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INFERENCE CONTROL IN STATISTICAL DATABASES: A

DATA DISTORTION BY PROBABILITY DISTRIBUTION

By

Winam Jung Choi 

Major Professor: Bill K. Walker

The legal code on "The Protection of Human Subjects in Research 

A ctiv ities" requires th a t  sensit ive  information about an individual 

should be protected from unauthorized release  and a t  the same time, 

those data should be available  for s t a t i s t i c a l  analysis. To meet these 

conflicting  goals, recent research e ffo r ts  focus on creating d istorted  

data which is  not eas ily  compromisable and ye t  preserves the s t a t i s t i c a l  

properties of the original data.

An e f f ic ie n t  and e ffec tive  data d is to r tio n  technique is 

introduced. This "Probability Data D istortion,"  which is  not easily  

compromisable and has asymptotically the same s t a t i s t i c a l  properties 

as the orig inal data , is  s ig n if ican tly  d if fe ren t  from the conventional 

Point Data Distortion technique which adds random errors to the original 

values. This mechanism, the data d is to rtion  by probability  d is tr ib u tio n , 

is  re s i s ta n t  to compromise and provides b e t te r  exposure fo r  s t a t i s t i c a l  

analysis than do the ex is ting  data d is to r tio n  techniques.
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INFERENCE CONTROL IN STATISTICAL DATABASES: A 

DATA DISTORTION BY PROBABILITY DISTRIBUTION

CHAPTER I 

INTRODUCTION

1.0 Statement of the Problem

Computers have now become such powerful tools  in the hands of 

both users and producers of data th a t  the dimensions of the confiden­

t i a l i t y  problem have been transformed. Automated information systems 

have the a b i l i ty  to  process more records more rapidly than ever before.

Some data bases are used primarily fo r  s t a t i s t i c a l  purposes; 

such databases are typ ica lly  released or made public e i th e r  through the 

publication o f a s e t  of s t a t i s t i c a l  tabulations corresponding to the 

data base with identify ing  information removed, or through responses to 

user queries. I t  has been shown in both cases th a t  confidential ind i­

vidual information can often be compromised by such a s t a t i s t i c a l  

presentation.

Controlling inference from s t a t i s t i c a l  databases is  a problem 

of recent in te re s t .  S ta t i s t ic a l  databases contain data on many sensi­

t iv e  c h a ra c te r is t ic s ,  associated with p a r t icu la r  ind iv idua ls , which must

1



be carefu lly  protected. At the same time, however, users should be 

allowed access to such databases for s t a t i s t i c a l  purposes in a manner 

which does not v io la te  the privacy of a p a r t icu la r  indiv idual. For 

example, the user should be allowed access to information on the average 

salary  of professors a t  the University of Oklahoma, but denied access to 

information on the salary  of a pa rt icu la r  professor. Privacy is  a legal 

and social concept, which refers  to the r ig h t  of an individual to con­

tro l  the co llec tion , s toring  and dissemination of data about himself.

The r igh t to privacy can co n flic t  with so c ie ty 's  need fo r  free  flow of 

information.

Threats to data privacy and to security  in s t a t i s t i c a l  data­

bases may a r ise  from an in truder. While s t a t i s t i c a l  databases are a 

necessity for many purposes, they can be a danger i f  confidential in­

formation can readily  be obtained from them. Thus there  is  a need to 

provide s t a t i s t i c a l  information while preserving the confiden tia li ty  

of the underlying data. This i s  the problem of s t a t i s t i c a l  database 

inference control.

The problem of inference control has grown with the spread of 

computer in s ta l la t io n s .  Confidentiality  is  now a concern of every orga­

nization which uses a database. The s t a t i s t i c a l  databases must be pro­

tected from disclosure and other i l le g a l  compromise. The problem is 

now much more complex and much more important than ever before.

Inference control in s t a t i s t i c a l  databases will become an even 

more important issue since many current types of research, such as busi­

ness fo recasting , medical research, and p o l i t ic a l  decision making, are 

heavily dependent upon s t a t i s t i c a l  data. This control has never been



easy or s t ra ig h t  forward, and Is made p a rt icu la rly  d i f f i c u l t  by the 

p o ss ib il i ty  th a t  a user may ask a se r ies  of permitted queries and 

corre la te  enough s t a t i s t i c a l  summaries to compromise confidential 

information.

1.1 Examples of the Existing Problem

The problems exis ting  in s t a t i s t i c a l  databases will be i l l u s ­

tra ted  through the use of a few examples.

Definition 1 :

The complement of a s e t  A with respect to the space 0 , denoted

by A, is  the se t  of a l l  points th a t  are in 5 but not in A.

Theorem 1 :

A • A = ^; A + A = Î2; (A) = A.

Definition 2:

A query is  a s t a t i s t i c a l  question which can be asked about the 

database. A query is  called a permitted query i f  i t  is permitted by 

the system; otherwise i t  is  called a re s t r ic te d  query (Denning (1978)).

The query s e t ,  X^, is  the se t  of records sa tis fy ing  a charac­

t e r i s t i c  C, which is  an a rb i tra ry  logical formula using categorical

values as terms connected by operators AND ( - ) ,  OR (+), and NOT ( ) .

COUNT (C) = {jX^l IX^l is  the size  of X̂ }

TOTAL (C;j) = { Z V -.|V -• is  the value in the i th  record of 
ieX^

j th  fie ld}

SELECT (C;j) = {SELECT V-JSELECT IS MEDIAN, MAX, MIN, MODE, 
ieX.

etc  . . . .}



Definition 3:

A Tracker is  a s e t  of auxiliary  ch arac te r is t ics  which is  added 

to the original charac te r is t ic s  in the formation of a query. When the 

auxiliary  charac te r is t ic s  form permitted queries, the user subtracts 

out the e ffec ts  o f  the aux iliary  charac te r is t ics  to determine the answer 

to the query for the original ch arac te r is t ic s  (Denning, Denning, and 

Schwartz (1979)).

EXAMPLE 1:

I f  a user knows Prof. M in the computer science department is  

married, then the second query reveals th a t  he got a pay ra ise .

Q-j = COUNT (Professor»Married'CS) = 5

Qg = COUNT (Professor*Married»CS*Pay ra ise) = 5

If  we know k of his c h a ra c te r is t ic s ,  then we can find Cĵ -̂j such tha t 

COUNT ( C ^ ' C g  C,^) =  COUNT ( C ^ - C g .. . . . . . .

then he also possesses ch a rac te r is t ic

I f  COUNT (C^'Cg C,̂ ) t COUNT (C^-Cg then we can not

determine whether he has ch a rac te r is t ic  Cĵ ^̂  unless 

COUNT ( C ^ ' C g  C,^) =  1 .

EXAT-IPLE 2:

Let 's  consider these five  queries.

= TOTAL (A,B,C; Salary) = $67,000

Qg = TOTAL (D,E,F; Salary) = $71,000

Qg = TOTAL (A,D,G; Salary) = $60,000

= TOTAL (B,E,G; Salary) = $65,000

Qg = TOTAL (C,F,G; Salary) = $73,000



The G's salary can be determined by

(Q3 + Q4 + Q5 -  Qi -  Q 2)/3  = $ 2 0 ,0 0 0 .

EXAMPLE 3:

Suppose a user wishes to learn Prof. Y's sa lary . This can be 

calculated using the "Tracker" technique, i f  the user knows Prof. Y is 

the only female professor in the Computer Science department.

Q-j = TOTAL (Female*CS; Salary) + TOTAL (Female*CS: Salary) = 

$1,600,000

Qg = TOTAL (Female*CS + OS; Salary) + TOTAL (Female-CS + CS; 

Salary) = $1,623,000 

Then Prof. Y's sa lary  can be determined by

Qg - Q-| = TOTAL (Female*CS; Salary) = $23,000.

EXAMPLE 4:

= MEDIAN (A,B,C; Salary) = $28,000 

Qg = MEDIAN (D,E,C; Salary) = $28,000

I f  no two ind iv idua l 's  sa la r ie s  are same, C's sa lary  can be 

determined. Since C is  the only individual common to both queries, the 

returned median value $28,000 must be C's sa lary .

1.2 Outline of the Research 

Many researchers in th is  area have considered methods for con­

t ro l l in g  such inference from s t a t i s t i c a l  databases. The security  

problem of a s t a t i s t i c a l  database is  to l im it  the use of the s t a t i s t i c a l  

database so th a t  only s t a t i s t i c a l  information is  available and no se­

quence of queries is  su f f ic ie n t  to deduce private  information about any 

indiv idual.



Several s tudies have reported conditions which, i f  imposed on 

the contents of a database, guarantee i t s  secu rity . In most cases, 

these conditions depend on the users having l i t t l e  previous knowledge 

about the information in the database. Since users have p rio r  informa­

tion , these methods are not prac tical in re a l i ty .  All of these polic ies 

are e i th e r  not su f f ic ie n t  to enforce to ta l  security  or require very 

large amounts of computation to detect compromising queries. I t  has 

been shown th a t  a ll  o f  these polic ies require fu r th e r  study to insure 

to ta l  security  (Schwartz (1977), Chin (1978)). Dobkin, Jones and 

Lipton (1979) show th a t  i f  the responses to queries are exact values, 

the data is  easily  compromised.

In general, inference control schemes impose re s t r ic t io n s  on 

the system. A good protection scheme should provide security  to a 

reasonable ex ten t, possibly by re s t r ic t in g  the information to be re­

leased to users, and a lso  should maintain the s t a t i s t i c a l  properties of 

the database.

This research is  an attempt to develop an e f f ic ie n t  and effec­

tive  mechanism for protecting the privacy of an individual from user 

inference and fo r  making the cost of compromising s t a t i s t i c a l  databases 

unacceptabiy high. An e f f ic ie n t  inference control mechanism. Proba­

b i l i t y  Data D istortion , is  introduced. The three major strong points 

of th is  technique are:

(1) The re su l ta n t  microdata remain useful fo r  s t a t i s t i c a l  

purposes.

(2) There i s  a high degree of co n fid en tia li ty  in the microdata.



(3) This technique can be applied to a small database as well 

as a large data base.

The research presented in th is  d isse r ta t io n  may be divided 

in to  three general categories:

(1) Theoretical development and mathematical ju s t i f ic a t io n  of 

the Probability  Data Distortion mechanism.

(2) Applications and compromisability t e s t  o f  th is  new approach 

and comparisons to previously exis ting  methods.

(3) Monte Carlo studies of the usefulness of th is  technique.

F irs t  a basic method fo r  identifying the probability  d is tr ib u ­

tion  of the data se t  and generating the d is to r ted  data by a probability  

d is tr ib u tio n  function is considered. The theore tical developments and 

asymptotic properties of data d is to r tio n  by probability  d is tr ibu tion  

have been presented in the form of s t a t i s t i c a l  theorems and proved 

mathematically to show these properties are s a t i s f ie d  for data from 

large samples.

The small sampling properties of Probability  Data Distortion 

are shown with a hypothetical example, and the effectiveness of the 

mechanism is  i l lu s t r a te d  using simulation. Monte Carlo studies are 

used as a basis fo r  evaluation o f the Probability Data Distortion 

method in application to s t a t i s t i c a l  databases. The effic iency and 

compromisability of Probability  Data Distortion are tes ted  with small- 

sample data and compared to Point Data D istortion.

Finally the usefulness of th is  mechanism is  demonstrated, using 

a real salary  data s e t .  The s t a t i s t i c s  of the p robability  d is to rted  

data s e t  and the original data s e t  are  compared to determine the



8

efficacy of the method. I t  is  also demonstrated th a t  th is  method could 

be applied to databases to  achieve both confiden tia li ty  of individual 

information and accuracy o f  the s t a t i s t i c a l  properties by introducing 

Frequency Imposed Data Distortion which doesn 't require id en tif ic a tio n  

of the underlying density function. Frequency Imposed Probability  Data 

Distortion which is  a hybrid of Probability Data Distortion and Fre­

quency Imposed Data Distortion is also introduced.



CHAPTER I I

REVIEW OF RESEARCH ON INFERENCE CONTROL

2.0 Introduction 

S ta t i s t ic a l  databases sometimes contain sen s it iv e  information 

which is  associated with p a r t icu la r  individuals and which needs to be 

protected. The legal code requires th a t  sen s it iv e  information asso­

ciated with a p a r t icu la r  individual be protected from unauthorized 

release. For example, the U.S. Department of Health, Education and 

Welfare's regulation (45 CFR 46) requires protection of "The rights  and 

welfare of individuals who may be exposed to the p o ss ib i l i ty  of physi­

cal, psychological or social injury while they are part ic ipa ting  as a 

subject in research, development, or re la ted  a c t iv i t i e s . "  At the same 

time, users should be allowed access to th is  data base fo r  s t a t i s t i c a l  

analysis as long as they do not infringe upon the privacy of a particu­

la r  individual. This inference control depends upon the queries allowed 

and the amount of i n i t i a l  information in the possession of a user. 

Hoffman and Miller (1970) have shown tha t  a user can combine the answers 

to some spec if ic  s t a t i s t i c a l  queries and some previous knowledge of an 

ind iv idual's  personal information to find out more about him.
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2.1 Existing Inference Control Mechanisms

One method of inference control against iso la t in g  a record by 

overlapping queries i s  Partit ion ing  database (Chin-Ozsoyoglu (1978) 

Yu-Chin (1977)). Records are stored in groups, each containing a t  

le a s t  some predetermined number of records. Queries may apply to any 

se t  of groups, but never to subsets of records within any group. 

Therefore i t  is  impossible to iso la te  a record.

A varian t of the Partit ion ing  database is  called  Microaggrega­

tion : individuals are grouped and aggregated and s t a t i s t i c s  are com­

puted fo r  the aggregated s e t  ra the r  than for individuals (Feige-Watts 

(1970)). This technique increases uncertainty about the original in fo r­

mation in the records as the size  of the aggregated group of records is  

increased.

"Minimum overlap con tro l" inh ib its  responses to queries tha t  

have more than a predetermined number o f records in common with any 

prio r query since th is  could lead to id en tif ic a t io n  o f  an individual 

(Dobkin, e t  al (1979)). The d i f f ic u l ty  with th is  approach is  keeping 

track of a ll  previous queries when the number of requests is  la rg e , and 

also th a t  two users might cooperate to fool the system i f  the requests 

of each taken separately  are not suspicious enough to be detected. This 

control also may not be safe against queries th a t  overlap by small 

amounts (Davids, e t  al (1978), Reiss (1978)).

"Purturbing output" is  a technique which consists of rounding 

the output up or down by a small amount before the answer to a query is 

released. Rounding by adding random values from a s e t  with zero-mean 

is  insecure since the correc t answer can be deduced by averaging a
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su f f ic ie n t  number of responses to the same query (Nargundkar-Saveland 

(1972)).

The U.S. Census Bureau has used the technique of responding 

only to  queries which involve a random subfile  of the data base, but 

not the complete data base. Even i f  some element of the subfile  is 

id en t if ie d ,  i t  may not be possible to learn which individual in the 

data base was selected  to be th is  element (Hansen (1971)). This tech­

nique is applicable only to  large data bases. A small random sample 

would not be s t a t i s t i c a l l y  s ig n if ic an t  and would not represent the 

s t a t i s t i c a l  properties of the data. For th is  reason, random sampling 

has been ignored as a possible inference control.

Surveys of s t a t i s t i c a l  data base security  can be found in 

Denning and Denning (1979), Denning (1978) and Hoffman (1977). I t  has 

been shown th a t  a l l  of these schemes e i th e r  do not provide su f f ic ie n t  

security  or are impractical to implement.

Denning (1980) introduced a new inference con tro l, called ran­

dom sample queries. The random sample queries control deals d irec tly  

with the basic p rincip le  o f compromise by making i t  impossible fo r  a 

user to  control p recisely  the formation of query s e t s .  Queries for 

re la t iv e  frequencies and averages are computed using random samples 

drawn from the query s e ts .  This technique is  also e ffec t iv e  only for 

reasonably large data bases.

2.2 Inference Control by Data Distortion

The research e f fo r t  has focused on finding a data s e t  which pro­

vides s t a t i s t i c a l  re su l ts  s im ila r  to those of the orig inal data se t 

while preventing the curious user from iden tify ing  information rela ting
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to a pa r t icu la r  Individual. There has been a continuous search for a 

data d is to r tio n  method which achieves these dual goals; i . e . ,  accurate 

s t a t i s t i c a l  estimation and protection of the privacy of an individual.

In some applications i t  is  desirable to  provide microdata in 

response to s t a t i s t i c a l  query. I f  th is  microdata  is  derived d irec tly  

from the actual data base, then compromise is  c e r ta in .  The data d is ­

to rtion  technique is explored as a means of inference control in s ta ­

t i s t i c a l  database while enabling research scholars to  u t i l i z e  the 

information for ana ly tic  purposes. This technique provides protection 

of the data through addition of a random erro r  of re la t iv e ly  small 

variance and zero-mean to the original data values. I f  the random 

variables are produced by a process whose s t a t i s t i c a l  ch arac te ris tics  

are properly chosen, the s t a t i s t i c a l  properties o f the d is to rted  data 

are not a lte red .

Conway and S tr ip  (1976) suggested th a t  the value would be 

modified by some random quantity , such th a t

''d '  ''a ^ V  

where V :̂ Distorted value

V,: Actual value

V^: A random variab le  with zero mean and a constant standard 

deviation.

The d is tr ibu tion  is  chosen to have an expected value of zero, so the Vy 

is  an unbiased estim ator of the true  value V .̂ What would constitu te
a

an appropriate d is t r ib u t io n ,  however, is  not always obvious. I f  the 

population of values V' in the s t a t i s t i c a l  database is  symmetric, then 

the random deviate d is tr ib u t io n  should probably also be symmetric. But
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i f  the population of is  highly skewed, which is  a coiranon occurrence, 

then the choice of the d is tr ibu tion  is  much more d i f f ic u l t .

This random modification of data to avoid disclosure has been 

considered extensively fo r  various applications in the U.S. Bureau of 

Census over the past decade, but i t s  actual application has been quite 

limited.

Recently Beck (1980) has shown a clever approach to protection 

from compromise by repeated queries, and introduces a formula fo r his 

scheme such th a t

('a - V  * \
where is  the mean value of the actual data over the query s e t .  In 

th is  equation Ĉ . and are independent random variables generated for 

each record with expected values of and equal to zero. Normal 

d is tr ibu tions  were used to generate and V .̂ This scheme does not 

guarantee th a t  the accuracy of s t a t i s t i c a l  properties o f the data se t  

will be maintained.

