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Abstract

Dual-polarimetric radar products have been used in observing changes and
persistence of thunderstorm electric fields in relation to lightning discharges. One
such product, specific differential phase (Kjp), is valuable for its ability to detect the
change in particle orientation. Negative Kjp values above the freezing level indicate
ice crystals are oriented vertically beyond 45° in response to an electric field. The
relationship between negative K, p to electric fields and the evolution of negative
Kp,p values through the life cycle of thunderstorms has not been previously well
documented.

In this study, one of the Shared Mobile Atmospheric Research and Teaching
(SMART) radars was used to sample a small Florida squall line (2012) and a large
Oklahoma squall line (2016). Data collected from the Florida event was overlaid with
local lightning mapping array (LMA) data. The resulting composites were used to
compare lightning channel positions to polarimetric signatures, and to study the
evolution of those signatures through the life cycle of the squall line. A charge
analysis was performed to examine the locations of charge regions in relation to the
polarimetric ice-alignment signatures for the Florida squall line. Polarimetric
signatures from the Oklahoma squall line were compared to those found in the Florida
squall line.

In both cases, a persistent, strongly-negative K,p region was observed above
the freezing level on the stratiform side of the reflectivity maximum. This negative
Kpp region was elongated and sloped downward from the convective region into the

stratiform region during later stages of the stratiform region development. A second

XV



region of negative Kj,p also existed on the forward side of the reflectivity maximum
associated with mature convective cells, but fluctuated in strength frequently. In the
Florida case, LMA radiation points for a given flash tended to follow contours of zero-
Kpp and would initiate around one of the negative K,p regions. A charge analysis of
the flashes found that the negative K,p region tended to be below the positive charge
region and above the negative charge region.

Given that the location of the negative K, region in relation to the lightning
channels, it can be concluded that radar could be used to monitor the electrification of
thunderstorms. However, the application is limited by the scan speed. The use of
phased-array technology would be necessary to attempt to predict individual

intracloud flashes.
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Chapter 1: Introduction

A Mesoscale Convective System (MCS) is defined as a cluster of
thunderstorms producing a contiguous area of precipitation at least 100 km wide in at
least one horizontal direction (American Meteorological Society 2017). MCSs are
important, as they provide up to 30-70% of warm season (April-September) rainfall
across the Central Plains in the United States (Fritsch et al. 1986, Nesbitt et al. 2006).
MCSs also negatively impact lives by causing dangerous weather phenomena
including floods (c.f. Schumacher and Johnson 2005), windstorms (c.f., Johns and Hirt
1987), damaging hail (Wakimoto et al. 2006 ), tornadoes (Thompson et al. 2012) and
lightning (Makowski et al. 2013). Improving scientific understanding and monitoring
of lightning could save lives, since lightning strikes are responsible for 50 deaths each
year in the U.S. (Lopez and Holle 1998).

Until recently, lightning has been difficult to study quantitatively since flashes
are often short-lived, sometimes as short as tenths of seconds. Moreover flash rates
are often greater than one per minute (e.g. Markowski et al. 2013). Recently
developed instruments such as a lightning mapping array (LMA) (Rison et al. 1999,
Krehbiel et al. 2000, Thomas et al. 2004, Edens et al. 2012) can record locations of
radiation bursts from the leader tips of lightning channels on the order of microseconds
or less. But LMA networks are limited in number and have limited range (~100 km)
for mapping the vertical component of the radiation source. An alternative to

monitoring lightning directly is to indirectly monitor the electric fields that lead to



lightning by using radar to detect the effects of the electric fields on ice crystals in the

cloud (Carey et al. 2009).

1.1 Ice Crystal Orientation Induced by Electric Fields

The effects of electric fields on ice crystals were first studied by Vonnegut
(1965) to verify a theory by Lacy (1950) that ice crystals rotate in thunderstorm
electric fields. This idea was prompted by observations by Ludlam (1950) and Hale
(1950) who witnessed a “streamer” of light that grew and then disappeared following a
lightning discharge in an isolated cumulonimbus cloud. Vonnegut tested this theory
by exposing ice crystals to a charged rod using a Schaefer cold box (Schaefer 1946).
Vonnegut shined a light at the crystals and found they reflected light in different
directions depending on the location of charged rod, suggesting the crystals were
rotating in response to the changing electric field associated with the charged rod.
However, unlike in Vonnegut’s experiments, the electric fields in thunderstorms are
not controlled, air flow is often turbulent, and there are often many different types of
ice crystals. Thus, to be able to use ice crystal orientation as a parameter for detecting
strong electric fields, the factors that affect ice crystal orientation have to be
established.

Several studies following Vonnegut’s work assessed the steady state
orientation of different crystals in labs. It was found that hexagonal plates and other
types of crystals, including columns (Jayaweera and Mason 1965) and six types of
snow platelets (List and Schemenauer 1971) fall horizontally in laminar flow and

stagnant air when unexposed to electric fields. Zikmunda and Vali (1972) found that



majority of ice crystals had little deviations from horizontal orientation as they fell in
steady flows, with the exception of conical graupel and some types of capped
columns; however, larger crystals in more unsteady flows are more susceptible to
oscillations. Unsteady flows are determined to have Reynold’s Number (Re) > 100,

where
(Eq. 1) Re = —

and p is the fluid density, v is the fluid’s characteristic velocity, L is the fluid’s
characteristic length (or depth) and u is the fluid’s viscosity. The Reynold’s number
represents the relative importance of inertial to viscous forces in a fluid and is used to
describe flow steadiness. Typically, Re in the atmosphere is 1 < Re < 200 (List and
Schemenauer 1971). Cho et al. (1981) studied ice crystal orientations in turbulent
flow and found that turbulence did not affect the preferred aerodynamic orientations of
ice crystals. The resulting consensus of the above studies is that ice crystals tend to
fall with a horizontal orientation in steady and turbulent flow. The crystals produced
in laboratory settings have been observed in natural clouds via airborne particle probes
and direct in situ measurements on mountain tops (Hobbs et al. 1974, 1975).

To determine if electric fields have a significant impact on ice crystals in
thunderstorms, it must be established that thunderstorm electric fields are correlated
with fluctuations from ice crystals preferred horizontal orientation. Mendez (1969)
used a passive optical scanning device to measure fluctuations in reflected sunlight
and its polarizations off the upper levels of thunderstorms. Fluctuations in reflected
light polarization were found to match fluctuations in electric fields due to lightning

discharges measured on the ground, indicating lab experiments by Vonnegut (1965)



were valid in nature. To verify that these measurements were due to electric field
fluctuations, Weinheimer and Few (1987) calculated electric field torques on ice
crystals in comparison to the aerodynamics torque of air flowing past ice crystals.
Their results showed that the degree of ice crystal alignment to electric fields was
dependent on the major axis dimension of the crystal. For an electric field of 100 kV
m™, ice crystals up to 0.2-1 mm in the major dimension (depending on type) align with
the electric field despite aerodynamic torque and turbulent torque. Larger crystals
experienced more aerodynamic torque than smaller crystals and did not orientate
completely with the electric field. Aircraft measurements (Jones 1960, Houze et al.
1979, Heymsfield 1977, Platt 1997) of ice crystal sizes show that ice crystal
concentrations increase exponentially for decreasing crystal size, following a
Marshall-Palmer distribution (Marshall and Palmer 1948) in cumulonimbus clouds and
frontal rainbands. This indicates that the majority of crystals present are small enough
to be affected by 100 kV m™ electric fields, commonly found in the upper regions of
thunderstorms (Simpson and Scrase 1937, Marshall and Lin 1992, Rust and Marshall

1996, Stolzenberg et al., 1998).

