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ABSTRACT

Conditions for e-optimality of a general class of absorbing 

barrier and strongly absolutely expedient learning algorithms are 

derived. As a consequence, a new class of learning algorithms having 

identical behavior under the occurrence of success and failure are 

obtained. An application of learning automata to the priority assign­

ment in a queuing system with unknown characteristics is given.
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LEARNING AUTOMATA AND ITS APPLICATION TO PRIORITY ASSIGNMENT 

IN A QUEUING SYSTEM WITH UNKNOWN CHARACTERISTICS

CHAPTER I

INTRODUCTION

1.1 Learning System in Perspective

Learning has been studied by the psychologists for a long time,and 

in the last three decades by engineers and computer scientists. The aim 

of the psychologist or the mathematician has been to fit a mathemat­

ical model to the observed behavioral changes in an animal. A variety 

of mathematical models have been developed for this purpose. The work 

by Bush and Mosteller [Bl], Luce [LI], Norman [Nl], to mention a few, 

belongs to this category. The aim of the engineer and computer scien­

tist, on the contrary, in the study of learning systems has been to 

build machines or write computer programs, perhaps in the context of 

pattern recognition or artificial intelligence, to learn a given task. 

For example, to build a machine to play chess, checkers, learn to read 

the letters of the English alphabet and so on (Fu [F1,F2], Tsypkin [T3], 

Mendel [Ml], Waterman [Wl], Findler [F3], Samuel [SI]).

Learning is defined as any relatively permanent change in behavior 

resulting from past experiences and a learning system is characterized 

by its ability to improve its behavior with time, in some sense tending 

towards an ultimate goal [N3]. The concept of learning makes it possible

1
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to design systems which can gradually improve their performance during 

actual operation through a process of learning from past experience. 

Information feedback is inherent in learning. The concept of learning 

necessitates the need for a memory to store information about past ex­

perience which may be needed in the future. Thus the characteristic 

feature of learning is accumulation and usage of current information to 

eliminate the uncertainty due to insufficient a priori information and 

for the purpose of optimizing a certain performance criterion.

Usually the learning system uses information regarding the correct­

ness and incorrectness of its response. This information is either de­

rived by evaluation of the outcome of the selected course of action or 

else may be supplied by an external source called the teacher or super­

visor. So, depending on whether or not external supervision is present, 

it is possible to distinguish two different types of learning systems: 

supervised learning and unsupervised learning. Unsupervised learning 

occurs in the case when the system does not receive any outside infor­

mation except signals from the environment, and supervised learning 

occurs in the case when the system receives additional information from 

the outside during the learning process. In learning with supervision, 

it is assumed that at each instance of time it is known in advance the 

desired response of the learning system. We use the difference between 

the desired and actual response, that is,the error, to correct its behavior. 

Unsupervised learning, in general, is related to the problem of induction.

One of the most important principles in all learning theory is the 

law of reinforcement. This law governs how rewards and punishments pro­

duce changes in behavior. Reinforcement learning is a process by which
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the response of a system is strengthened by reward and weakened by pun­

ishment. In the former situation, positive reinforcement occurs and 

increases the response probabilities, whereas in the latter situation 

negative reinforcement occurs and decreases the response probability. 

Reward and punishment represent favorable and unfavorable reactions to 

response, respectively.

In System Theory and Computer Science, learning has been imple­

mented in various ways :

1. Heuristic programming technique
2. Bayesian technique
3. Inductive inferential technique
4. Stochastic approximation methods
5. Automata models.
In very complicated learning situations such as games of chess, 

checkers and programs for proving theorems, it is difficult to formulate 

the corresponding mathematical models. Heuristic approaches have been 

applied to this type of learning problem. A heuristic method is a rule 

of thumb, strategy, trick or any other kind of device which does not 

have a logical structure but which often leads to shortcuts. Heuris­

tic methods emphasize achieving results that are good enough rather than 

optimal. Except for some introductory efforts [W1,F3], at the present 

time heuristics are all programmed in artificial intelligence. In other 

words, it is not the machine that discovers and selects the rules which 

are used in problem solving programs. A much better situation would be 

the one in which the heuristic processes are automated. Learning pro­

grams, initially inefficient and possibly even random in their actions 

would gradually formulate more and more heuristics on the basis of
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experience. A particular procedure which has received the most 

attention learns to make decisions based on the values of weighted sums 

of factors related to that decision. Examples of this technique are 

the Samuel Polynomial, Signature tables and Move Phase table [Gl].

Another machine learning technique which can be applied to the problem 

of learning heuristics is suggested by D. A. Waterman [Wl]. Heuristics, 

represented as production rules, are created, evaluated and modified 

on the basis of information supplied by human or another program (ex­

plicit learning), or hypothesized during the normal course of problem 

solving (implicit training).

Bayes’theorem P(a (b) = P(A) P(b |A)/P(B) is central to the 

Bayesian approach to learning. (P(A), P(B), P(A|B) and P(B|A) are the 

probability of A, probability of B, probability of A conditioned on B, 

and probability of B conditioned on A, respectively.) This theorem 

offers guidance for modifying judgments in the light of new experience. 

P(A) is interpreted as the probability of a particular state of nature, 

future event or hypothesis, before obtaining additional information; 

that is, P(A) is the a priori probability of A. P(A|B) is interpreted as 

the revised value of this probability after receiving additional informa­

tion and is known as posteriori probability. So, the value of P(A) can 

be learned by repetitive application of Bayes' rule.
The problem in inductive inference is to detect (learn) 

regularities and common patterns in a body of data and use them for 

prediction. All induction problems can be shown to be equivalent to 

extrapolating a long sequence of symbols [S3, S4]. This sequence con­

tains all data to be used in the prediction. Devising a grammar for
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a language from a given set of strings (of symbols) from that language 

is an example of inductive inference. The constructed grammar can be 

used to determine if an arbitrary new string is a member of the language 

and also generates new strings belonging to that language.

The goal of many adaptive or learning systems is to find or learn 

the value of certain parameters which minimize a prespecified criterion 

function. The stochastic approximation method is a recursive scheme 

which can be applied for estimating the unknown parameters or to re­

cover the unknown underlying distribution function when, due to the 

stochastic nature of the observation, measurements are subjected to 

random error.

Learning automata, the subject of this dissertation and stochas­

tic approximation represent two related approaches to the learning 

problems; though both approaches introduce iterative procedure, up­

dating at every stage is done in the parameter space in the stochastic 

approximation and probability space in automata models.

1.2 Learning Automata

The concept of learning automata was introduced by Tsetlin [T2]. 

He investigated the learning behavior of finite automata under sta­

tionary random environment and showed that finite automata which have 

appropriate properties "behave well" if memory capacity tends to 

infinity. A great deal of work in the Soviet Union and elsewhere has 

followed the trend set by this source paper. The work of Tsetlin was 

later followed in the Soviet Union by various authors : Krylov [Kl],

Krinski [K2] and Ponomarev [PI]. However, it is practically impossible 

to build automata with unbounded memory capacity. As an alternative.
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Varshavskii and Vorontsova introduced variable structure automata [VI]. 

In this setup, state transition probabilities or state probabilities of 

the finite automata is updated in accordance with reinforcement scheme 

or learning algorithm.

The theory of learning automata is concerned with the analysis 

and synthesis of fixed or variable structure automata in a random en­

vironment .

Fixed Structure Automata: A fixed structure automata is a quintuple

<X,4>, a, F,G>.

I. X is the input set of the automata. The input of the auto­

mata at the instant k denoted by X(k), is an element of set 

X, This set can be either a finite set or an infinite set, 

such as an interval on the real line, then

X =  {x,, x„, ..., X } or X = [a,b]J. z n
where a,b are real numbers.

II. (j) is the set of states of the automata. The state of the auto­

mata at any instant k, denoted by (j)(k) , is an element of the 

finite set (j) = ...» (jî} (2<s<«>).

III. a is the output or action set of the automata. The action

set of the automata at the instant k, denoted by a(k), is an 

element of the finite set a = {a^, a^, ...» 0^1 (2<M<«>).

IV. The transition function F; (|)xX-»-(j) determines the state at 

the instant (k+1) in terms of the state and output at time k, 

that is,

(j)(k + l) = F[<|)(k), X(k) ].

Function F can be either deterministic or stochastic.
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V. The output function G: if)determines the output of the

automata at any instant in terms of the state at that instant, 

that is,

a(k) = G(<j)(k)).

G could be a stochastic function but there is not loss of 

generality in assuming it to be deterministic. [P2]. By 

increasing the number of states it can be readily shown that 

an equivalent automata with the same input-output can be 

realized using a deterministic mapping 6.

Remark 1.1: If the input set x of an automata contains only two

elements 0 and 1, it is called a F-model. If x takes more than two but 

a finite number of values, each with a positive probability, then we 

have a Q-model learning automata. If x takes on values in a continuum, 

say for example xe [0,1], then we have an S-model learning automata. 

Remark 1.2: The next state transition function F, may be specified by a

transition matrix [f̂ ]̂ for each X e x .  K  these matrices contain only the 

elements 0 and 1, the automata is a fixed structure deterministic auto­

mata. If the elements lie in the interval [0,1], the automata is a 

fixed structure stochastic automata. The input to the automata depends 

on the environment in which the automata is operating.

Remark 1.3; In a fixed structure automata the output mapping G is 

generally assumed to be deterministic. G partitions the state set <f) 

into r subsets,m^(i=l,2,...,r), such that the elements of each subset m^ 

map into the same action a^. When G is stochastic, a unique action need 

not correspond to a given state (j).

Remark 1.4: The output behavior of a learning automata for a given input
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sequence can be obtained if the transition probabilities are known. 

However, it may frequently be important to know the probability with 

which the automata is in a particular state at a given instant. These 

probabilities are known as state probabilities and an alternative des­

cription of the operation of the automata can be given in terms of 

these probabilities. At any time instant k, the automata being in 

state (j)(k) = ĵ (k) is governed by the probability distribution ir̂ (k)

such that

s
I TT. (k) = 1 for all k.
1=1

TLet iT(k) = (TTĵ (k), TTgCk), ..., ir̂ Ck)) , where T denotes the transpose

and

TT̂ (k) = Probt<j)(k) = 4>̂ (k)],

One can also consider the action probability vector P(k) where the'i^^ 

component p^(k) is given by

p^(k) = Prob[a(k) = a^].

If G is deterministic, then we can have

Pĵ (k) = I (k).

If G is the identity mapping, there is a unique state associated with each 

action. In this case, the state probability uniquely determines the 

action probability.

Variable Structure Automata; In fixed structure automata,the proba­

bilities of state transitions are fixed. Variable structure automata 

updates either the state transition probabilities or equivalently the 

state probabilities on the basis of the output from the environment.
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The automata, in this case, is represented by the sextuple< x, <J>, o,

p, G, T>, where x is the input set, <j) is the set of states, a is the

action set, and p is the state probability vector governing the choice

of the state at each stage (i.e., at each stage k, p(k) = (pj^(k), Pg(k), 
T..., Pg (k) ) ), and G is the output mapping. In this dissertation, G is 

taken to be deterministic and one-to-one (i.e., the number of actions 

is equal to the number of states; state and action are regarded syno­

nymous) . T is called an updating scheme or learning algorithm which is 

used to modify the state probability vector, that is, it generates p(k+l) 

from p(k).

Environment : The environment in which the automata operates is repre­

sented by the triple < a, x, D>. The environment has random response 

characteristics. It has input a(k) e {â ,̂ Og, •••» and output

belonging to the set x. In a P-model situation, where x(k)e{0,l} the

environment is characterized by the success probability vector D =

(d̂ , d^, ..., djj) where

d^ = Prob[x(k) = 1 | a(k) = a^] .

If the d/s don't depend on k, the environment is said to be stationary, 

otherwise it is nonstationary. If E^, Eg, ..., E^ are stationary en­

vironments which can themselves be considered to be states of a Markov 

Chain, we have the- Markovian Switching Environment [T2] . If the d^(k) 

vary periodically with time, the environment is called the Periodic 

Environment [T2][N7].

In the P-model which is our interest, when the automata is in 

state <j)̂ (k) at time k, the random variable x(k) takes only two values 

x(k) = 1, known as the success input with probability d^ and x(k)=0
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known as the penalty input with probability = 1-d^. In other words, the 

output x(k) of the environment is a random variable having a two-point 

binomial distribution

f[x(k) I *(k) = (j)̂] = d^(^) ^(l-x(k)).

Let

d̂  ̂> dg > d^ ... >d^ (1.1)

and d^e (0,1) for all i = 1 to M. For them let D = (d^jd^j —  ,d^)- 

It should be noted that the above assumptions are not really restric­

tive since when there is more than one state with the same d^ we can 

merge these states together.

So far we have considered the structure and properties of the 

environment and automata in Isolation. Figure (1) represents a feed­

back connection of an automata and an environment. The actions of the 

automata form the inputs to the environment and the responses or out­

puts of the environment in turn are the inputs to the automata.

Starting from an initial state $(0), the automata generates the corres­

ponding action cx(0). The response of the environment to this input is 

x(0) , which in turn changes the state of the automata to This

sequence of operations is then repeated to result in a sequence of 

states, actions and responses of the environment. In the case of 

Variable Structure Learning Automata, the action probability vector 

p(k) (or the state transition matrix) gets updated at each state 4)(k). 

Norms of Behavior: To judge the learning process objectively, it is

necessary to set up quantitative norms of behavior. One quantity use­

ful in judging the behavior of a learning automata is the average 

probability of success at time k given by
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x(k)

Automata

Environment

=(k)

Learning Automata

Fig. 1.1
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n(k) = E[x(k) lp(k)] = Prob[x(k) = 1 lp(k)]

M
= % Prob[x(k) = 1 I p(k), a(k) = a.] Prob[a(k) = a^l
1=1 ^

M
= I d p (k).
1=1 ^

If no prior Information Is available, there Is no basis on which the 

different action a^(i=l,...,M) can be distinguished. In such a case, 

one would choose each action with equal probability (I.e., by pure 

choice). In this case the value of average success Is denoted by rjg 

and Is given
1 “

1=1
The use of the term learning automata can be Justified If the average

success Is made greater than tIq , at least asymptotically. Such a

behavior Is called expedient and was Introduced for the first time by

Tsetlin [T2]. Tsetlin defined It In the context of deterministic

learning automata. When a learning automata Is expedient It only does

better than the one which chooses actions In a purely random manner.

Definition 1.1; A learning automata Is called expedient If

Limit E[n (k)3 > T)g . 
k -)•<»

Remark 1.6; In the case of fixed structure automata of Tsetlin, Ti (k)

and hence n(k) tends to be constant with probability one and

Limit E[n(k)]= Limit ^(k). 
k->-oo k->-oo

Definition 1.2; A learning automata Is called optimal If

Limit E[n(k)] = d̂  . 
k^oo

From the definition of optimality It Is evident that optimality
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implies that the action associated with the maximum probability d^ is 

chosen with probability one. While optimality appears very desirable in 

a stationary environment, it may not be possible to achieve it in a 

given situation. In such a case one might aim at a sub-optimal situ­

ation. One such property is given by E-optimality.

Definition 1.3; A learning automata is said to be £-optimal if

Limit j E[n<k)] - d j < e 
k->co ^

for any arbitrary e > 0 by a proper choice of the parameters of the 

automata.

It is possible that e-optimality holds only when the values of 

dĵ 's satisfy certain restrictions, for example, that they should lie in 

certain intervals. In such cases we have conditional e-optimal. In 

practice, the success probabilities are often completely unknown, and 

would be interested in automata which exhibit the desired behavior in an 

arbitrary environment. The performance would also be superior if the 

increase of E[ri(k)] is monotonie. These requirements are met by an 

absolutely expedient automata which is defined below.

Definition 1.4; A learning automata is said to be absolutely expedient 

if

E[n(k+1) I p(k)]> n(k) 

with probability one for all p(k) £ and for all D satisfying (1.1)

with strict inequality holding good for all p £ where

T “Sjj = {p I P = (p3̂ ,P2» • • • > 0<p^ , I^P^ = 1}

and
M

= {p I P= (p^,P2.....P^)^' 0<p^ , Î Pĵ  = 1} -
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The concept of absolute expediency was first introduced by 

Lakshmivarahan and Thathachar [L2]. Since its introduction, this con­

cept has played a major role in the analysis and design of learning 

algorithms. Absolute expediency implies that n(k) is a submartingale 

and that E[ri(k)] is strictly monotonically increasing within all sta­

tionary environment. If n(k)^ for some k, absolute expediency 

implies expediency. Furthermore, it can be shown that absolute expe­

diency implies e-optimality in all stationary random environment [L3]. 

Definition 1.5; A learning automata is said to be stronelv absolutely 

expedient if

E[n(k+1) 1 p(k)] > n(k) 

with probability one for all d satisfying (1.1) and for all peS^ with 

strict inequality holding good for all p E (S^-V^) where

Vjj = {e^ I i=l,2,...,M}

where e^ = (0,0,0,...,1,...,0) be the i^^ unit vector of dimension M.

Clea/ly, corresponds to the corners of simplex S^. is 

called the interior of and = Sjj - is called the boundary 

The concept of strongly absolutely expedient was introduced for the first 

time by Meybodi and Lakshmivarahan in [M5]. Except for the absolutely 

expedient and strong absolutely expedient, all the other norms of 

behavior are applicable to both fixed structure and variable structure 

automata. There is no absolutely expedient or strongly absolutely ex­

pedient fixed structure automata at the present time.

Learning Algorithm; Variable structure automata updates either the 

transition probabilities or the action probabilities on the basis of the 

output from the environment. It is evident from the description of the
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learning automata that the crucial factor that affects the performance 

is the reinforcement scheme (learning algorithm) for updating the 

action probabilities.

A general scheme for updating the action probabilities can be 

represented as follows:

Let ct̂  be the action chosen at time k as a sample realization 

from the distribution p(k). Then p(k+l) is defined as follows; 

p^(k+l) = p^(k)+ 0f^tp(k>]

Pj (k+1) = Pj(k)-8fj[p(k)] j # i if success occurs

and (1)
p^(k+l) = p^(k) - 0g^[p(k)]

Pj(k+1) = Pj(k) + 0gj[p(k)] j # i if failure occurs

where fj : S^+[0,1], g^ : [0,1], i,je{l,2 M} are nonnegative

continuous functions and 0 < 8 < 1 is called the step length parameter. 

