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CHAPTER I
INTRODUCTION

In the past few decades introduction of technology
and better measuring devices into the study of luminous
pulses have provided better data and consequently better
understanding of this phenomenon. Throughout the past
century, experimentalists have observed the
propagation of luminpsity fronts associated with the elec-
tric breakdown of a gas. J. J. Thomson was the first to
observe that the luminosity did not start simultaneously
throughout the length of the discharge tube, but seemed to
start at the anode and travel the tube to the cathode at a
finite and measurable speed. He recorded that the lumino-
sity front might move at a speed as high as half the speed
of light.

In the late 1920s Beams studied the propagation of the
luminosity fronts in long discharge tﬁbes. He concluded
that the luminosity always moves from the electrode to

which the potential is applied (high voltage electrode)



toward the electrode maintained at ground potential re-
gardless of the polarity of the impressed surge. All the
attempté to identify the breakdown waves with solutions to
Maxwell's equations failed. 1In the spectrum'of the emitted
radiation no Doppler shift has been detected, which indi-
cates thaf the excited atoms are not in motion and their
mass motion is negligible. This and the fact that the
luminous pulses travel with speed as high as half the
speed of light.supports the idea that the luminous pulses
are caused'by an electron fluid motion. Since the geome-
trical configurations of the dischafge tubes used by the
éxperimenters have been different and the data recorded by
many experiménters havé been meaningful only under their
operating conditions (pressure, applied voltage, type of
gas, etc.), the understanding and analysis of the data
taken by experimenters have been very difficult. The phe-
nomenon of breakdown waves has been less completely under-
stood than the structure of the nucleus, even though the
phenomenon has been studied by scientists for a long time.
Starting in the 1930s, the theories about the nature
of the breakdown waves were presented, but it was in the
1960s that most of the advances took place. Fowler and
Shelton, by some modification of.Fowler and’Paxton‘s for-
mulas developed eariier, were able to present better equa-
tions for breakdown waves, and later they solved them with

approximate methods. In our earlier work on computer
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solution of the electron-fluid equations several terms in
the energy equation which were neglected by Shelton were
included.. After extensive computer analysis we concluded
that the heat conduction, the random electron heat loss,
and the directed electron kinetic energy loss terms were
important and could not be neglected. Also the results
showed that there is no weak proforce wave, and all pro-
force waves are strong shock waves.

Also in the present work the advance of the breakdown
waves into a préionized gas (with or without a current pre-
sent) has béen investigated. The results were highly de-
pendent on the ion velocity and concentration in ffont
of the wave, and not very much dependent on the current
in fron£ of the wave. The last~part of .this work is an
investigation of the problem of the antiforce waves. In
his work on aﬁtifofce waves Sanmann- formulated the problem
by sign changes of constants in the standard proforce for-
mulation, but it will be shown that this cannot be done.
The revised equations can be solved and the results indi-
cate that there can be antiforce waves into either a neu-
tral.gas or a preionized gas. These waves are shock anti-
force waves rather than the weak waves described by San-
mann. Solutions were also found for an'antiforce wave
with an artificial current discontinuity at the front, but

none for proforce waves.



CHAPTER II
BACKGROUND

In 1795 Hauksbeel was the first one to notice the
similarities between lightning and the luminous pulses
which hé ﬁroduced'in partial vacuum. But it was Wheat-
stone2 who proposed a propagation mechanism with luminous
fronts in low pressure discharge tubes subjected to high
potential differences. Using rotating mirrors he was
unable to detect luminous front motion at velocities less
than 105 m/sec, because his equipment was not fast enough
and did noﬁ have good time resolution. With improved
equipment, a glass tube 5 mm in diameter, J. J. Thomson3
found a velocity nearly half that of light for the velocity.
of the luminous pulse through a discharge in air at a
pressure of 0.5 mm of mercury. Also he was the first to
observe that the luminosity did not start simultaneéusly
throughout the length of the tube but it started near the
anode and traveled to the cathode at a finite speed, ap-
proaching that of light. He measured the velocity of
luminosity by uniting the light from two locations along
the discharge tube which were several meters apart using a
Areflecting mirror. Also he experimented with many differ-

ent electrodes and concluded that the velocity of the



luminosity was independent of the shape, size and material
of the electrodes. Because of the absence of an observa-
ble Doppler effect in the spectrum lines and thechigh
value of the velocity measured by Thomson, he concluded
that the propagation of the luminous pulse was not due to
the motion of the emitting atoms and molecules, and their

4 has concluded that

mass motion was negligible. Fowler
Thomson's observations were not of a breakdown wave but

of a return stroke traveling from the anode to the cathode
through a preionized region.

Beams5 called these waves 'potential' waves; some have
called them breakdown waves: From the examination of the
process of formation and distribution of space charge in
the tube he proposed a qualitative theory consistent with
the observed total lack of heavy particle motion in the
wave. He theorized that the electrons are the main ele-
ment in the wave propagation, and in the neighborhood of
the pulsed electrode, due to its shape and irregularities,
the field is ver§ high and intense ionization takes place.
The large difference in.the mobilities (mass difference)

of positive ions, negative ions and of electrons was
thought té cause the establishment of a space charge.

The highest field intensity would be near the pulsed elec-
trode (the electrode to which the potential is applied).
This field accelefates the free electrons until they attain

enough energy for collisional ionization of the gas near



the electrode. The ionized gas because of being a conduc-
tor can not hold internal electric field, thus the poten-
tial of the electrode will determine.the potential of the
ionized region. The highest field intensity was considered
to be located at the interface between the ionized gas

and the neutral gas. This intense field causes the conti-
nuation of this process and propagation of the interface
into the neutral gas. This view is consistent with our
work on proforce waves.

In fecording the results of his experiment he noted
that for 40 or 50 cm of the beginning 6f his discharge
tube the velocity of the 1uﬁinosity was about 3.8x10%m/sec,
but then the velocity of the luminosity increased to 4x107
m/sec and remained coﬁstant for the rest of the tube, He
also noted that for a given tﬁbe this velocity is deter-
mined chiefly by the pressure of the gas and the magnitude
of the applied potential. In addition éo this initial im-
pulse found in all discharges, he also occasionally ob-
served a second pqlse later than the fifst which started
at the ground poténtial elecffodé and moved in the oppo-
site direction. This was the kind of propagation that
was observed by Allibone and Sdhonland6 for a million-volt
spark between point and plane. In the lightning stroke
the first luminous pulse or "leader" which moves downward
in a series of steps with speed averaging 1x107 m/sec is

known as the 'stepped" leader. Leaders for strokes over
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the same channel after the first discharge has occurred are
generally continuous processes, called "dart" leaders.
The average speed for return strokeé is about 1x10%m/sec.

Snoddy, Beams and Dietrich7 investigated the similar-
ity in the lightning stroke and the observations on the
.propagation of luminosity in long discharge tubes. They
applied potential ranging from 74 to 171 kV intd the dis-
charge. tube containing gas of pressure 0.017 to 0.24 mmHg.
They found that the velocity, voltage attenuation, wave
form and energy carried in the wave front of the initial
impﬁlse vary with both pressure and applied potential.

A year léter Snoddy and his,associates8 reported the
results of another experiment in which they used positive
and negative impulsive potentials of apprdximately 125 kv.
They noted that in low pressure range the speed of the wave
increases with increasing pressure, but at relatively high
pressures the speed of the wave decreases and the wave
shape is very much distorted. Also they found that the
speed of the wave at constant pressure in dry air is ap-
proximately a linear function of the applied voltage.

The initial wave which starts at the high voltage end of
the tube and travels to the ground end is immediately fol-
lowed by a return stroke starting at the grounded electrode
and traveling in opposite semse. Mitchell and Snoddy9 ap-
plied potentials from 25 to 115 kV on the discharge tube

containing dry air and hydrogen with pressure range of
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0.006 to 8 mmHg. They plotted the ratio of field strength:
to pressure in the tip of the "potential' discharge

(E/p volts/cm/mmHg) against speed aﬁd found that the speed
generally increased « E/p, but they derived a theory for
increased « YE/p.

Fowler, Paxton and Hughes10

studied mass motion shocks
in ionized gases. They observed that-the time required for
electrical energy of the capacitor in the discharge tube to
be converted to thermal energy of the gas molecules was an
order of magnitude larger than that needed for initiation
of a shock. Also they observed that the

velocity of the luminous front is approximatély (v y kTe/M),
where the Te is the electron temperature in the discharge
region; with (Te « E/p) and they produced an

expression for electron energy. Based on their results
Fowler and his associates abandoned.the idea of a shock
driven by hot gas. They hypothesized that electron pres-
sure was the primary source for moving:the shock front.

In another work Fowler and Frie&11 argued that the
thermal éxpansion of the hot electron gas accelerates the
cold ioms, re;ult;ng in a shock front or moving electro-
static double layer.

Fowler, Paxton and Hughes also observéd that in the

gas breakdown in their apparatus, as superfast Beams-type

wave moved between the electrodes.



Loeb, Westberg and Huang12

studied in a point-anode
plane-cathode gap with a 2.36-mm hemispherically capped
cylinder opposite a 3-cm distant thin out-gassed Ni plane
in the pressure range from 300 mm to 50 mm. They recorded
that when the argon is purified in the absence of adequate
photoionization the streamer mechanism does not occur.
They proposed the necessity of adequate photoionizable'
impurities in Ar for the development of the filamentary
streamer spark transition. In a discharge tube with simi-

13 hypothesized

lar geometry, but separate wprk, later Loeb
a qualitative model for breakdown of a gas. In his model,
emitted photons from excited atoms excite and ionize new
atoms in front of the wave. The newly excited atoms in
turn emit photons which continue the proéess. In this model
the wave is'msvingiforward on pﬁoto-ionization. This is,
however, only one of several possible explanations of their
experimental results on gas purity.

The earlier observations by Fowler, Paxton, and
Hughes led Paxton and Fowler to formulate a fluid model and
theory of breakdown wave propagation. In their model they
presumed that near the electrode where the potgntial gra-
diant in the gas is greatest, ionization of a small quan-
tity of gas occurs and that the electrons produced are given
kinetic energy by the electric field. The resulting lo-
calized high-temperature electron gas is considered to ex-

pand rapidly, thus prodﬁcing an electron shock wave which
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propagates into the undisturbed gas, partially ionizing the
overrun neutral gas molecules. The energy necessary for
driving the shock .wave was consideredttb be given directly
to the electrons in the shock zone by the local electric
field. Using a one-dimensional, ste;dy state, three-fluid,
hydrodynémical‘model and assuming that the electron pressure
is much greater than the partial pressures of the other
species, they were able to write down the equations of con-

servation of the flux of mass, momentum, and energy:

MN,V, = MV + M.N.V, + mv

MN,VZ = MNVZ + M;N,V? + mav? + nkT_ + St (E@-E?)

3 3 3 3
MN,Vy = MNV® + M.N.V} + mnv® + 5nvk’]3‘e )

where M, Mi’ and m are the masses of neutral atom, positive
ion, and electron respectively, and N, Ni’ n are the neutral
atom, positive'ibﬁ, and electron densities respectively.

v, Vi’ v were considered as flow velocity of neutral atoms,
ions, and electrons and Te as electron temperature, and E

as the electric field strength. Quantities in front of the
shock zone are designated with a zero subscript, while
quantities Sehind the shock zone have no subscript. They
reasoned that, under thé quasi-steady-state conditions the
change in heavy particle velocities can be neglected and
V0=V=Vi would be a good approximation. Using a zero current

condition (nv-NiVi=0) and (V0=V=Vi) they were able to find
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a relation between Ni and N (Ni=N9-N=fN°, f is the degree
of ionization in the gas) and they were able to solve the
above equations in terms of the remaining variables (V{=

26kTe/3m). Using the;expression that they had derived

10 kTe=(1/3)(M/3m)%AeffeE, where Aeff is the effec-

earlier,
tive electron mean free path, they were able to find V, and
electron density (n=4Ni=4fNo). The results listed for hy-
drogen in a table showed reasonable agreement with experi-
mental data. Their work was important in demonstrating
that a one-dimensional, time independent solution of the
fluid equations might be applicable to the processes occur-
ring in breakdown tubes, but they overlooked the lonization
energy in their energy equation.

Nelson15 in a criticism of the Paxton-Fowler concept
of zero electrical current rejected the treatment of break-
down wave front as an electron shock wave. However, he ac-
tually used an identical formulation for current, appa-
rently misunderstanding the nature of the P-F condition.

He proposed a photo-ionization model, arguing that the ra-
diation from the hot gas is the driving mechanism and soft
x-ray emission due to bombardment of the initiating elec-
trode could also provide a contribution.

In 1962 Fowler and Hocdl6a observed a new wave pheno-
menon whicli seemed to possess some unusual properties.

They observed a fast-moving precursor in their electrically

driven shock tube. They suggested that heat conduction
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through the electron gas from the driver might be the major
factor responsible for the propagation of a shock-fronted
electron precursor wave.

