $\mathrm{d}-\mathrm{a}(0-0)$ transition at $6020 \AA$. The data tras taken at $41.5 \mathrm{mTorr}, 20 \mathrm{meV} / \mathrm{ch}$ step size and $30 \mathrm{sec} / \mathrm{ch}$ Dwell time. The sample calibration curve is shown in Fig. 5-26a. The coputer code CHI used
for determination of threshold gives a result which is in good agreement with previously reported threshold. ${ }^{77}$

The identification of our photon data as the excitation function of $B^{1} \Sigma^{+}$is based on (i) a threshold of 11.17 eV which was in good agreement with the spectroscopic value of $11.9 \mathrm{~V}^{1} 9$ for $B^{1} \Sigma^{+}$to well within accuracy of our calibration procedure and (ii) the fact that no other states are knowis to emitt VUV photons after excitation by electron with impart enorgy below about 12.5 eV .

The strongest transition from the $B^{1} \Sigma^{+}(v=0)$ level are the ground state $X^{1} \Sigma^{+}(v=4,5,6)$ levels and the corresponding photon energies are about 8.5 eV . However there are other resonance peaks which are not that strong, and their intensiteis are typicaly a factor of 2 bigger than noise level. In order to observe these structure more clearly,the experimental curve was differentiated via a computer code and then it was smoothed. Fig. 5-17 shows the curve obtained by this procedure.

In order to determine the accurate position of resonances, the energy scale in optical emission function has been expanded. Fig. 5-18 through Fig. 5-22 show this energy expansion. The energy range for each figure is 1 eV .Comparison of Fig. 5-17 with Fig. 5-18 shows the need for this energy expansion. The first peak in Fig. 5-18 is identified as b and the second resonance peak which is more pronounced is the first resonance peak in series a.

The most prominent peaks in our data arise from two vibrational series band " a ", and " b ". In table $5-5$, we compare our data for position of
these resonances with the result of other workers using different tecinignes. The agreement between the various sets of data is seen to be excellent. The discrepancies seldom exceed 0.02 eV and in half of the comparisons the disagreement are no more than 0.01 eV .

The Vibrational Series "e" can be seen in Fig. 5-17 as a set of small peaks between those of series " a " and " c ". The intensities of the "e" resonances were typically a factor of 3 smaller than those of neighboring "a" and "c" resonances. The position of the "e" resonances are compared with the result of other experimental techniques in the table 5-5. Azain the descrepancies exceed not more than 0.02 eV .

I have observed new band resonances in optical emission function of $B^{1} \Sigma^{+}$state of H_{2} which are not reported previously. Nerv names (e^{\prime} and f^{\prime}) are assigned to these resonance peaks. The intensities of these peaks are typically a factor of 10 b smaller than those neighboring " a ", " b ", " b ", and " d " series. Table $5-5$ shows position of e^{\prime} and f^{\prime} resonance peaks, and since there is no reported value for the position of these resonances, no comparison can be made. Although some of these peaks are merely discerinble above noise, they appeared consistent in all our data runs. Therefor There is no question about reproduciblity of these resonance structures.

Lifetime

CO
We have measured the lifetimes for the $v=9,12-16$ vibrational levels of the Asundi bands. A sample radiative decay curve is shown in

Fig. 5-3. The plateau shown in the curve is due to the saturation of the excitation processes prior to the turn off of the electron gun. In most of decay durve, data were accumulated until the counts in the lead channel were greater than 25,000 . This was necessary in order to assure sufficient statistic to analyze multiple decay components. The two decay curies shown in Fig. 5-3, for example, have three decay components present. The curve shown in Fig. 5-3(a) was obtained at a pressure of 4.1 mTorr while the curve in (b) was obtained at a pressure of 12.1 mTorr . More than one exponential component is obvious in Fig. 5-3(b) but is not obvious in Fig. 5-3(a). A single exponential fit to curves (a) and (b) yields a reduced χ^{2} of 1.2 and 5.2 respectively. A double exponential fit results in a reduced χ^{2} of 1.03 for both curves. Further analysis of both curves reveals a third component, very nearly identical to the first component. However, this third component can not be resolved with precision due to the similarity (\approx 10% difference) of the lifetimes at these pressures. At higher pressures, the two similar components can be resolved in agreement with three thresholds present in the emission functions (see Tables 5-1 and 5-2).

The pressure dependence of the $v=9,12-16$ vibrational levels of Asundi band is shown in Fig. 5-4. The results for the a^{\prime} (14) level are statistically poorer than the rest of the measurements since the level was observed as a weak additional decay component overlapping the $a^{\prime 3} \Sigma^{+}$ $a^{3} I I(9-1)$ transition. The error bars represent a variation in the computer fit parameters over the accepted range for a reduced χ^{2} of 2 . In our lifetime determinations the statistical errors typically vary between 2% to 5%. the

Data were fit using equation

$$
\begin{equation*}
N(t)=A_{1} e^{-t / \tau_{1}}+A_{2} e^{-t / \tau_{2}}+c \tag{25}
\end{equation*}
$$

and in case of three lifetimes

$$
\begin{equation*}
N(t)=A_{1} e^{-t / \tau_{1}}+A_{2} e^{-t / \tau_{2}}+A_{3} e^{-t / \tau_{3}}+c \tag{26}
\end{equation*}
$$

to find the best values of all the parameters. A grid search which varied each parameter about its best value independently was conducted to determine the uncertainties in the parameters. This grid search provided the range through which the data could be int by five (or seven) parameters (lifetimes, intensity and background) and still yield a reduced χ^{2} of less than tro. The error bars used in Fig. 5-4 are the result of this search. The error stated for the zero pressure lifetimes represent two standard deviation from a weighted least square fit to the pressure data. Our zero pressure extrapolated lifetime results and the calculated collisional quenching cross sections are tabulated in Table 5-3 along with the previous lifetime measurements of Wextinls et al. ${ }^{4}$ and Van Spring et al. ${ }^{3}$ for the $v=9$ level. A plot of the measured reciprocal lifetime versus ν^{3} is shown in Fig. 5-5 along with the previous results of Van Sprang et al. ${ }^{3}$ A pressure study of the normalized amplitude of the long lived ($10-16 \mu \mathrm{sec}$) component reveals a quadratic pressure dependence as shown in Fig. 5-6. This suggests that the energy transier mechanism involved is a collisional transfer, and not radiative.

Our lifetimes for the higher vibrational levels ($v=12-16$) agree well with the estimated lifetimes reported earlier, ${ }^{2}$ which was based on a ν^{3} projection. The longer decay component which was reported in conjunction
with the d and e states was not observed in all of the Asundi transitions. However, when observing the $a^{\prime}-a(12-2)$ transition at $6008 \AA$, a long lived ($10-16 \mu \mathrm{sec}$) weak component was seen along with the shorter decay component of the $d(14)$ level. An additional threshold was also present at 8.63 eV in the $a^{\prime}(12)$ emission function obtained at $6008 \AA$ which may be the source of this long lived component since the long lived enmponent, vanishes when excitation energy is below 8.63 eV . This additional threshold was previously ${ }^{2}$ identified as the threshold of the $a^{\prime}(12)$ level, based on the calculation of Krupenie and Wissman. ${ }^{75}$ The threshold found at 8.47 eV in this work (see Table 5-2) was not previously extracted from the emission function data of Paske et al. ${ }^{2}$ However, the computer code CDI used in this work can extract three thresholds from emission functions obtained for the d and the e states 1,2 which are consistent with the results shown in Tables 5-1 and 5-2. So, actual threshold of $a^{\prime}(12)$ level is 8.47 eV , which is in good agreement with previously observed by Tilford and Simmons. ${ }^{10}$

Although the $a^{\prime}(13)$ vibrational level has a threshold energy of 8.61 eV , there are no $a^{\prime}-a\left(13-v^{\prime \prime}\right)$ transitions listed ${ }^{8,9}$ near the monitored wavelength ($6008 \AA$). If the additional threshold in the $a^{\prime}(12)$ emission function is due to a collisional transfer from $a^{\prime}(13)$ to the $a^{\prime}(12)$ or to the $d(4)$ state, we would expect a much faster lifetime ($\approx 5 \mu \mathrm{sec}$) than the 10-10 μ sec we observed. Similarly, the $d(8)$ level which has a threshold of 8.59^{9} would also have a lifetime too short lived ($\approx 3 \mu \mathrm{sec}$) to be the source of this longlived component. Since the $v=0,1$ vibrational levels of the $a^{3} \Pi$ state are known to be long lived ($1-7.5 \mathrm{msec})^{71-73}$ we considered the higher
vibration levels of this state as a possible source of the long lived desay component. We calculated the energy thresholds of the $v=7-16$ vibrational levels of the $a^{3} \amalg$ state based on the vibrational and rotational constant listed by Tilford and Simmons ${ }^{28}$ and found that $v=13$ vibrational lerel of the $a^{3} I I$ state has a threshold of 8.62 eV . These calculated thesholids are shown in Table 5-4 along with the previous calculations of Krunenie. ${ }^{8}$ Although the lifetimes of the upper vibrational levels of the a state have not been measured, an estimation of the lifetimes for the $v=6$ and 7 levels has been made by Wicke et al. ${ }^{74}$ which indicate that their lifetimes are less than 7 and 2 ms respectively. Since CO quenches the a^{3} II state very fiectively (reducing the lifetime to about $14 \mu \mathrm{sec}$ at 20 mTorr), it is possible that the 10-16 μ sec lifetime we observed may be the quenched collision transier rate between the $a(13)$ and either $a^{\prime}(12)$ or the $d(4)$ states. A collisional transifer is indicated by the pressure dependence of the normalized amplitude of the long lived $[a(13)]$ component shown in Fig. 5-6.

The collisional quenching rates for the $a^{\prime}(v=12,13,14)$ levels are almost an order of magnitude higher than for the $\mathrm{a}(v=9,15,16)$ levels. The energy difference between the $a^{\prime}(v=9,12$ and 13$)$ levels and the $a(v$ $=10,12$ and 13) levels are much smaller (as small as 20 meV) than between the $a^{\prime}(v=10,11,14,15)$ and other a state vibrational levels. This could indicate a higher probability for a collisional transfer which would gire a higher quenching cross section for the $v=12$ and 13 levels. There is not a good energy match between the $a^{\prime}(14)$ and any $a^{3} \Pi$ state vibrational levels, although it might match some part of the rotational band. Thus, the high
quenching cross section for $a^{\prime}(14)$ level is not well understood at present. Furthermore, we do not obtain a high quenching rate for the $a^{\prime}(9)$!erel although the energy difference between $a^{3} \Sigma^{+}(v=9)$ and $a^{3} \Pi(v=10)$ level is about 20 meV . Similar considerations of the energy levels of the d and e states also will not explain why only the $v=12,13$ and 14 ribretional levels are quenched more efficiently than the other vibrational lerels.

From this work the lifetimes of the Asundi levels are now known to be very close to those previously estimated by W. C. Paske et al. ${ }^{2}$ In fact, the Asundi lifetimes are about 20 to 30% longer lived than the nearby $d^{3} \Delta$ and $e^{3} \Sigma^{-}$states. The problems that this similarity can cause may be seen in the case of the $a^{3} \Sigma^{+}(v=12)$ level. The non-linear least squares computer code LASL used to extract the lifetimes from the $a^{\prime}(12)$ decay curves indicates that two similar lifetimes are present but it cannot distinguish two lifetimes differing by only 20% very precisely. Therefore we can be reasonably certain that the previous tentative conclusion made by W. C. Paske et al. ${ }^{2}$ that they had observed a mixture of the $d^{3} \Delta, \varepsilon^{3} \Sigma-$ and $a^{3} \Sigma^{+}$lifetimes is corroborated by this work. The 0.2 eV separation of these $e^{3} \Sigma^{-}$and $a^{3} \Sigma^{+}$states precludes using an electron beam energy difierence to separate them in order to determine their lifetimes in the present apparatus. In other cases where the $d^{3} \Delta$ and/or $e^{3} \Sigma^{-}$states overlap the Asundi bands, the long lived component is absent in this work. In refitting the optical emission functions from the work of W. C. Paske et al..1,2 with the new computer code CHI, an additional threshold is observed whenerer the long lived decay component is present. The additional thresholds found in these emission functions are consistent with our calculated thresholds for
the $v=11,13,15$ and 16 vibrational levels of the $a^{3} \Pi$ state.
We believe that the long lived decay component of the a^{3} II state observed in this work and previous work on the $d^{3} \Delta$ and $e^{3} \Sigma^{-}$states ${ }^{12}$ is quenched by collisions with ground state CO molecules and also collisionally transferred to either $a^{3} \Sigma^{+}, d^{3} \Delta$ or the $e^{3} \Sigma^{-}$state.

Hydrogen Molecule

The radiative decay lifetimes for the states of Hydrogrn Molecule that give arise to continua in the $1000-1800 \AA$ region have been measured. All data were taken in the pressure range of $5-33 \mathrm{mTorr}$, using pulse width of 1 usec. The plot of measured reciprocal lifetime versus pressure for the VUV photons are shown in Fig. 5-7 through Fig. 5-15. The error bars represent a variation in the computer fit parameters over the accepted range for a reduced χ^{2} of 2 . Our zero pressure extrapolated lifetime results aie tabulated in tabe 5-6.

The time spectra in the range 1000-1800a A regoin are due primanly to the overlapping of the manyline spectrum, the Lyman transition $\left(B^{1} \Sigma^{+}\right.$ to $X^{1} \Sigma^{+}$) continuum and to some extend the triplet continuum ($a^{3} \Sigma$ and $\left.c^{3} \mathrm{II}\right)$. In this region the lifetime data was taken at three different excitation energy $11.8,13.1$, and 16.1 eV . At an excitation energy of 11.8 eV the statistical uncentait is large. The source of first component (1.75nsec) night be higher vibrational level of $B^{1} \Sigma^{+}$. However at higher excitation energy (13.1 eV) which is well above the threshold of B, a, and c states three components were observed. The short component is due to $v=8$ - 11 vibrational level of $B^{1} \Sigma+$ state. Our result (1.39nsec) is in agreement with previously
reported value ${ }^{7} 8$. Since the decay curve, above approximatly 12.5 eV escitation energy,must contain some continuum contribution from $a^{3} \Sigma^{+}$state, the higher vibratiobal level of this state can be considered as a possible source for the second lifetime component.

When the excitation energy was set above the dissociation (14.4.5eV), four component have been observed. Our lifetime value for the $y=2,3$ vibrational level of $a^{3} \Sigma^{+}$are in excellent agreement with those previously reported result. ${ }^{7} 8,80,81$, Since in the region of $1000-1800 \AA$ the triplet contiuum of $c^{3} \Pi$ has a Slight influence on decay curve and also since this state is a metastable,therefor it is good candidate for the source of the longlived (535nsec) decay component.

Table 5-1. Thresholds for the $v=8-16$ Vibrational Levels of the $a^{\prime 3} \Sigma^{+}$ States Determined from the Optical Emission Functions and Compared to Spectroscopically Determined Values.

v	This work a	Ref. 8	Ref. 65
		(obs)	(calc)
	eV	eV	eV
8	7.95 ± 0.10	7.99	8.12
9	8.11 ± 0.11	8.12	8.25
10	8.23 ± 0.20	8.24	8.38
11	8.33 ± 0.10	8.37	8.51
12	8.47 ± 0.12	8.49	8.63
13	8.67 ± 0.11	8.61	8.75
14	8.70 ± 0.10	8.73	8.87
15	8.85 ± 0.10	8.85	8.98

${ }^{\text {a }}$ Error represents twice the square root of the variance of the mean for multiple determinations of the threshold.

Table 5-2. Thresholds and Identification of Overlapping States Obserred in the Optical Emission Functions of the Indicated Asundi Transitions $\left(a^{3} \Sigma^{+}-a^{3} \pi\right)$.

| Monitored
 Level | Asundi Transition
 Wavelength (\AA)
 $v^{\prime}-v^{\prime \prime}$ | Identification and Threskold
 of Overlapping Transition
 eV |
| ---: | ---: | ---: | ---: | ---: |
| 9 | λ^{b} | λ^{c} |

[^0]Table 5-3. Radiative Decay Lifetimes and Collisional Quenching Cross Sections for the $v=9,12-16$ Vibrational Levels of the Asundi Bands.

	This work Lifetime (a)	Quenching cross section $\left(\AA^{2}\right)$	Ref. 3 Lifetime $(\mu \mathrm{s})$	Ref. 4 Lifetime $(\mu \mathrm{s})$
9	6.43 ± 0.64	5.30 ± 4.24	6.82 ± 0.60	6.67
12	5.12 ± 0.36	40.6 ± 3.8	-	-
13	5.19 ± 0.32	22.8 ± 2.7	-	-
14	5.05 ± 1.84	35.3 ± 26.4	-	-
15	4.78 ± 0.46	1.49 ± 3.38	-	-
16	4.29 ± 0.38	6.27 ± 4.02	-	-

(a)Error represents two standard deviations from a weighted least scuares fit to the pressure data.

Table 5-4. Calculated Thresholds ior the $v=0-16$ Vibrational Levels of the $a^{3} \pi$ State.

	This work (calc) (eV)	Ref. 9 (calc) (eV)
0	6.14	6.144
1	6.36	6.356
2	6.56	6.565
3	6.77	6.770
4	6.97	6.972
5	7.17	7.170
6	7.36	7.364
7	7.55	7.555
8	7.74	--
9	7.92	--
10	8.10	--
11	8.28	--
12	8.45	--
13	8.62	--
14	8.79	--
15	8.95	--
16	9.11	--

Table 5-5. Comparison of the Energy Values for the Resonance Bands "a", "b", "c", "d", "e", " l " and " g " of H_{2} with the Other Experimental Techniques

Vibrational number Ref.(14)	Present work	Electron Ref.(16) -	transmission Ref.(21)	Vibration excitation Ref.(20)	Energy loss Ref.(19)	UV escitation Ref.(15)
Band a						
0	11.31	11.28	11.32	11.30	11.30	11.32
1	11.62	11.56	11.62	11.62	11.62	11.63
2	11.91	11.84	11.91	11.91	11.92	11.92
3	12.16	12.11	12.19	12.19	12.20	12.20
4	12.43	12.37	12.44	12.45	12.46	12.47
5	12.67	12.62	12.68	12.68	12.70	12.70
6	12.91	12.86	12.89	12.89	12.93	12.91
7	13.12	-13.10	-3	-	-	
8	13.28	-	13.28	-	-	-
9	13.48	-	-	-	-	-
10	13.60	-	-	-	-	-
11	13.81	-	-	-	-	-
12	13.93	-	-	-	-	-
13	14.03	-	-	-	-	-
14	14.15	-	-	-	-	-
15	14.18	-	-			

Table 5.5 (continued)

Vibrational				Vibration	Energy	UV
number	Present	Electron	transmission	excitation	loss	escitation
Ref.(14)	work	Ref.(16)	Ref.(21)	Ref.(20)	Ref.(19)	Pef.(15)

Band b

0	11.26	-	-	11.27	-	-
1	11.44	-	-	11.47	-	-
2	11.60	-	-	11.63	-	-
3	11.74	-	-	11.75	-	-
4	11.86	-	-	11.85	-	-
5	11.99	-	-	11.96	-	-
6	12.03	-	-	-	-	-

Band c

0	11.44	11.43	11.46	11.56	11.50	11.48
1	11.72	11.74	11.72	11.86	11.99	11.18
2	12.03	12.03	11.99	12.07	12.08	12.05
3	12.28	12.32	12.27	-	12.38	12.30
4	12.58	12.58	12.53	-	-	-
5	12.81	12.83	12.77	-	-	-
6	13.03	13.06	12.97	-	-	-

Table 5.5 (continued)

Vibrational number Ref.(14)	Present work	Electron Ref.(16) -	transmission Ref.(21)	Vibration excitation Ref.(20)	$\begin{gathered} \text { Energy } \\ \text { loss } \\ \text { Ref.(10) } \end{gathered}$	$\begin{gathered} \hline \text { UV } \\ \text { escitation } \\ \text { Ref.(15) } \end{gathered}$
Band d						
0	11.36	-	-	-	-	-
1	11.66	-	-	-	-	-
2	11.92	-	-	-	-	-
3	12.22	-	-	-	-	-
4	12.43	-	-	-	-	-
5	12.58	-	-	-	-	-
6	12.73	-	-	-	-	-
7	12.91	-	-	-	-	-
8	13.12	-	-	-	-	-
Band e						
0	11.54	-	-	-	-	-
1	11.83	-	-	-	-	-
2	12.06	-	-	-	-	-
3	12.34	-	-	-	-	-
4	12.49	-	-	-	-	-
5	12.64	-	-	-	-	-
6	12.78	-	-	-	-	-
7	12.87	-	-	-	-	-
Band e^{\prime}						
0	11.57	-	-	-	-	-
1	11.74	-	-	-	-	-
2	12.13	-	-	-	-	-
3	12.36	-	-	-	-	-
4	12.53	-	-	-	-	-

Table 5.5 (continued)

Vibrational number Ref.(14)	Present work	Electron Ref.(21) -	transmission Ref.(22)	Vibration excitation Ref.(20)	$\begin{aligned} & \text { Energy } \\ & \text { loss } \\ & \text { Ref.(10) } \end{aligned}$	$\begin{gathered} \text { UV } \\ \text { excitation } \\ \text { Ref.(15) } \end{gathered}$
Band f						
0	13.64	13.66	13.62	-	13.63	-
1	13.95	13.94	13.91	-	13.93	-
2	14.24	14.20	14.19	-	14.20	-
3	14.46	14.45	14.46	-	14.47	-
4	14.74	14.69	14.72	-	14.70	-
5	15.02	14.93	14.97	-	14.92	-
6	15.2	15.18	15.21	-	-	-
7	15.44	15.43	15.44	-	-	-
8	15.64	15.65	15.66	-	-	-
9	15.85	15.85	15.87	-	-	-
Band f^{\prime}						
0	13.73					
1	13.97					
2	14.28					
3	14.59					
4	14.81					
5	14.91					
Band g						
0	15.08	15.09	-	-	-	-
1	15.24	15.32	-	-	-	-
2	15.56	15.57	-	-	-	-
3	15.73	15.77	-	-	-	-
4	15.89		-	-	-	-

Table 5-6. Radiative Lifetimes for VUV Photons

Energy (eV)	Lifetime 1st Component	2nd Component	3rd Component	4th Component
16.12	2.01 ± 0.16	10.13 ± 0.55	119 ± 8.8	535 ± 38
13.12	1.39 ± 0.11	8.5 ± 0.25	170 ± 3.1	-
11.82	1.75 ± 0.12	7.57 ± 0.19	-	-

Fig. 5-1. Optical Emission Function for $b^{3} \Sigma^{+}$State of CO

Fig. 5-2. Optical Emission Functions for Asundi Vibrational Levels $v=9$ 15

Fig. 5-3. (a) Radiative Decay Curve for $a^{\prime 3} \Sigma^{+}-a^{3} \Pi(12-2)$ Transition at Pressure of 4.1 mTorr .

Fig. 5-3. (b) Radiative Decay Curve for $a^{3} \Sigma^{+}-a^{3} \Pi(12-2)$ Transition at Pressure of 12.2 mTorr.

Fig. 5-4. Reciprocal of Lifetime vs. pressure of the $v=9,12-16$ Vibrational Levels of Asundi Band.

Fig. 5-5. Reciprocal of Lifetime vs. ν^{3}

Fig. 5-6. Quadratric Pressure Dependence of Long Lived Decay Component in the $a^{3} \Sigma^{+}-a^{3} \amalg(12-2)$ Transition.