In most cases, protection of privacy is  assured i f  an in d i­

v idual's  record is  only s l ig h t ly  d is to rted . For sa t is fac to ry  privacy, 

the level of d is to r tion  of the data should be su f f ic ie n t ly  high to con­

tro l user inference from the s t a t i s t i c a l  data base, y e t  low enough for 

the d is to rted  values of the data to  be used in s t a t i s t i c a l  analysis.

For th is  purpose we have to minimize the loss of useful information in 

the actual data a f te r  the data has been d is to rted .

Value Dissociation is  another technique which was suggested by 

Conway and S tr ip  (1976). With th is  approach, each value in the data is 

exchanged with a value from the same f ie ld  in some record d iffe ren t
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from the actual record i t  represents , in such a way as to preserve

certain  s t a t i s t i c a l  properties . This technique has the following

advantages.

(1) The d is tr ib u tio n  from which the random deviates are ob­

tained is  automatically appropriate in re la tion  to the 

d is tr ibu tion  of the values of the actual data.

(2) Since the actual values are unchanged, certa in  s t a t i s t i c a l  

properties of those values are preserved.

There i s ,  however, no known algorithm by which the actual values might 

be dissociated.

Hansen (1971) shows th a t  the actual value might be d is to rted

by a random d is to rtion  r a te ,  C^, such th a t

''d = c, - V, 
where C^: Randomly chosen in te rv a l .

I f  we compute a sum or an average on a large group, then the 

errors will tend to cancel out each o ther , so th a t  the re la t iv e  e rro r  

variance in a sum from a large group is much smaller than the re la t iv e  

e rro r  in each single  item. These data d is to rtions  are made on the value 

o f  e ith e r  input or output. This family of data d is to r tion  is  called 

"Point Data Distortion."

A lternatively , the original data is considered as a random 

variable which is associated with a probability  d is tr ib u t io n .  I f  the 

underlying density function of the original data is  determined, another 

s e t  of data could be generated from the density function which will have, 

asymptotically, the same s t a t i s t i c a l  properties as the orig inal data se t  

since they orig inate  from the same density function. This approach is
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appealing since the d is to r ted  data s e t  not only preserves the basic 

s t a t i s t i c a l  properties o f the orig inal data but also is  su ff ic ie n tly  

d iffe ren t  from the original to pro tect the privacy of individuals.

This family of data d is to r t io n  is  called "Probability Data D istortion."

"Data Swapping" is  an early  application of th is  Probability 

Data Distortion. I t  suggests th a t  the original data be replaced with 

the data of other records which have the same frequency count s t a t i s t i c s  

as those of the original data. The d i f f ic u l ty  with th is  approach is 

finding the general data swaps which preserve a ll  frequency counts 

(Dalenius and Reiss (1978)). Since exact Data Swapping is  p rac tica lly  

not fea s ib le ,  Reiss (1980) suggests a feedback algorithm to find  an 

Approximate Data Swapping on a categorical data s e t .  Approximate Data 

Swapping is  s t i l l  in an experimental stage and i t s  computational e f f i ­

ciency has y e t  to be proved. Furthermore, Approximate Data Swapping is 

not feasib le  for non-categorical data such as salary figures.

In implementing a data d is to r tion  mechanism, we must guarantee 

th a t  the data is  d is to rted  in such a manner as to preserve s t a t i s t i c a l  

properties. "How do we modify the actual data?" This is  the question 

which many researchers in th is  area have been trying to answer.

This new technique. Probability  Data D istortion , will guarantee 

a l l  s t a t i s t i c a l  properties within certa in  confidence l im its .  This tech­

nique may be used both to  produce microdata and to re lease  s t a t i s t i c a l  

tabulations so th a t  con fiden tia li ty  is  not v io la ted . After carefu lly  

studying a ll  of the ex is ting  methods ju s t  discussed, i t  is  believed 

"Data Distortion" will be the most valuable technique in the near 

fu ture.



CHAPTER III  

PROBABILITY DATA DISTORTION

3.0 Introduction 

A data s e t  may be divided into confidential variables and non- 

confidential variables. Consider a personnel f i l e  which contains cur­

ren t sa la ry , salary  r a i s e ,  department, rank, sex, age, and the highest 

degree earned. The current salary  and ra ise  may be considered as con­

f iden tia l  variables and the remaining variables as non-confidential 

variables.

The basic idea of Data Distortion is  to  construct a new data 

se t  th a t  is equivalent to the original in terms of s t a t i s t i c a l  proper­

t i e s ,  where the new data is  su f f ic ie n tly  d if fe ren t  from the original so 

tha t  sensit ive  information cannot be compromised. As a consequence, a 

s t a t i s t i c a l  analysis based on d is to rted  data will be less accurate than 

one based on original data. This "Loss of Information" may be looked 

upon as the price paid fo r  the protection of confidential information 

from the compromise: the b e t te r  the protection th a t  is  wanted, the

higher the price th a t  must be paid. We must c learly  try  to s t r ik e  a 

rational balance between two conflic ting  ob jectives: (1) to provide

16
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good protection; and (2) accurate s t a t i s t i c a l  estimates. The difference 

between the actual data and the d is to rted  data might not a ffec t  the 

s t a t i s t i c a l  uses to which the data are put as long as the amount of 

difference is reasonable, and the probability  d is tr ibu tions  are the 

same.

Most previous data d is to r tion s  were made on the values of ob­

servations. I f  the values of data are d is to rted  on point, the under­

lying probability  d is tr ib u tio n  of the d is to rted  data is  not guaranteed 

to be the same as the probability  d is tr ibu tion  of the original data.

The d is to rted  data may have another probability  d is tr ibu tion  which is 

quite d iffe ren t  from th a t  of the original data. This deviation becomes 

severe when the original data has a non-symmetric type of d is tr ibu tion  

such as a skewed d is tr ib u tio n . Because of t h i s ,  many important s t a t i s ­

t ic a l  properties o f the original data are not preserved by the point 

d is to rted  data. Another d i f f ic u l ty  with the Point Data Distortion is 

the re la tive ly  high compromisability; i . e . ,  repeated queries could 

identify  the original value by averaging since the expected value of 

the rounding errors is  usually specified  to be zero.

We present an a l te rn a t iv e  method of data d is to r tion  which will 

generate d is to rted  data by probability  d is tr ibu tion  function. The basic 

hypothesis is  th a t  the original data is  a sample from a population with 

a probability  density function. Then another sample from the same popu­

la tion  can be used as a d is to rted  data se t  to replace the original one. 

Since these two data se ts  (original s e t  and d is to r ted  se t)  share the 

same density function, the s t a t i s t i c a l  properties o f the original data
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se t  such as frequencies, su b to ta ls ,  median, pe rcen ti le s ,  and mean should 

be asymptotically same as those of the d is to rted  data s e t .

The d is to rted  data se ts  can be generated i f  we know the popula­

tion  density function of the original data s e t .  The population density 

function t e l l s  us how lik e ly  or probable each value of the original data 

i s .  The d is to r tion  is  done by pulling a sample from the population 

density function. Compromisability becomes d i f f i c u l t  since there is  no 

guarantee th a t  a sample ( i . e . ,  original data) should be the average of 

a ll  other samples ( i . e . ,  d is to rted  data) i f  these samples were drawn 

independently from the same population.

The s t a t i s t i c a l  data which we observe have d isc re te  values.

The population density is  a continuous function, so th is  function could 

generate as many d isc re te  se ts  of data as we want. The original data 

se t  is  replaced by one of the generated data se ts  from the same proba­

b i l i ty  d is tr ib u tio n . This family of data d is to rtion  is  called "Proba­

b i l i ty  Data Distortion" in con trast to "Point Data D istortion."

What are the advantages of Probability Data Distortion as com­

pared to the trad itio n a l  Point Data Distortion? The probability  d is ­

to rted  data more accurately produce the s t a t i s t i c a l  properties of the 

original data than do conventional point d is to rted  data which consist 

of random errors added to the original values. This is  true  because 

Probability Data Distortion asymptotically preserves the s t a t i s t i c a l  

properties of the original data, and the probability  d is to rted  data 

asymptotically share the same density function with the  original data 

s e t .  Even in the case of small samples, i t  is  d i f f i c u l t  to compromise
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the probability  d is to rted  data and so i t  protects the privacy of the 

individual from snoopers.

A p rerequ isite  fo r  e ffec tive  use of th is  mechanism is  th a t  the 

actual data se t  should be to ta l ly  replaced by the d is to rted  one in the 

database. Once the original data s e t  is  replaced by the d is to rted  one, 

the replaced data s e t  can e i th e r  be placed on l in e  to answer queries or 

released as microdata. Also i t  may be used as basic data to form a 

s t a t i s t i c a l  tabu la tion . This technique is  highly acceptable fo r  s t a t i s ­

t ic a l  tabulation because a l l  the data are available and appropriate 

calculations can be performed. Moreover, Probability  Data Distortion 

doesn 't share the basic weakness of Point Data Distortion since i t  guar­

antees th a t  s t a t i s t i c s  will be preserved. Suppose th a t  the original 

data se t  is a dynamic one whose values are changed frequently over time, 

such as a salary data s e t ;  the parameters of the density function should 

be updated and the corresponding new d is to rted  data s e t  should be put in 

place of the o rig inal period ica lly . When the orig inal data are associ­

ated with other variables the d is to rted  data should be mapped onto the 

original data to maintain consistency with other variab les.

We will discuss the Probability  Data Distortion mechanism in 

section 3.1 and the asymptotic properties of th is  mechanism in section 

3.2.

3.1 Probability Data Distortion 

The data d is to r tio n  by probability  d is t r ib u t io n .  Probability 

Data D istortion, requires three  steps to compute the d is to r ted  data s e t  

for confidential variab les.
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Step 1: Iden tif ica tion  of the p robability  density function

fo r  each confidential variable and estimation of the 

parameters associated with the  density function.

Step 2: Generation of a d is to rted  data s e t  for each confiden­

t ia l  variable from the estimated density function. 

Step 3: Mapping and replacement of the confidential data by

d is to rted  data.

Definition 1:

Any function f(«) with domain the real line  and counterdomain 

[0,«) i s  defined to be a probability  density function i f  and only i f

( i ) f(x) > 0 fo r  a ll  x

( i i )  / ” f(x)dx = 1.

The moments of a d is tr ibu tion  are the expectations o f the 

powers of the random variable which has the given d is tr ibu tion .

The "kth moment about the origin" is  defined as 

= E(xk) = /%x'^f(x)dx 

The f i r s t  moment is  called  the mean of x- The moments about any 

a rb itra ry  point a are defined as

E[(x-a)^] = / “ (x-a)'^f(x)dx

and when a is  put equal to the mean, we have the "kth moment about the 

mean":

= E [ ( X - y { ) ' ^ ]  = / “ ( x - y p ' ^ T ( x ) d x

we have

= /]x f(x )dx  - y{/“ T(x)dx

= yf " u{ = 0
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^2 = / ” (X-P{)^f(x)dx

= “̂[x̂ -2xPf + (np^]f(x)dx 

= ^2 -  + (wf)2

=  ^2 "

This second moment about the mean is  called the variance of x. The 

mean and variance play an important role  in s t a t i s t i c a l  data analysis. 

Purely as descrip tive  measures o f the d is t r ib u t io n ,  the mean represents 

a central value of the random variable and the variance represents the

sc a t te r  around the central value. The th ird  moment about the mean is

used to describe the symmetry or skewness of a d is tr ibu tion  and the 

fourth moment about the mean is  s im ila rly  used to describe i t s  peaked­

ness, or kurtosis .

On the basis of the original data , we find the underlying 

probability  density function and estimate i t s  parameters. The d is to rted  

data are generated from the probability  density function. These d is­

torted  and original data are sorted in the same order and the original 

data are replaced by the d is to rted  data.

I f  the probability  density functions of the actual data and the 

d is to rted  data are the same, then we can claim th a t  a ll  the moments of

these two se ts  o f data are the same.

3.1.1 Iden tif ica tion  and Estimation 

This technique requires an id e n tif ic a t io n  of the probability 

density function which represents the orig inal data se t .  The original
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data is  screened to determine which of the predetermined functions is 

best f i t t e d  to the data. The t e s t  of agreement between a theoretical 

probability  d is tr ib u tio n  and the d is tr ibu tion  of a s e t  of original data 

constitu tes a "Goodness of f i t "  t e s t .  "Goodness of f i t "  tes tin g  is 

accomplished by comparing the d is tr ibu tion  of the actual data with the 

theoretical p robability  d is tr ibu tion . The goodness of f i t s  can be 

tested  by the Kolmogorov-Smirnov goodness of f i t  t e s t .  The Kolmogorov- 

Smirnov goodness o f f i t  t e s t  gives us some indication of how well the 

original data points f i t  the probability  density function which will be 

used to generate the d is to rted  data.

Currently available density functions for such id en tif ica tion  

are Poisson, Exponential, Normal, Gamma, Weibull, Lognormal, Uniform, 

and Triangular d is tr ibu tion s  (P h illip s  (1972)). The Phillips computer 

package is  easy to use fo r  the id en tif ic a tio n  of the underlying density 

function, and allows the user to t e s t  a s e t  of n observations against 

the theore tical p robability  density functions using Chi-square, 

Kolmogorov-Smirnov, Cramer-Von Mises, and Moments "Goodness of f i t "  

t e s ts .  This computer package also computes the best estimate of the 

parameters of the density function. Estimators o f the chosen function 's 

parameters must be found for use in generating d is to rted  data. In some 

cases more than one density function could be acceptable a t  a given 

significance leve l. In th is  case se lection  of the density function 

which shows the smallest Kolmogorov-Smirnov s t a t i s t i c s  is  recommended 

for the obvious reason th a t  acceptance of the null hypothesis is  most 

probable when using th a t  function. I f  none of the density functions 

f i t s  to  the d isc re te  data , we recommend use of a Frequency Imposed Data
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Distortion method. The Frequency Imposed Data Distortion method doesn't 

require id en t if ic a t io n  of any density function. This topic will be 

discussed in Chapter V.

3.1.2 Data Generation 

Once the best f i t t e d  density function is  se lec ted , the e s t i ­

mated parameters of the density function are supplied to the density 

function 's  random number generating routine to produce the d isto rted  

data. The IMSL (1980) has random number generating subroutines for 

each of the density functions id en tif iab le  through the  P h ill ip s  package. 

The number of d is to r te d  values generated from the density function 

matches the number of values in the original data. Suppose the original 

data has N observations then N d is to rted  observations are generated from 

the density function.

3.1.3 Mapping and Replacement 

When the d is to r ted  data are used fo r  a s t a t i s t i c a l  analysis 

independent of o ther v ariab les , ordered mapping, i . e . ,  sorting  the d is­

to rted  data and the original data in the same order and replacing each 

element of the original data with the corresponding d is to r ted  one is  

not necessary. However, in most cases, the d is to r ted  data are used 

in conjunction with o ther variables fo r  a s t a t i s t i c a l  analysis . For 

example, a response to a query for average sa lary  by sp ec if ic  age in ­

terval is  a case in which both d is to rted  data and non-confidential age 

data are used jo in t ly  with o ther a t t r ib u te s  fo r  the s t a t i s t i c a l  analy­

s i s .  Unless the mapping is  done, the average sa lary  by age group be­

comes a meaningless value. In general, i f  the data s e t  is  a matrix in
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which the d is to r te d  data s e t  is  a jo in t  variable  with other variables 

then the ordered mapping is necessary to maintain consistency with 

other a t t r ib u te s .

3.2 The Asymptotic Properties of the 
Probability Data Distortion

Definition 1. Random Sample.

Let the random variables X-j jXg have jo in t  density

9(^1 j . . . .  jX̂  ) “ F(x-j ) FCxg ) . . . .  F(x̂  )

where the density of each X- is F(x-)• Then X^.Xg ,X̂  is  said to

be a random sample of s ize  n from the population with density F(x). 

Definition 2. Sampled Population.

Let X^jXg, X̂  be a random sample from a population with

density F(«); then th is  population is called  the sampled population. 

Definition 3. S t a t i s t i c .

A s t a t i s t i c  is  a function of observable random variab les, 

which is  i t s e l f  an observable random variab le , which does not contain 

any unknown parameters.

The basic assumption of the Probability  Data Distortion is  th a t  

the o rig inal data s e t  is  a sample of s ize  n drawn from a population with 

a certa in  d is t r ib u t io n ,  and the d is to rted  data s e t  is  another sample of 

s ize  n drawn from the same population.

I f  the sample is  not la rge , we may inquire how we could find 

the probab ility  density function and s t a t i s t i c s  when the d is tr ibu tion  

depends upon unknown parameters which may have any values within a 

range. The answer is  th a t  the parameters are not rea l ly  unknown; they 

can be estim ated, and the estimators approach to  the population
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parameters as the sample size  increases. In the l im it  as n becomes 

in f in i te  the parameters are known exactly , and the d is tr ibu tion  becomes 

unique.

The s t a t i s t i c s  such as mean, standard deviation, percen tiles ,

minimum, and maximum values computed from both samples ( i . e . ,  d is to rted

and o rig ina l)  converge asymptotically to those of the population.

Definition 4. Moment Generating Function.

Let X be a random variable with density F(*). The expected 
txvalue of e is  defined to be the moment generating function of X i f  

the expected value ex is ts  for every value of t  in some interval 

-h < t  < h; h > 0. The moment generating function, denoted by M(t), is 

M(t) = E[etX] = /V ^ F (x )d x .

Statement A:

I f  the moment generating function of a random variable e x is ts ,  

then th is  moment generating function uniquely determines the correspond­

ing d is tr ib u tio n  function.

A p a r t ic u la r  moment or a few of the moments may give l i t t l e  

information about the d is tr ib u t io n ,  but the e n t i re  s e t  of moments will 

uniquely determine the actual d is t r ib u t io n ,  and also the density func­

tion determines a s e t  of moments ......... » when they ex is t .

We evaluate the asymptotic properties of the d is to rted  data.

We define:

X: a population

F: a density function associated with the random variable X.

x^: a random variable of s ize  n drawn from the population X.

F^: a density function associated with x^;
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We make the following statement, d e f in i t io n ,  Helly Lemma, and Helly-Bray 

Theorem to prove the asymptotic properties of the Probability  Data 

Distortion.