The following consistency condition

(Cl)

and

(C2)

either f 

or f

f

either g 

or g

[p] : 0

[p] ^ Pj

for all p £ S.M

j ̂  i and

Ip] = I f̂ Ip]

[p] = 0 

[p] ^ Pj

for all p £ S,M

and

[p] = I g.[p]
ifi ^

for all i, j = 1,2,... ,M,implies that p(k+l) £ if p(k) does. However, 

in order to make the algorithm nontrivial and interesting either f^ = 0
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d. j. iLor gj = 0 but not both. The continuity assumption of f̂  and is one

of mathematical convenience. The fact that both f, g are nonnegative

maintains the reward and penalty nature of updating. If f^ ^ 0 but
i _ igj = 0 then (1) is called the reward-inaction algorithm, if f\=0 but

gj 2 0 then it is called the inaction-penalty algorithm, and if both f̂  

and gj are nonzero then the algorithm is called the reward-penalty 

algorithm.

Let I = {1,2,...,M} and E = {success,failure}. The learning 

algorithm (1) defines a mapping 

^ ^ ̂  ^ ̂  ’

where

p(k+l) = T[p(k), i(k), e(k)] , 

where i(k) e I denotes the action chosen and e(k)eE the event occurring 

at time k. E is called the event space, p(k) and e(k) are known as 

the state and event sequence respectively. Let T* be an extension of T 

defined as follows:

T* : SjjX (IxE)"-»-Sjj for all n> 1 ,

where (IxE)*^ refers to the n-fold cartesian product of IxE and

1) T* = T for n = 1

2 )  T * [ p , { ( i Q , e Q ) ,  ( i ^ . e ^ )  . . .  ( i ^ ^ e ^ ) } ]

— T[...T[T[T[p, ig, 6g], i^, e^] ... i^, 6^]],

where i^Ei and ej ̂  E for all j = 0,1,2,... ,n and n > 2. Define 

K: SjjX (I xE)->• [0,1] as

Prob[(i,e) [ p] = c[p, (i,e)]

and
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Prob[(i(k+l),e(k+l))|p(0) =p,(i(l),e(l)) l = 0,l,...,k] 

= K[p', (i(k+l), e(k+l))] ,

p’-=T*[p(0),{(i(0),e(0)),(i(l),e(l)),...,(i(k),e(k))}] .

K[p, (l,e)] = p^d^ if e = {success}

= p^ c^ if e = {failure}.

That is <[p,*] is the event probability distribution.

Definition 1.6: A state p G is called an absorbing state of the

algorithm T if

T[p, i, e] = p

for all (i,e)eIxE with probability one. A learning algorithm is said 

to be absorbing if and only if there is at least one absorbing state.

If the absorbing states are the vertices of the simplex the algo­

rithm is called the absorbing barrier algorithm.

The basic idea behind a learning algorithm is a rather simple 

one. If the automata selects an action at time k and success 

(x(k) =1) results, the action probability p^(k) is increased and all 

the other components of vector p(k) are decreased. For failure 

(x(k) =0) p^(k) is decreased and all the other components are increased.

Learning algorithms are generally classified either on the basis 

of the behavior of the automata using the scheme, e.g., expedient, 

optimal, etc., or the nature of mapping T. That is, the nature of the 

function appearing in the algorithm, e.g., linear, nonlinear. If 

p(k+l) is a linear function of the component of p(k), the learning 

algorithm is said to be linear, otherwise it is nonlinear. It is also
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possible to classify the learning algorithm depending on whether It Is 

an absorbing barrier algorithm or non-absorbing barrier algorithm 

(Ergodlc algorithm). The non-absorbing barrier algorithm generates a 

Markov process that Is ergodlc, whereas, the absorbing barrier algo­

rithms result In Markov process with more than one absorbing barrier. 

Initial values of action probabilities do not affect the asymptotic 

behavior In the case of ergodlc scheme, whereas In the case of ab­

sorbing barrier algorithms, the behavior of p(k) for large k Is very 

much a function of Initial values of the action probabilities. It can 

be shown [L3] that the distribution of p(k) generated by an ergodlc 

algorithm after suitable normalization Is normal; In other words. In 

the case of ergodlc algorithm p(k) converges In distribution, hut p(k) 

when generated by an absorbing barrier algorithm converges with proba­

bility one to a random vector whose range is a discrete (finite) set.

It may be noted that a systematic study of e-optlmal Ergodlc Algorithm 

Is relatively new and for the first time discussed In the book by 

Lakshmivarahan [L3]. In [L3] a time varying algorithm where 0 changes 

In time Is discussed. Analysis of this latter class of algorithm 

depends on the stochastic approximation methods.

Various learning algorithms—  linear and nonlinear, have been 

reported In the literature. The linear reward-penalty (I^_p) scheme 

Is one of the earliest schemes considered in mathematical psychology. 

The properties of this scheme have been studied In detail by a number 

of researchers In this field [Bl, VI, M4, Cl, V2]. It Is known that an 

automata using linear reward-penalty scheme Is expedient In all sta­

tionary random environment. The linear reward-inaction scheme
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is another simple linear scheme which is derived by a modification of 

the L^_p scheme. This scheme was considered first in mathematical psy­

chology [Bl] but was later independently conceived and introduced into 

the engineering literature by Shapiro and Narendra [SI, SIO]. The 

characteristic of the scheme is not to change the action probabilities 

whenever an unfavorable response resulted from the environment, 

following a favorable response, however, the probability of the action 

is increased as in I^_p scheme. Because of this property, a learning 

automata using this scheme has been called a "benevolent automata" by 

Tsypkin and Poznyak [T4j. The scheme was originally reported to

be optimal in all stationary random environment, but it is now known 

that it is only e-optimal [V3, Lll]. L„ „ and L_ _ schemes can beK“r K—1
considered as prototypes for the behavior encountered in many other 

complex schemes that have been investigated. Other possible combi­

nations such as L^_^, Lp_p and L^.p have been studied in [V5]. It is 

shown that L^_p scheme is always expedient and Lp_p is expedient only 

when an action is less penalized \dien it causes a nonpenalty response 

than the case when it causes a penalty response from the environment.

L_ _ scheme is expedient if an action is more rewarded when it produces 

a penalty than if it produces a non-penalty.

The first nonlinear scheme for two state automata by Varshavskii 

and Vorontsova [VI] was in terms of transition probabilities. This can 

be used in the action probability version of the scheme. This scheme 

is e-optimal in a restricted random environment satisfying either 

d^<l/2<d2 or d2<l/2<d^. Several nonlinear schemes which are 

e-optimal in all random environment have been suggested by Viswanthan
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and Narendra [V2], Sawargi and Baba [S6], McMurtry and Fu [M2], Fu [F4], 

and Lakshmivarahan and Thathachar [L2]. Instead of purely nonlinear 

and purely linear schemes, it is possible to combine them to get what 

is called a hybrid scheme [V5].

In [Al], Aso and Kimura extended the class of the absolutely expe­

dient learning algorithm. In the earlier works, the way of updating 

the probabilities used in selecting an action depended on reactions and 

dichotomy of actions: the selected and not selected; that is,the func­

tions that are used in updating are independent of the action chosen 

[M2, N1-N3, F4, L2, L4, S6, VI]. In [Al] updating depends on which 

action is selected as well (Algorithm (1)). Interestingly, Aso and 

Kimura called this class of learning algorithm as "Stochastic Vector 

Automata" algorithm. The class of learning algorithms represented by 

algorithm (1) is quite a general one and subsumes most of the known 

schemes available. We give below some of the early schemes in terms of 

general learning algorithm (1).

Scheme 1 (Linear Reward-inaction Scheme): In algorithm (1) if we set

fj[p] = c Pj and gj[p] = 0 for all i, j, i?^j, where 0 < c < 1, we get the 

linear reward-inaction algorithm. This scheme is e-optimal.

Scheme 2 (Beta Model): This scheme which was originally proposed by

Luce [LI] in mathematical psychology as an alternative to Bush and 

Hosteller's L^ p scheme (referred to as the a-model) can be obtained by 

setting
(b-1) p (1-p )

"j:": ■ '

i (b-1) p.
(l-p.)+bp. ’
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where b > 1. This scheme is expedient in a restricted environment. 

Scheme 3 (Vorontsova): This scheme can be obtained by setting

f^[p] = a *(p , l-p,)p̂ '*’̂ (l-p.)® ,J 1 -*■ J J

gjtp] = b 0(p^, l-p^)Pj^^(l-Pj)^ ,
where

i “ P]^) =  (|>(1“ P q^s p ^ )  -

This scheme applies only to a two-action automata. It is, however, the 

first nonlinear absolutely expedient scheme put forward, though at that 

time the concept of absolute expediency was unknown. This scheme is 

also e-optimal.

Scheme 4 (Viswanathan and Narendra): This scheme can be obtained by

setting

fj[p] = Pj[aĵ  + a2p|"*'^(l-Pj)®] ,

gj[p] = bPj®‘‘‘̂ (l-p^)®,

where the positive constants a^, a^, b are to be chosen properly to 

satisfy consistency conditions (Cl)-(C2). This scheme is absolutely 

expedient.

Scheme 5 (Lakshmivarahan and Thathachar); By setting f^ip] = &(p)Pj 

and gj[p] =0 for all i and j, i?̂  j, where 0 < A(p)<l, and assuming 

that function A(p) =0 only if p is a unit vector we get the nonlinear 

reward-inaction reported in [L2]. This scheme is e-optimal and 

absolutely expedient.

Aso and Kimura derived necessary and sufficient conditions for 

learning algorithm (1) to be absolutely expedient. Conditions on func­

tions gj and fj given by Aso and Kimura do not guarantee that is the
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only set of absorbing barriers for the automata, and so they do not 

guarantee e-optimality for the automata. At present there are a 

variety of algorithms which are e-optimal. It is interesting to note 

that almost all of these algorithms have asymmetric behavior with res­

pect to the occurrence of success and failure. It should be mentioned 

that the choice of functions f̂  and gj considered by Aso and Kimura do 

not always induce identical behavior by the algorithm (1) under success 

and failure. Very recently Herkenrath et al. [HI] have derived neces­

sary and sufficient conditions for the same class of learning algorithm 

considered by Aso and Kimura to be an absorbing barrier algorithm.

This thesis consists of two parts: theory and application. In

the first part necessary and sufficient conditions for Algorithm (1) to 

be strongly absolutely expedient are derived. As a consequence, 

e-optimality of this class of algorithm is obtained. The choice of 

functions gjtp] given in this part induce identical behavior of the 

algorithm (1) under the occurrence of success and failure. Conditions 

on functions gj[pl and fj[p] presented guarantee that V^ is the only 

set of absorbing barriers for all three types of algorithms: reward- 

penalty, reward-inaction and inaction-penalty. This is in sharp con­

trast with the properties of currently available absolutely expedient 

learning algorithm [LIO, L4, Al, S6] wherein the reward-penalty and 

reward-inaction algorithms are absorbing barrier type, but inaction- 

penalty is not. In fact, in all the inaction-penalty algorithms of 

the absolutely expedient type known so far, every state in 

is an absorbing state. The modified definition of strong absolute 

expediency is in fact motivated by the existence of the absorbing
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barrier algorithms of the reward-penalty, reward-inaction and inaction- 

penalty types. For algorithm (1) under the choice of functions given 

in part 1, if p(k) reaches the boundary of Simplex Ŝ , then p(k) will 

continue to remain in that boundary, that is the dimensionality of 

the algorithm is reduced automatically. It is shown that strong abso­

lute expediency leads to e-optimality in all stationary random environ­

ment. In part 2 of this thesis an application of learning automata to 

the priority assignment in a queuing system with unknown characteris­

tics is given.

Mathematical tools needed for the analysis and design of learning 

automata are Martingale theory and theory of Markov process which are 

readily available in the literature [Nl, Dl, 13]. Pioneering work for 

the analysis of variable structure learning automata has been done by 

Norman [Nl] for the  ̂scheme for the two state automata, and later 

extended by Lakshmivarahan and Thathachar in two directions—  to non­

linear schemes and to multi-state automata. The recent book by 

Lakshmivarahan [L3] provides a comprehensive treatment of this subject. 

The state sequence of fixed structure learning automata operating in a 

stationary random environment is a homogeneous Markov chain which is 

ergodic. The Markov chain corresponding to the variable structure 

learning automata is non-homogeneous. In the case of variable structure 

learning automata which updates its action probabilities, the action 

probability vector p(k) may itself be regarded as the state of the 

Markov process at instant k. The state space is now the unit simplex 

of dimension M (which is the same as the number of actions of the auto­

mata) . For example, in a two action automata the state space reduces
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to the unit interval [0,1] on the real line. If p(k+l) depends on p(k) 

and not explicitly on k, choice of this state space makes p(k) a homo­

geneous Markov process having a continuous state space but operating in 

discrete time.

Learning automata has found application in a number of situations 

such as: hypothesis testing [L9], game theory [L5, L7, L8, V4], pattern

recognition [L5] and parameter optimization [S7, M2]. The most signi­

ficant of the applications has been the problem of adaptive routing in 

large network. Learning approach to routing problem in telephone and 

data communication has been extensively studied in [N5, N6, S8, S9].

1.3 Organization of the Thesis

In chapter 2 necessary and sufficient conditions for strong 

absolute expediency, which is the principal theme of chapter 2, are 

derived. It turns out that these conditions are general but simple 

conditions of symmetry of the functions used in the learning algorithm. 

The convergence properties of this class of learning algorithm is 

studied. Bounds on the probability of convergence to the desired 

state is obtained. Using the bound it is shown that strong absolute 

expediency indeed is a sufficient condition for e-optimality.

In chapter 3 an application of learning automata to the priority 

assignment in a queuing system with unknown characteristics is given. 

Different mathematical models for a queuing system in which the 

priorities are worked out directly without a priori knowledge of the 

input and servi.e characteristics are presented. This situation is 

modeled in the framework of a single server priority queuing system 

when there are only two classes of job and preemption of the service
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is not allowed. It is shown that these systems gradually improve 

their performance and finally converge to the right priority with pro­

bability as close to unity as desired. A variety of simulation results 

are also included.

The concluding chapter 4 summarizes the thesis and presents some 

suggestions for further work.



CHAPTER II

STRONG ABSOLUTE EXPEDIENCY AND E-OPTIMALITY OF 

A GENERAL CLASS OF LEARNING ALGORITHM

2.1 Introduction

In the previous chapter, the basic formulation of learning auto­

mata has been briefly reviewed. In fixed structure automata, the 

probabilities of state transitions are fixed. Variable structure 

automata updates either transition probabilities or the state proba­

bilities on the basis of the Input to the automata. The learning algo­

rithm has been proposed for modifying state transition probabilities 

or state probabilities. The new transition probabilities or state 

probabilities reflect the Information which the automata has received 

from the Input and consequently provide the ability to Improve Its 

performance.

In this chapter a new class of absorbing barrier algorithm of 

the reward-penalty type which has Identical behavior under the occur­

rence of success and failure Is discussed. Necessary and sufficient 

conditions for strong absolute expediency and convergence of the algo­

rithm with probability one are established. As a consequence, £- 

optimality of this class of algorithm Is obtained. A number of 

computer simulation results are also given In this chapter.

25
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2.2 Convergence with Probability One

In this section conditions on the algorithm 1.1 are derived such 

that the Markov process {p(k)} k>0 converges with probability one. At 

first the consistency conditions (1.2) are rewritten in a form more 

suitable for the analysis. Let

= a[i,p](l-p^(k>) , 

fjfp] = B[i,j,p]Pj(k) ,

I B[i,j,p]p.(k) = a[i,p](l-p.(k)) ,
j^i J

(C.l)

and

g^Ep] = T [i,p]Pĵ (k) ,

gj[p] = G[i,j,p](l-Pj(k)) , (C.2)

Yli,p]p_. (k) = 1 6[i,i,p](l-Pj(k)) ,

where a,Y : I x [0,1] and B,6 : I % I x [0,1] . In view of con­

ditions (C.l) and (C.2), the class of updating scheme which is 

considered in this chapter is defined as follows:

Let be the action chosen at time k as a sample realization 

from the distribution p(k). Then p(k+1) is defined as follows;

p^(k+l) = p.(k) + 9rv.[i,p](l-p^(k)) ,

Pj (k+1) = Pj(k) - 0BIi,j,pl Pj(k) » j^i

if the action chosen resulted in success, and (2)

p^(k+l) = p^(k) - 0Y[i,pIp^(k) ,

p j (k+1) = Pj(k) + 0G[i,j,p](l-Pj(k)) > j i >

if the action chosen resulted in failure, where 0< 0 ^ 1 is step
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length parameter.

The basic rule that governs the choice of functions in the above 

algorithm (algorithm 2) is that if a term is subtracted from , then 

it is made proportional to p^, and if a term is added to p^, then it 

is made proportional to 1-p^ irrespective of which action is chosen 

and whether the action results in success or failure.

Remark 2.1; the choice of the functions 8j[p] is quite untraditional 

in the sense that in almost all the papers in mathematical pyschology 

[Bl, Cl, Nl, II] gj[p] is made proportional to p^ for all i and j, j #1. 

Also, in almost all the papers on learning automata [LIO, L4, Al, S6] 

g^[p] is made proportional to 1-p^ and gj[pl is made proportional to 

Pj for all j ̂  i. Because of this there is a disparity in the behavior 

of the algorithm (1) under success and failure. However, the present 

choice of functions gj[p] for all i and j in (2) induce identical be­

havior of the algorithm under success and failure.

The following theorem 2.1 gives a set of necessary and sufficient 

conditions for the algorithm (2) to be an absorbing barrier learning 

algorithm.

Theorem 2.1; Necessary and sufficient conditions for the learning 
algorithm (2) to have as the only set of absorbing states are;

(A. 1) For all p E there exists 1 < s < M such that

[a[s,pj + Y[s,pJ]Pg > 0

(A.2) For all 1< s<M. Y[s, e^] = 0 .

Proof ; It can easily be seen that in order for to be an

invariant set for algorithm (2) the following conditions are necessary

and sufficient.
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(B.l) For all Pe there exists 1< s, t<M such that

[6 [s,t,p]p^+6 [s,t,p](l-p^)]Pg> 0 

(B.2) For all l< t < M  and all e^E , l < s < M

g[s,t,6g]p^ = 6[s,t,eg](l-p^) = 0

First the equivalence of A.l and B.l is shown. Assume (B.l), then for

all p£ S„ - V„ there exist 1< s< s„ such thatM M  M

{ I (3[s,t,p]p +6[s,t,p](l-p ))}p > 0 
tjis  ̂  ̂ ®

or

{a[s,p](l-Pg) + Y[s,p]Pg}Pg> 0 ,

which implies (A.l) since p ̂  V^. Assume (A.l) then for all pe 

there exist 1< s< M such that

{a[s,p](l-Pg) + Y[s,p]Pg}Pg> 0 >

which implies

{ I 3[s,t,p]p + I 6[s,t,p](l-p )}p >0 
tîÉs ^ t^s  ̂ ^

and therefore (B.l). Now let us proceed to show the equivalence of 

(A.2) and (B.2). Assume (A.2) then clearly for arbitrary s and for

all t(t5 ŝ), 6[s,t,e^l = 0 which implies

6[s,t,eg](l-p^) = 0 for all l<t< M

and since p^ = 1 then, ot[s,p] (1-p̂ ) = 0 which implies 

3[s,t,eg]p^ = 0 for all l<t^M

and since s is chosen arbitrary the equivalence of (A.2) and (B.2) is 

established.

