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GENERALIZED ITERATIVE METHODS AND 

NONLINEAR FUNCTIONAL EQUATIONS 

BY: ANITA M. RANSDELL WALKER
MAJOR PROFESSOR: WILLIAM 0. RAY, Ph.D.

Let X and Y be Banach spaces, P be a Gateaux differentiable 
mapping from X to Y and c : CO,») -*■ (0,») be a continuous nonin

creasing function for which /" c(u)du ■ » . If P'(x)(B(0;l)> con
tains B(0; c( H X H )) for each x e X, then P Is an open mapping 
of X onto Y. If the differentiability assumption on P Is removed 
and Instead P is both open and locally expansive, then P(X) » Y. If 

A Is a continuous mapping from X to X satisfying for each x e X,

< Ax - Ay, i  > > c(max{ 3x!|,|]y||})|tx-yH^ for some j e J(x - y), 
then A Is a homeomorphlsm of X onto X. The main technique used 

In establishing these results Is a new fixed point theorem which in

cludes Ekeland's Theorem as a special case.

Perturbations of nonlinear operators are also investigated. If 
F’(x)(B(0;l>) 3 B(0; c( ||x J)) and if F is perturbed by a nonlinear 

operator G satisfying a boundedness condition, then F + G is an open 
mapping from X onto Y. The case where both F and G are Gateaux 
differentiable operators satisfying various coercive conditions again 
yields surjactivity results for the sum F + G. These proofs rely on 

the existence of contractor Inequalities derived from the hypotheses. 

Finally, if G is a compact operator and I - F is compact, then 

F + G is surjective; the proof uses methods of algebraic topology.



CHAPTER I 
INTRODUCTION

This thesis falls within the general framework of the study of 
nonlinear operators acting on Banach spaces, a study begun In the 

early part of this century In connection with certain boundary value 

problems arising In partial differential equations. More specifically, 

suppose P Is a nonlinear mapping from a Banach space X to a Banach 

space Y; there are numerous approaches to studying the normal solvabil

ity of the equation Px = y for y e Y, many of which Involve local 

assumptions on the operator P. This Is due In large part to the fact 
that P often arises from a differential or an Integral operator which 
has local smoothness or monotonlclty properties. In this work we will 

derive mapping theorems for operators satisfying each of the above local 

assumptions. The theorems we present have been established as Independ

ent results In the field of normal solvability for nonlinear operators; 

however, the techniques can be applied In studying the normal solvabil
ity of nonlinear or quaslllnear differential equations with nonlinear 

boundary conditions. For such applications the reader Is referred to 

[1] and [25].

As a prelude to the results we will present a short background on 

the theory of normally solvable nonlinear operators. A nonlinear map

ping P:X -*• Y Is Gateaux differentiable If for each x e X there Is an
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operator P'(x), not necessarily linear or bounded, mapping X to Y for 

which
lim t ^{P(x + th) - P(x)} ■ P'(x)(h) (h e X) 
t+0

If P'(x) is linear, then p jg normally solvable if the injectivity 

of the set of adjoint operators {P'(x)*} implies the surjectivity of P.

The study of nonlinear normal solvability was pioneered by S.I. 

Pohozhayev [32] who showed that P is a surjaction if Y is a reflexive 
Banach space, P(X) is weakly closed in Y and each P’(x)* is injective 

(see Clb]). F.E. Browder (see, among others, [4], [5], [6]) improved 
upon and generalized these results, and eventually W.Â. Kirk and 
J. Caristi [22] showed that P(X) - Y if P(X) is closed in Y and each 

P'(x) is injective.
The restriction that P have closed (weakly closed) range can be 

weakened by requiring that the operators P'(x)* have uniformly bounded 

inverses. To investigate this case further, assume momentarily that 

P'(x) is bounded and linear, and define in the manner of Browder [3] 

the following quantity:

a(P'(x)*) - inf {c > 0 : | y^ < c|IP'(x)*y*| }.

If no such constant exists, then set a (P ' (x) )<*<*>. In the case that 

o(P'(x)*) < ® , there are three major surjectivity results (see C 34] for 
more discussion and proofs).

The first involves a uniform bound on «(P'(x)*) for all x e X: 
THEOREM. Let X and Y ̂  Banach spaces and let P ̂  _a Gateaux 

differentiable mapping from X ̂  Y having closed graph. Suppose there 
£  c ̂  0 such that a(P' (x) ) < c  ̂ for all x c X. Then P an open 

mapping onto Y.



If the bound on P'(x) is allowed to vary as x ranges over bounded 

sets, then a comparable result is obtained if P satisfies a coercive 

condition. For X “ r” the result is due to R.S. Palais [31]; M.A. 

Rrasnoselskii [24] developed the result for P continuously Fréchet 

differentiable. A more general version due to W.J. Cramer and W.O. Ray 

[9] is:
THEOREM. Let X and Y W  Banach spaces and let P W  a Gateaux 

differentiable operator from X ̂  Y having closed graph. Suppose for 
each R > 0 there is a c(R) > 0 such that a(P'(x)*) < c(R)”  ̂whenever 

t X I! < R. and suppose I Px H + " ag. || x || ■*•«. Then P is an open mapping 

of X onto Y.
If the coercive condition on P is replaced by one on a(P'(x) ), 

then a similar result is:

THEOREM. Let X and Y ̂  Banach spaces and let P ̂  ̂  Gateaux 

differentiable mapping from X ̂  Y having closed graph. Let c : [0,“)-̂ 

(0,oo) ^  £  continuous nonincreasing function for idiich /"c(u)du - ", 

and suppose for each x e X that o(P' (x)*) < c(H x || ) Then P is an

open mapping of X onto Y.

Another approach to solving Px * y in a Banach space involves an 

iteration scheme. If P'(x) has a bounded inverse, then Newton's method 
provides an iteration procedure for solving the equation Px - y » 0.

However, the bounded inverse condition is often too restrictive; in
fact, it may be that P'(x)  ̂does not even exist. In this case 
J. Moser [29] showed that Newton's method can be modified to still yield 

a solution of Px * y if P is continuously Fréchet differentiable. The 

method has since been generalized in [35] to the case when P is Gateaux



differentiable. In some of our work to follow we make implicit use of 

such an iteration scheme. Having the preceding discussion as a back

ground for our results, we now proceed to present our conclusions. In 

Chapter II we prove a fixed point theorem which is a generalized version 

of Caristi*8 celebrated result. Using it we will derive two types of 

surjectivity theorems. The theorems involving differentiability 

assumptions rely on a Newton-Kantorovich scheme which was first devel
oped by M. Altman Cl] and further investigated by Cramer and Ray C9].
The theorem involving monotonicity assumptions extends results of 

Browder using both new and standard techniques.
In Chapter III we extend some notions of nonlinear normal solvabil

ity to perturbations of nonlinear operators. Using a result of Chapter 
II as a starting place, we first perturb a surjective Gateaux differen
tiable operator by "small" (in the sense of a norm condition) Gateaux 

differentiable operators and then deduce some consequences of this 
result. Our methods of proof employ analytical techniques such as 

"contractor inequalities" pioneered by Altman Cl], and our own fixed 

point theorem of Chapter II, and the topological methods of a local 

degree theory.

In Chapter IV we investigate the openness and surjectivity of an 

accretive operator, an early version of which appears in C31. The 
techniques of proof are highly analytical and are unrelated to the 
methods we use in the other chapters; hence we separate this result 
from the others.



CHAPTER II 

MAPPING THEOREMS FOR GATEAUX 

DIFFERENTIABLE OPERATORS

1. INTRODUCTION

In 1972 I. Ekeland [14] established a variational principle that 

has proven to be very useful In the study of nonlinear normal solvabil
ity (see D. Downing and W.A. Kirk [13]}. Four years later J. Caristi 
[7] independently established a fixed point theorem which Kirk [21] 

subsequently observed Is equivalent to Ekeland's Theorem.

CARISTI'S THEOREM. Let (M,d) be a complete metric space and 
g : M M ̂  arbitrary mapping. Suppose there Is a lower semlcontlnu- 
ous mapping * : M [0,«) for which

d(x, g(x)> < <t>(x) - *(g(x)) (x E M).

Then g has _a fixed point In M.

In Section 2 we obtain a generalized version of this result and 

then apply It to derive surjectivity conclusions about three nonlinear 

operators P, namely when P Is uniformly surjective, when P satisfies a 

pair of "contractor Inequalities" and when P is locally expansive.

2. A FIXED POINT THEOREM

In this section we prove the following extension of Caristi's 
Theorem.
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THEOREM II.2.1. Let (M,d) ^  a complete metric space and let 4) W  

a lower semicontlnuous mapping from M ̂  C0,«). Let Xg c M ̂  fixed and 

suppose c ; CO,®) -+ (0,®) ^  â continuous nonincreasing function for 

which /*c(u)du ® ®. If g : M + M 1æ an arbitrary mapping which satisfies

(2.1) c(d(x, x^))d(x, g(x)) < 4i(x) - $(g(x)) (x e M),

then g has â fixed point in M.

In Caristi's Theorem c(u) = 1. The basic tool in proving Theorem
II.2.1 is a fundamental maximal principle of H. Brezis and F.E. Browder 
(Corollary 3 of C23):

PROPOSITION B. Let (M,d,0 be a partially ordered metric space 
and let * ; M CO,®) ^  an arbitrary function. Suppose
(2.2) if X < y and x f y, then *(y) < 4i(x),
(2.3) S(x) ® {y e M ; y > x) iÆ closed for each x e M, and
(2.4) any nondecreasing sequence in M has compact closure.

Then there is an x c M for which S(x ) ” {x }; that is, x_ is a maxi

mal element in (M,d,<).

It is worth observing that Theorem II.2.1 can be deduced by a 

direct application of Zorn's Lemma. The proposition enables us to prove 

our extension by investigating the behavior of sequences in the con

text of a partial ordering; essentially the same proof gives the 
desired conclusion via Zom's Lemma if we consider instead nets. In 

either case, we obtain the existence of a maximal element which is the 
essential step in the proof. The proof we present will apply the propo

sition of Brezis and Browder, thereby eliminating any reference to the 
Axiom of Choice.



PROOF OF THEOREM II.2.1. Define E = {(x,s) e M x  COf) : 

d(x,x^) < s} and define a metric p on E by p((x,s), (y,t)) = max{ H t - s I , 

d(x,y)}.
It Is easy to show that (E,p) Is a complete metric space, for sup

pose { is Cauchy In (E,p ). Then for every e > 0 there exists
a N > 0 so that m,n > N Implies p((x ,s ), (x ,s_)) < e . By definitionn n iQ m
of p it follows that j| s - sj < e and d(x ,x ) < e for m,n > N. Thusn m n •
{x^} and {s^} are Cauchy In (M,d) and [0,=»), respectively, and the com
pleteness of both spaces Implies that s s and x + x . Thusn 00 n 00
(x^,s^) + (x^,s^), giving that Cauchy sequences converge.