Statement B:

When a sample s ize  n increases su f f ic ie n t ly  large to become 

population s iz e ,  converges to F ( i . e . ,  F̂  + F as n -»■<»).

Theorem 1

Let X be a random variable and g(*) a nonnegative function 

with domain the real l in e ;  then

P[g(X) ^  k] < E[s(X)] fo r  every k > 0.

Proof:

Assume th a t  X is  a continuous random variable with probability  

density function F(X); then

E [ g ( x ) ]  = / “g(x)F(x)dx = /{x:g(x) > k}9 (*)F(x)dx

+ /(x:g(%) < k}9 (x)F(x)dx > ^  yg(x)F(x)dx

^  /{x:g(x) > ^3

Divide by k, we get the r e s u l t .
2

Theorem 2: Weak law of large numbers.
2

Let F ( ')  be a density with mean y and f in i t e  variance a , and 

l e t  x^ be the sample mean of a random sample of size  n from F(*)- Let 

E and 6 be any two specified  numbers sa t is fy in g  e > 0 and 0 < 6 < 1 .

TProof is  shown in Mood, G raybill, and Boes (1974), page 71. 

^Proof is  shown in Mood, Graybill, and Boes (1974), pages 232-
2 3 3 .
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2 2I f  n is  any in teger grea ter than a /e  6, then 

P[-e < - y < e] > 1 -  6.

Proof:

Theorem 1 s ta ted  th a t  P[g(X) 2  k] <: E[g(X)]/k for every k > 0,

random variable X, and nonnegative function g ( ' ) .

Equivalently, P[g(X) < k] > 1 - E[g(X)]/k.

Let g(X) = (X  ̂ - y)^ and k = e^; then

P[-e < X̂  - y < e] = P[|X^ - y| < e]

= P[|Xn - y |2  < ef]  > 1

= 1 -  > 1 - 6

fo r Ô > a^/ne^ or n > a^/e^ô.

Definition 5.

The sequence of the random variables is  said to converge in

d is tr ibu tion  to a random variable X i f  F^(x^) ->■ F(x) as n

This defin ition  is  provided by Rao (1965), page 96.
3Helly Lemma:

Every sequence of d is tr ib u tio n  functions is  weakly compact. 
4Helly-Bray Theorem:

W  -  f
continuous function g.

F^(x^) ^  F(x) as n -»- «> implies /g d F ^ ^  /gdF  for every bounded

3
Proof is  shown in Appendix B.

4
Proof is  shown in Appendix B.
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5
Theorem 3:

I f  a variable  which depends upon the sample s ize  n has a moment 

generating function th a t  appraoches the moment generating function of a 

second variab le , then the d is tr ib u tio n  function of the f i r s t  variable 

must approach the  d is tr ibu tion  function of the second variable as n -»■ «>. 

Proof:

I f  the moment generating functions associated with two density 

functions F(x) and u(x) are the same and i f  the difference F(x) - u(x) 

has a power se r ies  expansion about the o r ig in , then F(x) = u(x), 

id en tica lly .

We have

F(x) - u(x) = a + bx + cx^ + ------  (3-1)

and we form

^ [ F ( x )  - u(x)]^dx = ^ ( a  + bx + cx^ + -----)[F(x) - u(x)]dx,

replacing one [F(x) - u(x)] by (3-1).

On in teg ra tio n , the r igh t hand-side reduces to  0, fo r  the corresponding 

moments o f the two random variables are given to be the same. As the 

left-hand integrand is  nonnegative, i t  is  evident tha t for the left-hand 

integral to be 0, we must have F(x) = u(x), id en t ica lly .

Lemma 1.

The moment generating function (M^(t)) o f x^ asymptotically 

converges to the moment generating function (M(t)) of X as n +

Proof:

By de fin ition  4, M^(t) = ^e^^'^dF^.

^Proof is  shown in Freeman (1963), pages 32-33.
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By de fin ition  5, e^*" -*■ e^^ as n 
txBy se t t in g  e = g, and by using the re s u l t  of Helly-Bray

Theorem, the proof is  completed.

Corollary 1 :

The mean and standard deviation of asymptotically converges 

to the mean and standard deviation of X as n -»■ «>.

Proof:

This is  d ire c t  re s u l t  of Lemma 1 since the f i r s t  and the second 

derivatives of the moment generating function evaluated a t  t  = 0 become 

mean and variance of the random variable  respectively .

Lemma 2:

The cumulative density function (CF^(a)) of sample x^,

asymptotically converges to the cumulative density function (CF(a)) of

population X as n -» «».

Proof:

By d e f in i t io n ,

CFn(a) = /q Fn(Xn)dF,^ and CF(a) = j^F(x)dF

By the statement B, F̂  F as n -»■ <». By se t t in g  F = g and by

using the re su l ts  of Helly-Bray Theorem and Helly Lemma we complete the

proof. The Helly Lerrnna proves the existence of the upper bound of the 

cumulative density function.

Corollary 2:

The percentiles and median of sample x^ asymptotically converge 

to those of population X-
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Proof:

The Corollary 2 is  a d irec t  re su l t  o f Lemma 2 since percentiles 

and median are same i f  the cumulative density functions are same.

Wilks (1972) provides fu rther properties of the asymptotic 
sampling theory on pages 254-274.



CHAPTER IV

A MONTE CARLO STUDY OF THE PROBABILITY DATA DISTORTION

4.0 Introduction 

The re su l ts  of a Monte Carlo study concerning small samples are 

shown in the following three sections. The f i r s t  section shows how data 

is generated using Probability Data Distortion. In the next section, 

the accuracy of the s t a t i s t i c a l  estimation is  te s ted  by comparing aver­

age absolute mean e rro r  and Chi-square s t a t i s t i c s  fo r  each se t  of d is­

torted  data ( i . e . ,  point d is to rted  data and probability  d isto rted  data). 

In the la s t  sec tion , the compromisability index is  computed and the 

compromisability of Point Data Distortion and Probability  Data Distor­

tion are compared.

4.1 An Example of Probability Data Distortion 

Consider a hypothetical example o f the facu lty  salary of a 

business school which has four divisions (Finance, Economics, Management 

and Accounting). The original data fo r sa lary  by division are in 

Table 4.8.

Release of the original data will lead to easy id en tif ica tion  

of the salary  of each professor. For example, a faculty  member in

31
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finance who receives $27,300 can eas ily  deduce the salary  of his col­

leagues. He can figure  out tha t  the $19,600 must be the salary  of a 

recently arrived a s s is ta n t  professor and $35,600 would be the salary  of 

the division d irec to r .  In th is  way, he can eas ily  guess the salary  of 

a faculty  in any division i f  the salary  data is  associated with other 

a t t r ib u te s  such as age, rank, sex, and the school where the final 

degree was earned.

To protect confidential information about each individual, we 

propose to d is to r t  the data by a probability  d is tr ib u t io n .  This method 

requires three s teps:

$tep 1. Id en tif ic a tio n  of the underlying density function.

Using the original data, we compute Kolmogorov-5mirnov (K-$)

s t a t i s t i c  fo r  each of the following density functions.

Density Function K-S 5 ta t i s t ie s  (D) Remarks

Poisson 0.16601
Exponential 0.43726
Normal 0.11295
Gamma 0.08597
Weibull 0.14004
Lognormal 0.07263 ■<- the best f i t
Uniform 0.20096
Triangular 0.17410

The K-5 s t a t i s t i c  D is  computed by:

D = Max iFa(X-) - Fe(X,)| 
a ll  i  ̂ ^

Where Fa(X^): The i th  observed cumulative r e la t iv e  frequency

Fe(Xj): The i th  expected cumulative re la t iv e  frequency.
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The choice of the probability  density function is  based on the 

following c r i t e r i a .  I f  the computed D is  sm aller than the K-S table 

value, then the null hypothesis ( i . e . ,  the hypothesis th a t  the sample 

is  drawn from the density function being tes ted )  is  accepted. For 

example, the K-S tab le  value is  .179 (see Appendix C) when degrees of 

freedom are 34 and the significance level is  10% (one t a i l ) .  We may 

conclude t h a t ,  a t  the 10% significance le v e l ,  the  original data has 

th is  density function i f  the obtained D value is  smaller than .179. In 

fa c t ,  the t e s t  s t a t i s t i c s  of a l l  density functions except the Exponen­

t i a l  and Uniform d is tr ib u tio ns  are accepted as the density function of 

the orig inal data a t  the 10% significance lev e l.  However, we se t  the 

decision ru le  to choose the density function which y ie lds the smallest 

D value since such choice will maximize the probability  of acceptance. 

Under th is  decision ru le ,  the Lognormal d is t r ib u t io n ,  with an estimated 

mean of 31.212 and an estimated standard deviation of 6.674, is  selected 

as the underlying density function of the facu lty  salary data.

Definition 1:

The Lognormal d is tr ibu tion  is  the model fo r  a random variable 

whose Logarithm follows a normal d is t r ib u t io n .  The Lognormal density 

function is  given by

, 1 -1 - [m (x)-n ]^

where x > 0

00 >  y  >  -00

a > 0.
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Step 2. Data generation.

IMSL (1980) has a subroutine to generate random numbers fo r 

the Lognormal d is tr ib u t io n .  A matching number of random numbers are 

generated and used as d is to rted  data to replace the original data.

Step 3. Mapping and replacement.

I f  th is  d is to rted  data is used fo r  a s t a t i s t i c a l  analysis in ­

dependently of other variab les , i t  doesn 't need to be mapped onto the 

original data. However, i f  i t  is  used with o ther variables in the same 

data s e t ,  the mapping is  necessary to maintain consistency with other 

data. When the estimated standard deviation is  f a i r ly  large, the d is­

torted  data may have a smallest value and a la rg e s t  value which are 

quite  d if fe ren t  from the corresponding values in the original data. In 

th is  case, i t  is  suggested th a t  the average of several rep lications of 

the d is to r ted  data be used ra ther than the values generated f i r s t .

Table 4.8 shows the mean values of the repeatedly d is to r ted  data.

Monte Carlo study shows th a t  an average of 30 rep lica tions  provides 

reasonably good d is to r ted  data.

4.2 Small Sampling Efficiency of 
Probability Data Distortion

To investigate  the small sampling effic iency  of Probability

Data D istortion , we generate a data se t  by Point Data Distortion by

adding a random variable with zero mean and constant variance to each

of the orig inal observations, i . e . ,

Z, = Xi + £,

where = the i th  observation of the d is to r ted  data by a point data 

d is to r tio n
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= the i th  observation of the original data 

£. = a random variable with mean of zero and standard deviation 

the same as the original data (6.461 in th is  case).

We se le c t  two c r i t e r ia  to compare the performance of the 

Probability  Data Distortion with th a t  of the Point Data Distortion.

(1) Accuracy of parameter estimation.

(2) Degree of Compromisability i f  rep lica tions are accessable 

by the curious user.

As measures fo r  comparing the accuracy of s t a t i s t i c a l  estima­

tions we se le c t  the following commonly used s t a t i s t i c s :  mean, standard 

deviation, minimum, 25th percen tile , median, 75th percen tile , and 

maximum. These s t a t i s t i c s  are estimated by following:

(1) Original data se t .

(2) The data s e t  which is  generated by Point Data Distortion.

(3) The data s e t  which is  generated by Probability Data

Distortion.

The number of observations in both d is to r ted  data se ts  is  the same as

th a t  of the original data s e t  ( i . e . .  Finance 6, Economics 8, Management

11, Accounting 9 thus to ta l ing  34 observations).

The seven s t a t i s t i c s  are computed once using the point d is­

to rted  data and again using the probability  d is to r ted  data; these 

resu lts  are then compared to the same s t a t i s t i c s  computed using the 

original data.

F i r s t ,  we made 100 rep lica tions each of both d is to rted  data 

se ts .  Out of the 100 replica tions the number of cases which the proba­

b i l i ty  d is to r ted  data resu lts  in more accurate estimators than does the
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point d is to rted  data is  tabulated in Table 4.6. This table  shows com­

parisons between the original data and the d is to r ted  data.

Except fo r computation of the mean in the pooled groups, the 

probability  d is to r ted  data estimates a l l  seven s t a t i s t i c s  in the five 

categories much b e t te r  than the point d is to r ted  data. For example, in 

the pooled case, the probability  d is to rted  data estimates the standard 

deviation more accurately than does the point d is to r ted  data in 98 

cases. This means th a t  out of 100 rep lica tio n s , there are only 2 cases 

in which the point d is to rted  data performs b e t te r  than the probability  

d is to rted  data. Similar resu lts  are obtained when the data is  grouped 

and the group standard deviations are computed. The number of cases in 

which the probability  d is to r ted  data performs b e t te r  in estimation of 

the group standard deviation than does the point d is to rted  data are 84 

in Finance, 78 in Economics, 89 in Management, and 89 in Accounting.

The probability  d is to r ted  data estimates the extreme value much b e tte r  

than does the point d is to r ted  data. The number of cases in which the 

probability  d is to r ted  data estimates the minimum value more accurately 

than does the point d is to rted  data is  65 in Finance, 71 in Economics,

71 in Management, 80 in Accounting, and 85 in the pooled case. The 

re su l ts  fo r  estimation of the maximum value are almost the same as 

those fo r  the minimum. Out of 100 rep lica tio n s , the number of cases 

in which the probability  d is to rted  data performs b e t te r  than the point 

d is to rted  data in estimating the maximum value is  82 in Finance, 68 in 

Economics, 80 in Management, 70 in Accounting, and 76 in the pooled 

case. In estimating the percentiles ( i . e . ,  25th, median, and 75th), 

the p robability  d is to r ted  data performs with an average superio rity  of



37

3 to 1 over the point d is to r ted  data. For example, the probability  

d is to rted  data estimates the 25th percen tile  in the Finance group more 

accurately than does the point d is to rted  data in 83 cases out o f 100.

In the same category, the probability  d is to r ted  data surpasses the 

point d is to rted  data in 73 cases in Economics, 75 in Management, 78 in 

Accounting and 72 in pooled cases. In estimation of the 75th percen tile  

the number of cases in which the probability  d is to r ted  data excels the 

point d is to rted  data is  79 in Finance, 84 in Economics, 74 in Manage­

ment, 69 in Accounting, and 74 in pooled cases. Similar superio rity  

of the probability  d is to r ted  data over the point d is to r ted  data can be 

observed in the estimation of group mean or group median. When the 

seed fo r  the random deviate generator is  changed, the basic re su l t  

( i . e . ,  the superio rity  o f the probability  d is to rted  data over the point 

d is to rted  data) remains the same even though there  is  some varia tion in 

the number of superior rep lica tion s .

In the second portion of the simulation, the  average absolute 

mean erro r  (AAME) and the Chi-square s t a t i s t i c  (CSS) are computed to 

compare the accuracy of the s t a t i s t i c a l  estimation of each d is to rted  

data se t .  The average absolute mean e rro r  is  computed by averaging the 

absolute deviation between the s t a t i s t i c s  computed by the d is to rted  data 

and those computed by the original data, i . e . ,

G
-  D , j |

The Chi-square s t a t i s t i c  (CSS) is  computed by: 

G
CSS, =
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Where Okj: the orig inal value of the j th  s t a t i s t i c s  fo r  i th  group

^ i j :  the average d is to rted  value of the j th  s t a t i s t i c s  in n

rep lica tions  fo r  the i th  group 

G : Number o f  groups ( i . e . ,  6=5; Finance, Economics, Manage­

ment, Accounting and Pooled)

The average absolute mean errors are calculated fo r  each of 

the seven s t a t i s t i c s  using both d is to rted  data se ts .  When the number 

of rep lica tions is  10, the s t a t i s t i c s  resu lting  from the probability  

d is to rted  data have shown much smaller average absolute mean errors in 

a l l  seven cases. The average absolute mean errors and the Chi-square 

s t a t i s t i c s  fo r  both data d is to r tio ns  are shown in Table 4.4 and Table 

4.5. Out of a to ta l  42 s t a t i s t i c s  ( i . e . ,  7 s t a t i s t i c s  each fo r  10, 30, 

70, 100, 500, and 1000 rep lica tions)  computed, there are only 6 cases

in which the point d is to r te d  data resu lts  in smaller average absolute

mean errors than does the  probability  d is to rted  data. For example, in 

10 rep lica tio ns , the average absolute mean errors fo r  the probability  

d is to rted  data are  0.164 fo r  the mean, 0.491 for the standard deviation, 

2.005 for the minimum value, 0.435 for the 25th p e rcen ti le ,  0.641 for 

the median, 0.974 for the 75th percen tile , and 0.991 for the maximum 

value. In the same 10 rep l ica t io n s ,  the average absolute mean errors 

fo r  the point d is to r ted  data are 0.771 fo r  mean, 2.138 fo r  standard 

deviation, and 2.502 fo r  minimum value, 1.354 fo r  25th pe rcen ti le ,

1.062 fo r  median, 2.655 fo r  75th percen ti le ,  and 3.427 fo r  maximum 

value. Clearly, these average absolute mean errors are much higher 

than those for the p robability  d is to rted  data.
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I t  is  in te res tin g  to observe th a t  the p robability  d isto rted  

data performs b e t te r  than the point d is to rted  data even when the number 

of rep lica tions is  re la t iv e ly  small ( typ ica lly  sm aller than 100 re p l i ­

cations). The mean and median are the only cases which the probability 

d is to rted  data shows la rge r  average absolute mean e rro r  than the point 

d istorted  data in 500 and 1000 rep lica tions . The average absolute mean 

errors in the computation of the mean are 0.101 fo r  the probability  

d is to rted  data and 0.094 fo r  the point d is to rted  data fo r  500 rep lica ­

tions . When the rep lica tions  are increased to  1000, the average abso­

lu te  mean e rro r  of the mean becomes 0.109 for the probability  d is to rted  

data and 0.070 fo r  the point d is to rted  data. The average absolute mean 

errors in the estimation o f the median by the p robability  d isto rted  

data are 0.550 fo r  70 rep lica tion s , 0.564 fo r  100 rep lica tio n s , 0.534 

for 500 re p l ica t io n s ,  and 0.518 for 1000 rep lica tions  whereas those by 

the point d is to rted  data are 0.450, 0.398, 0.444, and 0.424. To com­

pare the overall performance, the grand mean of the average absolute 

mean errors of the seven s t a t i s t i c s  ( i . e . ,  average of AAME of mean, 

standard deviation, minimum, 25th percen ti le ,  median, 75th percen tile , 

and maximum) was computed fo r  each level of rep lica tio n s . The re su lts  

are in Table 4 .1.