Fig. 5-7. Reciprocal of Lifetime vs. Pressure of VUV photons for 11.83 eV
Excitation Energy. (Medium Decay component)

Fig. 5-8. Reciprocal of Lifetime vs. Pressure of VUV photons for 11.83 eV
Excitation Energy. (Short Decay Component)

Fig. 5-9. Reciprocal of Lifetime vs. Pressure of VUV photons for 13.13 eV
Excitation Energy. (Short Decay Component)

Fig. 5-10. Reciprocal of Lifetime vs. Pressure of VUV photons for 13.13 eV
Excitation Energy. (Medium Decay Component)

Fig. 5-11. Reciprocal Lifetime vs. Pressure of VUV photons for 13.13 eV
Excitation Energy.(Long Lived Decay Component)

Fig. 5-12. Reciprocal Lifetime vs. Pressure of VUV photons for 1613 eV
Excitation Energy.(Short Decay Component)

Fig. 5-14. Reciprocal Lifetime vs. Pressure of VUV photons for 16.13 eV
Excitation Energy.(Long Lived Decay Component)

Fig. 5-13. Reciprocal Lifetime vs. Pressure of VUV photons for 16.13 eV
Excitation Energy.(Medium Decay Component) .

Fig. 5-16. Optical Excitation Function ofVUV photons for H_{2} in the
Energy Interval 11.13-16.12 eV

Fig. 5-17. Differentiated Optical Excitation Function of VUV photons

Fig. 5-18. Optical Excitation Function for VUV photons for \mathbf{H}_{2} in the
Energy Interval 11.13-12.12 eV

Fig. 5-19. Optical Excitation Function of VUV photons for \mathbf{H}_{2} in the
Energy Interval 12.13-13.12 eV

Fig. 5-21. Optical Excitation Function of VUV photons for H_{2} in the
Energy Interval 14.13-15.12 eV

Fig. 5-20. Optical Excitation Function of VUV photons for \mathbf{H}_{2} in the
Energy Interval 13.13-14.12 eV

Fig. 5-22. Optical Excitation Function of VUV photons for H_{2} in the Energy Interval $15.13-16.12 \mathrm{eV}$

PLEASE NOTE:

This page not included with original material. Filmed as received.

University Microfilms International

REFERENCES

1. W. C. Paske, J. R. Twist, A. W. Garrett and D. E. Golden, J. Chem. Phys. 72, 6134 (1980)
2. W. C. Paske, A. W. Garrett, S. Shadfar, J. R. Twist, and D. E. Golden, J. Chem. Phys. 76,3002 (1982)
3. H. A. Van Sprang, G. R. Mohlmann, and F. J. deHeer, Chem. Phys. 24, 429 (1977)
4. T. Wentink, Jr., E. P. Marram, L. Isaacson, and R. J. Spindler, AFwL Tech. Rept. 67-80, Vol. 1 (November 1967)
5. H. J. Hartfuss and A. Schmillen, Z. Naturforsch. 23a, 726 (1968)
6. G. R. Möhlman and F. J. deHeer, Chem. Phy.s. Lett. 43, 170 (1977).
7. Irwin Tobias, R. J. Faller and J. T. Vanderslice, J. Chem. Phys. 33, 1638 (1960).
8. S. G. Tilford and J. D. Simmons, J. Res. Nat. Bur. Stand. 75L, 455 (1971)
9. P. H. Krupenie, Nat. Stand. Ref. Data Ser. Nat. Bur. of Stand 5 (1966)
10. S. N. Suchard, Spectroscopic Data Heteronuclear Diatomic Molecules (Plenum, New York, 1975)
11. Mitchel Weissbluth, Atoms and Molecules (Academic Press, New York, 1978, p. 551)
12. J. R. Twist, Ph.D. Dissertation, University of Oklahoma (1979)
13. N. Böse and F. Linder, Atom. Molec. Phys. 12, 3805 (1979)
14. S. B. Elston, S. A. Lawton and F.M.J. Pichanick, Phys. Rev. A 10, 225 (1974)
15. J. McGowan, J. F. Williams and W. Meckbach, Can. J. Phys. 52, 2076(1974)
16. C. E. Keyatt, J. A. Simpson and S. R. Mielczarek, J. Chem. Phys. ≤ 4, 437 (1966)
17. H.G.M. Heidman, C. E. Kryatt and G. E. Chamerlain, J. Chem. Phys. 44, 440 (1966)
18. I. Eliezer, H. S. Taylor and J. K. Williams, J. Chem. Phys. 47, 2165 (1967)
19. A. Weingartshofer et al., Phys. Rev. A 2, 294 (1970)
20. J. Comer and F. H. Read, J. Phys. B 4, 368 (1971)
21. L. Sanche and G. J. Schulz, Phys. Rev. A 6, 69(1972)
22. D. E. Golden et al., Phys. Lett. 50a, 144 (1974)
23. D. E. Golden and A. Zecca, Rev. Sci. Instrum. 42, 210 (1971)
24. J. R. Pierce, Theory and Design of Electron Beams (D. Van Nostrand, New York, 1954)
25. R. E. Fox, W. M. Hickman, D. J. Grove and T. Kjeldass, Phys. Rev.

84, 859 (1951)
26. E. Baranger and E. Gerjuoy, Phys. Rev. 106, 1182 (1957)
27. G. J. Schulz, Phys. Rev. 136, A650 (1964)
28. D. E. Golden and A. Zecca, Phys. Rev. A 1, 241 (1970)
29. D. E. Golden and Z. Zecca, Rev. Sci. Instrum. 42, 210 (1971)
30. Metex Corporation, EMI/RFI Shielding Handbook (Edison, New Jersey, 1977)
31. D. E. Golden, N. G. Koepnick and L. Fornari, Rev. Sci. Instrum. 43, 1249 (1972)
32. E. H. Condon, Handbook of Physics (McGraw-Hill, New York, 1958)
33. J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley, New York, 1954) p. 124
34. V. K. Zworykin, G. A. Morton and L. Maiter, Proc. IRE 24, 351 (1036)
35. V. K. Zworykin and J. A. Rajehman, Proc. IRE 27, 558 (1939)
36. Z. Bay, Nature 141, 1011 (1938)
37. J. S. Allen, Phys. Rev. 55, 966 (1939)
38. Z. Bay, Rev. Sci. Instrum. 12, 127 (1941) and Physik 117, 227 (1941)
39. R. P. Stone, Rev. Sci. Instrum. 20, 935 (1949)
40. J. S. Allen, Rev. Sci. Instrum. 18, 739 (1947)
41. J. M. Robson, Rev. Sci. Instrum. 19, 865 (1948)
42. D. T. F. Marple, Rev. Sci. Instrum. 26, 1206 (1955)
43. R. A. Bingham, Rev. Sci. Instrum. 43, 74 (1966)
44. Edward A. Kurz, American Laboratory Report (March 1979)
45. Vernon W. Hughes, Methods of Experimental Physics Volume 4, Part A (Academic Press, New York, 1967)
46. J. Adams and A. Manley, Nucl. Sci. Electron Eng. 37, 180 (1964)
47. D. S. Evans, Rev. Sci. Instrum. 36, 375 (1965)
48. A. J. Guest, Acta Electronica 14, 201 (1971)
49. W. G. Wiley and C. F. Hendee, IRE Trans. Nucl. Sci. NSS-9, 103 (1962)
50. R.J.R. Judge and D. A. Palmer, Eldo-Cecies/Eldo-Cern Scient. Tech. Rev. 5, 353 (1973)
51. B. D. Klettke, Bendix Research Lab report.
52. J. R. Sharper, J. D. Winningham and W. R. Sheldon, IEEE Trans. Nucl. Sci. NS-15, 536-5340 (June 1968)
53. R. D. Read, E. G. Shelley and J. C. Bakke, IEEE Trans. Nucl. Sci. NS-16, 359-370 (February 1969)
54. J. Perrin, Comptes Rendus 121, 1130 (1895); Nature 53, 298 (1895); Ann. Chim. Phys. [7] 11, 503 (1897)
55. G. A. Khayrallah and S. J. Smith, Phys. Rev. A 18, 559 (1978)
56. Rawson-Lush Instrument Company (Acton, Mass.)
57. T. C. Penn and F. G. West, Rev. Sci. Instrum. 35, 1361 (1964)
58. V. C. Sutcliffe, Ph.D. Dissertation, University of Nebraska (19Ti)
59. F. Rosebury, Electron Tube and Vacuum Technology (Addison-Wesley, Reading, Massachusetts, 1965)
60. RCA Photomultiplier Tube Catalog P1T-700C (Lancaster, Pennsylvania, 1976)
61. Avantek Amplifier No. UTO-1521 (Avantek Corp., Santa Clara CA)
62. K. R. Spangenberg, Fundamentals of Electron Devices (McGraw-Hill, New York, 1957) p. 155
63. S. Heron, R.W.P. McWhirter and E. H. Rhoderick, Nature 174, 564 (1954)
64. S. Heron, R.W.P. McWhirter and E. H. Rhoderick, Proc. Roy. Soc. (London) A234, 565 (1956)
65. W. R. Bennett, Jr., in Advances in Quantum Electronics (J. Singer, ed.) p. 28 (Columbia University Press, New York, 1961)
66. W. C. Paske, Ph.D. Dissertation, University of Oklahoma (1974)
67. R. T. Thompson, Ph.D. Dissertation, University of Oklahoma (1972)
68. K. R. Spangenberg, Vacuum Tube, Chap. 4 (McGraw-Hill, New York, 1948)
69. K. Fukui, T. Hirotsu and K. Kuwata, Chem. Phys. Lett. 44, 13 (1976)
70. N. Böse, Chem. Phys. Lett. 61, 367 (1978)
71. W. L. Borst and G. Black, Phys. Rev. A 3, 979 (1971)
72. T. G. Slanger and G. Black, J. Chem. Phys. 55, 2164 (1971)
73. G. M. Lawrence, C'iem. Phys. Lett. 9, 575 (1971)
74. B. G. Wicke, R. W. Field, and W. Klemperer, J. Chem. Piys. 5s, 5758 (1972)
75. P. H. Krupenie and S. Weissman, J. Chem. Phys. 43, 1529 (1035)
76. The unpublished results of Albritton were generously provided by T. G. Slanger in a private communication.
77. S. N. Suchard and J. E. Melzer, Spectroscopic Data Vol. 21090
78. W. H. Smith and R. Chevalier, The Astrophysical J. 177 (835-839) 1972
79. A. Dalgarno and T. L. Stephen A. P. J. 160 L107, 1970
80. R. E. Mhof and F. H. Read J. P. B: Atom and Mol. Fhy.4, 10e3, 1971
81. P. S. Julienne paper presented at INT. CON. LAB. AST. 1975

APPENDEX

Program codes for

(a) Transierring Data from MCA to Teintronix
(b) LASL
(c) CHI
(d) Reprint of published papers


```
O
@onのnono
MAIN PROGRAM FOR NONLINEAR LEAST SQ. EXP. FIT. FROM LASL
                MODIFIED FOR USE ON THE VAX MACHINE
            CHARACTER *ID FILEN
        DOUSLE PRECISION YT,WVAR
        DOUISLE PRECISION W,P,SP,YC,DY,PART,BM,DET,ALAB,BLAB,CLAB
        COHmON N,IK,IW,M,IE,ITEST,IDUH,NDUH,IPR,IFG,IH,TEST,YT,WVAR,SSQ,
        IIDF,DET,ISW,IPLT,ISC,INTT,Y(999),K(1,999),W(999),IX(1/9),PG(10),P(
        210),SP(10),YC(999),DY(999), BM(1天,11),ALAB,PART(10),NSETS,
        3DUM(1),Z(1),BLAB(4),RCHIS,RSUY
            EQUIVALENCE (IDUM,IN1),(NDUM,NH2)
            DINENSIOLI CLAE(4)
            WRITE(6,21)
        21 FORH:AT(//' ENTER TIIE DATA SET NAME... e.g., COMAYI3')
        REAJ(5,23)FILEN
        23 FORHAT(A13)
        CALL ASSIGN(9,FILEN)
        NRO=5
        URITE(G,22)
        22 FOPGAT(//' ENTER THE CURRENT TIME AND DATE (4A6)')
        REAJ(5,920)(CLAB(I),I=1,4)
        DO 10 I=1.4
        BLAO(I)=CLAB(I)
    1G CONTINUE
    92& FORliAT(4A6)
        IPLT=D
OOO
    1 DUN(1)=ø.
        DO 20 K=1.10
    25 PART(K)=\varnothing.\varnothing
        A.LAB = NRD
        IN1=\emptyset
        NN2=5
    CALL INPUT ROUTINES, CALCULATION ROUTINES AND OUTPUT ROUTINE
    CALL ISPAK
    CALL PSPAK
    CALL RSPAK
C
C CALL PLOT ROUTINE
ดnのnの
    900 FORHAT\' ENTER PLOT INCR IF PLOT IS DESIRED THEN ENTER 1 TO RERUN
        1WITH NEW PARAMETERS OR ENTER -1 TO CALL EXIT (USE 2I3)')
        WRITE(6,900)
        READ(5,910)IPLT,JPLT
        WRITE(6,911)IPLT,JPLT
    910 FORHAT(213)
    911 FORMAT(1K,213)
C
C
    IF(IPLT.GT.D)CALL DSPAK
```

```
IF(IPLT.GT.D)CALL LPLOT
```

IPLT＝JPLT
IF（IPLT．LT．D）CALL EXIT
GO TO 1
END

SUBROUTINE ISPAK．．．INPUT ROUTINE

SUBROUTINE ISPAK
DOURLE PRECISION W，P，SP，YC，DY，PART，BM，DET，ALAB，BLAB
DOUBLE PRECISION YT，WVAR
CMARACTER＊6 AL，EL，SA，DA＊2，XNO＊3，YR＊4
COH：OON N，IK，IW，M，IB，ITEST，IDUM，NDUM，IPR，IFG，IM，TEST，YT，WVAR，SSQ， IIDF，DET，ISW，IPLT，ISC，IHTT， $\mathrm{Y}(999), \mathrm{X}(1,999), \mathrm{W}(999), I X(10), \mathrm{PG}(10), P($ 210），SP（10），YC（999）．DY（999），BM（10，11），ALAB，PART（10），NSETS， 3）UM（1），Z（1），BLAB（4），RCHIS，RSDY
EQUIVALENCE（IDUM，IN1），（NDUM，NN2）
INTEGER RN
INTEGER ZCAL
INTEGER ECH4
INTEGER ZCH5
$1!=A L A B$
CALE INPAK（N，IB，IX，P，TIME，Y，BLAB，NKD，ZCLB，ZCAL，AL，BL，OA，XMO，YR，RN， ISA，VL，PR，IPLT）
NSAV $=\mathrm{N}$
CLB？TR＝ZCLB
IF（ZCAL） $34 \varnothing, 340,4$
340 CONTINUE
IF（ $\mathrm{P}(1)$ ） $350,355,36 \varnothing$
35\％CLBRTR＝－P（1）
GO TO 4
355 CLB：TR＝1．ø
GO TO 4
DO $3 \mathrm{I}=1$ ， IB
$D Y(I)=P(I)$
$3 W(I)=I X(I)$
CALL．RGRES（DY，W，TEST，CLERTR，I，IB，AI，DET）
94D FORIIATY＇ENTER NUMBER OF PARAMS，FIRST POINT，LAST POINT，WEIGHT POW GER，IPR＝D，1，2 OR 3 FOR INCREASED OUTPUT，IM＝1 HOLD CONSTANT，＇／＇，A GND ENTER REP RATE OF PULSING SYSTEM IF PILE UP CORRECTION IS DESI GRED，USE FORMAT：3I4，F4．1，2I4，F10．2＇）
4 VRITE（6，940）
$N=N S A V$
READ（5，95g）IK，IN1，IN2，WEIT，IPR，IM，TDCR
95！FORNAT（3I4，F4．1，2I4，F8．f）
WRITE（6，952）IK，IN1，IN2，WEIT，IPR，IM，TDCR
WRITE（6，951）
FORMAT（＇IS THE DATA ENTERED CORRECTLY？YES＝1，NO＝ø＇）
952 FORiAAT（1X，3I4，F4．1，2I4，F8．8）
READ（5，955）ZCH4
955 FORHAT（I1）
IF（2CH4）4，4，957
957 CONTINUE
$1 \mathrm{X}(2)=1 \mathrm{~K}$
NSETS＝\varnothing
I $\mathrm{B}=\mathrm{E}$
ITEST＝ø
$I K=I K+1$
ISW＝ø
$\mathrm{A}=1$
IF(IM.NE.2)IM=1
IX(1) $=I K$
$\mathrm{IFG}=2$
$K K=I K-2$
$K I=I K-1$
969 FORMAT(' ENTER LIFETIMES(SHORT,LONG), COEFFS(SHORT, LONG), CONSTANT'
1.' (USE A 1PIDEB. 1 FORMAT)')

961 VRITE(6,960)
READ (5,97ø)(PG(K),K=2,KK,2),(PG(J),J=1,KI,2)
979 FORIAAT(1P1.gE8.1)
971 FORMAT(1X,1P10E19.1)
WRITE (6,971)(PG(K),K=2,KK,2),(PG(J),J=1,KI,2)
VRITE(6,951)
REAO (5,955)ZCH5
IF (ZCH5)961,961,967
967 CONTINUE
URITE (1ø, 9201)AL, BL, DA, YMO,YR,RN
WRITE(6,92g1)AL, BL, DA , XMO.YR,RN
WRITE (1ヵ,9202)SA, VL, PR, BLAB
9201 FORMAT(1H1,//////////,1H,2AG,3X,'DATE-', A2,A3,A4,3X,'RUN $\left.n^{\prime}, I 2\right)$
Э2D2 FORMAT(1H ,'SAMPLE-',AG, $3 X, ' W A V E L E N G T H=', F 5 . \not D, ' A ', 3 X, ' P R E S S U R E=', F$
15.1,'MICRONS'//' CALCULATED AT $, 1 \mathrm{X}, \mathrm{A}, 1 \mathrm{X}, 3 \mathrm{~A} /$ /

PG(IK)=ø. \varnothing
PG(IK-1) $=P G(I K-1)+.5$
980 FORNAT(' CALIBRATION IS',F10.5.' NS/CHAN')
WRITE(10,930)CLBRTR
DO $11 \mathrm{I}=1, \mathrm{~N}$
$A I=I-1$
$11 \times(1, I)=A I * C L B R T R$
OPTIONAL PHOTON PILE-UP CORRECTION ROUTINE
$I D C R=T D C R$
IF(IDCR.EQ.ø)GO TO $8 \varnothing$
YSUM=Y(1)
SDCR=TDCR
TDC $:=$ SDCR*TIME
DO O1 I=2, NSAV
YTENP=Y(I)/(1.D-(YSUM/TDCR))
Y SUM=YSUMI $+Y$ (I)
$Y(I)=Y$ TEMP
31 CONTINUE
CNRT=(YSUM/TDCR)*1ळぁ.
WMA: $=\mathrm{Y}(1)$
DO $83 \mathrm{~J}=2 . \mathrm{NSAV}$
IF(YMAX-Y(J))82,83,83
82 YMAR=Y(J)
83 CONTINUE
PMAK = YHAX/TDCR
W'RITE(10,9B1)CNRT, PMAX
931 FORMATI' COUNTRATE FOR THIS RUN IS ',F5.2,' PER CENT' ',' MAXIMUM P GROBILITY OF A COUNT OCCURRING IN A CHANNEL, IN ONE CYCLE, IS ',F8. GG)

```
3k N=IN2-INI+1
```

SET UP WEIGHTS
IF(WEIT.NE.D)GO TO 6
DO $40 \quad \mathrm{I}=1, \mathrm{~N}$
$407(I)=1.0$
GO TO 8
G DO 5ø I=1,N

```
        J=1N1-1+1
    50 W(I)=V(J)/Y(INI)
        WRITE(10,95|)I,J,IN1
        IF(WEIT.EQ.1.D) GO TO 8
    4ø5 FORHIAT (' WEIGHT RANGES FROM 1.D TO',F7.3,' FOR CHAN ',I3)
    7 DO 6& I=2,N
        IF(S(I).EQ.D.|)GO TO 59
        W(I)=W(I)**WEIT
        GO TO 60
    59 W(I)=1.\varnothing
    60 CONTINUE
    8 TEST=1.0E-08
        WRITE{10,405)W(N),IN2
        DO 55 I=1,N
        INIMI=I+IN1-1
    55 Y(I)=Y(IN1M1)
        RETURN
        1 CALL EXIT
            END
C ***********************************************
        SUBROUTINE RSPAK
        REAL*8 DSART
        DOUBLE PRECISION W,P,SP,YC,DY,PART,BM,DET,ALAB
        DOUBLE PRECISION YT,WVAR
        COMNON N,IK,IW,M,IB,ITEST,IDUM,NDUM,IPR,IFG,IM,TEST,YT,WVAR,SSQ,
        IIDF,DET,ISW,IPLT,ISC,INTT,Y(999),X(1,999),W(999),IX(1\varnothing),PG(1\varnothing),P(
        21\varnothing),SP(10),YC(999),DY(999),BM(11\varnothing),ALAB,PART(1\varnothing),NSETS,
        3DUM(1),Z(1),BLAB(4),RCHIS,RSDY
            DIMENSION TS(40)
C
    PAGE I OF THE STANDARD OUTPUT
        I=-1
        CALL YPS(I)
        WRITE (10,2.0.)WVAR,TEST,SSQ,RCHIS,RSDY
        WRITE(6,200)WVAR,TEST,SSQ,RCHIS,RSDY
    2.%0 FORNATS/26H THE WEIGHTED VARIANCE IS 1PE14.7,/
        1,' THE UNIVEIGHTED SIGMA IS ,,1PE14.7
        2,' AND THE UNYEIGHTED SUM OF SQUARES OF THE DEVIATION IS ,.1PE14.7
        3,/' THE REDUCED CHI SQUARED = ',0PF10.6
    4,' AND THE REDUCED SUM OF THE DEVIATIONS = ',QPF1\varnothing.6,1)
    30j FORMAT: GUESS OF FINAL VAL OF S.D. OF EXACT LST S
        IQRS EQNS',',' K K-TH PARAM K-TH PARAM K-TH PARAM FITTED FC
        2TN INPUT'DATA')
        WRITE(10,30&)
        WRITE(6,300)
        KFREE=IK-IM
        DO 40 K=1,KFREE
        2 A=0.0
            B=\varnothing.\varnothing
            DO 30 I=1,N
            A=A+N(I)*YC(I)*PART(K)
        30 B=B+W(I)*Y(I)*PART(K)
            WRITE(1\varnothing,500)K,PG(K),P(K),SP(K),A,B
            URITE(6,50.0)K,PG(K),P(K),SP(K),A,B
    5@g FORMAT(I3,1X,1P3E12.4,3X,1P2E12.4)
    40 CONTINUE
C
CALCULATE AND WRITE CORRELATION MATRIX ONLY IF IPR > I
```

```
    00 200 J=1,N
            T=PC(IK-1)
            IN=IK-3
            DO 150 K=1,IN,2
            JJ=K
    15f YT=YT+PC(K)*DEXP(-X(1,J)/PC(K+1))
    20ఏ PHI=W(J)*(Y(J)-VT)**2+PHI
    IF(PHI.LE.WYAR) GO TO 6.9\varnothing
        IF(GD.LT..7&7.AND.LBDA.GT.\varnothing)GO TO 4\varnothing\varnothing
        H=H/2.0
        K=\varnothing
        IF(IPR.NE.|) WRITE(10,92\varnothing)H,PHI
        DO 220 I=1,KFREE
        DP(I)=H*DP(I)
        PC(I)=P(I)+DP(I)
        CHK=DABS((PC(I)-P(I))/P(I))
        IF(CHK.LT.TEST)K=K+1
    22.0 CONTINUE
    IF(KFREE-K)600,600,160
    40N LBDA=LBDA*NU
C
            DIAGNOSTIC OUTPUT OF LBDA, ITERATION* AND PHI ONLY IF IPR > 1
        IF(IPR.NE.D) WRITE(1\varnothing,91\varnothing)LBDA,IT,PHI
        IJ=KFREE+1
        DO 300 K=IJ,NI
    30. Biv(K)=AM(K)
    GO TO 52N
    5.%.0 IF(LBDA.LE..DD.DI) GO TO 52.
    LBDA=LBD.A/NU
    520 IJ=KFREE+1
    DO 530 K=IJ,N!,IJ
    53.C BM(K)=AM(K)+LBDA
    RETURN
    60.O NM=1
    RETURN
    9.g\ FORHAT(' COS(GAMMA)= ',1PE11.4)
    91:3 FORMAT(' LAMBDA= '.1PE7.1,' ITER NO. ',I2,' PHI= ',IPE15.9)
    92g FORHIAT(' I= ',1PE8.2,' PHI= ',1PE15.9)
    93.5 FORHAT(2I4,1PE10.3)
    9.15 FORWAT(' BM(J)= ',1P7E17.8)
    95.j FORITAT(' AN(J,J)= ',1P7E17.8)
    END
    SUBROUTIME YPS(I)
    FUNCTION AND PARTIAL DERIVATIVE ROUTINE
    DOUBLE PRECISION W,P,SP,YC,DY,PART,BM,DET,ALAB
    DOURLE PRECISION YT,WVAR
    COHFON N,IK,IW,M,IB,ITEST,IDUM,NDUM,IPR,IFG,IM,TEST,YT,WVAR,SSQ,
    IIDF,DET,ISW,IPLT,ISC,INTT,Y(999),X(1,999),W(999),IX(1\varnothing),PG(ID),P(
    210),SP(1\varnothing),YC(999),DY(999), BM(1\varnothing,11),ALAB,PART(1\varnothing),NSETS,
    3DUM(1),Z(1)
    9.0. FORMAT(' SUM GF EXPONENTIALS, Y(I)=P(1)*EXP(-X(I)/P(2))+...+P(',II
        1,''''
        IF (I)1,3,3
    1 K=IK-1
        WRITE(1\varnothing,90\varnothing)K
        GO TO 4
    3 YT=\varnothing.\varnothing
```