It remains to be verified that d(x ,x^) < s^. For every n, It Is
true that d(x ,x ) < s . Then convergence of the sequences {x } and n o n  n
{s^} Implies that d(x^,x^) < s^. This completes the argument that 

(E,p) is complete.

Now define a partial ordering " < " on E by saying that (x,s) <

(y,t) If and only If

(2.5) d(x,y) < t - 8, and

(2.6) ^^c(u)du < *(x) - 4>(y).
To show that " < " Is Indeed a partial ordering we must verify 

that it Is reflexive, antl-symmetrlc and transitive. Reflexlvity Is 
trivial.

To see anti-symmetry, let (x,s) < (y,t) and (y,t) <(x,s). Then
(2.5) implies d(x,y)< t - s and d(y,x)< s - t. Adding gives that 

2d(x,y)< 0; hence x * y. Then (2.6) implies s = t, and so (x,s) * (y,t).

To see that " < " is transitive as well, suppose that (x,s)< (y,t) 
and (y,t)< (z,r). Then by the triangle inequality and (2.5),



d(x,z) < d(x,y) + d(y,z)

< t - 8  + r - t  

* r - 8.

Applying (2.6) gives that

/^c(u)du ■ /^c(u)du + (u)du

< ÿCx) - *(y) + *(y) - $(z)

(x) - *(z).
Hence (x,s) < (z,r), and thus " < " is a partial ordering.

We now verify the hypotheses of Proposition B. For (2.2) let

(x,s) < (y,t) but (x,s) f (y,t). Then s f t, for if s ■ t, then
(x,s) < (y,s) and (x,s) ^ (y,s). Hence x f y. But (2.5) implies that

d(x,y) " 8 - 8 «■ 0, a contradiction. Thus we may assume /^c(u)du > 0.
Applying (2.6) yields that *(y) < *(x), and (2.2) holds.

Next observe that if S(x,s) ■ {(y,t) e E : (y,t) > (x,s)}, then

S(x,s) is a closed set. If ((y^,t^)} is a Cauchy sequence in S(x,s),

then {(y^,t^)} must converge to (y„»t^) lu E by completeness of this
space. Then by definition of p, y^ + y^ in M and t^ r*- t^ in CO,®).

Since for every n (2.5) gives d(y^,x) < t^ - s, it follows that

d(y„,x) » lim d(y ,x) 
nrw»

< lim t - s
IfH» “

® t^ - s

giving (2.5). In addition, for every n (2.6) implies that c(u)du ;
$(x) - *(y^). Then lower semicontinuity of * implies that

/*^(u)du * lim ^^"c(u)du



< Ita *(x) - *(y^) 
n-+- »

< 11m * (x) - * (y ) 
«=

* (x) - Ito * (y^) 
n»- *

^ * (x) - * (y„).
Hence (2.6) holds and (y„.t^) > (x,s), giving (2.3).

Finally suppose ( (x^,s^)) Is a nondecreasing sequence In E. Since

(x^,s^) ^ ^*n+l»®n+l^ for every n, (2.5) Implies {ŝ } Is nondecreasing
In ^0/»), and by (2.6), 0 ^ /^"'6(u)du ̂  * (x ) - <1» (x ,,). So {* (x )}S|| n n • 1 n
Is nonincreasing and bounded below by 0, and thus converges.

Since (xĵ .Sj) < (x^,s^) for every n, (2.6) also Implies that
/®**c(u)du ̂  $ (x.) - * (x ) ^ $ (x.) < ” . Hence 11m /®"c(u)du < * (x.) , s, i n i

which Implies that s^ %, < " since ^*c(u)du = “ by hypothesis. By

(2.5) d(x_,x ) ^ H s - s H , and so (x ) is Cauchy In (M,d) and x -► x .n m n m n n *
So again the definition of P gives that ( (x^,s^)) Is Cauchy and hence 
convergent. Since nondecreasing sequences converge, (2.4) holds.

Hence we may apply Proposition B and conclude that there Is a 

(w,s) E E for which S(w,s) * ( (w,s)) .

Now consider (g(w), s + d(w,g(w))). Since by the triangle Inequal

ity d(g(w) ,x^) d(g(w),w))+ d(w,x^)< d(g(w),w) + s, it follows that

(g(w), s + d(w,g(w))) EE. We will show that (w,s) < (g(w) , s + d(w,g(w))) 
and obtain our result.

Clearly (2.5) holds since d(w,g(w)) « s + d(w,g(w)) - s. Next using 
the fact that c is nonincreasing and that d(w,x^) < s, we derive (2.6)
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from (2.1):
+ d(w,g(w)> ^ c(s)d(w,g(w)>

< c(d(w,x^))d(w,g(w))

< *(w) - *(g(w)).

Thus (w,s) < (g(w), 8 + d(w,g(w))), and maxlmallty Implies they are in 

fact equal. Hence 8 = 8 +  d(w,g(w)), and 8o d(w,g(w)) =0. So w = g(w) 

and g has a fixed point. ■

3. SURJECTIVITY RESULTS

In this section we apply Theorem II.2.1 to Gateaux differentiable 
operators and local expansions. We do not require the Gateaux deriva

tive P'(x) of an operator P to be either continuous or linear; however, 
the derivative is homogeneous by definition since

P’(xXXh) = lim t‘^CP(x + tXh) - P(x)]
t 4. 0

» lim X 
t -*• 0

- lim XX~^t"kp(x + tXh) - P(x)]

= X lim (Xt) ^[P(x + tXh) - P(x)]
t 0

= XP'(x)(h).

Let B(w;r) denote the set {y : H y - w J] < r}.

THEOREM II.3.1. Let X and Y ^  Banach spaces and P W  a Gateaux 
differentiable mapping from X ̂  Y having closed graph. Let c : C0,«) 
(0,«) a continuous nonincreasing function satisfying /*c(u)du - «, 

and suppose for each x e X that
(3.1) P'(x)(B(0;D) = B(0;c(Hx |)).

Then P is surjective.
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It is worth noting that Theorem II.3.1 generalizes Theorem 4 of 

[38], in which it is assumed that c is the constant function. Also, 

Theorem 3.2 of C9] implies that P is an open mapping.

Since our assumptions in Theorem II.3.1 are infinitessimal in 

character on P'(x), the result shows how global conclusions may be 
derived from infinitessimal hypotheses. In the theorem we desire to 

solve the equation Px * y; that is, y - Px » 0. Consider then the 

Newton iterate g(x) e x + tP'(x)”^(y - Px) (the introduction of "t" is 
a standard numerical analysis technique used to accelerate the conver
gence of the iterates). It is noteworthy that g(x) - x if and only if 
y - Px “ 0. To see this note that x ■ x + tP'(x) ^(y - Px) implies 

P'(x)(0) * y - Px; homogeneity of P'(x) gives the result. Thus 
g(x) - X « tP'(x) ^(y - Px), giving that P'(x)(g(x) - x) - t(y - Px). 

Setting h = t \g(x) - x) gives P'(x)(h) = y - Px. Hence we are led to 

consider a hypothesis of the form (3.1). In addition, the sequence 

{g^(x)} is roughly speaking a sequence of Newton-Kantorovich iterates.

In Theorem II.3.1 we avoid the explicit use of the injectivity of 
*

each P'(x) . But observe that (3.1) implies P'(x) is surjective, and 
so Y ■ R(P'(x)) = N(P'(x) )'*’ implies N(P'(x) ) = (o), making P'(x)* 

injective.

PROOF OF THEOREM II.3.1. Define a metric p on the space X by
p(x,y) “ max{ (3/2)11 X - y I , c(0) ^|Px - Py H). Since P has closed graph,
(X,p) is a complete metric space (cf. proof of Theorem II.2.1).

Fix y e Y and set *(x) ■ 3 1 y - Px I . Note that * is continuous
from (X,p) to C0,“) since P has closed graph.

We proceed by contradiction and assume y i: P(X). For any x e X,
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c( |]x |)|y - Px I \ y  - Px) e B(0;c( Px || )). By (3.1) there is a 

w e B(0;1) for which P'(x) (w) - c( ||x Ü )||y - Px | ^(y - Px). Setting 

h * c( |x H) ^^y - Px I]w, it follows that P'(x)(h) ■ y - Px while

Jh H < c( llx i)"^|y - Px H .

By hypothesis P is Gateaux differentiable, so we can choose 

t E (0,11 so small that

(3.2) ||P(x + th) - P(x) - tP'(x)(h)l < Jstlly - Px i .

Setting g(x) ■ x + th, it follows that g(x) f x (since y Px and

t > 0 by supposition) and (3.2) becomes

(3.3) ||P(g(x)) - P(x) - t(y - Px)|i<||P(g(x)) - P(x) - tP'(x) (h) 1 +

+ t|P'(x)(h) - (y - Px)!

^  *s tS y - Px B .

Also B g(x) - X B “ tB h B < tc( B X B )” ^ y - Px B , or equivalently,

(3.4) c( B X B )B g(x) - X B < tB y - Px B .

Applying the triangle inequality to (3.3) gives

(3.5) B?(g(x)) - P(x) B <  (3/2)tBy - Px B .

A second application of the triangle inequality to (3.3) gives 

B P(g(x)) - y B - (1 - t)B Px - y B < % ^  Px - y B , or

(3.6) ^ s d l y - P x B  < B Px - y B - B P(g(x)) - y B •

Now, (3.5) and (3.6) together imply that

(3.7) B P(g(x)) - P(x) B < 3( B Px - y B -B P(g(x)) - y B )

= *(x) - *(g(x)).

Also (3.4) and (3.6) imply

(3.8) (3/2)c( B X B )B g(x) - X B <  3( I Px - y B - B P(g(x)) - y B )

=  *(x) - * (g(x)) .

Now let x^ = 0 be fixed in X. Consider first if p (x,0) «■ (3/2)| x B
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Then ]| x | <(3/2)|| x || implies that c((3/2)||x |] ) < c( H x || ) since c is 
nonincreasing. Likewise if p(x,0) = c(0)  ̂|]Px - P(0) !] , (and thus 

(3/2)1 X 1 < c(0)”  ̂IPx - P(0) 1), then 1x1 < c(0)"^ l?x - P(0) 1 . 

Applying c gives c(c(0)  ̂IPx - P(0) 1) < c( Ix |). So in either case 

c(p(x,0)) < c( 1x1).