TABLE 4.1

GRAND MEAN OF AAME OF THE SEVEN STATISTICS 
(n: Number of Replications)

METHOD n=10 n=30 n=70 n=100 n=500 n=1000

Prob. Data Distortion 0.814 0.670 0.610 0.608 0.598 0.593

Point Data Distortion 1.987 2.014 1.983 2.008 2.031 2.049
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The average AAME of the seven s t a t i s t i c s  fo r  the probability 

d is to rted  data is  0.814 fo r  10 replica tions and s tead ily  decreases to

0.593 for 1000 rep lica tions whereas those fo r  the point d is to rted  data 

are 1.987 and 2.049 respectively . The resu lts  show th a t  the probability 

d is to rted  data performs b e tte r  than the point d is to r ted  data in any 

number of rep lica tions . As the number of rep lica tions is  increased, 

the average AAME of the seven s t a t i s t i c s  decreases in the probability 

d is to rted  data with a very slow convergence ra te .

Chi-square s t a t i s t i c s  were also computed to  t e s t  the goodness 

of f i t .  Since the Chi-square tab le  value a t  the 0.05 significance level 

is  9.488 with 4 degrees of freedom, we accept the hypothesis th a t  the 

s t a t i s t i c s  computed from both d is to rted  data se ts  are the same as those 

computed from the original data with 95% r e l i a b i l i ty .

4.3 Compromisability of Probability Data Distortion

Compromise occurs when a user deduces confidential information 

of which he was previously unaware from the responses to one or more 

queries. We say th a t  a database has been positive ly  compromised i f  the 

value of a p a r t icu la r  data item is  known, and th a t  i t  has been nega­

t ive ly  compromised i f  i t  is  known th a t  a data item does not have a cer­

ta in  value. Partia l compromise occurs when information about a t  leas t  

one individual is  deduced, and complete compromise occurs when every­

thing in the database is  deduced. A database is  strongly secure i f  i t  

cannot be compromised e i th e r  positively  or negatively; i t  is  weakly 

secure i f  only positive  compromise is impossible.

The primary purpose of data d is to rtion  i s  to guard individual 

privacy in the original data. Ideally , data should be d is to rted  so tha t
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no user could deduce the original information of any individual. I f  

one se t  of d is to r te d  data replaces the orig inal data , and no other s e t  

of d is to rted  data is  re leased , there will be no problem of compromis­

a b i l i ty .  However, i f  rep lica tions are permitted, some d is to rted  data 

are easily  compromisable whereas other d is to r ted  data are not. I t  is  

said th a t  a d is to r ted  data is  compromisable i f  any manipulation of the 

d is to rted  data eas ily  reveals the original observations.

Comparisons are now made between the compromisability of the 

Probability Data Distortion and th a t  of the Point Data Distortion. One 

popular way of iden tify ing  the original observation is  by averaging 

rep lica tions of the d is to rted  data i f  repeated queries are  permitted. 

Table 4.8 and Table 4.9 show the average value of each observation when 

the number of rep lica tions  is  raised to 10, 30, 70, 100, 500, and 1000.

When data is  d is to rted  by the Point Data D istortion , as few as 

100 repe tit ions  could easily  identify  the orig inal observations. How­

ever, when data is  d is to r ted  by the Probability Data D istortion, an 

increase in the number of repe tit ions  won't increase the compromisability 

by any appreciable amount.

The degree of compromisability is  measured in terms of the 

average absolute percentage deviation of the d is to r ted  data from the 

original data:

i . e . ,  1 T
C(N) = 1  2 ( |0 -  -  D-l/0.) 

' i=l  ̂  ̂ ^

where C(N) = compromisability index when number of 

repe tit ions  is  N 

Oj = the i th  original observation



4 2

D̂. = the i th  mean value of the d is to rted  observa­

tions in N rep lica tions 

T = number of observations.

The point d is to r ted  data is  easily  compromisable when rep lica ­

tions reach more than 70. For example, the compromisability index of 

the point d is to r ted  data becomes 0.019 for Finance, 0.027 for Economics, 

0.022 for Management, 0.01 fo r  Accounting, and 0.019 fo r  the Pooled case 

when the 70 rep lica tions  are made. The compromisability index in the 

point d is to r ted  data rapidly decreases as the number of rep lica tions 

reaches to 1000. The compromisability index of the point d is to rted  

data when the rep lica tion  becomes 1000 is  0.005 fo r  Finance, 0.007 for 

Economics, 0.007 fo r  Management, 0.003 for Accounting, and 0.006 for 

the Pooled case (See Table 4 .7 ).

In con trast  with the point d is to r ted  data , the probability 

d is to rted  data does not show increased compromisability through in ­

creased rep lica tions  as is  shown in Figure 4.1. For example, when 70 

rep lica tions are made, the compromisability index of the probability  

d is to r ted  data i s  0.034 fo r  Finance, 0.021 fo r  Economics, 0.033 for 

Management, 0.019 fo r  Accounting, and 0.027 fo r  the Pooled case. Even 

when the rep lica tions  are  raised  to  1000, there  i s  v ir tu a l ly  no decrease 

in the compromisability index. The index in 1000 rep lica tions by the 

probability  d is to r ted  data is  0.032 for Finance, 0.021 for Economics, 

0.032 for Management, 0.018 for Accounting, and 0.026 for the Pooled 

case. Except fo r  the 10 rep lica tions case, the  compromisability indices 

of the p robab ility  d is to r ted  data are generally higher than those of 

the point d is to r ted  data , implying th a t  the p robab ility  d isto rted  data
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is  much more d i f f i c u l t  to  compromise than is  the point d is to rted  data. 

Table 4.7 provides compromisability index values of both d is to rted  data 

se ts  and the original data under d if fe ren t  rep lica tions . The reader 

can easily  see th a t  the point d is to r ted  data can be compromised by an 

increase in rep lica tions  but th is  technique does not work in the case 

of the probability  d is to rted  data.
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F I G U R E  4.1
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TABLE 4 . 2

PARAMETER ESTIMATION BY ORIGINAL AND DISTORTED DATA 

PROBABILITY DATA DISTORTION (N: NUMBER OF REPETITIONS)

GROUP PARAMETERS ORIGINAL H=10 H=30 N=70 N=100 N=500 N=1000

FIN MEAN 2 7 .4 8 3 27 .2 4 7 27 .1 9 4 2 7 ,3 4 0 2 7 .3 4 6 27 .356 27 .344
ST. DEV. 5 .4 7 6 6 .944 6 .7 8 7 6.551 6 .5 0 0 6 .5 0 7 6 .536
MINIMUM 19.600 15 .675 1 6 .3 9 8 17.244 17.434 17.477 17.409
25TH P. 2 3 .7 0 0 2 4 .3 9 8 23 .9 3 9 23 .844 23 .794 23 .752 23 .754
MEDIAN 2 8 .0 5 0 28 .1 0 0 27 .8 7 7 27 .867 27 .804 27 .830 27 .837
75TH P. 29 .9 0 0 31 .2 5 6 30 .885 31 .050 31 .014 30.984 30 .927
MAXIMUM 35 .6 0 0 35 .9 5 5 36 .1 8 9 36 .215 36 .224 36.261 36 .298

ECON MEAN 30 .6 3 8 30 .8 5 0 30 .6 8 5 30.792 30 .844 30 .812 30.817
ST. DEV. 7 .4 4 0 7 .620 7 .6 2 8 7 .605 7 .602 7 .595 7 .618
MINIMUM 19.700 19.271 19.541 19.885 20 .1 4 0 20 .1 1 6 20 .093
25TH P. 2 6 .7 5 0 2 6 .2 4 8 26 .024 26.001 26 .014 25 .965 25 .980
MEDIAN 2 9 .7 0 0 30.741 30 .3 8 0 30.481 30 .4 7 5 30.479 30 .448
75TH P. 33 .6 0 0 34.491 34 .152 34 .276 34 .259 34.232 34.241
MAXIMUM 4 5 .3 0 0 44 .5 7 2 4 4 .8 2 3 44 .933 4 5 .1 1 3 45 .027 45 .1 0 7

MGT MEAN 32.664 32 .790 32 .4 6 7 32 .575 32 .570 32 .566 32.579
ST. DEV. 6 .5 9 6 6 .0 3 2 6 .0 5 5 6 .1 0 3 6 .0 6 0 6 .0 9 5 6 .1 1 3
MINIMUM 20 .6 0 0 22 .042 21 .6 7 2 21 .682 21 .7 9 9 21 .697 21 .690
25TH P. 2 8 .8 5 0 29 .1 5 5 2 8 .8 2 8 28 .899 28 .8 8 7 28 .942 28 .925
MEDIAN 32 .6 0 0 33.294 32 .864 32.974 32 .966 32.914 32.897
75TH P. 36 .8 5 0 37.307 37 .0 4 3 37 .126 37 .099 37.139 37.164
MAXIMUM 4 2 .8 0 0 4 0 .6 2 6 4 0 .5 2 3 4 0 .7 9 6 4 0 .7 2 3 40 .712 40 .782

ACCT MEAN 32.311 32 .4 6 7 32 .3 1 9 32 .430 3 2 .3 9 8 32.404 32 .430
ST. DEV. 5 .9 6 5 6 .0 3 8 6 .1 6 2 6 .242 6 .2 1 0 6 .2 3 2 6 .2 5 8
MINIMUM 2 2 .8 0 0 23 .1 0 5 2 2 .8 2 0 22 .8 2 3 22 .8 6 0 22 .8 3 8 22 .823
25TH P. 28 .7 0 0 28 .427 28 .2 4 7 28 .306 28 .2 5 5 28.411 28 .426
MEDIAN 32 .6 0 0 32.641 32 .3 1 5 32 .412 32.364 32 .410 32 .378
75TH P. 35 .6 0 0 36 .919 36 .9 0 6 36 .999 37.024 36.981 37 .028
MAXIMUM 4 2 .8 0 0 4 1 .8 2 8 42 .0 4 9 42 .4 1 0 42 .2 2 2 42 .2 7 6 42.371

POOLED MEAN 31.179 31 .270 3 1 .0 7 8 31 .195 31.196 31.191 31.201
ST. DEV. 6 .4 6 0 6.631 6 .6 1 4 6 .5 9 7 6 .569 6 .584 6.611
MINIMUM 19 .6 0 0 15 .675 16 .3 9 8 17.244 17.434 17 .477 17.409
25TH P. 2 7 .3 0 0 26.901 26.751 26 .8 0 0 26.751 26 .684 26 .719
MEDIAN 30 .0 5 0 31 .4 2 8 31 .0 8 5 31.271 31 .247 31.217 31 .162
75TH P. 34 .8 0 0 35 .649 35.551 35 .646 35 .6 3 8 35 .656 35.664
MAXIMUM 45 .3 0 0 44 .572 44 .8 2 3 44 .933 45 .113 45 .027 45 .107

in



TABLE 4 . 3

POOLED

PARAMETER ESTIMATION BY ORIGINAL AND DISTORTED DATA 

POINT DATA DISTORTION (N: NDMBER OF REPETITIONS)

GROUP PARAMETERS ORIGINAL N=10 N=30 N=70 N=100 N=500 N=1000

FIN MEAN 27.483 2 9 .038 27 .606 27.646 27.691 27 .635 27.571
ST. DEV. 5.476 7 .5 4 8 8 .1 2 9 8 .033 7 .928 8 .1 7 5 8.201
MINIMUM 19.600 18.664 17.123 16.946 17.231 16.716 16.642
25TH P. 23.700 24.202 21.545 22.149 22.244 22.147 21.994
MEDIAN 28 .050 29 .040 27.671 27.787 27 .790 27.644 27 .615
75TH P. 29 .900 33.854 33.511 32.713 32.615 33.082 33.015
MAXIMUM 35.600 39.426 38.593 38.494 30.477 38.579 38.544

ECON MEAN 30.638 30.942 30.612 30.503 30.479 30.585 30.525
ST. DEV. 7 .440 9 .8 0 3 9 .7 6 3 9.924 9 .6 8 9 9 .509 9.594
MINIMUM 19.700 16.362 16.712 16.512 16.806 17.068 16.936
25TH P. 2 6 .750 24 .600 24.249 23.947 24.044 24.329 24.199
MEDIAN 29 .700 30.882 30.028 30.022 30.002 30.142 30.050
75TH P. 33.600 36.599 36 .398 36.299 36.324 36.298 36.322
MAXIMUM 45.300 47 .015 46.833 46 .980 4 6 .2 8 8 46 .069 46.121

MGT MEAN 32.664 33.282 32.322 32.032 32.117 32.476 32.582
ST. DEV. 6 .5 9 6 8 .760 8.931 8 .692 9 .022 9.057 9 .109
MINIMUM 20.600 19.429 19.231 18.260 18.090 17.712 17.749
25TH P. 28 .850 27.661 26 .328 26.639 26 .345 26 .930 27 .023
MEDIAN 32.600 32 .557 31.693 31.866 31.981 32.487 32.577
75TH P. 36.850 38.769 37.806 37.366 37 .673 38.110 38.171
MAXIMUM 42.800 47.797 47 .209 46.229 46.961 47.035 47 .328

ACCT MEAN 32.311 32.969 32.174 32.274 32.254 32 .288 32.350
ST. DEV. 5 .965 7.805 8.222 8.414 8 .6 3 3 8.590 8 .5 5 8
MINIMUM 22.800 21 .173 19.398 19.556 19.292 19.366 19 .448
25TH P. 28 .700 2 7 .300 26.860 26.812 26 .830 27.104 27.291
MEDIAN 32.600 34 .167 33.261 32.790 32.441 32.199 32.190
75TH P. 35.600 37.379 36.715 37.183 37.252 37.160 37.207
MAXIMUM 42.800 44 .219 43.834 44 .962 4 5 .575 45 .813 45 .825

MEAN 
ST. DEV. 
HINIMDM 
25TH P. 
MEDIAN 
75TH P. 
MAXIMUM

31.179
6 .4 6 0

19.600
27 .300  
30.050  
34.800
45 .300

31.900
8 .709

14.162
25.761
31.581
37.424
50.475

31.062
8.974

12.679
24.957
30.964
36.669
50.853

30.963
8.960

12.614
25 .010
30.790
36.735
50.324

30.987
9 .0 1 6

12 .938
24.916
30.699
36.867
50.451

31.127
9 .042

12.594
25.055
30.910
37.099
50.683

31.152
9.084

12.547
25.020
30.953
37.132
50.761

cn
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TABLE 4.4 

AVERAGE ABSOLUTE MEAN ERROR 

(N: NUMBER OF REPETITIONS)

PROBABILITY DATA DISTORTION

PARAMETER N=10 N=30 N=70 N=100 N=500 N=1000

MEAN 0.164 0.128 0.103 0.108 0.101 0.109
ST. DEV. 0.491 0.478 0.429 0.415 0.416 0.433
MINIMUM 2.005 1.531 1.200 1.206 1.159 1.178
25TH P. 0.435 0.398 0.367 0.372 0.367 0.351
MEDIAN 0.641 0.487 0.550 0.564 0.534 0.158
75TH P. 0.974 0.757 0.870 0.857 0.848 0.855
MAXIMUM 0.991 0.914 0.749 0.731 0.764 0.706

POINT DATA DISTORTION

PARAMETER N=10 N=30 N=70 N=100 N=500 N=1000

MEAN 0.771 0.165 0.236 0.233 0.094 0.070
ST. DEV. 2.138 2.416 2.417 2.470 2.487 2.522
MINIMUM 2.502 3.431 3.683 3.588 3.769 3.796
25TH P. 1-354 2.272 2.149 2.184 1.947 1.955
MEDIAN 1.062 0.638 0.450 0.398 0.444 0.424
75TH P. 2.655 2.070 1.909 1.996 2.200 2.219
MAXIMUM 3.427 3.104 3.038 3.190 3.276 3.356
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TABLE 4.5 

CHI-SQUARES 

(N: NUMBER OF REPETITIONS)

PROBABILITY DATA DISTORTION

PARAMETERS N=10 N=30 N=70 N=100 N=500 N=1000

MEAN 0.005 0.005 0.002 0.003 0.002 0.002
ST. DEV. 0.451 0.373 0.267 0.250 0.250 0.263
MINIMUM 1.686 1.103 0.625 0.559 0.527 0.555
25TH P. 0.042 0.040 0.037 0.039 0.040 0.037
MEDIAN 0.115 0.057 0.077 0.076 0.072 0.066
75TH P. 0.160 0.107 0.135 0.133 0.128 0.129
MAXIMUM 0.159 0.154 0.114 0.121 0.124 0.115

POINT DATA DISTORTION

PARAMETERS N=10 N=30 N=70 N=100 N=500 N=1000

MEAN 0.133 0.006 0.015 0.013 0.002 0.001
ST. DEV. 3.595 4.669 4.662 4.875 5.010 5.129
MINIMUM 2.302 3.809 4.093 3.821 4.202 4.260
25TH P. 0.387 0.969 0.881 0.911 0.722 0.741
MEDIAN 0.235 0.075 0.042 0.032 0.042 0.043
75TH P. 1.177 0.829 0.667 0.685 0.818 0.821
MAXIMUM 1.698 1.463 1.239 1.424 1.533 1.609
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TABLE 4.6

NUMBER OF CASES IN WHICH THE PROBABILITY DATA DISTORTION IS 

BETTER THAN THE POINT DATA DISTORTION (TOTAL 100 CASES)

GROUP MEAN ST DEV MIN 25TH P MEDIAN 75TH P MAX

FINANCE 74 84 65 83 74 79 82

ECONOMICS 71 78 71 73 72 84 68

MANAGEMENT 68 89 71 75 65 74 80

ACCOUNTING 58 89 80 78 54 69 70

POOLED 47 98 85 72 51 74 76
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TABLE 4.7 

DEGREE OF COMPROMISABILITY 

(N: NUMBER OF REPETITIONS)