Remark 2.2; From theorem 2.1 it can be observed that if p E then 

p = Eg is an absorbing state if and only if f?[e^] = g^[e^] = 0 for all
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1 i < M; if pe Sjj - V^, then p is absorbing if and only if f?[p]Pg =

g^fp]p„ = 0 for all 1 <s,j <M.J ®
The typical choice of functions in algorithm (2) that satisfies 

the conditions (C.l) - (C.2) and (A.l) - (A.2) are given in the fol­

lowing examples.

Example 1;

6[i,s,p] = a^(l-p^)(1-Pg) 

a[i,p] - a % P_(l-P_)
1 sfi s s

6[i,s,p] = a^ P^Pg^ (l-P^)

y[i,p] = a-(l-p ) I p^(l-p )/ 1 s s

for all i, s = 1,2,...,M where 0 < a^, ag <1

Example 2:

3[l.s,p] = a^(l-p^)"(l-Pg)

a[i,p] = a^(l-p.)“"^ I p (1-p )
 ̂  ̂ sjti  ̂ ®

<S[i.s,p] = a-2 p “ P ^  (1-Pĵ )

Y[i,p] = a, p^  ̂(1-P.) I Pĝ  (1-Pg)
 ̂  ̂  ̂ sî̂ i ® ®

for all i, 8 = 1,2 M where 0<aj^,a2<l ,m,n>0

Example 3;

3[i,s,p] = a^(l-p^)°(l-Pg)° 

a[i,p] = a (1-p )"  ̂  ̂(1-p )”p

6[i,s,p] = a^ p T   ̂pj*(l-Pi)

Y[i,p] =  ̂(1-p ) Ï P " (1-Pg)
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for all i,s = 1,2,...,M where 0 < < 1 , n,m > 0

Example 4:

B[i,s,p]=0 for all i,s

Y[i,s] =0 for all 1

6[i,s,p] = a^ (l-Pi)Pg

„i.p]. Î ̂
I if p^ = 0

i i sfor all i,s = 1 , 2 , where 0 < a^ <1 for all l,s and a^ = a^

Example 5:

3[i,s,p] = a^(l-Pg)

I 1
a[i.Pl =■{

[ o

6[i,s,p] = 0

Y[1.P] = 0

if Pi = 1

for all i,s = 1,2,...,M where 0 < a^ <1 .

Example 6;

3[i,s,p]=0 for i,s

a[i,p] = 0 for all 1

sG[i,s,p]= ag(l-p^)PgBj

Z 4«-Pl>»s'pSfl
Y[i»p] =

if Pi > 0

if Pi =0
X „sfor all i,s = 1,2,... ,M. Where B : I x I x [0,1] and >0 for
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î i sall i,s, and 0 < a^< 1 and a^ = a^ for all s,i.

Example 7 ;

3[i,j,p] 5 0
a[i,p] = 0

5[i,j,p] = au(l-p )p [b^ p.(1-p.) + p (1-p.)]
J J ^ J ^

f(l-Pl) I P. (1-P Jp.+b^ P. (1-P. )] ̂ 3 3 3  3 1 1 3  1

Y[i,p] = Pi if p >0

if Pj=0

for all i,j = 1,2,...,M where 0 < , b^ < 1 for all i,j and a^ = a4

for all i,j, i j .

Remark 2.3; The demonstration of the symmetry in the properties of the 

algorithm (2) under success and failure alluded to in Remark 2.1 is 

evidenced by Theorem (2.1). Notice that V„ is the only set of absorbing 

states for (2) if ot[i,p] t 0 and y[i,p] = 0, or a[i,p] = 0 and Y[i,p]^0, 

or both a[i,p] and Y[l»p] t 0. This is in sharp contrast with the 

properties of the currently available absolutely expedient learning 

algorithm [L2, L4, Al], namely the reward-penalty and the reward-

inaction algorithms have as the only set of absorbing states but the

inaction-penalty algorithm does not. In fact, in all the inaction- 

penalty algorithms of the absolutely expedient type known so far [L2], 

every state in 6 is an absorbing state. The modified definition of 

strong absolute expediency is in fact motivated by the existence of 

learning algorithms of the reward-penalty, reward-inaction, and 

inaction-penalty types, each with as the only set of absorbing 

states.
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Remark 2.4; For some 1< j<M, if py(k) = 0, then it follows from (2) 

that Pj(k*) = 0 for all k*>k. In other words, during the learning 

process if p(k) reaches the boundary(p^ = 0)of the simplex Ŝ , then 

p(k) will continue to remain in that boundary.

Henceforth in this chapter learning algorithms with as the 

only set of absorbing states, that is, the algorithm (2) under condi­

tions (A.l) - (A.2) of Theorem 2.1 only, will be considered.

Necessary and sufficient conditions for the learning algorithm 

(2) to be strongly absolutely expedient are stated in the following 

theorem.

Theorem 2.2 Necessary and sufficient conditions for the learning 

algorithm (3) to be strongly absolutely expedient are

I P^3[i.j.P] = I P^3[j,i,p] (S.l)

and

I p.(1-p )6[i,j,p] = I p (l-p.)ô[j,l,p] (S.2)
z H  ] jfi J 1

for all i = 1,2,...,M.

Sufficiency; Define 6 x(k) = x(k + l) - x(k), and let

M
An(k) =E[6n(k)lp(k)] = I E[6p (k)|p(k)]d (2.1)

i=l

It can be seen by direct computation that

E[ôp^(k) jp(k) =p] =p^(l-p^)dj^a(i,p) - P?c^Y[i,p]

I P.P.d B[j,i,p]
" ifi J J

+ % P.(l-P.)c.5[j,i,p]. (2.2)

Substituting (2.2) into (2.1), in view of (C.l) and (C.2), we obtain
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An(k) = An^(k) + AhgCk), (2.3)

M M
An,(k) = I p.d I p.6[i,j,p]- I Pjd I p.d 6[j,i,p] (2.4)

 ̂ i=l 1 1 i¥i ] 1=1 1 1 w i  ] ]■' 1=1 jfi
and

M
Ari,(k) = - I p.d c I 6[i,j,p](l-p )

 ̂ 1=1 1 1 1 j^l ]

M
+ Ï  (1-P,)d. I p.c 6[j,l,p]. (2.5)
1=1  ̂ 1 ifl 3 ]z H

Consider Aq^^k): It can be rewritten as

Ariĵ (k) = -y,

where
M

b = I Z {p.P.d.6[l,j,p]+p.p.d 3[i,j,p] - 2p p d.d 3[j,l,p]}i=l j ÿi i J i  iji-j
2„r.. . _ 1  ,IPiPia

i n

Applying (S.l) to the second term within the curly braces, we obtain

M , „
b = Z Z {piP.d.3[l,j,pl + PiP.d B[j,l,p] - 2p p d d.B[j,l,p]} 

i=l jfi 1 1 i J ^ 1 3 i 3
T.= p Ap,

where A = [A^^], A = 0, and

^Ij =d^^e[l,j,P] + 3[j,i,p]} - 2d.djB[j,l,p] for 1 ^ j.
TIf we define a matrix B ~ A + A = [BL^], then 

«11 = 0

and

= {B[l,j,p] + B[j,l,p]} (d^-dj)^ for 1 ^ j.

Since b = Y  P^Bp and >0, It readily follows that

An, (k) = T  Z Z P i P i ( d . - d . ) ^  {g[l,j,p] + Btj,l,p]}>0 (2.6) 
^ 1=1 ifi J 1 ^
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with equality holding only if p£ V̂j.
Consider It can be written as

ArigCk) = 2 + g, (2.7)
M _g = I I (l-p.)6[i,j.p] i=l 1 jfi ^
M- I (l-p.)d I p.d 6[j,i,p] (2.8)i=l  ̂ 1 jfi J J 
M

2 =- I d.{ I p.(l-p.)6[i,j,p] - I p.(l-Pi)5[j,i,p]} i=l  ̂j5̂i  ̂ jî̂i J (2.9)
= 0 by the condition (S.2). (2.10)

TIf we define ŷ  = 1 - p̂  and y = (ŷ ,y2» • • • »yjj) » then g can be 
rewritten as

M M

and

g = i { E Pjd^ I y.6[i,j,p]+ E Pid3 E y^d[i.3»P] ̂ 1=1  ̂  ̂jH  ̂ i=l 1 1 j/ti ^
M

- 2 E y^d. E P^d 6[j,i,p]}. (2.11)
1=1 1 1 jfi J 3

j#i i=l jfi
M
y<dj

Applying (S.2) to the second term In the curly braces, we obtain
g = -| {pi's y + yTpp },

where
E = Ê  ̂= 0, =dj 6[l,j,p].
F = [F\j], = 0, F̂ j = (d2 - 2d;d.) 5 [j,l,p]. (2.12)

Since
g = -i{ pT(E + E^)y + yT(F + pT)p} 

it follows after simplifications that
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. M

g = T  I I P.y. (d.-d ) {5 + 6[j,i,p]} >0 (2.13)
^ i^l j=i 1 1 ]

with equality holding only if pe V^. From (2.6) and (2.13) sufficiency 

follows.

Necessity; An (k) can be represented as a quadratic and linear 

term in the vector D as follows:

An(k) = D^AD + D^B. (2.14)

where A = [A ĵ] and B = [B̂ .̂B̂ ,... ,B̂ ]̂  with

= P^(l-P^)ct[i,p] + p^ Y[i,p],

Aĵ j = - {PiPj6[j,i,p] + (l-p^)Pjô[j,i.p]}.
(2.15)

and

B. = p^ 6[i,p] + (1-p.) I p. 5[j,i,p] (2.16)I X  X ĵ i 3

for all i, j = 1,2,...,M. From the definition of strong absolute expe­

diency it follows that An(k) attains its minimum value zero either when 

all d^ are equal or when pE V^. Since every member of is absorbing 

on V„, it is easily seen that An(k) attains its minimum value for all 

admissible D-vectors. In the following we shall derive conditions for 

the minimum of An(k) when dU = d for all i = 1,2,...,M. 0 < d < 1.

Necessary conditions for a minimum are obtained by setting the deriva­

tive of An(k) (with respect to d̂ ) at the point dL = d for all i = 1, 

2,...,M equal to zero, that is.

9An
9di = 0 for all i = 1,2,...,M. (2.17)

d^=d

From (2.14), the equation (2.17) takes the form

(A + A^)dl + B = 0, (2.18)
Twhere 1 = (1,1,...,1) is an M-dimensional column vector of all ones.
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Rewriting (2.18) we get

dK^ + = 0 (2.19)

for all i = 1,2,...,M and all 0< d< 1, where 

= P^d-P^) ot[i,p] + Y[i.p]

- P. Ï P.6[j.i.p]-(1-P^) I p.6[j.i,p]
1 jfi j  ̂ jîH "■

and

L. = P?Y[i.P] + (1-Pj) I Pi 6[j,i,p].1 j^i 3

(2.19) is true for all 0<d< 1 only if

= 0 and = 0 for all i = 1,2,...,M.

And = 0 leads to the condition

Pi Y[i>p] = (1-p..) I Pi 6[j.i,p]. (2.20)
 ̂  ̂ j^i J

Using (C.2), from (2.20) we obtain

p. I (1-p.) 6[i,j,p] = (l-p ) I p. 6[j,l,p], (2.21)

which in fact is (S.2). Substituting (2.21) in =0, we obtain

P (1-p.) a[i,p] = p. 2 Pi 3[j,i,p]. (2.22)
i i 1 jfi 3

Once again, using (C.l), we get

p. % p.8[i,j,p] = p. I Pi 6[j,i,p], (2.23)
^ 1 jfi J

which is the same as (S.l). Hence the theorem. □

Among the 7 examples previously given, examples 1, 3, 4, 6 and 7 

not only satisfy conditions (C.l) - (C.2) and (A.l) - (A.2) but they

satisfy conditions (S.l) - (S.2) and hence they are strongly absolutely 
expedient. Example 2 and 5 are examples of non-absolutely expedient 

but absorbing barrier learning algorithms.
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Remark 2.5; By setting 6 [i,j ,p] = 0 and 3[i,j»p] = c (0<c<l) for 

all i,j, where c is a constant, we get linear reward-inaction scheme.

It is easy to verify that this is the only linear scheme that satisfies 

conditions (C.l) - (C.2), (A.l) - (A.2) and (S.l) - (S.2). In fact, 

this scheme is the only one among all the linear scheme which is 

strongly absolutely expedient. Linear reward-inaction scheme can be 

obtained by setting n = 0 and ag = 0 in example 3.

Remark 2.6; By setting 6[i,j,p] = X(p) and 6[i,j,p] = 0 for all i,j, 

where 0< X (p)< 1, and assuming that the function X(p) = 0 only if p is 

a unit vector, we get the reward-inaction scheme reported in [L2].

This scheme satisfies the conditions (C.l) - (C.2) and conditions of 

theorem (2.1) and (2.2), and therefore is strongly absolutely expedient. 

Remark 2.7; If

6[i>j.p] = (1-P^)(l-Pj) Xij(p) and 6[i,j,p]=0 

for all i,j = 1,2, ...,M, where X^j(p) = Xj^(p) and X̂  ̂(p) ; [0,1]

and if for all p E there exist i and j such that X^j(p) > 0, then

algorithm 2 is strongly absolutely expedient.

Proof of this remark is immediate from theorem (2.1) and (2.2). 

Clearly (C.l) - (C.2) and (S.l) - (S.2) are satisfied and (A.l) is

satisfied if for all P £ S„ - V„ there exist i,j such that X (p) > 0.M W  ■*-J

Theorem 2.2 established the equivalence of strong absolute expe­

diency and conditions (S.l) - (S.2). The following theorem in turn 

proves the equivalence of conditions (S.l) - (S.2) and the sign defini­

tions of Ap^ and Ap^. Ap^ is defined to be 

Ap^(k) = E[6p^(k) |p(k)] 

and and are the actions associated with the largest and smallest
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success probability, respectively.

Theorem 2.3; When a learning automata uses learning algorithm 2 and 

operates in any stationary random environment, conditions (S.l) - (S.2) 

are necessary and sufficient conditions for Ap^(k)< 0 and Ap^(k)< 0 for 

all p(k)e Sjj - Vjj.

Sufficiency; Using (S.l) - (S.2), (2.2) can be rewritten as

Ap^(k) = I (d^-dj)Hij (2.24)

where

= Pj(k) B[j,i,p]p^(k)+pj(k)6[j,i,p](l-p^(k)) (2.25)

The sufficiency is immediate, since for any j, d^-d^> 0 if 1 = 1 and 

for any j, d^- d^< 0 if i = M and > 0 for all i,j = 1,2,...,M. 

Necessity: (2.2) can be rewritten as

where

and

Ap,(k) = - r + (r.+s,)d. +  ̂(d-d.) H . (2.26)X X X X X  X J xj

r, =p.(k) I 6[i,j,p](l-p.(k))- I p. 6[j,i,p](l-p (k))
1 1 jfi  ̂ 5 H  ] 1

s, = p. (k) Î [5[i,j,pl(l-p.(k))+3[i,j,p]p.(k)] i i j^i J 3

- I P.(k)[6[j,i,p](l-p (k))+B[j,i,p]p (k)]
Let us fix the subscript i. Consider two environments (d^^^d^^^ ,...,
d̂ ^̂ ) and = (d<2), d(2), ..., d̂ ^̂ ) such that d<l)= dĵ ) = %,

= y(j î), and d̂ ^̂  = z(ĵ f), where l>y>x>z>0. Let the corres­

ponding Ap^'s be denoted by Ap^^\k) and Ap^^\k) . Then

Ap(l)(k) = -r. + (r +s.)x+ %(x-y)HX X X X xj

Ap^^^(k) = ,-r + (r,+ s )x + I (x-z)H 
X 1 1 1 jfi

(2.27)
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From (2.27) it follows that Ap^(k)> 0 and Ap^(k)< 0 are equivalent to

-(y-x) % H < r -(r +s.) < (x-z) I H,, . (2.28)
j^i 1 i 1 1]

Since the inequality holds for any x, y, z, it should hold if y->-x and 

z-»-x. Hence we have r^-(r^+s^)x = 0. In particular, this implication 

should hold for x = 0 and x = l. Then we have r\=0 and s^ = 0 as x = 0 

and X = 1 respectively. Since the above holds for any i, the proof is 

immediate.D

Remark 2.8; The sign definiteness of Ap^(k)(Ap^^(k)) implies that 

E[p^(k)] (E[pjj(k)]) is monotonically increasing (decreasing) with 

respect to k. Theorem 2.2 thus states that by using absolutely expe­

dient schemes p. (k) and p„(k) we move in the right direction at least inX M
an expected-value sense.

Corollary 2.1: The learning algorithm (2) is strongly absolutely

expedient if and only if

Ap^(k) > 0 and 0

for all pe S^-V^.

Proof; The proof is obvious from Theorem (2.2) and (2.3) D 
Remark 2.9: Making Ap^(k)> 0 and Ap^(k)< 0 implies that p^(k) is a

sub-martingale and p^(k) is a super-martingale (refer to Appendix A). 

In view of martingale theorem [D.l] we can conclude that limit p.(k) =k^oo
p* and limit p„ = p* exist with probability one. Since Ap (k) = 0 1 k-»-» M M  1

when pu = 0 or 1, p* and p* approaches 0 or 1, each with positive 

probability.

We conclude this section by stating a fundamental result on the 

sample path behavior of the process {p(k)}.
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Corollary 2.2; The Markov process {p(k)} k> 0, as generated by the 

algorithm (2) under conditions (A.l) - (A.2), and (S.l) - (8.2) con­

verges to with probability one.

Proof; Let F[x(l), x(2), ..., x(k)] be the a-algebra generated by a 

random sequence x(l), x(2), — , x(k). As r) (k) is a linear function 

of p(k), it easily follows that

F[t)(1), n(2), ..., n(k)]a F[p(l), p(2), ..., p(k)].