16b reported appearance of two in-

Josephson and Hales
teresting features in their image converter camera pictures.
The first was the presence of luminositj on the expansion
wires stretched across their discharge tube, which was in
the form of light coming from the tube as early as 0.5 mi-
crosecond after gas bfeakdown. They also mentioned that
their fourth wire which was farthest from the discharge
showed up as brightly as the wire neérest the discharge,
whereas the two wires in bétween were not visible. The
second feature was that a given wire was brightest in the
center of the tube, indicating that the source of the
light which was coming‘from.the wires was strongly concen-
trated near the axis of the tube. They reported a speed
of 3043 cm pef microsecond for this early luminous front.
Based on their observations, they ruled out the idea of
photo-ionization, and electrons moving out ahead of the
plasma by their higher Maxwellian velocities, to explain
this luminous front. They believed that deuterons are
accelerated to energies of the order of kilovolts in in-
stabilities that occur in the discharge tube and are ob-
served either by their own impingement on a target or
through their ionization electrons. . At this time the

existence of the electron-fluid dynamic wave was uncertain
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and it is probable that that was what they were observing.
léc

Following Fowler and Hood, Haberstich in his Ph.D.
dissertation proposed that his experimental results on the
velocity and attenuation of Beams-like waves and on the
electron density at the wave front were directly applicable
to the study of piecursive effects in electrically driven
shock tubes. He observed a one-to-one correspondence be-
tween the velocity of the wave and the front potential of
the proforce waves. Based on the results of his experiment
and the results that he obtained by using a one-dimensional
theory he confirmed Beam's qualitative explanation of break-

16d

down waves. Mills, Naraghi and Fowler substantiated this view.

Based on experimental evidence Shelfon and Fowler17
saw the strong probability for luminous pulses being fluid-
dynamical phenomena. They argue& that a fluid phenomenon
involwving no mass motion mugt be due to electron-fluid ac-
tion. So they thought that the name "electromn fluid-dy-
namical wave'" represents a better description of the basic
nature of the phenomena. They found that, due to their
large inertia, the positive ion's and neutral ‘atom's mo-

mentum and energy changes were of comparable magnitude to

those of electrons even if the heavy particles had small

velocities and could not be neglected. Considering a col-
lision of an electron with arbitrary velocity with an
atom at rest (treated as a hard sphere) they used the

principle of frame invariance to find analytic forms for
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both the elastic and inelastic collision terms in the
energy and momentum equations.

They were able to write down the equations for conser-
vation of total momentum and energy, and consequently de-
rived the conditions existent at the leading edge of the
wave (k(Te)I/m)=V1(Vo-v1). Based on these conditions they
found a lower limit (3mW > eqi) on wave speed V;, and using
the conditions far behind the wave front (v-V,,E+0), they
found n+€oE%/2e¢i, which meant the entire pre-wave energy
. density %e,E¢ went into ionizing the atoms. In another

18 developed a general procedure '

work Fowler épdTShelton
for solving the equations governing the electron gas in
breakdown wave. They thought that experimentally observed
waves with V§<(2e¢i/m) must be the second possibility in the
initial conditions mentioned in their earlier paper which has
n=0 at x=0, and admits of a discontinuity in dn/dx. Com-
paring the calculation of the wave Qelocity with the
experimental data available at that time they found very
good agreement. .They were able to analyze only one class
of electron-fluid waves, the shock-fronted proforce wave
(force on the electrons due to electric field is in the di-
rection of wave motion) in on@-diménsiénal, time-independent
situations.

Winn19 called these luminous wavées ''ionizing waves".
He investigated the'propagation of such waves into the neu-

tral and pre-ionized gases. Experimenting on N, he reported
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the velocity increase from 1x10’m/sec at zero density to
around 7XI07m/§é¢ at a density of 3x10%/cm®. He also
reported the velocity dependence upon fhe magnitude of the
voltage pulse, pressure, and the diameter of the coaxial
shielding surrounding the glow-dischérge tube. He observed
that the shape of the wave front depended on the electron

ensity, but it was more strongly affected by the pressure.
He reported three differences between positive waves (waves
originating from, i.e. traveling éway from, a positive
electrode),and.negative waves, the méjor difference was
that the velocities of positive waves depended more
strongly on the.initial electron density. Revising a tech-
nique used by Haberstich, Blais_and Fowler20 studied wave
speed, and electron temperature and density behind the
wave front. -The measurements were carried out in helium
at applied electrode voltages from 6 to 42 kV of both po-
larities and over a pressure range of 0.3 to 30.0 torr.
They obtained good overall agreement with the theory of
Shelton.

Klingbeil, Tidman and Fernsler21 discussed a solution
technique for antiforce problem, but concluded that no
solution for thé‘antifofce case exists without photoioni-
zation. Sanmann and Fowler22 showed.that'a steady profile
theory on the antiforce waves (electron mobility motion is
in the opposite direction of wave adﬁance) could be obtained

from the basic equations developed by Shelton. Of the six
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equations used by Shelton and Fowler, they employed five:
those which represent conservation of heavy particle and
of charge, balancing of electrons and electron momentum,
and Poisson's equation. They avoided using the energy
equation, because at the point where electron velocity be-
came equal to wave velocity the energy equation resulted
in negative temperature which was not acceptable. They
included ion momentum terms in their equations arguing that,
for proforce waves, the field dropped to zero too quickly
to contribute velocity, momentum, or energy to the ionms,
but for antiforce waves, the heavy particles had time to
act as an energy sink. They thought that it was the slight
difference in velocity, V.-V, between the ions and neu-

" trals, which permitted a solﬁtion for antiforce waves.
Their predicted velocities for the antiforce waves that

were in good agreement with the data of Blais and Fowler.20

Scott and Fowler23

used the Blais apparatus to make ex-
tensive studies of initial breakdown wave speed in nitrogen
and argon as a function of local electric field at the

wave front. Their results were in basic agreement with

the electron fluid dynamic theory of the'phenomenon. They
suggested that the success of the Klingbeil et

al.21 theory at low energies was due more to the electron
pressure combqnent introduced through the energy equa-

tion and coupled with a. correct ionization statement than

to photo ionization, while its failure at very large velo-

cities was due to their admitted neglect of the electron's
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kinetic energy. They thought that it was possible, even
probable, that the peculiar constant velocity antiforce

waves observed at very low gas densities might be propa-
gated by photoionization processes.

In the present work computer solution of the electron
fluid-dynamical equations for both proforce and antiforce
waves with or without a current has been investigated ex-
tensively, resulting in improvements 'in their formulation,
and in the understanding of the conditions under which
solutions are possible. Also we have investigated the pro-
pagation of these waves into a pre-ionized medium. The
most significant:new discovery is the importance of heat

conduction, even up to the shock front of- the' wave.



CHAPTER III
THE BASIC EQUATIONS AND EARLY APPROACHES FOR THEIR SOLUTION

The purpose of this work is to find out whether the
fluid-dynamical equations do possess solutions describing
fast-moving electron waves which are very similar to -
breakdown waves. The three-component fluid equations will
be tﬁe basis for investigating the problem of ionizing
waves in the breakdown tubes. Following Shelton we first
derive the basic equations of conservation of mass, momen-
tum, and energy for a multifluid system consisting of neu-
tral atoms, positive ions, and electrons subjected to an
electric field E (applied field plus space charge field)
applied in the negative x direction. The force on the
electrons due to the applied electric field would be
in the direction of wave propagation (proforce wave). The
ionizing wave is an infinite plane wave which, in the
laboratory, is traveling in the positive x direction with
speed V,. The.equation of conservation of mass24 for any
component of the fluid could be derived by equating the
time rate of change of the number density of the particles
within a volume element with the sum of the particles

"~ created or lost within that volume per unit time, and

18
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fluxes of particles through the surface of that volume.
%% dxdydz = Bndxdydz + nvdydz - (n + == an dx) (v + — dx)dydz

where fndxdydz is the number of particles created in dV
per second, nvdydz is the particle flux into dvV, and B is
the ionization frequency (number of ionizations per umit
volume per second per elect:on). B is given by <civ'N>
where o, is the ionization cross section and the bracket
is an average over the electron velocity (v') distribution.
A constant mass term has been factored out of the above

equation. The equation reduces to

= fn . (L

The equation of conservation of momentum for electrons can

be derived 'in a similar fashion.

g% (mnv) dxdydz = mnvzdydz -m(n + 2 dx) (v + X dx)zdydz

B

- enE dxdydz - Ae(mv)dxdydz + Ai(mv)dxdydz
op
+ (Pg - (P + 5z dx))dydz ,
where the third, fourth, fifth, and sixth terms on the
right hand side are volume force due to electric field,
elastic momentum loss to heav? particles, inelastic momen-
tum gain from heavy particles, net force on dV due to pres-

sure gradient. The above equation simplifies to

gL (mv) + = (mnv + pe) = -enkE - A (mV) + A, (mv) . (2)
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Similarly, the equation of conservation of energy for elec-

trons would be
g%(%mnv2+we)dxdydz = mnvidydz-3m(n + == dx)(v + &= 3V dx)3dydz
BW
+(w v-(v + = dx)(w + — dx))dydz

' ape v
-envdedydz+(pev-(pe + 5 dx) (v + T

dx))dydz-Ae(%mvz)dxdydz+Ai(%mv2)dxdydz.

The third term on the right-hand side is the internal energy
flux into the volume element, the fifth term is the work
done against the electron pressure as the particles flow

through the volume element, and w_ is the internal energy

e
density of electrons (energy/volume). The energy equation

reduces to

SGmnvi) + oG +(phw ) v ) =-envE-A  (bmv?)+A, (3mv?) .
| (3)
In the above equations qe is the electron heat
conduction term and P, is the electron pressure. Ae(mv)
is the momentum transfer operator due to elastic collision
from elecfron to heavy particles, and Ai(%mvz) is the
energy transfer operator'due to inelastic collision from
heavy particles to electrons. e denotés the absolute
charge of an electron.
The equations for conservation of mass, momentum, and

energy for heavy particles (positive ions and neutral
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atdms) can be derived by using the same arguments. Since
the electrons are the main element in the wave propagation,
the electron production, momentum, and énergy equations
wou;d be our main concern. .The ion and neutral atom mo-

mentum and energy equations would be combined.

iy 2 = .
BT A , “
ot T oax NV T TR, (5)

(M1N1V1+MNV)4-~ (M N. V2+MNV2+P +P) eN. E+A (mv) -4, (mv) (6)

§- BM, N, V2H5MNV 2T +7) +——(35M1N1V33L+351v11\]V3+V (B0, )+V (P+D)

+Q;+Q) = eN;V.E+a (3mv?) -4, Gmv?) - (7)

where M, N, V, P, W, Q are neutral atom mass, density, ve-
locity, pressure, internal energy, and heat conduction re-

spectively. ~Fowler?5 has revised the Shelton24

calculation
of the transfer overators for energy and momentum in an un-

published paper and the results are:

Ae(%mvz) ( )nooN{zldF +(—)(V—V) }+noonV(v-V) ) (8a)
A o (mv) ; nmg, N(v-V) , : (8b)
A; (mv) = pmaV , (8e)
A Camv?) = SmgVe-gnes, | | (8)

R

XgmnV? (8e)
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In the equations above Af(%mvz) is the energy transfer op-
erator for inelastic collisions from heavy particles to
electrons; aﬁd Af(%mvz) is the energy transfer operator for
inelastic collisions from heavy particles to the neutrals.
oo N has the dimensions of 1/sec and denotes a collision |
frequency, and e¢i~is the energy required to ionize a neu-

tral atom. Writing K,;=¢N, Ae(%mvz) and Ae(mv) become:
b Cav?) =Bk, GRT + () (v-V) 2)+RymnV (v-V) (9a)
b (@v)=mnkK, (v-V) . ' ' (9b)

The terms of order 2m/M are small in most portions of the
wave and were nggleCted by Shelton and by Sanmann.
Ionization of'a'neutral atom creates a

pair of ion and electron, and the electron will have the
kinetic energy it possessed before the collision, which is
V2, For an électron gas with number density n and ioni-
zation frequency of B8, there will be %pnmV? kinetic energy
added to the electron gas because of neutral atom ioniza-
tion. On the other hand, any eléctron ionizing an atom
takes an amount of energy e¢ivfrom the electron gas.
Therefore creation of gn electrons will require a supply
of energy of Bne¢i from the electron gas. We assume that
the electrons, neutral atoms, and ions behave like perfect
gas so their inte;nal energy densifies LAY W, Wi would be
3 3

7nkTe’ %NkT, and 5 NikTi, respectively.
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An observer watching a steady-profile wave from a
reference frame traveling with the wave, would see a fixed
wave structure with no time variation. So in the wave
frame (reference frame moving along with the wave), a
steady-profile wave has no time dependence. The absence
of an experimentally observed Doppler shift indicates that
neither ions nor the neutrals have appreciable motion in
the laboratory and, based on this the velocity of ions and
neutrals can be assumed to be equal. We define the posi-
tive x-direction of our frame of reference é; be the direc-
tion of propagation of the wave. It has been reported and
agreed by all the experimenters that the electron fluid-
dynamical waves move from the electrode to which the poten-
tial is applied (high voltage electrode) toward the elec-
trode maintained at ground potential ?egardless of the
polarity of the impressed pulse. The reason for such a
behaviour is that near the élecﬁrode with higher voltage
there would be a strong electric field created. This
electric field forces the electrons aWay from the discharge
electrode toward the grounded electrode. Therefore, the
positive x-direction will be in the direction of discharge
electrode toward the grounded electrode. Therefore, if the
electron fluid-dynamical wave front has a laboratory velo-
city V, the heavy particles will have a velocity -V in the
wave frame. Taking all the points mentioned above into

consideration, the equations of production, momentum trans-
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transfer, and energy transfer for electrons, ions and neu-

tral atoms will be:

A - g (10)
AW | gy (12)
2 (mnv? + nkT,) = -enE - Kum(v - V) + gmV ,  (13)
2 (M, N, V2HMNV 24+, KT, +NKT) =eN; B+K ;mn (v-V) - gmV (14)
%(gmnv3+§nvae+qe)=-eva'-K mnV (v-V)+5pmnV2-gneg, ,  (15)

Qo

o CHML N, V350V 4+ % N, VKT, + 3 NVKT+Q, +Q) =eN (VE+KmnV (v-V)

~-%fmnv? . (16)