1.2 Radar Detection of Ice Crystal Orientation
The above theories and observations show that ice crystals rotate in response to
thunderstorm electric field. To measure ice crystal orientation over large regions in
thunderstorms, the use of radar is required since in-situ devices are not available to
measure particle orientation in a cloud without disturbing the particles and are limited

in data coverage and timing.



One of the earliest studies of ice crystal orientation with radar was the work of
Hendry and McCormick (1976), who studied the alignment of ice particles in
thunderstorms with the use of dual-channel, circularly polarized 1.8 cm wavelength
radar. The radar was pointed into one part of the storm to view the storm evolution
with time along a fixed angle. Using a received frequency correlation product, they
found that the orientation of particles intersected by the radar beam in the upper parts
of the thunderstorm deviated from their preferred horizontal orientation. Additionally,
the orientation of particles returned to horizontal following lightning discharges
measured by their lightning detector, a low-frequency radio receiver. Hendry and
Antar (1982) confirmed that the radar measurements they were receiving at the top of
thunderstorms were snow and ice and not rain droplets by comparing the cancelation
ratios and preferred orientation of measurements aloft to that of snowstorms.
Additionally, they noted that the electric field-induced particle orientation values
measured by the radar were caused by “unseen” particles in the propagation path, not
the particles reflecting the radar’s power.

Krehbiel et al. (1996) used circularly polarized dual-channel radar to detect
particle orientations in the cloud by taking 24-second RHI (Range Height Indicator)
cross sections of a Florida thunderstorm. Similar to Hendry et al. (1987) and Metcalf
(1995, 1997), Krehbiel et al. (1996) found that vertical ice-alignment signatures in the
upper portions of the thunderstorm which existed prior to a lightning discharge (Fig. 1)
disappeared in the scan following the discharge (Fig. 2). Krehbiel et al. (1996) noted

that the vertical orientation prior to the discharge agrees with conceptual models of



horizontally layered charge structures in thunderstorms (e.g. Stolzenburg 1998a),
which would cause the electric field to generally point in the vertical.

An alternative to circularly polarized dual channel radar in studying ice-
alignment is simultaneous H and V channel linear transmission radar (StaR, Doviak et
al. 2000; Ryzhkov and Zrnic 2007). Measurements by STaR radars are fast since both
polarization channels are transmitted and processed simultaneously. Zrnic and
Ryzhkov (1999) found negative values of specific differential phase (K,p) near the
top of the cloud in the convective region of an Oklahoma thunderstorm, indicating
strong vertical electric fields within the storm. Negative K, values occur when
dipoles within the hydrometeor are able to align vertically more than horizontally.
This happens when ice becomes polarized and then canted vertically by the vertical
component of an electric field.

Another method for measuring particle orientation in thunderstorms is with the
Linear Depolarization Ratio (LDR) provided by multiparameter radar that transmits
alternating horizontally and vertically polarized signals (Caylor and Chandrasekar
1996, Carey and Rutledge 1998). LDR is measured by taking the ratio of the
crosspolar and copolar reflectivities, Zy, and Zyy, where the first subscript represents
the transmitted channel and the second represents the received channel. A constant
copolar component of reflectivity indicates that changes in crosspolar values are due to
orientation changes, not particle size distribution changes. Thus, changes in LDR
when scanning small particles are dependent on the crosspolar component and can be
used to detect orientation changes in small particles. Caylor and Chandrasekar (1996)

studied how LDR and K}, changed prior to a lightning flash. Prior to a flash, Kpp



decreases while LDR either increases or decreases depending on the initial orientation
of the crystal. Since LDR is maximized when the particle is oriented at 45° from the
radar beam, LDR increases as particles become more vertically oriented from an initial
horizontal orientation, and decreases for a particle becoming more vertically oriented
starting from a 45° cant. Carey and Rutledge (1998) also observed negative values of
Kpp just above the top of reflectivity maxima in the convective region of

thunderstorms using an alternating transmission radar.

1.3 Thunderstorm Charging Mechanisms

The above radar studies demonstrate that radar has successfully detected ice-
crystal orientation changes in thunderstorms due to building electric fields and
lightning discharges. These observations of strong electric fields can be explained by
several theories of charging mechanisms in thunderstorms.

There are many different mechanisms theorized to influence the development
of electric fields in thunderstorms; however, non-inductive charge transfer is the most
dominant type of mechanism. Noninductive charging is a mechanism in which charge
transfer is independent of existing electric field strength. The mechanism includes
several different processes. One such process is charge separation at the ice-liquid
interface of a supercooled water droplet, which undergoes the Hallet-Mossop
mechanism of inward freezing of the water droplet. This results in the ice shell
splintering off as deeper layers of ice inside the droplet expand due to freezing (Hallet
and Mossop 1974). Although Workman and Reynolds (1950) showed through lab

experiments that ice can gain different charges depending on the purity of the water,



the usual result of rime removal from graupel is positively charged graupel (Keith and
Saunders 1990).

Another charging mechanism is due to sublimation or deposition of graupel.
Saunders (1993) and Williams et al. (1991) verified that graupel gains negative charge
while it sublimates and positive charge as it grows by deposition. The melting of ice
(not exclusively graupel) is also found to produce charge regions in the stratiform
region of squall lines (Matthews and Mason 1963, Drake 1968, Marshall and Rust
1993, Stolzenburg et al. 1994, Shepherd et al. 1996). While studies have found that as
ice melts, it gains positive charge (Dinger and Gunn 1946, Magono and Kikuchi 1965,
Dinger 1965), simulations by Schuur and Rutledge (2000b) found that charging due to
melting was insignificant in comparison to ice-ice collisions and charge advection.
Charge advection is the movement of ions and charged particles by particle motions
flow away from their source region.

The most dominate noninductive charging mechanism that could develop the
observed electric fields in thunderstorm convective regions is the graupel-ice
mechanism, which occurs when an ice crystal deposits charge on riming graupel
through a collision (Reynolds et al. 1957). The resulting sign and magnitude of charge
deposited during this process is dependent on numerous factors. The amount of
charge that gets transferred to the graupel depends on air temperature, liquid water
content, (Takahashi 1978), the size of the ice crystal (Jayaratne et al 1983), and the
velocity of the crystal upon collision (Brooks et al. 1997).

Graupel is most often found in the convective regions of squall lines because

updrafts have high liquid water content and contain high concentration of supercooled



water droplets to support the riming of graupel. This is confirmed in observations by
several experiments such as Dye et al. (1986), which used particle imagers on aircraft
to detect precipitation development and particle interactions in the transition zone
between updrafts and downdrafts between -10 and -20°C of a Montana storm. This
was preceded by high lightning flash rates. This and other studies (e.g. Dye et al. 1988
in New Mexico, Gaskell et al. 1978 in Florida, Weinheimer et al. 1991 in New
Mexico) have confirmed that the graupel-ice mechanism occurs most often in the
convective line above the melting level, and is the dominant mechanism for generating
thunderstorm electric fields; though, it is likely multiple mechanisms are contributing
(Saunders 1993).

An important result of the non-inductive mechanism is the screening layer,
which is a layer of charge that develops on the edges of cumulus clouds due to change
in conductivity between water droplets and unsaturated air (Grenet 1947). Aircraft
measurements were first made by Vonnegut (1962) that confirms charge regions that
exist on the edge of clouds. This mechanism for charging is non-inductive and due to
ion-particle interactions since it produced by the positive ions flowing in the fair
weather electric field through the cloud (MacGorman and Rust 1998). This results in
the bases becoming positively charged (where positive ions first intersect the cloud)
and the edges of the tops of cumulus towers becoming negatively charged.