(2.29)
Further

F[p(k)l cF[p(l),p(2)....p(k)] . (2.30)

From theorem (2.2) we know that

1 “ 9
E [ 6 n ( k ) | p ( k ) ]  = An(k) = T  I I p . p . ( d . - d  ) { 3 [ i , j , p ] +  3 [ j , i , p ] }

 ̂i=l jfi 1 J  ̂ ^

+ i I I P ^ ( l - P i ) ( d i - d  )̂  { 6 [ i , j , p ]
 ̂i=l jfi J

+ 6U.i.p]} > 0 . (2.31)

Using (2.30) we get

E[n(k+1) I F[p(l).p(2),...,p(k)]] > n(k) . (2.32)

Now taking conditional expectations on both sides of (2.31) with 

respect to F[n(l), 0(2), 0(3), ..., 0(k)] from the low of iterated 

conditional expectations and from (2.29) we get

E [ 0 ( k + l ) | F [ 0 ( l ) , 0 ( 2 ) , . . . , 0 ( k ) ] ]  > 0 (k)  .

This in turn implies that 0(k) is a non-negative bounded sub­

martingale and by the martingale theory 0(k) converges to a random

variable u* with probability one, and hence limit p(k) = p* exists
k-> 00

with probability one. As 5o(k) = 0 only on V̂ , it follows that p* G 

with probability one. This implies that the set of all unit vectors
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are the only absorbing barriers for the process {p(k)}- q

The above theorem stated that {p(k)} corresponding to algorithm

(2) under conditions (A.l) - (A.2) and (S.l) - (S.2) is a process with

more than one absorbing barriers, that is

limit p(k)e{e. : i = 1,2,...,M} with probability one. 
k-t-co

Out of all these M unit vectors only one corresponds to the optimal or 

desired action. In fact, the Markov process (p(k)} converges with a posi­

tive probability to each one of these unit vectors. Therefore, strong 

absolute expediency implies that the algorithm (2) converges to the 

optimal action with a positive probability less than one. Our aim in 

the following section is to quantify this probability.

2.3 e-Optimality

In the previous section,it was established that p*e with 

probability one. In this section we set out to quantify the distri­

bution of p*. We first derive lower bound on the probability with 

which strongly absolutely expedient scheme can converge to a desired 

state. Using the lower bound it will be shown that strong absolute 

expediency is indeed a sufficient condition for e-optlmality.

To this end define

r.(p) = Prob[p* = e. 1 p(0) = p]
 ̂  ̂ (2.33)

= ProbIpŸ = 1 1 p(0) = p]
M

for i = 1,2,...,M. Notice ^ F.(p) = 1. Stated in words, corollary
i=l ^

(2.2) states that if p(k) is updated according to algorithm (2) then 

along each sample path asymtotically we will end up choosing only one 

action and action i will be chosen with probability F^(p) where p(0)=p.
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In view of corollary (2.2) and (2.33), we obtain for all p(0)= p £ Ŝ .

M
limit E[n(k)] = I r (p)d . (2.33a)
k->oo i=l

To characterize further properties of T^(p) we need a few definitions.

Let C[S„] be the class of all continuous functions from S„ to M M
real line. If f(') £ C[S^] define the operator U as follows

U f[p] = E[f[p(k+l)l I p(k)=p] (2.34)

f(x) k[p,dx] ,

where k[','] is the transition function defined as

K[p,A] = Prob[p(k+l) £ A 1 p(k) = p] for every k>0

where A is a subset of S„. In our case the transition function isM
defined in terms of the learning algorithm (2).

Define

K^“^[p,A] = Prob[p(k+n)£ A I p(k) = p] 

for n> 1 and all k>0, as the n step transition function. The following 

is the consequence of the definition of U [N2].

1. U is linear. That is, if f^(p), f2 (p)^ C[S^] and m^.mg are real 

constants then

U(m^f^[p] + m^fgEp]) = m^ U f^[p] + Mg U fgCp) •

2. U is positive, that is, it preserves non-negative functions. Thus, 

if f(p) is non-negative so is U f(p).

3. U^f(p) = U[Uf [p]]

= E[U f[p(k+l>] I p(k) = p]

= E[E[f[p(k+2)] 1 p(k+l)l I p(k) = p]

k[p,dx]f k[x,dy] f[yl
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k(^)[p.dy] f[y] = E[f[p(k+2)] | p(k) = p] ,

(2) fwhere k [p>A] = k[p,dx] k[x,A] is the well-known Chapman-Kolmogorov 

equation [Dl]. In general for any n>2.

u”f[p] = E[f[p(k+n)l I p(k) = p]

= [ fp,dx]f(x) ,

^  If r  T> H-V1 I r ^  A l  a n H  T I^  i  e  n a l l a r l  «-Viawhere k [p,A] = j k[p,dx]k [ x ^  and U is called the n interate

of U. As a result, ^ if the n^^ iterate of Ü is applied to the function

f[p] it gives the expectation of f[p(n) ] as a function of the initial value 

P(0).

Definition 2.1 A function f: (real line) is called superregular

(regular, subregular) if

f(p) >(=,<) Uf(p) (2.35)

for all pE Ŝ .

Remark 2.10: It can easily be shown that super and sub regular func­

tions are closed under addition and multiplication by non-negative 

constants. That is, if f^(«) and fg(') are super (sub) regular 

functions and if m^ and m^ are real, non-negative constants, then 

m^ f^(') + m^ fgX') is also super (sub) regular. Further, constants

are both super and sub regular and hence are regular. Also if f(.) is

a subregular function then -f(') is super regular.

With these preliminaries, we now state and prove two propositions 

that lead to an algorithm for quantifying P^(p).

Proposition 2.1 T\(p) is the only continuous solution of the functional

equation
u r.(p) = r.(p), (2.36)
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satisfying the boundary conditions

r^(e^) = 1 and = 0 (2.37)

for all i, j, i^j.

This proposition is proved in Appendix B.

Notice that F^Cp) satisfying (2.36) is a regular function by 

definition. This functional equation is extremely difficult to solve.

It may be surprising to note that except for certain very simple cases

[N2] no one has yet been able to solve the above functional equation. 

Hence in the following we establish upper and lower bounds on F^(p). 

Proposition 2.2 Let f̂ (̂p) E C [Ŝ ] be superregular (subregular) func­

tions with f\(e^) = 1 and f^(e^) = 0 for all i, j, iî̂ j . Then

f\(p)>(<) Fi(p). (2.38)

Proof; Let f^(p) be a superregular function, that is

f^(p)>U f\(p). (2.39)

Since U is positive, we obtain

U f ĵ (p) > U^f^(p) > ... > lf“f^(p) . (2.40)

But since limit p(k) = p*
k->oo

U”f^(p) = E[f^(p*) 1 p(0) = p] (2.41)

M
,(P)

j=i  ̂ J

= Fĵ (p)..

Combining (2.38), (2.39) and (2.40) we obtain 

fi(p) >Fĵ (p).

The result for subregular functions follow in a similar fashion. 

Hence the proposition . □
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1 2Thus, if we can find two functions hu(p) and h^(p) which are super 

and subregular functions respectively and satisfy the boundary condi­

tions

h^Xe^) = hu(e^) = 1
1 ,  (2 .42)

hu(ej) = = 0 for all j^i ,

then from Proposition (2.2) it will follow that 

hi(p)<r.(p)<hj(p) .

In other words, any super and sub regular functions satisfying (2.42) 

form the upper and lower bound on F^(p). We now proceed to provide an 

algorithm to compute these bounds.

Consider a function
-x.p. /e

^^[%_,p] = e (2.43)

where x.> 0 is a parameter. Clearly
 ̂ -X /e

1 = ij>̂ [x̂ ,ê ] > <i)̂ [x̂ ,ê ] = e for all i?fj .

-XfPi/Q
Let (|)j:[x̂ ,p]= IQ- for x^ > 0 . (2.44)

1-e ^

In view of remark (2.9) 'J'̂ [x̂ ,p] is sub (super) regular, then 4>̂ [x̂ ,p]

is super (sub) regular. Also notice

4>i[Xi, e^] = 1 and #^[x^,ej] = 0 . (2.45)

Let y^ and be two positive constants such that

-YiPi/G
4>i[yiî ] = _y /e is subregular

i-e  ̂ (2.46)
and
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- 2  p /e

l-e  ̂1=  Yg 7 9  is superregular.
l-e ^

It follows from proposition (2.2) that

^  r ^ ( p )  ^  * i [ Z i , p ]  -

Note that function 4>̂ [x̂ ,p] depends on just one component of vector P 

and thus leads to conservative results. However, it gives rise to 

expressions which are easily manageable.

The problem of getting bounds on T^(p) now reduces to one of 

finding two positive constants and such that 4>̂ [ŷ ,p] is sub­

regular and <t>ĵ [ẑ ,p] is superregular. Further, from (2.33a) and the 

fact that action 1 has the highest success probability (d̂ ) it is clear 

that for e-optimality we need to concentrate only on the lower bound of

r^(p).
It can be seen that (dropping the subscript 1 from x, for 

convenience) -xp^
-xa[l,p](l-p^)

[Pldi(e  ̂-1)]

Define
f

V[z] = ■

xY[l,p]p,
+ [Pĵ Cĵ (e -1)]

x6[j,l,p]p.
+ [ I Pzd.(e -1)]J 3

-x6[j,l,p](l-p )+ [ I PjC.(e -1)]
j#l ] 3

(2.47)

for z ^ 0
(2.48)

for 2 = 0.
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It can be seen that
1 zw

V[z] = I e dw (2.49)
'O■ L

for all real z. Since the integrand in (2.49) is positive V[z]>0 for 

all real z. Taking the derivative of V[z], it can be seen that 

(k)V (z) = w e dw 
■"O

where v^^^(z) is the kth derivative of v(z). Since V^^^(z)> 0 for 

k = 1,2, we have

(i) V[z] strictly monotonically increasing

(ii) V[z] is convex «

Let

H[z] = In V[z] = log^V[z] 

since log of an increasing function is increasing we have 

(iii) H[z] is strictly monotonically increasing 

It can be shown that the second derivative H"[z] of H[z] is positive and 

hence

(iv) H(z) is convex,

and

(v) H’(z) , the first derivative of H(z) is increasing.

Expressing the terms in the right hand side of (2.47) in terms of V[»]

function we have

Ü 4^[x,p^] = - X P^[x,p]

where

F^[x,p] = p^(l-p^)d^ a[l,p] V[-xa[l,p](l-p^)]

- p^c^Y[l,p] V[xy[l,p]p^]
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- I P.P.d 6[j,l,p]V[xg[j,l,p]p ]3 1 J 1

+ I p.(l-pJc p]V[-x5[j,l,p](l-p )] .j^l J 1 J 1
(2.50)

Clearly

F^[x,p]>0 (2.51)

implies <j>̂ [x,p] subregular. (2.51) is the governing inequality from 

which the required x is to be found. But before considering this most 

general case, we shall consider two special cases.

Case 1; The Reward-Inaction Scheme (3 [i, j ,p]?0,<S [i, j ,p]=0 for alii,j) 

Setting 5[i,j,p] = 0 for all i,j in (2.50) it follows that i|)̂ [Xĵ p] is 

subregular if

Pl^l a[i,p](l-p^) V[-xa [l,p](l-p^)]

- Ï p.d.3[j,l,p]p.V[x3[j,l,p]p,]>0 • j^l J J 1 J-

Clearly (2.52) can be written in the following form

(2.52)

p^dY%[l,p](1-Pi)Z v[-xa[l,p](1-p^)]

3[j,l,p]Pi v[x3[j,l,p]p^ . (2.53)

Define
V[x 6[j,l,p]p,]

Define

6lj[x,p] = logg tx.pl = I H'tuldu (2.55)

where a = x 3[j,l,p]p^ and b = x a[l,p](l-p^). Using the properties 

of function H, the following inequality is true (Refer Appendix C) .
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f 0 a fa+b •max (a+b)

H' [u]du < H'[u]du < H' [u]du < H'[u]du. (2.56)
-(a+b) -b 0

Since H'[u] is increasing function therefore

A^j[x,p]< I H'[u]du

or

\j[x,p] < H[x]. (2.57)

Taking exponentials throughout (2.57) we obtain 

Gij[x,p] 5 V[x] .

Therefore (2.53) can be written in the following form

a[l,p](l-p̂ ) 
I p.d 3 [j,l,p]
3*1  ̂J

Using (C.l) and (S.l) we have

> V[x]. (2.58)

^1 ^1^1 
min (d ) -  ̂p d 3[j,l.p]
i*l  ̂ 3*1^ ^

(2.59)

Combining (2.58)and (2.59) we obtain

J
Setting

''W ■ S S T d T  ■
31*1 J

Now for all dE D and since d_ = max td.) we see that
j ^

"l > , 
min{d.)
jfl ^

As V[u]<l for u<0 and V[u] > 1 for u>0 and V[u] is strictly 

monotonically increasing from (2.61) it follows that there exists
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unique value for x that satisfies equation (2.61). Following the above 

procedure, upper bound on F̂ (p) can be easily obtained.

Case 2: Inaction-penaltv algorithm (B[i,j,p]=0 ,ô[i,j,p]?G for all i,j)

Setting 3 [i,j ,p] = 0 for all i,j in (2.50) it follows that#^[x,p] is 

subregular if

Y [l,p] Pĵ V[x Y [l,p]Pĵ ] <

1 Pi c 6[j,l,p](l-p ) V[-x 6[j,l,p](l-p.)]. (2.62)

Following the procedure described in case 1 we will have the following 

equation:

 ̂  ̂ (2.63)V[x] max {c.} *
jî̂ l ^

By similar reasoning there exists unique value for x that satisfies 

equation (2.63).

General Case: The Reward-penaltv scheme (B[i,j,p]?0,6(i,j,p)?0 for alli,j)

Since a[i,p], Y[i»p]» 5[i,j,p] and B[i,j,p] are all bounded above by 

unity and as the function V[*] is strictly monotonically increasing, we 

can have the following inequalities:

V[-x CX[l,p] (1-p̂ ) ] > V[-x(l-p^)] ,

V[+xY[l,p] Pĵ ] < V[x,p^] , (2.64)

V[-x 5[l,j,p](l-p^)] > V[-x (1-p^)] ,

V[+x B[l,j,p]Pĵ ] < V[x,p^] .

Clearly <f>[x,p] is a subregular function if F^[x,p]>0. In view of 

(2.64) and (2.50), F^[x,p]>0 holds if

V[-x(l-p^)]
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2p c Y[l,p] + I p, p.d B[j,l,p] .

>  ̂ ^ ^  _̂___________  (2.65)
ï P.(l-pJc.5[j ,l,p]+p (1-p )d o([l,p]3 1 J 1 1 1

Define
.-x(l-Pi)f AVJ-

A[x,p] = logg G[x,p] = J H ’[u]du . (2.66)
XPi

Using (2.56) it can be seen that

A[x,p] =
'-x(l-Pl) rx

xPl - 1:"'
H'[u]du > - H'[u]du. (2.67)

Taking exponential throughout (2.67) we obtain

(2.68)

Further, using (C.l) - (C.2), it can be shown that

p^c Y[1.P]+I PnP.d g[j,l,p]
1 1  jfl 1 ] ]

I p (1-p )c 6[j,l,p] +p (l-p.)d a[l,p] j,il 3 1 3 X 1 J.

c I p,6{l,j,p](l-p ) + p  ̂p. d B[j,l,p]
 ̂ ^ifl  ̂ _̂_______  (2.69)

I P.(l-P,)c 6[j,l,p]+p.d, I 6[l,j,p]p. j^l 3 1 3 1 ijfi 3

c. I P,5[l.j,p](l-PJ+P, max{d } I p.g[j,l,p]
^ Ijfl _̂__________ J ^ 1#1 J 1^1 _̂______

^ p.(l-p.)min{c.}6[j,l,p]+p d. ^ p. 8[l,j,pl
ifl J 1 3#1 3 2*1 ^

It can be seen using (S.l) - (S.2) and inequality d^ > d^ > d^ ...>d^

that
c, A+d, B Pi v t i . p )  + I PlPjdi s r j . i .p ]

e* = _i i _  > ------------------1É1--------------- , (2.70)
^2 "̂̂ 1̂ ® ~ I p (1-p. )c d[j,l,p]+p (1-p. )d_o[l,p] j^l 3 1 3 1 1 1

where

A = I p.(1-p.,) 5[j,l,p] 
35̂ 1  ̂ ^
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B = I Pi p. 6[j,i,p] .jfl  ̂ J
In view of the fact that

d_ = max {d,} ,
^ ^

c = min {c.} ,

we have e*<l . From (2.68) and (2.70)

Fl[x,p]>0 if >e* .

Since e*< 1 , V[x] = has a unique solution x> 0 such that

4)̂ [x,p] is subregular.

Remark 2.11; In all three cases: reward-inaction, inaction-penalty and

reward-penalty there exists a lower bound on F^(p). This is in sharp 

contrast with the existing result in the literature, wherein for the 

inaction-penalty (absolutely expedient) algorithms [L4] no lower bound 

on r^(p) has been established. One of the reasons for this anomaly is 

that none of currently available inaction-penalty (absolutely expe­

dient) algorithms [LA] have as the only set of absorbing states.