Now we will investigate the nature of the current in
the electron fluid-dynamical waves. For this purpose we
use the complete one-dimensional production equations for
electrons and ions. Subtracting equation (1) from equation

(4) and multiplying the result by e gives:
2 (e(N,-n))+-> (e(N,V-nv)) = 0
ot i X i ’

Using the Poisson equation (V.E = p/¢, = e(Ni-n)/eo) in the

above equation, it reduces to

oE

9 =
(e, TE + e(NiV -nv)) =0,

=

€9 is the permittivity in the MKS system.. Integrating the
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above equation, it reduces to

€ g% eV - nv) = 14(t) , (17)

which indicates that the total current, convection plus
displacement is independent of the position. For the mo-
ment we assume that there is no convection current in front
of the wave because it is moving into an unionized gas. Also
since the electric field at the wave front is constant and
equal to E,, then equation (17) in the wave frame of a

steady-profile wave will reduce to

e(NiV_- nv) =.0 . (18)

This is called the zero current condition. It is the total
current, i,(t) which is zero. Equation (18) is true iﬁ the
wave frame of a steady-profile wave, providing that the
electfon fluid-dynamical wave is moving into a neutral gas,
because it has been derived from the basic fluid equations.
In a stationary frame with no current and no applied or
self-generated magnetic fields, the only equation remain-

ing from Maxwell's equation is Poisson's equation:

9E _ e '
E—E(Ni-n) . (19)

Since the ions and neutral atoms have alﬁost the same
mass and stay in equilibrium during the passage of electron
fluid-dynamical waves, we can assume their temperature to
be the same (Ti=T). At first we neglect the heat conduction

term in the electron energy equation. The Poisson equation
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with its new form found by use of the zero current condi-
tion, and equations of production, momentum transfer, and
energy transfer form a set of equations which depend only
on variables describing electron behavior inside the elec-
tron fluid-dynamical wave, and wave velocity. To simplify
the equations further,lwe substitute d(nv)/dx in the momen-

tum and energy equations for gn, from the production equa-

tion.
géggl = gn , (20)
.-, )
% {mnv(v-V)+nkT }=-enE-K,m (v-V) , (22)
é% {mnv(vz-VZ)+5nvae+2e¢inv}=-2envE-2KlmnV(v-V), (23)

and the ion-neutral momentum and energy equations become:
L (MY ZHL N, Y2+ (N, ) KT) =eN, 4K ymn (v-V) - mn¥ (24)
L (VM N, V345 (W4, ) VKT) =2eN, VEH2VK, mn (v-V) - gumV2 . (25)

It is more convenient to work with the electron fluid-
dynamical equations in a non-dimensional form. Therefore

we introduce the following dimensionless variables:

2ed.
v = EFE? n , the reduced electron density.
= B
]J_Kl'

€
|

= % , the reduced electron velocity.
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, the reduced electron temperature.
n = E , the reduced electric field.

Eo
j = vy , the reduced electron current.

g = —%% x , the reduced position variable,

[

We also define the following parameters:

2ed,
(1=-—'1
mvT:
mV .,
K"'eEOI\I:
=8
U_K:l'

The definitions of 6 and u have been changed from those used
by Shelton. Shelton used 6=(kie/mV2) as dimensionless
electron temperature variable, where kTe is the electron's
thermal energy, and mV2 is the kinetic energy of the elec-
tron traveling at wave velocity. However, the ionization
process requires an amount of energy e, for each electron
ion pair creation. Therefore, (kTe/2e¢i) will représent

1/3 (3/2 kT/e¢i = n_) the number of electrons which could
be created with the initial electron's thermal energy.

Using the dimensionless variables the system of equations

become:

(\)E) = KUV , (26)

i

v -1, (27)

n1od
[tagi s}
l
Q<
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(-1 +ave}=-vn-kv(¥-1) (28)
a%{vw(tpz-l)+av\p(56+l) }=-2vyn-2kv(y-1) . (29)

Now let us examine the structure of electron fluid-dy-
namical waves, and electron motion under the applied field.
The force due to the applied field tends to accelerate the
electrons in the positive x-direction. The excess elec-
trons near the wave front will create a space charge field
opposing the applied field. The relative motion between
electrons and ions will be opposed by resistive forces
which are presented as A operators in the conservation of
momentum and energy equations. These opposing forces tend
to equalize the electron and ion velocities, which will
happen when the electric field (applied field plus charge
field) falls to zero. The velocity of electrons decreases
from its initial value (v, at the wave front) toward V(V<0).
From Poisson's equation (21), the electric field increases
from its negative value E, at the wave front to its final
value zero as dE/dx goes to zero when electron velocity ap-
proaches the ion-neutral velocity in the quasi-neutral re-
gion. The wave front can not be marked by a sudden change
in the electric‘field because a discontinuity in the elec-
tric field results from a surface charge, or from an infi-
nite volume charge density at the wave front, so the elec-
tric field has to be equal to Ejat the wave front. As

long as the electrons have sufficient thermal energy to
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ionize neutral atoms, ionization in the quasi-neutral re-
gion will continue.

In solving the electron fluid-dynamical equations,
Shelton24 was able to derive the conditions existent at the
leading edge of the wave. We have used these initial con-
ditions in our early approaches for solving the equations.
These conditions could be derived from the equations for
conservation of total momentum and energy. One can find
the equation of conservation of baryons by adding the equa-
tions (11) and (12), integrating, and taking into considera-
tion that there are only neu;ral atoms with number density
No and velocity V, ahead of the wave. Also assuming V:Vi

this equation becomes:
(N + Ni)V = NoVo . (30)

Using equation (30) and (M-m) for M., in equations (24)
and (25) one can find a different form for equations of con-

servation of momentum and energy for heavy particles,
-agi{MVNOVO-NimV2+(N+Ni)kT}=eNiE+K1mn(v—V)-Ban , (31)
L (MU, Vy-N,mV*+5N, U KT) =2eN, VE+2VK,mn (v-V) -Bnny? . (32)

Adding equations (13) and (31), using Poisson's equation,
and integrating the resultant integrable expression results

in the equation of the total conservation of momentum:

mnv2+nkTe+MNOVGV-mNiV2+(N+Ni)kT = 22°—E2+c ) (33)
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Adding equations (15) and (32) with the heat conduction term
neglected, using the zero current condition and equation
(10), and integrating the resultant integrable expression

results in the equation of the total conservation of energy:
mnv3+MNOVDVZ—mNiV3+5nvae+5NoVokT+2nve¢i=C' . (34)

Equations (33) and (34) are the global (all particle) mo-
mentum and energy equations respectively, for a three com-
ponent gas composed of electrons, ions, and neutral atoms.
C and C' are constants of integration to be determined

by conditions ahead of the wave (E=E,, V=V,, n=n,=0,
Ni=Ni°=0’.N=N°)' Using the values of C and C' calculated
ahead of the wave and zero current condition in equations

(33) and (34), one will find:
mnv2+nkT +MNo Vo (V-Vo ) -mmvV+N ok (T-To) - ‘522 (E2-EZ)=0 , (35)
mnv3+MNoVo(Vz-Vf)—man2+5nvae+5NOVOk(T—To)+2nve¢i=0 . (36)

At the wave front. due to their large mass, the change in
heavy particles temperature and velocity are negligible
(V=Vy, T=Ty). At the wave front the electrons will have
a temperature of (T,): and velocity v;, and the equations

(35) and (36) take the form:

k(Te)l
n; (v (v1-Vy) + - )y =0 . (37)
k(T ) 2ed., :
nyvy (vE-vi+s —& L+ T hy _ g (38)
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Shelton thought that the case n;=0 which results in conti-
nuous solution might describe antiforce waves. The second
way to satisfy equations (37) and (38) is to require n,;#0.
This results in discontinuous or shock solutions which he
showed describe proforce waves only. Solving equations

(37) and (38) for (Tg)1 and v, gives

Dehs
sy OVEHLE(Tdy )
vy = 80 t g ) (39)
k(Te)
m =v, (Vg = vy) . (40)

Since the zero current condition requires V, and v to have
the same sign and since (T ). has to be positive, one can
determine that |v;|<|V0|. Using these conditions on equa-
tion (39) led Shelton to taking the negative sign in it and
conclude that jmVfi>e¢.. This imposes a lower limit on
wave speed. The initial conditions expressed in terms of

the dimensionless wvariables take the form

T]1=1;V1#O,

ae; =y (1 - ¥y) (41)
_ 5-Y/94+16a
Yy = g

at the leading edge of the wave, and

ng =0; (nN)2=0; ¢, =1

at the trailing edge of the wave.
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A different form for the energy and momentum equa-
tions which can be derived will be employed in the rest of
this work. Multiplying equation (28) by 2, subtracting
the result from equation (29), and using Poisson's equation
results in the new energy equation. Also using the Pois-
son equation with the mdmentum equation would provide the

new form of the momentum equation.

a% {5 - 1) + ave + akn} = -vn , (42)
a%{j(w- 1)2 + ovo(59 - 2) + aj + an?} = 0 . (43)



CHAPTER IV
CLASS I PROFORCE WAVES

Fowler26 divided electron waves into three categories:
- Those waves which move into a medium of substantially
zero electron concentration were called Class I waves.

- Those waves which move into a medium of significant elec-
tron concentration were called Class II waves.

- Those waves which.did not fulfill the zero-current con-
dition were called Class III waves.

Our iniﬁial attempt at direct solution of the electron
fluid equations (26-29) for Class I proforce waves was to
use n as our integrating variable. This was not possible
integrating either forward or backwards across the sheath
because v is not known. Next, we chose j=vy as our inte-
grating variable and tried to integrate backwards believ-
ing that the electron fluid equations should apply over
both the gquasi-neutral region and the sheath. We chose
our initial conditions as ¥,=1, n.=0, j,=1, 6,=6_. This
also failed without any result. It became evident that
selection of £ as integrating variable was the only logi-

cal approach. By using the initial condition on 6, we

33
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found27 the integrating form of the set of the electron-

fluid equations as:

dj _ kuj
dé v
dn _ i 1.
ag - a (w l) )
(44)

.@—2 3 j—r]-

& ayp’

. - Y(k(l - n) - 1)
0 = o (]- I.b) + j 3

4y2- 5w{1+°‘(K(1 n)- I)}+1+ ¢ ((1-1)-T)-a(l+ Lt y=0 .

Now we had to solve a doubly branched quadratic equation
for ¢ which admits to solutions only under restricted con-
ditions. To obtain a solution one must select the values
of v, and « to cause the branches to meet in a horizontal
tangent, and then change branches. This reQuires many
iterative integrations. However, when found, the solution
still does not converge to n=0 at y=1. For the nearest ap-
proach to a solution we were able to find n changed sign

at y=0.94 for 0=0.01, v;=0.036523, ¢;=0.2466, and «=1.3.
The n versus Y curve was like path (2) in the (¢,n) plane
shown in Figure 1, although the most desirable result would
be something like path A. Figure 2 gives electric field
(n) as a function of drift velocity y, and Figure 3 gives
temperature (6), electron density (v), and ionization rate

(u) as a function of position (&).
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Figure 1. Electric field (n) as a function of drift velocity (V).
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Figure 2. Electric field (n) as a

function of drift velocity (v).
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Figure 3. Temperature (6), electron density (v),
and ionization rate (u) as a function of posi-
tion (£). Scale factors: For v divide y by
103, for u divide y by 102,
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Shelton assumed that u was constént, and later Fowler
plotted u as a function of 6 which was reproduced by San-
manp.27 This function changes from acceleration ioniza-
tion at the wave front through directed velocity ioniza-
tion in the intermediate stages to thermal ionization at
the trailing edge of the wave. -We replaced the assumption
of ionization rate being only a function of temperature by
a computation baged on free trajectory theory by Fowler (see

Appendix) which includes ionization from both random and

directed electron motions according to the expression

[ : ° _~(z-u)? _-(z+u)? _o,
. e -e du e—ZCu

uj O.sz ,
1//28 1t B u -

(45)

where B=(1-y)/v208 and C=xv2a6/n.
The approximate solution obtained by Fowler and Shel-
ton18 was based on an assumed power law relation between

n and ¢y of the form:

n= G (46)

Integrating the energy equation (43) across the sheath

provided them with an algebraic equation of the form
j(¥-1) 24+av(5¢9-2) 6+0j-a(l-n*)=0 . (47)

Using n as independent variable, and shock condition (41),
closed form solution was possible; The energy equation (47)

was redundant in the sheath because of the assumed n,y
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relation and was only used to avoid the temperature singu-
larity at y=0.4. We maintained contact with this approxi-
mation type of solution by using the slope dn/dy of the
exact solution at Y=y, to find an a for Shelton's approxi-
mate sclution. It was remarkable how little these solu-
tions differed from the computed solution of equations (44)
except at the end point. This again showed the general
validity of the Shelton equations and led us now to inves-
tigate whether the neglected second order terms such as
heat conduction and ion momentum might play a role in the
fitting of the solution to the final states of n and ¢
(n2=0, ¥2=1). o

The first correction term that we considered was addi-
tion to the energy equation of a heat conduction term which
had been assumed to be small. Heat conduction is propor-
tional to the gradient of temperature, and according to

Fourier's law of heat conduction, the heat conduction q is

_ dT
qQ = -Kp 3% >
where T is the temperature, and KT is the coefficient of
thermal conduction. The heat conduction coefficient takes
the standard form -(5/2) (k?nT/mK,) (dT/dx), and when mul-

tiplied by 2 inside the energy equation and in terms of

dimensionless variables becomes:

2
_ SaKve %% . (48)

The heat conduction term must be added inside the bracket

on the left side of the energy equation (43). Integrating
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equation (43) across the sheath results in a differential
equation for 6 which must be integrated. The momentum equa-
tion became a quadratic equation for y with the same branch
transition problem as before. The new equétion for calcu-

lation of 6 was

(o)
Y|

9 - {(w-1)2+<5¢-2>9‘l—p‘i+a-a(l-nZ)/vw} . (49)

Q.