$K I=I K-2$
DO $10 \mathrm{~K}=2, \mathrm{~K} . \mathrm{I}, 2$
PART（K－1）＝DEXP（－Z（1）／P（K））
$\operatorname{PART}(K)=P(K-1) * \operatorname{PART}(K-1)$
$Y T=Y T+P A R T(K)$
1® $\operatorname{PART}(K)=\operatorname{PART}(K) * Z(1) / P(K) * * 2$
$Y T=Y T+P(I K-1)$
PART $(I K-1)=1 . g$
4 RETURN
END

SUBROUTINE PSPAK．．．CALCULATION ROUTINE

```
        **********************************************************
```

SUBPOUTINE PSPAK
DIMENSION AM（1ळ夫），DP $(1 \varnothing), P C(1 \varnothing), A N(1 \varnothing)$

EQUIVALENCE（IIW（1め1），JIW（1））
REAL＊B DSQRT
DOUBLE PRECISION YT，WVAR．
DOUBLE PRECISION W，P，SP，YC，DY，PART，BM，DET，ALAB，AM，DP，PC ，AN
COMMON N，IK，IW，M，IB，ITEST，IDUM，NUUM，IPR，IFG，IM，TEST，YT，WVAR，SSQ，
IIUF，DET，ISW，IPLT，ISC，INTT，Y（999），X（1，999），W（999），IX（10），PG（Iø），P（
210）．SP（10），YC（999），DY（999），BM（110），ALAB，PART（10），NSETS， 3DIJM（1），Z（1），BLAB（4），RCHIS，RSDY
REAL LBDA
EQUIVALENCE（ITEST，LASTIT）
C
C
C
INITIAL OUTPUT OPTION
IF（IPR．EQ．\because ）GO TO 1
WRITE（10．46す）TEST
4历J FORMAT（／EH TEST＝，1PE15．7／）
INITIALIZATION FOR MAIN ITERATION LOOP
1 KFREE＝IK－IM
$K \|=K F R E E+1$
IDF＝N－KFREE
$D F=I D F$
IT $=0$
LBDA＝．DSSS 1
X 5 VAR $=1.9 E+15$
IREJ＝の。
DO $1 \varnothing K=1$ ，IK
$D P(K)=\varnothing . D$
$S P(K)=\varnothing . \varnothing$
$P C(K)=P G(K)$
$10 \mathrm{P}(K)=P G(K)$
LASTIT $=$ D
M25C＝0
IF（KFREE．EQ．D）GO TO 3
MAIN ITERATION LOOP
2 IT $=\mathrm{IT}+1$
$H=1$
DO 3才 $K=1$ ，KFREE
DO 20 KK＝1，KFREE
$J J=k+(K K-1) * K F R E E$
AM（JJ）$=\varnothing$.
2ヵ $\operatorname{Bil}(J J)=\varnothing$ ．

```
        JJ=K+(KP-1)*KFREE
        BM(JJ)=0.
        JJ=K+K*KFREE
    3\pi BM(JJ)=\varnothing.
    3 VAR=\varnothing.D
        SSQ=0. 
        SDY=\varnothing.\varnothing
    CHIS=\varnothing.\varnothing
のカロ กロロ
    DO 9\varnothing I=1,N
๑ภ
    CALL YP ROUTINE, CALCULATE SUM OF SQUARES AND CALCULATE CHI SQUARE
    DO 4\varnothing J=1,M
    4\varnothing Z(J)=X(J,I)
    CALL YPS(I)
    YC(I)=YT
    DY(I)=Y(I)-YC(I)
    SDY = SDY + DY(I)
    CHIS=CHIS+DY(I)*DY(I)/Y(I)
    DEL=DY(I)**2*W(I)
    IF(DEL.LT.X5VAR)GO TO 35
    W(I)=\varnothing.\varnothing
    IREJ={REJ+1
    IIW(IREJ)=I+IDUM-1
    IIW(IREJ+1历历)=Y(I)
    35VAR=VAR+W(I)*DY(I)**2
    SSQ=SSQ+DY(I )**2
    IF(KFREE.EQ.g) GO TO 9.0
のの\Omega
    K1=0
    DO 6@ K=1,IK
    IF(IM.EQ.D) GO TO 4
    DO 50 KK=1,IM
    IF(K.EQ.IX(KK)) GO TO 5
    50 CONTINUE
    4 K2=K-K1
        AN(KZ)=PART(K)
        GO TO 6D
    K1=K1+1
6% CONTINUE
    FORM A AND B MATRICES
    DO 8\varnothing K=1,KFREE
    DO 70 KK=1,KFREE
    JJ=K+(KK-1)*KFREE
    AM(JJ)=AM(JJ)+AN(K)*AN(KK)*W(I)
    IJ=JJ +KFREE
7% BM(IJ)=AM(JJ)
30% BM(K)=BN(K)+AN(K)*DY(I)*W(I)
90 CONTINUE
    RSDY=SDY/DF
    RCHIS=CHIS/DF
    WVAR=VAR
    X5VAR=12.*WVAR/DF
    IF(KFREE.EQ.D) GO TO 23
    IF(LASTIT.EQ. IILBDA=$.
    CALL LAMBDA(1,PC,LBDA,DP,IT,AM)
```

```
    NM=2
    OPTIONAL PRINTOUT OF A AND B MATRICES ON LAST ITERATION
    IF(LASTIT.EO.g) GO TO 6
    IF(IPR.LT.3) GO TO 6
    WRITE(10,500)
    5ø\varnothing FORMAT(///,3X,1HK,19X,6HA(K,L),28X,4HB(K)//)
    DO 110 K=1,KFREE
    WRITE(10,6و\varnothing)BM(K)
    6@% FORMAT(//1H+,1P1E67.5
        JJ={K-1)*KFREE +1
        IJ=K*KFREE
    11& WRITE(10,700)K,(AM(II),II=JJ,IJ)
    70& FORNAT(I4,1P1gE12.4)
C
C
    SOLVE THE NORMAL EQUATIONS
        6 IF(KFREE.GT.1) GO TO 7
            DET=AM(1)
            BM(2)=1.D/AM(1)
            GO TO }
        7 CONTINUE
            CALL MINV(BM(KP),KFREE,DET,MA,MB)
            IF(DET.EQ.\varnothing)LASTIT=1
            IF(DET.EQ.0) WRITE(10.750)IT
    75.0 FORHAT(' SINGULAR SYSTEM ITER NO ',I2)
            CALL GMPRD(BM(KP),BM,OP,KFREE,KFREE,1)
            DO 115 I=1,KFREE
            IJ=(I-1)*KFREE+I
            SP(I)=DP(I)
            DP(I)=DP(I)/DSQRT(AM(IJ))
    115 PC(I)=P(I)+DP(I)
C
                            WRITE THE VALUE OF THE DETERMINANT, A INVERSE, AND NO. OF ITERATIO
            CALL LAMBDA(NM,PC,LBDA,DP,IT,AM)
            IF(NM.EQ.2) GO TO 7
        8 IF (LASTIT.EQ.D) GO TO 11
            IF(IT.LT.26)GO TO G
            WRITE(10.901)
            WRITE(6,801)
    801 FORMAT(//' ---WARNINGIl--- 26 ITERATION LINIT EXCEEDED...
            1CONVERGENCE QUESTIONABLE...'//)
            9 WRITE(1\varnothing,8\varnothing\varnothing)IT,DET
    B&D FORMAT(IG,' ITERATIONS, DET. OF PART. DERIV. MATRIX =',1PE14.6)
            CALCULATE NEW PARAMETER VALUES AND CHECK FOR SIGN CHANGES IF NECES
    11 K1=\varnothing
            DO 14\varnothing K=1,IK
            IF(IM.EQ.ø) GO TO 12
            DO 130 KK=1,IM
            IF(K.EQ.IX(KK)) GO TO 15
    13@ CONTINUE
    12 K2=K-K1
    13 PC(K)=P(K)+H*DP(K)
            IF(LASTIT.NE.f) GO TO 14\varnothing
            IF(IFG-1)14,140,15
    14 IF(IT.GT.5) GO TO 14X
    15 IF(P(K)*PC(K).GE.\varnothing) GO TO 140
            H=H/2
            IF(H.GE.1.0E-1D) GO TO 11
```

```
        WRITEC10.150.\K
        WRITE(6,1500)K
    15@@ FORMAT(//' PROG. QUIT ITERATING ...... PARAMETER',I3,' OUT OF RAN
        1GE'//)
        H=|
        LASTIT=1
        GO TO 8
    16 K1=K1+1
    40J CONTINUE
C
    OPTIONAL PRINTOUT FOR EACH ITERATION ONLY IF IPR >1
        IF(LASTIT.NE.D) GO TO 19
        IF(IPR.LT.1) GO TO 17
    WRITE(10,13\varnothing\varnothing) IT,H,VAR
136II FORMAT( 1HJ,I3,IP2E17.7)
1400 FORNAT( 1PGE11.3)
    IF(IPR.LT.2) GO TO 17
    WRITE(10,1400) (PC(K),K=1,IK)
nOn
    17 KK=2
        DO 160 K=1,IK
        IF(P(K).EQ.\varnothing) GO TO 18
        IF(DABS((PC(K)-P(K))/P(K))-TEST)160,169,19
    KK=KK+1
    16g CONTINUE
        IF(KK.EQ.IK) GO TO 19
    M25C=1
C
    19 DO 170 K=1,IK
    17^) P(K)=PC(K)
C
    21 IF(M25C.EQ.1) GO TO 22
    IF(IT.LT.25) GO TO 2
nחo
    22 LASTIT=1
    GO TO 2
C
    23 WVAR=VAR/DF
    TEST = SQRT(SSQ/DF)
    K1=Z
    DO 19\varnothing K=1,IK
    IF(IM.EQ.D) GO TO 24
    DO 18\varnothing KK=1,IM
    IF(K.EQ.IX(KK)) GO TO 25
    1Bg CONTINUE
    24 K2=K-K1
```

```
        K3=K2+K2*(IK-IM)
        K4=K3-IK+IM
        SP(k)=DSQRT(BiN(K3)*WVAR/AM(K4))
        GO TO 190
        25 K1=K1+1
    19& CONTINUE
    IF(IREJ.EQ.\varnothingIGO TO 2øø
    URITE(1D.16\varnothing\varnothing)IREJ
    WRITE(1\varnothing,19名) (JIW(J),IIW(J) ,J=I,IREJ)
    199! FORMAT(10(I8,':',I4))
    1GNG FORMAT(2EX,'THE FOLLOWING',I4,' POINTS ARE OUTSIDE 3.4G SIGMA')
    2.00 CONTINUE
        RETURN
    END
C
            SUEROUTINE MINV... MATRIX INVERSION
    SUBROU்TINE MINV(A,N,D,L,M)
つの\Omega
    PURPOSE
        INVERT A MATRIX
    USAGE
        CALL MINV(A,N,D,L,M)
    DESCRIPTION OF PARAMETERS
        A - INPUT MATRIK, DESTROYED IN COMPUTATION AND REPLACED BY
        RESULTANT INVERSE.
        N - ORDER OF MATRIX A
        D - RESULTANT DETERMINANT
        L - WORK VECTOR OF LENGTH N
        M - WORK VECTOR OF LENGTH N
    REMARKS
        MATRIX A MUST BE A GENERAL MATRIX
        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
        NONE
        METHOD
        THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
        IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
        THE HATRIX IS SINGULAR.
DIMENSION A(1),L(1),M(1)
REAL*& DABS
DOUBLE PRECISION A,D,BIGA,HOLD
IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED，THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS．
```

THE C MUST ALSO be removed from double precision statements APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS rourine．

```
THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.
```

SEARCH FOR LARGEST ELEMENT
$D=1.0$
$N K=-N$
DO $30 K=1, N$
$N K=N K+N$
$L(K)=K$
M(K) $=K$
$K K=N K+K$
BIGA=A(KK)
DO $2 \varnothing \mathrm{~J}=\mathrm{K}, \mathrm{N}$
$I 2=N *(J-1)$
DO 2n I=K, N
$\mathrm{IJ}=1 \mathrm{Z}+\mathrm{I}$
$10 \operatorname{IF}(D A B S(B I G A)-D A B S(A(I J))) 15,20,20$
15 BIGA=A(IJ)
L(K)=I
$M(K)=J$
20 CONTINUE
INTERCHANGE ROWS
$J=L(K)$
IF(J-K) 35,35,25
25
DO $3 \varnothing 1=1, N$
$K I=K I+N$
HOLD $=-A(K I)$
$\mathrm{JI}=\mathrm{KI}-\mathrm{K}+\mathrm{J}$
$A(K I)=A(J I)$
3. $\mathrm{A}(\mathrm{JI})=\mathrm{HOLD}$
INTERCHANGE COLUMNS
35 I $=\mathrm{M}(\mathrm{K})$
IF(I-K) 45,45,38
38 JP=N*(I-1)
DO $40 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{JK}=\mathrm{NK}+\mathrm{J}$
$J I=J P+J$
HOL $D=-A(J K)$
$A(J K)=A(J I)$
40 A(JI) $=H O L D$
DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
CONTAINED IN BIGA)
45 IF(BIGA) 48,46,48
46 D= $0 . \varnothing$
RETURN
48 DO $55 \mathrm{I}=1, \mathrm{~N}$
IF(I-K) 5D,55,50
$50 \mathrm{IK}=\mathrm{N} K+\mathrm{I}$
$A(I K)=A(I K) /(-B I G A)$
55 CONTINUE

```
        DO 65 I=1,N
```

 IK=iNK+I
 HOLD=A(IK)
 \(\mathrm{I} \mathrm{J}=\mathrm{I}-\mathrm{N}\)
 DO \(65 \mathrm{~J}=1\), N
 \(I J=I J+N\)
 IF (I-K) 60,65,6®
 6. \(\mathrm{IF}(\mathrm{J}-K) 62,65,62\)
 \(62 \mathrm{KJ}=\mathrm{IJ}-\mathrm{I}+\mathrm{K}\)
 \(A(I J)=H O L D * A(K J)+A(I J)\)
 65 CONTINUE
 C

C
C

8＠CONTINUE
FINAL ROW AND COLUMN INTERCHANGE$100 K=(K-1)$
IF (K) $150,150,1 \varnothing 5$
$105 \mathrm{I}=\mathrm{L}(\mathrm{K})$
IF(I-K) 12ø,12ø,108
$108 \mathrm{JQ}=\mathrm{H}^{*}(\mathrm{~K}-1)$
$J R=N *(I-1)$
DO $1: \varnothing J=1, N$
$J K=J 0+J$
HOLD=A(JK)
JI = JR +J
$A(J K)=-A(J I)$
11.5 A(JI) =HOLD
$120 \mathrm{~J}=\mathrm{M}(\mathrm{K})$
IF(J-K) 10め,1ø0,125
$125 \mathrm{KI}=\mathrm{K}-\mathrm{N}$
DO $130 \mathrm{I}=1, \mathrm{~N}$
$K I=K I+N$
$H O L D=A(K I)$
$J I=K I-K+J$
$A\langle K I\rangle=-A(J I)$
$130 \mathrm{~A}(\mathrm{JI})=\mathrm{HOLD}$
GO TO 1ヵE
150 RETURN
END
$K J=K-N$
DO $75 \mathrm{~J}=1, \mathrm{~N}$
$K J=K \cdot J+N$
IF（J－K）70．75．70
$7 \Omega A(K J)=A(K J) / B I G A$
75 CONTINUE
PRODUCT OF PIVOTS
$D=D * B I G A$
REPLACE PIVOT BY RECIPROCAL
$A(1 K K)=1 . E / B I G A$

FINAL ROW AND COLUMN INTERCHANGE
$100 K=(K-1)$
$105 \begin{aligned} & I=L(K) \\ & I F(I-K) \\ & j(20,120,108\end{aligned}$
$108 \mathrm{JQ}=\mathrm{H}^{*}(\mathrm{~K}-1)$
DO $11 \varnothing J=1, N$
$J K=J 0+J$
HOLD＝A（JK）
JI＝JR +J
$A(J K)=-A(J I)$
$11.5 \mathrm{~A}(\mathrm{JI})=\mathrm{HOLD}$
12』 J＝M（K）
IF（J－K）1øø，1øø，125
$125 \mathrm{KI}=\mathrm{K}-\mathrm{N}$
DO $130 \mathrm{I}=1$ ， N
$K I=K I+N$
$J I=K I-K+J$
$A\{K I\rangle=-A(J I)$
130 A（JI）$=H O L D$
GO TO
RETURN
END
C

```
SUBROUTINE GMPRD(A,B,R,N,M,L)
```

SUBROUTINE GMPRD(A,B,R,N,M,L)
SUBROUTINE GMPRD
SUBROUTINE GMPRD
PURPOSE
PURPOSE
MULTIPLY TWO GENERAL MATRICES TO FORM A RESULTANT GENERAL
MULTIPLY TWO GENERAL MATRICES TO FORM A RESULTANT GENERAL
MATRIX
MATRIX
USAGE
USAGE
CALL GMPRD(A,B,R,N,M,L)
CALL GMPRD(A,B,R,N,M,L)
DESCRIPTION OF PARAMETERS
DESCRIPTION OF PARAMETERS
A - NAME OF FIRST INPUT MATRIX
A - NAME OF FIRST INPUT MATRIX
B - NAME OF SECOND INPUT MATRIX
B - NAME OF SECOND INPUT MATRIX
R - NAME OF OUTPUT MATRIX
R - NAME OF OUTPUT MATRIX
N - NUMSER OF RONS IN A
N - NUMSER OF RONS IN A
M - NUMBER OF COLUMNS IN A AND ROWS IN B
M - NUMBER OF COLUMNS IN A AND ROWS IN B
L - NUMBER Of COLUMNS IN B
L - NUMBER Of COLUMNS IN B
REMARKS
REMARKS
ALL MATRICES MUST BE STORED AS GENERAL MATRICES
ALL MATRICES MUST BE STORED AS GENERAL MATRICES
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX B
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX B
NUMBER OF COLUNNS OF MATRIX A MUST BE EQUAL TO NUMBER OF ROW
NUMBER OF COLUNNS OF MATRIX A MUST BE EQUAL TO NUMBER OF ROW
OF MATRIX B
OF MATRIX B
DOUBLE PRECISION A,B,R
DIMENSION A(1),B(1),R(1)
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE
METHOD
THE M BY L MATRIX B IS PREMULTIPLIED BY THE N BY M MATRIX A
AND THE RESULT IS STORED IN THE N BY L MATRIX R.
IR=g
IK=-M
DO 1% K=1,L
IK=IK+M
DO 1D J=1,N
IR=IR+I
JI=J-N
IB=IK
R(IR)=0
DO 10 I=1,M
JI=JI+N
IB=IB+1
1\varnothingR(IR)=R(IR)+A(JI)*B(IB)
RETURN
END
SUBROUTINE RGRES (V,U,A,B,N1,N2,R2,SWTCH)
DOUBLE PRECISION V,U,SWTCH
DIMENSION U(999),V(999)
REAL M1,M2

```
```

12\tilde{x} FORHAT\' ZERO
(STD ERROR OF ESTIMATE EXCEEDS STD DEV OF Y
1)'/!
N=N2-N1+1
1Dg FORMAT (3X.' S I M P L E L I NE A R REG RE S S I O N
IEQUATION: LOG(Y-F(X))=A + B*X,//IX,'INDX R*R EXPL VAR UNEX
2P VAR STD ERR VALUE 95 PCT CONF LIMITS BEGIN END
3DIFF',
150 FORHAT (1H1)
2ø0 FORMAT (F9.5,2F10.6,F9.6,4H A=,3F12.8,14,16,I6,/,38X,4H B=,3F12.
18)
IF(SWTCH.EQ.2.g)GO TO 11
If (A) 8,10.8
8 IF (ICNT-25) 11,11,9
9 WRITE (10.150)
10 ICNT = 1
IF(SWTCH.EQ.1)GO TO 101
102 WRITE(10,11g)
11\varnothing FORMAT(1H ,'ITERATIONS NOT DISPLAYED')
GO TO 11
101 WRITE(10,100)
11 ICNT = ICNT+1
S1=\
S2=0
S3=0
S4=0
S5=\varnothing
DO 2\varnothing I=N1,N2
S1=S1+U(I)
S2=S2+U(I)*U(I)
S3=S3+V(I)
S4=S4+V(I)*V(I)
20 S5=S5+U(I)*V(I)
Ml=S1/N
M2=S3/N
D1=S2/N-M1*M1
D2=S4/N-M2*M2
D3=S5/N-M1*142
Cl=N*D1
R8=\varnothing
B=03/D1
A=M2-8*M1
D4=D2-B*D3
D44 = D4
IF (D4-D2)207%,2040,2040
2040 R8=1
R2=ø
GO TO 2080
2.57.0 R2=1-(D4/D2)
2080 CONTINUE
IF(RA)2110,2130,2110
2110 WRITE (10,12g)
GO TO 21U\#
213: D2M4=D2-D4
D4SQR=SQRT(D4)
216!5 D4=N*D4/(N-2)
T=1.95996+2.37226/(N-2)+2.82250/(N-2)*(N-2)
D5=SORT(D4/C1)
D6=SQRT(D4/N)
B1=B-T*D5
B2=E+T*D5
A1=A-T*DG
A2 =A +T*D6
IF(SWTCH.NE.1)GO TO 56

```

WRITE（16，2の0）R2，D2M4，D44，D4SQR，A，A1，A2，N1，N2，N，B，B1，B2
50 IF（SWTCH．NE．2．D）GO TO 57
R2＝D5
SWTCH＝D6
57 CONTINUE
RETURN
END
```