Having established the lower bound on Tĵ (p), we now state our 

main result. The following theorem states that strong absolute expe­

diency is a sufficient condition for e-optimality.
0 *Theorem 2.4. For everye >0 and p(0) = p e there exists 0 < 6 < 1

such that for all 0<6<6*, the learning algorithm under the conditions

(C.l) - (C.2), (A.l) - (A.2), ^  (S.l) - (S.2) is such that

limit I E [T)(k)] - d. | < e . (2.71)
k-5-oo

Proof. From the definition of Ti(k) we have
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M
Eln(k)]  = I Elp^(k)]d^  (2.72)

i= l
a l so

M
limit E[r)(k)] = limit  ̂ E[p.(k)]d.
k-»-oo k-»-“ i=l  ̂ ^

M
= E d limit E[p (k)] (2.73)
i=l  ̂ k^œ 
M

= I d E [limit p.(k)]. 
i=l k-»*»

From corollary (2.2) it follows that limit p(k)e V„ with probability
k-»o°

one, that is limit p (k) = 1 or 0 in limit. From (2.33) we have 
k-»oo

Prob [limit p.(k) = 1 | p(0) = p] = F (p) >
(2.74)

Prob [limit p.(k) = 0 | p(0) = p] = 1 - F (p) • 
k->“

Therefore it can be easily shown that

E [ limit p.(k) | p(0) = p] = F (p) • (2.75)
k-*-oo 1

Substituting (2.75) into (2.73), we obtain
M

limit E [n(k)] = E d. F (p) . (2.76)
k->oo i=l

From (2.76) we can have

limit E[n(k)] - d < F (p)d - d +max {d } E • (2.77)
k^»  ̂  ̂ ^ ^  ̂ i n  ^

Since max{d.} = d_ and E F (p) =1 - F̂ (p), combining these and
jfl  ̂ jfl J

(2.77) we have

limit E[n(k)] - d^< (l-F^(p)) (d^- d̂ ) . 
k-»oo

That i s

l i m i t  j E[ri(k)] -  d, I < ( 1 - F ^ ( p ) ) l  d„ -  d̂  ] . (2.78)
k̂ -oo 1
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Since (})̂ [x,p] < T^(p) , we get

limit I E [n(k)]-d, 1 < (l-(j)̂ [x,p]) 1 d_ - d | . (2.79)

Also, for any pE sR , we know thatM -X Pĵ /D
limit 4> [x,p] = limit = 1 • (2.80)
e-»-0 6^0 l-e"*'"

Combining (2.79) and (2.80) we see that for any 6 > 0 there exists

0 < 0* < 1 such that for all 0< 0 < 0*

limit 1 E [n(k)] - dJ < | 6 (d_-d J  j . (2.81)
k^oo ^  ̂ ^

The theorem follows by choosing

6 =  S  . □
I ̂ 2" *̂1 I

Remark 2.12; The quantity Ap^(k) defined as

Ap̂  (k) = E[6p^(k) I p^(k) =p] = 0(0) (2.82)

is the conditional expected step size in p̂ (̂k) at time k. The expected

step size Ap^(k) may be used as a convenient measure of the speed of 

convergence of a learning algorithm. If Ap^(k) for learning algorithm 

T1 is larger than Ap^(k) for learning algorithm T2 for all p^^(k)£ (0,1), 

then the scheme T1 is said to be faster than the scheme T2. The 

validity of this definition is confirmed by the computer simulation 

[V5]. From (2.82) it can be said that the larger is 6, the higher is 

the speed of convergence. From theorem 2.4, increasing 6 will result 

in smaller value for the lower bound of the probability of convergence. 

From the above discussion, there is a trade-off between the speed of 

convergence and probability of converging to the desired state. Thus

a fastly converging scheme may with a high probability converge to an 

undesired state. It would be very desirable to design schemes with a
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high probability of converging to the desired state but at the same 

time not sacrificing the speed of convergence too much.

2.4 Simulations ; The algorithm (2) was simulated for the choice of 

the functions given in example 1. The average value of q(k) averaged 

over 20 sample runs for various values of 9 are given in the following 

Table 2.1.

Table 2.1

k
E[n(k)]

- e = 0 . 2 0 = 0.1 e = 0.05

0 0.5333 0.5333 0.5333

50 0.6379 0.5935 0.5668

100 0.6944 0.6510 0.6017

200 0.7505 0.7184 0.6598

500 0.7860 0.7693 0.7378

1000 0.7928 0.7865 0.7703

1500 0.7953 0.7913 0.7808

2000 0.7968 0.7938 0.7862

2500 0.7975 0,7952 0.7895

3000 0.7999 0.7996 0.7927

2.5 Conclusions

In this chapter conditions for e-optimality of a general class of 

absorbing barrier and strongly absolutely learning algorithm are de­

rived. As a consequence a new class of learning algorithmswhich has
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identical behavior under the occurrence of success and failure is 

obtained. The concept of strong absolute expediency is introduced.

The class of learning algorithms presented in this chapter is quite a 

general one and subsumes most of the well-known schemes available. The 

choice of functions g^[p] in (1) used in this chapter is quite untra- 

ditional in the sense that in almost all the papers in mathematical 

psychology g^[p] is made proportional to p^ for all i and s, s^i. Also 

in almost all the papers on learning automata, g^[p] is made propor­

tional to (1-P^) and gg[p] is made proportional to p^ for all s#i. 

Because of this there is a disparity in the behavior of the algorithm 

(1) under success and failure. However, the choice of functions gg[p] 

for all i and s given in this thesis induces identical behavior of the 

algorithm (1) under success and failure.

All three types algorithms; reward-penalty, reward-inaction and 

inaction-penalty are absorbing barrier learning algorithms. This is in 

sharp contrast with the properties of currently available absolutely 

expedient learning algorithms wherein the reward-penalty and reward- 

inaction algorithms are absorbing barrier type, but the inaction- 

penalty is not. In fact, in all the inaction-penalty algorithms of the 

absolutely expedient type known so far, every state in 

an absorbing state. The modified definition of strong absolute expe­

diency is in fact motivated by the existence of the absorbing barrier 

algorithms of the reward-penalty, reward-inaction and inaction-penalty 

types. For this class of algorithms if p(k) reaches the boundary (p̂  = 

0 for some j) of simplex Ŝ , then p(k) will continue to remain in that 

boundary, that is the dimensionality of the algorithm is reduced
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automatically.

The convergence properties of this class of learning algorithms 

is studied. Bounds on the probability of convergence to the desired 

state is obtained. It is shown that for all three types of algorithms: 

reward-inaction, reward-penalty and inaction-penalty, there exists a 

lower bound on the probability of convergence to the desired action. 

This is in sharp contrast with the existing results in the literature, 

wherein for the inaction-penalty (absolutely expedient) algorithms no 

lower bound on probability of convergence to the desired action has 

been established. One of the reasons for this anomaly is that none of 

the currently available inaction-penalty (absolutely expedient) 

algorithms have as the only set of absorbing states. In this 

chapter it is also shown that strong absolutely expedient algorithms 

lead to e-optimality in all stationary random environments.



CHAPTER III

A LEARNING APPROACH TO PRIORITY ASSIGNMENT IN AN 

M/M/1 QUEUING SYSTEM WITH UNKNOWN PARAMETERS

3.1 Introduction

An important subject in queuing theory is that of priorities. In 

a priority queuing system there are k (k >1) different classes of jobs 

and an arriving job belongs to one of these k different classes. These 

classes may be distinguished according to some measure of importance, 

and to indicate the relative measure of importance a priority index i is 

associated to each class. It is conventional that the larger the value 

of the index associated with a class, the lower is the priority asso­

ciated with that class, that is, preferential treatment is given to the 

class with lower priority index. The discipline according to which the 

server selects the next unit from these classes is called a priority 

discipline.

Priority discipline is specified by two rules. The first rule 

indicates the manner in which a unit is selected for service. This rule 

may depend only on the knowledge of the priority class to which a unit 

belongs, or it may depend solely or partially on other considerations 

relating to the existing state of the system, e.g., the type of unit 

last served or the waiting time of units present. The former disciplines 

are called exogenous priority disciplines while the latter are called 

endogenous priority disciplines. In exogenous priority disciplines the

58
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decision to select the next unit for service depends only on the 

priority class: a unit of the class if present is always taken

for service prior to the unit of the j c l a s s  (i<j).

The second rule specifies the manner in which the unit is served 

after entering service. This rule may also be state-independent or 

state dependent. In preemptive and nonpreemptive disciplines the 

second rule is independent of the state of the system. A preemptive 

priority system is one in which a unit of higher priority takes, on 

arrival, immediate precedence over units of lower priority. The unit 

whose service is interrupted returns to the service point only when 

there are no higher priority units remaining in the system. Under non­

preemptive disciplines, a job, once at the service, remains there until 

his service is complete, then the next unit for service is the one 

with highest priority among these classes. In "Discretionary Priority 

Discipline" [A2] where the server is permitted to use his discretion 

to continue or discontinue the service of a unit, the second rule is 

time-dependent.

The preemptive discipline can be broken down into the following 

categories, depending upon the manner in which the job is served on its 

reentry :

(i) Preemptive resume: The preempted unit resumes service from

the point where it was interrupted.

(ii) Preemptive repeat without resampling: The preempted unit on

its reentry requires the same amount of service as it 

required on its earlier entry. That is, the service time 

for a job is sampled only once, regardless of the number of
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preemptions experienced.

(iii) Preemptive repeat-with resampling; The preempted unit on 

its reentry requires a random service time Independent of 

past preemptions and wasted service time. That is, each 

time a single job returns to the service station a new ser­

vice time is sampled.

There are other types of priority disciplines reported in the 

literature; among those: Alterna ting-priori ty discipline, priority

discipline with reorientation time, priority with balking and reneging, 

round-robin discipline and dynamic priority discipline.

Alternating priority discipline: Under this discipline, if the

server becomes free to take up a unit after completing service on a 

unit of type i (1< i < k), the next unit to be taken for service will be 

an i-type if available in the queue. If no i-type unit is available, 

the server selects the unit with the lowest priority index. Note that 

this discipline is endogenous in character because the decision to 

select a unit depends not only on the priority class to which it belongs 

but also on the type of unit last serviced.

Priority discipline with reorientation time: In this discipline

the server has to perform an orientation while switching from servicing 

one type of unit to another type of unit. This type of discipline 

arises from the fact that the assumption that the units of various 

classes can be serviced without any loss of time in reorienting the 

server to take up a unit may not be true.

Priority discipline with balking and reneging: A unit is said to

balk if on arrival it does not join the queue, and is said to renege if
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after joining the queue it gets impatient and leaves the queue without 

getting service. It is conceivable that in situations where more than 

one class of units are being serviced under a given priority discipline 

units of different priority exhibit balking and reneging behavior. 

Obviously, the lower priority class units will be more suspectible to 

such behavior than the higher-priority class units.

Dynamic priority discipline; Under static priority discipline 

such as preemptive or nonpreemptive discipline mentioned before, the 

distribution of priority indexes of jobs arriving at a particular queue 

is stationary. Under a dynamic priority discipline, the distribution 

of indexes changes over time. In this discipline each succeeding 

arrival has lower and lower probability of taking preference over a 

job already in queue. Dynamic priority discipline is endogenous in 

nature.

Round robin priority discipline; Under this discipline, each 

unit in the system is served for a specified time in a round robin 

fashion, i.e., serves each unit for a short period, leaves it, takes 

the next unit and serves it for the same period, and so on. This pro­

cedure automatically gives priority to those units which have shorter 

service requirements. The limiting case of round robin discipline in 

which time quantum is allowed to approach zero is called processor- 

sharing discipline [K3].

The evaluation of various characteristics of a priority system 

under given priority discipline is an important objective in any pri­

ority system; the queue-length distributions may be important from the 

design point of view, the waiting time from the job's point of view.
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and the busy period from the server's point of view.

Below, we briefly summarize some major results on priority queu­

ing that are pertinent to our present study.

It is shown [K4] that so long as the queuing discipline selects

jobs in a way that is independent of their service time or any measure 

of their service time, then the distribution of the number of jobs in

the system and average waiting time will be invariant to the order of

service.

Cox and Smith [C2] considered a priority system with k indepen­

dent Poisson streams and arbitrary service time distribution for each 

of the classes. Assuming a waiting cost per unit time of c^ units for 

each class i job and a nonpreemptive service discipline, they showed 

that a policy that ranks classes according to the "Uc rule"

(1) p̂ Cĵ  > ^2=2 ^ ... >y^c^ > ... > p^c^
1 —1will minimize the average waiting cost. In (1) p. = --^  , where P.

is the mean service requirements of class 1 jobs. So the optimal 

priority assignment is in the decreasing order of p^c^, with the 

highest priority for the class with the highest value of p^c^. This 

policy will minimize the average cost of the system for preemptive 

resume discipline providing service time distributions are exponential. 

[Jl]. Evidently if the unit delay costs for different classes of jobs 

are equal, assignment of priorities in increasing order of mean service 

time requirement will also minimize the waiting cost. This should be 

noted that if the unit delay cost is 1 for all the classes, total delay 

cost is essentially the same as total waiting time, so ordering accord­

ing to average service time will minimize the average waiting time.



63
Mova and Ponamarenko [M7] analyzed an (M/M/C) priority system with k 

independent Poisson streams by means of Markov decision processes.

They showed, by a numerical example, that the simple Vc rule does not 

hold for a system with finite queue size, and that the optimal priority 

depends on the number of jobs in the system as well as on the arrival 

rates of all classes. The optimal stationary priority policy was com­

puted by linear programming.

In order to develop a meaningful priority scheme, we need to know 

the probabilistic characteristics of the jobs in various classes, such 

as the arrival and service time distributions. But in many practical 

situations this information may not be known in advance. An interesting 

question in this connection is that, if the probabilistic (arrival and 

service time) characteristics of jobs in various classes are not known 

in advance, how to go about developing a meaningful priority assignment 

among the various classes. That is, how to design a priority queuing 

system in lAich the priorities are worked out directly without a priori 

knowledge of the input and service characteristics of the system.

Varshavskii, Meleshina and Tsetlin [V6] first considered this 

problem and proposed a solution using fixed structure learning automata 

where one automaton is used for each class. This latter class of 

algorithm was developed by Tsetlin [T2] in the context of modelling of 

collective behaviors. The state transitions of automaton are indirectly 

controlled by the service requirements of jobs in each class. At any 

given instance the class corresponding to the automata with highest 

state number is chosen for service. The graph of transitions within 

the set of automata states, corresponding to a single class is shown in 

Figure 3.1.
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Input corresponds to the selection of a job by the server with the 

automata turned on; the Input Ig corresponds to the case where the 

automata is turned off and Input I^ corresponds to the case where the 

server is busy and the automata is turned on. Thus, when a job is 

selected by a class, states with the numbers k (k=l, ...» n-N) transfer 

to the state having the number k-Hî, and the states with number n-N+1, 

..., n transfer to the state with number n. n is the total number of 

states of the automata and N may be chosen to be, for example, equal 

to the average serving time, averaged over all classes. When the 

server is busy, the number of the state of the automata is lowered by 

one during each time cycle. State 1 is transferred into itself. The 

higher the state number of the automata, the more favored the corres­

ponding class is at a given time.

This approach leads to a Markov chain with very complex transi­

tion structure which does not lend itself to formal analysis. In view 

of this difficulty Varshavskii et al. [V5] resorted to simulation to 

evaluate the effectiveness of this approach. They showed through 

extensive simulation that if the number of states of each automaton is 

chosen to be large to start with, their algorithm would asymptotically 

approach the priority assignment that would be used if the probabilis­

tic characteristics of the system to be known.

In this chapter, using a class of learning algorithms very 

similar to those that are used in Mathematical Psychology [N2, N8, L3, 

N3] we formally show that a randomized choice of classes for service 

would indeed asymptotically converge to the classical priority assign­

ment rule with a probability as close to unity as desired. That is.
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the proposed system will asymptotically assign the highest priority to 

the class with the shortest average service time. These situations are 

modeled in the framework of single server priority queuing system when 

there are only two classes of jobs and preemption of the service is not

allowed. In section 2,we describe the algorithm and state the main

theorem. A proof of this theorem is presented in section 3. A number 

of interesting variations of this system are presented in section 4 and 

part of section 3. Extensions to more than two classes are given in 

section 5.

3.2 A Learning Algorithm and Statement of the Problem

The priority assignment queuing system considered in this chapter 

is represented schematically in Figure 3.2. We have considered a

queuing system with two classes of jobs. There is only one server, no

preemption and queue length of each class is allowed to be infinite. 

Within each class, the service is on a first come first served basis.

Jobs arrive into two queues from a group of 2 different classes of 

infinite population according to independent Poisson process with con­

stant rate (>0) i = 1,2. The service time requirement for jobs in 

class i and j (^i) are independent. Further, within each class the 

service times are independent and are identically distributed with ex­

ponential distribution having mean i = 1,2. The following assumption 

is very crucial in our analysis.

(Al) The parameters and i = 1,2 are not known.
“1 “XWithout loss of generality let < Pg .

Let be the random service time of a typical job from i = l,2. 

Consider a stage when k^ jobs from class i have been served. Then,
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k = k^+k^ is the total number of jobs served by the system. Define a 

dynamic threshold

T(k) = l/2[T(l)(k^)+T(2)(k2)] , 

where ,

T^^^(k ) = ̂  I , T(i)(0) = 0  ,
i j=l

and is the random service time for the j^^ job in the i^^ class.

T(k) is essentially the average service time taken over both classes up 

to time k. From estimation theory [M6] it is evident that

, ..., T(^)(k.) , i = I,2 ,

is a sequence of estimators ofp_ , i = 1,2, and

Var[T^^\k^)l = E[(T^^\k^)- , i = 1,2 ,

and

limit Var [T^^\k.) ] = 0 , i = 1,2

and hence the sequence i = 1,2, is a mean-squared error consis­

tant sequence of estimator of and also for every e > 0

limit Prob [y. ̂  - e<T^^^(k.) <y. ̂ +e] = 1.k^^oo 1

From the above discussion it is evident that for large kĵ and k^, the 

difference between T(k) and 1/2[Ŵ  ̂̂  is small with a very high

probability.

3.2.1 A Dichotomy of Service Characterization

It is assumed that class i has a service time distribution with 

exponential density function

-Hit
f^(t) = y^ e
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Given that k jobs have been given service, k = 1,2,3,..., define

x(k) = 1 if Y^^^k+l) <T(k)

x(k) = 0 otherwise .

Clearly

d^(k) = Prob[x(k) = 1] =
T(k)

= 1-e
-U^T(k)

and

c^(k) = Problx(k) =0] =1-
fT(k)I

-y^T(k)
= e

Since T(k) is a random variable, so is d^(k) i = 1,2. Clearly, dL(k) 

[c^(k)] is the probability that (k+1)^^ job will have its service time 

less (more) than T(k) if that job is from class i. Define d(k) =

(d^(k), dgCk)). Notice

0 < d^(k) < 1
-1 -1with probability one for i = 1,2 and all k>l. Further, since <y^

(assumption Al) it is easily seen that 

di(k)> dgCk)

with probability one for all k. From this it follows that

(3.1)

dgfk)
< 1 .

-1
Also for large k^, k^, the difference dL(k) and 1-e 

is small with a high probability.

Remark 3.1: It should be noted that the components of vector d are not

constants, as assumed in the abstract automata formulation of Chapter I.
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Rather the comparisons that define the probabilities are statistically 

dependent, so that d^'s are time varying parameters, dependent in fact 

on the particular process that is evolving.

Remark 3.2; Dynamic threshold at any time will partition the service 

time density function into two regions. Depending on in which region 

the service time of (k+1)^^ job lies, x(k+l) takes one of the values 0 

or 1 (0 is called failure and 1 is called success). If we fix the 

threshold before the operation of the system starts, using information 

from the past experience, process of portioning will be done only once 

and remain fixed throughout the operation of the system.

3.2.2 Learning Algorithm

Let Pj(k) be probability with which the DD in figure 3.2 decides 

to pick up the (k+1)^^ job for service from class j. Define p(k) = 

(p^(k), P2 <k)) where p^Ck) + PgCk) = 1 and k>0. Initially, p^CO) =

PgCO) = ̂  with probability one.