Introduction of tﬁe heat conduction term alone in the energy
equation with the regular initial conditions produced an
even earlier sign change of n at about y=0.78. It was

the largest value of ¢ which could be achieved, with k=0.7,
v1=0.04657. Figure 4 gives n as a function of ¢, and
Figuré 5 giveé 8, u, v as a function of ¢.

The next correction to be considered was ion momentum
which must be added to the energy equation. Sanmann and
Fowler22 showed that when approaching the energy equation
by writing the global momentum and energy equations, each
contains the heavy particle temperature change and the ion
momentum changé in the field as unknown. To obtain an
energy equation, one has his choice of eliminating either
heavy particle temperature change or ion momentum change
and then evaluating Fhe other. Shelton argued that the
temperature change was negligible, but ion momentum change
was significant, though small. Since both ion momentum
change and heavy particle temperature change were diffi-

cult to evaluate, and interfered with the approximate
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solution, he chose to ignore the temperature change term

and eliminate the ion momentum change. Since then it has

been possible to derive expressions representing these

changes, but heavy particle temperature ehange has two

parts: elastic loss from the ion excess velocity and

elastic loss by electron collisions. This makes heavy

particle temperature change a more complicated correction

term than the ion momentum change, so Sanmann chose the

" course of eliminating temperature change, and which proved

to be the best course of action for the approximate solutions.
In deriving-equations.(35) and (36), the ion velocity

Vi was assumed to be equal to the neutral velocity V, for

the purpose of finding the initial conditions. To obtain

ion momentum chaﬁge, one has to take almost the same course

of action taken for derivingvequations.(35) and (36), and

use the equation of conservation oflbaryons-and the zero cur-

rent conditions, and use V;2V, except at the places that their

27

differences appear. The new form of the global momentum

and energy equations would be

mnvV o (V=¥ o) FMnvV  (V, -V )48,V kaTHnkT [V o+ %& (E2-E2)V =0,
| (50)

mnv(vZ-V§)+2anV0(VirVo)+5NUVOkAT+5nvae+2e¢nv+2q=0 . (51)

Labeling (V.-V,) as 4V, multiplying equation (50) by

5 and subtracting it from equation (51), one finds

mnv(v-4Vo)(V-Vo)-3anV0AV+5nkTe(v¥Vo)+2e¢nv-§y%51(ﬂf-E2)
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+2q=0. (52)

To find AV one has to use the equations of conservation of

momentum, energy, and mass for positive ions

d ” _

M N VL KT,) = eN,E - KM N, (V,-V) + gM;nV (53)
%(MiNiv $H5N, V. KT, )=2eN, V. E-2K, M, NV, (V,-V)+gM,nV2 ,  (54)
dw;v))=

&y (55)

Using equation (55) for Bn in momentum and energy equa-
tions, one will find

d - _ _ .
ai(MiNiVi(Vi-v)+NikTi)_eNiE KiMiNi(Vi~V) , (56).

d 2_y2 = - -
dx(MiNiVi(vi v )+5NiVikTi) 2eNiViE 2KiMiNiVi(Vi v) . (57)

Multiplying equation (56) by 5V, using the zero current
condition, setting Vi=V except at the places that their

differences appear, and labeling Vi-V as AV:

d -

ai(SMianAV+5nvai)—5envE—5KiMinvAV , (58)
d = -

ai(ZMianAV+5nvai)—2envE 2KiMinvAV . (59)
Subtracting equation (59) from equation (58):

d _ _ .
a;(anVAV) = envE Kian AV (60)
Introducing dimensionless variables into the equation (60):

g% (V¥ = % vim - K ve¥ (61)



43

where w=(2m/M), ¥=(AV/V), and Ki=(mVKi/eEo). Multiplying
both sides of equation (6l) by e¥i& ang solving that dif-
ferential equation for vy¥, one has

-K.& (& Kk.§&
vy = % e 1 JO e 1 vyndg . (62)

Introducing the dimensionless variables in equation (52),
and substituting for ¥ from equation (62), results in the
new .form of the energy equation with the ion momentum

change included. The new equation is also a differential

K.
equation for 6 which must be integrated. Setting R=K%:

%% = 2D (-8) o +56(1—%)+1-§_(1_n2)/j |
-0QKE (E ‘
- 35 J wny e™C dg} (63)
3 Jo

Solution of the electron-fluid equations with equation (63)
as its energy equation was also disappointing. Either n
reversed before y=1 (path 2, Figure 1) or 6 became nega-
tive (path 1, Figure 1). n became negative even earlier,
and the least bad case was «=0.54, v;=0.07. In the case
of n sign reveréal before y=1, when we let the integration
continue on either y passed through a maximum and ulti-
mately became negative (path 3), or n spiraled around the
(n=0,¢y=1) point without converging to that point. Figure
6 gives n as a function of ¢, and Figure 7 gives u,0,v as

a function of position (£) for the case k=0.54, v;=0.07.
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Figure 6. Electric field (n) as a
function of drift velocity (v).
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Figure 7. Temperature (0), electron
density (v), and ionization rate (1)
as a function of position (&).

Scale factors: For v divide y by 10 ,
for p divide y by 102%.
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One n sign change which represents a charge sign re-
versal inside the wave might be tolerable, but the multi-
ple sign change of n which takes place in the case of a
spiral path around (n=0,y=1) cannot be reasonable. A con-
siderable investigation was then made of possible embedded
shocks at (n=0,¢>1l), but connection could never be made
from the point S to the point (y=1,n=0) for any solution
by using the shock conditions. Also one might reach the
point (¢=1,n=0) continuously by a single n sign change
(path B), but we could not find a path such as B.

At this point it became clear that to achieve a solu-
tion which would meet the conditions on initia1 and final
states of n and ¥, an additional degree of freedom was
required. We decided to abandon the requirement that the
derivative of the temperature must be zero at the wave
front. In other words, to permit discontinuities at the
wave front in the derivatives of the functions as well
as the functions themselves. This was based on the argu-
ment that a strong discontinuity could override a weak
discontinuity at the same point. In our earlier work we
had abandoned this idea, thinking that a flow of heat
(6 #0) would then be crossing the wave front, but the heat
conduction term is only one component of the energy ba-
lance, and the other variables also have derivative dis-
continuities. Also in many shock wave problems a tempera-

ture derivative discontinuity has been assumed. To find
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the initial condition on ¢, with discontinuity on the
temperature derivative allowed, we introduce the initial

condition on 6

(!61 = 1’)1(1 - lPl) ’

and the values of other variables at the leading edge of
the wave (£,=0,n:=1) into the energy equation with the

heat conduction term included:

vlw;(w1—1)2+v1w1<1-w1)(5w1-2)+av1w1+a(nf-1)-éﬁ%}il(l-w1)ef
=0,

or

Sy, - 122 4220 = g

Solving this quadratic equation for y,, one finds the ini-

tial condition on ¥:

5(1+9-gi)-/(3-5“—,i-5-) 24160
Y1 = g . (64)

Our first attempt to solve the electron-fluid equations
with the new initial condition on ¥ was the original method

of integrating the impulse term of the momentum equation

3

I == J vn dE ,

0

and solving the algebraic quadratic form of the momentum

equation for Y, either with or without the elimination of
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8 from the energy equation. This again involved the hori-
zontal tangent approach to the two branches of the quadra-
tic equation, with a change of the branches, which was
possible for certain combinations of ¥;, v;, and k.
Finding these solutions was very time-consuming and also
wasteful of computer time, but a few near solutions were
found.

Next we shifted from the algebraic quadratic form of
the momentum equation to the primitive differential form.
By employing the production equation (26), one can write
the momentum equation (28) as a differential equation for
. Electron production and momentum equations can be writ-

ten as:

v %% + Y %% = KUV (65)

(v-1) Q%%?l + vy %% + ab %% + av %% = -vn - kvy + kv . (66)

Substituting for (d(vy)/df) from production equation, and
for dv/df from equation (65), one can solve equation (66)
for dy/dg:

dy _ )P (1-9) (1+u) ~kpab-np-ayp %%

a:;: wé - 08 (67)

The singular behavior of the equation set which lies be-

tween 0<y<l and has appeared in different forms in differ-
ent combinations of equation sets before, is manifest here
at Y2=a6. Since dy/df can not be infinite without a shock,

and no shock is possible between y; and 1, then the numerator
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in equation (67) must also be zero at the same point where
the denominator became zero. This allcws us to choose the
initial value of 9, by trial and error for a given k. The
value of the numerator must be compared with that of the
denominator each time and this can not be done without
integration of the set up to the point of singularity.

This course of action is somewhat more direct than use of
the quadratic equation for y. With increasing o, even as
high as ~0.1, the singularity becomes so sharp that it

can lie within a single step of integration. This makes the
detection of the singularity difficult, especially for very
high values of @

Since 6' is dependent on v, the results, especially the
action of n and y at the trailing edge of the sheath, were
very much dependent on the initial value of v(=v,). Appro-
priate choice of v, brought us very close to meeting the
tangent conditions at n=0,y=1 for the first time. |

Because of the small rates of the heat loss by electrons
in elastic collisions we like others had neglected terms like
3m/M(nK1kTe) in our previous work. At this stage we chose an al-
ternative formulation of the energy equation with the heat
loss terms by the electrons to the heavy particles in elas-
tic collisions included. The electrons heat loss term in
their directed motion is (m/M)nK,m(v-V)?, which in terms of
dimensionless variables would become wkv/2 (y-1)2 and must also

be subtracted from the right hand side of the energy equation.
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In these terms w is 2m/M. Adding the new correction terms

to the energy equation one has

a‘-ig{vw(w-l) 2+av6 (5xp-2)+cwq;+om2-50‘;"e %%}= ~wkv{3a6+(yY-1) 21},

(68)

We designated the right side of equation (68) as dW/dg,

é% = -wkv 308 +{(y-1)2%} . (69)

Bringing dW/df to the left side of the energy equation, and
integrating it across the sheath, one will find a differen-

tial equation for 6 which must be integrated.

%% % Sagve{vw(w'1)2+ave(Sw-2)+avw+a(n2-1);w} ) (70)

Using the shock conditions on 6 and y, with the temperature
derivative discontinuity allowed and the initial condition
on n (n=1), one can easily find thé initial condition on
W which is W;=a.

Introduction of equation (68) as energy equation in
the set of the electron-fluid equations, acceptance of the
electron temperature derivative discontinuity (6') at the
leading edge of the wave, the use of the momentum equation
in the form of equation (67), and appropriate choice of v,
Y1,k led to a completely satisfactory solution which met
the tangent conditions at the trailing edge of the wave
(n=0,y=1) within the accuracy of the integration step.

The results for the case of a=0.01, k=1.18179, v,;=0.025,

and ¥,=0.31953 in argon are given in Figures 8-10. As
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Figure 8. Electric field (n) and drift
velocity (¥) as a function of position
for Ar at a=0.01, ¥:1=0.31953, v.=0.025,
k=1.18179.
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Figure 9. Electric field (n) as a func-
tion of drift velocity (¢) for Ar at
0=0.01, ¥:=0.31953, v;=0.025, k=1,18179.
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Figure 10. Electron temperature (6), elec- Figure 11. Electric field (n) and drift

tron density (v), ionization rate (u) as a velocity (y) as a function of position
function of position (£). Scale factors: () for Ar at o=2, ¥,=0.0845, v,=7.7,

For v divide y by 10°, for u divide y by 102, k=0.6498.
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mentioned before, when o becomes larger the singularity be-
comes very sharp, therefore very difficult to detect. We
investigated the solutions for o=0.01, 0.1, 1., 2., 4. and
we were able to find solutions in all cases except for o=4.
In the case of o=4 the solution could not be made to con-
verge to n=0 at y=1, but 6 became negative at ¥=0.97 for
k=0,54087, ¥:=0,015, and v,=49.2. This indicates the exis-
tence of a cutoff close to avs, (expected from experiment!).
Figure 11 gives electric field (n) and drift ve}ocity (V)
as a function of position (&), and Figure 12 gives tempera-
ture (6), ionization rate (u), and electron density (v) as
a function of position (&) for the case of a¥2., k=0.6498,
v1=7.7, ¥;=0.0845 in argon.

We also investigated the solutions for two more gases,
nitrogen and helium for above range of a. The behavior of
electric field as a function of drift velocity, electric
field and drift velocity as a function of position, temp-
erature and electron density as a function of position
were very similar in all three gases. The only difference
was that, for helium and argon the ionization rate ap-
proaches zero at the end of the sheath, and that of ni-
trogen remains non-zero but small. For comparison the
electron density (v) as a function of position (£), and
the ionization rate (p) as a function of position (&) are
given in Figures 13 and 14 for the case of o=2 in argon,

helium, and nitrogen.
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3 ] ) 1 [
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Figure 12. Electron temperature (6), electron density
(v), and ionization rate (u) as a function of position
() for Ar -at a=2, ¥;=0.0845, v;=7.7, «=0.6498.

Scale factors: For 6 divide y by 10°, for v divide y by
10, for u divide y by 102.