Now, if p(x,g(x)) - (3/2)1 g(x) - X I , then (3.8) implies 

c(p(x,0))p(x,g(x)) < (3/2)c( Ix 1)1 g(x) - X 1 

< *(x) - *(g(x)),
and (2.1) holds, while if p(x,g(x)) - c(0)  ̂IPx - P(g(x)) 1 , then since 

c is nonincreasing, (3.7) gives
c(p(x,0))p(x,g(x)) < c( 1X 1 )c(0)”  ̂Ipx - P(g(x)) 1

< 1 Px - P(g(x)) 1
< (|)(x) - *(g(x)).

So again (2.1) holds.

Hence Theorem II.2.1 implies that g has a fixed point, a contradic

tion. Hence our supposition is false and y t P(X). Therefore P is a 
surjectlon. ■

It is not difficult to see that the same proof, mutatis mutandis, 

establishes:

THEOREM II.3.2. Let X and Y ^  Banach spaces. D ^  a subset of X,

P bê. a. mapping from D ta. 'Ï having closed graph and c : Co,“) (0,“) ^
a_ continuous nonincreasing function for which / c(u)du - “ . Suppose
for some q e (0,1), y e Y and for each x e D there is. an. x e D and a.
t E (0,l3 for which

(3.3') 1 Px - Px - t(y - Px) 1 <tq 1 y - Px 1 , and
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(3.4') c( |x lî) !lx - X H < t Hy - Px H.

Then y e P(D).

The assumptions (3.3') and (3.4') replace (3.3) and (3.4) in 
Theorem II.3.1 and are motivated by differentiability assumptions on 

the operator P. Assumptions of type (3.3') and (3.4') are central in 

the study of normal solvability (see, for example, C4], CSl, C6Ü, [13], 
[16], [21], [22], [32]). They are also central to M. Altman's theory 

of contractor directions (see, for example, [1], [9]).

The next theorem deals with a locally expansive operator and 

extends a result of Browder ([3], Theorem 4.10; see also [39]).

THEOREM II.3.3. Let X and Y ̂  Banach spaces, P ^  ̂  open mapping 

from X ̂  Y having closed graph and c : [0,®) -► (0,®) W  a continuous 

nonincreasing function for which /*c(u)du = ®. Suppose for each x g X 

there ̂  m  e > 0 such that || x - x || < e implies

(3.9) c( i X I ) H X - X H < H Px - Px I .
Then P(X) = Y.

In [3] it is assumed that P is a local homeomorphism and (3.9) is 

strengthened to : if u, v e B(x;e), then c(max {üu||,||vH})|u-v|| <
II Pu - Pv H . We note that besides obtaining a more general result, our 
approach to Theorem II.3.3 is somewhat more elementary and direct than 
in [3].

PROOF OF THEOREM II.3.3. Define a metric p on X by p(x,y) “ 

max fH X - y H , c(0)  ̂| Px - Py | }, and observe that (X,p) is complete. 

Fix y e Y and set «t» (x) = H y - Px H . As in Theorem II.3.1, is contiix-
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uous. We proceed by supposing y (É P(X) and obtain a contradiction.
Fix X E X and choose e > 0 so small that (3.9) holds. Since P Is 

an open mapping,
P(B(x;e)) n (tPx + (1 - t)y : 0 < t < 1 } 1* 0, 

and hence there Is a g(x) c B(x;e) such that P(g(x)) e {tPx + (1 - t) :

0 < t < 1}. Since

iPCg(x)) - Px 1 = Ipx - y J - |p(g(x)) - y H 
» <Kx) - *(g(x))

and since Ü x - g(x) | < e , It follows by an argument analogous to that 

In Theorem II.3.1 that either
c(p(x,0))p(x,g(x)) < c( t|x i)|x - g(x) i 

< H P x - P(g(x)> It 

" *(x) - *(g(x))
or

c(p(x,0))p(x,g(x)) < c( |x |)c(0)“  ̂It Px - P(g(x)> tt 
< tt Px - P(g(x)) It 
■ *(x) - *(g(x)).

So In either case (2.1) holds. Thus for some x, g(x) ■ x, contradicting 

that P(g(x)) E (tPx + (1 - t)y : 0 < t < 1). ■

As In [3] we observe that Theorem II.3.3 has a consequence for 

operators of the accretive type. This will comprise Chapter IV.



CHAPTER III 
PERTURBATIONS OF NONLINEAR OPERATORS

1. INTRODUCTION

The purpose of the present chapter is to extend the notion of 

normal solvability to perturbations of nonlinear operators. In the 

current literature, compact perturbations of nonexpansive, identity, 

monotone and accretive mappings have received much attention (see, for 

example, [3], [11], [IS], [19], [20]), and the results deal primarily 

with the existence of fixed points or the existence of zeros of such 
operators. The methods of proof vary from the application of standard 
fixed point theorems to the development and application of degree 
theories.

Section 2 is devoted to two different perturbations of the nonlin
ear operator P presented in Theorem II.3.1. The proofs rely on the 
fixed point result derived in Theorem II.2.1. In section 3 we perturb 

a version of a surj activity result of Cramer and Ray [9],Theorem 3.4 , 

while in section 4 we employ degree theory to obtain a result for the 

compact perturbation of a fairly general nonlinear operator F.

2. BOUNDED PERTURBATIONS

In this section we begin with a surjective Gateaux differentiable 

operator F which we perturb by a "small" Gateaux differentiable operator
16
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G. Again, as in Chapter II, section 3, we avoid the explicit use of 
injective adjoint operators and concentrate instead on the uniform sur- 
jactivity of F. Under the assumptions we make on G'(x) we demonstrate, 

via a transfinite Newton's method, the surjactivity of the operator 

F + G. Hence Newton's method is still sufficiently regular that small 

perturbations of a differentiable operator do not hinder the convergence 

of the iterates.

As before, the primary tool in deriving our results is the exten

sion of Caristi's Theorem formulated in Theorem II.2.1. Before present

ing our main theorems in this section we first verify a pair of "con

tractor inequalities" (cf. [1]) that are instrumental in the proofs to 

be presented. We begin with the case that G'(x) satisfies a boundedness 
condition. The inequalities are given by:

LEMMA III.2.1. Let X and "Ï ^  Banach spaces and let F and G be 

Gateaux differentiable mappings from X ̂  Y. Let c : CO,») (0,«) ^

£  continuous nonincreasing function for which /"c(u)du ■ ». Suppose 
for each x e X that

(2.1) G'(x) is a bounded and linear operator from X to Y, and

(2.2) F'(x)(B(0;l)) n B(0;c( J x j] )) .

Suppose, in addition, for some p e (0,1) and each x e X that

(2.3) c( |xl)’  ̂iG’(x) H <p.

Let P : X -»• Y ^  defined by P • F + G. Then there is a q c (p,l) such 
that for each y e Y there Is a t e (0,1] and ̂  x e X such that

(2.4) I Px - Px - t(y - Px) H < qt I y - Px H , and
(2.5) Hx - X H < c( |x I )"^ t ly - Px I .
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We remark here that similar Inequalities can be deduced from injec
tivity hypotheses on P'(x)* (see the survey C34] for a discussion).
It is noteworthy that the uniform surjectivity hypothesis (2.2) is some

what weaker than the corresponding assumptions on the adjoint P*(x) .

PROOF OF LEMMA III.2.1. Fix y e Y and q e (p,l). If y - Px for 

some X, then choose x » x and the conclusions follow for any t.

So without loss of generality we may assume y ^ P(X). For each 

X e X, c( Ix |l)l!y - Px Ü \ y  - Px) e B(0;c( ||x |)). By (2.2) there

exists a w e  B(0;1) so that F'(x)(w) ■ c( Hx I )|ly - Px |”^(y - Px).

Set h * c ( l x l )  ^ly-PxH'W. Then the homogeneity of F'(x) implies

that F'(x)(h) « y - Px with |h H < c( I x | )"^ H y - Px | .
By hypothesis both F and G are Gateaux differentiable, so we may 

choose t E (0,ll so small that

(2.6) |f(x + th) - F(x) - tF'(x)(h) ]) < *s(q - W)t Jy - Px I , and
(2.7) |g(x + th) - G(x) - tG'(x)(h) J < Jj(q - u)t ||y - Px || .

Setting X = X + th and combining (2.6) and (2.7) yields, via the 
triangle inequality and hypotheses (2.1) and (2.3), that

IPx - Px - t(y - Px) I < HFx  - Fx - tF'(x)(h) J +

R Gx - Gx - tG'(x)(h) I + -6 I F'(x) (h) - (y - Px) R + t RG'(x) (h)

< *s(q - w)t R y - Px R + %(q - p)t R y - Px R

+ 0 + t Rg *(x) R-Rh R

< (q - p)t Ry - Px R + tc( RX R )pc( RxR)

* R y - Px R 
” qt R y - Px R ,

giving (2.4).
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To derive (2.5) observe that
I X - X I - t Ih Ü

< c( I X I )“ t̂ 1 y - Px Ü . ■

We now state three of our main results and then prove them.

THEOREM III .2.2. Let X and Y W  Banach spaces and let F and G be 
Gateaux differentiable mappings from X ^  Y. Let c : CO,») (0,«)

be a continuous nonincreasing function for which /"c(u)du * ». Suppose 

for each x c X that hypotheses (2.1), (2.2) and (2.3) o£ Lemma III.2.1

hold. If the mapping P » F + G has closed graph, then P an open

mapping from X onto Y.

As a simple consequence it is enough to assume that F and G each 

has closed graph.

THEOREM III.2.3. Let F and G be given as in Theorem III.2.2. 

Define the Gateaux differentiable operator P : X -► Y ^  P ■ F + G.
If F and G have closed graph, then so does P; in particular, P is an 
open mapping from X onto Y.

The proof that P is open in Theorem III.2.2 and Theorem III.2.3 
follows readily from a direct application of Theorem 2.1 of C9D, while 

both surjectivity and openness use Lemma III.2.1. As in Theorem II.3.1 

we desire to solve the equation Px = y, where P = F + G. So we con

sider the iterates v(x) e x + t(F'(x))”^(y - Px) and observe that 

v(x) = X if and only if y - Px = 0.

When specialized to the case that the function c(u) in Theorem
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III.2.2 is a constant, the above result extends a result of 1. Rosen- 
holtz and W.O. Ray E38].