PROBABILITY DATA DISTORTION

GROUP N=10 N=30 N=70 N=100 N=500 N=1000

FINANCE 0.053 0.042 0.034 0.032 0.032 0.032

ECONOMICS 0.025 0.019 0.021 0.022 0.022 0.021

MANAGEMENT 0.036 0.033 0.033 0.034 0.033 0.032

ACCOUNTING 0.021 0.019 0.019 0.020 0.019 0.018

POOLED 0.032 0.027 0.027 0.027 0.027 0.026

POINT DATA DISTORTION

GROUP N=10 N=30 N=70 N=100 N=500 N=1000

FINANCE 0.088 0.027 0.019 0.019 0.007 0.005

ECONOMICS 0.057 0.037 0.027 0.018 0.006 0.007

MANAGEMENT 0.052 0.036 0.021 0.023 0.010 0.007

ACCOUNTING 0.072 0.019 0.010 0.009 0.006 0.003

POOLED 0.065 0.030 0.019 0.017 0.007 0.006
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TABLE 4.8

FACULTY SALARY BY PROBABILITY DATA DISTORTION 

(UNIT: THOUSAND DOLLARS)

AVERAGE VALUE OF EACH OBSERVATION 

(N: NUMBER OF REPETITIONS)

GROUP ORIGINAL N=10 N=30 N=70 N=100 N=500 N=1000

FIN 19.600 15.675 16.398 17.244 17.434 17.477 17.409
23.700 24.398 23.939 23.844 23.794 23.752 23.754
27.300 26.901 26.751 26.800 26.751 26.684 26.719
28.800 29.299 29.004 28.934 28.858 28.976 28.956
29.900 31.256 30.885 31.050 31.014 30.984 30.927
35.600 35.955 36.189 36.215 36.224 36.261 36.298

ECON 19.700 19.271 19.541 19.885 20.140 20.116 20.093
25.600 24.963 24.808 24.668 24.736 24.620 24.628
27.900 27.533 27.240 27.334 27.292 27.310 27.332
29.200 29.882 29.476 29.470 29.470 29.509 29.498
30.200 31.600 31.285 31.492 31.480 31.449 31.397
33.300 33.773 33.335 33.478 33.463 33.404 33.415
33.900 35.210 34.969 35.075 35.055 35.060 35.067
45.300 44.572 44.823 44.933 45.113 45.027 45.107

MGT 20.600 22.042 21.672 21.682 21.799 21.697 21.690
26.900 25.645 25.378 25.367 25,418 25.345 25.380
28.500 27.953 27.765 27.831 27.767 27.861 27.883
29.200 30.357 29.892 29.968 30.007 30.022 29.967
30.300 32.053 31.728 31.926 31.935 31.917 31.869
32.600 33.294 32.864 32.974 32.966 32.914 32.897
33.400 34.314 33.894 34.029 34.005 33.940 33.977
34.800 35.649 35.551 35.646 35.638 35.656 35.664
38.900 38.965 38.535 38.605 38.560 38.623 38.664
41.300 39.793 39.338 39.500 39.450 39.535 39.594
42.800 40.626 40.523 40.796 40.723 40.712 40.782

ACCT 22.800 23.105 22.820 22.823 22.860 22.838 22.823
27.300 26.182 26.063 26.117 26.105 26.021 26.079
28.700 28.427 28.247 28.306 28.255 28.411 28.426
29.800 30.785 30.488 30.596 30.573 30.494 30.460
32.600 32.641 32.315 32.412 32.364 32.410 32.378
33.700 34.660 34.423 34.538 34.506 34.479 34.518
35.600 36.919 36.906 36.999 37.024 36.981 37.028
37.500 37.658 37.561 37.669 37.673 37.724 37.784
42.800 41.828 42.049 42.410 42.222 42.276 42.371
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TABLE 4.9

FACULTY SALARY BY POINT DATA DISTORTION 

(UNIT: THOUSAND DOLLARS)

AVERAGE VALUE OF EACH OBSERVATION 

(N: NUMBER OF REPETITIONS)

GROUP ORIGINAL N=10 N=30 N=70 N=100 N=500 N=1000

FIN 19.600 24.453 20.063 20.261 20.605 19.510 19.626
23.700 26.651 24.465 23.706 23.828 23.935 23.736
27.300 29.652 28.054 28.628 28.169 27.813 27.682
28.800 28.404 29.708 28.725 28.670 28.800 28.815
29.900 30.644 29.486 29.210 29.450 29.890 29.758
35.600 34.422 34.339 35.346 35.424 35.864 35.808

ECON 19.700 17.303 18.522 18.436 19.331 19.479 19.326
25.600 26.948 26.457 26.005 25.775 25.716 25.753
27.900 28.645 26.546 27.835 28.153 28.004 27.899
29.200 27.518 28.143 27.973 28.535 29.134 29.141
30.200 34.433 32.352 31.200 30.824 30.501 30.344
33.300 32.365 32.863 32.225 31.893 32.950 32.880
33.900 34.008 33.660 33.937 33.521 33.732 33.609
45.300 46.320 46.350 46.417 45.803 45.159 45.247

MGT 20.600 20.859 21.641 20.421 20.577 20.505 20.690
26.900 25.229 24.904 26.490 25.876 26.439 26.585
28.500 31.357 29.178 28.654 28.682 28.995 28.855
29.200 30.502 28.983 28.180 27.985 28.773 28.841
30.300 28.291 28.195 29.538 29.775 29.828 29.843
32.600 34.010 31.069 31.767 31.298 32.021 32.293
33.400 35.619 34.178 32.579 31.864 33.121 33.141
34.800 36.299 35.076 35.165 35.352 34.709 34.905
38.900 36.726 36.822 36.347 37.700 38.978 39.005
41.300 43.709 42.780 41.134 41.602 41.210 41.373
42.800 43.506 42.717 42.082 42.575 42.654 42.867

ACCT 22.800 24.437 22.876 23.113 22.894 22.892 22.826
27.300 32.409 27.239 26.793 26.564 27.298 27.435
28.700 30.781 29.710 28.588 29.000 28.549 28.858
29.800 28.664 30.266 29.775 29.534 29.363 29.827
32.600 33.625 32.569 32.622 32.594 32.535 32.494
33.700 31.451 32.310 33.708 33.673 33.371 33.544
35.600 38.657 35.852 36.297 35.486 35.676 35.524
37.500 35.570 37.997 37.763 38.131 37.795 37.524
42.800 41.128 40.751 41.809 42.406 43.109 43.116



CHAPTER V 

FREQUENCY IMPOSED DATA DISTORTION

5.0 Introduction 

We introduced data d is to rtion  by probability  d is tr ib u tio n . 

Probability Data D istortion , which preserves asymptotically the s t a t i s ­

t ic a l  properties of the original data. One drawback of the Probability 

Data Distortion a t  the present time is  the lim ited choice offered by 

available density functions.

To make th is  mechanism more f le x ib le ,  we introduce Frequency 

Imposed Data Distortion which doesn't require id en tif ic a t io n  of an 

underlying density function. Instead, the orig inal data is  divided 

into several in te rva ls  and the frequency in each in terval is  recorded. 

These frequencies are used as guidelines to generate the d isto rted  data. 

By using a uniform random number generating rou tine , d is to rted  data 

points are generated so th a t  the frequency in the d is to r ted  data in each 

interval coincides with th a t  of the original data.

Another method which we introduce in th is  chapter is  the 

Frequency Imposed Probability  Data Distortion which is  a hybrid of the 

Probability Data Distortion and the Frequency Imposed Data Distortion.

53
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Like Probability Data D istortion, th is  method requires iden tif ica tion  

of a density function which is  best f i t t e d  to the original data se t .

Jus t as in Frequency Imposed Data D istortion, the original data se t  is 

divided into several in te rva ls  and the proper number of d is to rted  data 

points are generated fo r  each in te rv a l .  The best f i t t e d  density func­

tion is  used to generate random numbers to be used as the d istorted  

data s e t ,  and the frequency in each interval of the d is to rted  data se t  

is  forced to be equal to the frequency in the matching interval of the 

original data se t .

Through the use of actual faculty  sa lary  data, the performance 

of the two data d is to r tio n  methods in terms of accuracy in parameter 

estimation and in compromisability can be compared. Accuracy is  de ter­

mined by the capability  to maintain the original s t a t i s t i c a l  parameters 

such as mean, standard deviation, maximum value, minimum value, and 

percen tiles . Compromisability is  measured by the capability  to protect 

individual information from compromise.

Section 5.1 b r ie f ly  discusses the procedure by which each 

method generates the d is to r ted  data . Section 5.2 describes the empirical 

r e s u l ts ,  and Section 5.3 provides a b r ie f  concluding remark.

5.1 A Monte Carlo Study 

The 1982-83 faculty  salary  data f i l e  of the College of Business 

Administration, The University of Oklahoma, was chosen as the original 

data. The salary f i l e  contains the salary of each facu lty  member by 

rank, department, sex, and contract period. We changed a ll  twelve-month 

sa la r ie s  to nine-month equivalents fo r  th is  study. The frequency d is­

tr ibu tion  of the sa lary  data is  shown in Table 5.1.
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TABLE 5.1 

FREQUENCY TABLE BY SALARY RANGE

Salary Range Frequencies

$20K - $25K 8

$25K - $30K 18

$30K - $35K 29

$35K - $40K 13

$40K - $45K 9

$45K - $50K 5

$50K - $55K 2

Total 84

A jo in t  frequency tab le  by rank and department is  shown in Table 5.2.

TABLE 5.2

FREQUENCY TABLE BY RANK AND DEPARTMENT

Rank
ECON ACCT

Department 
FIN EAP MKT MGT Total

A ssistant Prof 6 6 4 4 1 7 28

Associate Prof 3 1 5 3 6 5 23

Full Prof 9 9 3 1 3 8 33

Total 18 16 12 8 10 20 84
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Release of the original sa lary  data information as i t  is  can 

easily  lead to  the iden tif ic a t io n  of the salary  of each faculty  member 

during the 1982-83 academic year since there are small frequencies in 

the various rank and department c la s s if ic a t io n s .  For example, there 

is  only one associa te  professor in the Accounting department. Some of 

these professors are appointed fo r  twelve months instead of nine months. 

This indicates th a t  he is  in an administrative position as a department 

d irec to r . Furthermore, the sex indication will eas ily  so r t  out the 

female from the male professors.

Suppose we wish to guard the privacy of an individual from the 

id en tif ic a t io n  of his sa lary  since faculty  sa lary  l ik e  a s tuden t 's  grade 

may re f le c t  the ind iv id ua l 's  a b i l i ty .  We consider the sa lary  data as 

confidential information and the other data such as rank, department, 

sex, and contract period as non-confidential information.

Which data d is to r tio n  method will best reproduce the actual 

s t a t i s t i c s  o f the faculty  sa lary  data while protecting the privacy of 

an individual a t  minimum cost?

Seven popular s t a t i s t i c a l  parameters: mean, standard devia­

t io n , 25th p e rcen ti le ,  median, 75th percen ti le ,  maximum, and minimum are 

se lected fo r  measurement of s t a t i s t i c a l  accuracy.

We consider four d if fe ren t  data d is to r tio n  methods:

(1) Point Data Distortion

(2) Probability  Data Distortion

(3) Frequency Imposed Data Distortion

(4) Frequency Imposed Probability  Data Distortion.
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Distorted data se ts  are generated through the following 

procedures.

5.1.1 Point Data Distortion

The d is to r ted  data is computed by adding a random variable to 

each original observation. The random variable  is  generated with zero 

mean and the standard deviation (6.818) of the original data as shown 

in Section 4.2.

5.1.2 Probability Data Distortion

The faculty  salary data was screened to  find the best f i t t e d  

density function. The Kolmogorov-Smirnov s t a t i s t i c  was used to identify  

such density function. These are computed by using the P h i l l ip 's  com­

puter package (1972), and are shown below:

Density Function K-S S ta t i s t i c s  Remarks

Poisson 0.17616
Exponential 0.46387
Normal 0.11822
Gamma 0.09133
Weibull 0.14730
Lognormal 0.07885 The best f i t
Uniform 0.26255
Triangular 0.23225

The K-S tab le  value is  0.117 (see Appendix C) when the degrees 

of freedom are 84 and the s ig n if ican t  level is  10% (one t a i l ) .  The te s t  

s t a t i s t i c s  of both the Gamma and Lognormal d is tr ibu tions  are accepted 

as the density function fo r  th is  actual sa lary  data a t  10% s ig n if ican t  

level. However, since the K-S s t a t i s t i c  fo r  Lognormal is smaller than
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the one fo r  Gamma, the lognormal d is tr ibu tion  is  selected as the 

density function best f i t t e d  to the orig inal data. By using the log­

normal random number generating routine (IMSL (1980)) with an estimated 

mean of 33.738 and an estimated standard deviation of 6.760, the d is ­

to rted  data were generated and then mapped onto the original salary 

data.

5.1.3  Frequency Imposed Data Distortion 

No attempt is  made to iden tify  the underlying density function 

from the original data. The salary  data is  divided into seven in tervals  

and the frequency within each interval is  counted. Through the use of a 

uniform random number generating routine , the d is to rted  data are gener­

ated so tha t  the frequency counts of the d is to r ted  data fo r  each in te r ­

val will be the same as those for th a t  interval in the original data.

For example, there are 8 original data points in the salary range be­

tween 20K and 25K. Eight numbers between 20K and 25K are generated 

using the uniform random number generating routine. A sim ilar method 

is  used to generate the d is to rted  values for the remaining in te rvals .

5 .1.4 Frequency Imposed Probability 
Data Distortion

Frequency Imposed Probability Data Distortion is a hybrid of 

Probability Data Distortion and Frequency Imposed Data Distortion. This 

method requires e ssen t ia lly  the same procedure as Probability Data Dis­

to rtion  except th a t  i t  continues to generate d is to r ted  data until the 

frequency of data points in each in terval becomes the same as th a t  in 

the original data. The original data are grouped into seven in tervals 

as shown on Table 5.2. Previously the lognormal density function was
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chosen as the best f i t t e d  function fo r  the sa lary  data. The d istorted  

data are generated by using th is  function and a t  the same time the 

frequency in each in terval is  forced to become the same as th a t  in the 

original data. I f  the lognormal random number generator placed more 

than 8 data points in the f i r s t  in te rv a l ,  any excess points are simply 

discarded. The major advantage of th is  approach is  th a t  i t  forces the 

d is to rted  data to be the same as the original data not only in overall 

density function but also in frequency by in te rv a l .  This double 

re s t r ic t io n  should improve the accuracy of the s t a t i s t i c a l  parameter 

estimations.

5.2 Empirical Results

5.2.1 Accuracy of Parameter Estimation 

One hundred rep lica tions of the 84 sa lary  observations were 

made by employing each of the four data d is to r tio n  methods. For each 

rep l ica t io n , seven parameters ( i . e . ,  mean, standard deviation, 25th per­

c e n t i le ,  median, 75th percen tile , maximum, and minimum) were computed 

and the re su l ts  were compared.

All four methods estimate mean and median f a i r ly  close to those 

of the original data. The mean and median of the original salary data 

are 33.74 and 32.80 respectively . The average value of means of 100 

rep lica tions is  33.62 by Point Data D istortion , 33.79 by Probability 

Data D istortion, 33.66 by Frequency Imposed Data D istortion, and 33.63 

by Frequency Imposed Probability Data D istortion. The standard devia­

tion by means of 100 rep lica tions is  0.73 by Point Data D istortion,

0.71 by Probability  Data D istortion, 0.12 by Frequency Imposed Data 

Distortion, and 0.13 by Frequency Imposed Probability  Data Distortion.
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Point Data Distortion shows very poor performance in the e s t i ­

mation of the 25th and 75th percen tiles . I t  consis ten tly  overestimates 

the 75th p e rcen ti le ,  and underestimates the 25th. The 75th percentile  

of the original sa lary  data is  37.47, and Point Data Distortion yields 

an average of 39.81 for the 75th percen tile  in 100 rep lica tions which 

is  higher than the 75th percen tile  of the orig inal sa lary  data.

In general. Point Data Distortion gives poor estimates of the 

maximum and minimum values. The maximum and minimum values in the 

original sa lary  data are 54.00 and 21.00 respectively . The Point Data 

Distortion consisten tly  overestimates the maximum value and underesti­

mates the minimum. In 100 rep l ica t io n s ,  the average of maximum values 

computed through Point Data Distortion is  59.50 which is  fa r  higher 

than the orig inal maximum of 54.00. In the same experiment. Point Data 

Distortion y ie lds  an average minimum of 11.96 which is  much smaller 

than the orig inal minimum salary  of 21.00.

Point Data Distortion also overestimates the standard deviation 

of the salary  data. The average standard deviation computed using Point 

Data Distortion in 100 rep lica tions  is  9.65 which is  much higher than 

th a t  of the o rig inal standard deviation of 6.82.

The s t a t i s t i c s  computed using Probability  Data Distortion, 

Frequency Imposed Data D istortion , and Frequency Imposed Probability 

Data Distortion y ie ld  values very close to those of the o rig ina l. For 

example, the average standard deviation in 100 rep lica tions  is 6.77 for 

Probability Data D istortion , 7.34 fo r  Frequency Imposed Data Distortion, 

and 7.19 fo r  Frequency Imposed Probability  Data D istortion. As reported 

e a r l ie r ,  the standard deviation of the orig inal sa lary  data is  6.82. In



61

the same 100 re p l ica t io n s ,  the average of the maximum value is  50.33 

fo r  Probability Data D istortion , 53.12 for Frequency Imposed Data Dis­

to r t io n ,  and 53.01 fo r  the Frequency Imposed Probability  Data Distor­

tion . The original maximum value of the salary data is  54.00. The 

average minimum value in 100 replications is  17.22 fo r  Probability Data 

D istortion, 20.43 fo r  Frequency Imposed Data D istortion, and 18.29 for 

Frequency Imposed Probability  Data Distortion. The minimum value of 

the original data is  21.00.

To make the performance of four d is to rtion  methods comparable, 

weights are assigned; 4 fo r  the c loses t to the o r ig in a l ,  3 for the 

second c loses t,  2 fo r  the th ird  and 1 fo r  the l a s t .  For each rep lica­

tion , 84 d is to rted  observations are generated by using each of the four 

d is to rtion  methods. Using the 84 observations, the mean, standard 

deviation, minimum value, 25th p e rcen tile , median, 75th percen tile , and 

maximum value are computed. These s t a t i s t i c s  are compared with those 

computed from the orig inal sa lary  data , and by using the ranking system, 

we score the numerical ra ting  of each d is to r tion  method.