Figure 13, Ionization rate (u) as a func-
tion of position (g) for Ar, N2’ He at a=2.
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Figure 14. Electron density (v) as a func-
tion ef position (&) for Ar, Ny, He at a=2.
Scale factors: For v divide y by 10.
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For the case of o=0.01 in nitrogen we gradually de-
creased the size of the integration step from A£=0.01, to
0.005, 0.0025, 0.0008. The effect on the solutions is interest-
ing but not significant. In nitrogen for a=0.0l1 and integration
step of 0.0l the solution was found to be k=1.2778,
v;=0.025, y,;=0.33455, where for integration step of 0.0008
it occurred for ¢=1.1805, v,=0.025, ,=0.31903. The inte-
gration step is therefore important for a perfect result,
but a step which does not invoke inordinate amounts of
machine time possesses enough accuracy for proof of the

existence of solutions.



CHAPTER V
CLASS II PROFORCE WAVES

Up to this point we have studied the propagation of
the ionizing waves in to a medium of substantially zero
electron ion concentration (zero current in front of the
wave). In this chapter we will consider the propagation
of the proforce waves into a medium of significant ion con-
centration, which are called Class II proforce waves.

The ionized medium in the atmospheric case is usually
a mixture of positive nitrogen ions and negative oxygen
ions, where the electrons are loosely bound to the oxygen
~atoms. Application of a weak electric field to the positive
and negative ions tend to accelerate the positive and nega-
tive ions in two different directions. The movement of
these charges creates a small current in front of the wave.
It will be shown that the waves propagating into an ionized
medium will possess different structure than they had while
moving into a nonionized medium, and the structure of the
wave depends very much on the concentration of ions in
front of the wave. The negative and positive ions have

equal number density, and we will represent them as N;=NE,

56
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N;=Nt respectively. The applied electric field will be
represented as E_, denoting the field far away from the
wave front. Because of having almost equal mass, the po-
sitive and negative ions will acquire equal speeds in oppo-
site directions. If in the lab frame the positive and ne-
gative ions were moving with a speed of magnitude v,, then
the electrons attached to the negative ions will be moving
with the same speed, and also they will have equal number
density as ions. Denoting the number density of electroms

as n,, one has
Ny = Ny =ng . (73)

Assuming that in the lab frame the wave front is moving
from left to the right (positive x direction) with a speed
of V,, then in one dimension and in the wave frame the
neutral atoms will be swept into the wave front with a velo-
city -V,, and depending on the direction of the E_ the
positive and negative ions will possess a speed of either
-(Vo+vy) ,-(Vo-vy) or the other way around. When an ionized
medium is overrun by a proforce wave, the ions will no
longer be under the influence of the remote field
(E.), and for a very short time (the time that it takes
for a thin front part of the sheath to traverse the ions)
they will be influenced by the electric field existent at
the wave front (E,). The front electric field will rip

the loosely bound electrons off of the negative ions,
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leaving them as neutrals. The ions entering the wave will
make a few collisions with neutral atoms and acquire the
same speed as neutral atoms. Also the electric field in-
side the sheath drops to zero very fast, in which short
time the ions do not acquire speed in excess of neutral
atoms. In proforce waves, the electrons because of their
small mass will be driven toward the wave front, with a
velocity smaller than V,(|v|<]V,|). Therefore, in the
wave frame the electrons will have a negative speed.

We began our attempts at direct solution by only con-
sidering the effect of the current in front of the wave in
the Poisson's equation and neglecting its effect on the
shock conditions. This failed to give any useful results,
even if we used the same set of electron-fluid equations
which in the case of proforce wave traveling into a non-
ionized medium led us to a completely satisfactory solution
meeting the boundary conditions at the trailing edge'of
the wave. The integrals produced negative values of ©
(path 1, Figure 1) before y reached unity, which is not
acceptable. 1In this case the boundary conditions
at the end of the wave would be different. While the elec-
trons, ions, and neutral atoms come to an equilibrium
(¥+1), and the first derivative of the electric field approach-
es zero (dn/dg + 0), this is not necessarily true of the electric
field itself. According to Kirchhoff's law the current

entering the wave front would be leaving the wave at the
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end. The field E_ drives a current far ahead of the wave,
so there must be a remaining field at the end of the wave
to derive a current there also.

The next attempt was to consider the effect of the
current ahead of the wave in the boundary conditions in
front of the wave. Assuming that the electric field ahead
of the wave points in the negative x direction, the oxy-
gen atoms and the electrons attached to them will move to
the right and the positive ions will move in the direction
of the field with speeds of -(V;y-v,) and -(Vy+v,) respec-
tively relative to the wave front. The absence of an ex-
perimentally observed Doppler shift indicates that neither
the ions nor the neutrals have appreciable motion in the
laboratory and, based on this, the velocity of ions and
neutrals can be assumed to be equal to V, inside the wave.

By using equation (73), the equation for conservation
of current in the wave front becomes

env-eNiVo = eng(Vo-vo)-eng(votV,) , (74)

where n and Ni are the electron and ion concentrations in-
side the sheath respectively. Solving equation (74) for

Ni’ one has

_nv , 2n,v,
Ny =g, t Voo (75)

Substituting for N, from equation (75) in the Poisson's

equation of the form of equation (19), one has

dE _en ,v ;
== 0 (VF - 1) +

2en,vy
e _—_, (76)

EoVo
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Introducing the dimensionless variables into the Poisson's

equation it becomes:
%‘Tg]=%i(‘f"1>+2%°: (77)

where j¢ is the current ahead of the wave.
The global (all particle) momentum equation can be

written in the following way:

nmv N, M, V 4MNV ok T+, KT = EZ-Q E2 + C , (78)

where C is a constant to be determined by condition ahead’

of the wave.

nmv >+N, MVZ-mN, VAHMNV#+nkT _-n k(T ) o+ (N+N, Y)kT- (N, +N, )KT,
i i e e i i,
-nom(Vo#va)z—Nio(M—m)(Vo+va)2—MNoV§ = 0 (79)

where (Te)°’ and T, are electron and neutral temperature
respectively ahead of the wave, and the electric field
right at the wave front is no longer E_, but it becomes
Ey. The source of the temperature difference, T-T,, must
be collisions of electrons with the neutrals since the elec-
tron-ion collisions are so infrequent as to be negligible.
Sanmann28 calculated the energy transfer rate for elec-
tron-neutral collisions, and concluded that T-T, increases
with position x through the wave and is of the order of
4K(nTe/NoVo)(m/M)x. Calculating NoVo/nTe, he found that
even for the extreme case of helium, if the wave velocity

is greater than 10° m/sec, this term is as small as 1077.
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Alsc at the wave front N=N,, and Ni=Nio=n°’ because the
ionization does not take place at the wave front but in-
side the sheath. Considering the above arguments.the terms
(N+Ni)kT and (N°+Nio)kT° in equation (79) cancel each other.
The electrons ahead of the wave are attached to the oxygen
atoms, therefore the electron temperature (Te)0 which is

in the order of the room temperature would be negligible
compared to the electron temperature inside the sheath.
Compared to the wave velocity V,, the neutral-ion velocity
v ahead of the wave is very small, therefore the terms
having v# could be neglected. Taking all the above into
consideration, and employing the equation of conservation

cof particles:
Ng + ng = N + Ni (80)
in equation (79), it simplifies to:
nmv? - mNivf + nkT, + 4nomnoVo - 2noVeVe = 0 .
Employing equation (75) in this expression, one has
nkT, = -nmv2 + nmvV, - 6n,mv,V, + 2n,v VM . (81)

Denoting the values of the variables at the wave front by
a subscript 1, substituting for n, at the wave front from
equation (75), and dividing both sides by mV{ equation (81)

reduces to:

k _ V1 2VOV1 M
i (Te)1 =77 (Vo = v1) + o F WV, (E - 3) . (82)
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Introducing dimensionless variables in this expressionm,
one finally obtains the boundary condition on the electron

temperature:

2

8 = %f (1 - 9,) + (L + 29,

E -3, (83)

where ¥, = v,/V, is the ion velocity in front of the wave.
To find the initial condition on y, we took the same
course of action as we had previously in the case of pro-
force waves propagating into the nonionized medium. At
the wave front crosswise, and directed motion of the elec-
trons are zero, which makes the heat loss term 3abuwrv, |
wkv{p-1)? by electrons zero. The enérgy equation gives

the shock condition on y; as:
2 _ _ 5a%0,0)y _ .
vi(P1(91-1) 2408, (591-2)+ap, - =-2=L) =0 .

Since v;#0, then substituting for 6, from equation (84),
and factoring Auﬁ ¥, results in a ﬁuadratic equation on
¥, which could be solved for it. Also the initial condi-
tion on W as in previous case becomes a. Using the above
initial conditions with appropriate values of y,, ¥;, vi,

k, and the electron-fluid equation set in the form of:

da%) —

dn _ v /.o 2]
ey + 2

d k(19 (L+u) -ay8’ ~kpad=ny
3 7 - ab ’

(84)
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2
;_W"v’(‘.’/'l) 2+ave(5y-2)+aviton? - ‘_-?_O_L_E\_)_Q g_g.}

S

= -wkv(3a6 + (y-1)2),

led to a completely satisfactory solution which met the
boundary conditions at the trailing edge of the wave
(dn/dg = 0, y=1).

The results were extremely sensitive to y, and v,.
vy is the measure of charge in front of the wave; the more
electrons we have out in front of-the wave, the higher the
temperature is in the shock front. Equation (83) shows
that because of the large value of M/m, a small change in
Yo will result in a large change in the electron tempera-
ture in the shock front. The results were not very much
dependent on j,, but one has to take its relation with y,
and v, (jo=vo¥,) into consideration. For y,=10"° the re-
sults were quite similar to the case of proforce wave
moving into a nonionized medium, with the boundary condi-
tions of (n=0,y=1) at the trailing edge of the wave. We
investigated the solutions for higher values of y,, and
were able to find solutions for y, as high as 5x10°5, al-
though for ,=5x107°, the reduction in the electric field
across the sheath was very small, and the value of the
electric field at the end of the sheath was very high.
Figure 15 gives the electric field (n) as a function of
drift velocity (y) for ¢,=107¢, 1075, 3x107%, 4x107°%,

5x107%, For high values of y,, the solutions occur at



64

8L

6l

o4l

o2}

0 2 o4 6 «8 : 1
v :

Figure 15. Electric field (n) as a function of drift
velocity (¥) for o=0.0l. Curves (1), x=1.2088, ¥,=0.32499,
$o=10"%; (2), x=1.21537, y,;=0.31835, ¥,=10"%; (3),
k=1.5227, ¢:=0.287, y,=3x10"%; (4), «=1.5986, y;=0.263,
Yo=4x10"%; (5), k=1.81216, y;1=0.245, ,=5x10"5,
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larger k. For instance in nitrogen for a=0.0l, x was equal
to 1.2088 for yo=10-%, ¥,=0.32499, v,=0.022, j,=2x10"%,
and it was 1.5227 for ¢,=3x10"%, ¢,=0.287, v,;=0.00315,
j02107%°, Figure 16 gives the electric field (n) and the
drift velocity (¢y) as a function of position (£), and in
Figure 17 the electron temperature (8), ionization rate
(n), and the electron density (v) are given as a function
of position (£).

Comparing Figure 16 with Figure 9, one can see that
the sheath is longer in the case of the proforce waves
traveling into an ionized medium, than when propagating
into a nonionized medium. Also in the former case the
temperature is very high at the leading edge of the wave,

which is as expected.
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Figure 16. Electric field (n) and drift velocity (y) as a
function of position (&) for 0=0.01 at y,=3x10"%, ¢,=0.287,
k=1.5227, v;=0.00315. : :
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Figure 17. Temperature (8), electron density (v), and ion-
ization rate (u) as a function of position (§) for «=0.01
at $o=3x10"°%, k=1.5227, ¢1=0.287, v;=0.00315. Scale fac-
tors: For v divide y by 10°, for u divide y by 102,




CHAPTER VI
ANTIFORCE AND CLASS IIT WAVES

The fluid dynamical model is that of a plane wave
which in the laboratory is propagating in the positive x
direction with speed of V,. Remembering that the heavy
particles are assumed to be at rest in the laboratory, then
in a frame where the wavefront is stationary at x=0 the
wave extends from x=0 to x=-», and the plane x=0 divides
the gas in front of the wave from the three component gas
composed of the electrons, ions, and neutrals behind the
wave. The propagation of the wave in the laboratory is
governed by the motions of the electrons; the heavy parti-
cle motions are very small. In the antiforce waves, the
direction of the electric field is such as to cause the
average drift velocity of the electrons to be away from
the wave front. The electron fluid pressure is assumed
to be large enough to provide the driving force to cause
the wave to move down the tube with the observed veloci-
ties. ' This implies that the electron temperature must be
large enough to sustain its motion despite the net electron

drift away from the wavefront.

67
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In analyzing the proforce waves, Shelton24 found a
solution with a strong discontinuity, but concluded that
the equétions were incompatible at the leading edge with
such a solution in the antiforce case, and that one must
choose the weak discontinuity condition n;=0, (dn/dx) ;#0
at the leading edge of the wave.

Sanmann28 began a search for a solution having a weak
discontinuity at the leading edge of the wave. Expanding
the continuity equation, setting n=0 at x=0, and assuming
(9n/9x) 1#0 he fouhd a condition on electron velocity at the
leading edge of thewave (v1=0). Introducing this condition
in the Boisson's eduation, he .found the initial conditions
for the field as E=E,, (3E/3x);=0. In the ¢éase of anti-
force waves, nondimensional variables such as k(k=mVK,/eE,)
because V<0,E,>0,K>0, will be intrinsically negative. 1In
solving the antiforce wave case Sanmann changed the sign
of the constants in the standard proforce equation set, and
omitting the energy equation heused it as a set of electron-
fluid dynamical equations for antiforce waves. We will show
that to change formally from the standard proforce formula-
tion by simple sign changes of constants is not possible.