Another prominent mechanism in thunderstorms is the inductive charging
mechanism, which occurs when charge-neutral hydrometeors of different sizes collide
and rebound, charge of opposite sign interacts and gets transferred, leaving both

particles with net charge of opposite polarity as proposed by (Elster and Geitel 1913)



for droplet-only interactions. Many studies have shown that ice-ice and liquid-ice
inductive charging through rebounding collisions are also possible (Muller-Hillebrand
1954, Aufdermaur and Johnson 1972, Gaskell 1981). While it is agreed that this is a
significant mechanism (Saunders 1993), it does not produce electric fields as strong as
observations (Jennings 1975) nor can it produce highly charged particles in the early
stages of the thunderstorm electrification process (Gaskell et al. 1978, Christian et al.
1980, and Marshall and Winn 1982) because the short contact time during a collision
is not enough to transfer quantity of observed charge (Illingworth and Caranti 1985).
Additionally, it requires an electric field to already be present in the cloud for it to

occur.

1.4 Squall Line Charge Structures

The above charging mechanisms result in accumulations of charge in several
regions of squall lines. These charge regions cause the strong electric fields that result
in lightning. In order to identify the electric fields in thunderstorms, it is necessary to
understand the charge regions that cause them. The model outlined by Biggerstaff and
Houze (1991a) will be used for identifying regions of a squall line (Fig. 3).

The convective region of squall lines was thought to reflect a simple tripole
model of a positive charge in the upper and lower levels and negative charge in the
mid-levels (Simpson and Scrase 1937), as measured in many thunderstorms with
electric field mill (EFM) soundings through thunderstorm updrafts in later studies (e.g.
Marshall and Winn 1982, Krehbiel 1986, Koshak and Krider 1989, Marshall and Rust

1991).
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However, Stolzenburg et al. (1998c) made a comprehensive sounding analysis
of vertical electric fields through squall lines and found that the simple tripole model
did not present the complete charge structure. Subsequent results showed that the
tripole model needed to include a negatively charged screening layer at the top of
thunderstorms above the convective thunderstorm updrafts (Fig. 11).

Stolzenburg et al. (1998a) found that the vertical thickness of the upper
positive and negative charge regions increased in depth outside the convective updraft
(Fig. 4). This is theorized to be the result of three effects. Firstly, a variety of types of
charged hydrometeors are ejected from the updraft and have differing fall speeds and
trajectories (Fig. 3). Secondly, similarly charged particles repel three-dimensionally,
though this was found to be negligible (Bateman et al. 1995). Thirdly, the particles are
in the region of turbulent mixing and downdrafts, which would cause them to be less
consolidated.

Like Saunders (1993), Stolzenburg et al. (1998c) concluded that multiple
charging mechanisms must be present in squall lines to produce the observed charge
regions. While the noninductive graupel-ice collision mechanism can produce a
tripole charge structure, the ion capture mechanism on the screening layer of the cloud
(or some other mechanism) must be present to produce the upper level negative charge
region.

Stolzenburg et al. (1998c) found that the stratiform region of squall lines has
six vertically-layered and horizontally-extensive charge regions, which sloped
downward in altitude just rearward of the convective region and flatten out (Fig. 5).

There is an upper-most negative layer, lower-most positive layer in the stratiform

11



precipitation just above the ground, and the layers oscillate in between (Stolzenburg et
al. 1998a).

Stolzenburg et al. (1994) found that the uppermost negative charge region was
a screening layer (like the one found in the convective region). Stolzenburg et al.
(1994) and Stolzenburg et al. (1998a) considered the uppermost positive charge layer
to be the result of charge advection by particles from the updraft moving along
trajectories conceptualized by Biggerstaff et al. (1991a). Stolzenburg et al. (1998a)
and Shepard et al. (1996) considered the densest negative charge layer to be the result
of either charge advection or noninductive ice-ice collision charging. A model by
Rutledge et al. (1990) noted that the latter mechanism results in negative charging in
the stratiform region. The positive charge region associated with the melting layer can
be the result of the noninductive melting charging mechanism (Stolzenburg et al.
1994, Shepard et al. 1996). The negative charge layer just below the melting layer at
the base of the cloud is a screening layer (Stolzenburg et al. 1994, Marshall et al.
1989). Observations of lower relative humidities just below this level (~85%) indicate
that the air is unsaturated, though precipitation is falling through it. This observation
matches observations of the mid-level jet advecting lower theta-e air to this level
(Zipser 1969, Houze 1977, Zipser 1977). The positive layer below the cloud is
possibly due to positive ions commonly found below clouds due to corona ions

produced by Earth’s surface (Standler and Winn 1979).
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1.5 Lightning Patterns in Squall Lines

This discussion summarizes the known patterns in lightning initiation and
propagation, which will be observed in this study.

Lightning is thought to initiate in areas with the strongest electric field
(Kasemir 1960, Mazur and Ruhnke 1993, 1998). Lightning initiates when the electric
field inside a thunderstorms becomes strong enough to trigger a fast positive
breakdown followed by a narrow bipolar event, which is a high-powered discharge of
electrons consisting of a volume of positive streamers (Rison et al. 2016) lasting 10-20
us and extending several hundred meters (Smith et al. 1999, Eack 2004, Watson and
Marshall 2007).

Initiation points also have a vertical bimodal distribution. Rust et al. (1985b)
found flash initiation points to be around 7 km and 10 km above mean sea level on
average, which corresponded to -14°C and -38°C. Similarly, Proctor (1991) observed
initiation heights in 13 different storms at 5.3 km at -3°C and at 9.2 km at -38°C.
Depending on the storm, these heights could correspond to the areas above and below
the upper negative charge region from Stolzenburg et al. 1998c (Fig. 13), which would
be locations of strong electric field.

After lightning initiates, positive and negative channel leaders propagate in
opposite directions from the initiation location toward the charge regions generating
the electric field (Kasemir 1960, Mazur and Ruhnke 1998, Maggio et al. 2005,
Marshall et al. 2005, Lund et al. 2009). Upon reaching the charge regions, the
lightning often turns horizontal and expands into the charge regions (MacGorman et

al. 1981, MacGorman et al. 2001, Coleman et al. 2003, MacGorman et al. 2015).
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Cloud-to-ground lighting flashes (CGs) typically initiate in the high electric field that
exists between the mid-level negative charge and a lower altitude positive charge
region (MacGorman et al. 1981, Rison et al. 2016).

The combined use of LMA and radar products has revealed several patterns
about where lightning initiates and propagates in thunderstorms. Flashes were found
to initiate in the convective region of thunderstorms, and do not often initiate in the
stratiform region of MCSs (Lund et al. 2009). It has been found that for lightning that
initiates in the upper regions of thunderstorms, initiation occurs in areas of low to
moderate reflectivity (20-48 dBZ — Proctor 1991, Lund et al. 2009). In their squall
line system, Lund et al. (2009) found that lower level lightning initiation occurred on
top of positive Z,g columns. Bruning et al. (2007) found that some lightning flashes
initiate in and below regions of negative Z,z where graupel may be found.
Additionally, upper level initiation occurred above reflectivity maximums, a transition
region from graupel below to cloud ice above (Lund et al. 2009). This transition zone
would be an ideal place for graupel-ice collisions envisioned as the primary
noninductive charging mechanism. This mechanism contributed mostly in the mature
phase when updrafts are strong enough to loft graupel; however, as the MCS weakens
and precipitation drops below the melting layer, it is likely that the inductive melting
process becomes the dominant mechanism. Based on lightning propagation patterns,
Lund et al. (2009) noticed the ICs propagated into upper positive and negative charge
regions in individual cells, which agreed with corresponding EMF sounding
measurements of electric fields and the charge structure conceptual model by

Stolzenburg et al. 1998a (Fig. 14).
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An interesting characteristic of lightning propagation in thunderstorms is its
interaction with the melting layer. In an unorganized multicell convective cluster
observed over Florida, MacGorman et al. (2015) showed a reflectivity maximum just
below the altitude of the expected 0°C isotherm. During rocket-triggered flashes into
the dissipating stage of this thunderstorm cluster, lightning propagated horizontally as
it reached the negatively charged melting layer; however, during mature storms,
triggered flashes propagated over the tops of the Z, indicated melting layer
(MacGorman et al. 2015, Hill et al. 2012b, Hill et al. 2013). Triggered flashes turn
horizontal at the melting level due to strong electric fields just above (Coleman et al.,

2003, 2008) and concentrated amounts of charge present (Hill et al. 2013).