For the mean computation, the average ranking score in 100 

rep lica tions is  1.80 by Point Data D istortion, 1.73 by Probability Data 

D istortion, 3.42 by Frequency Imposed Data D istortion, and 3.05 by Fre­

quency Imposed Probability  Data Distortion. This implies th a t  Frequency 

Imposed Data Distortion leads to b e t te r  estimation of the original mean 

than does any other method. Frequency Imposed Probability Data Distor­

tion  places second.

Frequency Imposed Data Distortion performs best in the estima­

tion  of the minimum value, maximum value, median, and mean in the
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experiment. Frequency Imposed Data Distortion scores an average of 

3.81 for minimum value, 3.01 for median, 3.48 fo r  maximum value, and 

3.42 for mean. However, Frequency Imposed Probability  Data Distortion 

closely follows in second place. The average ranking of 100 rep lica ­

tions by Frequency Imposed Probability Data Distortion is  2.67 fo r  the 

minimum value, 3.00 fo r  the median, 2.91 fo r  the maximum value, and 

3.05 fo r  the mean.

In the same experiment. Frequency Imposed Probability Data 

Distortion performs best among these four d is to r tio n  methods in e s t i ­

mating the 25th percen tile  and the 75th percen tile  with average ranking 

scores of 3.20 and 3.34 respectively . Probability Data Distortion 

edges Frequency Imposed Probability Data Distortion with an average 

ranking score of 3.26 to  3.24 in estimating the standard deviation.

The l a s t  experiment involves counting the number of times each 

technique resu lted  in the best estimation. In estimating the standard 

deviation. Probability  Data Distortion places f i r s t  53 times out of 100 

replications and is  followed by Frequency Imposed Probability  Data Dis­

tortion  with 35, and by Frequency Imposed Data Distortion with 12.

Point Data Distortion f a i l s  to  make a single  f i r s t  place in the standard 

deviation estimation. Generally, the extreme values are estimated very 

well through Frequency Imposed Data D istortion. For example, the mini­

mum value of orig inal sa lary  data was 82 times out o f 100 most closely 

estimated through Frequency Imposed Data D istortion. Sim ilarly , Fre­

quency Imposed Data Distortion shows 61 f i r s t  places in 100 rep lica tions 

on the maximum value. Frequency Imposed Data Distortion also performs 

well in estimating the mean and median. Out of 100 rep lica tio ns .
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Frequency Imposed Data Distortion scores 57 f i r s t  places in mean e s t i ­

mation, and 40 f i r s t  places in median estimation. Frequency Imposed 

Probability Data Distortion scores 31 f i r s t  places in the mean and 30 

f i r s t  places in the median estimations.

Composite scores are computed to compare overall performance 

o f the four d is to r tio n  methods. As a composite score, the grand mean 

of average ranking scores of seven s t a t i s t i c s  ( i . e . ,  average of the 

average ranking scores o f  mean, standard deviation, minimum, the 25th 

p e rcen tile , median, the 75th pe rcen ti le , and maximum in 100 rep lica ­

tions) was chosen. The f i r s t  place in composite score goes to Frequency 

Imposed Data Distortion with 3.16 closely followed by Frequency Imposed 

Probability Data Distortion with 3.06, Probability Data Distortion 

places th ird  with a score of 2.30 and Point Data Distortion is l a s t  

with a score of 1.49.

Similar conclusions can be obtained when the f i r s t  place scores 

are summed over 7 s t a t i s t i c s .  Total f i r s t  places by Frequency Imposed 

Data Distortion amounts to 312 out of 700 (or 45%). I t  is followed by 

Frequency Imposed Probability  Data Distortion 227 (or 32%). Probability 

Data Distortion is  the th ird  by showing 124 f i r s t  places (or 18%), and 

Point Data Distortion comes to la s t  place with 37 f i r s t  places (or 5%) 

in a ll  seven s t a t i s t i c s .

5 .2.2 Accuracy in Computation 
of Conditional S ta t i s t ic s

Performance of the d is to r ted  data when used jo in t ly  with other 

non-confidential variables is  now evaluated. The original salary data 

are divided into s ix  departmental groups. For each departmental
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c la s s if ic a t io n ,  group mean, group standard deviation, maximum value 

within the group, minimum value within the group, the 75th pe rcen tile , 

the 25th p e rcen ti le ,  and median within each group are calculated once 

using original and again for each of the d is to r ted  data se ts .

For each s t a t i s t i c ,  the re s u l t  computed from the d is to rted  data 

is  compared with th a t  from the original sa lary  data. Since seven s t a ­

t i s t i c s  ( i . e . ,  mean, standard deviation, minimum, 25th pe rcen tile , 

median, 75th p e rcen ti le ,  and maximum) are used, the rank scores within 

each group are added to  produce subtotal rank score fo r the department. 

For example, the subtotal rank score of the Accounting subgroup is  

22.29 by Frequency Imposed Probability  Data D istortion. The 22.29 

implies th a t  the average rank score o f seven s t a t i s t i c s  is  around 3.18 

by Frequency Imposed Probability  Data D istortion.

Then, th is  subgroup to ta l  is  summed to to ta l  rank. For exam­

ple , to ta l  rank score by Frequency Imposed Probability  Data Distortion 

is  133.50 or an average of 3.18. This average 3.18 is  an ind ica to r of 

overall performance of the d is to r ted  data in estimating the group 

s t a t i s t i c s .

The overall winner in group parameter estimation is  Frequency 

Imposed Probability  Data Distortion with an average rank score of 3.18, 

closely followed by Frequency Imposed Data Distortion which has an aver­

age rank score of 3.12. A d is tan t  th ird  place goes to Probability  Data 

Distortion with the average rank score of 2.29 and the l a s t  place f in ­

isher  is  Point Data Distortion with the average rank score of 1.42.

In th is  experiment, 42 s t a t i s t i c s  ( i . e . ,  7 s t a t i s t i c s  by each 

of 6 departments) were computed through each of four d is to r tio n  methods
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in 100 rep lica tio ns . Out of possible 4200, Frequency Imposed Proba­

b i l i ty  Data Distortion scores 1767 f i r s t  places (or 42.07%), followed 

by Frequency Imposed Data Distortion with 1603 f i r s t  places (or 33.17%). 

Probability Data Distortion fin ishes th ird  with 621 f i r s t  places (or 

14.79%) and Point Data Distortion fin ishes l a s t  with 209 f i r s t  places 

(or 4.98%).

Another experiment involves the c la s s if ic a t io n  of the salary  

data by professional rank ( i . e . .  Assistant Professor, Associate Profes­

so r ,  and Full Professor). There are 21 s t a t i s t i c s  ( i . e . ,  7 s t a t i s t i c s  

by each of those 3 groups) to be computed through each of four d is to r ­

tion methods in 100 rep lica tions . The re su l t  is  compared by using the 

same weight system ( i . e . ,  4 fo r the best,  . . . , 1 fo r  the worst).

The overall winner of th is  experiment is  s t i l l  Frequency Imposed Proba­

b i l i ty  Data Distortion which scores 3.17. However, i t  is  closely fo l ­

lowed by the Frequency Imposed Data Distortion which scores 3.13. The 

th ird  place goes to Probability  Data Distortion with 2.28 and Point 

Data Distortion takes l a s t  place. In the number one rank counting. Fre­

quency Imposed Probability  Data Distortion takes 853 f i r s t  places out 

of a possible 2100. Frequency Imposed Data Distortion is  a close second 

with 828 f i r s t  places (or 39.43%). The th ird  and fourth places go to 

Probability Data Distortion and Point Data Distortion which make 297 

and 122 f i r s t  places respectively.

Next we evaluate the accuracy of estimation on seven s t a t i s t i c s  

within each department and within each professional rank. Using the 

same rank score, we sum the to ta l  rank score in departmental c l a s s i f i ­

cation. In the computation of the seven s t a t i s t i c s  within the Accounting
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subgroup. Frequency Imposed Probability Data Distortion scores 22.29 

(or an average of 3.18) and i t  is  followed by Frequency Imposed Data 

D istortion, which has a to ta l  rank score o f 20.72 (or an av^'age of 

2.96). Probability  Data Distortion fin ishes th ird  with a to ta l rank 

score of 17.37 (or average of 2.48). Point Data Distortion makes a 

d is tan t  fourth place with to ta l  score of 9.62 (or an average of 1.37). 

Frequency Imposed Probability  Data Distortion continuously excels in 

estimation of subgroup s t a t i s t i c s  in the Economics, Management, Market­

ing, Associate Professor, and Full Professor groups. However, in three 

occasions out of nine subgroups. Frequency Imposed Data Distortion 

narrowly beats Frequency Imposed Probability  Data Distortion. In all 

cases. Point Data Distortion takes a d is tan t  l a s t  place and Probability 

Data Distortion takes a firm th ird  place. Table 5.3 shows the de ta ils  

of these s t a t i s t i c s .

5.2 .3  The Compromisability of the 
Distorted Data

Some of the d is to rted  data will converge to the original and 

will be easily  compromisable i f  we average repeated observations. The 

compromisability o f each of these four d is to r t io n  methods is  now 

compared.

The degree of compromisability is  measured by a compromisability 

index which is  the average absolute percentage deviation from the o r ig i­

nal observation as shown in Section 4 .3 , and average of the d isto rted  

observations in N rep lica tions .

In th is  experiment, the number of rep lica tions  is  raised from 

10 to 1000 to observe whether there is  any trend toward decreasing
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compromisability index as the number of rep lica tions increases. At 10 

rep lica tio n s , the compromisability index becomes 0.08266 for Point Data 

D istortion, 0.06980 fo r  Probability Data D istortion , 0.05302 for 

Frequency Imposed Data D istortion, and 0.05325 fo r  Frequency Imposed 

Probability Data D istortion. At 70 rep lica tion s , the compromisability 

index decreased to 0.02117 for Point Data D istortion , 0.02896 for Proba­

b i l i t y  Data D istortion, 0.01209 for Frequency Imposed Data Distortion, 

and 0.01357 fo r  Frequency Imposed Probability Data Distortion. As the 

number of rep lica tions is  raised to 100, 500, and 1000, there is  a 

sharp decrease in the compromisa b il i ty  index fo r  Point Data Distortion. 

At 100 rep lica tio n s , the compromisabil i ty  index fo r  Point Data Distor­

tion reaches 0.01677 and the index decreases to 0.00552 a t  1000 r e p l i ­

cations. As the  number of rep lications goes up, such a rapid decrease 

in the compromisability index is a c lear indication th a t  Point Data 

Distortion f a i l s  to guard the privacy of the individual i f  such r e p l i ­

cations are accessible by the user.

In con tras t ,  the compromisability index remains s tab le  in sp ite  

of a d ras t ic  increase in the number of rep lica tions of the other three 

d is to rtion  methods. As shown on Figure 5.1 , the compromisability index 

of Probability Data Distortion is  decreased from 0.02896 in 70 rep lica­

tions to  0.02651 in 1000 rep lica tions . S im ilarly , the compromisability 

index of Frequency Imposed Probability Data Distortion has gone down 

from 0.01357 in 70 rep lica tions to 0.01272 in 1000 rep lica tio ns . In the 

case of Frequency Imposed Data Distortion the compromisability index has 

actually  increased from 0.01209 to 0.01505 as the number of replications 

is  raised from 70 to 1000. I t  is  evident th a t  the data d is to rted  by
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Probability Data D istortion , by Frequency Imposed Data D istortion, or 

by Frequency Imposed Probability  Data Distortion is  very d i f f i c u l t  to 

compromise by averaging the observations even with a very large number 

of rep lica tions . However, Point Data Distortion can be eas ily  compro- 

misable i f  su f f ic ie n t  rep lica tions  are permitted. Table 5.4 shows the 

d e ta ils  of the compromisability index.

When the frequency is imposed, the d is to rted  data performs 

b e t te r  for obvious reasons. However, such frequency imposition did not 

y ie ld  increased compromisability. Whether the frequency is  imposed or 

not, compromisa b i l i ty  in the case of Probability Data Distortion remains 

quite low.

5.3 Summary

Frequency Imposed Probability  Data Distortion takes more com­

puter time than any other d is to r tion  mechanism because i t  requires 

several steps to generate d is to rted  data. Second in consumption of 

computer time is  Probability  Data Distortion. Frequency Imposed Data 

Distortion consumes the le a s t  computer time and doesn 't  require any 

special package to iden tify  the underlying density function of the 

original data.

In summary. Frequency Imposed Data Distortion is  easy to use, 

takes less computer time, produces very accurate s t a t i s t i c s ,  and is  very 

d i f f i c u l t  to compromise. I t  appears to be the best data d is to r tion  

method i f  the underlying density function of the original data is  not 

easily  id en tif iab le .
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TABLE 5.3
ACCURACY IN COMPUTATION IN 7 STATISTICS

(SUMMARY)
DISTORTION METHODS

POINT probability FID PIPD ........
AVERAGE TOTAL AVERAGE TOTAL AVERAGE TOTAL AVERAGE TOTAL

SCORE 1ST PLACES SCORE 1ST PLACES SCORE 1ST PLACES SCORE 1ST PLACES
(A) CLASSIFICATION 

BY DEPARTMENT
ACCT (16)* 1.37 31 2.48 150 2.96 226 3.18 293
EAP ( 8) 1.57 48 2.21 82 3.36 373 2.85 197
ECON (18) 1.38 36 2.42 148 3.06 240 3.15 276
FIN (12) 1.37 30 2.15 70 3.33 337 3.15 263
MGT 20) 1.41 32 2.23 92 3.03 230 3.32 346
MKT ilO] 1.39 32 2.22 79 2.97 197 3.42 392
TOTAL (84) 209 621 1603 1767

1.42 2.29 3.12 3.18
PERCENTAGE 4.98% 14.79% 38.17% 42.07%

(b) classification
BY RANK
A PROF (28) 1.45 47 2.40 117 3.14 303 3.02 233
AS PROF (23) 1.26 18 2.21 76 3.19 280 3.34 326
F PROF (33} 1.56 57 2.22 104 3.05 245 3.16 294
TOTAL (84) 122 297 828 853

1.42 2.28 3.13 3.17
PERCENTAGE 5.81% 14.14% 39.43% 40.62%

(C) NO CLASSIFICATION
TOTAL 37 124 312 227

1.49 2.30 3.16 3.06
PERCENTAGE 5.29% 17.71% 44.57% 32.43%

o

*THE FIGURE INSIDE OF THE PARENTHESIS IS THE NUMBER OF OBSERVATIONS.



ACCOUNTING

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 35.85 9.53 19.08 29.27 35.85 42.26 53.12
PROB 35.90 6.27 21.81 32.73 35.15 39.85 45.58
FID 35.90 7.09 22.22 31.87 33.86 40.05 48.35
FIPD 35.78 6.78 22.19 32.03 33.94 39.96 47.27
ORG 35.83 6.41 23.70 32.50 33.80 39.95 47.00

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 1.66 1.68 4.48 2.76 2.13 2.64 4.69
PROB 0.77 0.54 1.61 0.92 0.83 1.11 1.49
FID 0.16 0.25 0.87 0.36 0.28 0.24 0.88
FIPD 0.23 0.23 1.23 0.42 0.30 0.26 0.90

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 5.00 2.00 9.00 8.00 2.00 1.00 4.00 31.00 4.43
PROB 16.00 49.00 20.00 33.00 4.00 7.00 21.00 150.00 21.43
FID 49.00 9.00 32.00 20.00 46.00 52.00 18.00 226.00 32.29
FIPD 30.00 40.00 39.00 39.00 48.00 40.00 57.00 293.00 41.86

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.45 1.15 1.66 1.37 1.44 1.32 1.23 9.62 1.37
PROB 2.30 3.24 2.48 2.82 1.78 2.06 2.69 17.37 2.48
FID 3.26 2.37 2.93 2.71 3.38 3.39 2.68 20.72 2.96
FIPD 2.99 3.24 2.93 3.10 3.40 3.23 3.40 22.29 3.18



ENVIRONMENTAL ANALYSIS AND POLICY

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 26.90 8.34 14.71 21.05 26.93 32.73 39.05
PROB 26.08 6.65 16.75 20.17 26.60 31.59 35.19
FID 26.53 5.17 20.53 21.41 26.40 31.08 33.98
FIPD 26.15 5.87 18.30 20.54 26.76 31.12 34.06
ORG 26.94 4.84 21.00 22.25 26.86 31.30 33.70

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 2.24 1.89 4.63 2.68 2.97 3.18 4.24
PROB 0.93 0.92 3.01 1.49 1.00 0.94 0.99
FID 0.25 0.29 0.51 0.65 0.45 0.37 0.35
FIPD 0.54 0.75 1.87 1.51 0.50 0.31 0.31

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 9.00 2.00 4.00 14.00 10.00 8.00 1.00 48.00 6.86
PROB 20.00 2.00 3.00 17.00 18.00 12.00 10.00 82.00 11.71
FID 55.00 81.00 82.00 51.00 30.00 31.00 43.00 373.00 53.29
FIPD 16.00 15.00 11.00 18.00 42.00 49.00 46.00 197.00 28.14

VJro

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.74 1.32 1.65 2.12 1.52 1.43 1.22 11.00 1.57
PROB 2.42 2.05 2.00 2.23 2.44 2.27 2.08 15.49 2.21
FID 3.38 3.80 3.82 3.29 2.88 3.01 3.36 23.54 . 3.36
FIPD 2.46 2.83 2.53 2.36 3.16 3.29 3.34 19.97 2.85



ECONOMICS

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 32.81 9.68 16.47 25.53 32.38 39.73 50.68
PROB 32.35 7.13 23.18 25.30 30.33 38.87 42.76
FID 32.33 7.72 22.80 25.25 29.81 38.96 44.50
FIPD 32.26 7.52 22.76 25.36 29.88 38.79 44.23
ORG 32.59 7.08 25.00 25.75 30.07 38.85 44.55

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 1.35 1.58 4.39 2.26 1.95 2.61 3.94
PROB 0.83 0.65 1.59 1.31 1.07 1.07 1.29
FID 0.19 0.23 0.82 0.24 0.18 0.50 0.44
FIPD 0.21 0.29 1.06 0.32 0.17 0.54 0.65

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 10.00 4.00 3.00 9.00 0.0 9.00 1.00 36.00 5.14
PROB 10.00 46.00 46.00 18.00 8.00 17.00 3.00 148.00 21.14
FID 48.00 13.00 23.00 27.00 39.00 35.00 55.00 240.00 34.29
FIPD 32.00 37.00 28.00 46.00 53.00 39.00 41.00 276.00 39.43