Assuming the current flowing inside the wave to be ij,
whether we are in the laboratory or wave frame, the current
in the quasi-neutral region is i;, because it is a conduc-
tion current in a locally neutral gas. In the wave frame,

the composition of the current at the front differs from
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that at the quasi-neutral region, and also as seen from

the laboratory, but the value remains the same because of
Kirchhoff's law. Ih the wave frame, the current at the
front is largely negative convection, but in the laboratory
it is convection plus displacement, the convection being
increased by the larger value of electron velocity, but
cancelled out by displacement. In either case, the

value remains unchanged at i,.

Although our fluid dynamical model is one dimensional,
the electrical model is three dimensional with rotational
symmetry being a cylindfical rod with charged end. Assum-
ing that the ionizing wave is propagating into a medium of
glow-discharge ion concentration, the current in front of
the wave (i,) might be on the order of 10 A/m%. In other
words, the field of an infinite plane wave could not be
felt away from the front, that is to say, our one dimen-
sional model does not apply to the field itself. There
are two reasons for such a small current in an ionized me-
dium ahead of the wave: (1) heavy positive and negative
ions at glow discharge concentration can only carry ~10°
A/m? in a field as big as E,v5x10°V/m/Torr; (2) negative
ions would be stripped in such a strong field. We must
therefore invoke something like the inverse square law to
reduce the field rapidly away from the front. The electric
field E at a distance r ahead of a wave with front radius a

and front electric field E, can be calculated from:
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jonN

E=Eu

H'\| )

) (85)

then with avlem, io(i = e?nE/mK) would be less than 10
A/m® at a distance of 1 meter. Thus the inverse square
law may account for much of the apparent sharpness of the
discontinuity.

In the wave frame eNiVi carries a substantial portion
of the current, but in the lab frame it is a near zero

portion. Thus behind the wave front one has
eN,V, - env = i, . (85a)

Based on the absence of an experimentally observed Doppler
shift, which indicates that neither the ions nor the neu-
trals have appreciable motion in the laboratory, we can
assume the velocity of.ions and neutrals to be equal (Vi=V).
Substituting V for V; in equation (85a) and solving it for
i

= =1
Ni oV +n

|—l

(85b)

<1<

Substituting the above expression in the Poisson's equa-

tion of the form (19):

dE _ e (i, -
&0 (G +n n) . (86)

<<

One can write the other three electron-fluid equations in

the form:

a‘—ig (nv) = fn , (87)
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é% {mnv(v—v)+nkTe} = -enE - Kymn{v-V) , (88)
d kznTe d‘I'e
Hi{mnv(v-V)2+nkTe(5v—2V)+2e¢inv-5 oK 75;}=-2enE(v-Y).
(89)

We must be very careful about introducing dimensionless

variables into the antiforce case. Let n=av, v=Vy, Te=be,
E=nE,, x=-c&, where a,b,c>0, and v,¢,06,n,£>0. Assuming x
to be positive forward, then in this case & would be posi-
tive backward. Introducing the above dimensionless varia-

bles in equations (86-88), one has:

%% =T ffE—eo' ’(éiﬂ"" v(y-1)) , (90)
& on = -, (91)
2ep.

a%—{v\p(xp-l)+veem—v2]=%;E'_}=%E}vn+c%lv(w-l) . | (92)

If we wish our equations to be invariant from the proforce.

case in algebraic form, then for antiforce waves,

ceEo _ 1 ek _ kb
mv 2 ’ v ! Zeq)i =1,

The above expressions result in

2ed,
_ _ mv? _ mVK,; _ i
c = , K = eE, b = T -

eEo

Since for antiforce waves Ey >0, and V<0, then ¢ and « both
would be negative. But this contradicts our definition of
¢, which was defined positive! It is consistent only for

proforce waves where Ey<0. Therefore, we must let ¢ be
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equal to mV?/eE,, and k=-mK,V/eE,, so that now both c and
Kk will be positive. Substituting the values of c and « in

equations (91) and (92) gives

dow) _ (93)
él {vyp(y-1)+avé} = vn-kv(y-1) , (94)

where u=8/K;>0 and a=2e¢i/mV2. Substituting mV?/eE, for c

in Poisson's equation (90):

(=9

n _ -aemV?

dg eeoE§2e¢ Zed; (aeV + v(y-1))

Substituting « for -mK;V/eE,, setting a2e¢i/eDE§ = 1 in the

above expression:

dn _
HE"' (lb l)+K€EK1

If we represent i,/e,E.K; by 1, the above equation becomes:

mIS‘
<

= (¥-1) + k1 . (95)

Q

From a2e¢i/soE§ = 1, one can solve for a:

where a is the ratio of the electromagnetic energy density
to the energy required to ionizg one atom, or in other words
it is the number of the atoms which could be ionized with
the discharge potential. Using the values found for a,b,

¢,k in energy equation (89):



73

é%{vw(w-l)2+uv6(5¢-2)+avw-§g§2§ %g}=2vn(¢-l)- (96)

Now let us look at the sign problem in £ again. Sup-
pose we decide to have n=av, v=Vy, T =b6, E=nE,, x=cg with
a,b,c>0 and v, y,08,n>0. Therefore £ has to be negative be-
cause X is negative: 1i.e., we are going to integrate the
equations backwards. In the latest form of the nondimen-
sional variables the electron-fluid equations for antiforce

waves become:

dig (V) = -kuv (37
B=2 @D -, (98)
g% (v (y-1) + ave} = -vn + ev(y-1) , (99)
g%{vw(w-l)2+uve<sw-z)+av¢-éﬁgkﬂ %%}=-2vn(w-l) . (100)

where we have substituted k=-(mVK,/eE,), c=mV2/eE,,
kb/2e¢, = 1, a(2ed,/e.E8)=1, a=(2e,/uV?), in the above
expressioné. In equations (97-100) all quantities but ¢
are intrinsically positive, including «.

The electron-fluid equations for the case of proforce

waves, with £ positive backward are:

d

I (V§) = kuv , (101)
$-2wDn, (102)
g% (v (v-1) + avd} = -vn - kv(y-1) , (103)
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SEw- 1) *as (59- 2)+avy - 220 &84 auny-1) (104)

To change formula from the standard proforce formulation
we assume primes on all above quantities, and set k=-«',
gE=-£'. As one can see this action does not produce either
set (97-100) or set (93-96) of the electron-fluid equations
in the antiforce case. Therefore, we are doubtful about
some aspects of Sanmann's work.

If we include the electrons' heat loss term in their
directed motion (m/M)nK,m(v-V)?2, and electrons' heat loss
term in their random motion (3m/M)nK1kTe, in the energy
equation, the set of electron-fluid equations in the anti-

force case with £ positive backward will become:

éé%il = Kuv , (105)
%% = -2 (- + 1, (106)
éi {(vp(y-1) + ave} = vn - kv(y-1) , (107)
EIdE {wp(p-1)2 + av6(59-2) + avyp - 29%\& a9

= 2vn(¥-1) - wxv(3a6 + (y-1)2) . (108)

In solving the antiforce case problem we will use the set
of equations (105-108), where all quantities including «
are intrinsically positive. Writing the momentum equation
'(107) as a differential equation for Y, substituting for

dv/dg¢ and d(vy)/dg from production equation (105), and
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solving the resultant expression for dy/d¢ one will find:

dy _ kp(1-9) (I+pw) - ap6' - akud + ny

¥y,

Employing the Poisson's equation (106) in the energy equa-

tion (108) it becomes:

é%{vw(w-l)2+av6(5w-2)+uvw+an2-~§9§22 %§}=2anK1~va(3a6'

+(y-1)2) . (110)
Setting

%g = 2ank1 - wkv{3ab+(yp-1)2} , (111)

one can solve the energy equation (110) for de/dg:

Qalaa
| @

- §E§3§{Vw(¢'1)2+ave(Sw-2)+avw+u(n2-1)-W} . (112)

For antiforce waves, the shock condition on electron
temperature will be different. To find the electron temp-
erature at the shock front, we use the global momentum

equation, which in the wave front becomes:

mav 2 +nkT HINV2HL N, VEANKTH, KT, + %(E%-EZ )=MN,VZ+N,kT, ,

C113)
where ahead of the wave n and Ni are equal to zero, V
equals Vo, E equals Ey, and N equals No. Now exactly at
the front, as in Chapter V we assume V=Vi=Vo, T=Ti=To,

and E=E,, which reduces equation (113) to:

mn,vi + mk(T): + (MN+M, N, -MNo) V2 = 0 .
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Using the equation of conservation of particles (30) and

(M-m) for Mi in this expression:
mnyvi + nkT, - mNiV2 =0 .

Substituting for N, from equation (85b) at the wave front,

one has

nvi(vi-V) + = (1), - 2L -0 . (114)

Introducing the nondimensional variables in equation (114)

and substituting 1 for i,/e,EyK; it becomes:
81 = $1(1-P1)/a - k1/vy . (115)

To find the initial condition on W, one has to take the
same course of action as we had previously in the case of
proforce waves, and W;=o at the wave front.

Determining K; from experimental curves29 gives
Ki/p = 3x10® for helium and K,/p = 4.8x107 for nitrogen at
273°R. At a temperature of 10° K, will be 2.4x10° and
9x10° for helium and nitrogen respectively. Applied fields
afe usually of the order of 10° V/m; the current inside
the antiforce waves is of the order of 10°A; and €, is
8.85x107!2 farad/m. Considering that E,,K,,B in our for-
mulas are scaled with p (the electron pressure) and using
the values of i,,ey,Eq,K; one can estimate the value of 1

which is of the order of one.
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Using the equations (105), (106), (109), (11l), and (112),
acceptance of an electron temperature derivative discontinuity
at the front, and the use of equation (115) for a shock con-
dition on electron temperature led us to a completely
satisfactory solution in both cases with and without cur-
rent inside the wave which met the boundary conditions at
the tréiling edge of the wave.

The results were not very much dependent on the cur-
rent inside the wave. We investigated the solutions
both with and without current inside the wave. For the
case .of antiforce wave moving in nitrogen for o0=0.0l we
were able to find a solution at k=1.3, v,;=0.83, ¢,=0.68,
1=2.6. Figure 18 gives the electric field (n) as a func-
tion of velocity (¢). Also for this case the electron
temperature (6), electron density (v), ionization rate
(u) are drawn as a function of position (&) in Figure 20.

For the case of zero current we were able to find a
solution for antiforce waves propagating in nitrogen. The
solution for a=0.0l were found at k=1.3, ¥,=0.645, v,=0.886
and 1=0.0. Figure 21 gives the electric field (n) as a
function of electron drift velocity (y), and Figure 22
gives electric field and velocity as a function of position
(). 1In Figure 23 electron temperature (8), electron den-
sity (v), ionization rate (p) are drawn as a function of
position.

Comparing Figure 22 (antiforce case) with Figure 9

(proforce case) one can see a thickness of almost three
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Figure 20.



81

times larger for the sheath in the proforce case, where

28

Sanmann”"~ had reported a thicker sheath for antiforce

waves than for proforce waves.



CHAPTER VII
CONCLUSION

It has been shown that the assumption of ionizing
waves being steady in profile is a good assumption, and
the set of equations chosen from among the twelve possibi-
lities are adequate to obtain a solution for ionizing waves.
A one-dimensional theory for describing real two dimensional
waves, heavy ion energy and momentum, and energy losses by
the electrons of order m/M have a third order effect on the
final results. The ionization rate and collision frequency
in the region where electric field is present remains sub-
stantialiy constant. The assumption of heat conduction
term being negligible has been abandoned, and it has been
proven that it is essential for any solution of the elec-
tron-fluid equations. The concept of continuity in the
initial derivatives of the functions must also be abandoned,
particularly in the case of the temperature derivative.
There is also a discontinuity in the derivatives (weak
discontinuity) at the trailing edge of the wave sheath,
between the sheath and the quasi-neutral region.

In the case of proforce waves propagating into an un-

ionized medium, it has been shown that in the sheath prior
82
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to the quasi-neutral region, the electric field and its
derivative both fall to zero. In the case of the electron-
fluid-dynamical waves moving into an ionized medium, only
the derivative of the field approaches zero, and a residual
field is responsible for deriving the current.

Electrons are the main element in deriving the elec-
tron fluid-dynamical waves. In the case of proforce waves
the electron pressure and field force are both active agen-
cies, but in the case of antiforce waves the electron pres-
sure becomes the main driving force of the wave. In both
cases pro and antiforce waves, the electrons and heavy
particles come to rest relative to one another at the end
of the sheath.

Shelton believed that essentially all the energy of
the electric field (3e,E#) goes to ionizing the neutral
atoms, but our computer solution of the electron-fluid
equations which meet the boundary conditions (n=0,y=1)
within the accuracy of the integration step at the end of
the wave, show otherwise. Energy is also lost in elastic
processes, and does not show up in ionization, so that v
does not reach unity.

From his shock conditions on electron temperature and
velocity, Shelton concluded a minimum velocity condition
(V03/73517ﬁ) exists on the strong discontinuity solutionms,

i.e., to 0<a<l, which had limited him to proforce waves.
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The assumption of the temperature derivative discontinuity
at the wave front allowed a lower range of electron drift
velocities which have been observed experimentally. Since
the zero current condition requires V and v; to be of the

same sign, from eguation (64) one can have

5(1+9‘g—'1)-/(3-59ﬁ)2+16a>o,
K

or
gt L

0 <a<(l-5 7%)
With positive values of 6}, a admit values larger than one
and we were able to find solutions for values of o as large
as &. |

Figure 24 shows the computer solution for the wave
constant k which relates wave velocity to electric field
for an almost arbitrary gas placed against a background of
data taken by Blais and Fowler, and Scott and Fowler in
three gases, helium, argon and nitrogen. The data seems
to scatter considerably about the theoretical curve, but
taking the difficulties in the measurements (especially at
the high velocity end of the range where the scatter is
worst) into consideration, the agreement is very good. By
using k = mKV/eE as the ordinate the major dependence of
the data has been taken out. This has been done-for sim-
plicity of comparisom, but it loses most of the flavor of ex-
cellence of the agreement with the experimental data. The un-

compressed version where velocity is plotted simply against
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electric field can be seen in the original work of Scott,
although it is not as'striking as it could have been be-
cause at that time the computer solution was not available.