With the above preliminaries, basic operation of DD can be ex­

plained as follows: Increase the probability of choosing the i*"̂  class

at time (k+1) if a job selected from i*"̂  class has service time less 

than T(k) (resulted in success), and decrease the probability of 

choosing the i^^ class if a job selected from that class has service 

time greater than T(k) (resulted in failure). The increase and decrease 

are called reward and penalty, respectively. The probability of choosing 

another class is adjusted to keep total probability equal to one. How 

these probabilities are adjusted is dictated by an updating algorithm of 

the type discussed in Chapter II, when they are updated is dictated by a 

timing updating algorithm. That is, updating algorithm decides how to
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update p(k) if to be updated, and the update timing al'gorithm decides as 

to when to update p(k). Jobs are selected from class 1 and 2 according 

to the probability vector P. Dynamic threshold T(k) is updated when­

ever service to the currently being serviced job is finished. In this 

chapter we propose two different update timing algorithms. We show 

any of these two algorithms together with the linear reward-inaction 

updating algorithm will guarantee convergence of the system to the 

desired class.

Updating Algorithm; Linear reward-inaction updating algorithm is given 

below:

P^(k+1) = p^(k) + 6(l-p^(k)) - Bp^Ck) Jj j5«i ,

where denotes the indicator of the event and 0 < 6 < 1 is step length 

parameter.

J = 1 if the probability of choosing class s is
increased

= 0 otherwise.

Linear reward-inaction algorithm is the only linear algorithm which is

strongly absolutely expedient (refer Remark 2.5).

Update Timing Algorithm 1: If a class is chosen as a sample realization

from distribution P, and is found to be non-empty, update the proba­

bility of choosing that class provided another class is also non-empty. 

If the selected class is empty, choose a job from another class and do 

not update the probability vector P.

Update Timing Algorithm 2: If a class is selected as a sample reali­

zation from distribution P and is found to be non-empty, update the 

probability of choosing that class. If the selected class is empty.
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select a job from another class and do not update the probability 

vector P.

In timing algorithm 2, the probability of choosing a class is 

updated regardless of the status (being empty or non-empty) of the 

other class, whereas in timing algorithm I, the status of the other 

class affects updating of the probability of choosing the selected 

class. In both algorithms whenever a class is chosen for job selection 

and is found to be empty, DD will select a job from another class 

without adjusting the probability vector P. If both classes are empty, 

DD remains off until it receives a signal that a job is entered into 

one of the classes. DD will be off during serving a job and also 

during updating dynamic threshold.

The following algorithm (LI) describes the operation of the 

system when the system uses timing algorithm 1 and the linear reward- 

inaction updating algorithm.

Algorithm LI;

Step 1: Let i be the class from which the (k+1)job is chosen for

service as a sample realization from p(k), for k^O. At this 

instant, if the queue of this chosen class is non-empty, then 

select the job in front of the queue for service. Otherwise, 

choose the job in front of the other queue. Complete the 

service and note Y^^^(k+1).

Step 2; The update timing algorithm

At the instant class i is chosen for service (in step 1 as a 

sample realization from p(k)) if the queues corresponding to 

both class i as well as that of class j ( #i) are both non-empty
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then update p(k) using step 3. Otherwise p(k+l) = p(k) and 

go to step 4,

Step 3; Update Algorithm for p(k):

If the class i is chosen for service, then 

p^(k+l) = pu(k) + 0(l-p^(k))

Pj (k+1) = Pj(k) - 8Pj(k) , jî̂ i 

and

if y(^^(k+l) <T(k)

p(k+l) = p(k) if y(^\k+l) > T(k).

Step 4; Update T(k) using Y^^^(k+1) as follows:

T(k+1) = l/2[T(i)(k^+l) + T^j^Ckj)] ifj

where
k^+1

T(i)(k+1) = I ?(!)(&).
 ̂ “̂i £=1

Step 5: Go to step 1 until one of the components of p(k) is unity.

The following restrictive assumption is needed to simplify the analysis. 

(A2). Except for the actual service needed by the jobs in step 1 

all other overhead operations such as the decision to pick 

a class from p(k), checking whether the two queues are 

non-empty, the updating of p(k) and T(k) are all instan­

taneous .

In other words, there is no time delay involved in these overhead oper­

ations. Obviously this is a restrictive assumption. However, by 

employing fast microprocessors, the overall overhead operation can be 

made very small, if not zero. We state our main result.

Theorem 3.1: Under the assumptions Al and A2, ^  p(k) evolves according

to the above learning algorithm (LI) then for every e > 0, there exists
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^ 9* such that 0 < 8* < 1 and for all 0 < 9 < 0*

Prob [limit pu(k) =l] > 1-e. 
k -»oo

Stated in words the above theorem asserts that the above learning 

algorithm (LI) would evolve to the now classical assignment rule with a 

probability as close to unity as desired.

Remark 3.3; Obviously, there are other possible choices for update 

algorithms. The above update algorithm has been extensively studied in 

the context of Mathematical Psychology [N2, N8] and in the context of 

learning automata [L3, N3]. Very recently similar learning algorithms 

have been applied to the two-person zero sum games [L8], two person 

decentralized team [L6] and decentralized routing in telephone networks 

[S8].

3.3 Proof of the Main Result

The proof of theorem 1 is presented in various steps. Let P^(k) 

be the probability that the queue of the class i is non-empty at the 

time when the (k+1)job is chosen for service. Clearly, P^(k) depends 

on X^, y^, i = 1,2 and on p(s), O ^ s ^ k  and also we assume that 

0 < P^(k) < 1 with probability one for all k>0 and i = 1,2. Let a^(k) 

be the probability with which p(k) is updated. Then

Q^(k) = Pĵ (k)P2(k) [pĵ (k) d^(k) + p^(k) d2(k)]>0.

Define

= a[p(0), P(0), d(l); p(l), P(l), d(2)j...,p(k),P(k)]

be the smallest Borel-field [Dl] generated by the indicated random 

variables. That is, contains all the information regarding the 

choices of classes in step 1 ; states of the queues in step 2 and the
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results of the comparison of the service time with the dynamic thresh­

old up to the instant when the (k+1)^^ job has been given service. Let

AP^(k) = E[p^(k+1) I F^] - pu(k). (3.1a)

The following lemma is of immediate consequence.

Lpmma 3.1; When p̂ Ĉk) is defined according to a linear reward-inaction

algorithm and timing algorithm 2, the increment in the conditional 

expectation of p^(k) is always positive, that is, &p^(k)> 0 for all 

Pĵ (k) e (0,1) with equality holding only when p^(k) = 0 or 1.

Proof; Using linear reward-inaction update algorithm, we have 

Apĵ (k) = E[ 8(l-p^(k))J^^- 0Pĵ (k)J2 I F^]

= 6(1-Pi(k)) E[J^ 1 F^] +

6p^(k) E[J2 I Fĵ ]. (3.2)

In view of the update timing algorithm 1, E[J^ | F^] and 

E[J2  I Pĵ (k) = p^] can be written as

E [ J i  i F k l  = P i (k )  P i (k )  2(k) d^(k) (3 .3 )

and

EWg |F^] = P2(k)p^(k) 2(k) d2(k). (3.4)

Substituting (3.3) and (3.4) in (3.2) we would have

Ap^(k) = 8p^(k)P2(k) p£(k) P2,(k)[d̂ (k) - d2(k)] .

The lemma follows from the properties of d^(k) i = 1,2, given in (3.1) . 

D
Corollary 3.1: limit p,(k) = p* exists and p* e {0,l} with probability

k->“
one.

Proof: Lemma 3.1 implies that (p^(k)} is a submartingale. By the

martingale theorem, since {p^(k)} is non-negative and uniformly bounded.
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limit p,(k) = p* exists with probability one. Further, if pu (k)#{0,1}
k̂ -oo
then p^(k+l) 3  ̂Pĵ (k) with nonzero probability for all k. Hence

p^ £ {0 ,1 } which constitutes the absorbing set for the process {p-ĵ (k) } ^ 3

Define xp̂ ^

i|)[p,x,0 ] = e ,

where x is real, and
e"_iv[u] =  — - —  if u #  0

= 1  if u = 0 .
From Chapter II, V[u] is non-negative Increasing and a convex function. 

Lemma 3.2; There exists a positive, real number y such that 

E[i|̂ [Pj(k+l),y,e] 1 F^] < *[p^k),y,8 ] .

Proof ; By direct computation we obtain 

E[i|)[l̂ (k+1) , X, 6  1 1 Fĵ ] =

Pĵ (k) pĵ (k) pgCk) d^(k) ii»[p^(k)+0(1-Pj^(k)), x, 0]

+ Pi(k) [p^(k) PgCk) Ci(k)+B(k)] *[Pi(k), X, 0]

+ PgCk) p^(k) PgCk) dgXk) i|̂ [p̂ (k)- 0 p^(k) , x, 0 ]

+ Pg(k) [P^Ck) P^(k) C2 (k)+B(k)] VCp^Ck), x, 8 ],

where

B(k) = [(1-Pi(k))p2(k)+Pi(k)(l-P2(k)) + (1-Pi(k))(l-P2(k))] .

From this, after some algebraic simplification, we obtain 

Efiji[iÿk+1), X, 8 ] I F^] - iJJ[Pj(k), X, 8 ] =

-X p^(k) PgXk) p^(k) PgiCk) i|>[p(k),x,0 ] F[p(k), x] ,

where

F[p(k),x] = V[-x(l-p^(k))] d^(k)-V[x p^(k)]d2 (k).

Lemma 3.2 follows if we can show that
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F[p(k),x] > 0 ,

that is, if

V[-x(l-p^(k))] dgCk) 
V[xp^ (k)] - • (3.5)

Defining H[u] = V[u] (where stands for natural logarithm) and

from the convexity properties of H[u] it can be shown that (Refer to 

Appendix D).

V[-x(l-p^(k))] ^
V[xp^(k)] - VÎÏÏT • (3.6)

Combining (3.1) and (3.6) we see that (3.5) is true if

v k  <3

From the properties of function V[u] it follows that there exists a real 

number y > 0 such that for all xe (0,y), inequality (3.7) will be true.

By setting x = y, the lemma follows.

Now consider the function

h[z, X, 0] = —  --  ,

e ® - l

where h[j, x, 0] = j where j = 0,1

and

0 < h[x, X, 0]<1 for all 0 < z < 1.

Lemma 3.3;

E[h[p2(k+1), y, 0] I F^] <h[p2 (k). y. 0] , (3.8)

where y is defined in lemma 2. 

Proof: It can be seen that
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- f  Pi(k+1) - I  
hfPgOc+l), y, 6] " — -----------    . (3.9)

Taking conditional expectations on both sides of (3.9), from the pro­

perties of conditional expectation and from lemma 3.2 the inequality (3.8) 

follows.;]

Since h[z, x,0] is continuous in z it follows that 

limit h[p„(k+l), y, 6] = h[l-p", y, 0]
k-9-OO ^ 1

with probability one. Since p*e{0,l} with probability one, we obtain 

h[l-p*, y, 0] = 1-p^ with probability one . (3.10)

Proof of Theorem 3.1;

Taking expectations of both sides of (3.8), we obtain 

h[P2(0),y, e]>E[h[p2(l).y, 6]] >E[h[p2(2),y,0]] >
Thus

h[p,(O),y,0] > limit E[h[p,(k),y,0]] 
k->“

= E[ limit h[p_(k),y,0]]
k-i-oo

= E[h[l-p*,y,e]]

= E[l-p*]

= prob [p* = 0] . (3.11)

From the definition, it follows that for 0<z<l, y>0

limit h[z, y, 0] = 0 .  (3.12)

*Now given £>0, from (3.12) it follows that there exists a 0 ,

0 < 0 <1 such that for all 0 < 0 < 0*

£ > h [ p 2 ( 0 ) ,  y,  6] ,  (3 .13)
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Combining (3.11), (3.13)

e > Prob [p* = 0] = 1 - Prob [p* = 1] ̂ 

and the theorem is proved, ti

Extensive computer simulation has been carried out to investi­

gate the convergence properties of learning algorithm L2 under various 

choice of parameters  ̂(i = l,2). A selected set of these simu­

lation results is presented to validate some of the theoretical 

assertions put forward in this chapter for learning algorithm LI. The 

plots for p^(k) and Pg/k) versus k for the various choice of para­

meters X^, y^^(i = l,2) are given in Figure 3.3.

Remark 3.4: Our method of proof of the theorem 3.1 is very similar to

the one given in [B2] in the context of the analysis of learning auto­

mata operating in a nonstationary environment as well as the one used 

in chapter 5 in [L3] for the analysis of the two-person zero sum games 

with incomplete information.

Remark 3.5; When 6 is small, the algorithm in step 3 is called the small 

step learning algorithm. This latter class of algorithm has been ex­

tensively studied by Norman [Nl] in the context of Mathematical Psy­

chology. A major difference, however, is that in our analysis as in 

[B2], we don't need p(k) to be a Markov process.

Remark 3.6; The process (p(k), k > l) corresponding to the linear 

reward-inaction update algorithm and timing update algorithm 1 and 2 

is a process with two absorbing barriers. Out of these absorbing 

barriers only one corresponds to the desired class. In fact, the 

system converges with a positive probability to each one of these 

absorbing states. From theorem (3.1) it is evident that there is a
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trade-off between the speed of convergence and probability of converging 
to the desired class. Thus, a fastly converging learning algorithm may 

with a high probability converge to an undesired class. Larger value 

for 6 will result in faster convergence for the system, but at the same 

time will decrease the probability of convergence to the right class. 

Rpmark 3.7: The priority system reported here is an endogenous type

priority system because the probabilities of choosing class 1 and 2 are 

changing over time; in other words, the probability that one of the 

class has higher priority over the other class is changing with time. 

Exogenous priority discipline is a special case of priority discipline 

conceived in this chapter, and can be obtained by setting Pj^(k)= 1 and 

PjCk) =0 for all k or by setting p^(k) =0 and PgCk) =1 for all k 

depending on whether the higher priority is given to the first class or 

second class.

Now consider the update timing algorithm 2 for p(k). That is in 

step 2, if the class chosen for service (as a sample realization from 

p(k) in step 1) is non-empty, then update p(k) using step 3i otherwise 

p(k+1) = p(k). The probability Qgtk) with which p(k) is updated 

according to this modified update rule is

&2(k) = P^(k) p^(k) d^(k) + PgXk) PgXk) dg(k).

Since 0<p^(k)<l i = 1,2 , it follows that o^(k) < Uglk) . That is, 

according to this modified rule p(k) is updated more frequently com­

pared to update timing algorithm 1. Learning algorithm LI with step 2 

replaced by update learning algorithm 2 is called learning algorithm 

L2. Admittedly, update timing algorithm 2 results in a faster conver­

gence. However, it is not without further problems. We need an extra
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condition such as

(Cl) P^(k)>p2 (k) for ail k

for the lemma 1 and 2 and hence theorem 3.1 to be true.

Theorem 3.2; Under the assumption (Al) and (A2), and condition (Cl),

if p(k) evolves according to the learning algorithm L2, then for every

G > 0, there exists a 6 such that 0 < 6 <1 and for all 0 < 6 < 0*

Prob [ limit p, (k) = 1] > 1-e.
k -> oo

Proof ; Proof for theorem 3.2 follows the same line as theorem 1. For 

the sake of completeness, we prove lemma 3.1 and lemma 3.2 when the 

system uses learning algorithm 2.

Lemma 3.1*: Under condition Cl, Ap^(k)>0 for all k> 0 with equality

holding only when p^(k) = 0 or 1.

Proof : By routine computation we obtain

Ap^(k) = 8p^(k) Pg(k) (d^(k) p^(k)-d2(k) PgCk)) .

The lemma follows from the properties of d^(k), 1 = 1,2 given in (3.1) .O 

Lemma 3.2'; Under condition (Cl), there exists a positive, real number 

V such that

E[ip[p(k+l),y,0] I Fĵ ] <i/)[p(k),y,e] . (3.13)

Proof ; It can be shown that

EW[p(k+l), X, 8 ] I F^] =

P^(k) p^(k) d^(k) ip[p^Ck)+8(l-p^(k)),x,0]

+ p^(k) Pj(k) c^(k) \|»tPĵ (k), X, 0]

+ P2,(k) PgXk) dgXk) i()[pĵ (k) - 0p^(k), x, 6]

+ pgXk) PgXk) CgXk) ij;[pj(k), X, 0] .

After simplification.
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E[^[p(k+l),x,G] 1 F^] - i|;[p(k),x,e] =

-y ^[p(k),x,8][p^(k) p^(k) PgCk) d^(k) V[-x(l-p^(k)]

- P%(k) Pi/k) PgCk) dgCk) V[x p^(k)]]

+ (p^(k) PgCkJ+PgCk) PgCk)-!) ij;[p(k) ,x,0] .

Since p^(k) < 1, 1 = 1,2 and p^(k) + PgCk) = 1 for all k, we have 

p^(k) p^(k) + PgCk) PgCk) - 1<0 for all k.

So for lemma 3.2' follows we must have

P^Ck) p^(k) PgCk) d^(k) V[-x(l-p^(k))]

- pgCk) PgCk) PjCk) dgCk) V[x p^(k)] > 0 , (3.14)

or

V[-x(l-p^(k)] pg(k) dg(k)
V[x p^(k)] - p^(k) d^(k) ’

From the convexity properties of H[u] we will have

V[-x(l-p (k))] 1
V[-x p^(k)] - V[x] " (3-16)

From condition (Cl) and properties of d^(k), 1 = 1,2, it can easily be

seen that
P,(k) d,(k)

^ P^(k) d^(k)  ̂ (3.17)

From (3.17) and (3.16), inequality (3.15) is true if

1 > n . (3.18)v[x]

From the properties of the function V[u], it follows that there exists 

a real number y > 0 such that for all xe (0,y), inequality (3.18) will 

be true. By setting x = y the lemma follows.Q

An extensive number of simulations are performed using learning
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algorithm L2 and various values of  ̂» Aĵ (i = l/2). A fact which is

brought out from these simulations is that if is greater than

Aj/)jj(i?^j) and for relatively small value of 0, the system will
-1 -1always converge to class i where jj. = min (y. ) . The plot for

p^(k) and PgCk) versus k for various choices of parameters y^

(i = 1,2) are given in figure 3.4.

Remark 3.8; When the system uses learning algorithm L2, pĵ (k)p̂ (k)dj(k) 

and pgCk) pgCk) dgCk) are probabilities that p^ is increased and de­

creased respectively. So a small value of p^(k) may cause the system 

to converge to the wrong class or result in prolonging the convergence 

time. For example, if due to long interarrival time of jobs entering 

into the first class, Pĵ (k) is very small, the system may converge to

the class with longer service time. If learning algorithm LI is used,

Pĵ (k) PgCk) p^Ck) d^(k) is the probability that p^ is increased and 

Pĵ (k) PgCk) PgCk) dgCk) is the probability that p^ is decreased at time 

k. In this case low value of p̂ (̂k) may only result in prolonging the 

convergence time. Figure 3.5 illustrates the effect of interarrival 

time of jobs in the class with smaller service time on the convergence 

of the system.