THEOREM 111.2.4. Let X and Y ^  Banach spaces and let F and G be 
Gateaux differentiable mappings from X ̂  Y. Suppose for each x e X that

(2.8) G'(x) is a bounded and linear operator from X to Y, and

(2.9) F'(x)(B(0;D) o B(0;6) for some 6 > 0.
Suppose, in addition, for some p e (0,1) that

(2.10) 6"^ H g '(x ) i <  w.

If the operator P ■ F + G has closed graph. then P ig. an open sur- 

lection. In particular, if F and G each have closed graph. then P is 

an open suriection.

We will omit the proof of Theorem 111.2.4 since it is completely 
analogous to those of Theorems 111.2.2 and 111.2.3.

PROOF OF THEOREM 111.2.2. We begin by demonstrating the surjectiv
ity of P ■ F + G.

Define a metric P on X by p(x,y) = max( (1 + q)|| x - y |] , c(0)”  ̂*

* Ipx - Py 1). Since P has closed graph, (X,P) is a complete metric 
space (cf. Theorem 11.2.1).

Fix y e Y and q e (u,l). Set 4>(x) » (1 + q) (1 - q)~^ D y - Px H . 

Then * is continuous from (X,P) to Co,") since P has closed graph.

We proceed by contradiction, so suppose y ^ P(X). Then by Lemma 
111.2.1, defining g : X X by g(x) = x, it follows that

(2.11) H P(g(x)) - Px - t(y - Px) H < qt 1 y - Px i , and
(2.12) c( Ü X !1 )i g(x) - X I < t It y - Px l| .
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Note that since y f Px, it follows that g(x) f x for each x e X. Apply

ing the triangle inequality to (2.11) gives

(2.13) I P(g(x)) - Px I <(1 + q)tH y - Px |.

A second application of the triangle inequality to (2.11) gives

|P(g(x)) - y B - (1 - t) |Px - y B <qt Ijy - Pxjl , or

(2.14) t jy - Px I < (1 - q)"^( jPx - y || - j|P(g(x)) - y %)-

Now, (2.13) and (2.14) together imply

(2.15) B P(g(x)) - Px I < (1 + q)(l - q)"l( y B  - |P(g(x)) - y B>

= *(x) - *(g(x)).

Also (2.12) and (2.14) imply

(2.16) (1 + q)c( Bx B)Bg(x) - X B < (1 + q)(l - q) ^( fPx - y B “

BP(g(x)) - y  B)

" $(x) - $(g(x)).

Now let x^ * 0 be fixed in X. Consider first if p(x,0) ■ (1 + q)*

Bx B. Then Bx B ^ (1 + q)Bx B implies that c((l + q)Bx B) < c( Bx B)

since c is nonincreasing. Likewise, if p(x,0) - c(0)~^ B^x - P(0) B ,

(and thus (1 + q)Bx B < c(0)“  ̂B^x - P(0)B ) then B* B ^ c(0)~^ B^* " P(0) B ’ 

so c(c(0)  ̂BPx - P(0) B ) X  c( BxB)- Hence in either case c(p(x,0)) <

c( BxB).

Now if p(x,g(x)) » (1 + q) Bx - g(x) B . then (2.16) implies 

c(p(x,0))p(x,g(x)) < c( BX B)(1 + q) B* ~ g(x) B
< *(x) - *(g(x)) ,

trtiile if P(x,g(x)) - c(0)“  ̂B Px - P(g(x)) B , then (2.15) implies 

c(p(x,0))p(x,g(x)) < c( BxB)c(O)"^ B Px - P(g(x)) B 

< i P x  - P(g(x)) B

< *(x) - *(g(x)).
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Thus Theorem II.2.1 applies to give a fixed point of g, a contradiction. 

Hence y ̂  P(X) and P is a surjaction.
Now to show P is open as well, fix w c X and let 6 > 0. It 

suffices to show that B(Pw;e) c P(B(w;6)) for a sufficiently small 

choice of c .
So let y e B(Pw;e); then ]]y - Pw j] <e • Define a mapping P 

from B(w;6) into Y by P(x) ■ y - Px. We will show that 0 c P(B(w;5)), 
thereby completing the proof of Theorem III.2.2. We accomplish this 

by applying Theorem 2.1 of C9 3.

By hypothesis, for q e (p ,1) fixed, there is a t c (0,13 and an 

xE X for which (2.4) and (2.5) hold. Hence (2.4) implies

Hp x - (1 - t)Px Ü " It y - Px - (1 - t) (y - Px) |

“ Ü Px - Px + t(y - Px) H
^ qt i y - Px H

■ qt I Px I ,
while (2.5) Implies
(2.17) IX - X II <c( n X n )"^t n y - Px n

= c( 1XI )~tii Px n.
Now observe that x e B(w;6 ) implies |jx-w|l < 6 . So]|x|| - || w l| ^

H X - w H yields that H x || < 6  + 1 w ]| . Applying the function c gives 

c( 5 + II w I ) < c( i X f ) . So (2.17) becomes

(2.18) I X - X I < c( 6 + H w|| ) ̂ t I Px H.
In order to apply Theorem 2.1 of C 93, we must verify that

(2.19) (1 - q)"l s'^ B(s)ds < a

for appropriate choices of a, B ;C0,®)-*- C0,“ ) and a. If we choose 

a ■ t d , M “ c ( ^ + I w H )  ^, B(s) “ s and a = c( ô + ||w ||)  ̂|| Pw ||ê "̂ , 

and if 0 c ^ 6(i _ q)c(5+i wH )e^ ^, then (2.19) follows :
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(1 - q)"l s"^ B(s)ds =

<

1 -q) ^ ds
1 -q)
1 - q)~^c(6 + Ü w I )  ̂I Pw !I

1 - q) ^c(6 + H w I )  ̂ee^

1 - q) ^c(6 + iw J )  ̂6(1 - q)c(6 +Qw||)*

= 6 

= a.

Hence Theorem 2.1 applies to give the existence of an c B(w;6) for
which Px,* 0. Thus y = Px^ and y e P(B(w;6)), as required.#

Theorem III.2.3 is an easy consequence of the Mean Value Theorem.

PROOF OF THEOREM III.2.3. Let {x^} be a sequence in X for which
x^ and Px^ y; that is, y = 11m Fx + Gx .

n ™
Since {x^} is Cauchy, for every e > 0 there exists an N > 0 so that

m,n > N implies |x^ - x^ || < cp ^c(O)” .̂ Applying the Mean Value

Theorem of McLeod [27] (see also [28]) to G yields that

G(x ) - G(x ) e CO {G'(tx + (1 - t)x )(x - x ) : 0 < t < l ) ,  n in n in n in
from which it follows via (2.3) that

Hgx^ - GxJ < \  Hsupt ÜG'(tx^ + (1 - t)x^) | : 0 < t < 1}
^ Hx “ X H sup{ uc( It tx + (1 - t)x It ) : 0 < t < 1}n m tl m
< Itx̂  - x^ iwc(O)

< e,
if m,n ^ N.

Hence (Gx^l is Cauchy in Y, so the completeness of Y implies

(Gx } converges. By assumption G has closed graph, and so lim Gx = Gx .
n 4. . "
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Since Fx + Gx ->• y, it follows that Fx y - Gx . But F has n n n “
closed graph, so Fx = y - Gx . Therefore y - Fx + Gx » Px_, giving

00 00 CO 00 00

P closed graph, as desired.

Now by Theorem III.2.2, P is an open surjection.B

Our second perturbation of Theorem II.3.1 involves a Lipschitz 

operator G. An operator G : X -*■ Y is Lipschitzian if there is a 
finite K > 0  such that | G x  - Gy ]| < K  !|x - y I for every x,y c X. Let 

Hg H denote the least such constant K; then || • |] is a seminorm on the
space of Lipschitz operators from X to Y. As in Lemma III.2.1 we obtain

a pair of "contractor inequalities" for G Lipschitzian. .

LEMMA III.2.5. Let F W  a Gateaux differentiable mapping from 

a Banach space X to a Banach space Y, and let G : X Y ̂  5 Lipschitz 
operator. Let c ; Co,») -► (0,®) ^  a continuous nonincreasing function 

for which / c(u)du - ». Suppose for each x e X that

(2.20) F’(x)(B(0;l)) = B(0;c( Rx R)).

Suppose, in addition, for some y e (0,1) and each x c X that

(2.21) c( Rx R)"l Rg R <y.

Define P : X - * - Y ^  P » F  + G. Then there is & q e (y,l) gg that for 

each y e Y there is a t c (0,1] and an x e X for which

(2.22) R Px - Px - t(y - Px) R < qt R y - Px R , and
(2.23) R x - x R  < c( R X R ) ^ t R y - P x R .

PROOF. Fix y e Y and q e (p,l). If y e  P(X), then there is an 

X E X for which y » Px. Choosing x » x yields the result for all t. 
So without loss of generality, assume y f P(X). For any x e X,
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c( ix i) iy - Px i~^(y - Px) e B(0;c( ix i)>. By hypothesis (2.20)
there exists a w e  B(0;1) for which F'(x)(w) ” c ( i x i ) | y - P x i   ̂ *

*(y - Px). Setting h « c( Jx i)“  ̂iy - Px i*w gives that F'(x)(h) = 

y - Px and ih i < c ( i x i )  ^ | y - P x i .

The operator F is Gateaux differentiable, so we may choose 

t E (0,1] so small that
(2.24) 1f (x + th) - F(x) - tF'(x)(h) | < (q - P)t iy - Px i .

Setting X » X + th and applying the triangle inequality gives

(2.25) i Px - Px - t(y - Px) i < f f5E - Fx - tF’(x) (h) j + | Gx - Gx i +

t i F' (x) (h) - (y - Px) i
< (q - u)t iy - Px i + iG i«|x - X i +0.

Now observe that | x - x i  * t f h |  < c ( | x i  )~^t i y - Px | , giving (2.23). 
Hence (2.25) becomes, via (2.21),

i Px - Px - t(y - Px) i < (q - p)t i y - Px i + c( i x | )pc( i x | )
* t I y - Px i

» qt I y - Px i ,
giving (2.22).■

Our main results for this class of operators follow.

THEOREM III.2.6. Let F and G be as in Lemma III.2.5. If the 
mapping P * F + G has closed graph « then P ^  an open mapping from 
X onto Y.

Since the proof of Theorem III.2.6 is identical to that of 

Theorem III.2.2, we omit the details. Once again we observe that 
Theorem III.2.6 is true if each of F and G has closed graph.
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THEOREM III.2.7. Let F and G be as In Lemma III.2.5. ^  F 
and G have closed graph, then P = F + G has closed graph; in par

ticular, P is an open mapping from X onto Y.