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.56 1.23 1.20 1.73 1.23 1.51 1.20 9.66 1.38
PROB 2.12 3.17 3.08 2.06 2.15 2.33 2.00 16.91 2.42
FID 3.31 2.48 2.80 2.97 3.24 3.09 3.50 21.39 3.06
FIPD 3.01 3.12 2.92 3.24 3.38 3.07 3.30 22.04 3.15

• v j
CO



FINANCE

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 33.63 9.80 20.07 27.22 32.41 38.44 55.00
PROB 33.84 6.36 26.54 30.60 32.64 36.27 50.40
FID 33.45 7.11 26.36 30.04 31.87 35.04 53.38
FIPD 33.52 7.08 26.70 30.07 31.89 34.99 53.51
ORG 33.60 7.14 26.55 30.40 32.00 34.86 54.00

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 2.18 1.62 4.39 3.06 2.55 2.93 5.99
PROB 0.79 0.83 1.12 0.98 0.88 1.03 3.00
FID 0.19 0.32 0.50 0.15 0.34 0.14 1.18
FIPD 0.24 0.60 0.58 0.11 0.29 0.16 2.28

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 6.00 3.00 1.00 4.00 5.00 1.00 10.00 30.00 4.29
PROB 8.00 9.00 18.00 14.00 9.00 2.00 10.00 70.00 10.00
FID 45.00 65.00 41.00 36.00 37.00 50.00 63.00 337.00 48.14
FIPD 41.00 23.00 40.00 46.00 49.00 47.00 17.00 263.00 37.57

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.41 1.27 1.15 1.28 1.28 1.32 1.90 9.61 1.37
PROB 2.18 2.26 2.47 2.25 2.15 1.83 1.94 15.08 2.15
FID 3.26 3.57 3.19 3.11 3.21 3.42 3.52 23.28 3.33
FIPD 3.15 2.90 3.19 3.36 3.36 3.43 2.64 22.03 3.15



MANAGEMENT

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 34.85 9.54 18.52 28.22 34.25 40.76 55.03
PROB 34.91 6.03 26.00 29.49 34.17 38.17 47.65
FID 34.82 7.15 25.80 28.79 33.11 37.87 51.80
FIPD 34.80 6.82 26.11 29.12 33.25 37.57 51.20
ORG 34.71 6.62 26.00 29.30 33.18 37.27 51.45

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 1.36 1.64 3.85 2.30 1.93 2.27 5.26
PROB 0.78 0.59 1.14 0.93 0.97 1.04 2.25
FID 0.21 0.24 0.43 0.47 0.39 0.59 1.15
FIPD 0.18 0.20 0.56 0.36 0.42 0.57 0.90

en

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 7.00 0.0 0.0 8.00 7.00 3.00 7.00 32.00 4.57
PROB 7.00 20.00 19.00 16.00 6.00 16.00 8.00 92.00 13.14
FID 43.00 8.00 41.00 29.00 40.00 31.00 38.00 230.00 32.86
FIPD 43.00 72.00 40.00 47.00 47.00 50.00 47.00 346.00 49.43

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.57 1.09 1.01 1.61 1.68 1.26 1.66 9.88 1.41
PROB 2.03 2.62 2.58 2.30 1.84 2.46 1.79 15.62 2.23
FID 3.22 2.62 3.16 2.87 3.22 2.97 3.18 21.24 3.03
FIPD 3.18 3.67 3.25 3.22 3.26 3.31 3.37 23.26 3.32



MARKETING

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 36.10 8.53 22.80 30.53 35.95 41.76 49.86
PROB 36.49 4.81 28.62 33.70 35.47 40.02 43.97
FID 36.37 6.21 27.86 32.74 34.13 41.03 46.75
FIPD 36.26 5.94 28.21 32.77 34.11 40.68 46.07
ORG 36.10 5.74 28.50 32.75 33.68 40.70 45.40

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 2.16 1.80 4.57 3.47 2.53 3.13 4.28
PROB 0.82 0.52 1.11 1.00 0.99 1.08 1.36
FID 0.20 0.27 0.52 0.44 0.29 0.63 0.83
FIPD 0.16 0.22 0.52 0.42 0.28 0.39 0.70

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 3.00 1.00 2.00 3.00 11.00 9.00 3.00 32.00 4.57
PROB 17.00 7.00 16.00 6.00 7.00 13.00 13.00 79.00 11.29
FID 24.00 21.00 25.00 40.00 39.00 30.00 18.00 197.00 28.14
FIPD 56.00 71.00 57.00 51.00 43.00 48.00 66.00 392.00 56.00

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.37 1.18 1.17 1.30 1.73 1.55 1.45 9.75 1.39
PROB 2.28 2.18 2.60 2.10 1.75 2.25 2.38 15.54 2.22
FID 2.96 2.96 2.86 3.24 3.21 2.92 2.65 20.80 2.97
FIPD 3.39 3.68 3.37 3.36 3.31 3.28 3.52 23.91 3.42

<n



ASSISTANT PROFESSOR

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 27.78 7.44 12.01 22.81 27.73 32.90 42.71
PROB 27.49 4.57 17.64 24.43 27.67 31.31 34.53
FID 27.31 3.92 20.58 24.24 2/.19 30.85 33.50
FIPD 27.31 4.19 18.21 24.37 27.53 30.88 33.52
ORG 27.88 3.64 21.00 25.00 27.50 31.20 33.50

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 1.32 0.91 3.79 1.70 1.86 1.78 3.47
PROB 0.92 0.66 2.71 1.33 1.03 0.82 0.86
FID 0.21 0.22 0.57 0.52 0.55 0.33 0.42
FIPD 0.25 0.34 1.66 0.42 0.51 0.30 0.41

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 25.00 0.0 0.0 6.00 8.00 8.00 0.0 47.00 6.71
PROB 30.00 13.00 6.00 25.00 12.00 20.00 11.00 117.00 16.71
FID 26.00 64.00 83.00 28.00 30.00 32.00 40.00 303.00 43.29
FIPD 19.00 23.00 11.00 41.00 50.00 40.00 49.00 233.00 33.29

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 2.21 1.02 1.18 1.53 1.71 1.52 1.00 10.17 1.45
PROB 2.48 2.48 2.35 2.43 2.19 2.47 2.37 16.77 2.40
FID 2.67 3.55 3.80 2.91 2.88 2.91 3.23 21.95 3.14
FIPD 2.64 2.95 2.67 3.13 3.22 3.10 3.40 21.11 3.02



ASSOCIATE PROFESSOR

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 32.71 7.50 18.30 27.79 32.65 37.71 47.49
PROB 33.15 3.71 26.64 30.07 33.80 35.45 40.01
FID 32.47 3.73 26.30 29.79 32.77 34.13 41.01
FIPD 32.63 3.52 26.82 29.90 33.01 34.21 40.70
ORG 32.54 3.44 26.55 30.07 32.85 33.72 40.70

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 1.55 1.29 3.79 2.01 1.89 2.12 4.51
PROB 0.74 0.45 1.12 0.96 0.90 0.92 1.07
FID 0.18 0.15 0.46 0.17 0.42 0.35 0.60
FIPD 0.16 0.18 0.59 0.17 0.39 0.29 0.48

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 5.00 0.0 0.0 0.0 9.00 4.00 0.0 18.00 2.57
PROB 6.00 18.00 15.00 11.00 8.00 3.00 15.00 76.00 10.86
FID 51.00 23.00 40.00 32.00 39.00 53.00 42.00 280.00 40.00
FIPD 38.00 59.00 45.00 57.00 44.00 40.00 43.00 326.00 46.57

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.51 1.01 1.00 1.24 1.71 1.27 1.06 8.80 1.26
PROB 1.84 2.59 2.56 2.20 1.87 1.94 2.44 15.44 2.21
FID 3.40 2.89 3.19 3.07 3.17 3.49 3.15 22.36 3.19
FIPD 3.25 3.51 3.25 3.49 3.25 3.30 3.35 23.40 3.34

00



FULL PROFESSOR

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 39.45 8.95 20.91 33.73 39.44 45.14 58.63
PROB 39.46 5.02 29.74 36.83 39.00 42.54 50.51
FID 39.93 6.27 29.22 35.76 38.93 43.95 53.29
FIPD 39.70 6.14 29.39 35.65 38.66 43.59 53.65
ORG 39.53 5.97 30.00 35.55 38.85 43.45 54.00

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 1.23 1.02 3.48 1.93 1.64 1.87 4.29
PROB 0.93 0.56 1.15 1.02 1.11 1.24 2.84
FID 0.18 0.20 0.43 0.47 0.47 0.60 1.15
FIPD 0.20 0.28 0.32 0.42 0.63 0.67 2.20

■'j(£>

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 11.00 0.0 0.0 4.00 20.00 9.00 13.00 57.00 8.14
PROB 17.00 6.00 31.00 8.00 17.00 16.00 9.00 104.00 14.86
FID 19.00 33.00 25.00 42.00 39.00 31.00 56.00 245.00 35.00
FIPD 53.00 61.00 44.00 46.00 24.00 44.00 22.00 294.00 42.00

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.88 1.03 1.00 1.46 2.00 1.73 1.85 10.95 1.56
PROB 2.23 2.19 2.87 2.02 2.22 2.14 1.90 15.57 2.22
FID 2.56 3.24 2.93 3.18 3.02 2.94 3.46 21.33 3.05
FIPD 3.33 3.54 3.20 3.34 2.76 3.19 2.79 22.15 3.16



TOTAL

METHOD MEAN STD MIN 25TH MEDIAN 75TH MAX TOTAL AVERAGE

AVERAGE VALUE OF 100 REPEATED VALUES

POINT 33.62 9.65 11.96 27.00 33.14 39.81 59.50
PROB 33.79 6.77 17.22 29.16 33.85 38.41 50.33
FID 33.66 7.34 20.43 28.56 32.67 38.10 53.12
FIPD 33.63 7.19 18.29 28.83 32.82 37.83 53.01
ORG 33.74 6.82 21.00 29.00 32.80 37.47 54.00

STANDARD DEVIATION OF 100 REPEATED VALUES

POINT 0.73 0.64 3.75 1.10 0.94 1.31 3.80
PROB 0.71 0.52 2.48 1.00 0.85 0.94 3.18
FID 0.12 0.15 0.38 0.40 0.42 0.63 1.22
FIPD 0.13 0.18 1.83 0.43 0.44 0.56 1.97

NUMBER OF BEST CASES OUT OF 100 REPETITIONS

POINT 7.00 0.0 0.0 4.00 18.00 5.00 3.00 37.00 5.29
PROB 5.00 53.00 8.00 22.00 12.00 14.00 10.00 124.00 17.71
FID 57.00 12.00 82.00 31.00 40.00 29.00 61.00 312.00 44.57
FIPD 31.00 35.00 10.00 43.00 30.00 52.00 26.00 227.00 32.43

AVERAGE RANK OF 100 REPETITIONS (MAX = 4)

POINT 1.80 1.00 1.18 1.31 2.16 1.40 1.57 10.42 1.49
PROB 1.73 3.26 2.34 2.51 1.83 2.36 2.04 16.07 2.30
FID 3.42 2.50 3.81 2.98 3.01 2.90 3.48 22.10 3.16
FIPD 3.05 3.24 2.67 3.20 3.00 3.34 2.91 21.41 3.06

00o
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TABLE 5.4 

DEGREE OF COMPROMISABIL ITY 

(N: NUMBER OF REPETITIONS)

METHOD N=10 N=30 N=70 N=100 N=500 N=1000

ACCT

POINT
PROB
FID
FIPD

0.05175
0.02968
0.01679
0.00855

0.03414
0.02597
0.01689
0.01003

0.01481
0.02304
0.01671
0.01172

0.01398 
0.02198 
0.01638 
0.01171

0.00638
0.02256
0.01594
0.01242

0.00589
0.02255
0.01608
0.01214

EAP

POINT
PROB
FID
FIPD

0.13820
0.11672
0.09984
0.08667

0.05247
0.06467
0.02232
0.03921

0.02774
0.05291
0.01223
0.03361

0.02813
0.05318
0.01313
0.03306

0.00908
0.05164
0.01664
0.03732

0.00695
0.05211
0.01770
0.03773

ECON

POINT
PROB
FID
FIPD

0.08282
0.09315
0.08561
0.08278

0.04218
0.03851
0.03110
0.03184

0.02238
0.02779
0.02142
0.01939

0.01924
0.02457
0.02090
0.01824

0.00716
0.02444
0.02205
0.01696

0.00367
0.02397
0.02221
0.01695

FIN

POINT
PROB
FID
FIPD

0.12932
0.11776
0.07678
0.08006

0.05388
0.05743
0.02286
0.02386

0.02930
0.03994
0.00880
0.00986

0.02333
0.03559
0.00848
0.00807

0.00674
0.02420
0.00960
0.00851

0.00764
0.02303
0.00995
0.00874

MGT

POINT
PROB
FID
FIPD

0.11125
0.11849
0.10064
0.10130

0.05092
0.05231
0.03370
0.03429

0.02590
0.03303
0.01628
0.01630

0.02466
0.03204
0.01388
0.01248

0.00603
0.02308
0.01238
0.00749

0.00387
0.02201
0.01221
0.00718
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TABLE 5.4 (Continued)

METHOD N=10 N-30 N=70 N=100 N=500 N=1000

MKT

POINT
PROB
FID
FIPD

0.09352
0.09965
0.08874
0.08779

0.03819
0.05020
0.03142
0.03216

0.01702 
0.03832 
0.01939 
0.01621

0.01765
0.03649
0.01636
0.01258

0.00596
0.03141
0.01219
0.00787

0.00485
0.03089
0.01167
0.00751

ASSISTANT PROFESSOR

POINT
PROB
FID
FIPD

0.13156
0.08850
0.08950
0.08406

0.05904
0.03624
0.02645
0.03024

0.02991
0.02878
0.01521
0.02337

0.02702
0.02742
0.01485
0.02087

0.00905
0.02904
0.01995
0.02386

0.00623
0.02928
0.02130
0.02454

ASSOCIATE PROFESSOR

POINT
PROB
FID
FIPD

0.06708
0.10540
0.07856
0.07879

0.02530
0.05176
0.02414
0.02603

0.01736
0.03859
0.01196
0.01222

0.01515
0.03480
0.01003
0.00945

0.00811
0.02613
0.00918
0.00643

0.00432
0.02368
0.00922
0.00608

FULL PROFESSOR

POINT
PROB
FID
FIPD

0.08502
0.08833
0.08477
0.07840

0.03808
0.03966
0.03479
0.02748

0.01969
0.03043
0.02128
0.01575

0.01656
0.02831
0.01923
0.01342

0.00766
0.02730
0.01470
0.00952

0.00483
0.02692
0.01416
0.00922

TOTAL

POINT
PROB
FID
FIPD

0.08266
0.06980
0.05302
0.05325

0.03682
0.03627
0.01898
0.02049

0.02117
0.02896
0.01209
0.01357

0.01677
0.02830
0.01185
0.01230

0.00838
0.02647
0.01442
0.01259

0.00552 
0.02651 
0.01505 
0.01272



CHAPTER VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

Recent in te re s t  has focused on creating a s t a t i s t i c a l  database 

which insures the privacy of the individual and y e t  provides maximum 

exposure o f the orig inal data fo r  s t a t i s t i c a l  analysis . The research 

e f fo r t  in th is  area has produced three groups of data d is to r tio n  

methods: Data Suppression, Data Aggregation, and Data Transformation.

The Data Suppression group suggests th a t  some of the a t t r ib u te s  

in the data s e t  should be e i th e r  parti tioned  or suppressed so th a t  the 

user can 't  so r t  one individual out of the f i l e  (Chin-Ozsoyoglu (1978) 

and Yu-Chin (1977)). Limited exposure of the database is  a disadvantage 

of th is  approach.

The Data Aggregation group advocates th a t  the data should be 

released in aggregation (Feige-Watts (1970)). The major drawback of 

th is  approach is  s ig n if ic an t  loss of information from the original data 

se t .

The Data Transformation group proposes th a t  the confidential 

data should be replaced by d is to r ted  data while keeping non-confidential

83
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data in i t s  original position. The data transformation could be done by 

d is to r ting  the original data on point or by frequency of the data d is­

tr ib u t io n .  Data transformation by point d is to r tio n  is  usually done by 

adding or multiplying a random number to the original data. The random 

number is  usually chosen so th a t  i t s  mean is  zero and standard deviation 

is  the same as th a t  of the original data (Beck (1980), Conway-Strip 

(1976), and Hansen (1971)). The data transformation of a frequency 

d is tr ibu tion  can be performed e ith e r  by data swapping or by the iden ti­

f ica tion  of an underlying density function.

Data Swapping replaces the value of the orig inal data with 

another value from other record so th a t  such swapping can maintain the 

same s t a t i s t i c a l  properties of the original data (Dalenius-Reiss (1978)). 

The major drawback o f Data Swapping is  th a t  no e f f ic ie n t  way of data 

swapping is  known. Reiss suggests Approximate Data Swapping which is  

s t i l l  in the in fan t stage (Reiss (1979), Reiss (1980)).

Data transformation by a probability  d is tr ib u tio n  has been in ­

troduced here. The basic assumption of th is  approach is  th a t  the o r ig i­

nal data is  a sample from a population with a certa in  density function, 

and the d is to rted  data i s  another sample from the same population.

Since these two data se ts  are  random samples from the same density func­

tion , they share asymptotically s im ila r s t a t i s t i c a l  properties . Unlike 

Data Swapping, the d is to r ted  data is  easily  obtainable by Probability 

Data Distortion. This technique requires three s teps:

Step 1: Id en tif ica tion  of the underlying density function
Step 2: Generation o f d is to rted  data from the probability

d is tr ib u t io n  function 
Step 3: Mapping of the d is to rted  data onto the original data
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The basic idea behind Probability Data Distortion is  th a t  the 

d is to rted  data can be generated i f  we know the density function with 

the true parameters o f the original data. From th is  density function 

and the estimated parameters, we can generate d is to rted  data which are 

comparable to the original data. Probability Data Distortion offers 

s ign if ican tly  g rea ter  protection of privacy and usefulness of the d is­

torted  data fo r  s t a t i s t i c a l  analysis than any other previously known 

data d is to rtion  mechanism.