Remark 3.9; The difference (U ) affects the behavior of the

system. If changes in y~^ or Wg ̂  result in an increase in the

difference (d^(k) - dgCk)), the system converges faster. It should be

noted that a larger value for (Wg^” ^1^ ̂ does not always imply a 

larger value for (dgCk) - d^(k)) because the difference (d^(k) - dgCk)) 

depends not only on y^ ̂  and yg ̂  but on the behavior of T(k) over time. 

Changing ŷ  ̂̂  and y^ ̂  may also change p^(k) and pgfk) which in turn
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will affect the convergence behavior of the system.

The following remark gives some insight into the behavior of 

i = 1,2, during the operation of the system.

Remark 3.10: It was earlier said in this chapter (Remark 3.7) that the

exogenous priority scheme corresponds to {p̂ (̂k) = 1 and Pg(k) = 0 for 

all k} or {pĵ (k) = 0 and p^(k) = 1 for all k), depending on whether 

the highest priority is assigned to the first or second class. Let 

be the probability that class i is nonempty when {p^(k) = 1 and 

PgCk) = 0 for all k}. Now consider the case where p^(k) = a and 

Pg(k) = 1-a for all k, where a is a positive constant less than one. 

Let p? be the probability that class i is nonempty when p^(k) is fixed 

to constant a throughout the operation of the system. It is clear 

that

r*  -*

and
Pi > Pi

p; < Pz .

Because by decreasing (increasing) the probability of choosing class 

1 (class 2) from 1 (0) to a(1-a), the probability that class 1 (class 

2) is nonempty will increase (decrease). In view of the fact that 

{Pl(k)} is a sub-martingale and {pg(k)} is a super-martingale, we have 

E[p^(k+1) 1 Pi(k)] < Pi(k)

and

E[P2(k+l)| P2(k)] >Pi(k) .
That is, {Pi(k+1)> and {p2 (k+l)> are super and sub-martingale, 

respectively.

And since
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and

we have

limit (k) = 1 
k-»-»

limit p,(k) = 0 
k-)"»

limit p (k) = p* 
k-»-»

limit p,(k) = p, , 
k+«

Remark 3.11; If and w? are the average waiting time for the exo­

genous priority scheme and the case where Pĵ (k) = a for all k where 

0 < a < 1, respectively, then we have

* (.\/vl ) + )
”l (1 - ’

and )

and also

(l-X̂ /̂ŷ ) (1-Xĵ /ŷ - Xg/hg)

> W* and < W*

In view of the fact that {p^(k)} is a submartingale and {pg(k)} is a 

supermartingale, we have

E[W^(k+l) 1 p(k)]<W^(k) ,

EEWgCk+l) 1 p(k)] >Wg(k) ,

where W^(k), i = 1,2, is the average waiting time for class i at time

k. Also

Since

limit W. (k) = W. .
k->oo ^ ^
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and

limit (k) = 1
k ->00

limit p«(k) = 0 .
k - > o o

Simulation studies were conducted and it was discovered that the speed
*

of convergence of W^(k), i = 1,2, to W^, i = 1,2, is very dependent on 

the speed of convergence of the learning algorithm.

3.4 Priority Assignment from Another Point of View

In the previous section we discussed the case where the highest 

priority is assigned to the class with the shortest average service time. 

This priority scheme can reduce the overall mean waiting time of the 

system. This ordering not only minimizes the overall waiting time of

the system but minimizes the total waiting cost if the unit waiting 
cost (ĉ , i = 1,2) for different classes are equal . In this section 

the case where the unit waiting cost for different classes are differ­

ent will be discussed. It was mentioned earlier in the chapter that 

ordering of priority assigned to the classes of arriving jobs with the 

highest priority for the class with the highest value of yc will mini­

mize the total waiting cost.

In order to assign priority according to the yc rule, we need to 

ascertain both y^'s and ĉ '̂s. In the following setup we assume that 

all Cĵ 's are known but y^'s are all unknown. We assume that jobs 

arrive into two queues independently at constant Poisson rate (>0)

(i = 1,2). The service time requirement i=l,2) for class i

jobs are independent and identically distributed random variables 

with exponential density function f^(t) (i=l,2) with mean y^^ (i=l,2). 

We also assume that no preemption is allowed and the queue length of
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each class is allowed to be infinite. Without loss of generality, it 

is assumed

(A3) ^1 ^ (=2 ^2 ■

Dynamic threshold at stage k for this case is defined as

T(k) = 1/2 [T^^^(k) + T^^^(k)] ,

ki ^(i)
(k) = IP I --  and T (0) = 0  , i = 1,2 ,

*̂i j=l ^i ^

where k = k^ + k^ and is the unit waiting cost for class i. In

view of the fact that service time (i=l,2) are exponentially

distributed with mean  ̂, it can easily be seen that

-CiliiX _
Prob I —**--- < x] = 1 - e

*̂i

So random variable -*--- (i=l,2) is exponentially distributed with

density functions

g^(x) = e , (i=l,2).-Ci^i*

clearly

d^(k) = Prob [ -Ût/- _ T(k) < 0]

and

f T(k) -c.p. X -VI c..T(k)
= I e r 1-e , (i=l,2)

0
(k+1) ~c^V^T(k)

c.(k) = Prob [ ^---^^^>T(k)] = e  ̂ , (i=l,2) .1 Ci

In view of assumption (A3) it can be shown that d^(k) > d^(k) with prob­

ability one for all k. Let us call algorithm LI and L2 with the 

dynamic threshold replaced by the modified dynamic threshold of this
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section, algorithm L3 and L4, respectively. Corresponding to algorithm 

L3 and L4 we can state the analogues of theorem 3.1 and 3.2, respec­

tively. Stated in words, algorithm LI and L2 when using the modified 

dynamic threshold of this section, will approach the Uc rule, that is, 

they will assign the highest priority to the class with the highest 

value of lie.

3.5 Extension to More Than Two Classes

3.5.1 Extension to three classes;

We first present an extension of the learning algorithm des­

cribed in section 2.2 to a priority queuing system with 3 different 

classes of jobs. All the assumptions which we made in section 2.2 are 

also made for this case. Without loss of generality, assume

P l ^ < y 2 ^ < ^ 3 ^ '  (A4)

Define the following:

1. Probability vector p(k) = (p^(k), PgCk), Pg(k)), where
3
2 p. =1. p.(k) is the probability that the system decides
i=l  ̂ ^
to pick up the (k+1)job for service from class j when all 

the classes are non-empty. Initially p^(0) = PgCO) = Pg(0)

= Y with probability one.

2. Probability vector p^(k) = (p^̂  ̂(k) + p^^^Ck)) r s f i, 

where p^^^ (k) + p^^^ (k) = 1 for all i. p^^^k) is the prob­

ability of choosing class j for service when the i^^ class 

is empty. Initially p^^^ (0) = y  for all i, r, iî̂ r with

probability one.
3

3. T(k) = T ! (k.)
^ i=l
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and

where ,

T^^^(k )=:j^ I i = 1,2,3 ,
•'i &=1

k
’^ ( i ^ V ' Î T  q 9̂  i  ,q 2=1

where k^ is the number of jobs which are served from class j

and Y^^^(2) is the actual service time of the 2^^ job from

class i.

Learning Algorithm GLl

Let i be the class from which (k+1)^^ job is chosen for service

as a sample realization from p(k) for k2 0.

1. the queue of this chosen class is non-empty then

■| choose a job from in front of the queue for service, :

complete the service and note Y^^^(k+1).

The update timing and update algorithm for p(k);

If the queues corresponding to the other two classes are

also nonempty then update p(k) using the following update

algorithm.

p.(k+1) = p.(k) + 6(l-p.(k)> s 
 ̂  ̂ ^ I if Y'-̂ (̂k+l) <T(k)

pj(k+1 = Pj(k) - 6pj(k) jfl ̂

and

p(k+l) = p(k) if Y^^^(k+1) > T(k)

else

p(k+l) = p(k)



88
Update T(k) and T^^^(k) j #1 using Y (k+1),

goto 1

else

Let n be the class from which (k+1)^^ job is chosen for 

service as a sample realization from (k).

If the queue of this chosen class is non-empty, then 

jselect the job from in front of the chosen queue 

for service, complete the service and note y (k+1). 

The update timing and update algorithm for p^^^(k); 

At the instant when class i is chosen for service 

if the queue corresponding to both the class n as 

well as that of class m (m n i) are both non­

empty then update p^^^(k) using the following up­

date algorithm:

p^^^ (k+l)=p(^) (k) +8(l-p("-\k))

(k+l)=p^^)(k) - Gp^^)(k) 
mi^nf i

p  ___ __m m m

if
h (k+l)<T(k)

and

p^^)(k+l) = p^^^(k) if Y^“^(k+1) >T(k)

else

p(^) (k+1) = p^^\k) 

update (k) , j ̂ n and T(k) using (k+1)

go to 1

else

^select the job from in front of class m (m^ns^i) 

complete the service and note y°(k+l).
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update T(k) and Tj (k) j using Y^™\k+1)

goto 1

}
Theorem 3.3: Under the assumptions (A2) and (A4) if the system

evolves according to the learning algorithm GLl. then for every e, 

E^>0, r = 1,2,3, there exists 0*, 0^, r = 1,2,3, such that 0 < 0 , 0̂  ,< 1 

r = 1,2,3 and for all O < 0 < 0  , O < 9 ^ < 0 * ,  r = 1,2,3.

a. Prob [ limit p.(k)] > 1-E if p . ̂  = min (y. ̂ ) ,
k-"=  ̂ jjti J

b. Prob [ limit pj’̂ (̂k)] > 1-E , r = 1,2,3 ,
k-^= -1 -1

if y. = min (y. ) •

Proof ; Proof is immediate from theorem 2.1.

While the result of section 3.2 of this chapter can be general­

ized to priority assignment system with any number of classes, the 

learning algorithm needed becomes more complex and messy as the number 

of classes increases. Due to this problem, in the following subsection 

we use a class of multi-input automata studied by Felrov [F5] to for­

mulate the priority assignment system of pervious sections when there 

are m classes of jobs (m> 2).

3.5.2 Extension to m classes;

The aim of priority assignment system is to distinguish that 

class of jobs that has minimum average service time, or in other words 

to distinguish that random quantity whose mean value is smallest in 

magnitude. The simplest procedure to this job is that of sampling m 

distributions (population) in turn, and then calculating the sample
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mean value for each of the distributions, as estimates of the true

mean values, and using these estimates at any time to choose that

random variable that has the smallest mean. After k rounds of

sampling (after a total of mk sample measurements) the sample mean

estimates are given by

T^^^(k) = ̂  I 
j=l

where T^^^(k) is the sample mean of size k from the i^^ distribution 

(class), and Y^^^(j) denotes the sample (job) from the i*"̂  random 

variable (class). These estimates T^^^(k), i =1,2,...,m, are random 

variables with probability distribution function F^(T^^^(k)) commonly 

referred to as sampling distributions.

It is known that if original distributions are normally distri­

buted, then the distribution of T^^^(k) for all k will be normally

distributed with

E[T^^^(k)] =

and 2

(i) ^iVariance [T (k) ] = ,

wher'=̂  and y^ ̂  are variance and mean of the i^^ distribution res­

pectively. If the original distributions are not Gaussian, then from 

the implications of central limit theorem, the distribution of

z(i)(k) = T<^)(k) - (k)J ^ T(^)(k)-y^^

/  Var [T^^^(k)]

approaches the standard normal distribution as k approaches infinity.

We now describe a priority assignment system that uses sample 

mean to select among m classes. Define
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N(k) = (N^^^(k), N^^^(k), (k)) ,

?(k) = (T^^)(k), T^^\k), T^“^(k)) .

N(0) = (0, 0, ..., 0) , ?(0) = (0, 0, ..., 0).
(k) indicates how many times class i was selected prior to time k

and T^^^(k) is the sample average service time for the i^^ class, and

T^^^(k) = ~ j^ —  I ,
N'' Xk) j=l ^

where is the service time for the job chosen from the i^^

class.

This priority assignment system can be represented by Figure

3.6. Automata A keeps track of the number of times that class i is 

chosen (vector N) and the magnitude of the average service time for all 

classes computed by AV (vector S). State of the automata at time k is 

represented by

'j'(k) = (N(k). S(k)) .

The components of state are transformed in the following manner 

during the operation of the system: after the service to a job from

class c^, selected at time k, is completed, the number H^^^(k) is 

incremented by 1, and the average service time (k+1) assumes the 

value

(k) + 1

Remark 3.12: Process (N,S) is a homogenous Markov chain. Each state

of this chain is irreversible, that is, if p^^ > 0 for i > j, then Pj^ = 0 

where p^j is the probability of going from state i to state j.

Automata A operates in two modes and R̂ , called learning and
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selection mode, respectively. In mode R^, each class is chosen k times

(cycle). In mode R^, the automata chooses at each cycle that class
*

which has minimum sample mean T (k) where 

T*(k) = Min .

The operation of the automata consists in a successive alternation of 

modes and R^. First the automata operates C!L̂ (R̂ ) cycles in mode 

Rĵ , then it operates for CL^(R2 ) cycles in mode R^, then again CL̂ CR̂ )̂ 

cycles in mode Rĵ , then for CLgCR^) cycles in mode Rg, etc. The se­

quence CL̂ (Rĵ ), CL^CRg) are selected in such a way that the ratio 

CL(Rg) /CLĵ  (R̂ )̂ increases without bounds when i^“ ; that is for any 

positive value h there exists an i^ such that for all i> Xq,

CL (R )

Depending on the nature of the sequences CL^ (Rg) and CL̂ (Rĵ ), it is 

possible to have various strategy for mode alternation of the automata. 

For example

CL^CRg) = 2^ ,

CL^ (R̂ > = m k ,

is one possible strategy for the automata, k is an integer constant 

denoting the number of times that each class is selected when the 

automata is operating in learning mode.

Remark 3.13: Automata described in this way is a deterministic Moor

automata because the output (action) of the automata is uniquely deter­

mined by the state of the automata.

It is assumed that the service time distribution for either
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Figure 3.6
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classes is stationary. This implies that the automata is operating in

a stationary random environment, without loss of generality we also

assume that y  ̂.i z j m
Theorem 3.4: For a sufficiently long operation the automata will

select a class that minimizes the average waiting time with a frequency 

as close to unity as desired.

Proof : Since CL^(R^)>mk, it follows that (i = l,2,...,m)

increases without bound as k-*"®® , therefore T^^^(k) (i = 1,2,... ,m)

will be a consistant and unbiased estimate of y^ ̂  (i=l,2), so that for
*any positive e there exists a k such that

Prob {T^^^(k) = Min {T^^^(k)}} > 1 - e ,
*  ̂for all k > k , or

limit Prob {T^^^(k) = Min {T^^^(k)}} = 1 .
k->oo i

That is, over an infinite time tbe service time sample means will tend 

to arrange themselves with probability one, in the same order as the 

quantities y^^(i=l,2,...,m). In other words, as k"*®® the automata 

operating in mode will choose class Cj. that minimizes the average

waiting time with a probability which is as close as desired to 1.

Assuming that the automata has changed its modes A times from the 

beginning of the operation to time k, we have

A
I CL (R.)

f^k) = ------- 1-------- ,
I CL.(RJ + I CL (R ) 
j=l  ̂  ̂ j=l ^

where f^^^(k) is the frequencies of the operation of the automata in
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mode R^(i = 1,2). Knowing thé fact that the ratio CLĵ (R̂ )/CL̂ Ĉ R̂ ) in­

creases without bound when i->“ we have

limit f^(k) = 0,
k->oo

and

limit f^(k) = 1. 
k -»■ œ

So we can conclude that for a sufficiently long operation the automata 

will select a class that minimizes the average waiting time with a fre­

quency as close to unity as desired.

Felrov's scheme has been simulated for the case of 2 classes.

The plots for average service time (AVS) taken over learning and 

selection mode, and average service time taken over learning mode for 

different sets of parameters  ̂, i = 1,2, are given in Figure

3.7.

Remark 3.14; The learning automata approach may be regarded as a 

selective sampling, where sampling is not on a regular cyclic basis 

(like Felrov scheme), but rather on a learned basis, where "better" 

population (distribution with the smallest mean) is sampled with in­

creasingly higher frequencies as compared with the poorer population.

In overall comparison, the intuitive expectation is that the learning 

automata approach because of more learning capability should be 

superior to the Felrov approach.

Remark 3.15; The time of final decision for the Felrov scheme 

(entering into selection mode forever) is based on a confidence 

statistical approach. In the case of learning automata, it is usual 

to terminate the process when one of the components of vector p(k) has
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reached some suitable value such as 0.9 or 0.95. It is clear that 

the use of confidence intervals to specify the terminal time with 

some preassigned level of confidence implies a corresponding proba­

bility of error for the final decision. In principle, using the 

Gaussian properties of the sampling distributions (in view of central 

limit theorem), the conversion of confidence intervals may easily be 

computed. The calculation of error probability for the automata 

method can be performed in principle only if the distribution of p(k) 

is available. In view of the above discussion, the following criteria 

may be used to compare the speed of convergence of the Felrov scheme 

with learning automata approach.

Definition; Two schemes have the same speed of convergence if the number 

of samples needed to achieve specific level of accuracy are equal.

3.6 Conclusion

This chapter describes an application of variable structure 

learning automata to priority assignment in a queuing system with 

unknown parameters. As a consequence, a learning algorithm for 

assigning priorities is presented. The proposed priority assignment 

system keeps track of the average length of the service taken over 

both classes called 'Dynamic Threshold' (T(k)). T(k) is used to ob­

tain binary responses required for a P-model learning automata. If a 

job, selected from a particular class, has service time less than 

T(k) then the probability of choosing that class for the next time 

cycle will be increased, and if the real service time is longer than 

the dynamic threshold,probability of choosing will be decreased. It 

is shown that the system will converge to the classical priority rule
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with a probability as close to unity as desired. It has been shown 

that by modifying the dynamic threshold, the same learning algorithm 

would assign priorities in such a way that minimizes the system's 

total average waiting cost. The problem of priority assignment under 

unknown parameters is also formulated using a class of multi-input 

automata which uses sample mean to select between different actions.

It is shown that for a sufficiently long operation, the automata will 

select a class that minimizes the average waiting time with a frequency 

as close to unity as desired.