 SUBROUTINE DSPAK... IBM PLOT ROUTINE
    ```

\section*{SUBROUTINE DSPAK}

DOUBLE PRECISION W，P，SP，YC，DY，PART，BM，DET，ALAB
DOUBLE PRECISION YT，WVAR
COMMON N，IK，IW，M，IB，ITEST，IDUM，NDUM，IPR，IFG，IM，TEST，YT，WVAR，SSO，
1IDF，DET，ISW，IPLT，ISC，INTT，Y（999），X（1，999），W（999），IX（16），PG（1ø），P（
21ø），SP（iø），YC（999），DY（999），BM（10，11），ALAB，PART（10），NSETS
EQUIVALENCE（IDUM，IN1），（NDUM，NN2）
UIMENSIOH ICH（1D），APLT（128）
INTEGER APLT
DATA IBCH，ISCH，ICH／＇＇，＇＊＇，＇A＇，＇B＇，＇C＇，＇D＇，＇E＇，＇T＇，＇U＇，＇V＇，＇W＇，＇X＇
1／
DATA IDCH／＇g＇／
5．ฮ．g FORIIAT（1X，13，123A1）
901 FORMAT（1H1）
9x＇FORMAT \(2 X, F 7.3,116 X, F 7.0)\)
\(K=1 k-1\)
\(K K=I K / 2-1\)
\(1 \mathrm{~J}=1\)
\(\mathrm{J}=1\)
WVAR＝DSORT（WVAR）
DO \(5 \quad I=1\) ，N
\(\operatorname{IF}(\mathrm{Y}(\mathrm{J}) . \operatorname{LT}, \mathrm{Y}(\mathrm{I})) \mathrm{J}=\mathrm{I}\)
5 CONTINUE
DO \(7 \mathrm{I}=1\) ，KK
\(\operatorname{SP}(1)=P(2 * I-1) * \operatorname{DEXP}(-X(1, J) / P(2 * I))\)
IF（SP（I）．GT．SP（IJ））IJ＝I
7 CONTINUE
\(Y(\lambda=Y(J)-P(K)\)
DO \＆\(I=1\) ，KK
IF（I．EQ．IJ）GO TO 8
\(Y Q=Y Q-S P(I)\)
8 CONTINUE
SCALE＝115．／ALOG（1øøø．）
CHKZ̈＝EXP（1．／SCALE）＊YQ／1øøø．
\(J=-I P L T\)
WRITE（10．901）
YQLNI＝（YQ／10．0．）
WRITE（10，905）YQLN1，YQ
175 I XPLT＝め
\(\mathrm{N} 1=116\)
209 DO \(2101=1,116\)
21：3 APLT（I）＝ISCH
\(\operatorname{APLT}(58)=10 C H\)
\(\mathrm{J}=\mathrm{J}+1\)
GO TO 25．
\(215 \mathrm{~J}=\mathrm{J}+\mathrm{IPLT}\)
IF（J－N）216，216，17円
216 CONTINUE
\(I<\) PLT＝IMI＋J－1
DO \(22.4 \mathrm{I}=2,115\)
220 APLT（I）\(=1\) IBCH
```

 DO 24G I=1,Kk
 DUM=Y(J)-P(K)
 DO 230 IJ=1,KK
 IF(IJ-I)225.230,225
 225 DUM=DUH1-P(2*IJ-1)*DEXP(-X(1,J)/P{2*[J))
 230 CONTINUE
 IF(DUM-CHKZ)237,237,235
 23! NNBR:=(ALOG(DUM)-ALOG(YQ/100日.))*SCALE+1
 IF(NMBR-116)238,238,236
 236 NHPP=116
 GO TO 238
 GMBR=2
 238 APLT(NMBR)=ICH(I)
 IF(NI.LT.NMBR) NI=NMBR
 24g CONTINUE
 NMBR=((DUM-P(K-2)*DEXP(-X(1,J)/P(2*KK)))*W(J)**.5*.1)+64
 IF(NMER-1)247,247,245
 245 CONTINUE
 IF(NHER-115)248,248,246
 24 NMBR=115
 GO TO 248
 247 NABR=2
 218 APLT(NMBR)=ICH(KK+1)
 IF(N1.LT.NMBR)N1=NMBR
 25ø WRITE(1\varnothing,5\varnothing\varnothing)IXPLT,(APLT(I),I=1,N1)
 N1=2
 IF(J-N)215,17.8,251
 251 CONTINUE
 RETURN
 END
 n๓nのo
SUBROUTINE INPAK... INPUT ROUTINE
SUBROUTINE INPAK(N1,NTC,CHAN,TIM,TIME,Y,BLAB,NRD,ZCLB,ZCAL,AL,BL,D
IA, XMO,YR,RN,SA,VL,PR,IPLT)
DIMENSION CHAN(10),TIM(10),Y(999),BLAB(4),SAVY(999)
CHARACTER *6 AL,BL,SA,DA*2,XMO*3,YR*4
INTEGER RN
INTEGER ZCH
INTEGER ZCH3
INTEGER CHAN
INTEGER ZCAL
DOUBLE PRECISION BLAB,TIM
NP=6
ZCAL = 1
NPU=N1
IF(IPLT.NE.D)GOTO 95050
40^! WRITE(6,30.05)
30.0ף FORMAT(' ENTER THE FOLLOWING DATA: NAME (2A\sigma), MONTH, DAY, YEAR (A
12,A3,A4), RUN NO. (12), SANPLE NAME (A6), WAVELENGTH (F5.g),
2'/' AND THE PRESSURE IN MICRONS (F5.1)')
READ(5,9101)AL,BL,DA, XMO,YR,RN,SA,VL,PR
WRITE(6,9105)AL,BL,DA, XMO,YR,RN,SA,VL,PR
WRITE(6,3005)
30D5 FORHAT(' IS THE DATA ENTERED CORRECTLY? YES=1, NO=\not口')
READ(5,3006) ZCH
30NG FORIHAT(I1)
IF (ZCH)40\varnothing\varnothing,4\varnothing日\varnothing,41\varnothing\varnothing
41.GG CONTINUE
9101 FORHAT(2A6,A2,A3,A4,I2,A6,F5.0,F5.1)
9105 FORMAT(1X,2A6,A2,A3,A4,I2,A6,F5.D,F5.1)

```
```

30700 VRITE(6,3080)
3@8\& FORHAT(' ENTER THE NUMBER OF CHANNELS USED (I3) AND THE CALIBRATIO
IN USED IN NS/CH (F10.5)')
3.59.g FORHAT(13,F1D.5)
3092 FORMAT(1X,I3,F10.5)
READ(5,3C9\varnothing) N1,2CLB
WRITE(6,3092)N1,ZCLB
WRITE(6,3905)
READ(5,3ø̈6)ZCH3
IF(ZCH3) 3ø7ø,3ø7\varnothing,3ø91
3091 N=N1
WRITE(6,3095)
3095 FORNAT(' ENTERING DATA FILE (10F8.D)')
10 READ(9,60ø!\sigma)TIME,(Y(I),I=1,N)
GODU FORNAT(1.DF8.D)
WRITE(6,3099)
3ggg FORMAT(' DATA FILE ACCEPTED')
DO 300. I=1,N
SitVY(I)=Y(I)
800D CUNTINUE
GO TO 98.00
950:3 DO 9600 I=1,N
Y(I)=SAVY(I)
9G50 CONTINUE
RN=RN+1
9:0g CONTINUE
RETURN
END

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ax/vims & R9309097 & CHI & 25-AUG-1982 & 11:53 & LPAD: & 26-AUG-1982 & : 53 & _DRB日: [CHI]C: \\
\hline Vaydvils & R.TS.0.0.97 & CHI & 26-AUG-1982 & 11:53 & LPAD: & 26-AUG-1982 & 11:53 & _DRBD:[CHI]C \\
\hline VA:IVMS & R0300.j 7 & CHI & 26-AUG-1982 & 11:53 & LPAD: & 26-AUG-1982 & 11:53 & DR30: \\
\hline
\end{tabular}



64g9
65.9 .9

G6M！
6780
68．0．
69919
7us：
710：
72.50

7309
7499
75.04
76.9 .5
77.919
780.9
\(79: 5\)
30w！
81015
8219
320．4
84.56

85019
8699
8790
880\％
89．94
99．4．
91.0 g
y2un
93\％
94 4，
450.1
960.0
\(974: 3\)
98.515

9909
1.9006

10190
10200
\(103: 00\)
10740：
1050.9
1.46
1571.

103： 5
\(109 \times 5\)
11150
1110 D
11200
\(113 \mathrm{H}=5\)
\(1148: 7\)
115000
1160.6
\(1170{ }^{\circ}\)
118.50
\(1109 \%\)
129.90

1215
1224以 123.9
124.06

12 5： 4.5
12695
200 FORMAT(' ENTER THE DATA SET NAME .... e.g.. COJUN2g')
READ(5,3.9日)FILEN
300 FORMAT(A1H)
    IF (CORRECT) 5,535,535
5 WRITE (6,40Ø)
400 FORHAT(: ENTER EV/CH STEP SIZE ')
READ(5,41世)ENERGY
410 FORMAT(F5.5)
    IF (CORRECT) 6,535,535
7 WRITE \((6, *)\) 'ENTER THE PARAMETERS.'
    WRITE(6,*) ' A(1) IS THE HALFWIDTH.'
    WRITE(6,*) ' THE EVEN ARE SLOPES AND THE ODD ARE THRESHOLDS'
    WRITE( \(6, *\) ) ' THE LAST ONE IS TO BE USED FOR THE BACKGROUND.'
    DO 45 If \(I=1\), NTERMS
    READ(5,440iA(I)
440 FORMAT(F18.8)
450 CONTINUE
    IF (CORRECT) 8,535,535
8 WRITE (6,453)
453 FORMAT ' 'ENTER THE \% OF A TO BE INCREMENTED')
    DO \(46.5 \mathrm{I}=1\), NTERMS
    READ(5.455;DELTAA(I)
    FORMAT(F12.5)
\(460 \quad\) DELTAA (I)=A(I)* \(0.01 * D E L T A A(I)\)
    IF (CORRECT) \(9,535.535\)
6 WRITE (G,520)
520 FORMAT(: ENTER THE CHI SQUARE TEST VALUE')
    \(\operatorname{PEAD}(5,530) T E S T\)
530 FORHAT(F1ヵ.4)
    IF (CORRECT) 7,535,535
\(9 \operatorname{VRITE}(6,1100)\)
lløD FORHAT(' DO YOU WISH A PLOT OF THE DATA?')
    READ (5,1200)A.NS
1200 FORMAT(F2.D)
    IF (CORRECT) 18,535,535
\(1 \varnothing\) WRITE( \(6, *\) ) THE NUMBER OF ALLOWED ITTERATIONS'
    READ (5,521)WITTMAX
521 FORHAT(F4.ø)
    IF (CORRECT) 11,535,535
11 WRITE(6,1600)
16.0 FORHAT(' INPUT XMIN,MAX \& YMIN,MAX. ')
    \(\operatorname{READ}(5,170 \varnothing)\) XMIN, XMAX, YMIN, YMAX
    17gの FORMAT(4F8.2)
    535 WRITE 6,540\()\)
540 FORMAT (; LIST OF DATA THAT WAS ENTERED.')
    WRITE (6,542)NPTS, NTERMS, MODE,FILEN
    FORMAT \({ }^{\prime}\) (1) NPTS \(=1,14,1\) (2) NTERMS \(=1\), I2,
                            ' (3) MODE =', I3,' (4) FILE=', A10)
        WRITE 6,544 )ENERGY,TEST
544 FORMAT(' (5) ENERGY =',F6.5,2X,'(6) TEST VALUE= ',F10.4)
    WRITE (6,545)
545 FORMAT \(;(7)\) (7) \(=\) (8) DELTAA \(=\) ')
    WRITE ( 6,546 )(A(I), DELTAA(I), \(I=1, N T E R M S\) )
546 FORMAT(F14.4.4X,Fi4.4)
    WRITE ( \(6,18.5 \varnothing\) )ANS, WITTMAX
18øD FORMAT : (9) PLOT=',F2.ø, 3X,'(10) \# OF ITTERATION=',F4.ø)
    WRITE(6,1900)XMIN, XMAX, YMIN, YMAX
1900 FORMAT(' (11) AXIS LIMITS \((X, Y)=1,4 F 10.2)\)
    WRITE 6,547 )
547 FORMAT(' IF IT IS ALL CORRECT HIT "O", OR "-1" TO CHANGE IT ALL')
    WRITE (6,2000)
2øø日 FORMAT!' IF ONLY A FEW CHANGES ARE TO BE MADE ENTER THE NUMBER',
    1 FORMAT( OF THE ITEM.')
```

 WRITE(6,*) 'FOR A PLOT OF THE ORIG:NAL DATA HIT "-2"'
 READ(5,2100)CORRECT
 2100 FORMAT(I3)
 IF (CORRECT.EQ.-2) GO TO 590
 IF (CORRECT.EQ.-1) GO TO 9%
 IF (CORRECT.EQ.\varnothing) GO TO 59\varnothing
 22g0 IF (CORRECT.EQ.1) GO TO 92
 IF (CORRECT.EQ.2) GO TO 2
 IF (CORRECT.EQ.3) GO TO 3
 IF (CORRECT.EQ.4) GO TO 4
 IF (CORRECT.EQ.5) GO TO 5
 IF (CORRECT.EQ.6) GO TO 6
 IF (CORRECT.EQ.7) GO TO 7
 IF (CORRECT.EQ.8) EO TO 8
 IF (CORRECT.EQ.9) GO TO g
 IF (CORRECT.EQ.1D) GO TO 10
 IF (CORRECT.EQ.11) GO TO 11
 GO TO 535
 WRITE(8,575)NTERMS,NPTS,MODE, FILEN, ENERGY,(A(I),I=1,28),
 (DELTAA(I), I=1,2\varnothing),TEST,ANS,WITTMAX, XMIN, XMAX,
 YMIN, YMAX
 FORMAT(3I4,1X,A1\varnothing,F6.5,4(/,5F12.5),4(/,5F12.5),/,F1\varnothing.4,2F4.g,4F8.2)
 CALL ASSIGN(9,FILEN)
 READ(9,320)(Y(I), I=1,500)
 FORMAT(1RF8.D)
 Y(1)=Y(3)
 DO 428 I=1,50&
 X(I)=I
 DO 425 I=1,NTERMS
 AORIG(I)=A(I)
 ITT=1
 IF (CORRECT.EQ.-2) GO TO 427
 GO TO 599
 DO 428 I=1,50@
 YS(I)=Y(I)
 XS(I)=(1-1)*ENERGY+XMIN
 CONTINUE
 GO TO 91.0
 DATA ENTRY COMPLETE......
 C

```

```

C
CALCULATION ROUTINES
599 CALL CHIFIT (X,Y,SIGMAY,NPTS,NTERMS,MODE,A,DELTAA,SIGN:AA,
YFIT,CHISQR,ENERGY, XMIN, XMAX, YMIN, YMAX,
ACAL,KCOUNT,ITT,TEST,SAVA,SAVCHI,CHIMEAN)
ITT=ITT+1
IF (ITT.LT.(WITTMAX+1.D))GO TO 599
C
C
IF(KCOUNT.EQ.g)GOTO 6666
DO 901 I=1,NTERMS
WMEANVA(I)=\varnothing
DO 5øøø I=1,NTERMS
DO 45g% J=1,KCOUNT
4500 WMEANVA(I)=ACAL(I ,J)+WMEANVA(I)
WMEAN(I)=WMEANVA(I)/KCOUNT
VARSQ=0
DO 46.gø J=1, KCOUNT
460D VARSQ={ACAL(I,J)-WMEAN(I))**2+VARSQ

```
```

VAR(I)= SQRT(VARSQ/KCOUNT)
CONTINUE
C
PRINT BEST FIT PARAMETERS AND VARIANCE
CHIMEAN=CHIMEAN/KCOUNT
ITT=ITT-I
WRITE(7,55ø0)ITT, KCOUNT,CHIMEAN,SAVCHI
WRITE (6,55\varnothing\varnothing)ITT,KCOUNT,CHIMEAN,SAVCHI
550. FORMAT(//'
...AFTER ',I3,' ITERATIONS... AND KCOUNT=',I4,'...'
/' MEAN CHISQUARE:',F12.6,' LOWEST CHI SQUARE:',F12.6,
\prime' MEAN FIT PARAMETERS LOWEST CHI SQUARE FIT'
MEAN A(I) VARIANCE A(I) SAVA(I)')
WRITE(6,5600)(I,WMEAN(I),VAR(I),SAVA(I),I =1,NTERMS)
WRITE(7,56\varnothing\varnothing)(I,WMEAN(I),VAR(I),SAVA(I), I= 1,NTERMS)
56,06 FORMIAT(' A(',I1,') ,,2F12.6,', F12.6)
CALL FUN(X,Y,YFIT,NPTS,NTERMS,WMEAN,GAMMA,ENERGY,XMIN, XMAX)
IF (ANS.EQ.D) GO TO 5555
666 DO 905 I=1,50.
YREAL(I)=Y(I)
YS(I)=YFIT(I)
XS(I)=YMIN+ENERGY*(I-1)
9ø5 CONTINUE
DO 907 I=1.NTERMS
XMEAN(I)=\NMEAN(I)
WSAVA(I)=SAVA(I)
XVAR(I)=VAR(I)
907 CONTINUE
910 CALL CHIPLOT<50\varnothing,XS,XMIN,XMAX,YS,YMIN,YMAX,'ENERGY eV',9,
YREAL,'OPTICAL INTENSITY',17,
'OPTICAL EXCITATION FUNCTION',27,
\varnothing,\varnothing, AOFIG, XMEAN, XVAR,NTERMS,FILEN,WITTMAX, CHIMEAN,
NPTS,SAVCHI,WSAVA)
C
6666 WRITE{6,6777)
6777 FORMAT(//' CONVERGENCE UNLIKELY WITH PRESENT LIMITS
WRITE(6,6888)SAVCHI
WRITE(6,6999)(I,SAVA(I),I=1,NTERMS)
6888 FORMAT(/' LOWEST CHISQUARED FOUND WAS: ',F12.6)
6999 FORMAT(' A('.I1,') ',F12.6)
WRITE(6,*)' ENTER 1 IF YOU WISH A PLOT OF THE DEFAULT A(I)'
READ(5,6988)KLKL
FORMAT(I2)
IF(KLKL.EQ.\varnothing)GOTO 5555
DO 7ち.\emptyset\varnothing I=1,NTERMS
700. UMEANVA(I)=SAVA(I)
GOTO 666
5555 CALL EXIT
END
C
C
SUBROUTINE CHIFIT (X,Y,SIGMAY,NPTS,NTERHS,MODE,A,DELTAA,
1 SIGIMAA, YFIT,CHISQR, ENERGY, XMIN, XMAX, YMIN, YMAX,
2 ACAL, KCOUNT, ITT,TEST,SAVA, SAVCHI,CHIMEAN)
IMPLICIT REAL"8(A-G,P-Z)
INTEGER G1,O,H
OIMENSION
1 X(1024),Y(1024),A(20),ALPHA(20,20),BETA(20),DA(20),

```
\(2510 \%\)
252000 253.90
\(2540 \%\)
255． 6.5
25 б．6．
2570 y
258．9め
\(259.0 \%\)
\(2600: 3\)
261 ：9
2620.9

26300
26400
265.0 \％

26 G． 5.0
267．9．
26800
26909
270.0 .8
2710.8
2720.8
273.9
\(274.5 x^{\circ}\)
27500
2760.9

27700
2790月
2799め
28.000
281.95
232.06

28300
\(28: 190\)
28596
286.00
287.0 .9
288.59

23900
29.007

29160
292.90
293.50

29400
29590
296.00

29780ㅇ
29800
29900
39x\％er
3010.5
3.0505

3． \(5 \cdot 3.169\)
35492
3.0509 .5
3069.5
3070.10

30000
309006
31.906
\(311.9 \%\)
31290
313.40 1

DELTAA（20），SIGMAA（20），
3 SIGMAY（1024）．GAUSS（200），YFIT（1024），DA1（20）
NFREE＝NPTS－HTERMS
FREE＝NFREE
IF（NFREE）14，14，16
\(C H I S Q R=\varnothing\) ．
GO TO 120
CALL FUN（X，Y，YFIT，NPTS，NTERMS，A，GAMMA，ENERGY，XMIN，XMAX）
CALL FCHISQCY，SIGMAY，NPTS，NFREE，MODE，YFIT，A，ACAL，KCOUNT，CHISQ1，
evaluate alpha and beta matrices
\(0060 \mathrm{~J}=1\) ，NTERMS
A（J）＋DELTAA（J）
\(A J=A(J)\)
\(A(J)=A J+D E L T A A(J)\)
CALL FUN（ \(X, Y, Y F I T, N P T S, N T E R M S, A, G A M M A, E N E R G Y, X M I N, X M A X)\)
CALL FCHISOCY，SIGMAY，NPTS，NFREE，MODE，YFIT，A，ACAL，KCOUNT，CHISQ2， ITT，TEST，SAVA，SAVCHI，CHIMEAN）
ALPHA（J，J）＝CHISQ2－2．＊CHISQ1
BETA（J）＝－CHISQ2
DO 5D K＝1，NTERMS
IF（K－J）33，50，36
ALPHA（K，J）\(=(A L P H A(K, J)-C H I S Q 2) / 2\).
ALPHA \((J, K)=\operatorname{ALPHA}(K, J)\)
GO TO 5．
ALPHA \((J, K)=C H I S Q 1-C H I S Q 2\)
\(A(J)+D E L T A A(J)\) AND \(A(K)+D E L T A A(K)\)
\(A K=A(K)\)
\(A(K)=A K+D E L T A A(K)\)
CALL FUN（ \(X, Y\), YFIT，NPTS，NTERPAS，A，GAMMA，ENEREY，XMIN，XMAX）
CALL FCHISQIY，SIGMAY，NPTS，NFREE，MODE，YFIT，A，ACAL，KCOUNT，CHISQ3， ITT，TEST，SAVA，SAVCHI，CHIMEAN ）
ALPHA \((J, K)=\) ALPHA \((J, K)+\) CHISQ3
\(A(K)=A K\)
continue
A（J）－DELTAA（J）
\(A(J)=A J-D E L T A A(J)\)
CALL FUN（ \(X, Y, Y F I T, N P T S, N T E R M S, A, G A M M A, ~ E N E R G Y, X M I N, X M A X) ~\)
CALL FCHISQCY，SIGMAY，NPTS，NFREE，MODE，YFIT，A，ACAL，KCOUNT，CHISQ3，
\(A(J)=A J\)
\(\operatorname{ALPHA}(J, J)=(\operatorname{ALPHA}(J, J)+C H I S Q 3) / 2\).
\(\operatorname{BETA}(J)=(\operatorname{BETA}(J)+C H I S Q 3) / 4\).
continue
eliminate negative curvature
DO \(7 \varnothing \mathrm{~J}=1\) ，NTERMS
IF（ALPHA（J，J））63，65，70
ALPHA（J，J）＝－ALPHA（J，J）
GO TO 66
ALPKiA（J，J）\(=\varnothing .01\)
DO 7 \(7 \mathrm{~K}=1\) ，NTERMS
IF（K－J）6B，7ø，68
ALPHA（J，K）\(=\varnothing\) ．
\(7 \pi\)
70C
C
C
71
\(\begin{array}{ll}C \\ C \\ C \\ C & \\ & \\ & \end{array}\)
C
99
\(C\)
\(C\)
\(C\)
    111
    120
```

```
    CALL MATINV (ALPHA
```

```
    CALL MATINV (ALPHA
        l
        l
    DO 75 K= 1, NTERMS
    DO 75 K= 1, NTERMS
    DA(J)=DA(J) + BETA(K)*ALPHA(J,K)
    DA(J)=DA(J) + BETA(K)*ALPHA(J,K)
    CONTINUE
    CONTINUE
    DA(J)=\varnothing.2* DA(J)* DELTAA(J)
    DA(J)=\varnothing.2* DA(J)* DELTAA(J)
    CONTINUE
    CONTINUE
    MAKE SURE CHI SQUARE DECREASES
    MAKE SURE CHI SQUARE DECREASES
    DO 82 J= 1. NTERMS
    DO 82 J= 1. NTERMS
    A(J)= A(J) + DA(J)
    A(J)= A(J) + DA(J)
    ICHECK=\varnothing
    ICHECK=\varnothing
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA,ENERGY,XMIN,XMAX)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA,ENERGY,XMIN,XMAX)
    ICHECK=1CHECK+1
    ICHECK=1CHECK+1
    CALL FCHISQCY,SIGMAY,NPTS,NFREE,MODE, YFIT,A,ACAL, KCOUNT,CHISO2,
    CALL FCHISQCY,SIGMAY,NPTS,NFREE,MODE, YFIT,A,ACAL, KCOUNT,CHISO2,
        ITT,TEST,SAVA,SAVCHI,CHIMEAN)
        ITT,TEST,SAVA,SAVCHI,CHIMEAN)
    IF (CHISQ1 - CHISQ2) 37,91,91
    IF (CHISQ1 - CHISQ2) 37,91,91
    87 IF (CHISQ1 - CHISQS
    87 IF (CHISQ1 - CHISQS
    DA(J) = DA(J)/2
    DA(J) = DA(J)/2
    89 A(J)=A(J)-DA(J)
    89 A(J)=A(J)-DA(J)
    IF (ICHECK.EQ.15) GO TO 91
    IF (ICHECK.EQ.15) GO TO 91
    GO TO 83
    GO TO 83
    CONTINUE
    CONTINUE
    DO 92 J= 1, NTERMS
    DO 92 J= 1, NTERMS
    A(J)=A(J) + DA(J)
    A(J)=A(J) + DA(J)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA,ENERGY, XMIN, XMAX)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA,ENERGY, XMIN, XMAX)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA,ENERGY, XMIN,XMAX)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA,ENERGY, XMIN,XMAX)
                        ITT,TEST,SAVA,SAVCHI,CHIMEAN)
                        ITT,TEST,SAVA,SAVCHI,CHIMEAN)
            IF (CHISQ3- CHISOS), SAVA,SAVCH
            IF (CHISQ3- CHISOS), SAVA,SAVCH
    CHISUI= CHISO2
    CHISUI= CHISO2
    CHISQ2= CHISQ3
    CHISQ2= CHISQ3
    GO TO 91
    GO TO 91
    FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
    FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
    101 CONTINUE
    CHISQ2=CHISO2+1
    CHISQ2=CHISO2+1
        DELTA=1./(1.+(CHISQ1-CHISQ2)/(CHISQ3-CHISQ2))+\varnothing.5
        DELTA=1./(1.+(CHISQ1-CHISQ2)/(CHISQ3-CHISQ2))+\varnothing.5
    DO 1\varnothing4 J=1, NTERMS
    DO 1\varnothing4 J=1, NTERMS
    A(J)=A(J)-DELTA*DA(J)
    A(J)=A(J)-DELTA*DA(J)
    SIGMAA(J)= DELTAA(J) * DSORT(ABS(FREE*ALPHA!J,J)))
    SIGMAA(J)= DELTAA(J) * DSORT(ABS(FREE*ALPHA!J,J)))
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA, ENERGY, XMIN, XMAX)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA, ENERGY, XMIN, XMAX)
        CALL FCHISQ (Y,SIGMAY,NPTS,NFREE,MODE,YFIT,A,ACAL, KCOUNT,CHISQR,
        CALL FCHISQ (Y,SIGMAY,NPTS,NFREE,MODE,YFIT,A,ACAL, KCOUNT,CHISQR,
                            ITT,TEST,SAVA,SAVCHI,CHIMEAN)
                            ITT,TEST,SAVA,SAVCHI,CHIMEAN)
            IF (CHISQ2-CHISOR)
            IF (CHISQ2-CHISOR)
            DO 113 J=1, NTERMS
            DO 113 J=1, NTERMS
112 DO 113 J=1, NTERMS 
112 DO 113 J=1, NTERMS 
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA, ENERGY, XMIN, XMAX,A)
    CALL FUN (X,Y,YFIT,NPTS,NTERMS,A,GAMMA, ENERGY, XMIN, XMAX,A)
    CHISQR= CHISQ2
    CHISQR= CHISQ2
    RETURN
    RETURN
    RETU
    RETU
    CONTINUE
    CONTINUE
    INVERT MATRIX AND EVALUATE PARAMETER INCREMENTS
    INVERT MATRIX AND EVALUATE PARAMETER INCREMENTS
    71 CALL MATINV (ALPHA,NTERMS,DET)
    71 CALL MATINV (ALPHA,NTERMS,DET)
    INCREMENT PARAMATERS UNTIL CHI SQUARE STARTS TO INCREASE
    INCREMENT PARAMATERS UNTIL CHI SQUARE STARTS TO INCREASE
112 DO 113 J=1,N NTERMS 
```