1.6 Kpp Signature Evolution and LMA Data Comparison

While LMA data has been compared to dual-pol radar signatures, the evolution
of those signatures throughout the life cycle of thunderstorms and the comparison of
lightning initiation and leader propagation to those signatures have not been well-
documented. Additionally the use of K, underutilized as a determiner of lightning
channel propagation. Negative Kp can be used to indicate regions of heightened
vertical electric fields because negative Kjp represents ice crystal orientation
becoming more vertical along the radial and because ice crystals aligned by electric
fields are vertically oriented. The positive Kjp areas surrounding the negative Kp
regions aloft can be used to identify regions of charge density of greater magnitude
than that in the negative K, region. This inferred charge density distribution assumes

that the negative Kp,p region represents an extrema in the electric field and the 1-D
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approximation to Gauss’ Law (Marshall and Rust 1991) is applicable. If there are
weak electric fields, the orientation of ice crystals horizontal, which would show up as
positive Kp,p values.

Herein, the relationships between flash channel structures and Kjp signatures
and their evolution through the life cycle of squall lines is examined using the LMA
data from the International Center for Lightning Research and Testing (ICLRT) and
dual-pol RHIs (Range Height Indicator scans) from the dual-pol ground-based Shared
Mobile Atmospheric Research and Teaching (SMART) radar. Observations from a
squall line in Florida and a squall line in OK will be used to confirm the persistent
negative Kpp region similar to Carey and Rutledge (1998) and Zrnic and Ryzhkov
(1999) above and on the stratiform side of the convective region, show that this
negative Kpp region sloped into the stratiform region as the stratiform region
developed, and identify the existence of a second less consistent K, region on the
forward side of the convective region. Data of the Florida squall line will be used to
show that many intracloud lightning flashes follow the zero-Kj,, contour on time-
averaged plots.

This work is organized as follows: Chapter 2 will discuss the data and methods
used to analyze the data. Chapter 3 will give an overview of the environmental
conditions and timeline of each squall line. Chapter 4 will analyze the Kjp signatures,
storm structure, and lightning during the developing, mature, and dissipating stages of
each squall line. Chapter 5 discusses the results of the study, draws conclusions, and

outlines future work.
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Chapter 2. Methods

2.1 SMART Radar Overview and Scanning Strategies

SMART radars were described in Biggerstaff et al. (2005). This study made
use of dual-polarimetric data from SMART radar 2 (SR2). SR2 has a half-power
beam width of 1.5°, antenna diameter of 2.54 meters, peak power of 300 kW (150 kW
per channel), and C-band frequency of 5570 MHz. SR2 operated in simultaneous
transmission and reception (STaR) mode for quicker scanning (Doviak et al. 2000).
Products produced by SR2 and used for this study include reflectivity (Z),
differential reflectivity (Zpz), differential phase (¢pp), and specific differential phase
(Kpp). The correlation coefficient (py,,) was used for data quality tests.

During the Florida squall line, SR2 conducted narrow sector volume scans
utilizing five consecutive Range Height Indicator scans (RHIs) with elevation 0.5° to
60° from the horizon at azimuths of 8.5°, 9.5°, 10.5°, 11.5°, and 12.5° from north,
alternating between scanning from highest elevation to lowest and vice-versa. The
azimuths were selected to sample more of the storm around the International Center
for Lightning Research and Testing (ICLRT), which was located at an azimuth 10.5°
from the radar at a range of 11.6 km. Each RHI scan lasted 15 seconds, with less than
a second between RHIs and 5 seconds between volumes. Gate spacing was 150 m.

During the Oklahoma squall line, SR2 sampled consecutive RHIs with
elevation 0.5° to 60° at a corrected azimuth of 176° from north (a four degree
correction was applied to the heading after the event). Thirty minutes after beginning
the data collection, the highest elevation of the RHI was lowered to 45° as the

convective line propagated farther from the radar. The south scanning direction was
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chosen since it pointed toward the convective line and was free of most obstructions.
Each RHI scan lasted 20 seconds while sampling up to 60° elevation and 15 seconds
when sampling up to 45° in elevation, with less than a second between RHIs. As for
the Florida squall line, gate spacing was also 150 m.

In both cases, the RHI scans sampled through the stratiform region toward the

convective region of the squall lines.

2.2 Florida LMA Overview

Lightning mapping array data was provided by the ICLRT, located 6.5 km east
of Stark, FL and 11.6 km at an azimuth of 10.5° from SR2. Each LMA station records
very high frequency (VHF) power peaks during consecutive 80 us windows. LMA
station locations at ICLRT are described by Hill et al. (2012, 2013) and Pilkey et al.
(2013). A reduced chi-squared value of one (goodness of fit criteria) and a minimum
six stations were applied to the LMA data to reduce location error in the points
representing each flash, and to balance noise rejection with retaining detail. The
results were similar to Pilkey et al. (2014) who used 7 stations and a chi-squared value

less than or equal to five for the same storm.

2.3 Florida Case Analysis Technique
A charge analysis was performed on 46 flashes while SR2 was sampling RHIs
for 80 minutes of the squall line’s life cycle. This timeframe was selected because it

captured the squall line’s life cycle, and it was the timeframe in which the squall line
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was most electrically active within 20 km of ICLRT. The charge analysis was
completed using the methods outlined in Bruning et al. (2007), Rust et al. (2005), and
Coleman et al. (2003) with the intention of identifying the dominant regions of charge
in the squall line through noting where and how lightning propagated. Identification
of charge based on LMA sources stems from our knowledge of leaders. Initial
breakdown of the flash is bidirectional where the negative leader is more detectable
(Shao and Krehbiel 1996). Negative leaders propagating through positive regions of
charge were more impulsive and gave off more VHF sources for the LMA to detect
(Thomas et al. 2001). Positive leaders propagating through negative regions of charge
gave off weaker VHF sources, appeared to propagate more slowly, and contained
recoil streamers that traversed the existing lightning channels toward the positive
charge region. Flashes whose charge regions could not be identified were left as
neutral charge.

Flashes were selected for a specific set of four criteria to ensure they could be
compared to SR2 RHIs:

1. Flashes had to be almost entirely contained within a volume of space that was
five km on either side of the RHI scan. This was to ensure that radar signatures
were representative of the part of the storm that the flash was propagating
through. While squall lines tend to be two-dimensional, the extent of that
symmetry was not adequately sampled in this storm and the extent of the
validity of applying that symmetry to dual-polarimetric signatures has not been

established. Five km was selected somewhat empirically based on where
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patterns started to emerge, and also because it was a small distance relative to
the size of the squall line and spacing between convective cells.

2. Flashes had to have a discernable structure and, therefore, could not be in the
form of a cluster or compact. It is difficult to perform a charge analysis of a
flash without structure and such flashes provided little information regarding
their propagation relative to radar signatures. This criterion typically limited
flashes to within 20 km of ICLRT because LMA data became increasingly
noisy with distance from the array.