CHAPTER IV 

CONCLUSION

This chapter presents a summary of the results presented in this 

thesis and suggests some problems for further work in the field of 

learning automata and its application.

The aim of this thesis is the theoretical Investigation of 

learning automata and its application to the priority assignment in a 

queueing system with unknown characteristics. The major mathematical 

tools used are the various martingale convergence theorems and theory 

of Markov process. Many of the algorithms reported in this thesis can 

be applied to pattern recognition, game theory, hypothesis testing, 

parameter optimization, etc. [L3].

First, in this thesis the behavior of stochastic automata oper­

ating in an unknown stationary random environment is discussed. A 

general class of learning algorithms, which has Identical behavior under 

the occurrence of failure and success, for updating state probability of 

the automata (p(k)) is presented. This new class of learning algorithms

subsumes most of the well-known schemes available in the literature.
■t iThe choice of functions (fj [p], gj[p]) which are used in the learning 

algorithm is quite untraditional and is needed to induce identical be­

havior of the learning algorithm under success and failure. The new 

concept of strong absolute expediency is introduced and the necessary
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and sufficient conditions for strong absolute expediency are given.

These conditions turn out to be very general but simple conditions of 

the symmetry of functions figuring in the learning algorithm.

The strongly absolute expedient schemes reported are such that

the set of all unit vectors V„ form the absorbing barriers of theM
Markov process (p(k) , k>0) defined by the learning algorithm. It is 

shown that strong absolute expediency implies that {p(k), k>0} in fact 

converges to the set of all unit vectors with probability one, and 

thus the learning algorithm converges to the desired state with a non­

zero probability. To prove E-optimality of the proposed learning algo­

rithm, lower bound on the probability of convergence to the desired 

state is obtained. Using the lower bound, it is shown that by properly 

choosing the parameters in learning algorithm one can make the proba­

bility of converging to the desired state as close to unity as desired. 

In other words, strong absolute expediency implies e-optimality. It is 

shown that for all three types of algorithm: reward-penalty, inaction-

penalty and reward-inaction, lower bound on the probability of conver­

gence to the desired state can be computed. This is in sharp contrast 

with the existing results in the literature wherein for the inaction- 

penalty algorithm no lower bound on probability of convergence to the 

desired action has been established. The reason for this anomaly is 

that for all currently available absolutely expedient learning algorithm 

only reward-penalty, reward-inaction algorithms have as the only set 

of the absorbing states. For this class of algorithm, when one of the 

p^'s is zero then dimensionality of the algorithm is reduced automati­

cally .
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An application of learning algorithms of the type studied in 

Chapter II of this thesis to the priority assignment in a queuing 

system with unknown characteristics is presented. As a consequence, 

a learning algorithm for assigning priorities for a two-class M/M/1 

queuing system is given. The priority assignment system keeps track 

of the average service time taken over both classes. If a job chosen 

from one of the classes has service time less than this average, then 

the probability of choosing that class will be increased, and decreased 

if the actual service time of the job is greater than this average.

The learning algorithm for assigning priority (updating probability of 

choosing different classes) has two major steps: updating algorithm

and timing algorithm. The update algorithm which is of the type dis­

cussed in Chapter II, decides as to how to update probability of 

choosing the class (p(k)) if to be updated, and update timing algorithm 

decides as to when to update the probability of choosing different 

classes. It is formally shown that the system would asymptotically 

converge to the classical priority assignment with a probability as 

close to unity as desired. That is, the proposed system will asymp­

totically assign the highest priority to the class with the shortest 

service time. The learning algorithm is modified to minimize total 

average waiting cost for the system. The learning algorithm for assigning 

priority is also applied to a three class M/M/1 priority queuing 

system. Due to the increasing complexity of the learning algorithm as 

the number of classes increase a class of multi-input automata which 

uses sample mean to select among different classes is used to formulate 

the m-class M/M/1 priority assignment. It is proved that for a
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sufficiently long operation this class of automata will arrange 

classes in such a way that minimizes the average waiting time with a 

frequency as close to one as desired.

Suggestions for further work;

In what follows, we mention some of the problems which have 

arisen in the course of research described in the previous chapters.

1. The functional equation obtained from conditions (S.l) - (S.2) 

should be solved to provide us a direct procedure for designing the 

G-optimal learning algorithm.

2. Derivation of an analytical measure of the speed of conver­

gence of a given learning algorithm is imperative for further analysis 

of the learning algorithm.

3. Application of the general class of learning algorithm 

reported in Chapter II to game theory and learning automata operating 

in a multi-teacher environment should be studied.

4. In theorem (3.1) and (3.2) we assumed that service time 

distribution is exponential. The non-exponential service time remains 

to be investigated.

5. As mentioned in Chapter III, the learning algorithm needed 

for assigning priority becomes more complex and messy as the number of 

classes Increases. A more efficient algorithm (timing and update 

algorithm) must be searched for the case where there are more than two 

classes of job.

6. The priority assignment system reported in Chapter III is a 

stand-alone system. Its application to the networks such as telephone 

network or data communication network must be investigated.
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7. A closed form formula for p̂ , p̂ , and when (p^(k)=a, 

PgCk) = 1-a for all k) should be derived. The next step in this direc­

tion is to find p and W when there are more than two classes in the 

system.

8. Application of S and Q model learning automata to priority 

assignment under unknown parameters should be studied.

9. The result of Chapter II must be extended to the situation 

where either queue length is finite or preemption is allowed.

10. Learning automata and Felrov approach to priority assignment 

must be compared in terms of their speed of convergence (refer to 

remark 3.15).
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APPENDIX A

Definition A; Let X^> 0, n=0,1,2,3,... be a sequence of real valued 

non-negative random variables and let R^, n = 0,1,2,3 ... be a non­

decreasing sequence of 0-algebra.

n> 0

(i) (X̂ , R^), n=0,l,2,3,... is called a martingale if for all

(ii) (X̂ , R^), n=0,l,2,3,... is called a submartingale if for

all n> 0

(iii) (X̂ , R^), n=0,l,2,3,... is called a super-martingale if for

all n > 0

Theorem A.l; Let (X^,R^) be a submartingale

(i) If E[X ] < «> , then limit X = X„ 
n  Jl ->.00 n

exists with probability one and X̂  ̂is a random variable such that 

E[XJ < ».

(ii) If X 's are uniformly integrable, then Sup E[X ] <» andn n
limit E[lX - X„ 1 ] = 0  
n->»

Theorem A.2: Let (X , R ) be a super-martingale■ ' ' “ n n
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(i) If E[X ]< “> , then limit X = exists with probability one
n ->• 0 0

and Xgg is a random variable such that E[X^] < “ .

(ii) If the X 's are uniformly integrable, then limit E[|x^- X^|]
“ n-voo

= 0.



APPENDIX B

In this appendix we shall prove the proposition 2.1 of Chapter II. 

In the following we consider only 2-state stochastic automata. We first 

observe that stochastic automata with variable structure defines a non- 

homogeneous Markov chain on the states of stochastic automata. The 

associated reinforcement scheme (2) defines the evolution of a process 

(k), k k 0} (as p^(k) + pgCk) = 1 we shall consider p^(k) alone) 

which is also Markov in nature- But this process (p^(k), kkO} is a 

continuous state space, discrete parameter stationary Markov process.

The random variable p^(k) for every k>0 itself is a probability and 

hence pĵ (k) e [0,1] for every k. Let us call S = [0,1], a subset of the 

real line, the state space of the Markov process. If x and y belong to 

S define d(x,y) = |x-y|, the absolute value of the difference between 

X and y . Clearly (S, d) is a metric space. As S is a closed and 

bounded subset, in fact (S, d) is a compact metric space. It is shown 

in Chapter II that the process {p^(k), k > O} as defined by (2) converges 

with probability one to 0 and 1. The process {p^(k), k>0) is said to 

be in state s^e S if Pĵ (k) = s^.

Let K^^^(s,B) = Prob G B | (B.l)

for all k > 0 and seS. Let Tĵ (s) be defined as

Tĵ (s) = {s' : >0} (B.2),(k),

for k > 0, that is, it is the set of all states that can be reached from
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s after k-transitions. An absorbing barrier is one, that once reached 

cannot be left, that is,

K(s, {s}) = 1 ,

or T^(s) = {s} . (B.3)

If B and C are any two subsets of S

d(B,C) = inf d(x,y) . (B.4)
xEB,yec

If C is a unit set {c}, then d(B,C) is written as

d(B, C) = d(B, c) . (B.5)

For the Markov process under consideration there are finite number of

absorbing states, a^, ag, •••» a^ such that for any state s G S there is

an a.,_\ for which J is)
limit d(T, (s), = 0 . (B.6)
k-voo jV.=>/

Let C(S) be the space of all continuous functions on S. If

Vj(x) £C(S), then the norm of denoted by |ip| is given by

I Ip I = Sup |#(x)| . (B.7)
xES

Let U be the operator as defined in (2.34). The following 2 lemmas are 

due to Norman [Nl].

Lemma B.l; The operator U has no eigenvalue of modules 1 other than 1 

Prooft Let ip E C(S) and X be such that |X|= 1 and X ^ 1. We shall show 

that such a X cannot be an eigenvalue of U. To this end let Sq E S be a 

state to which

1 ( s g )  I =  I I p  I .  ( B ' 8 )
Notice that the left hand side is the absolute value of the function

at the point Sq whereas the right hand side is the norm of the function ip.
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Let

= fs : ^(s) = ^(Sg)} . (B.9)

for k = 0,1,2,3,. 

Now

Thus

oS(Sg) = X*Sj)(sg) . (B.IO)

K^^^CSg, Cĵ ) = 1 . (B.ll)

and By (B.6) there exists a sequence t̂  such that t^ E

T, (s ) and limit d (t , a. (s_)) =0. (B.12)
" k-+-oo K J u

Hence limit #(t.) converges and in fact it is equal to tjj [a. (s,.) ] •kH-oo K 3 u
But t^ e and so

4"(tk) = xS (S q) . (B.13)

But as X is such that |X| = 1  and X f 1 the right hand side of (B.13) 

converges only if #(Sg) =0. In view of (B.8) ^(Sg) = 0 implies |ij)| = 0 

which in turn Implies that^(s) = 0. Thus X is not an eigenvalue of UjII 

In what follows let A = (ag, a^, ..., a^_^} be the set of N 

absorbing barriers.

Lemma B.2; If bg, b^, ..., b ^ a r e  any N scalars, there is one and 

only one i|)EC(S) such that Ihf; = ip and ip(â ) = b^ , i = 0,1,2,... ,N-1. 

Proof : Uniqueness ; To prove the uniqueness we shall first prove a

maximum modulus principle. If #(s)eC(S) and

Uij) = Ip , (B.14)

then all maxima of jip(*)j occur on A and possibly elsewhere. Let Sg 

be a state such that |ip(Sg)| = jipj and let C = {s; ip(s) = ip(sg)}.

Since, in view of (B.14) Û ip(Sg) = ip(sg), K^^^(sg, C) = 1 and so
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Tĵ (So)<=3 C. By (B.6) there exists a sequence t̂  such that t^^T^(Sg)

and limit d(t, , a.. .) = 0. Hence limit ip(t,) = ^(a., . ) and
k ^ œ  k^oo ^ jlGor

l̂ â. , . ) I = |ipj. In view of the definition of the norm of ip, it
J  ̂ O'

follows that |ijj(a., . ) | is maximum. This is the required maximum U S q;
modules principle.

To show the uniqueness, suppose ijf and ip' eC(S) and are such that 

Uijj = i|j , U ijj’ = !{;' , (B.15)

and

ip(s) = ^'(s) for all S E A .  (B.16)

Let

i|," = I),'. (B.17)

Then, clearly ip"£ C(S) and = ip" since U is a linear operator. But 

in view of (B.16) tp"(s) = 0 for se A. This implies that |t|'"(s)| = 0 

for all SEA which in turn implies jij;" | = 0 and so ip(s) = ^'(s). Thus 

the uniqueness is proved.

Existence: Since

uN' = E[ip(Sĵ_j_̂j 1 Sq = s], (B.18)

we have

^(s) = ijj(s) , (B.19)

for all se A, for all n > 0 and i|;e C(S). Thus

Ü-1 ^(s) = limit ij)(s) = tJj ( s )  , (B.20)
k-»-oo

for s e A.

Let Wj, Wg WjjEC(S) be such that W^(a^) = 6^j, for example

d(s,a.) ,
W.(s) = [ 1  ^  ] ,

where £ = min {d(a.,a.)) and x^ is x or 0, 
jfi ^
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depending on whether x> 0 or <0. It will be shown that

N-1
r(s) = I b^U^W^(k),

i=0

is the function sought. Clearly F E C(S) and

N-1
I
i=0 

N-1

r(a ) = I b.Uj^W (a )
J i=0  ̂  ̂ ]

N-1
= I b.W (a ) (B.21)
i=0 ^  ̂ 3

Finally we have
N-1

U r - I b . Ü Ü W 
1=0

N-1

■

= r . □ (B.22)

Remark B.l; Though the lemma B.2 is true for a general case of N ab­

sorbing barriers, only a special of 2 absorbing barriers, that is, N=2 

and ag = 0 and a^ = 1 is of our interest. In this case it can be seen 

that

e = min {d(a,, a )}, i, j=0, 1 ,
Ifj  ̂ J

(B.23)
= 1 .

Also d(s, 8q) = d(s, 0 = 5 ,

and d(s, â ) = d(s, 1) = 1-s. (B.24)

From (B.23) and (B.24) it is clear that

Wq(s) = (1-s),

and
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W^(s) = s . (B.25)

In what follows we shall identify s^ = P^(k) and the operator as de­

fined (2.47). By setting \p(x) = x we have the following lemma.
r  t "Lemma B.3; The sequence as defined by

Us = E[Sĵ  + l 1 Sĵ = s ] , (B.26)

converges to a random variable with probability one.

Proof: Replacing p^(k) by s^ and in view of theorem (2.3) we have

(B 27)

Inequality (B.27) implies that s^ is a non-negative submartingale and 

according to submartingale theorem s^ converges with probability one, 

that is, limit s, = ŝ, exists with probability one and is a random
k-i-oo

variable. p

Remark B.2: It is further established in Chapter II that limit p,(k) =
*p^ cannot take any other value other than 0 and 1 with probability one.

Thus when s^ = p^(k), it is clear that s„ can take on only two values 0

and 1 with probability one.

Now that it is shown s k̂, exists and it can take on only two values 

0 and 1 with probability one, we have the following lemma.

Lemma B.4; For i = 0, 1, ..., N-1, let be the continuous function 

such that r^(aj) = and UF^ = F^, then

N-1
E[tp(ŝ ) I Sq = s] = F^(s) #(a^), (B.28)

where A = {a^, â ,̂ ag, is the set of absorbing barriers.

Proof; For any iJjeC(S) let
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*(s) = I r.(s) ilj (a.) , (B.29)
1=0

and
^ (s) = ^(s) , (B.30)

where is defined in (B. 20) .

Clearly Jjf and eC(S) and

Also

(â ) = ij)(â ) = ^(3j); j = 0,1,... ,N-1.

_ N-1 
u = I *(a )ur 

i=0 ^

N-1
= I *(a.) r
i=0

= 4̂ , (B.31)

and

U Ip' = UU^ip = ip '. (B.32)

In view of the uniqueness of the solution U F = T as proved in lemma B.2, 

we have tp = ip' which is in fact the assertion (B.28) of the lemma B.4. q  

Remark B.3; In view of lemma B.3 and B.4 it is clear that the solution 

of U r = r admits the representation

T(s) = E[ 'P(ŝ ) 1 Sq = s]

N-1
= I r (s) Tp(a,). (B.33)
i=l 1

Clearly in view of the fact F^Ca^) = 6^^, we have

F(aj) = ip(aj) = hj . (B.34)

Remark B.4; The assertion (B.28) of the lemma B.4 implies that the 

random variable s^ takes the value â  ̂ with the probability T\(s), that is

Prob [Sgg = a^ I Sq = s] = F^(s) . (B.35)
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Setting bg = 0 and b^ = 1, it is seen from (B.33) in our case

F(s) = Prob [s^ = 1 I Sq = s]. (B.36)

Thus, with these boundary conditions, namely, ^(0) = bg = 0 and ^(1) = 

b^ = 1. The unique solution of U F = F has the interpretation given in 

(B.34). In view of the above lemmas, we have the proposition 2.1 of 

Chapter II.



APPENDIX C

Lemma C; If H'[u]< 0 for all real u and H’[u] is strictly monotonically 

increasing with H'[0] = 1/2, then for any real a > 0, b>0, we have 

f 0 f a f a+b
J  H'[u]du < J  H’[u]du< I H'[u]du. (C.l)

—(a+b) -b 0

Proof ; In view of the hypothesis we have the following inequality

H’[-(a+b)l <H'[-b]< H'[0] = -| <H'[a] < H'[a+b] . (C.2)

We shall first prove the right hand inequality in (C.l). On rewriting

the right hand inequality becomes
f 0 fa r a r a+b
j H'[u]du+j H'[u]du< J H'[uld'u.+j H'[u]du. (C.3)
-b 0 0 a

After simplification the above inequality becomes 
0 f(a+b)I H'fujdu < J H'[u]du. (C.4)

—b

Since H'[u] is strictly monotonically increasing we have 
fOfH*[u]du< b H'[0] = I , (C.5)

A -hand
/■(a+b)

b H'[a] < H’[u]du.
•a

(C.6)

As H'[a] > "I , putting (C.5) and (C.6) together we have (C.4) which 

is the same as the right hand inequality in (C.l). The left inequality 

can be similarly proved. Q
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APPENDIX D

From the definition of convex fu n c t i o n i t  can be shown that 

H[-x PgCk)] ^ PgCk) H[-x] , (B.l)

and

H[x p^(k)] < p^(k) H[x] . (D.2)

Using (D.l) and (D.2) we obtain

H[x Pĵ (k)] - H[-x PgXk)] < p^(k) H[x]-P 2 (k) H[-x] . (D.3)

Since 0<p^(k)<l for all k, i = 1,2 and H[u] is a strictly monoton­

ically increasing function, we have

Pĵ (k) H[x] _ PgXk) H[-x] < H[x] , (D.4)

From (D.3) and (D.4) we have

H[x Pĵ (k)] - H[x P 2 (k)]<H[x] .

In view of H[u] = lnv[u] and after simplification we obtain 

v[-x P2 (k)] ^

v[x p^(k)] - v[x]

(1) A function ij; defined on an open interval (a,b) is said to be
convex if for each x, ye (a,b) and each X, 0 < X < 1 we have

ip(Xx + (l-X)y) < XiJj(x) + (1-X) ipCy).
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