It has been shown that the waves moving into an ion-
ized medium have different structure than they possessed
while moving into a non-ionized medium. The structure of
these waves depend very much onvthe ion speed and concen-
tration in front of the wave.

In the case of the anti-force waves we have shown that to
change formally from the standard proforce formulation B§
sign changes of constants cannot be done. The new form of the
electron-fluid equations with acceptance of an electron
temperature derivative discontinuity in front of the wave
led to a completely satisfactory solution which met the
boundary conditions within the accuracy of the integration
step. These waves are shock antiforce waves rather than
the weak waves described by Sanmann.

Although the probable application of the theory of
the electron fluid to lightning has been obvious ever
since it was prdposed by Paxton and Fowler, the deficien-
cies of the only solution of the complete equation set
available deprived the Oklahoma group of  the confidence with
which they might otherwise have espoused this theory. Now, with
the successful completion of the numerical solution we believe
that the promise shown by .the graph presented by Fowler and

Scott, in which it was posited that the lightning phenomena
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as well as other fast electron breakdowns are all consistent
‘ members of this electron acoustic wave family, has been
borne out as to be expected, and that further efforts to
use this theory is developing better models of the light-
ning column will be profitable. As applied to lightning

it should take its most simplified form

_ . €E
V=« K

where k is given by the theoretical curve in Figure 24, and

the electric field at the wave front is known.
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Abstract

A method is presented for averaging the ionization cross section over the
electron energy distribution with due allowance for the curvature of the trajectory
which becomes an important factor in strong electric fields whether or not the
distribution is Maxwellian. The ionization rate is then found to depend on the
electron acceleration, mean velocity, and temperature as independent parameters.
This theory has proved to be essential to an exact solution of the equations for
electron wave breakdown, and can be successfully applied to the data on swarms in

strong fields.



Introduction

Treatments of the discrepancy between the results of experiment in strong
electric fields and the ionization rates obtained by averaging over a Maxwell
distribution of electrons generally assign the entire correction to the distribution
function (1,2), and highly sophisticated electron distributions have been devised
both empirically and theoretically on this premise (3). In this approach the
electron's path between collisions is implicitly assumed to be rectilinear. In fact,
in strong electric and magnetic fields it is highly curved, and even returns on
itself in many cases. Recognition of this fact has permitted a rigorous derivation
of the Bohm diffusion coefficient (4), and an analysis of the mobility of electromns
in strong fields (5). The success of these analyses has prompted this extension to
the calculation of the ionization rate in a strong field. In particular our own
motivation has been to have an analytical expression which could be introduced in the
electron fluid equatiéns for electron breakdown waves to replace the assumption
necessary to the approximate solutions obtained by Shelton (6) that this rate was

constant throughout the wave.

General trajectory theory of an inelastic process

Let the electron begin its trajectory as in Fig. 1 with a speed Yp, at a polar
angle 90. Let its speed be gf and its angle be Qf prior to the terminal collision.

1f we consider trajectories of the same kind which end in a volume dAda, then
they will all have begun in a volume of the same size and shape, since each cormer of
the two volumes is comnectable by parallel rigid displacements of the basic
trajectory.

From kinematics,

- vosineo= gfsinef . (L)

ek , _
v,co8b )t = t = chosef (2)
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Drift velocity is an essential factor in the electron distribution in an
electric field. As a result of it, the longitudinal component -of velocity vocoseo
includes a contribution which is absent from the transverse component. Let this be
V. Then the appropriate expressions for the trajéctory equations in terms of a
distribution of initial velocities u, 6 (which is assumed to be isotropic in a drift-

free frame of reference) are

- using = v,sinf, = qfsingf (3)
ucosd + V + f%.t = ?fcosef (4)

We now desire to compute the number of inelastic collisions per unit volume and
time. We choose the volume dA(qfcose)dt at the end of the trajectory, and a similar
volume at the head, and determine the number of times that targets in the former are ‘
exposed to projectiles that are in the latter, over the interval during which the one

volume passes through the other. It follows that

number of projectiles fractional target
number of inelastic ' participating in X area presented
collisions per unit = the collisions to projectile (5)
volume and time effective time of X collision
exposure of targets volume
Separately these concepts break down to
number of projectiles probability that probability
number of appropriate velo- these projectiles that they
projectiles = city in volume identi- X joined the distri- x survive with-
participating cal to collision volume, bution in the ini- out collision
but at head of trajectory tial volume and for their full
not further trajectory

back
(6)



number of targets area presented
per unit volume by each target
A at end of X for inelastic X collision
fractional trajectory process volume
target = (7)
area face area of collision volume

projected onto velccity flux plane

The effective time of exposure is the thickness of the collision voluﬁe divided
by the velocity component in that direction if the computations of projectiles
participating and of fractional target area are made as above by sweeping them up
onto the face of the collision volume. This is simply the time dt. The alternative
1s to consider the time from initial melding of the projectile volume with target
volume to their final separation. This will be twice as lomg, but in this interval
and in this same collision volume an equal number of extra collisions will occur from
the uncounted projectiles that lie ahead and behind the projectile volume.

Analytically these expressions evaluate to give

' ) (oi) (dav fdt cosef)

g
Lin(; )] (onNdE )(e foaﬁdg) (dav dtcosé ) (dAcos® )
dn o o bl f f (8)
dt (dt) - (dZ?fdtcosef)

To obtain the ionization rate the integration must proceed over all three styles of
trajectories that the final velocity permits those electrons which pass through the
collision volume to possess. The total elastic cross section and the inelastic cross
section are ¢ and o respectively., The element dEo is the trajectory length along
which the trajectory entering collision occurred. At the head of the trajectory dEo
= yodt. The element dE lies at the terminus of the trajectory so that d§ = vdt.

In terms of a general distribution fraction, dh(;o) becomes nf(;o)dzo, and since
dn/dt = Bn, we can express the rate of ionization B as

2 3
B =W IG(vOZf(vo)dzoai(qf)gfe fo °ngduo. (9)



This is the basic formula sought. We now turn to evaluating it for use in strong

fields.

Ionization in a strong field with independent drift velocity

To this point one may use the distribution function of his choice, although
purists in the evaluation of distribution functions would need to involve the
expression above in the evaluation itself. To progress analytically, we assume as in
the two previously cited trajectory method papers that the distribution of electronms
in the drift frame is isotropic, and can be described by the speed 4 and polar angle
8. Moreover, to obtain a practical expression for 8, we will make use of the
empirical fact that in the case of even moderate electron energies, the elastic cross
sections behave as !, and will introduce o(v) = 0p/v. For helium, o5 = 6.81 x 10 -8

cmd /sec.

We make a change from £ to t momentarily, with d&o = v,dt and dE = vdt, so
w® > _Kt
g =NK J cf( v,) dvy ozl vf)vfe dt (10)

Here K = opl = 2.41 x 10% sec™! for helium. The limits of this integral are

fictitious, as a result of the discontinuity in o;.

0 v < g (11)

boas | b

o:(ve) = |
1
f 01.’( ?)f) vf > v,,;
In velocity space we have axial symmetry, so azimuthal integration is
immediately possible. We could now introduce the isotropic variable set (u,6,£), but

another choice is superior because its limits are not intercommected. It is the

cylindrical system u.,, u., Upe. We first substitute (u,, u,) for (4,8).
ps Ugs Uf Ups Uy

/ ® -mu2 /2kT -mu2 /2kT Xt
B = 2Tk (37— wﬁ 2T wduge duge 9 (vplvee dp  (12)
(2



The limits, although no longer interconnected, are only nominally those given, and

must be discussed below. For the change of variables from ¢ to vf we have
vJZ = uf + (uy + at + V)2 (13)

where V is the electron fluid velocity, and a = ;ii. The t to vf transformation is

the equation of a cone in the uy,, Uy, U~ space., Then the ranges of vf and u,, are

7
vy <Vp<m (14)
0 <u, < Ve (15)
For u, there are two additive ranges or branches on which encounters are possible at

the terminus: those trajectories on which the projectiles, colliding finally on a
left to right course, may have originated on either the left or right hand sides of
the control surface accordingly as the free parabolic trajectory is followed back to -
its starting point; and secondly, those trajectories which originate on the right,
and the collision is made at the crossing from right to left. In the Yp> 8p,§ system
the first are both parts of the range of ef> n/2 and the second are for 6f< n/2.
Then for the first range, == < u, < (vf - u})1/2+ u +V)/a. And for the second range,
-oC Uy <= (v)Z- ug)1/2 -V andt = = _((v]? - u})ll2+u #)/a. The integral
thus proceeds from the inside of the cone on path 4, as in Fig. 2, to == for the
first trajectories, and from the outside to == for the latter, as on path B.

Now it is expedient to shift to vJZ - u2 = »2 in place of 4. Then w2 = (u, + at

+ V)2 so that vfdvf = w dt; -udu = wdw. The new ranges of integration are

20 <w < ve (16)

w-w_ -V
-o < U, < w-V matching with t = (17)

and W -u -V
=w { U, < -w-V matching with ¢t = a" (18)



Introducing the variables and limits into the expression for B8,

mo K ~w-V -muZ, [2kT vp -m( v} ~w2) /kT
B 32“’”(--)3 2 ——— I duxe f due cs e
2wkT a - 0
’ ve w-V -mu2/2kT  m{v$ -w2)/2kT
v S (oiv})ex (”*“x"'V)/M'dvf +[° f[ due &/ dve f
v; v; 0 -=
K (~wtu+V)/kT
eenlogvs2)? dvs . (19)

where we have further chosen to set the distribution Maxwellian. Rearranging

integrations,
m X - mug/2kT
g = ZTIN(-—)3/2 - e(K/a)V fﬂ' dvfe ) .% civ%...
anT a D,i
V, =WV . ~(mu2/2kT)+(K u_sa)
L g MU2/2XT 4K /2 i e -4 o/ .
v -(mu2/2kT)+(K u_/a)
it g MO2/EKD)=(X w/a) due T /! . 20)

Now, by letting ¥=-¥ in the second integral the whole can be thrown into the form

m X -moR/2KT v (ma/2KT)+(Ru/a)
B:Zﬂﬂ( )3/2_2KV/a fa dv o:v f dwe ' eee
2qKkT a v; je v JZ -vf
~w=y 2
eeef_o duxe-(muz/Zk.'Z'H(Kux/a)’ (21)



Introducing dimensionless variables,

mug‘. w2 my
— =), ===yl , === =32, (22)
2KkT 2kT 2kT

and dimensicnless constants

/2e, .
¢i NC 2BC
Bo © 4 m A ¢ (24)

L

then

y2+2Cy ~(y+B) de~T2+20T

o 2
o =t dae”?? g2, dye e (25)
B =8 ], o [ [

Exact integration over y is possible by letting x = s-y-B. Then

&0 0 [e= 2-8+B)2_ ,-( z-s+B)2]326'( 8-B)
B ™ =5 £ da(22g;) S ds -~ (26)
Let 8-B = u « Then
~(z-u)2 -(z+u)2
B) o -B ,e -e 2Lu
8B == [a dz(zzoi) I du m e (27)

There appears to be a pole at u=0, but it is only a pseudopoie because the
numerator of the integrand also vanishes. When B > 0, the integration avoids u=0

anyway. When B > 0, let ¥ = =u. Then



-8-

® ® "(Z-u )2 '(z+u)2
=1 IA (zzci)dz IB £— = due~2CH (28)

mlw

0

When g < g, the integration passes through the pseudopole and must be watched
carefully. When p {(p, let g = ’lBl, U= =U>
2 2
g=(3=u)" _ g=(2tu)

E=lp 17 aatey) 17 due™20% (29)
0 A "Bl u

Because of the factor exp(.gcy) both integrals: are coavergent.
To understand the integration of this expression we explore the location of the

maxima of the integrand.

e-(z-u)z _ e-(z+u)2
F = (3%0;)] 1¢-2Cu(30)
u

F is the difference of two terms of which we need examine only the first term,
remembering that 0.:=0 for 5 < 4.

It will be shown below that
(31)

where € < 1 is an excellent approximation to the ionization cross section for these

purposes, yielding
2 2
= (10€) 2% (2 A )(uma) = 0.(32)

From this the equation for the maxima at comstant y is

z2-=-4



This expression describes a ridge with a declining crest, asymptotic to 2 = 4 for
U + o and to the line 2 = u as 2 + =, The crest drops as exp(-2Cu). For constant 2

the maxima are along ‘the curve
1
2=u+C+ - (34)
2u

These results, and the domain of integration are depicted in Fig. 3.