112 DO 113 J=1,N NTERMS

```


```

 ALPHA(K,J)= 』.
    ```
```

 ALPHA(K,J)= 』.
    ```


```

 TO }9
    ```
        TO }9
        .
```

 .
    ```
        .
```


87
2
377.9 J
3730%
37900
330 NeH 381 C6 E69！ $333 \% .5$ 3444 385.0 336.0 387.0 .0 383！． 389% 3900. 391 月y 39200 3930% 3949% 3950.9 3960% 3970.9 398.0 39909 4.0 .00 元 40105 40200
403E：
40900
40599 406.0 .5 4157.015 40304 4095 41．3．9 41159 4120 J 41300 41490 4150.0 416 JK 4170.5 418019 419.06 42.99 .9 4210π 42.0 .6 $423.4!5$ 4240π 425Ω \％ 42696 $4270 \dot{\prime}$ 4280% 429．0： 430015 431×0 432% 9 43309 $+34.96$ 43506 43695 4379.5 430 リ．t 43900
C

SMFLICIT REAL"Q(A-G,P-Z)
INTEGER G1, O,H
DIMENSION
$1 \mathrm{X}(1024), Y(1024), Y F I T(1924), A(20), G A U S S(1000)$
C
C
C
5.
C
C
C
C
DO 50 $I=1,5 \varnothing \varnothing$
YFIT(I)=ø.ø
CONTINUE
NORMALIZATION OF GAUSSIAN
IF (GAMMA-A(1)) 1øø,2øøø,1øø
100 CONTINUE
GAMIHA=A(1)
SIGM=A(1)/2.354
IRANGE = INT(1.50*SIGM/ENERGY)
JRANGE = INT(1.7ヵ*SIGM/ENERGY)
C
$\mathrm{CON}=1 /(\mathrm{SIGM} * 2.866283)$
$\mathrm{J}=1$
WNORM= \varnothing
DO $1 \not \varnothing \varnothing \varnothing J=-I R A N G E$, IRANGE
WI $1=J$ *ENERGY
GAUSS(J1)=CON*DEXP(-ø.5*(WI1/SIGM)**2)
WNORM=WNORM+GAUSS(J1)-GAUSS(1)
$\mathrm{J}=\mathrm{J} 1+1$
1øぁठ CONTINUE
LIM=J1-1
DO 120ø J=1, LIM
GAUSS(J)=(GAUSS(J)-GAUSS(1))/WNORN
CONTINUE
$\stackrel{C}{C}$
2øøø IF (NTERMS-6) 2ø2ø,2050,2ø9ø
c
c
c
c
2020
CALC USING ONE LINE
IXTI=(A(3)-XMIN)/ENERGY
B1=-A(2)*IXTI
DO $2025 \mathrm{I}=1$,500
IF (X(I)-IXT1) 2025,2030,2030
YFIT(I) $=A(2) * X(I)+B I$
CONTINUE
GO TO 245
C
C
C
203.
202
205
CALC USING TWO LINES
IXTI=(A(3)-XMIN)/ENERGY
IXT2=(A(5)-XMIN)/ENERGY
$B 1=-A(2) * I X T 1$
$B 2=-A(4) * I \times T 2$
DO $2100 \mathrm{I}=1,5 \mathrm{~g}$ g
IF (X(I)-IXT1) 21 øø,2200,2200
2208
2300
IF (X(I)-IXT2) 2300, 2300,24øD
YFIT(I) $=A(2) * X(I)+B I$
GO TO 21 10

INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN ARRAY(K,K)
IF (AMAK) 41,32,41
DET= \varnothing.
GO TO 140
I= IK(K)
IF (I - K) 21.51,43
DO 5| J= 1, NORDER
SAVE = ARRAY(K,J)
ARRAY(K,J)= ARRAY(I,J)
5D ARRAY(I,J)= -SAVE
51 J= JK(K)
IF (J - K) 21,61,53
DO 6% I= 1, NORDER
SAVE = ARRAY(I,K)
ARRAY(I,K)= ARRAY(I,J)
ARRAY(I,J)= -SAVE
accumulate elements of Inverse matrix
61 DO 70 I= 1, NORDER
IF (I - K) 63,70,63
ARRAY(I,K)= -ARRAY(I,K)/ AMAX
CONTINUE
OO 80 I= 1, NORDER
DO 80 J= 1, NORDER
IF (I -K) 74,80,74
IF (J-K) 75,89,75
ARRAY(I,J)= ARRAY(I,J) + ARRAY(I,K)*ARRAY(K,J)
cONTINUE
DO 9\varnothing J= 1, NORDER
IF (J - K) 83,90,83
ARRAY(K,J)= ARRAY(K,J)/AMAX
CONTINUE
ARRAY(K,K)= 1./ /AMAX
DET = DET * AMAX
CONTINUE
RESTORE ORDERING OF MATRIX
101 DO 130 L= 1, NORDER
K= NORDER - L + 1
J= IK(K)
IF (J - K) 111,111,105
DO 110 I= 1, NORDER
SAVE = ARRAY(I,K)
ARRAY(I,K)= - ARRAY(I,J)
11\varnothing ARRAY(I,J)= SAVE
111 I = JK(K)
IF (1 - K) 130,130,113
113 DO 120 J= 1, NORDER
SAVE= ARRAY(K,J)
ARRAY(K,J)= - ARRAY(I,J)
ARRAY(I,J)= SAVE
130 CONTINUE
140 RETURN
END
C
C

```

56 ©̂m
\(56 / 8.0\) 5636 j 5699. 57000.9 571.70 572 s. 573 mm
574.08 5750.9
576.1. 57780 \(578.2 x\) 579.10 590090 531.9 .9 582 ㄴ．7 58350 5340515 \(585 \% 0\) 586.9 .9 58790 5889 539.60 \(590.5!\) 59195 5920．4 59.39 59496 535.819 596.6 G 5970.0 5930． 599.95 Gevery 601.09 60200 \(6030{ }^{20}\) 603405 6850.0 \(666.9 \%\) 60700 6913 M， 68900 610.96 \(6110 \%\) 6120.9 61358 61400 61509 61600 61790 61800 61900 62006 62100 62200

C
1
    SUBROUTINE FCHISQ(Y, SIGMAY,NPTS,NFREE,MODE, YFIT,A,ACAL, KCOUNT,
        IMPLICIT REAL* \(8(A-G, P-Z)\)
        DIMENSION
    \(1 \mathrm{Y}(1024), \mathrm{YFIT}(1024), \mathrm{SIGMAY}(1024), \mathrm{A}(20), \operatorname{ACAL}(20,500), \operatorname{SAVA}(20)\)
        NTERMS = NPTS - NFREE
        CHISO \(=\boldsymbol{0}\).
        IF (NFREE) 13,13,20
        CCHISO \(=\varnothing\).
        GO TO 4D
        C
        C
C
C
    11
    12
    13
c
        20 DO 30 \(1=1\), NPTS
        21 IF (MODE) 22, 27, 29
        22 IF (Y(I)) 25,27,23
        23 WEIGHT=1.1Y(I)
        GO TO 3.0
        WEIGHT = \(1 . /(-Y(1))\)
        GO TO 3.0
        WEIGHT \(=1\).
        GO TO 30
        WEIGHT = 1 . / SIGMAY(I)**2
        CHISQ = CHISQ + WEIGHT*(Y(I) - YFIT(I))**2
        DIVIDE BY NUMBER OF DEGREES OF fREEDOM
        FREE \(=\) NFREE
        CCHISQ = CHISO / FREE
        WRITE ( 6,1 Iの \()\) CCHISQ,ITT
        FORMAT ; \({ }^{\text {FHE REDUCED CHI SQUARE IS: ',F12.6, }}\)
        (ITERATION \#', I3)
        IF(CCHISQ.GT. SAVCHI)GOTO \(45 \varnothing\)
        DO \(40 D I=1\), NTERMS
        \(\operatorname{SAVA}(I)=A(I)\)
        SAVCHI=CCHISQ
    45ø CONTINUE
        IF(ABS(CCHISQ-1.ø.
        CHIMEAN = CCHISQ+CHIMEAN
    10めめ WRITE(G,*)' THE A(I) PARAMETERS ARE: '
        \(\operatorname{VRITE}(6,110)\) ( \(A(1), I=1\), NTERMS)
        WRITE(6,110)
FORMAT(F12.5)
        WRITE 7,120 )CCHISQ
    120 FORMAT: FOR A REDUCED CHI SQUARE OF ',F12.6)
    WRITE (7,130)ITT,KCOUNT
    130 FORMATI: THE CALCULATED A(1) PARAMETERS ARE:
        ITTERATION \#', I3,' KCOUNT=',I4)
        \(\operatorname{WRITE}(7,14 \varnothing)(I, A(I), I=1, N T E R M S)\)
    140 FORMAT(: A(',I1;').,., F10.5)
        KCOUNT \(=\) KCOUNT +1
        KK=KCOUNT
        DO \(145 \mathrm{I}=1\), NTERMS
        \(\operatorname{ACAL}(I, K K)=A(I)\)
        CONTINUE
    14
        RONTINUE
        RETURN
        END

\title{
Digital technique for the study of narrow structure in electron-atom and electron-molecule scattering
}

\author{
W. C. Paske, S. Shadfar, S. R. Lorentz, N. C. Steph, and D. E. Golden \\ Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019
}
(Received 27 March 1981; accepted for publication 6 June 1981)

\begin{abstract}
A digital technique has been developed which allows the study of narrow structure in total electron-atom and electron-molecule scattering cross sections without requiring a highly monoenergetic electron beam, modulation of the electron gun, or phase sensitive detection. The electron current transmitted through a gas cell is digitized as the electron energy is stepped by \(\Delta E\) through the energy range of interest. A transmitted electron difference signal is then obtained using a computer. As examples of this technique, the difference spectra are presented for He near 19.35 eV and for \(\mathrm{N}_{\mathbf{2}}\) for the energy range from 10.3 to 15.0 eV . In the present case an instrumental resolution of 30 meV FWHM has been obtained.
\end{abstract}

PACS numbers: 34.80.Bm

\section*{INTRODUCTION}

The modulated retarding potential differences (RPD) and the retarded energy modulation (REM) techniques have been compared in an earlier paper by Golden el al.,' hereafter referred to as I. Both techniques are intended to be used in zero magnetic field, and both provide a highly monoenergetic response to electrons transmitted through a gas. The REM technique is useful in studying resonances and cusps since it gives essentially zero response to slowly varying cross sections while it directly measures rapidly varying cross sections. The RPD technique uses modulation of the retarding electrode, while the REM technique uses modulation of the interaction region and both techniques use phase sensitive detection.

In this work we show that the kind of results obtained from the REM technique may be obtained without using modulation or phase sensitive detection. In fact, some sources of systematic error may be eliminated. In the present case the retarding electrode is still used to eliminate the low energy side of the electron energy distribution, but the electron energy is stepped through the range of interest without modulation and the transmitted electron current is recorded at each step. Then the difference signal between adjacent steps is shown below to give the same result as that given for the REM technique in \(I\).

\section*{I. THE RELATIONSHIP BETWEEN CROSS SECTION AND TRANSMITTED CURRENT}

The schematic diagram shown in Fig. 1 is the experimental arrangement for the present electron transmission apparatus. Electrons from the cathode \(K\) arrive at the retarding electrode \(R\) with some axial energy distribution \(F\left(E^{\prime}\right)\) given for example in Fig. 2(a). Let us assume that the retarding potential on \(R, V_{r}\), is such that electrons with axial energies less than \(\left|e V_{r}\right|\) are repelled and electrons with axial energies greater than \(\left|e V_{r}\right|\) are transmitted, where \(e\) is the electron charge.

In Fig. 2(a) the distribution is cut off, for example, for energies less than \(E_{1}\). It has been shown that the symmetry constraints imposed by the electrodes immediately before and after the retarding electrode ensure that essentially all electrons transmitted past the retarding electrode cross the retarding plane perpendicular to it. \({ }^{2}\) if the energy distribution shown in Fig. 2(a) is shifted by energy \(E\) (accelerated) at the interaction region, then the energy distribution at the interaction region is shown in Fig. 2(b).

Thus the cutoff electron energy distribution is accelerated to the interaction region (scattering cell) which is grounded. When electron scattering takes place in the scattering cell, the current is attenuated and the current transmitted through the scattering cell (collected by the Faraday cup) may be written as
\[
\begin{equation*}
I_{\mathrm{r}}=\int_{E+E_{1}}^{x} F\left(E^{\prime}-E\right) g\left(E^{\prime}\right) d E^{\prime}, \tag{1}
\end{equation*}
\]
where \(F\left(E^{\prime}-E\right)\) is the electron energy distribution in the scattering cell, and
\[
\begin{equation*}
g\left(E^{\prime}\right)=\exp \left[-\sigma\left(E^{\prime}\right) n x\right] \tag{2}
\end{equation*}
\]
where \(\sigma\) is the scattering cross section for the target gas, \(n\) is the target gas density in the scattering cell, and \(x\) is the path length of the electron beam through the scattering cell.

\section*{II. THE DETERMINATION OF CROSS SECTION AS A FUNCTION OF DENSITY}

In order to study the variation of cross section with energy, the ramp generator shown in Fig. I is stepped in intervals of \(\Delta E\). The distribution functions at the interaction region for two consecutive steps are shown superimposed in Fig. 2(c). The current collected by the Faraday cup during the first step is
\[
\begin{equation*}
I_{\mathrm{r}_{\mathrm{t}}}=\int_{E+\varepsilon_{1}}^{x} F\left(E^{\prime}-E\right) g\left(E^{\prime}\right) d E^{\prime}, \tag{3}
\end{equation*}
\]

Fig. 1. Schematic diagram of the transmitted electron current experiment. Typical voltage settings for the lens elements follow. \#1: 110 V ; \#2: 7.5 V; \#3: 1.7 V ; \#4: 7.5 V; \#5: 2.9 V; \#6: 5.7 V : \#7: 50 V ; all voltages are referenced to the cathode. The beam energy, \(E\), is determined by stepping the ramp between the cathode and the scattering cell.

and the current collected during the second step is
\[
\begin{equation*}
I_{\mathrm{C}_{2}}=\int_{E+E_{1}+\Delta E}^{x} F\left(E^{\prime}-E-\Delta E\right) g\left(E^{\prime}\right) d E^{\prime} . \tag{4}
\end{equation*}
\]

We may write the general expression for the current collected during the \(i\) th step as
\(I_{\mathrm{c}_{\mathrm{t}}}=\int_{\left.E+E_{1}+(i-1) \mathrm{i}\right)}^{x} F\left(E^{\prime}-E-(i-1) \Delta E\right) g\left(E^{\prime}\right) d E^{\prime}\)
The currents \(I_{c_{1}}\) form a set of data when they are measured over the range \(N \Delta E\), where \(N\) is the total number of steps in the ramp.
In order to determine the function \(g\left(E^{\prime}\right)\) from the set of data \(I_{r_{i}}\), we form the difference set \(D_{i}\), where
\[
\begin{align*}
D_{i}= & I_{c_{i+1}}-I_{c_{i}} \\
= & \int_{E+E_{1}+i \Delta E}^{x} F\left(E^{\prime}-E-i \Delta E\right) g\left(E^{\prime}\right) d E^{\prime} \\
& -\int_{E+\varepsilon_{1}+(i-1) \Delta E}^{x} F\left[E^{\prime}-E-(i-1) \Delta E\right] g\left(E^{\prime}\right) d E^{\prime} . \tag{6}
\end{align*}
\]

We may rewrite Eq. (6) as
\[
\begin{align*}
D_{i} & =\int_{E^{+} E_{1}+(i-1) \Delta E}^{x} F\left[E^{\prime}-E-(i-1) \Delta E\right] g\left(E^{\prime}+\Delta E\right) d E^{\prime} \\
& -\int_{E+E_{1}+(i-1), E}^{x} F\left[E^{\prime}-E-(i-1) \Delta E\right] g\left(E^{\prime}\right) d E^{\prime} . \tag{7}
\end{align*}
\]

If \(g\left(E^{\prime}\right)\) is slowly varying over the distribution function \(F\), then \(g\left(E^{\prime}+\Delta E\right)\) may be expanded (to first order)
\[
\begin{equation*}
g\left(E^{\prime}+\Delta E\right)=g\left(E^{\prime}\right)+\Delta E \frac{d g\left(E^{\prime}\right)}{d E^{\prime}} \tag{8}
\end{equation*}
\]


Fig. 3. Noise determination for the integrated transmitted electron current as a function of time, collected at a constant energy of 11.0 eV . (a) Four successive scans collected at 0.4 s/ch each. (b) A single run collected at \(1.5 \mathrm{~s} / \mathrm{ch}\).

In the case where \(g\left(E^{\prime}\right)\) is a rapidly varying function of energy. Eq. (6) may be written as
\[
\begin{align*}
D_{i}= & I_{c_{1+1}}-I_{c_{i}} \\
= & -\int_{\left.E+E_{1}+i-1\right) \Delta E}^{E+\varepsilon_{1}+i \Sigma E} F\left[E^{\prime}-E-(i-1) \Delta E\right] g\left(E^{\prime}\right) d E^{\prime} \\
& +\int_{E+\varepsilon_{1}+\Delta E}^{x}\left\{F\left(E^{\prime}-E-i \Delta E\right)\right. \\
& \left.-F\left[E^{\prime}-E-(i-1) \Delta E\right]\right\} g\left(E^{\prime}\right) d E^{\prime} . \tag{10}
\end{align*}
\]

Provided that \(E\) is small and that the variation of \(F\left(E^{\prime}\right)\) is small compared to the variation of \(g\left(E^{\prime}\right)\), then we expand \(F\left[E^{\prime}-E-(i-1) \Delta E\right]\) to first order
\[
\begin{align*}
& F\left(E^{\prime}-E-(i-1) \Delta E\right) \\
& \quad=F\left(E^{\prime}-E-i \Delta E\right)+\Delta E \frac{d F\left(E^{\prime}-E-i \Delta E\right)}{d E^{\prime}} \tag{11}
\end{align*}
\]
(a)


Fig. 4. Transmitted electron energy distribution function for an improperly tuned electron gun. (a) An electron with the necessary energy ( \(E^{\prime}>\left|e V_{r}\right|\) ) to pass the grid \(R\) will not pass if \(E^{\prime} \cos \theta<\left|e V_{r}\right|\). (b) Transmitted electron energy distribution \(F\left(E^{\prime}-E\right)\) resulting from improper tuning. (c) Electron energy distribution for two successive energy steps of \(\Delta E\). (d) Energy difference distribution determined from the transmission functions shown in (c). Note the additional width \(\Delta \in\) due to the improper low energy cutoff.

Using this expansion, Eq. (10) may be rewritten as
\[
\begin{align*}
D_{i} & =-\int_{E+E_{i}+(1-1) \Omega}^{E+\varepsilon_{1}+i \Delta E} F\left[E^{\prime}-E-(i-1) \Delta E\right] g\left(E^{\prime}\right) d E^{\prime} \\
& -\Delta E \int_{E+E_{1}+i \Delta E}^{x} \frac{d F\left(E^{\prime}-E-(i-1) \Delta E\right)}{d E^{\prime}} \times g\left(E^{\prime}\right) d E^{\prime} .(1 \tag{12}
\end{align*}
\]

If we replace \(E+(i-1) \Delta E\) by \(E\), then Eq. (12) is identical to Eq. (7) in I. Thus we have shown that forming the difference, as defined above, in the measured currents yields results identical to modulating the energy


Fig. 5. Difference spectrum obtained for He . The data were collected in four successive runs at 0.2 s/ch using energy steps of \(9.4 \mathrm{meV} / \mathrm{ch}\). The FWHM of the negative peak is 43 meV .

Fig. 6. Experimental results for \(\mathbf{N}_{2}\). (a) Integrated transmitted electron current spectrum for \(\mathrm{N}_{2}\). Data were collected in five successive scans using \(10.0 \mathrm{meV} / \mathrm{ch}\) steps and \(0.45 \mathrm{~s} / \mathrm{ch}\) dwell time. The pressure in the scattering cell was 37 mT and the median current was - 15 pA . (b) Differentiated current spectrum obtained by computing the difference of successive channels in the integrated current spectrum. The peak-to-peak width of the resonance structure at 11.45 V is \(\mathbf{4 0 \mathrm { meV }}\).



\section*{ENERGY (eV)}
of the electrons and detecting the current with a phase sensitive detector. However, by performing the difference procedure on a computer rather than by modulation and phase sensitive detection, we eliminate any noise associated with the modulation technique.

\section*{III. EXPERIMENTAL CONSIDERATIONS FOR HIGH ENERGY RESOLUTION}

The current collected by the Faradity cup is passed through a \(50-\Omega\) transmission line to a Keithley electrometer. As shown in Fig. 1, the voltage output of the electrometer is converted to a frequency which is counted into a multichannel analyzer (MCA) operated as a multiscaler. The external clock control is provided by a Tektronix PG502 pulser and the ramp generator
is stepped by the channel advance output of the MC. The dwell time is variable and repeated scans may : taken.

The resolution of this technique is determined chie: by four factors: (1) Doppler broadening, (2) the stabili of the electronics and transmission lines. (3) the degr to which a parallel beam can be made at the retardi: plane, and (4) the size of the ramp step \(\lrcorner E\).

Doppler broadening has been treated by Bethe" at more recently by Kuyatt. \({ }^{4}\) The Doppler width is less th. 8 meV for 10 eV incident electrons on diatomic gas such as \(\mathbf{N}_{2}\) and CO , and is about 28 meV for 20 e incident electrons on He .

The primary source of noise in this technique is \(d\) to the small currents ( \(\sim 15 \mathrm{pA}\) ) being measured. In orc to reduce the noise picked up by the current transmissi
line and to maintain the stability of the electron gun during data acquisition, short dwell times ( \(<1 \mathrm{~s} / \mathrm{ch}\) ) are used with repeated scans. The stability of the experiment was measured by multiscaling the electron current while the energy was held constant (see Fig. 3). The noise in the run of \(1.5 \mathrm{~s} / \mathrm{ch}\) dwell time is \(\sim 2 \%\), while the noise in the four combined scans run at \(0.4 \mathrm{~s} / \mathrm{ch}\) is \(\sim 0.1 \%\) [see Fig. 3 (a)]. Five point weighted averages may be taken to increase the signal to noise by about a factor of 2 without significantly broadening the observed structures.

Proper tuning of the electron gun is critical in order to ensure that the electron beam crosses the retarding plane perpendicularly. If a significant fraction of the electrons in the beam does not approach the retarding grid perpendicularly, the sharp cutoff indicated in Fig. 2(b) will not occur. This can be seen in Fig. 4(a) where electrons with sufficient energy \(\left(E^{\prime}>\left|e V_{r}\right|\right)\) to pass the retarding grid will be repelled if they approach the grid at an angle \(\theta\) such that \(E^{\prime} \cos \theta<\left|e V_{r}\right|\). Figure 4(b) shows the resulting energy distribution function at the interaction region. When the difference is taken between steps of \(\Delta E\) [shown in Fig. 4(c)], the resulting energy distribution shown in Fig. 4(d) is obtained. The additional width \(J_{\epsilon}\) is added due to the lack of a sharp cutoff of the transmitted energy distribution, and it varies nonlinearly with step size \(\Delta E\).

\section*{IV. RESULTS}

As an example of this technique, Fig. 5 presents the difference current (five point weighted average) for He in the vicinity of the resonance at \(19.35 \mathrm{eV},{ }^{6}\) using steps of 9.4 meV per channel. The measured width of this structure is 43 meV FWHM. If we arbitrarily assume Gaussian shapes for all contributions to the measured width \(W\). then we may estimate the instrumental resolution, \(\Omega\), from
\[
\begin{equation*}
W=\left[(د E)^{2}+\Gamma^{2}+د^{2}+\Omega^{2}\right]^{1: 2} \tag{13}
\end{equation*}
\]
where \(W\) is the measured width, \(\Delta E\) is the step size, \(\Gamma\) is the natural width of the resonance, and \(\rfloor\) is the Doppler
width. Equation (13) implies an instrumental resolution of 30 meV FWHM. This is approximately the same result as that obtained in I.

The integrated current and the difference electron spectra in \(\mathrm{N}_{2}\) for the energy range from 11.2 to 15.0 eV , using steps of \(10.0 \mathrm{meV} / \mathrm{ch}\), are shown in Fig. 6. The positions of structures previously reported by Golden et al. \({ }^{5}\) are indicated below the difference spectrum, using the resonance at 11.48 eV as a calibration point. These two sets of measurements are in good agreement. The energy separation between the maximum and minimum for the large resonance at 11.48 eV is 40 meV on Fig. 6. If the instrumental width of 30 meV FWHM determined from the 19.35 eV He resonance is used for \(\Omega\) in Eq. (13), then a natural width of 25 meV is obtained for this resonance. This natural width is consistent with previous measurements. \({ }^{7}\)

The advantage to this technique is that a monochrometer is not required. Our results were obtained with ann electron energy distribution of about 350 meV FWHM, and we see no reason why the technique should not work for wider energy distributions.

\section*{ACKNOWLEDGMENTS}

We wish to acknowledge partial support for this work from AFOSR and NSF. In addition one of us (D.E.G.) would like to acknowledge the support of the DOE.
' D. E. Golden, N. G. Koepnick, and L. Fornari, Rev. Sci. Instrum. 43, 1249 (1972).
\({ }^{2}\) D. E. Golden and A. Zecca, Rev. Sci. Instrum. 43, 210 (1971).
\({ }^{3}\) H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937).
\({ }^{4}\) C. E. Kuyatt, Methods of Experimental Physics, Vol. 7, Pı. A (Academic, New York, 1968), p. 46.
\({ }^{3}\) D. E. Golden, D. J. Burns, and V. C. Suscliffe, Phys. Rev. A 10, 2123 (1974).
\({ }^{6}\) In this work we have taken the position of this resonance to be 19.35 eV . For a detailed discussion of an absolute determination of the position of this resonance from its shape, see for example \(D\). E. Golden. Adv. At. Mol. Phys. 14, I (1978).
; For a discussion of previous measurements, see G. J. Schulz, Rev. Mod. Phys. 45, 423 (1973).

\title{
Radiative decay lifetimes and optical excitation functions for the \(e^{3} \Sigma^{-}(v=2,3,4)\) states of \(\mathrm{CO}^{\text {a) }}\)
}

\author{
W. C. Paske, A. W. Garrett, S. Shadfar, and D. E. Golden \\ Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019
}

\author{
J. R. Twist \\ Universal Energy Systems, Dayton, Ohio 45432 \\ (Received 13 July 1981; accepted 3 December 1981)
}

The radiative lifetimes and optical excitation functions have been measured for the \(e^{3} \Sigma^{-}(v=2,3,4)\) levels of CO using pulsed low energy electron impact excitation and delayed coincidence detection. The \(u=2,3\), and 4 lifetimes were found to be \(4.12 \pm 0.14,4.08 \pm 0.29\), and \(3.73 \pm 0.06 \mu \mathrm{~s}\), respectively. Cascade components were observed to feed all three vibrational levels and these lifetimes were measured to be \(13.8 \pm 6.5,11.8 \pm 1.3\), and \(14.9 \pm 3.6 \mu \mathrm{~s}\). The threshold energies of these states are discussed. The optical excitation functions indicated the presence of thresholds above those of the \(e\) states which appear to be due to nearby Asundi band vibrational levels ranging from \(v=8\) to \(v=16\).

\section*{INTRODUCTION}

The production and subsequent radiative decay of the \(e^{3} \Sigma^{-}\)state of CO has been studied during the past 15 years by several authors. \({ }^{1-8}\) It has been reported \({ }^{4}\) that the lifetime of the \(e^{3} \Sigma^{-}\)state is perturbed by the \(A^{2} \Pi\) state and further that there are collisionally induced intersystem crossings (or cross relaxation) between the \(A^{1} \Pi\) and the \(d^{3} \Delta\) and \(e^{3} \Sigma^{-}\)states. \({ }^{2,4,6-8}\) Cascading should be expected in the radiative decay process due to the population schemes discussed, \({ }^{1-3}\) but cascades have been previously reported only by Lavolee et al. \({ }^{7}\) and Grimbert et al. \({ }^{8}\) The only lifetimes reported for the \(e\) state are due to Slanger and Black. \({ }^{2,4}\)

The first lifetime reported was for the \(e^{3} \Sigma^{-}(v=4)\) state. \({ }^{2}\) In that work, the intensities of the \(d^{3} \Delta\left(v^{\prime}=7\right)\) \(-a^{3} \Pi\left(v^{\prime \prime}=0\right)\) and \(e^{3} \Sigma^{-}\left(v^{\prime}=4\right)-a^{3} \Pi\left(v^{\prime \prime}=0\right)\) transitions were compared as a function of the pressure of argon buffer gas. By noting that the ratio of the product of the quenching cross section and lifetimes \(k_{d} T_{d} / k_{d} T_{d}\) was constant and approximately unity, they inferred that the lifetime for the \(e(4)\) state was \(3.3 \mu \mathrm{~s}\) to within a factor of 2. They discussed cross relaxation between the .\(A^{4} \Pi\left(v^{\prime}=2\right)\) and the \(e^{3} \Sigma^{-}\left(v^{\prime}=4\right)\) states as a function of the buffer gas pressure. However, they did not discuss the presence of a cascade component in their data, although such a presence could invalidate the formulation used to infer the \(e\) state lifetimes. Cross relaxation with the \(A^{1} \Pi\) state was discussed by Slanger and Black \({ }^{4}\) as a very important process for excited CO states. They found that the main \(e-a(4,0)\) and (4,1) bands become stronger "... as if the addition of argon created a new source of \(e(4)\) levels." They also found that the \(e(v=4, J=K=27)\) lifetime was quenched by a factor of 2 in 2 Torr of argon, indicating that the process \(e^{3} \Sigma^{-}(v=4, J=K=27) \underline{\wedge} \boldsymbol{c}^{1} A^{1} \Pi\) is favored. In this later work, Slanger and Black \({ }^{4}\) reported that a lifetime of 170 ns should exist for the \(e^{3} \Sigma^{*}(v=4, J=K=27)\) level in addition to the \(3 \mu s\) lifetime. They also concluded that the argon induced the observed cross relaxation which

\footnotetext{
\({ }^{2}\) Supported in part by grants from NSF and AFOSR.
}
should lead to the observation of the 170 ns lifetime as well as the \(3 \mu\) s lifetime.

A laser study of the lifetimes for individual rotational levels of the \(A^{1} \Pi\) state was reported by Provorov et al. \({ }^{6}\) In this work, lifetimes were reported for particular \(J\) values of the \(A^{\prime} \Pi\) state which were expected to be effected by the \(d^{3} \Delta\) and \(e^{3} \Sigma^{*}\) states although lifetimes for the \(e\) and \(d\) states were not determined.

The reversibility of collisionally induced intersystem crossings was studied by Lavolee and Tramer. \({ }^{7}\) They determined rate constants for intersystem crossings between the \(A^{1} \Pi\) and \(e^{3} \Sigma^{-}\)states in the presence of He , \(\mathrm{Ne}, \mathrm{Ar}\), and Kr. They also measured lifetimes for the \(A^{\prime} \Pi\) state, which include a component of \(\sim 200 \mathrm{~ns}\) (due to a collisional transfer from the \(e^{3} \Sigma^{-}(v=1)\) state). In that work the transfer rates between the \(A^{1} \Pi I\) and the \(e^{3} \Sigma^{-}\)levels were found to increase with the atomic number of the rare gas buffer added.

Most recently, quenching cross sections for intersystem crossings between the \(A^{1} \Pi\) and both the \(e^{3} \Sigma^{-}\) and \(d^{7} \Delta\) states were given by Grimbert et al. \({ }^{8}\) In this work, collisionally induced intersystem crossings were observed in the presence of \(\mathrm{He}, \mathrm{Ar}\), and Kr buffer gases. However, although multiple exponentials were present in their decay curves, they did not discuss a lifetime associated with the cascade component. In addition they concluded that the prompt decay component was not effected by vibrational relaxation, and that the cascade component was due to the reversible character of the collisionally induced intersystem crossings.

Since all previous measurements of the lifetime of the \(e^{3} \Sigma^{-}\)state of \(C O\) have been conducted in the presence of rare gas buffers, it is possible that one of the measured lifetimes could be solely due to the presence of the buffer gas. That is due to a collisionally induced intersystem crossing. In addition, although a cascade decay component has been observed feeding the \(e\) state, \({ }^{8}\) no lifetime or identification has been determined for this cascade component. It is then possible that the cascade component is only present because of the rare gas buf -
fers used. To answer the above questions, we have made a study of the \(e^{3} \Sigma^{-}\)state in the absence of rare gas buffers. We have studied the lifetimes, the optical spectra in the energy range of interest, as well as optical excitation functions in order to identify cascade components, and to resolve spectral overlaps.

\section*{APPARATUS AND PROCEDURE}