Probability Data Distortion provides maximum exposure of the 

original data fo r  s t a t i s t i c a l  analysis while protecting confidential 

information on an individual from compromise. This has been proven 

both through the asymptotic properties of the d is to rted  data and through 

the performance of small sampling experiments. In the Monte Carlo 

study, the low compromisability of the probability  d is to rted  data was 

demonstrated.

This p robability  d is to rted  data can be used to answer queries 

or can be released as microdata. Any aggregation can be done from the 

probability  d is to rted  data , and only one s e t  of d is to rted  data is  

assumed to be released. I f  the original data is  of a dynamic nature, 

there should be periodic updates of the parameters and the probability 

density function. The new d is to rted  data should be generated from the 

updated density function.

6.2 Conclusions

Most of known value d is to r tio n  techniques have some degree of 

d if f ic u lty  in recreating  a l l  of the s t a t i s t i c a l  properties of the o r ig i­

nal data. In implementing a d is to r tio n  mechanism, we must guarantee
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th a t  the original data is  d is to rted  in such a manner as to preserve 

those s t a t i s t i c a l  properties.

Four data d is to r tio n  methods: namely. Point Data Distortion, 

Probability Data D istortion , Frequency Imposed Data D istortion, and 

Frequency Imposed Probability  Data Distortion have been compared in 

terms of accuracy of s t a t i s t i c a l  estimation, compromisability, and 

computational burden.

Our preliminary finding is  tha t unless the underlying density 

function of the original data closely matches one o f  the density func­

tions in P h i l l ip s '  computer package (1972), Frequency Imposed Data 

Distortion and Frequency Imposed Probability Data Distortion perform 

be tte r  in re-crea tion  of s t a t i s t i c a l  parameters and in protection from 

compromise than Probability  Data Distortion. Point Data Distortion 

performs very poorly in both parameter estimation and compromisability. 

The Probability Data Distortion consistently  performs b e t te r  than Point 

Data Distortion in a l l  s t a t i s t i c a l  estimations and in the compromisa­

bil i ty  t e s t .  Data generated through Point Data Distortion becomes 

easily  compromisable as the number of rep lica tions is  increased but 

data obtained by Probability Data Distortion re s is ts  compromise even 

when rep lica tions are permitted.

6.3 Suggestions for Further Research 

This study of data d is to r tion  by probability  d is tr ib u t io n .  

Probability Data D istortion , is  ju s t  a f i r s t  step . I t  is  acknowledged 

th a t  Probability Data Distortion is  more costly  than the data d is to rtion  

methods in current use when applied to dynamic databases.
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Probability  Data Distortion and Frequency Imposed Probability 

Data Distortion require id en t if ic a t io n  of the underlying density func­

tion of the o rig inal data. One drawback of these methods is  the limited 

number of density functions fo r  which id en t if ic a t io n  routines are cur­

rently  ava ilab le .

I t  is  suggested th a t  fu ture  study be directed toward developing 

an e f f ic ie n t  algorithm which will find  a general density function and 

the estimated parameters no matter what the p robability  d is tr ibu tion  of 

the original data . In conjunction with t h i s ,  a general random number 

generating routine is  needed which (using the  density function and e s t i ­

mated parameters found by th a t  algorithm) will generate random numbers 

to be used as d is to r ted  data .

This discussion has been lim ited to  the application of Proba­

b i l i ty  Data Distortion to non-categorical data. This research should 

be continued to examine the possible application of th is  technique to 

categorical data. The concepts involved would be the same as those 

employed here but the techniques fo r  implementation might be d iffe ren t .  

Of course, the transformed categorical data should preserve the d is ­

tr ib u tio n  and the  estimated parameters o f the original data.
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APPENDIX A

The "Goodness of Fit" t e s t s :

( re f :  P h i l l ip s ,  Don T ., "Applied Goodness of Fit Testing,"
O.R. Monograph Series , No. 1, AIIE, Atlanta, Ga., 1972)

The Chi-Square Test

e

where

f^ = observed frequency for each class or interval

f  = expected frequency fo r  each class or interval predicted
by the theore tical d is tr ibu tion

k
Z = sum over a l l  k classes or in te rvals  

2
I f  X = 0, then the observed and theore tica l frequencies agree

2 2 exactly, whereas i f  x > 0  they do not. The la rg e r  the value of x ,

the g rea ter  is  the discrepancy between the observed and expected. I f
2

X > 0, we must compare our calculated value against the tabulated
2

values of x •

9 3
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The Kolmogorov-Smirnov Test 

The t e s t  as developed by Kolmogorov and Smirnov consists of 

comparing the sample cumulative d is tr ibu tion  function with the th eo re ti­

cal cumulative d is tr ibu tion  function a t  each sample observation. The 

te s t  s t a t i s t i c  is the maximum deviation between the two functions a t  any 

point in the sample. From a sample of size  n containing data points 

such th a t  ^  %2 — *3 — ' ' — ^n’ F(x .) = the theoretical cumula­

tive  d is tr ibu tion  function specified  in the null hypothesis and S(x^) = 

the sample cumulative d is tr ibu tion  function fo r  any given observation 

x^. The sample t e s t  s t a t i s t i c  is :

D = Max |F (x . ) - S (x .) | 
a l l  i  ̂ ^

The resu lting  maximum sample t e s t  s t a t i s t i c  is  compared with a c r i t ic a l

value, referenced by the size  of the sample n, and a chosen level of

significance.

The Cramer-Von Mises Test 

The Cramer-Von Mises t e s t  is  s im ilar to the Kolmogorov-Smirnov 

te s t  in th a t  i t  consists of a comparison of the cumulative theoretical 

d is tr ibu tion  function with the cumulative frequency d is tr ibu tion  func­

tion of the sample. To apply the t e s t  i t  is  necessary f i r s t  to arrange 

the sample data in increasing order. The data points are then trea ted  

separately without the necessity of grouping as in the Chi-square t e s t .  

The t e s t  s t a t i s t i c  is given by:

0)̂  = C  [F(x) - S(x)]2 dF(x)

where: F(x) and S(x) are the cumulative sample d is tr ibu tion  function
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and cumulative theore tica l d is tr ibu tion  function respectively. Using 

an observed sample of size  n, the in tegral can be approximated by

or multiplying by n

1-1

2
The sample t e s t  s t a t i s t i c ,  nw , can now be compared to a c r i t ic a l  value.

as a measure of skewness and 

5>

The Moments Test

2

*

Vo =

as a measure of kurtosis 

where:

= /  (x-6)^ f(x)dx
^  X

0-3 = /  (x-6)^ f(x)dx^ y

6. = /  (x-6)4 f(x)dx
^  X

Ô = /  xf(x)dx
X
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For convenience, we define

V, = (v , - 3) = *4 - 3*2
"2 W2 - -y -  2

*2

Hence, for a normal d is tr ibu tion

and

v-j = 0

^2 = 0 .

These two q u an ti t ie s  also r e f le c t  the nature o f the skewness and 

kurtosis by th e i r  sign.

v-j > 0 Skewed righ t

v-j < 0 Skewed l e f t

V2 > 0 Platykurtic

V2 < 0 Leptokurtic

V2 = 0 Mesokurtic

V-J = 0 Symmetri cal



APPENDIX B

HELLY LEMMA AND HELLY-BRAY THEOREM

(re f :  Rao, C. R. Linear S ta t i s t ic a l  Inference and Its
Applications, John Wiley & Sons, New York, 1965.)

( i )  HELLY LEMMA. Every sequence of d is tr ib u tio n  functions is  

weakly compact, th a t  i s ,  there is  a subsequence which tends to a func­

tion a t  a l l  continuity  points of the l a t t e r .

Let D = {r^} be the se t  of a l l  rational s .  Since F^(r^) is 

bounded, there  ex is ts  a convergent subsequence. Consider the sequence

{F (x)} which converges for the pa rt icu la r  value x = r , . From the 
"l '

sequence {F_ (x)} we can ex trac t another subsequence {F (x)}, in a 
"l " 2

sim ilar way, which converges a t x = rg , and of course such a sequence

will converge a t  x = r^ a lso , and so on. Let us consider a sequence

formed by the f i r s t  member of {F„ }, the second member of {F } , . . . .
" 1  " 2

Such a sequence of functions {F^} necessarily  converges fo r  a ll  x €  D, 

and the lim iting  function F^ defined fo r  a ll  x €  D is bounded and non­

decreasing. Let, fo r  any x

F(x) = upper bound F ^ fr .) .  (B-1)
r ^  < X

By defin ition  F is  continuous from the l e f t ,  bounded, and nondecreasing.
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Us shall show tha t  the subsequence determined actually  con­

verges to F(x) as defined in (B-1) a t  a ll  continuity  points of F. Let

X be such a point. Then we can find a sequence o f rational values

(xT, xT') such th a t  x^ < x < x̂ ' and F(xT') -  F(xT) -»■ 0 as i ̂  For

any pair (xT, x^^) we have the obvious re la tionsh ip

F s ( x T )  < F g ( x )  < F g ( x - )  ( B - 2 )

for each s ,  where {F^fx)} is  the sequence tending toward Fq(x). Taking 

lim its of functions in (B-2), we have

Fp(xp < Tim Fg(x) < lim F^(x) < Fp(xr")

for each i .  Since the d ifference Fq(x^^) - Fp(xp can be made a rb i­

t r a r i ly  small, lim F^(x) ex is ts  and is  equal to F(x) defined in (B-1). 

Observe th a t  F(x) is  also in the interval [F p (x p , Fp(x |")].

( i i )  HELLY-BRAY THEOREM. F̂  + F => /  g dF^ + /  g dF for every 

bounded continuous function g.

Choose two continuity points a , b(a < b) of F and write 

9 dF^ -  g dF

= ^  g(dF^ - dF) + g(dF^ - dF) + / ”  g(dF^ - dF). (B-3) 

Let |g | < c. Then the modulus of the f i r s t  in tegral in (B-3)

gives

9  dF„ - £  g dF| < dF„ + c/» dF = c[F„(a) + F(a)].

I f  a is  su f f ic ie n t ly  small, F(a) is  small and so also is  F^(a) for a l l  

n > n^. Hence c[F^(a) + F(a)] < e/5 fo r  a su itab le  choice of a and n^. 

Similarly the th ird  in tegral in (B-3) is  < e/5 fo r  a su itab le  choice of 

b and Oq.
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In the f i n i t e  interval (a , b ), g is  uniformly continuous. Let 

us divide (a, b) in to  m in tervals

= a < X, < - - - < < b = x^

where x-j, . • . , x^_^ are continuity points of F and such tha t

[g(x) - g(x^)] < e/5 

fo r  (x- < X < uniformly for a l l  i .  Define the function

g m( x )  = g ( X i ) ,  X.  < X < Xi +T.

Then

*  Ï  g ( X j ) [ F ( x . ^ ^ )  -  F ( X j ) ]  = /g  g^dF

as n ->■ « , so th a t  fo r  any given m

4 SmtdFn '  «f» '  f
for su f f ic ie n tly  large n. But

^  9 dFg -  9 dF

'  ^  (9 - 9 j  dF„ H. gJdF„ - dF) + (g -  gJdF

< #  dFn + *  + i  dF < #  c

for su f f ic ie n tly  large n. Hence the difference (B-3) is  < e  which proves 

the desired re su l t .



APPENDIX C
CRITICAL VALUES OF THE KOLMOGOROV-SMIRNOV STATISTIC*

One-Sided Test
P = .90 .95 .975 .99 .995 1D = .90 .95 .975 .99 .995

Two-Sided Test
P = .80 .90 .95 .98 .99 1D = .80 .90 .95 .98 .99

n = 1 .900 .950 .975 .990 .995 n = 21 .226 .259 .287 .321 .344
2 .684 .776 .842 .900 .929 22 .221 .253 .281 .314 .337
3 .565 .636 .708 .785 .829 23 .216 .247 .275 .307 .330
4 .493 .565 .624 .689 .734 24 .212 .242 .269 .301 .323
5 .447 .509 .563 .627 .669 25 .208 .238 .264 .295 .317

6 .410 .468 .519 .577 .617 26 .204 .233 .259 .290 .311
7 .381 .436 .483 .538 .576 27 .200 .229 .254 .284 .305
8 .358 .410 .454 .507 .542 28 .197 .225 .250 .279 .300
9 .339 .387 .430 .480 .513 29 .193 .221 .246 .275 .295

10 .323 .369 .409 .457 .489 30 .190 .218 .242 .270 .290

11 .308 .352 .391 .437 .468 31 .187 .214 .238 .266 .285
12 .296 .338 .375 .419 .449 32 .184 .211 .234 .262 .281
13 .285 .325 .361 .404 .432 33 .182 .208 .231 .258 .277
14 .275 .314 .349 .390 .418 34 .179 .205 .227 .254 .273
15 .266 .304 .338 .377 .404 35 .177 . .202 .224 .251 .269
16 .258 .295 .327 .366 .392 36 .174 .199 .221 .247 .265
17 .250 .286 .318 .355 .381 37 .172 .196 .218 .244 .262
18 .244 .279 .309 .346 .371 38 .170 .194 .215 .241 .258
19 .237 .271 .301 .337 .361 39 .168 .191 .213 .238 .255
20 .232 .265 .294 .329 .352 40 .165 .189 .210 .235 .252

1.07 1.22 1.36 1.52 1.63
Approximation 
for n > 40 / r f / r f / r f /rT /rT

oo

♦Adapted from Miller, L. H. "Table of Percentage Points of Kolmogorov S ta t is t ic s ,"  Journal of the 
American S ta tis t ica l  Association, 51, 1956, pp. 111-121.



APPENDIX D

PROBABILITY SPACE

(re f :  Zehna, Peter W. Probability D istributions and
S t a t i s t i c s , Allyn and Bacon, In c .,  Boston, 1970.)

In the study of th is  d isse rta tion  we have developed three 

inference control mechanisms (Probability  Data D is tortion , Frequency 

Imposed Data D istortion , and Frequency Imposed Probability  Data Distor­

tion) to generate a d is to r ted  data which would be mapped into the o r ig i ­

nal data.

Definition 1.

Let S be a sample description space, V a class o f  subsets o f S 

and F a functional defined on Y. The t r ip l e  (S, Y, F) i s  called a 

Probability Space.

A random variab le  X is a real-valued function whose domain is  

S, th a t  i s ,  X: S -»• S-j.

Definition 2.

Let (S-j, Y-j, F^) be the probability  space induced by the random 

variable X. For each x € S-j, l e t

Fp(x) = F^((-co, x]) = F([X < x ]) .
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Then F^: -*■ is  the probability  d is tr ib u tio n  function for X.

A Probability Data Distortion technique is  a mathematical model 

whose theore tical s t ruc tu re  is  a probability  space and in which the 

actual data of S are used to iden tify  the theore tica l probability  d is­

tr ib u tio n  function F which is  required to  generate the probability  d is­

to rted  data. The basic idea of Probability Data Distortion is  th a t  a 

subset o f S could be used as a d is to rted  data se t .

I f  F: 0 D is  a function from 0 to D, we will say: F maps

0 to  D, which each element of 0 there corresponds a unique image in D. 

The d is to rted  data s e t  D will be referred as the image se t  of original 

data se t  0.

Probability Data Distortion requires to have a unique image, so 

F is  said to be one-to-one. We show a typical point a e  0 being matched 

with i t s  image d as shown in the figure  D-1.

Figure D-1

Let F: 0 -»• D be a function and l e t  0 and D be the respective 

power se ts  o f 0 and D. Associated with F is  a natural re la tion  in 0 and 

D, which we will denote F. This re la tion  is  defined by the rule

F(C) = {d; d = F(a), a e  C} fo r  each C c  Ô.
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Definition 3.

Let P = (S, Y, F) be a p robability  space. Let X be a mapping 

of S into the real numbers such tha t  

= {üj|X(ü)) < x} € Y

for a l l  real x. Then we say X is  a random variab le  defined on P. Thus

a random variable is  a P -measurable function on P. We call 

F(x) = P[S^] = P[X < x]

the d is tr ibu tion  function of X.

Definition 4.

Suppose {D^}%_i is  a sequence o f random variables a ll  defined 

on the same sample space. Let be the d is tr ib u tio n  function of D ,̂ 

and suppose F is  a d is tr ibu tion  function. Let X be a random variable

with d is tr ib u tio n  function F. Then we say tha t  converges in d i s t r i ­

bution to X provided

n i :  F„(x) = F(x) 

a t  each x where F is  continuous.

When we say X is  a random variable with d is tr ibu tion  function 

F^, i t  is  assumed th a t  there is  some underlying probability  space

(S, Y, F) and X: S 52ÎS. which are real numbers.

The random variable X induces another probability  space 

(Sx> Y^, F^). In th is  sense, the original p robability  space (S, Y, F) 

can be replaced by th is  new one, and the defining condition F^(D) =

F([X € D]) preserves the probability  d is tr ib u t io n  function. Once we

generate the d is to r ted  data se t  D, those are a member o f R^. I f
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D: S -»■ is  a d if fe ren t  random variab le , th is  also induces a new 

probability  space (S^, Y^, F^) and the only difference in these two 

spaces l i e s  in the functional forms o f and F^.

When S is  uncountable we have no means of characterizing a

probability  function on Y unless S = . In general by defining a func­

tion from S to , we can replace S by S^. Even though i t  is  easy to 

characterize the probability  functions when S is  countable fo r ,  real 

numbers possess an order properties.

When X is  d isc re te ,  the original data can be ordered from 

smallest to  la rg e s t .  As shown previously in Frequency Imposed Data Dis­

to rtion  technique, the d is tr ib u tio n  function is  considered as a step 

function with simple d iscon tinu ities  a t  each point of R^. For i f  x-

and Xj are two successive members of with x  ̂ < x < Xj. Then

F(x) = Z F ( t )  = Z F ( t)  + Z F ( t )  = F (x .)  + Z F ( t)
t<x " t<x.  " X. < t < x  "  ̂ ’ X.  < t  <x "— — 1 1 — — 1 —

But, fo r  x  ̂ < t  < Xj, we know th a t  F^(t) = 0 so th a t  

F^(x) = F^(Xj) fo r  a l l  x. < x < Xj.

Hence F  ̂ i s  constant over the in terval ( x- , Xj). Such a step

function is  another way o f characterizing the probability  d is tr ib u tio n  

of a certa in  d isc re te  random variable and is  used as the d is tr ibu tion  

o f such random variab le  in Frequency Imposed Data D istortion.