3. Flashes had to contain greater than 80 LMA pts with a minimum chi-squared
value of one while being viewed in XLMA, an LMA data-viewing program
developed by New Mexico Tech. Flashes with fewer points had little structure
to analyze and often looked noisy.

4. Flashes had to be mostly parallel to the radar beam. The only way to
determine if flashes followed radar signatures is if the flashes were
approximately propagating through the same cross-section of the storm
represented on the RHIs. Otherwise, the RHIs would not be representative of

the storm conditions the flashes were propagating through.

The LMA points for flashes that met the above qualifications were projected
onto radar images with the axes “distance from radar” and ‘“height above ground”.
Distances from radar were calculated using the latitude and longitude coordinates for
each LMA point and the Great Circle Equation with SR2’s coordinates. These points

were first projected on the closest radar image prior to the flash. However, because
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RHIs took at least 15 seconds to sample, flashes occurred during the scan and RHIs
would not be representative of the storm structure immediately prior to the flash.
Unfortunately, using the 2" closest scan prior to the flash represented the storm
structure 15-30 seconds prior to the flash. Given that flash rates were 5-15 flashes per
minute throughout the storm and its life cycle, the 2" closest scan was also not
representative of the structure immediately prior to the flash.

Thus, it was resolved to take the time average of five scans: the closest scan,
and the 2 scans prior to and following the closest scan. This would represent the
dominant radar signatures prior to, during, and after the flash. Hendry and
McCormick (1976) noted that lightning flashes caused particles to reorient from
vertically to horizontally in less than 1 second. Following a flash, it would also take a
few seconds for particles to reorient vertically as the electric field built back up. This
duration may change for storms with higher flash rates, but it suggests that majority of
the time in between flashes, particles are not in their horizontal steady state. Thus, a
time average of K, would capture the dominant values during which the electric
fields were rebuilding or rebuilt prior to and following a flash. K, was computed
from ¢pp using a three km least squares fit window developed by Addison Alford as
an alternative to using the noisier K,p produced by the IRIS software internal to SR2.
The new method preserved key features. Z,x and radar reflectivity were both
converted to linear scales before averaging and then converted back to a logarithmic
scale for plotting.

Various other statistics were produced from the radar images. The radar values

within 150 m of an LMA point were averaged to get the associated K, values around
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the LMA point locations. The dominant negative K, and maximum reflectivity
regions were identified using Gaussian smoothing and interpolation to track the size
and attributes of each area as the storm developed. Note that these filters were only
used to identify the contour outlining the radar signatures of interest. Smoothed values
in the regions were not used in gathering the value statistics of the regions. The
negative Kpp regions were identified by values between -0.1 and -2.5 deg km™! and
the reflectivity core was identified by values greater than 50 dBZ. These values were
determined experimentally as the best values for the computer to use to identify the
relevant regions.

Multi-flash composites were also produced to demonstrate the locations of
many flashes relative to radar signatures lasting longer than the duration of five RHIs.
Six consecutive flashes were selected and plotted onto the time average of all RHIs
between two scans before the first flash and two scans after the last flash. Following
that composite, the first flash was removed and the next flash in the sequence was
added on top of the new time average of the RHIs. This process repeated until the last
flash in the sequence was included. These plots were not consistent in the amount of
RHIs that were averaged, but it revealed similarities in the radar signatures across
multiple flashes.

Horizontal reflectivity data from the WSR-88D radar at the Jacksonville
International Airport (KJAX) located on the northern edge of Jacksonville and 68 km
NNE of ICLRT was used to supplement SR2 and give perspective as to the horizontal

structure and location of the squall line.
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2.4 Oklahoma Case Analysis Technique

The Oklahoma LMA (OKLMA) data was unusable for this case due to a
random 1-sec time error in the GPS clock of some of the stations, but SR2 data was
still able to be analyzed. Every five scans were time-averaged in the same manner as
the Florida case. Area data was also recorded with the same filters and bounds.
Horizontal reflectivity data from the WSR-88D radar in Oklahoma City (KTLX)
located on the southeast edge of the city and 33 km ENE of ICLRT was used to
supplement SR2 and give perspective as to the horizontal structure and location of the
squall line. For this case, the SR2 ¢ field needed to be unfolded because SR2
bounds were set from 0° to 180°. ¢, exceeded 180° on the downshear side of the

reflectivity core, hence the folded values.
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Chapter 3: Dataset Overview

3.1 Florida Squall Line

Based on the 1200 UTC sounding in Jacksonville, FL that was 80 km north-
northeast of SR2 the 17 July 2012 squall line initiated in a tropical environment, with
weak winds at most levels of the atmosphere over Florida, a moist vertical profile, and
1200 J kg™ CAPE (Figure 6). The 1200 UTC sounding also showed the atmosphere
initially had modest Convective Inhibition of about 80 J kg™ of CIN, which likely
eroded during the day through mixing. The later 00 UTC sounding is not shown
because it was contaminated by the passage of another thunderstorm through
Jacksonville. The 1200 UTC 500 mb upper air analysis (Figure 7) shows that cyclonic
flow and lower heights existed over Florida, which may have provided some weak
midlevel forcing to support initiation of the Florida squall line.

This Florida squall line formed in the broken line fashion (Bluestein and Jain
1985) and was relatively short-lived. Cells that formed the Florida squall line initiated
at 1900 UTC five km southeast of SR2 (see Figure 8 for the 88D PPIs displaying the
Florida squall line). By 1952 UTC, multiple thunderstorms had developed reflectivity
values greater than 60 dBZ and an outflow boundary was visible on radar. At this
time, SR2 began performing RHI scans approximately northward toward ICLRT
through one of the cells shortly after it had passed SR2’s location. The radar beam
was approximately perpendicular to the convective line, which propagated northward
at 20 kph. Individual cells moved westward at less than 5 kph. During this time, there
may have been hail in the mid-levels of the storm, indicated by the hail spike (e.g.

Zrnic 1987; Wilson and Reum 1986, 1988; and Lemon 1998) on the far side of the
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storm from the radar (e.g. Figure 12(a)). Prior to this time, the only negative Kpp
region appeared to be aloft slightly south of the reflectivity maximum. After this time,
a second negative Kpp region developed aloft slightly north of the reflectivity
maximum.

At 2011 UTC the cells congealed into a line and began to propagate with new
cells developing on the north side of the complex just south of the boundary. This
marked the end of its formative stage and the beginning of its intensifying stage (Leary
and Houze 1979). Around this time, both the reflectivity maximum and negative Kjp
regions weakened noticeably in the individual scans and time means (Figure 12(b)).
Oscillations in the size and values of the negative Kjp regions and reflectivity maxima
occurred throughout the mature phase of this storm. By 2044 UTC, the squall line had
entered its mature stage, had developed a stratiform region extending south, and had
an E-W diameter of about 70 km. At this point, the negative Kjp region aloft
extended from above the convective region through the transition zone and into the
stratiform region. The negative K, region on the north side of the storm had
disappeared.

By 2112 UTC, the squall line had started to dissipate as the outflow boundary
had surged well north of the convective line and northward propagation slowed. The
large negative Kj,p region on the stratiform side had disappeared and a negative Kjp
region developed above a weak reflectivity maximum. The general relationship
between the Kj,p region and reflectivity maximums is addressed in Chapter 4.

The lack of vertical low-level shear perpendicular to the northward propagation

of the squall line explains the short lifespan of this Florida squall line. A squall line
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can be long-lived if the perpendicular environmental low-level shear can balance the
shear generated by the cold pool and minimize updraft tilting (e.g. Rotunno et al.
1988, Weismann and Rotunno 2004). The Florida squall line’s cold pool surged out
ahead of the convective line because there was not enough low-level environmental

shear to oppose the cold pool, as seen in the environmental sounding (Figure 6).