The experimental apparatus for this work which has been described previously \({ }^{9}\) consists of a low energy pulsed electron gun, \({ }^{10}\) a gas scattering cell, and a Faraday cup located in an ultra-high vacuum system. Photons from the transitions of interest were observed through a \(1 / 4 \mathrm{~m}\) Jarrell Ash monochrometer using a bandpass of \(20 \AA\) in the lifetime work and a bandpass of \(10 \AA\) in the optical spectra work. The filtered photons were detected by a cooled RCA C31034A-02 photomultiplier. For the lifetime measurements, the resultant optical signal was time analyzed using delayed coincidence. \({ }^{9}\) The gas pressure in the scattering cell was varied from 1-25 mTorr to determine the pressure dependence of the observed lifetimes. The pressure was monitorti by a MKS Baratron capacitance manometer. Optical excitation functions were obtained by multiscaling the optical output of the scattering cell as a function of the electron gun energy. The electron guri was stepped at approximately \(10 \mathrm{meV} /\) channel and the dwell time was 128. \(\mathrm{s} / \mathrm{ch} a n n e l\) unless otherwise noted. The excitation function for the \(b^{3} \Sigma^{+}\left(v^{\prime}=0\right)\) level was determined by monitoring the \(b^{3} \Sigma^{\prime}\left(v^{\prime}=0\right)-a^{3} \Pi_{n}\left(v^{\prime \prime}=2\right)\) transition. The energy scale calibration was achieved by using 10.37 eV for the threshold of this state and 10.66 eV for the position of the prominent shape resonance from Krupenie. \({ }^{11}\)

A typical optical excitation function for the \(d^{3} \Delta\left(v^{\prime}=4\right)\) \(-a^{3} \Pi\left(v^{\prime \prime}=0\right)(6010 \AA)\) transition is shown in Fig. 1. Two thresholds can be seen in this figure. The one at 8.21 eV is in excellent agreement with the position of the threshold of the \(d^{3} \Delta(v=4)\) level from Krupenie. \({ }^{11}\) A second threshold at 8.63 eV appears to be the \(v=12\)


FIG. 1. Typical energy calibration based on the shape resonance of the \(b^{3} \Sigma^{4}\) state of CO. The optical excitations were obtained by observing the \(b^{3} \Sigma^{*}\left(v^{\prime}=0\right)-a^{3} \Pi\left(v^{\prime \prime}=2\right)\) and the \(d^{3} \Delta_{1}\left(v^{\prime}=4\right) \rightarrow a^{3} \Pi\left(v^{\prime \prime}=0\right)\) transitions in CO.




FIG. 2. Energy dependence of the optical spectra in the regions: (a) \(6400 \rightarrow 5400 \AA\), and (b) \(5600 \rightarrow 4600 \AA\). The thresholds for the vibrational levels of the \(e^{3} \Sigma^{*}, d^{3} \Delta_{i}\), and \(a^{\prime 3} \Sigma^{*}\) levels listed in Table I may be compared to the appearance of the vibrational levels in the spectra. Please note that the intensity scale is arbitrary and changes with the excitation energy.
level of the Asundi bands. These results and other optical excitation functions will be discussed further in the Discussion section.

Optical spectra were measured in the region of interest at many different electron energies to determine the extent of possible spectral overlap and to aid in the ider tification of weak bands. The spectra in Figs, 2(a) and 2(b) were obtained by multiscaling for approximately \(15 \mathrm{~s} / \AA\) at the different incident electron energies indicated in the figure. The band progressions for the \(a^{\prime 3} \Sigma^{+}-a^{3} \Pi, d^{3} \Delta-a^{3} \Pi\), and \(e^{3} \Sigma^{-}-a^{3} \Pi\) transitions are shown on the figure. The identification of the additiona:

TABLE I. Reported threshold energies (in eV) for the \(e, d\), and \(d^{\prime}\) states of \(C O\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Tobias et al. \({ }^{3}\) \\
(calc.) 1960
\end{tabular} & Tllford and Simmons \({ }^{\text {b }}\) (Obs.) 1972 & Krupenie \({ }^{\text {e }}\) & \[
\begin{aligned}
& \text { Suchard }{ }^{d} \\
& 1975
\end{aligned}
\] \\
\hline T. & 8.10 & 7.96 & 7.96 & 7.82 \\
\hline \(e(1)\) & 8.30 & 8.03 & & 8.03 \\
\hline \(e(2)\) & 8.43 & 8.16 & & 8.17 \\
\hline \({ }^{(3)}\) & 8.56 & 8.30 & & 8.30 \\
\hline e(4) & 8.68 & 8.42 & & 8.43 \\
\hline e(5) & 8.81 & 8.55 & & 8.56 \\
\hline e(6) & 8.92 & 8.68 & & 8.68 \\
\hline T & 7.73 & 7.58 & 7.582 & 7.58 \\
\hline \(d(3)\) & 8.21 & 7.34 & 8.07 & 8.07 \\
\hline \(d(4)\) & 8.34 & 8.07 & 8.20 & 8.20 \\
\hline \(d(5)\) & 8.47 & 8.21 & 8.34 & 8.34 \\
\hline \(d(6)\) & 8.60 & 8.33 & 8.47 & 8.47 \\
\hline d(7) & 8.72 & 8.46 & 8.60 & 8.60 \\
\hline Te & 6.920 & 6.920 & 6.919 & 6.919 \\
\hline \(a^{\prime}(8)\) & 8.12 & 7.99 & 8.12 & 8.12 \\
\hline \(a^{\prime}(9)\) & 8.25 & 8.12 & 8.25 & 8.25 \\
\hline \(a^{\prime}(10)\) & 8.38 & 8.24 & 8.38 & 8.38 \\
\hline \(a^{\prime}(11)\) & 8.51 & 8.37 & 8.51 & \\
\hline \(a^{\prime}(12)\) & 8.63 & 8.49 & 8.63 & \\
\hline \(a^{\prime}(13)\) & 8.75 & 8.61 & 8.75 & \\
\hline \(a^{\prime}(14)\) & 8.87 & 8. 73 & 8.87 & \\
\hline \(a^{\prime}(15)\) & 8.98 & 8.85 & 8.98 & \\
\hline \(a^{\prime}(16)\) & 9.10 & 8.96 & 9.10 & \\
\hline
\end{tabular}
\({ }^{2}\) Reference 14.
\({ }^{\mathrm{B}}\) Reference 15.
\({ }^{\text {E Reference }} 11\).
\({ }^{4}\) Reference 16.

Asundi vibrational levels beyond the \(v=11\) level are based on the unpublished work of Albritton. \({ }^{12}\) The threshold excitation energies for the vibrational levels of the \(a^{\prime}, d\), and \(e\) states are listed in Table I. It is apparent from Fig. 2 that the \(d\) and \(e\) levels are overlapped by the previously unreported higher vibrational levels of the Asundi system. However, Table I indicates that about 0.3 to 0.5 eV separates the thresholds of the \(d\) and \(e\) states from the overlapping Asundi bands and therefore, it is possible to study the lifetimes and optical excitation in these unoverlapped regions.

In order to determine the sensitivity necessary to study the \(e\) states, an estimation of the population of the rotational levels is necessary. These populations may be estimated by calculating \({ }^{13}\) the rotational distribution fraction using
\[
\frac{N_{1}}{N_{T}}=\frac{h c B}{k T}(2 J+1) \exp [-B J(J+1) h c / k T]
\]

If the monochromator bandpass accepts radiation from the \(J=25\) to the \(J=31\) levels, then approximately \(12 \%\) of the radiation detected will be from the \(J=27\) level. If all other \(J\) levels in this band were unperturbed ( \(J=25\) is perturbed), we would expect to see a double exponential decay. The amplitude of the faster lifetime due to the perturbed level should comprise about \(12 \%\) of the total decay amplitude. The slower, unperturbed levels would produce the rest of the decay curve. Computer simulated studies similar to that reported earlier \({ }^{9}\) indicate that with lifetimes as different as those expected in this case, a perturbed component with an amplitude as small as \(0.5 \%\) of the total decay curve can be resolved.

We studied the \(e^{3} \Sigma^{*}(v=4, J=K=27)\) lifetime with the monochromator centered on the \(Q\) branch at \(5230 \AA\), since Slanger and Black indicated the \(Q\) branch was twice as strong as the \(P\) and \(R\) branches for \(J=22\). Our calcula tions as to the rotational spacings (about 4-7 \(\AA\) ) are in good agreement with Slanger and Black \({ }^{4}\) and indicate that we are accepting radiation from about eight rotational levels in our lifetime work. The remainder of the lifetime work for the \(e(4)\) level was conducted with the monochromator centered at \(5141 \AA\).

\section*{RESULTS AND DISCUSSION}

\section*{Optical spectra}

The optical spectra shown in Figs. 2(a) and 2(b) clearly show that a problem exisis when studying the \(e\) and \(d\) states using electron impact excitation. Although the \(e(1)\) level is evident at an electron energy of 8.2 eV , the excitation of the \(a^{\prime}(10)\) level swamps that of the \(e\) state for energies slightly above the \(a^{\prime}(10)\) threshold. Likewise the \(e(2)\) level is "overlapped" by the \(a\) '(9) level at energies above 8.3 eV . 'The \(d\left(v^{\prime}=4,5\right)\) levels are overlapped above the thresholds of the Asundi \(v=12\) and \(v=13\) levels. The \(d(v=7)\) level threshold is above the threshold of the \(a^{\prime}(v=10)\) level and so its optical spectrum is not clear'y evident until higher energies are used [the 10.6 eV run in Fig. 2(b)]. Although the \(e(3)\) level should be present in the optical spectra above its threshold ( \(8.3 \mathrm{eV}^{15,16}\) or \(8.56^{14}\) ), it appears only weakly above 9.15 eV . This identification will be discussed below in conjunction with the optical excitation functions. The \(e(4)\) level, while clearly present at 9.5 and 10.6 eV ,


FIG. 3. Optical excitation functions of \(e^{3} \Sigma^{-}(v=2,3,4,5)\) levels of CO. These were obtained by monitoring the \(e-a\) transilions shown on the figure.
also is not distinct near its threshold of \(8.42^{15,16}\) or \(8.68^{14} \mathrm{eV}\). The \(e(5)\) level is essentially lost in either the \(d(14)\) or \(a^{\prime}(16)\) levels. It is quite clear that the higher vibrational levels of the Asundi bands are present and that they overlap the \(e\) and \(d\) levels of interest. Thus, it was deemed necessary to study the \(e\) and \(d\) state optical excitation functions in order to find the proper excitation energies to use for the radiative lifetime work.

\section*{Optical excitation functions}

The optical excitation functions for the \(v=2,3,4\), and 5 vibrational levels of the \(e^{3} \Sigma^{-}\)state are shown in Fig. 3. These excitation functions were obtained at 16.4 mT pressure. Our threshold results are tabulated in Table II, where they are compared to the previously reported vibrational levels. Our results are in excellent agreement with those of Tilford and Simmons \({ }^{15}\) and Suchard. \({ }^{16}\) The energy scale was calibrated from the position of the \(b^{3} \Sigma^{-}\)resonance as given by Krupenie. \({ }^{11}\) As noted earlier, our optical spectra do not clearly show the presence of the \(e(3)\) and \(e(4)\) levels for energies below 9.0 eV . However, as the excitation energy was
increased, the "background" associated with the optical spectra also increased. This is seen in the 8.4 and 8.75 eV spectra of Fig. 2(b), where the background shape can be seen to change. The thresholds of the \(e(3)\) and \(e(4)\) levels were found in the optical excitation functions by increasing the observation time over that used to obtain optical spectra by a factor of 10.

In the optical excitation function work, additional thresholds were found which could be ascribed to higher vibrational levels of the Asundi bands. These additional energy levels are listed in Table III along with their apparent identification. Our results are consistent with the energy levels reported by Tobias \({ }^{14}\) and Krupenie. \({ }^{14}\)

\section*{Lifetimes}

It is clear from the optical excitation functions as well as from the optical spectra that the \(d^{3} \Delta-a^{3} \Pi\) and \(e^{3} \Sigma^{-} \rightarrow a^{3} \Pi\) transitions of interest are overlapped by several higher vibrational levels of the Asundi \(a^{\prime 3} \Sigma^{+}\) \(-a^{3} \Pi\) transitions. These overlaps should appear as additional additive decay components in our lifetime results. An estimation as to the lifetimes expected for the higher vibrational levels of the Asundi bands can be made from a \(\nu^{3}\) projection of the results of Van Sprang et al. \({ }^{17}\) These estimates are shown in Table IV.

Since we are also interested in collisionally induced intersystem crossings between the \(A^{1} \Pi\) and \(e^{3} \Sigma^{-}\)states, we need to know how this transfer process will manifest itself in our lifetime decay curves and how this process will differ from the usual radiative cascade. An energy level diagram showing the production of energy transfer into and out of and the subsequent decay of the \(e\) state is shown in Fig. 4. The associated rate equations during production are
\[
\begin{aligned}
& \dot{N}_{A}=N_{X}\left(\frac{I}{e}\right) Q_{A}-N_{X} N_{A}\left\langle\sigma_{A x} v\right\rangle-N_{A} A_{A}-N_{A} N_{\varepsilon}\left\langle\sigma_{A \varepsilon} v\right\rangle \\
& +N_{a} N_{A}\left\langle\sigma_{a A} v\right\rangle, \\
& \dot{N}_{e}=N_{x}\left(\frac{I}{e}\right) Q_{\varepsilon}-N_{X} N_{e}\left\langle\sigma_{\Delta x} v\right\rangle-N_{e} A_{s}-N_{e} N_{A}\left\langle\sigma_{\Delta A} v\right\rangle \\
& +N_{A} N_{\varepsilon}\left\langle\sigma_{A q} v\right\rangle .
\end{aligned}
\]

When the electron beam is not on, these number densities are given by

TABLE II. Threshold values for the \(v=2,3,4\), and 5 vibrational levels of the \(e^{3} \Sigma^{-}\)state of CO .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Present result (eV) & Tobias et al. \({ }^{2}\) (eV) & Tilford and Simmons \({ }^{\text {b }}\) (eV) & Krupenie \({ }^{\text {e }}\) (ev) & \begin{tabular}{l}
Suchard \({ }^{\text {d }}\) \\
(eV)
\end{tabular} \\
\hline \(e(2)\) & 8.19 & 8.43 & 8.16 & & 8.17 \\
\hline \({ }^{(3)}\) & 8.30 & 8.56 & 8.30 & & 8.30 \\
\hline c(4) & 8.46 & 8.68 & 8.42 & & 8.43 \\
\hline \(e(5)\) & 8.61 & 8. 81 & 8.55 & & 8.56 \\
\hline & \(\pm 0.10^{\circ}\) & & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) See Ref. 14.
\({ }^{5}\) See Ref. 15.
\({ }^{6}\) See Ref. 11.
\({ }^{d}\) See Ref. 16.
\({ }^{e}\) Error reported is based on twice the variance obtained from several measurements.
}

TABLE III. Observed thresholds of overlapping states and their identification.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{State of interest} & \multirow[b]{2}{*}{Observed threshold and identification (eV)} & \multicolumn{4}{|c|}{Previously reported thresholds for the Identified atate} \\
\hline & & Tobias et al. \({ }^{2}\) (eV) & Telford and Simmons \({ }^{\text {b }}\) (eV) & Krupenie \({ }^{\text {c }}\) (eV) & Suchard \({ }^{\text {d }}\) (ev) \\
\hline \(e(2)\) & 8.2-8.7a'(9) & 8.25 & 8.12 & 8.25 & 8.25 \\
\hline & \(8.62 a^{\prime}(12)\) & 8.63 & 8.49 & 8.63 & ... \\
\hline e(3) & 8.83 \(a^{\prime}\) (14) & 8.87 & 8.73 & 8.87 & . \(\cdot\) \\
\hline \(e(4)\) & \(8.99 a^{\prime}(15)\) & 8.98 & 8.85 & 8.98 & -•• \\
\hline \(e(5)\) & \[
9.09{ }_{a^{\prime}}^{d(16)}
\] & 9.10 & 8.96 & \[
\begin{aligned}
& 9.08 \\
& 9.10
\end{aligned}
\] & \\
\hline
\end{tabular}
\({ }^{2}\) See Ref. 14
\({ }^{\text {b }}\) See Ref. 15
See Ref. 11.
See Ref. 16.
\(\dot{N}_{A}=-N_{A} A_{A}-N_{A} N_{X}\left\langle\sigma_{A X} v\right\rangle-N_{A} N_{e}\left\langle\sigma_{A e} v\right\rangle+N_{\epsilon} N_{A}\left\langle\sigma_{\epsilon A} v\right\rangle\),
\(\dot{N}_{e}=-N_{e} A_{e}-N_{e} N_{x}\left\langle\sigma_{\epsilon x} v\right\rangle-N_{e} N_{A}\left\langle\sigma_{e A} v\right\rangle+N_{A} N_{e}\left\langle\sigma_{A} v\right\rangle\),
where \(A_{i}\) is the Einstein spontaneous decay coefficient, \(N_{i}\) is the number density of the \(i\) th level, \(Q_{i}\) the production cross section of the \(i\) th level, \(\sigma_{i j}\) is the transfer cross section from the \(i\) th to the \(j\) th level, \(v\) is the mean velocity of the molecule, and \(I\) is the current of the excitation electron beam.

The solution to these coupled equations is of the form
\[
N_{1}=C_{1} e^{-\lambda_{1} t}+C_{2} e^{-\lambda_{2} t}
\]
where the exponential terms \(\lambda_{1}\) and \(\lambda_{2}\) have the following form;
\[
\begin{aligned}
\lambda_{1,2}= & \left(\frac{1}{2}\right)\left\lfloor A_{A}+A_{\bullet}+\left(\sigma_{A X}+\sigma_{e x}+\sigma_{A \varepsilon}+\sigma_{e A}\right) \bar{v} N_{X}\right\rfloor \\
& \pm\left(\frac{1}{2}\right)\left\{\left\lfloor A_{A}-A_{\&}+\left(\sigma_{A X}-\sigma_{e X}+\sigma_{A \Theta}-\sigma_{e A}\right) \bar{v} N_{X}\right\rfloor^{2}\right. \\
& \left.+4 \sigma_{A \odot} \sigma_{\sigma A} \bar{v}^{2} N_{X}^{2}\right\}^{(1 / 2)},
\end{aligned}
\]
for the case where the intersystem crossing is reversible. However, if the energy transfer is only one way e.g., \(\sigma_{\text {eA }}=0\), the parameters \(\lambda\) will have the usual form
\[
\begin{aligned}
& \lambda_{1}=A_{4}+N_{x}\left\langle\sigma_{\star x} v\right\rangle, \\
& \lambda_{2}=A_{A}+N_{A x}\left\langle\sigma_{A x} v\right\rangle .
\end{aligned}
\]

We can see from these rate equations that if we have a one way collisional energy transfer (due to energy con-
siderations) from the \(A^{1} \Pi\) to the \(e^{3} \Sigma^{-}\)state, the "cascade" will have a fast lifetime; i.e., that of the \(A^{1} \Pi\) state \((9-16 n s)^{18}\) and the lifetimes for both states will appear superimposed. It is evident through futher analysis of these rate equations, that the multiple component decay curves produced by collisional or radiative energy transfer are essentially identical for the case where \(\sigma_{\text {AA }}=0\). In this case the constants \(C_{1,2}\) are given by
\[
\begin{aligned}
& C_{1}=\frac{N_{X}(I / e)}{\lambda_{A}} \frac{Q_{A} \lambda_{A C}}{\lambda_{e}-\lambda_{A}}, \\
& C_{2}=\frac{N_{X}(I / e)}{\lambda_{E}}\left(Q_{e}-\frac{Q_{A} \lambda_{A C}}{\lambda_{E}-\lambda_{A}}\right),
\end{aligned}
\]
where \(\lambda_{A \&}=A_{A_{e}}+N_{X}\left\langle\sigma_{A e} v\right\rangle\). For purely radiative trans fer \(\lambda_{A c}=A_{A c}\) the Einstein coefficient; and for purely coll collisional transfer \(\lambda_{A f}=N_{X}\left\langle\sigma_{A f} v\right\rangle\).

If the collisional transfer is reversible or "resonant, then the \(A\) and \(e\) states will contain a quadratic pressure dependence as shown in Fig. 5. The \(A\) state should then exhibit a much longer lifetime, while the \(e\) state should exhibit a much shorter lifetime.

If we couple the possible intersystem crossings reported in previous work \({ }^{1-8}\) with the overlapping Asundi bands we have observed in the optical spectra and the optical excitation functions, we would expect to see thre,

TABLE IV. Estimations of the lifetlmes for \(v=10-16\) of the \(a^{\prime 3} \Sigma^{*} \rightarrow a^{3} \Pi\) transition based on Ref. 17.
\begin{tabular}{cc}
\hline\(a^{\prime 3} \Sigma^{*} v^{\prime}\) & Testimate \((\mu \mathrm{s})\) \\
\hline 10 & 6.33 \\
11 & 5.92 \\
12 & 5.55 \\
13 & 5.15 \\
14 & 4.88 \\
15 & 4.60 \\
16 & 4.46 \\
\hline \hline
\end{tabular}


FIG. 4. Schematic energy level diagram for a collisionally induced intersystem crossing.


FIG. 5. Schematic representation for the pressure dependence of the reciprical lifetime of a state undergoing a collisionally induced intersystem crossing.
or four exponentials in a given decay curve. In fact, we only observe two at the most, and at low enough excitation energies, we only observe one decay component. Our prompt decay results and the cascade decay components for \(v=2,3\), and 4 are shown in Fig. 6, where the reciprocal lifetimes are plotted as a function of pressure The zero pressure extrapolated lifetimes are listed in Table V, along with the previous work of Slanger and Black. \({ }^{2.4}\) Our results are in excellent agreement with those of Slanger and Black \({ }^{2}\) for the lifetime of the unperturbed \(v=4\) state. We did not observe the perturbed lifetimes reported \({ }^{4}\) for the ( \(v=4, J=K=27\) ) level.

Optical excitation functions were obtanned as a function of the monochromator setting to look for an additional excitation channel. These results are shown in Fig. 7. Three thresholds are clearly seen on this figure. These are the \(e(4)\) threshold ( 8.46 eV ), the \(a^{\prime}(15)\) threshold ( 8.99 eV ), and the \(B^{1} \Sigma^{*}\left(c^{\prime}=0\right)\) threshold at 10.8 eV . Since the CO pressure range used in the present work overlaps that used previously, \({ }^{4,7,8}\) we conclude that the previously reported collisionally induced intersystem crossing is due to the presence of a buffer gas. This conclusion is consistent with Slanger and Black's observation that the addition of Ar seemed to create a new source of \(e(4)\) levels and with Lavolee's statement \({ }^{7}\) that the transfer rate coefficients appear to


FIG. 6. Reciprocal (a) prompt and (b) cascade decay components for \(e^{3} \Sigma^{-}(v=2,3,4)\) levels in CO as a function of pres sure. Please note the breaks in the vertical scale. \(\quad=e=-a\) \((2,0), \quad e-a(3,0), \quad=e-a(4,0), \quad 0=e-a(4,1)\).
depend on the atomic number of the buffer gas used. It the presence of a buffer gas, additional intermolecular potentials will be reeded to describe the system so tha'

TABLE V. Lifetimes and collisional quenching cross sections for the \(e^{3} \Sigma^{*}\left(v^{\prime}=2,3,4\right)\) states of CO.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Investigator} & \multirow[b]{2}{*}{\(v^{\prime}-v^{\prime \prime}\)} & \multirow[b]{2}{*}{\(\lambda(\AA)\)} & \multicolumn{2}{|c|}{Lifetime} & \multicolumn{2}{|l|}{Quenching cross section} \\
\hline & & & Prompt
\[
T_{f}(\mu s)
\] & Cascade
\[
T_{c}(\mu \mathrm{~s})
\] & Prompt
\[
(\AA)^{2}
\] & Cascade
\[
(A)^{2}
\] \\
\hline \multirow[t]{3}{*}{This work} & \(2 \rightarrow 0\) & 5840 & \(4.12 \pm 0.04^{2}\) & \(13.8 \pm 6.5\) & \(7.86 \pm 1.50\) & \(21.7 \pm 7.6\) \\
\hline & 3-0 & 5428 & \(4.08 \pm 0.25\) & \(11.8 \pm 1.3\) & \(30.6 \pm 1.88\) & \(16.2 \pm 1.4\) \\
\hline & 4-0 & 5141 & \(3.73 \pm 0.06\) & \(14.9 \pm 3.6\) & \(4.75 \pm 0.84\) & \(24.0 \pm 3.0\) \\
\hline \multirow[t]{4}{*}{Slanger and Black} & \(2 \rightarrow 0\) & -. & -•• & -. & - \(\cdot\) & -.. \\
\hline & 3-0 & -. & -. & -• & -•• & - \(\cdot\) \\
\hline & \(4 \rightarrow 0\) & & 3. \(3^{\mathrm{b}, \mathrm{c}}\) & - . & - & - \\
\hline & \(4 \rightarrow 0\) & & \(0.170^{\text {d }}\) & -... & . \(\cdot\) & . \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Uncertainties listed represent two standard deviations.
\({ }^{6}\) Reference 2-unperturbed result.
\({ }^{\text {G }}\) Value expected valid to within factor of 2.
\({ }^{\text {d Reference }} 4\)-perturbed result, for \(J^{\prime}=K^{\prime}=27\).
}


FIG. 7. Optical excitation functions of the \(e^{3} \Sigma^{-}(v=4)\) state of CO as a function of the monochromator setting.
one might reasonably expect additional intermolecular crossings.

The cascade components observed in our lifetime work indicate a long lived state feeding the \(e\) states, which is inconsistent with a cross relaxation due to a very short lived ( \(9-16 \mathrm{~ns}\) ) \({ }^{18} A^{1} \Pi\) state. However, the relatively long lifetimes observed for the cascade components are not consistent with expected Asundi overlaps (see Table IV). To check for the possibility that the Asundi bands are "hidden" because they have nearly similar lifetimes to those of the \(e\) states, we measured the lifetimes of the \(e\) and \(d\) states as a function of the excitation energy. Even though our computer code is unable to resolve two decay processes which have nearly the same lifetime, if two similar lifetimes are present, a systematic shift towards a shorter lifetime should occur in the observed single decay lifetime if we go below the Asundi thresholds and measure the lifetime of the \(e\) state. This would be due to our estimated longer lifetimes ( \(20 \%\) \(30 \%\) longer) of the Asundi band vibrational levels (see Table IV). We saw no shift at all. However, the cascade component did vanish below the Asundi threshold. There are several possible explanations for this observation. One possiblity is that the Asundi lifetimes are in fact closer to the \(e\) state lifetimes than our estimation and that we cannot tell them apart. Such a lowering of lifetimes would be possible if we included the results of Wentink et al. \({ }^{\text {t }}\) in our \(\nu^{3}\) estimation. Another possibility is that the cascade observed is in fact not feeding the Asundi levels, but may in fact be due to the Asundi level lifetime, as indicated by the disappearance of this component below the Asundi thresholds. It is not clear how these higher levels could have lifetimes which are too long by a factor of 2 for \(v=10-16\). The possibility of longer or shorter lived Asundi levels is currently being
studied and will be reported at a later time.
Three conclusions may be drawn from this work. First, the lifetime of the \(e(4)\) state is unaffected by collisionally induced intersystem crossings in the absence of buffer gases for the pressure range used in this work. Neither the radiative decay experiments nor the optical excitation measurements indicated any collisionally induced intersystem crossings with the \(A^{1} \Pi\) state. It appears that this collisionally induced intersystem crossing is a function of the buffer gas as reported earlier. \({ }^{4,7}\). This is probably the same reason an additional lifetime was not seen for the \(d^{3} \Delta\) state as we previously reported. \({ }^{20}\) While it is evident that several Asundi levels did overlap the \(d\) states in our previous work subsequent lifetime measurements made with electron energies below the Asundi threshold reveal no changes in our re ported lifetimes. It appears that the cascade components reported earlier are similar to those seen in the present work. We may also conclude that the Asundi vibrational levels \(10-16\) have lifetimes other than those predicted in Table IV. This possibility is currently under study. Finally, the cascade components present in the radiative decay curves appear to be feeding the Asundi levals (or are the Asundi levels) and not the \(e\) states. This possibility is also currently under investigation.
\({ }^{1}\) T. G. Slanger, J. Chem. Phys. 48, 586 (1967).
\({ }^{2}\) T. G. Slander and G. Black, J. Chem. Phys. 58, 3121 (1973).
\({ }^{3}\) T. G. Slanger and G. Black, J. Chem. Phys. 59, 4367 (1973).
\({ }^{6}\) T. G. Slander and G. Black, J. Chem. Phys. 63, 969 (19i5).
\({ }^{5}\) T. G. Slanger and G. Black, J. Chem. Phys. 64, 219 (1976).
\({ }^{6}\) A. C. Provorov, B. P. Stoicheff, and S. Wallace, J. Chem. Phys. 67, 5394 (1977).
\({ }^{7}\) M. Lavollêe and A. Tramer, Chem. Phys. Lett. 47, 523 (1977).
\({ }^{8}\) D. Grimbert, M. Lavollėe, A. Nitzan, and A. Tramer, Chem. Phys. Lett. 57, 45 (1978).
\({ }^{9}\) J. R. Twist, W. C. Paske, T. O. Rhymes, G. N. Haddad, and D. E. Golden, J. Chem. Phys. 71, 2345 (1979).
\({ }^{10}\) D. E. Golden, D. J. Burns, and V. C. Sutcliffe, Phys. Rev. A 10, 2133 (1975).
\({ }^{14}\) P. H. Krupenie, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 5 (1966).
\({ }^{12}\) These data were generously provided by T. G. Slanger (private communication).
\({ }^{13}\) See, for example, in G. Herzberg, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules
(Van Nostrand Reinhold, New York, 1950), 2nd ed., p. 125.
\({ }^{14}\) I. Tobias, R. J. Fallar, and J. T. Vanderslice, J. Chem. Phys. 33, 1638 (1960).
\({ }^{15}\) S. G. Tilford and J, D. Simmons, J. Res. Natl. Bur. Stand. 75, 455 (1971).
\({ }^{16}\) S. N. Suchard, Spectroscopic Data Heteronuclear Diatomic Molecules (Plenum, New York, 1975).
\({ }^{17}\) H. A. Van Sprang, G. R. Mohlmann, and F. J. de Heer, Chem. Phys. 24, 429 (1977).
\({ }^{18}\) T. A. Carlsen, N. Durk, P. Erman, and M. Larson, 2 . Phys. Teil. A 287, 123 (1978).
\({ }^{19}\) T. Wentink, Jr., E. P. Marram, L. Isaacson, and R. J. Spindler, AFWL Tech. Report No. 67-30, Vol. 1, Nov. 1967.