PROOF. Let {x } be a sequence in X for which x + x and n n ®
Px -»• y; then lim Fx^ + Gx^ ■ y. 

n *
Since {x^} is Cauchy, for every g > 0 there is an N > 0 so that

m,n ^ N implies fx - x f < ep ̂ c(O) \  Then since G is Lipschitzian,

it follows by (2.21) that

fGXn - Gx^ f <fG f.fx^ - x j
< pc(O) fx^ - x J
<  e .

So {Gx^} is Cauchy in Y and thus convergent. By hypothesis G has

closed graph, and so Gx^ Gx^.

Now since Fx + Gx y, it follows that Fx -*• y - Gx . But Fn n n »
has closed graph, so y - Gx ■ Fx . Therefore, y - Fx + Gx = Px ,

00 09 00 00 09

giving P closed graph.

By Theorem III.2.6 P is an open surjection.B

We conclude this section by remarking that most of the conclusions 

presented above are fairly direct consequences of earlier results which 

have used Inequalities such as those of Lemma III.2.1 and Lemma III.2.5 

as their main assumptions. Thus, for example, surjectivity is a 
special case of Theorem II.3.2 while openness was inferred directly 

from Theorem 2.1 of (93. The main goal of this section has been to 
expose a further class of operators to which these more general results 

apply. The "contractor inequalities" have come to play a central role
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in the theory of nonlinear normal solvability, and the theorems of this 
section show that the inequalities and the mapping theorems they imply 

are stable under "small" perturbations.

3. COERCIVE PERTURBATIONS

He now return to the case where both F and G are Gateaux differ

entiable operators. He consider a version of Theorem 3.4 of C9] in 
which it is proven that an operator F is surjactive if each F’(x) is 

surjactive and if F satisfies a coercive condition. By slightly 

altering the hypotheses of this result and then perturbing F by a 
"small" operator G also satisfying a coercive condition, we are able 
to retain the surjectivity conclusion, this time of F + G.

To prove our main results we rely on the following theorem.

THEOREM III.3.1. Let X and Y W  Banach spaces, D c x, P : X -»■ Y 

an operator having closed graph and g : D -*■ (0,«=) a mapping which sends 

bounded sets to bounded sets. Suppose there ̂  £  q e (0,1) such that 

corresponding to each x e D, there ia an x e D and a t e  (0,1] for which

(3.1) H Px - (1 - t)Px I < qt I Px H , and

(3.2) n X - X n < tg(x) n Px I .

Suppose also that
(3.3) lim H Px H * •». 

dxll-*- *
Then 0 e P(D).

PROOF. He will proceed by contradiction and suppose 0 P(D); so 

by replacing q by any q e (q,l) we may assume that (3.1) is a strict
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Inequality. Next, define a metric p on D by p ( x , max{ i x  - y H, 
i ? x  - Py 1 ) ;  note that (D,p)  is a complete metric space and P : (D,p)  -+ Y 

is continuous.
Now fix X e D and define A(x) » {y e D : there is a t  c (0,1) for 

which iPy - (1 - t)Px 1 <  tq |)px 1 );  since x e A(x) , it follows that

A(x) f 0 for each x c D. Thus we can define a sequence {s(x;n)}”_Q <= D

recursively by s(x;0) = x and s(x;n+l) e A(s(x;n)). For any such 

sequence we obtain the following estimate from (3.1):

Ip(s(x;n+1)) - P(s(x;n)) I ^ (1 + q)(l - q)”^( |p(s(x;n)) i  -  i P(s(x;n+1)) i  ) 

from which it follows via the triangle inequality that 
i P(s(x;n)) - Px i ^ (1 + q)(l - q) \  i Px 1 - i P(s(x;n)) I )

^ (1 + q)(1 - q) ̂ iPx i .
Thus the image of any such recursive sequence is contained in the ball 
centered at Px with radius (1 + q)(1 - q)~^ ÜPx 1 . Hence if ^(x) denotes 

the collection of elements of D obtained by taking the union of all 
such possible sequences, then P(^(x)) is bounded, and so (3.3) implies 
that %(x) is bounded as well. Consequently, if we define 

i(x) » sup (g(y) : y e %(x)}, 

then it follows that i(x) ^ * for all x e D. Notice also that, since 

X E A (x) ,

i(x) ■ sup (g(y) : y e  J(x)}

^ sup (g(y) : y e J(x)>

” i ( x ) ,

and also that

g(x) < sup {g(y) : y e %(x)} - g(x).

We now show that g is lower semicontinuous on ( D , p ) .  We will
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use the following characterization: g is lower semicontinuous if

lim i(y) >i(x). 
y -»• X

We will need the following claim as well:

(3.4) for each x e D and w e A(x) there is a 6 > 0 such that w e A(y) 

whenever p(x,y) <6.

If (3.4) is not true, then there is a sequence {y^} in D such that

p(x,y ) -► 0 as n -»■ ®, but w 4= A(y ). So, in particular,n n
Bpw - (1 - t)Py 5 > tq |py i n n

for each n, where t is chosen such that RPw - (1 - t)Px i < tq Hpx | .

Since p(x,y ) 0, it follows that Py + Px. Hence passing to the limitn n
implies that H Pw - (1 - t)Px 1 > tq HPx | ; thus w #  A(x), a contradic
tion. This establishes (3.4).

Now fix X E D and t > 0. Choose w e  %(x) such that g(x) - t < g(w). 

Since w e %(x), w » s(x;n) for some sequence {s(x;m)}^Q. Now, 

corresponding to s(x;l) there is a 6 > 0 such that p(x,y) < 6 implies 
s(x;l) E A(y) by (3.4). So if p(x,y) < 6, then w e %(y), and so 

g(w) 4 g(y). Hence transitivity implies g(x) - t < g(y) whenever 

p(x,y) < S. This shows, since t was arbitrary, that g is lower 

semicontinuous.

Now define a partial ordering on D by saying x < y if and 
only if

(3.5) 5 Px - Py H < (1 + q)(l - q)"\ ||Px!| - 1 Py 1 ) ,
(3.6) It X - y It < i(x)(l - q)” (̂ %Px% - |t Py f ), and

(3.7) i(y) < i(x).

Set *(x) = i Px tt and observe that (2.2) of Proposition B of
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Chapter II, Section 2, holds via (3.6).
To see (2.3) of the proposition, let S(x) * {y e D : y >x). Then 

{x^} Cauchy In S(x) Implies that x^ ^ x^ In (D,p). Since P Is con
tinuous, Px Px as well. We must show x c S(x).n œ ®

For every n, x > x; also x - x + x - x and Px - Px -► Px - Px.n ~ n « n <»
Thus (3.5) Implies

H - lim Hn + «»

< 11m (1 + q) (1 - q)"^ ( i Px 1 - i Px || ) 
n ->• » ^

- (1 + q)(l - q)“ (̂ fPx Ü - |Px_ H), 

giving (3.5). Also, (3.6) implies

x|l - lim ll\ - * 5n ®
< lim i(x)(l - q)"^( |Px || - |Px^ |)
n -► 00

" i(x)(i - q)”^( IIFx n - ||Px̂  p ,  

establishing (3.6). Finally, the lower semicontinuity of g Implies 
via (3.7) that

i(x^) < H m  i(x ) < 11m g(x) - g(x)

Thus x^( S(x) as desired; so S(x) Is closed,.

To verify (2.4) of the proposition, let (x^) be any nondecreasing 

sequence In (D,p,<). For n < m, (3.5) Implies

j«m-l
" ■ ^*n " ^ ̂   ̂ ■ ^*1+1 ^j*n

j= m - l

(l + q)(l-q)"^(:PXj ;
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=  ( 1  +  q ) ( l  -  q ) " ^  (  Ü Px^ Il -  II ) .

Since (3.5) implies { |Px^ %}is nonincreasing and since the sequence 
is bounded below by 0, { HPx^I } converges in (D,p,<); thus { ||Px̂  ]]} 

is Cauchy. Combining (3.6) and (3.7) yields for n < m  that

H *m - *n H ^ J j  - *j+l "

m-1
< g(Xj)(l -  i)"^(  jjPx̂  II -  IjPXj ĵll )

< i(xj)(l - q)"^ |Px^ I] - IjPxJ ).

Hence (x } is Cauchy in (D, !|*!|). Thus (x ) is Cauchy in (D,p) also.

By completeness of (D,p), (x^) converges.

Therefore Proposition B applies to give an x^ e D for which

S(x^) = (x^}. Since by hypothesis there exists an x^ e D for which

and

we obtain

and

|PXq - (1 - t)PXg H < qt ÜPx^ i < qt |Px^ H

- x^ II < tg(x^) SPx^ S < ti(x^) iPx^ It ,

1 %  - ü < (1 + q)t fPx^

(l-q)tllPx^I < | |PxJ -|Px ^ | .

Combining inequalities yields

Px^ - Px^ I < (1 + q)(1 - q)-^( I Px^ I - i Px^ i )

and
v-1,x ^  -  x ^  I < i ( x ^ ) ( 1 - q)" ( 1 Px^ I - i Px^ i ).
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Since we have already established that g(x ) < g(x ), it followso o
Xthat X < X , and by maximality of x it must be that x 0 - 0  o 0

Since q e (0,1), (3.1) implies that Px^ = O.B

We will make use of the more general case of the above theorem 

where D = X.

THEOREM III.3.2. Let F and G be Gateaux differentiable operators 

from a_ Banach space X to_ a_ Banach space Y, and suppose both F and G 

have closed graph. Let 6 : (0,*) (0,«) be an arbitrary mapping

sending bounded sets to bounded sets, and define 6 : CO,«») (0,«») ̂

6(R) = sup {6(r) : 0 < r < R). Suppose each of the following;

(3.8) for every x e X, F'(x)(B(0;1)) a B(0;S( | x | )”^),

(3.9) for every x e X, G'(x) is a bounded and linear operator from X 

ia Y,
(3.10) il G' (x) I < yd( 1 X 1 )  ̂ for some y e (0,1) fixed.

(3.11) lim II Fx i “ and
KxlJ -*■ »

(3.12) lim H Gx H = M, for some M finite.
Uxll -*• “

Then if P * F  + G, Q e  P(X) and thus P a suriection.

The proof is rather straightforward in that we must verify all the 
hypotheses of the Theorem III.3.1.