3.2 Oklahoma Squall Line

The Oklahoma squall line initiated in a convective environment just after 00
UTC on 18 September 2016. According to the 00 UTC Amarillo sounding from that
day (Figure 9), there were veering winds in the low levels, a 100-kt jet at 250 mb,
steep midlevel laps rates, 1914 J kg CAPE, almost no CIN, and moist low levels. It
can be expected that the CIN increased and the temperature decreased between the
sounding launch and the squall line propagating through Amarillo, TX at 0400 UTC.
Due to the lack of convection in the area apart from the squall line and slowly
evolving upper level pattern, the sounding can be a good approximation of the
environment the squall line propagated through. The 00 UTC 500mb analysis (Figure
10) shows a shortwave trough extended from northern Nebraska into the Texas
panhandle. The region of positive vorticity was a source of lift that initiated the squall
line. There was also a weak dryline extending through southeast Colorado that may
have contributed to forming the initial cells.

Between 0000-0400 UTC the Oklahoma squall line formed in broken-line
fashion (Bluestein and Jain 1985) similar to the Florida squall line and intensified.

Here, however, the Oklahoma storm was longer-lived and traveled a longer distance
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during its mature stage, which was reached at 0525 UTC when a second reflectivity
maximum became visible in the stratiform region in the WSR-88D data. By 0750
UTC, the squall line was symmetric (Houze et al. 1990), extended 300 km in SW-NE
direction and propagated at 40 kph to the southeast. Individual cells appeared to move
north-northeastward at 10 kph. At this time, SR2 began scanning RHIs toward the
south shortly after the convective line passed SR2’s location (Figure 11). A large
negative Kpp region was present aloft above the primary reflectivity maximum
extending and sloping downward into the transition zone, but with a flatter slope than
in the Florida squall line (Figure 13). This region persisted while SR2 scanned it,
though its strength and size would fluctuate, and it often appeared to be made of
multiple smaller pockets of negative K,p rather than one large region. Oscillations in
the negative Kjp region aloft and reflectivity maxima occurred in the Oklahoma squall
line as in the Florida squall line. The Oklahoma squall line did not change in strength

during the hour SR2 was scanning it.

3.3 Data Quality Concerns
Few datasets are flawless and this dataset is no different. This subsection
describes negative quality aspects in the data worth noting and why they do not affect
the results of this study.
a. Scanning directions. In the Florida case, the radar beam pointed
perpendicular to the convective line, while the Oklahoma scanning strategy
scanned at a 45° angle to the convective line. The analyses for these cases

were conducted in the same way to observe the time evolution of the radar
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signatures. Even though the storm orientation was very different, the cell
motion was similar in both cases. In the Florida case, individual cells were
almost stationary, moving west slowly. In the Oklahoma case, individual cells
were moving north-northeast. In both cases, the time evolution of individual
cells was accurately sampled since the cross-beam movement of the cells was
not significant compared to the lifespan of each cell. It should be noted,
however, that due to the non-perpendicular radar beam orientation, relative to
the convective line orientation, resulted in the Oklahoma case sampling more

cells within the convective region than was sampled in the Florida case.

Far-side Kpp artifacts. Throughout much of the data in both cases, there was
a Kpp artifact comprised of extremely negative K, values on the far-side of
the convective region adjacent to the reflectivity maximum and high positive
Kpp values in the convective region (e.g. Figure 12). It is highly nonphysical
to have vertically orientated equilibrium shapes for particles below the freezing
level since raindrops are horizontally oriented due to drag from air resistance
while falling. One of the only hydrometeors known to be vertically oriented in
steady state is conical graupel (Zikmunda and Vali 1972). However, this
precipitation sized hydrometeor would likely produce a region of negative Zx
if it was present. It was found that Z,; was not often negative in the regions
with the negative Kjp artifact. Thus, the negative K,p artifact was not
associated with the hydrometeors present at that location. Instead, the negative

Kpp artifact was the result of resonance in the heavy rain region producing
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anomalously large ¢ p values in the convective cores, which caused the radial
gradient of ¢,p to become negative on the far side of the convective region.
Indeed, Kpp was also anomalously negative in the spaces between convective
cores when individual cells were more isolated. Additionally, regions of weak
reflectivity along the edges of the convective cells had noisy ¢pp values. The
noise for the Florida case had ¢, values in the range from 40° to 160°, which
is much lower than the ¢p values in the reflectivity maximum (greater than
130°). The noise induced drop in ¢pp contributed to the erroneously negative
Kpp values on the far side of the convective region. This erroneous feature
was generally confined to a narrow strip. Filtering out range gates based on

low pyy values (less than 0.9) enabled removal of most of this artifact.

Melting level Kpp signature. At and just above the melting level in the
stratiform region in mature stage of both cases was a dipole band of K,p. The
positive band of Kpp values were found just below the reflectivity bright band
and the negative band of K, values were found just above the bright band
(Figure 12(c)). Some studies have explained this as resonance due to the beam
passing through liquid coated large aggregates of ice in the melting layer (e.g.
Ryzhkov and Zrnic 1998, Ryzhkov 2007). However, EMF soundings launched
through the stratiform region have measured strong electric fields near the
melting level (e.g. Stolezenburg et al. 1998a). Studies have observed cloud ice
crystals in the region right above the melting layer (e.g. Willis and Heymsfield

1989), which may be tilting vertically in the electric fields above the melting
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layer. Additionally, there were a couple flashes which propagated adjacent to
the negative K,p band in the Florida case (though, the flash points exceeded
the 5 km distance from the RHI criteria applied in this study by 2-5 km and
were filtered out), suggesting the K, feature may have been due to ice crystals
aligning in electric fields instead of just an artifact of resonance. To determine
if the negative Kjp regions above the melting level and further aloft were
affected by resonance in the melting layer, ¢pVvalues were removed where
puy Was less than 0.90 and K, was recomputed. Filtering of values of pyy,
below 0.95 (Figure 15) or 0.97 (Figure 16) resulted in too much data loss at the
cloud edges and did not affect the upper level negative K, regions. Itis
important to note that Kjp is computed using a least squares fit to the radial
distribution of ¢ppp over a £ 1.5 km window from the point of interest. While
many points were removed from ¢, at the level of the bright band through
the pyy filter, the fundamental aspects of the K, dipole band near the melting
region still remained, though weaker (Figure 15Figure 16). More importantly,
the negative Kjp region aloft remained largely intact. Hence, the negative Kjp
aloft does not appear to be significantly impacted by resonance effects at lower

altitudes.

. pgy at adistance. Blanket filtering of ¢pp by pyy worked well in the Florida
case since all features were less than 30 km from the radar. However, the
threshold had to be lowered to 0.8 for the Oklahoma case because too much

data was being removed farther from the radar (> 50 km range; see Figure 17).
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The inability for high quality correlation coefficient measurements at far
ranges from the mobile radars is likely due to the relatively small reflector used
on the mobile platform, which affects both the gain and the cross-pol isolation
of the system. The motivation for the py, filtering was to evaluate the effects
of resonance from the melting level on the Kj,p values aloft. Filtering pyy
below 0.95 did not change Kj,p within 30 km in either case (except for at cloud
edges). This means that the loss of data at far distances due to pg, filtering
was not the result of resonance, but a hardware limitation. This hardware
limitation justifies filtering on pyy at lower values in the Oklahoma case to
retain distant data for analysis. It should also be noted that the correlation
coefficient values in the melting band were less than 0.8 in the Oklahoma
squall line. Hence, most of the points that would have experienced resonance

were likely removed using this lower threshold.