\({ }^{20}\) W. C. Paske, J. R. Twist, A. W. Garrett, and D. E. Golden J. Chem. Phys. 72, 6134 (1980).

\title{
Determination of lifetimes for the \(\boldsymbol{v}=9,12-16\) vibrational levels of the \(a^{\prime 3} \Sigma^{+}\)state of CO and their identification from opticai emission functions \({ }^{\text {a }}\)
}

\author{
S. Shadfar, S. R. Lorentz, W. C. Paske, and D. E. Golden \\ Department of Physics and Astronomy. University of Oklahoma, Norman, Oklahoma 73019 \\ (Received 21 December 1981; accepted 17 February 1982) \\ The lifetimes for the \(a^{\prime 3} \Sigma^{+}(v=9,12-16)\) states of \(C O\) have been measured using pulsed low energy electron impact excitation and delayed coincidence detection after identification of these states was established from their optical emission function thresholds. The lifetimes determined for the \(v=12-16\) vibrational levels are consistent with a \(v^{3}\) extrapolation of previous lifetime measurements of the lower vibrational levels. The collisional quenching cross sections were calculated from the pressure dependence of the measured lifetimes.
}

\section*{INTRODUCTION}

Recent studies \({ }^{1,2}\) of the radiative decay of the \(d^{3} \Delta\) and \(e^{3}{ }^{5}\) states of CO have indicated that several of the higher vibrational levels of the Asundi bands ( \(a^{3}{ }^{3}+-a^{3} \Pi\) ) overlap some of the vibrational levels of the \(d\) and \(e\) states. While measured lifetimes for the lower ( \(v=3-9\) ) vibrational levels of the \(a^{\prime}\) states are reasonably well known, \({ }^{3.4}\) the lifetimes for these upper vibrational levels ( \(r=10-16\) ) have not been previously measured. Previous estimations \({ }^{2}\) of the radiative lifetimes of the \(a^{\prime}\) ( \(v\) \(=10-16)\) levels have been made based on a \(\nu^{3}\) projection of the lower level lifetimes determined by Van Sprang et al. \({ }^{3}\) These estimates give \(a^{\prime}\) lifetimes which are only 20\% - \(30 \%\) longer than those observed for the \(d\) and \(e\) states. However, neither the measured \(d\) and \(e\) state lifetimes nor the longer lived components found in the \(d\) and \(e\) state decay curves agree with the estimated lifetimes predicted for the upper vibrational levels for the \(a^{\prime}\) state. \({ }^{2}\)

The first lifetime measurements for the \(a^{\prime}\) state were reported by Wentink et al., \({ }^{4}\) who used a pulsed ri discharge of \(10 \mu \mathrm{~s}\) duration with a 40 ns cutoff in a flowing gas. The vibrational levels \(\tau^{\prime}=3-9\) were studied over a pressure range from 10 to 70 mTorr . All of the vibrational levels were reported as single exponentials. Hartfuss and Schmiller \({ }^{5}\) using a high frequency modulated rf discharge reported much shorter lifetimes for the \(r=5-8\) vibrational levels of the \(a^{\prime}\) state. They used an excitation energy of 10 W at 80 MHz (about 130 eV ) and studied the pressure dependence of the lifetimes over the pressure range from 150 to 800 mTorr . More recently, the lifetimes of the \(a^{\prime}\left(\imath^{\prime}=4-9\right)\) vibrational levels have been measured by Van Sprang et al. \({ }^{\text {S }}\) over a pressure range from 0.5 to 10 mTorr . In their work, a delayed coincidence technique was used with an electron gun pulse duration of \(10 \mu \mathrm{~s}\). Their results agree within experimental uncertainty with the results of Wentink et al. \({ }^{4}\) and they attributed the shorter lifetimes observed by Hartfuss and Schmiller to the presence of excited \(A^{2} \Pi\). Recent lifetime measurements of the \(d\) and \(e\) states in this laboratory \({ }^{1,2}\) have indicated the presence of a long lived ( \(10-16 \mu \mathrm{~s}\) ) decay component overlapping the shorter lived \(d\) and \(e\) state lifetimes

\footnotetext{
\({ }^{\text {a }}\) Work supported in part by AFOSR and NSF.
}
which could possibly be due to the \(a^{\prime}\) state.
The present work was undertaken in order to precisely determine the lifetimes of the \(a^{\prime}(v=12-16)\) levels so as to be able to avoid confusion between the \(a^{\prime}\) lifetimes and the possibly nearly similar lifetimes of the spectrally overlapping \(d\) and \(e\) states.

\section*{APPARATUS AND PROCEDURE}

The apparatus used in this work has been described previously \({ }^{6}\) and will not be detailed here. Briefly, it consists of a pulsed low energy electron gun, a gas scat tering cell and electron multiplier all located in an ultra high vacuum system. Photons from the transitions of interest are observed through a \(1 / 4 \mathrm{~m}\) Jarrell Ash monc chromator using a bandpass of \(25 \AA\) and detected by a cooled RCA C81034A-02 photomultiplier. The resultant optical signal is time analyzed using the technique of delayed coincidence for lifetime measurements, or multiscaled as a function of energy for optical emission function measurements, as has been described previously. \({ }^{7}\) The electron gun was stepped at approximately \(10 \mathrm{meV} / \mathrm{channel}\) and the dwell time was either 128 or \(64 \mathrm{~s} / \mathrm{ch}\) annel when measuring the emission functions. The gas pressure in the scattering cell was monitored by an MKS Baratron capacitance manometer and was varied from 4-30 mTorr in order to determine any pressure dependence of the observed lifetimes.

In the current work, the optical emission functions have been measured and used to determine the thresholc energies of the various overlapping states present in the lifetime measurements. If two thresholds are present in the optical emission function and two decay components are observed in the radiative decay curve, we may identify the levels from which the two different decay components originate by comparing the relative decay amplitudes in the decay curve to the relative strengths of the cross sections in the optical emission function. If the energy separation of the two overlapping states is greater than the energy spread of our electron gun ( 0.5 eV ), we can lower the excitation energy below the threshold of the higher energy state to see which decay component vanishes from the decay curve and consequently identify both processes. A computer technique has been developed \({ }^{8}\) to fit an energy distribution


FIG. 1. Optical emission function for the \(b^{3} \Sigma^{*}\) state of CO used to calibrate the energy scale. This function was obtained by observing the \(b-a(0-2)\) transition at \(3134 \AA\). The step size was \(9.8 \mathrm{meV} /\) channel the dwell time was \(124 \mathrm{~s} /\) channel.
function and up to three straight line segments to the emission function data near onset, in order to determine the threshold(s) of the state(s) present in the optical emission function(s). From the energy positions thus determined, we identified the states present and then we measured the radiative decay lifetimes for the \(r=9,12-16\) vibrational levels of the Asundi bands. The \(v=9\) vibrational level was measured in order to compare our results with the previous work. \({ }^{3,4}\)

\section*{RESULTS AND DISCUSSION}

\section*{Optical emission functions}

The energy scale was calibrated by observing the position of the shape resonance at \(10.66 \mathrm{eV}^{9}\) in the emission function of the \(b^{3} \Sigma^{*}\) state of CO. This emis sion Iunction was obtained by monitoring the \(b-a(0-2)\) transition at \(3134 \AA\) and a sample calibration curve is shown in Fig. 1. The optical emission functions obtained for the Asundi vibrational levels \(v=9\) through \(v=15\) are shown in Fig. 2. The intensity scales for each emission function shown is different and therefore an amplitude comparison between the various curves is

TABLE I. Thresholds for the \(\nu=8-16\) vibrational levels of the \(a^{3} \Sigma^{*}\) states determined from the optical emission functions and compared to spectroscopically determined values.
\begin{tabular}{rlll}
\hline \hline & This work \\
\(v\) & \((\mathrm{eV})\) & \begin{tabular}{l} 
Ref. 10 \\
(obs.) \\
(eV)
\end{tabular} & \begin{tabular}{l} 
Ref. 11 \\
(calc.) \\
(eV)
\end{tabular} \\
\hline 8 & \(7.95 \pm 0.10\) & 7.99 & 8.12 \\
9 & \(9.11 \pm 0.11\) & 8.12 & 8.25 \\
10 & \(8.23 \pm 0.20\) & 8.24 & 8.38 \\
11 & \(8.33 \pm 0.10\) & 8.37 & 8.51 \\
12 & \(8.47 \pm 0.12\) & 8.49 & 8.63 \\
13 & \(8.67 \pm 0.11\) & 8.61 & 8.75 \\
14 & \(8.70 \pm 0.10\) & 8.73 & 8.87 \\
15 & \(8.05 \pm 0.10\) & 8.85 & 8.98 \\
\hline \hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Error represents twice the square root of the variance of the mean for multiple determinations of the threshold.
}
not meaningful. Every emission function studied indicated the presence of at least two thresholds and, in some cases, three. The thresholds due to the spectral overlap of the \(B^{i} \Sigma^{*}\) state at 10.77 eV in the \(a^{\prime}(15)\) and \(a^{\prime}(13)\) emission functions provide us with an additional energy calibration check. The identification and measured energy thresholds for the \(v=8\) to \(v=16\) vibrational levels are tabulated in Table I. Our results agree well with the spectroscopically determined thresholds previously reported by Tilford and Simmons. \({ }^{10}\) The errors listed in the table represent two standard deviations from the mean after multiple determinations of the thresholds. The identification and thresholds of the additional states observed to overiap the Asundi levels are tabulated in Table II. We did not find the \(a^{\prime}(10)\) threshold when we observed the transition at \(0.115 \AA\). Instead, we saw the thresholds for the \(e(1)\), the \(d(7)\), and the \(a^{\prime}(15)\) states. The \(a^{\prime}-a(10-1)\) transition is probably too weak to be seen in the presence of the other three transitions. A transition identified as the \(d-a(7-2)\) has been reported for this region. \({ }^{12}\) However, the \(a^{\prime}\) (10) threshold has been observed at \(6820 \AA\) and the threshold in the table is based on this measurement.

\section*{Lifetimes}

In this work, we have also measured the lifetimes for the \(v=9,12-16\) vibrational levels of the Asundi bands. A sample radiative decay curve is shown in Fig. 3. The plateau shown in the curve is due to the saturation of the excitation processes prior to the turn off of the electron gun. Most of the decay curves were obtained using a \(40 \mu \mathrm{~s}\) time window and the data were accumulated until the counts in the lead channel were greater than 25000 . This was necessary in order to assure sufficient statistics to analyze multiple decay compo-


FIG. 2. Optical emission functions for the \(v=9-16\) vibrational levels of the \(a^{\prime}\) state. These functions were obtained using \(9.8 \mathrm{meV} / \mathrm{channel}\) and \(64 \mathrm{~s} / \mathrm{channel}\) dwell. The \(a^{\prime}-a\) transitions observed are indicated in the figure.


FIG. 3. Radiative decay curve for the \(a^{\prime}(12)\) level obtained by observing the \(a^{\prime}-a(12-2)\) transition at \(6008 \AA\) width: (a) a pressure of 4.1 mTorr and (b) a pressure of 12.2 mTorr . The time window was \(40 \mu \mathrm{~s}\) and the excitation energy was 10.0 eV . Upon analysis, these decay curves were found to contain three decay components which are attributed to the \(a^{\prime}(12)\), the \(d(4)\), and the \(a(13)\) states.
nents. The two decay curves shown in Fig. 3 for example have three decay components present. The curve shown in Fig. 3(a) was obtained at a pressure of 4.1 mTorr while the curve in Fig. 3(b) was obtained at a pressure of 12.2 mTorr . More than one exponential component is obvious in Fig. 3(b) but is not obvious in Fig. 3(a). A single exponential fit to curves \(a\) and \(b\) yields a reduced \(\chi^{2}\) of 1.2 and 5.2 , respectively. A double exponential fit results in a reduced \(x^{2}\) of 1.03 for both curves. Further analysis reveals a third component, very nearly identical to the first component. However, this third component cannot be resolved with precision due to the similarity ( \(=10 \%\) difference) of the lifetimes at these pressures. At higher pressures, the two similar components can be resolved in agreement with the three thresholds present in the emission functions (see Tables I and II). A pressure study of the normalized amplitude of the long lived ( \(10-16 \mu \mathrm{~s}\) ) component reveals a quadratic pressure dependence as shown in Fig. 4. This suggests that the energy transfer mechanism involved is a collisional transfer, and not radiative.

The pressure dependence of the \(v=9,12-16\) vibrational levels is shown in Fig. 5. The results for the \(a^{\prime}\) (14) level are statistically poorer than the rest of the measurements, since this level was observed as a weak additional decay component overlapping the \(a^{\prime}-a(9-1)\) transition. The error bars represent a variation in the

TABLE II. Thresholds and identification of overlapping states observed in the optical emission functions of the indicated Asundi transitions ( \(a^{\prime 3} \Sigma^{\prime}-a^{3} k\) )。
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Monitored Asundi transition} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Level } \\
& v^{\prime}-v^{\prime \prime}
\end{aligned}
\]} & \multicolumn{3}{|l|}{Waveleggth ( \(\mathrm{A}^{\text {) }}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Identification and threshold of overlapping transition (eV)}} \\
\hline & \(\lambda^{\text {a }}\) & \(\lambda^{6}\) & \(\lambda^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{9-0} & 5870 & 5876 & 5876 & \(e-a(2-0)\) & \(8.19 \pm 0.08\) \\
\hline & & & & \(a^{\prime}-a(14-3)\) & \(8.70 \pm 0.10\) \\
\hline \multirow[t]{2}{*}{9-1} & 6550 & 6535 & 6530 & \(d-a(2-0)\) & \(7.82 \pm 0.12\) \\
\hline & & & & \(a^{\prime}-a(14-2)\) & \(8.70 \pm 0.10\) \\
\hline \multirow[t]{3}{*}{10-1} & 6115 & 6123 & 6119 & \(e-a(1-0)\) & \(8.07 \pm 0.08\) \\
\hline & & & & \(d-a(7-2)\) & \(8.42 \pm 0.08\) \\
\hline & & & & \(a^{\prime}-a(15-4)\) & \(8.85 \pm 0.10\) \\
\hline 10-2 & 6820 & 6828 & 6820 & \(d-a(1-0)\) & \(7.69 \pm 0.15\) \\
\hline 11-1 & 5800 & 5767 & 5769 & \(a^{\prime}-a(16-4)\) & \(9.06 \pm 0.10\) \\
\hline 11-2 & 6410 & 6389 & 6397 & \(d-a(3-0)\) & \(7.84 \pm 0.11\) \\
\hline \multirow[t]{2}{*}{12-2} & 6000 & 6008 & - & d-a(4-0) & \(8.20 \pm 0.15\) \\
\hline & & & & \(a-a^{\prime}\left(13-v{ }^{\prime \prime}\right)\) & \(8.63 \pm 0.15\) \\
\hline 13-1 & 5190 & 5181 & ... & \(d-a\left(17-v^{\prime \prime}\right)\) ? & \(9.61 \pm 0.10\) \\
\hline 13-3 & 6300 & 6266 & - & \(a^{\prime}-a(3-0)\) & \(7.95 \pm 0.10\) \\
\hline \multirow[t]{2}{*}{15-2} & 5134 & 5727 & -•• & \(e-a(4-0)\) & \(8.46 \pm 0.10\) \\
\hline & & & & \(a^{\prime}-a(17-3)\) & \(9.11 \pm 0.12\) \\
\hline 15-3 & 5600 & 5603 & -•• & \(d-a(5-0)\) & \(8.29 \pm 0.10\) \\
\hline
\end{tabular}
\({ }^{2}\) Position of the monochromator in this work.
\({ }^{\text {b }}\) Positions of the bands reported by Albritton (Ref. 13). \({ }^{\text {c }}\) Positions of the bands reported by Krupenie (Ref. 9).
computer fit parameters over the accepted range for a reduced \(x^{2}\) of 2. A complete description of the error analysis has been previously given. \({ }^{6}\) The error stated for the zero pressure lifetimes represent two standard deviations from a weighted least-squares fit to the pressure data. Our zero pressure extrapolated lifetime results and the calculated collisional quenching


FIG. 4. Normalized amplitude of the long lived ( \(10-16 \mu \mathrm{~s}\) ) decay component as a function of the pressure. The long livel decay amplitude was normalized to the \(a^{\prime}(12)\) decay amplitude in each decay curve. Note that the amplitude of the long lived component approaches the amplitude of the prompt \(a^{\prime}\) component at higher pressures.


FIG. 5. Reciprocal lifetime vs the pressure for the \(v=9\), 12-16 vibrational levels of the Asundi bands. Symbols denote \(a^{\prime}(9)-0: a^{\prime}(12)-4 ; a^{\prime}(13)-a ; a^{\prime}(14)-a^{\prime}(15)-0 ; a^{\prime}(16)-\Delta\). Note the break in the vertical scale.
cross sections are tabulated in Table III along with the previous lifetime measurements of Wentink et al. \({ }^{4}\) and Van Sprang of al. \({ }^{3}\) for the \(\eta^{\prime}=9\) level. A plot of the measured reciprocal lifetime versus \(\nu^{3}\) is shown in Fig. 6, along with the previous results of Van Sprang et al. \({ }^{3}\)

\section*{DISCUSSION}

The lifetimes determined for the higher vibrational levels ( \(r=12-16\) ) in this work agree well with the estimated lifetimes reported earlier. \({ }^{2}\) The longer decay component which was reported in conjunction with the \(d\) and \(e\) states was not observed in all of the Asundi transitions. However, when observing the \(a^{\prime}-a(12-2)\) transition at \(6008 \AA\), a long lived \((10-16 \mu \mathrm{~s})\) weak component was seen along with the shorter decay component of the \(d(4)\) level. An additional threshold was also present at 8.63 eV in the \(a^{\prime}(12)\) emission function obtained at \(6008 \AA\), which may be the source of this long lived component since the long lived component vanishes when the excitation energy is below 8.63 eV . This additional threshold was previously \({ }^{2}\) identified as the

TABLE III. Radiative decay lifetimes and collisional quenching cross sections for the \(v=9,12-16\) vibrational levels of the Asundi bands.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(v\)} & \multicolumn{2}{|r|}{This work \({ }^{\text {a }}\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Ref. 3 \\
Lifetime \\
( \(\mu \mathrm{s}\) )
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Ref. 4 \\
Lifetime \\
( \(\mu \mathrm{s}\) )
\end{tabular}} \\
\hline & Lifetime
\[
(\mu \mathrm{s})
\] & Quenching cross section ( \(\AA^{2}\) ) & & \\
\hline 9 & \(6.43 \pm 0.64\) & \(5.30 \pm 4.24\) & \(6.82 \pm 0.60\) & 6.67 \\
\hline 12 & \(5.12 \pm 0.36\) & \(40.6 \pm 3.8\) & -•• & -•• \\
\hline 13 & \(5.19 \pm 0.32\) & \(22.8 \pm 2.7\) & - \(\cdot\) & -** \\
\hline 14 & \(5.05 \pm 1.84\) & \(35.3 \pm 26.4\) & \(\cdots\) & -•• \\
\hline 15 & \(4.78 \pm 0.46\) & \(1.49 \pm 3.38\) & -• & . \(\cdot\) \\
\hline 16 & \(4.29 \pm 0.38\) & \(6.27 \pm 4.02\) & - \(\cdot\) & -• \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Error represents two standard deviations from a weighted least-squares fit to the pressure data.
}
threshold of the \(a^{\prime}(12)\) level, based on the calculations of Krupenie and Weissman. \({ }^{11}\) The threshold found at 8.47 eV in the present work (see Table I) was not previously extracted from the emission function data of Ref. 2. However, the computer code used in this work can extract three thresholds from emission functions obtained for the \(d\) and the \(e\) states, \({ }^{1,2}\) which are consistent with the results shown in Tables \(I\) and \(I I\).

Although the \(a^{\prime}\) (13) vibrational level has a threshold energy of 8.6 eV , there are no \(a^{\prime}-a\left(13-\boldsymbol{t}^{\prime \prime}\right)\) transitions listed \({ }^{0,16}\) near the monitored wavelength ( \(6008 \AA\) ). If the additional threshold in the \(a^{\prime}\) (12) emission function is due to a collisional transfer from the \(a^{\prime}(13)\) to the \(a^{\prime}\) (12) or the the \(d(4)\) state, we would expect a much faster lifetime ( \(\approx 5 \mu \mathrm{~s}\) ) than the \(10-16 \mu \mathrm{~s}\) we observe. Similarly, the \(d(8)\) level which has a threshold of \(8.59 \mathrm{eV}^{8}\) would also have a lifetime too short lived ( \(\approx 3 \mu \mathrm{~s}\) ) to be the source of this long lived component. Since the \(z^{\prime}=0,1\) vibrational levels of the \(d^{9} \Pi\) state are known to be long lived ( \(1-7.5 \mathrm{~ms}\) ) \({ }^{\text {14-16 }}\) we considered the higher vibrational levels of this state as a possible source of the long lived decay component. We calculated the energy thresholds of the \(v=7-16\) vibrational levels of the a state based on the vibrational and rotational constants listed by Tilford and Simmons \({ }^{10}\) and found that the \(v=13\) vibrational level of the \(a^{3} \Pi\) state has a threshold of 8.62 eV. These calculated thresholds are shown in Table IV, along with the previous calculations of Krupenie. \({ }^{\text {a }}\) Although the lifetimes of the upper vibrational levels of the \(a\) state have not been measured, an estimation of the lifetimes for the \(v=6\) and 7 levels has been made by Wicke et al. \({ }^{17}\) which indicate that their lifetimes are less than 7 and 2 ms , respectively. Since CO quenches the \(a^{3} \Pi\) state every effectively (reducing the lifetime to about \(15 \mu \mathrm{~s}\) at 20 mTorr ), it is possible that the \(10-16\) \(\mu s\) lifetime we observe may be the quenched collision transfer rate between the \(a(13)\) and either the \(a^{\prime}\) (12) or the \(d(4)\) states. A collisional transfer is indicated by the pressure dependence of the normalized amplitude of the long lived \([a(13)]\) component shown in Fig. 4.


FIG. 6. Reciprocal lifetime ve \(v^{3}\) for the vibrational levels of the \(a^{3} \Sigma^{*}\) state in CO. The dashed line is a projection of the work by Van Sprang et al. (Ref. 3).

TABLE IV. Calculated thresholds for the \(v=0-16\) vibrational levels of the \(a^{3} \pi\) state.
\begin{tabular}{|c|c|c|}
\hline \(v\) & This work (calc) (eV) & \begin{tabular}{l}
Ref. 9 \\
(calc) (eV)
\end{tabular} \\
\hline 0 & 6.14 & 6.144 \\
\hline 1 & 6.36 & 6.356 \\
\hline 2 & 6.56 & 6.565 \\
\hline 3 & 6.77 & 6.770 \\
\hline 4 & 6.97 & 6.972 \\
\hline 5 & 7.17 & 7.170 \\
\hline 6 & 7.36 & 7.364 \\
\hline 7 & 7.55 & 7.555 \\
\hline 8 & 7.74 & -• \\
\hline 9 & 7.92 & - \(\cdot\) \\
\hline 10 & 8.10 & -•• \\
\hline 11 & 8.28 & - \(\cdot\) \\
\hline 12 & 8.45 & ** \\
\hline 13 & 8.62 & ... \\
\hline 14 & 8.79 & -•• \\
\hline 15 & 8.95 & -* \\
\hline 16 & 9.11 & - \(\cdot\) \\
\hline
\end{tabular}

The collisional quenching rates for the \(a^{\prime}(v=12-14)\) levels are almost an order of magnitude higher than for the \(r=9,15,16\) levels. The energy differences between the \(a^{\prime}\left(r^{\prime}=9,12\right.\), and 13) levels and the \(a(t:=10,12\), and 13) levels are much smaller (as small as 20 meV ) then between the \(a^{\prime}(r=10,11.14,15)\) and other \(a\) state vibrational levels. This could indicate a higher probability for a collisional transfer which would give a higher quenching cross section for the \(v^{\prime}=12\) and 13 levels. There is not a good energy match between the \(a^{\prime}\) (14) and any \(a\) state vibrational level, although it might match some part of the rotational band. Thus, the high quenching cross section for the \(a^{\prime}(14)\) level is not well understnod at present. Furthermore, we do not obtain a high quenching rate for the \(a^{\prime}(9)\) level although the energy difference between the \(a^{\prime}(9)\) and \(a(10)\) level is about 20 meV . Similar considerations of the energy levels of the \(d\) and \(e\) states also will not explain why only the \(r=12-14\) levels are quenched more efficiently than the other vibrational levels.

From this work the lifetimes of the Asundi levels are now known to be very close to those previously estimated by us. \({ }^{2}\) In fact, the Asundi lifetimes are about \(20 \%\) to \(30 \%\) longer lived than the nearby \(d\) and \(e\) states. The problems that this similarity can cause may be seen in the case of the \(a^{\prime}(12)\) level. The nonlinear leastsquares computer code used to extract the lifetimes from the \(a^{\prime}\) (12) decay curves indicates that two similar lifetimes are present but it cannot distinguish two life-
times differing by only \(30 \%\) very precisely. Therefore, we can be reasonably certain that our previous tentative conclusion that we had observed a mixture of the \(d, e\), and \(a^{\prime}\) lifetimes is corroborated by this work. The 0.2 eV separation of these \(e\) and \(a^{\prime}\) states precludes using an electron beam energy difference to separate them in order to determine their lifetimes in the present apparatus. In other cases where the \(d\) and/or \(e\) states overlap the Asundi bands, the long lived component is absent in this work. In refitting the optical emission functions from the previous work \({ }^{1,2}\) with the new computer code, an additional threshold is observed whenever the long lived decay component is present. The additional thresholds found in these emission functions are consistent with our calculated thresholds for the \(t^{\prime}=11,13,15\), and 16 vibrational levels of the \(a^{3} 11\) state. We believe that the long lived decay component of the \(a^{3} \Pi\) state observed in the present work and in the previous work on the \(d\) and \(e\) states \({ }^{1,2}\) is quenched by collisions with ground state CO molecules and also colli sionally transferred to either the \(a^{\prime 3} \Sigma^{*}, d^{3} \Delta\), or the \(e^{3} \Sigma^{-}\)state.
\({ }^{1}\) W. C. Paske, J. R. Twish, A. W. Garrett, and D. E. Golden, J. Chem. Phys. 72, 6134 (1980).
\({ }^{2}\) W. C. Paske, A. W. Garrett, S. Shadfar, J. R. Twist, and D. E. Golden, J. Chem. Phys. 76, 3002 (1982).
\({ }^{3}\) H. A. Van Sprang, G. R. Mohlmana, and F. J. de Heer, Chem. Phys. 24, 429 (1977).
\({ }^{4}\) T. Wentink, Jr., E. P. Marram, L. Isaacson, and R. J. Spindler, AFWL Technical Report 67-30, Vol. 1, November, 1967.
\({ }^{5}\) H. J. Hartfuss and A. Schmillen, Z. Naturforsch. Teil. A 23. 726 (1968).
\({ }^{6}\) J, R. Twist, W. C. Paske, T. O. Rhymes, G. N. Haddad, and D. E. Golden, J. Chem. Phys. 71, 2345 (1979).
\({ }^{7}\) D. E. Golden, D. J. Burns, and V. C. Sutcliffe, Jr., Phys. Rev. A 10, 2123 (1979).
\({ }^{8}\) S. R. Lorentz, S. Shadfar, W. C. Paske, and D. E. Golden, Rev. Scien. Instrum. (in preparation).
\({ }^{9}\) P. H. Krupenie, Nat1. Stand. Ref. Data Ser. Natl. Bur. Stand. 5, (1966).
\({ }^{10}\) S. G. Tilford and J. D. Simmons, J. Res. Natl. Bur. Stand. 75, 455 (1971).
\({ }^{11}\) P. H. Krupenie and S. Weissman, J. Chem. Phys. 43, 1529 (1965).
\({ }^{12}\) T. G. Slanger and G. Black, J. Phys. B 5, 1988 (1972).
\({ }^{13}\) The unpublished results of Albritton were generously provided by \(T\). G. Slanger in a private communication.
\({ }^{16}\) W. L. Borst and E. C. Zipf, Phys. Rev. A 3, 979 (1971).
\({ }^{15}\) T. G. Slanger and G. Black, J. Chem. Phys. 55, 2164 (1971).
\({ }^{16}\) G. M. Lawrence, Chem. Phys. Lett. 9, 575 (1971).
\({ }^{17}\) B. G. Wicke, R. W. Field, and W. Klemperer, J. Chem. Phys. 56, 5758 (1972).```


[^0]:    ${ }^{a}$ Wavelength as measured by monochromator in this work.
    ${ }^{b}$ Positions of the bands reported by Albritton. ${ }^{68}$
    ${ }^{c}$ Positions of the bands reported by Krupenie. ${ }^{9}$