PROOF. First observe that 6 is a nondecreasing mapping, and set

g(x) » 6(Jx|). Then g : X -»• (O,») sends bounded sets to bounded sets

and g is "nondecreasing" in the sense that If I x | < | y || , then
g(x) =6(|x||) < 6 ( H y | )  - g(y).
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Now, to show that P = F + G has closed graph, let {x } be an
sequence in X for which x -»■ x and Px -»• y; then Fx + Gx -»■ y. Sincen ® n  n n
{x^} is Cauchy, for every e > 0  there is an N > 0 so that m,n > N
implies ||x̂  - x^ [ < eu”^6(0). Applying the Mean Value Theorem of

McLeod to G gives
Gx - Gx e CO {G' (tx + (1 - t)x )(x - x ) : 0 < t < l } ,  n m n m n m

from which it follows that

f3.13)BGx^ - Gx^ B < B B s u p  { Bc’Ctx^ + (1 - t)x^)B : 0 < t < 1}. 
Simplifying (3.13) via (3.9) and (3.10) gives that

Bg x  - Gx B < B %  - X Bsup {p6( Btx +  (1 - t)x B) 0 <  t < 1}Tl ID n ui n
^ Bx - X Bpâ(o)  ̂n m
<c.

Therefore {Gx^} is a Cauchy sequence in Y, and since G has closed graph,

we conclude that Gx ->• Gx .n “
Hence Fx ■ Px - Gx converges to y - Gx , and since F has n n n

closed graph, Fx^ = y - Gx^. Therefore, y * Fx^ + Gx^ ■ Px^, giving 
P closed graph.

We now verify the contractor inequalities (3.1) and (3.2) To this
end let q e (p,l) be fixed. If 0 e P(X), then choose x ■ x, where

0 * Px, and the inequalities hold for all t.

So without loss of generality, suppose 0 ̂  P(X). Fix x e X and

observe that 0 Px. Since 6( B x I )"^ B Px B "^(-Px) e B(0;«( B x B )"b ,
(3.8) implies there is a w e  B(0;1) for which F*(x)(w) ■ 6( Bx B)~^*

*  B Px B ^ (-Px). Setting b  »  6( B x  B ) BPx B*w and applying F'(x) 

gives F' (x) ( h )  »  -Px and B h  B ^ 6 ( B x B ) B P x  B »
By hypothesis both F and G are Gateaux differentiable, so we
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may choose t e (0,1] so small that

(3.14) RP(x + th) - F(x) - tF'(x)(h) Ü < *s(q - y)t HPx  Ü , and

(3.15) 1g (x  + th) - G(x) - tG*(x)(h) H < %(q - y)t |Px J.

Setting X ■ X + th and combining (3.14) and (3.15) via (3.9) and (3.10)

gives that

|Px - (1 - t)Px 1 < H Fx - Fx - tF’(x)(h) Ü + Hg x - Gx - tG’(x)(h) I +

t HF'(x) (h) - (-Px) i + t lG’(x)(h) Ü 

^ *s(q - u)t |Px Ü + %(q - y)t RPxR + 0 + 

t ÜG'(x) M h  Ü 

< (q - y)t Ü Px J + ty6( H X !|)"^6( ||x H) I Px J 

“ qt i Px H ,

giving (3.1).

Inequality (3.2) is immediate since 

Bx - X S = t Bh B

< t«( Bx B) BPxB 

= tg(x) B Px B •
To complete the proof, let Bx B ■+■ ». Then (3.11) and (3.12)

imply that B Px B " and B ̂ x B -*■ M. Since B Px B ^ B Px B “ B ®x B

and since B Px B - B Gx B -»• * as well, it follows that B Px B "*■ ® • So

lim BPx B “ establishing (3.3).
Ix H »

Hence 0 e P(X) and P is a surjection. ■

If we replace (3.11) and (3.12) with two other coercive conditions, 

the result of Theorem III.3.2 is still valid. Since the proof of the 

following theorem follows that of Theorem III.3.2 verbatim up to the 

verification of hypothesis (3.3), we will omit the repetition.
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We begin with a definition. An operator G is quasibounded if G 
maps bounded sets to bounded sets and if I 11 G III- lim |lx j]  ̂IGx J 

< ®. The quasinorm of G is denoted by (|[ • |||. We now state our 

second result.

THEOREM III.3.3. Let F and G 1^ given as in Theorem III.3.2 and

suppose hypotheses (3.8), (3.9) and (3.10) hold. In addition suppose

(3.11') lim 5x11^ Ifx 1 - », and 
ilxi! -»■ »

(3.12') G is quasibounded.

Then 0 e P(X) and thus P is â suriection.

PROOF. We will only verify hypothesis (3.3) of Theorem III.3.1.

To this end let !Ix H ■*■<», and let e ^ 0 be given. Since G is quasi

bounded there exists a R^ > 0 for which IlCxi < (  |[| G ||[ +e) ||x || 

for all X E X with |x Ü ^ R^. Since we are interested in fx [I large, 
assume without loss of generality that > 1.

For fx f > Rg, observe that
fPx f >fFxf -f G x f  >fFxf - ( III G III + e) fx f. 

Dividing through by fx f gives

f x f ' M P x f  > fxf-lfFxf -  ( I I I  G I I I  +  E).
Since the right-hand side diverges as fx f -»• », so must fx f fPx f .

Since we can assume fx f > I , it follows that f x f < 1, and so 

fPxf ^ fxf ^fPxf. Thus as fxf->-“>, fPxf-»-*by comparison. 
Therefore (3.3) holds.

Thus Theorem III.3.1 applies to give that 0 e P(X), making P a 
surjection. ■
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A. COMPACT PERTURBATIONS
In this section we prove a compact perturbation result using the 

Leray-Schauder local topological degree for mappings of the form 

1 - T where 1 is the identity transformation from a Banach space X 

to itself and T : X -*■ X is a compact transformation.
Let D denote the closure of a bounded open set in X, let 

f : D -► X be continuous and let p e D be such that p #  f(D - D); 

that is, p is not in the image of the boundary dD of D under f.

We will denote the Leray-Schauder degree by d[f,D,p]. The properties 

of the degree which we shall require are summarized below (cf. [11]):

PROPOSITION L-S 1. The Leray-Schauder local degree satisfies the 

following properties of any local degree:
(4.1) the local degree of the identity mapping relative to 5 at any

point X E D ^  +1;

(4.2) the local degree of the constant mapping with range value y

relative to D at. any point x # y is. 0; and
(4.3) ^  f and g defined on 5 are homotopic via a homotopy H

with domain D x [O.ll and ^  y $  H(x,t) for all (x,t) e
âD X [0,1], then the local degrees of f and g relative

^  D at̂  y are equal.

We now state our result.

THEOREM 111.4.1. Let F and G be continuous mappings from a Banach

space X to itself and let 1 : X + X denote the identity operator.
Suppose each of the following:



37

(4.4) G Is a compact operator.
(4.5) 11 I G I I I - lim ||x HGx 11 < 1, and

Uxll 00

(4.6) I - F ls_ a compact operator.
Suppose, in addition, there is a R > 0 so_ that

(4.7) ix i < R implies | (I - F + G)(x) i < R.
Then 0 E (I - G)(X) and 0 e (F - G)(X); hence I - G and F - G

are surlections.

In proving the result for I - G we will need the following defi

nition: let X be a Banach space, D c x  a closed set with nonempty 

interior, P : D -► X and w c int(D). Then P satisfies the Leray- 
Schauder condition on the boundary 3D of D if

Px - w * X(x - w) for X e )D implies X ^ 1.

This condition is known to imply the existence of fixed points for a 

wide range of mappings, among them being compact operators.
We will also need several definitions and properties before we can

proceed with the proof of Theorem III.4.1. We credit the following
definitions and properties to J. Cronin Cll3.

Let H be a mapping from [0,1] into the set of compact trans
formations of a subset of a normed linear space X into X; that is,

corresponding to each t e [0,1] there is a compact transformation 

H(t) of a subset E of X into X. The mapping H is a homotopy 

of compact transformations on E if : given e > 0 and an arbitrary

set M c E, there is a 6 > 0  such that l%i - tgj  ̂implies

|H(tp(x) - H(t^) (x) I < E for all x e M.

We now further characterize the Leray-Schauder degree.
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PROPOSITION L-S 2. Let D be a bounded open set In X, and let 

3D denote the boundary of D. M. ^ iL ê. compact operator from X
to X and if 0 ̂  (I - T) (3D) , then the Leray-Schauder degree

dCl - T,D,Q] satisfies two properties.

(4.8) If dCl - T,D,0] f 0, then there is an x e d for which
(I - T)(x) * 0. (Note this property implies the existence

of a fixed point for T.)

(4.9) Invariance under homotopy : If. H(t) is a homotopy of compact
transformations on D and if for all x e 3D and for all 

t E [0,1], (I - H(t))(x) f 0, then for all t e [0,1] the 

degrees d[I - H(t),D,0] exist and have the same value.

For a discussion of local degree theory and for proofs of the 
above propositions, see [11]. We now prove Theorem III.4.1.

PROOF OF THEOREM III.4.1. We begin with I - G. First observe
that 0 E (I - G)(X) if and only if G has a fixed point. We will

show that G satisfies the Leray-Schauder condition on 3D where 
D “ (x ; H X H < R) for an appropriate choice of R > 0.

By hypothesis ||| G ||| < 1, so for e - 1 - | | | g | | | > 0 there 

exists an R^ > 0 for which
(4.10) |[G x  J < ( 11 I G 111 + E ) Jx H for all Jx I > R^.

So choose R ^ R^ and let D be as defined above. Suppose for x e 3D

that Gx - 0 ■ X(x - 0). Since Jx J ■ R, clearly (4.10) holds. So 

substituting Gx » Xx into (4.10) gives

(4.11) Ul- |xi < ( III G III + E ) jjxll

Since |x | > 0 ,  divide (4.11) through by || x J to get
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\X\ < III G III + e - 1.
So clearly X < 1 and G satisfies the Leray-Schauder condition.

Hence there exists a fixed point of G, giving the result.

How let D = B(0;R) be the open ball centered at 0 of radius R. 
Define H ; C0,l3 -»• {compact transformations from D into X} by 
H(t)(x) “ t(I - F + G)(x). Then H(t) defines a homotopy between the 
zero operator and I - F + G. We will verify that H(t) satisfies the 
conditions of (4.9); this will suffice to give the desired conclusions.

To see why, observe that I-H(O) “ 1 - 0 * 1 ,  where 0 is the zero 

operator. Then by (4.1) it follows that dCl - H(0),D,0] “ + 1. So 

an application of (4.9) gives that
0 1 - dCI - H(0) ,5,0]

“ dCl - H(1),D,0]

« dCl - (I - F + G),5,03 

“ dCF - G,D,03.

Hence (4.8) implies the existence of an x e D for which (I - H(l))(x) * 0. 

But this translates to (F - G)(x) “ 0. Thus 0 e (F - G)(X), making 
F - G surjactive as desired.