Zpr Fluctuations. The SR2 radar experienced fluctuating biases in Zp for
significant periods of time in the Florida dataset. The magnitude of the biases
were as high as + 2 dB. Furthermore, bias jumps sometimes occurred during
an individual RHI scan. For other periods, the bias seemed to grow gradually
before making a rapid transition. The cause of these fluctuations is
undetermined. The radar had several receiver chain elements fail in the
following year and the transmitter itself failed. It is possible that one of more
of these components were in the process of failing during the data collection

conducted in Florida. Fortunately, there was a 20 minute section of time in
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which Z,, displayed values consistent with expected patterns without
fluctuations. All analysis of Zj for the Florida case came from this 20 minute
period. The fluctuations in Z,z do not appear to be correlated with any
changes in the other variables. The radar reflectivity and Doppler velocity is
computed from just the horizontal channel. The other dual-channel variables
(correlation coefficient and differential phase) did not exhibit any detectable

variation with regard to changes in Zpg bias.
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Chapter 4: Analysis

4.1 Florida Squall Line Lightning

There were forty-six flashes that met the four analysis criteria described in
Chapter 2. Of the 46 flashes, 38 appeared to at least loosely follow contours in Kpp
and were associated with regions of negative K,p. Discussion on the errors which
may have caused the remaining flashes to diverge from the rest can be found in
Chapter 5.

Figure 18 is a conceptual model of the relationship between electric fields,
charge density, and Kpp. Itis based on the 1-D approximation to Gauss’ law (e.g.
Mashall and Rust 1991) (Eg. 2) and aides in understanding why most flashes followed

the zero-Kjp contours.

— _0E
(Eq. 2) E,=5.=%

The 1-D Gauss law relates the vertical gradient in electric field (g—f) to the charge

density (p) and the permittivity of air (¢). The magnitude in electric field is
maximized where the vertical gradient of the electric field changes sign between two
charge layers of opposite polarity. This is demonstrated in many studies with EFM
(electric field meter) soundings (e.g. Bruning et al. 2007, Lund et al. 2009). In
accordance to equation (2), the altitude where the vertical gradient of the electric field
is zero is also where the charge density is zero. If the negative Kjp regions are
associated with an extremum in the electric field, then regions of negative K,p are also
regions of low charge density. Due to increasing charge symmetry towards the center

of the individual charge layers, the magnitude of the electric field decreases towards

33



the center of the charge layers. The resultant vertical gradient in electric field implies
a region of higher charge density (positive or negative) relative to the altitude of the
extrema in the electric field associated with the negative K, region. Hence, the zero
and positive Kjp areas surrounding the negative Kjp region would have comparatively
higher magnitude of charge density than the negative K, region itself.

Thus, according to this conceptual model, lightning should initiate in the
negative Kpp values where the electric field is the strongest (Kasemir 1960, Mazur and
Ruhnke 1993, 1998) and propagate near the zero and positive K,p values in regions of
higher charge density (Kasemir 1960, Mazur and Ruhnke 1998, Maggio et al. 2005,

Marshall et al. 2005, Lund et al. 2009).

4.1.1. Vertically Dominant flashes

The following are detailed descriptions of the most structurally interesting
vertically dominant flashes. Mean K, products were used for this analysis to
determine how lightning matched the most dominant K, signatures. The means were
computed by taking an average of the five RHIs within narrow sector volume scans.
The five RHIs included the RHI that began closest to and prior to a flash, the two
RHIs prior to this nearest scan, and the two RHIs following the nearest scan.
Logarithmic values of reflectivity and Z,, were converted to a linear scale before
computing the mean, which was then converted back to logarithmic value for display.
These means will be referred to as 5-RHI means henceforth to distinguish from other
averaged products. Additionally, the scans prior to and following each flash were

examined to determine if the flash had an effect on radar inferred electric fields and
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particle orientations in the cloud. Time series of areal extent and mean values of the
two negative Kp,p regions and the reflectivity maximum are shown in panels (h) and (i)
in Figure 19-Figure 37. Area 1 is the transition zone Kpp region, Area 2 is the
convective Kjp region, and Area 3 is the reflectivity maximum.

Figure 19 (b) shows a vertically oriented flash found within the convective Kjp
region at 195301 UTC overlayed on the nearest 5-RHI mean K,p. This flash occurred
in the squall line’s formative stage. Flash initiation (indicated by the pink star)
occurred inside the southern side of the convective K, region. This would suggest it
initiated in a region of particles that were vertically tilted by the electric field.
Initiation was not within the most negative Kpp.

Branching out upward from the initiation point were two channels that
propagated through a region of positive charge (based on analysis of the channel
behavior described in Chapter 2.3). One of these channels followed the top of the
convective Kj,p region, presumably propagating through a region of weaker electric
fields and possibly higher charge than would be found in the most negative Kjp area.
The other branch entered a region of positive Kjp, which would suggest horizontally
oriented particles that were not being tilted strongly by the electric field. Branching
downward from the initiation point was one main channel propagating through a
region of inferred negative charge. This channel followed the bottom of the negative
Kp,p region along the zero Kjp contour before descending into a positive Kpp region.
Like the upward channel, this suggests the channel propagated through a region of

lower electric fields and likely higher charge than where the flash initiated.
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Figure 20(b) and Figure 21(b) show individual RHIs that most closely bracket
(scans began fourteen seconds prior and three seconds after) the time of the flash.
Initially, the convective K,p region was rather strong with a mean value across the
region of -0.63 deg km™ with an areal extent of 5.79 km?. After the flash, it weakened
to -0.40 deg km™ with an areal extent of 0.48 km?. This decrease in both the size and
magnitude of the Kpp region is indicative of the particles becoming more horizontally
oriented in the weakened electric fields following the flash. In this data set, sampling
so close in time to the actual flash was relatively uncommon. Thus, there were few
opportunities to observe this rapid change in K. Additionally, the subsequent scan
showed an even stronger convective Kjp region, indicating a rapid recovery of the
electric field. This was a relatively isolated flash in terms of the time before and after
it occurred. No flash extended into the region around the convective K, region for
twelve seconds before the 195301 flash, and twenty-four seconds after. There was a
weak flash that occurred above the transition zone K, region four seconds after, after
but it remained isolated from the convective Kjp region. Even if the 195305 flash
affected the convective K, region, the fifteen second RHI began one second prior to
the flash, and the fields still appeared weaker in the convective K, region, as
expected following a flash. While it is appropriate to identify this positive increase in
Kpp as direct result of the isolated flash, it should be noted that electric fields within
strong convection are known to recover in a few seconds following a flash. Moreover,
the flash rate of the storm (approximately 10-15 flashes per minute) was fast compared

to the time it took to sample an RHIs (15 seconds). Given the longer sampling period
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of the radar, it is difficult to assign each change observed by radar to a specific flash.
The effect of temporal sampling is discussed further in section 4.1.3.

Figure 22(b) shows a vertically dominant flash around the transition zone Kjp
region overlayed on the nearest 5-RHI mean Kp. The flash initiated in negative Kpp
values near the top of the cloud during the formative stage of the squall line at 195651
UTC. One branch extended upward from the initiation point into a region of inferred
positive charge and clustered near the cloud edge in mostly weak positive Kj,p values.
Another branch extended downward from the initiation point into a region of inferred
negative charge, following the zero-Kj contour with a slight positive bias, implying
propagation through weaker electric fields and higher charge.