Evaluation of the function is best made directly from the double integral in the
2, u form, and a Fortran IV program has been written to carry it out. Samples of the
result for helium are given in Figures 4 to 6. The only peculiarity of the program
is an algorithm to begin the integration of each vertical strip close to the ridge,
and to stop just beyond it to avoid immense numbers of zero increments.
Empirical cross section functions

fate and Smith (7).and Rapp and Englander-Galden(8) have measured ionization
cross sections for a wide variety of gases. Considering how old the former
measurements are, they are in remarkable agreement with the latter recent ones, and
lend confidence to the uses to which they have been put over the years. The
discrepancies can be reduced even further by use of the empirical functions presented
in the previous section, which tend to show quite conclusively that they differ by
scale factors that can no doubt be traced to imaccurate pressure measurements in the
Tate and Smith data; and by small threshhold offsets which are present in both works,
but are considerably larger for the former. Wannier (9) has shown that it is
theoretically to be expected that near the threshhold ionization yield varies as
about the 1.127 power of the excess energy. Beyond this however one finds that if X
is the ratio of electron energy to the ionization emergy, W/W;, and X-1 is used as
abscissa, and the product of X and the collision probability as measured by the

authors is used as ordinate on a log-log plot, an extraordinary fit is achieved from
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only slightly above threshhold to four or five times the ionization potential. That
is to say again, Pi can be fitted by
P, =A WW=D)" W.M (35)

In fact if accuracy commensurate with the Tate-Smith cross sections is adequate, with
a slight sacr;fice of the fit at the lower energies, all the data on a log~log plot
can be fitted with a single straight line within the experimental error. With the
RE~G data, however, a second range of linearity is usually noticeable between about
three and six times threshhold, and above six times threshhold, the Born
approximation theoretical logarithmic form

P, =C 2n (bWW) W /W) (36)
agrees elegantly with the RE=-G data, and is some improvement for the Tate=Smith data
over the fit to a single power of (X-1). This power law approximation was applied sy
the author some years ago (10), and a similar but somewhat more complex single
fitting function has recently been reported independently by Green, Jackman and
Garvey (l1). Jackman, Garvey and Green (12) hgve also made new measurements of the
various cross sections but the numerical values were not published and are not
available for comparison. The constants for the piecewise continuous power fit are
given in Table 1. They give a fit to the Rapp and Englander-Golden data which is
generally better than 1%, and have proved very useful to us in ionizing wave
studies. A samﬁle of the quality of the data fit is given in Table 2, The RG-E data
have been converted from cross sections to ionization probabilities by multiplying by
3.112,

The ionization potentials indicated by the best fit to the power law are

slightly offset from the generally accepted spectroscopic values by amounts of the
order of .l volt, but are variable with the nature of the gas in a manner which

suggests differences in contact potential. Only the complex molecules NO, CO,, and

N,0, whose ionization potentials do not seem to be well known, show large
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discrepancies, some of which are no doubt attributable to their large
electronegativeness. This interpretation is strengthened by the few cases of
Tate=-Smith data which are extensive enough at low energies to permit an estimate.
Since their apparatus would have employed different materials, different cont;ct
potentials would be anticipated. These results are summarized in Table 3. Small
pressure discrepancies also exist between the two data sets, on an average about 5%,
but more seriocusly, for many of the Tate-Smith curves, especially in gases like argon
which are partially condensible at liquid air temperature, the pressure seems likely
to have varied by as much as 10% over the duration of the experiment. Another
probable factor accounting for the disagreement of order 20% at large energies is a
systematic change of collector efficlency as the beam field penetrated the collector
in the Tate=Smith apparatus.
Application to ilonizing waves

The ionizing waves present in electrical breakdown of a gas form a particularly
interesting situation in which to apply the trajectory calculation of ionization rate
because the three parameters which govern the rate, namely temperature (random
velocity), drift velocity (di;ected velocity), and electric field (acceleration) are
independent of each other because of the electron shock which leads the wave, and are
related only through the differential equations of balance for the electron fluid.
Shelton (6) derived these equations some years ago, but was only able to solve them
under the assumption that the ionization rate was constant through the vitally
important sheath region of the wave. Nevertheless, this severe assumption led to
predictions of wave velocity dependence on driving field which were in excellent
agreement with observations. When the system of equations was first attacked with
numerical integration, the natural thought was to use the usual average of the

ionization cross section over a thermal distribution of electron velocities, with the

resulting Arrhenius type function. It was immediately apparent that the low electromn
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temperature at the immediate leading edge of the ionizing wave could never produce
ionization fast enough to bring the wave into being in the lower range of wave
velocities. When, however, the trajectory theory was incorporated into the solution
code, a complete solution of the equations was obtained which fitted better with
experiment than any previous effort, and automatically gave an ionization rate that
was nearly constant through the sheath (l4). A sample of this calculation is given
in Fig. 7, and values of the electron mobility form~factor defined as

K = (my/eE)K (37)
by Shelton as characteristic of the wave process are given in Table 4. X is the
momentum transfer collision frequency.

The relation between the wave quantities and the constants of the ionization
integral can be found by the following reasoning., Shifting from the laboratory frame
to the wave frame, moving at speed'¥, the electron fluid velocity becomes

o=V W (38)
The ionization integral parameter B is de;ermined by V and is therefore
B = (v + Win/2ke) 2 (39)
The parameters A and C are defined as before.
Application of trajectory ionization to swarms

The swarm ionization process lies at the other extreme from the wave process,
and yet they are intimately related because the former goes over into the latter if
the field is strong enough and the course is long enough. In the swarm process there
is a steady or at worst a slowly changing state prevailing, in which the three
parameters governing ionization are interrelated. Temperature and drift velocity
(whenever the field is strong enough for it to be important) are directly determined
by the electric field, and these relations can be both calculated and measured. The
drift velocity V in the laboratory frame is now related directly to the ionization

integral parameter B by the expression

B = (m/2kT)l/2V (40)
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The parameters A and C are unchanged in definition, but are now interrelated by their
common dependences on E/p « Both of these quantities are plotted in Fig. 8. The
theory of noble gases is especially simple and accurate, but the example chosen here
for detailed study, nitrogen, is notoriously difficult at low energies because of the
unsatisfactory knowledge of the rotation and vibration cross sections. The vibratiocn
cross-sections of Engelhardt et al. (23) and the excitation cross-sections of Stanton
and St. John (24) were included, but the former was unimportant above E/p of 103
v/m/torr. Excitation made a difference of 100% in the mid range of the temperature
curve, and considering the outstanding agreement of the trajectory theory above Z/p
of 105, it is probable that the remaining 25% discrepancy below that point is a
result of including only the four excited states for which measurements are
available. 1In fact, if it is assumed that the A3Z state has a cross section like
that of the C3n, 1/3 of the needed correction is achieved. The result of using a .
Maxwell distribution under the usual assumptions of straight line paths at constant
velocity between collisiﬁns is also shown as broken ccurves., The trajectory approach
is much more significant for temperature than drift velocity.

In Fig. 9 the result of calculating Townsend's a/p is given. To obtain it
from 8, the velocity of the current which would be measured in a Townsend
amplification measurement is needed. This can be calculated by the trajectory method
alsc (5). Again the lower values of f/p are strongly influenced by excitation, but
the agreement is excellent in the higher ranges for which it is intended, and agrees
with Harrisoa (1956) over all his range. It is not evident that the result could be
improved if the electron distribution function were also altered.
Conclusion

The ionization cross section varies rapidly along the trajectory of an

accelerating electron in a strong field, and cannot be treated as comstant over this
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flight as is generally done in Boltzmann equation theory. An attempt has been made
to incorporate this variability and :he additional factor of noan-rectilinearity in a
closed form expression for the ionization rate. This has seemed to be successful in

the two or three cases to which it has been applied.



TABLE 1
Fitting Constants

Gas W Ay ny Trans;tion Ay ny Traniition Cc b

He 24,472 1.6852 1.1715 2.189 1.732 1.0126 3.72 6.604 «5509
Ne 21.402 1.8727 1.1835 2.968 2.349 1.1835 6.28 23.75 «3200
Ar 15.686 14.456 1.2855 1.990 14.400 .8922 6.25 61.20 4561
Kr 13.924 17.895 1.3053 2.293 19.586 <9497 7.06 107.17 +»3653
Xe 12.092 21.796 1.1868 2,434 23.734 <9504 7.06 169.09 .3083
co 13,5 7.292 1.634 1.205 8.188 1.2047 5.79 78.87 -3249
Hy 15.461 4.741 1.0184 3.186 5.630 +7979 5.96 15.06 «6418
0, 11.95 1.0319 1.8738 4.167 6.291 1.2904 7.39 102.80 «2571
N, 15.311 6.8475 1.4265 4,306 . 13,779 «8404 10.39 66.59 «3746
Co,y 13.029 7.262 1.594 1.269 - 9.116 1.2692 6.60 121,38 .2819
N,0 12.111 8.333 1.530 2.392 f 8.98C " 1.3065 6.59 131,12 «2792
NO 8.00 6.40 3.40 1.701 3.31 1.545 6.3 142.53 «2154
CH, 12,897 14.453 1.565 2.0?8 15.036 1.0400 5.66 94.04 «3728
D, 15.484 5.282 1.1018 1.780 5.1069 «9652 3.27 15.68 6120

SF¢ 14.998 13.693 2.271 2.232 16.738 1.3094 6.96 246.96 «2755

—g‘[_



TABLE 2

Fitting Comparison, Helium Ionization Efficiencies (lon pairs/cm)

Energy Efficiency Efficiency Efficiency
(Nominal, ev) (Experimental RE-G) (Fitted) (Experimental T-S)
25 .018 .018 e .022 ‘
25.5 .040 .039 .045
26 .062 .061 .069
26.5 .083 .084 «092
27 »107 .107 114
60 1.027 1.031 1,025
70 1.136 1.135 L
80 - 1.217 1.215 1.178
200 1.226 - 1.216 1.149
500 .793 ‘ .783 o728
800 «582 +584 «530
1000 +498 +503 448
2000 | - «306 «26

4000 — .181 - 142
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Table 3

Ionization Threshholds

Gas Ionization Ionization Difference Ionization
Potential (13) Threshhold (R-EG) Threshhold (T-S)

He 24,580 24,473 .107 24,375

Ne 21,559 21,402 o157 21.03

Ar 15.755 15.686 .069 15.2

Kr 13.996 13.924 .072

Xe 12,137 12,092 045

Hy 15.427 15.461 -.034

Ny 15,576 15.311 .265

0, 12.063 11.95 113

co 14,013 13.5 S13 . 13.67

CH,, 12.99 12.897 .093

NO 9.5 (9.25%) 8.00 1.5 9,07

co, 144 (13.79%) 13,029 1.371

D, 1546 15.484 .02

N,0 12.894 12.111 .783

SF 14,998

*Jatanabe et al. (15)
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Tsble 4

Wave Constants for Helium

Dimensionless egftgy Momentum loss rate
ratio (e¢i/mV ) ratio to electric force, x
.0001 1.410
.001 1.310
.01 1.303
ol 1.200
«25 1.000
1.0 .770
2.0 673

4.0 0.560
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Captions

Geometry of collision process. £ is measured backward from f to 0 along
the free trajectory.

Phase space geometry of the integration and variable changes.

Topology of the domain of integration of the final integral. A roughly
Gaussian wrinkle of exponentially declining amplitude runs from teh origin
to infinity between the lines Z and U. Vertical traverses find the maxima
on curve U, horizontal on curve Z. The geometrical significance of the
constants A, B and C in defining the range of integration is depicted.

Ionization frequency 8 as a function of scaled electron
temperature 0 k7/2¢ ¢,, with scaled field n = ¢E/mkV; marked on each 1
curve. Entire figure'is for electron drift velocity v = V; = (2e ¢;/mV’a

Same as Fig. 4 except that v = 0.
Same as Fig. 4 except that v - -V;.

Result of integrating the -electron fluid equations to obtain profiles of
field, electron velocity, temperature, and ionjzation rate in the wave
sheath for a relatively fast wave (V = 3 x 10’ m/sec) in helium. The
wave thickness is scaled with the distance over which an electron acquires
ionizing potential energy in the field.

Trajectory ionization theory (T) applied to calculation of electrom
temperatures and drift velocities in swarms, contrasted with use of a
simple Maxwellian calculation (M) based conventionally on linear constant
speed paths between collisions. Hollow stars are from Schlumbohm (16);
solid five-point stars are from Kontoleon et al.; and other stars are from
Twonsend and Bailey (17). Diamonds are from Blevins and Hasan (18).

Townsend’s a/p derived by the trajectory method (T), contrasted with the
conventional approach (M). Solid dots are taken from von Engel (19);
stars in dots are from Kontoleon et al.; hollow stars are from Raether
(20); small asterisks are from Harrison (21); and large asterisks are by
Bowls (22).
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Fig. 2. Phase space geomstry of the integration and varisble changes.
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Fig. l. Geometry of collision process. & is measured backward from f to o along
the free trajectory.
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?ig. 4 Ionization frequency B as & function of scaled é€lectron
) tesperature 6 KI'/2s ¢,, with scaled field n = ¢E/mk¥; marked on esch b7
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rig. 3. Topology of the domsin of integration of the fimal imtegral. A roughly
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to infinity between the linea Z and U, Vertical traverses find the maxima
on curve U, horizontal on curve Z. The geometrical significance of the
constants A, B and C in defining the range of integration is depicted.
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Pig. 8 Trajectory ionization theory (T) applied to calculation of electron
‘temperatures and drift -velocities in swarms, contrasted with uss of a
simple HMaxwellian calculation (M) besed conventionally on linear constant
speed paths betveen collisions.’ Hollow stars are from Schlumbohm (16);
solid five-point stars are from Kontoleon et al.; and other stars are from
Twonsend and Bailey (17)s, Diamonds are from Blevins and Hasan (18).
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Pig. 7 Result of integrating the electron fluid equations to obtain pryfnu of
field, electron velocity, temperature, and ionjzation rate in the wave
sheath for s reletively fast wave (V = 3 x 10’ m/sec) in helium. The
wave thickness is scaled with the distance over vhich an electron scquires
ionizing potential energy in the field.
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