We must therefore verify each of the following:

(4.12) H(t) : 5 -*■ X is compact for every t e [0,1];
(4.13) H is a homotopy of compact transformations on 5; and
(4.14) 0 ̂  (I - H(t))(dD) for each t e [0,13.

First observe that hypotheses (4.4) and (4.6) imply that I - F + G
is a compact operator. Certainly I - F + G is continuous since its

constituent parts are continuous. Now let {x^} be a bounded sequence

in D. Then for each t e [0,13, (H(t)(x )} = {t(x - Fx + Gx )}.n n n n
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Since G is compact by (4.4), there exists a subsequence (x^'} for
which (Gx^'} converges to some y e X. Now by (4.6) I - F Is compact,

and since (x^'} Is necessarily a bounded sequence Itself, there Is a
subsequence {(x ')'} ■ {x for which (I - F) (x ") -*■ z e X. (It Is n u n
worth notice that Gx "  y.) Hence x ' ' - Fx ”  + Gx ”  -*• z + y e X.n n n n
Since t t [0,l], It follows that t(I - F +  G)(x^” ) +  t(z +  y) e X 
as well. Thus (H(t)(x^)} Is precompact, establishing (4.12).

To see (4.13) let e > 0 be given and let M be an arbitrary 
bounded subset of D, Then there exists an R (< R) such that 

|x H < R for every x e M. So by (4.7) jjx - Fx + Gx |] < R for every 

X E M. Choose 6 ■ e(R)~î Then “ t̂ l < 6  Implies

HH(tj^)(x) - H(tg)(x) I “ H tj(x - Fx + Gx) - tgCx - Fx + Gx) |

= |tj - tgl'lx - Fx + Gx H

< e (R)"^(R)
■ E.

So by definition, (4.13) Is valid.
Finally, let x e dD; then Hx H ■ R. Since for t e [0,1],

(I - H(t))(x) ■ X - H(t)(x) ■ X - t(x - Fx + Gx), taking the norm of
both ends and applying the triangle Inequality gives

(4.15) Ü (I - H(t))(x) H “ II X - t(x - Fx + Gx) j]

>||x|| - t | | x - F x  + Gx!| 

- R - t | | x - F x  + Gx||.
By (4.7), H X - Fx + Gx Ü < R, so (4.15) becomes

I (I - H(t))(x) II > R - tR - (1 - t)R.

As t ranges from 0 to 1, (1 - t)R ranges from R to 0. So for
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every t e [0,1], j] (I - H(t))(x) H > 0. Therefore, (I - H(t))(x) f 0 

for all X e dD. This establishes (4.14) and concludes the proof of 

Theorem III.4.1. ■

We end this section by remarking that the use of analytical 

methods of proof such as the application of modified Newton iterates 
used in the earlier sections failed to give any conclusions about our 

compact perturbation problem. Thus we resorted to topological tech
niques to derive our result.



CHAPTER IV 
APPLICATIONS TO ACCRETIVE OPERATORS

In this chapter we prove a version of Theorem II.3.3 for operators 

of the accretive type. We begin with several definitions and facts

about accretive operators that will prove useful in our result.
X* X*Let X be a Banach space and let J : X 2 , where 2 is

the power set of the dual space of X, be defined by

J(x) - {j E X* : < x,j > - Hx R ̂  - Ü.1 Ü^>-
Here <• ,*> denotes the "duality pairing"; that is, for x e X and 

j E X*, < x,j > ■ j(x). An operator A : X X is accretive if for each 
x,y E X, there is a j e J(x - y) for which < Ax - Ay,j > > 0. Since 

the operators P for which P - wl are accretive have important appli
cations to a wide range of nonlinear problems arising both in ordinary 
and partial differential equations, there has been considerable 
interest in mapping theorems for operators of this type (see, for 

example, C3Ü, ClO], [26], [2.7], [37]). Our theorem for accretive 

operators belongs to thie latter class of results.

THEOREM IV.1.1. Let X be a Banach space, P be a continuous

mapping from X to itself and c : [0,») -*• (0,»> be a continuous 

nonincreasing function for which c(u)du » <». Suppose for each 

x,y E X that there is a j e J(x - y) for which

42
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(1.1) < Px - Py, j > > c(max (I x H , H y l| }) | x - y | ̂ .

Then P ^  £  homeomorphiem of X onto X.

An earlier version Theorem IV.1.1 appears in [3], Theorem 4.11, 

where It is assumed that P is locally Lipschitzian and where (1.1) 

holds locally. Theorem IV.1.1 is an immediate consequence of Theorem

II.3.3 and the fact that P is an open mapping, the proof of which
will follow.

THEOREM IV.1.2. Let X be a Banach space, P be a continuous 

mapping from X to itself and c : CO,®) -*• (0,®) be a continuous

nonincreasing function for which /"c(u)du ■ ®. Suppose for each

x,y c X there is a j e J(x - y) for which
(1.2) < Px - Py, j > > c(max{ | x | , j| y j] }) j] x - y |
Then P is an open mapping of X into X.

Before proving this latter result, we prove Theorem IV.1.1 
assuming Theorem IV.1.2.

PROOF OF THEOREM IV.1.1. To see that P is onto, fix e > 0 and

set c(u) ® c(u + e). Then by (1.1), if j] x - y Ü < e, then
(1.3) H Px - Py 11% - y H > < Px - Py, j >

> c(max{ Hxll, i y H )  i x - y | ^ .
Now observe that | x - y | < e implies 5 y i < 1 x 1 + e. So if
max{ ixl, iyl) “ ix|, then |y| <|x|I < H x |  + e , while if

®ax( Ixl, ly|} - | y | ,  then |x| < l y |  < 1 x 1  +c. So in either

case c(max( | x | , | y | ) ) > c ( l x |  + e), since c is nonincreasing.
Hence (1.3) becomes
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I p x - P y f l ' l x - y ü  ^  c ( î i x l  +  E ) l x - y l ^ ,

and so
i P x - P y H  ^ c ( ! x i ) l x - y ! l .

Thus (3.9) of Theorem II.3.3 follows from (1.1) and P is a surjaction.

Relation (1.1) clearly implies that P is injective since j is 
a linear functional and since c is nonzero for all u in the domain 

of c.
Finally, let U be open in X, the range space of P  ̂ : X -» X. 

Then since (P )̂  ̂ = P, it follows that (P S  ^(U) * P(U) is open. 

Thus P  ̂ is continuous, completing the proof. ■

We now proceed to verify that P in Theorem IV.1.1 is an open

mapping. The techniques involved are unrelated to those in the

previous chapters; thus we present the material separately. The

methods rely heavily on ideas of K. Deimling Cl2] and R.H. Martin [27].
Before beginning the actual proof we collect some more facts that

will be of later use. If A : X X is continuous and accretive, then
the initial value problem

Û “ -Au u(0) ■ X

has a unique solution u(t,x) on Co,*) for all x e X (see, for
example, Theorem 6.1, p.247 of [27]).

If X is a Banach space we can define for x,y e X

[%,y] » lim t"^{ | x  + ty H -  Ü x I } 
t+0

and

m [x,y] » lim t~^{ j| x + ty H - | x i > 
t+0

It is routine to verify that for each x e X, j e J(x) and each y e X
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I X ü • m_ [x,y] < < y,j > < H x !1 • m_j_ Cx,y]

and
m_ [x,-y] » Cx,y].

We next present three lemmas which we will use in the proof of 

Theorem IV.1.2. For x e X, take u(t,x) to be the solution to the 
initial value problem above. We will examine the asymptotic behavior 
of the solution. The first two lemmas are extensions of well-known 
facts about accretive operators, and the proofs are based upon that of 
Theorem 6.1, pp. 247-248 of [27].

LEMMA IV. 1.3. H ̂ -u(t,x) ]] < |]Ax]|-exp{ -/*'c{ jj u(s,x) j] )ds). 
dt °

PROOF. Fix h ̂  0, and for t ^ h define p(t) ■ üu(t,x) - u(t-h,x) H .

Then for t ^ h, the upper negative derivate p'(t) of p(t) is

given by

p'(t) ■ lim 8 ^fp(t) - p(t - s)]
8 + 0

“ lim -B“^[p(t - s) - p(t)].
8 + 0

Since p(t - s) - p(t) = I u(t - s,x) - u(t - h - 8,x)i —  üu(t,x) - u(t-8,x) II , 
adding and eubtracting u(t,x), u(t - h,x) and 8(Au(t,x) - Au(t - h,x)) 

inside the first pair of norms and then applying the triangle inequality 
yields

Pl(t) < m_ Cu(t,x) - u(t - h,x), -(Au(t,x) - Au(t - h,x))]

+ lim Us ^fu(t - s,x) - u(t,x)] - Au(t,x) S 
s + 0

lim Us Cu(t - h - s,x) - u(t - h,x)] - Au(t - h,x) I), 
s + 0
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Since the last two terms vanish by the initial value problem (u » -Au), 
p/(t) < -m^Cu(t,x) - u(t-h,x), Au(t,x) - Au(t-h,x)]

■ - H u(t,x) - u(t-h,x) |'*^< Au(t,x) - Au(t-h,x), j >

< - H u(t,x) - u(t-h,x) H ^c(max( H u(t,x) | , || u(t-h,x) | )) * 
* I u(t,x) - u(t-h,x)

- -c(max {H u(t,x) | , R u(t-h,x) R }) p(t).

Multiplying this differential inequality through by
exp{^^ c(max {|u(q,x) R , R u(q-h,x) R })dq}

gives

f Ut )  ■ [p(t)exp{^^ c(max {Ru(q,x) R , R u(q-h,x) R })dq}]^ < 0 

for all t ^ h.

If we can show that f(t) < f(0) for all t > 0, then the proof 

will be complete. To this end let c > 0 be arbitrary and define 

g(t) - f(t) - Et. Then g/(t) * f^(t) -e < - e for all t. Thus

lim -8 ^Cg(t-s) - g(t)] <  -E. 
s + 0

Now fix T > 0 and set S ■> (t e Co.TÜ : t <  s < T implies 

g(s) > g(T)}. Then it is straightforward to verify that 
S is closed and

if t e s  and t > 0, then there is a 5 > 0 for which
t - 6  E S.

Finally, let a » inf S. Since S is closed, o e  s .  Then o " 0,
for if o > 0, there is a 6 > 0 for which a - 6 e S, a contradiction.

Therefore g(t) < g(0) for every t > 0. Then f(t) - gt < f(0) 

as well, and since e is arbitrary, f(t) < f(0) as desired. Thus
p(t) exp{ ^  c(max{ j|u(q,x) \\ , R u(q-h,x) R l)dq} <

p(0) exp{ c(max{ Ru(q,x) R , Ru(q-h,x) R})dq}
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Dividing by h and letting h decrease to zero gives the result. ■

Since the proof of the following lemma is completely analogous to 

that of Lemma IV.1.3, we only sketch it.

LEMMA IV.1.4. |u(t,x) - u(t,y) Ü < t|x - y Hexp{-/*^ c(max{ Hu(s,x) | ,*

* |u(s,y) It })ds .

PROOF. Fix h ^ 0  and for t > h  define p(t) ■ ||u(t,x) - u(t,y) jj.

Proceeding as in the previous lemma, it follows that

p^(t) ” lim -8~^ [p(t - s) - p(t)] 
s + 0

< m_ fu(t,x) - u(t,y), -(Au(t,x) - Au(t,y))3

< -c(max( iu(t,x) jj , ||u(t,y) |l)»p(t).
Solving this differential inequality gives the result. ■

LEMMA IV.1.5. Let g : C0,«) + CO,») be a continuous nonincreas

ing function for which / g(s)ds “ * , and let 6 > 0. Then
(1.4) $ solves the initial value problem

(*) * = 6 - g(s)ds *(0) = 0 

if and only if * solves the initial value problem
(**) *'(t) = 6exp{ g(*(s))ds) *(0) = 0;

(1.5) ^  M(6) > 0 satisfies 6 - g(s)ds, then all solutions to

(*) satisfy $(t) K M(6); and

(1.6) the problem (*) has a unique solution on CO,*).

PROOF. First observe that the Picard Existence Theorem implies 

that (*) has a unique solution * since the function F(y) = g - g(s)ds
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Is Lipschltz continuous. To see this use the fact that g is contin

uous and nonincreasing to get for x < y that
|F(x) - F(y) I - g(s)ds f

< g(x) ||x - y Ü

< 8(0) |x - y I.
Now let C0,o) be the maximal interval of existence for ÿ . In view 

of (*) $'(t) is differentiable, and so (|i"(t) - -g(i|i(t))*' (t) ; that
is, *''(t) + g(*(t))i|)'(t) * 0. Multiplying this equation through by 

exp{ ^  g(<ti(s))ds} and integrating the resulting equation

^  Cexp{ g($(s))ds^(|»'(t)] ■ 0

from 0 to t gives that * solves (**).
For the reverse implication of (1.4) let * solve (**). (Note

there is at least one such solution since the solution of (*) solves

(**) as well.) By (**), f'(t) is differentiable and 
*"(t) - -6g($(t))exp{ g(f(s))ds}

- -g(f(t))f’(t).

Integrating both sides from 0 to t gives that
f '(t) - 6 - -g(f(s))f'(s)ds,

and performing the change of variable u = f(s) yields that f 
solves (*).

Now, to show (1.5), let M(6) > 0 satisfy 6 ■ g(s)ds and’ o
let * be a solution to (*). Then (**) implies $'(t) > 0 and (1.4)

implies *'(t) « 6  - ^^^g(s)ds. Thus, since g is nonincreasing,o

0 < *'(t) - 6 - ^*'^g(s)ds * /^^^^g(s)ds - ^^^g(s)ds = /**^®^g(s)ds.o o O
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Therefore *(t) < M( 6) .
Finally, (1.5) shows that  ̂ is bounded on P,a). and so * ex

tends to C), , giving ( 1.6) . ■

We now prove Theorem IV.1.2.

PROOF OF THEOREM IV.1.2. For w e X it suffices to show that if 

6,e > 0 are sufficiently small, then B(Pw;eÔ) c P(B(w;e)). So for

6 > 0  take e(6) to be the number in (0,5) such that if |]w - x | < e(5),

then UPw - Px H < (1 - e)5. Let M(5) be the unique solution to the 

equation ^  c(s + e(6) + ||w |)ds * 5 . Now choose 5 so small that

(1.7) 6 - c(M(6) + e(6) + ||w j]) <0.

We will show for such a 5 and e ■ e(5), that B(Pw;e6) = P(B(w;e)).
So fix 2 e B(Pw;e6) and set Ax = Px - z. Note that (1.3) holds 

with A replacing P since
< Ax - Ay, j > - < Px - 2 - Py + 2, j > - < Px - Py, j >.

Also if Jx - w I < e, then ||Ax || <{|Px-Pw|] + ||Pw-z|| < ( 1 - e)6 +
e6 ■ 6 ,

Fix X E B(w;e) and consider the system

Û * -Au u(0) - x; 
let u(t,x) be its solution. Set g(t) - c(t + e + ||w j]), a continuous 
nonincreasing function, and let * be the solution to

(**) ÿ'(t) ■ 6exp{ g(4>(s))ds} *(0) ■ 0.
Set

so that

*(t) - 6/^ exp{ -/® g( |u(p,x) - X H)dp}ds 

= 5exp{ g( Iu(p,x) - X I )dp}.



50

By Lemma IV.1.3 and the initial condition u(0,x) = x,

Hu(t.x) - X 1 =1 (u(s,x))dell

< /*■ ltd u(s,x) H ds
ds

^ H A x |lexp{ c( |u(p,x) |[)dp}ds

< 0/̂ *̂  exp{ c( |u(p,x)i| )dp}ds.
(1.9)
By the triangle inequality, ||u(p,x) | < ||u(p,x) - x | + |x - w || + |]w | 

<|u(p,x) - x H + e + | w H  and since c is nonincreasing, it follows 

that
-c( j|u(p,x)| )< -c( Ju(p,x) - X H + E + |]w p

“ -g( iu(p,x) - xl ).
So in particular,

|u(t,x) - X H <6/^ exp{ -/® g( fu(p,x) - X pdp}ds 

■ <P(t).
Since g is nonincreasing, applying g to this inequality gives 

-g( |u(t,x) - X I X  -g(t|»(t)>,

and thus

*'(t) < 6exp{ g(*(p))dp}.

Hence i(<(t) ^ *(t). Thus, by transitivity,

(1.9) iu(t,x) - X H < *(t)
when IX - w i < c.

We obtain slightly more information from the above argument if 

X * w. First redefine *(t) » exp{ g( |u(p,w) - w | )dp}ds 
so that

i)»' (t) » e6exp{ g( H u(p,w) - w f )dp} .
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Then by Lemma IV. 1.3 and the fact that ||Aw|[ < efi , it follows that

I u(t,w) - w|| “ 1 ^  u(s,w)dsll
ds

< c(!] u(p,w)j] )dp)d8.

By the triangle inequality,

|u(p,w) H <  |u(p,w) - w| +  H w Ü <  J u(p,w) - w !1 +  e +  I w !! 
and so

-c( Uu(p,w)!I )  <-c( |u(p,w) - w I I  +  e +  gw | | )
“ -g( |u(p,w) - W |).

Thus, |u(t,w) - w| < exp{ g( gu(p,w) - w g)dp}ds = i|)(t).

Applying g yields -g( gu(t,w) - wg )< -g(#(t)), and thus

i)i'(t)<E6 exp{ g(i(»(p))dp}.

Now let Ç(t) be the solution to

(1.10) Ç'(t) = edexp{ g(Ç(8))dsJ.

Then <|/(t) < G(t), and thus gu(t,w) - w g < ç(t) as well.

Since 0 < e  < 1  is small, cC(t) < g(t), so Ç(t) < e ^Ç(t). 

Applying g gives that -g(Ç(t>) < -g(e”^Ç(t)). Thus (1.10) implies

e”^Ç'(t) “ 6exp{ g(Ç(s))ds}

< 6exp{ g(e”^Ç(s))ds}, 

and 80 comparing the solutions Ç and * gives that e ^E(t) < $(t); 
that is, Ç(t) <ei)>(t). Hence
(1.11) |u(t,w)-wg < <|»(t) < Ç(t) < c(|)(t), 
and we have a better estimate than when x f w.

Hence, for x,y e B(w;e), (1.8) and (1.9) together imply that
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Hu(t,x) I < *(t) + e +1 wjl .

Note that the right-hand side is independent of the choice of x. Now 

apply c to get
-c( |u(t,x)| )< -c(*(t) + e + Jw |)

- -g($(t)).
Applying this observation and Lemma IV.1.4 gives
(1.12)|u(t,x) - u(t,y)H < Jx - y |exp{ c(max{ |u(s,x) J, |u(s,y) |})ds}

< Hx - y ||exp{ g(*(s))ds}

for x,y e B(w;c).
Now since the exponential factor is less than or equal to 1, and 

since |x - y J < c  <1, it follows that {u(t,*)} is a semigroup of 

contraction mappings. Finally, this semigroup leaves 6(w;e) invariant : 

for X E B(w;e), it follows from (1.11) and (1.12) that

(1.13) I|u(t,x) - w I <!ju(t,x) - u(t,w) H + Hu(t,w) - w I

< eexp{ g((|)(8))ds} + e*(t)

< Eô"^(^'(t) + e*(t)

- Ed"̂ (*'(t) + 6*(t)).
If f(t) “ $'(t) + 6*(t), then f(0) ■ 6 by Lemma IV.1.5, and 

f'(t) - *''(t) + 6*'(t)

- -g(*(t))$'(t) + 6$'(t)
- *'(t) [6 - c(4(t) + E + H w J )]
^ $'(t) [6 - c(M(6) +E+[|w|I)].

By (1.7) the last quantity is nonpositive, and so f'(t) < 0 for t > 0; 

thus f(t) 4 5 for t > 0. Hence (1.13) becomes

I u(t,x) - w | < E  if II X - W  H ^ G .
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Hence the Contraction Mapping Theorem of Banach-Cacciopoli implies 

the existence of a unique fixed point x^ e B(w;e) for each u(t,«) with 

t ^ 0. Indeed, x^ = x^ for every s and t. To see this, let 
u(t,x^) ■ x^ and let s ^ 0. Then the semigroup property implies

u(s,x^) - u(s,u{t,x^)) - u(s+t,x^) ■ u(t,u(s,x^)).

Thus u(s,x^) is a fixed point of u(t,«), and by uniqueness it follows 

that u(s,x^) * x^. But, x^ is the unique fixed point of u(s,»), and 
so Xg ■ Xj. by uniqueness. So call this unique fixed point x.

Since Û “ -Au, it follows that ^  u(t,x) « -Au(t,x) - -Ax.
dt

Then since u(t,x) is constant, -Ax » 0. Thus Px - z * 0 by defini

tion of A. Since z e B(Pw;e6) was chosen arbitrarily, we have showed 

that B(Pw;e6) c P(b(w;e)), establishing that P is an open mapping. ■

Consequently, the proof of Theorem IV.1.1 is complete.
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