Figure 23(b) and Figure 24(b) show the scans immediately prior to (by fifteen
seconds) and following the flash (by ten seconds). Unlike the last flash, the transition
zone Kpp region did not appear to change much. This may be explained by the fact
that the post-flash scan started ten seconds after the flash, which gave fields enough
time to recover before being sampled by the radar. It is not due to another flash since
there was not one in the storm for over thirty seconds before and after the 195651
flash. Other aspects of the K, field did change, such as the small negative K, p
pocket near the cloud tops and the positive Kj,p values above the reflectivity
maximum, possibly a longer lasting change caused by the flash or a limit in horizontal
symmetry of Kpp in this stage of the storm. Regardless, the more dominant transition
zone Kpp region did not significantly change. This suggests that charge may be
regenerated quickly in this area, or that the flash did not consume enough charge to

significantly alter the broader electric field.
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Figure 25(b) shows a vertically dominant flash overlayed on the nearest 5-RHI
mean Kpp. Itinitiated in the intensifying stage of the squall line at 202431 UTC on
the north side of the transition zone Kjp region in weak positive K,p values. Several
branches extended upward from the initiation point into a region of inferred positive
charge and positive Kjp values. Other branches extended downward from the
initiation point through a region of inferred negative charge and positive K,p values,
matching a similar shape as the zero-Kjp contour. The tendency for these lightning
channels to propagate through positive K surrounding the negative K area is
consistent with the other flashes and with the tendency for flashes to propagate into
regions of high charge density, as proposed conceptually in Fig. 19.

Figure 26(b) and Figure 27(b) display the scans immediately prior and
following the 202431 flash. The transition zone K,p region was much more extensive
prior to the flash, to the point that the initiation point was in weakly negative Kpp
values. Following the flash, the K, values in this region are more positive and the
transition zone Kjp region receded south slightly. This is similar to the first flash in
that SR2’s post-flash scan may have been close enough in time to the flash to capture
the weaker fields following the flash. No flashes occurred for thirteen seconds
following the 202431 flash, but a flash did occur six seconds prior and was
horizontally dominant. Fortunately, based on where the radar beam was located when
this prior flash occurred, Figure 26(b) still adequately represents the K, field prior to
both flashes.

These three vertically dominant flashes exhibited two traits that were not

typical of horizontally dominant flashes: (i) all of the 11 vertically dominant flashes in
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the dataset initiated and propagated around a region of negative K,p that itself was not
horizontally extensive and (ii) the lightning channels did not have a preference in the
horizontal direction they propagated when they did branch horizontally. It should be
noted that Kj,p regions grew larger horizontally as the squall line evolved into the

mature stage, and simultaneously flashes became more horizontally dominant.

4.1.2. Horizontally Dominant flashes

Detailed descriptions of the most structurally interesting horizontally dominant
flashes in presented here. Flashes were analyzed in the same way as vertically
dominant flashes.

Figure 28(b) illustrates a horizontally dominant flash overlayed on the nearest
5-RHI mean of Kj,p. This flash initiated at 195026 UTC during the formation stage of
the squall line on the south side of the convective Kjp region in negative Kjp values.
Similar to vertically dominant flashes, channels extended upward through the inferred
positive charge region and downward through the inferred negative charge region.
However, after initially travelling vertically, the channels sloped downward toward the
south where old updrafts were dissipating. The channels propagated with the zero-
Kpp contours with a slight bias toward positive values above and below the negative
Kpp values of the convective Kp,p and transition zone Kpp regions, which were loosely
connected. Propagation through slightly positive K,p values is consistent with the
vertically dominant flashes and indicates the flashes propagated through weaker fields
than found in the negative K,p region and likely higher charge density than would be

found within the core of the negative K, region.
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Figure 29(b) and Figure 30(b) are the closest RHIs prior to and following the
flash. Similar to the first and third vertically dominant flash examples from the
previous subsection, negative K,p values were greater prior to the flash and weakened
drastically following the flash. The second scan began sampling right as the flash
occurred and arrived at the flash location after approximately 8 seconds. The flash
also seemed to shift the convective K, region farther north, suggesting that a
significant part of the charge may have been dissipated on the southern end of the
convective Kp,p area. There were no flashes eighteen seconds prior and ten seconds
after the 195026 flash, so the entire region the lightning propagated through would
have been sampled by the radar sweep before the next flash affected the K field.
Even so, the next flash was more compact and was located four kilometers west of the
195026 flash and may not have affected the charge regions within the radar sweep.

Figure 31(b) shows another horizontally dominant flash overlayed on the
closest 5-RHI mean of K. The flash initiated at 203925 UTC in the negative Kjp
values on the northern side of the transition zone Kjp region. From the initiation
point, branches extended upward into the inferred positive charge region and
downward into the inferred negative charge region. These branches propagated along
the zero-Kjp contour through positive Kpp values, surrounding the transition zone Kpp
region. Portions of the branches extended northward slightly, but the majority of the
horizontal extent was southward through the transition zone toward the stratiform
region. This is similar to the previous horizontally dominant flash in that the flash
propagated toward the region where old cells were dissipating. This may be the result

of advection carrying charge from the convection region to the stratiform region,
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though the residual convective motions may also have produced charge in-situ. The
charge advection hypothesis is supported by the fact that charge regions descend in
altitude toward the rear of the stratiform region, as would charged particles from
dissipating convective cells. However, multiple flashes similar to this one propagated
through the transition zone and stratiform region. Charge advection by itself may not
be sufficient to explain the regeneration of the charge region as quickly as was inferred
from the radar diagnosed electric fields associated with the negative K, area. Hence,
other processes may be involved in restoring charge in these regions.

Figure 32(b) and Figure 33(b) are RHIs prior to and following the 203925
flash. Similar to the previous flashes, the transition zone Kj,p region was largest prior
to the flash and weakened significantly following the flash. In this case, the Kpp
region seemed to break up into many smaller pockets of negative Kp values. It is
possible the flash left pockets of charge in the cloud that created localized regions of
strong fields. Regardless, the majority of the charge was depleted. There could have
been other processes occurring as well, since the post scan started seven seconds after
the flash initiated and this flash initiated when the squall line had a relatively high
flash rate of eleven flashes per minute. No flashes traversed the same area of the
squall line as the 203925 flash did within twenty-one seconds prior to and thirty
seconds after this flash. There was a flash four seconds prior and another flash
fourteen seconds after, but they propagated at least five km from the 203925 flash and
were at least ten km from the radar cross-section. The extent of horizontal symmetry
of squall line K signatures has not been investigated nor has the distance at which

lightning affects the resultant electric field within a cloud, so it is difficult to state
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whether or not these flashes affected the electric fields from a distance. However, the
Kpp fields sampled suggest these flashes did not have the same impact on the local
electric fields as the 203925 flash did. The areal extent of the transition zone Kpp
region grew in the twenty-five seconds prior to the flash before decreasing rapidly as
elucidated in the scan following the flash (see time series subplot (h) in Figure 32 and
Figure 33). Nevertheless, it should be noted again that the time scale of electric field
evolution is much shorter than the radar scan times, making it difficult to relate the
observed changes in K,p to specific lightning events as the flash rate increased.
Figure 34(b) showed another horizontally dominant flash overlayed onto the
closest 5-RHI mean Kpp. The flash initiated at 204225 UTC in negative K,p values at
the center top of the transition zone Kpp region. Like the previous flashes, branches
extended into the inferred positive charge region above and inferred negative charge
region below the transition zone K, region. While the branches sloped downward
toward the stratiform region following the zero-K,p contour with a positive bias like
the previous flash, the branches also extended well into the convective region. This
“slanted-1" shape appeared in other horizontally dominant flashes. Charge advection
and particle fall speed could explain the slope of the negative K, region and inferred
charge regions, but not the rapid regeneration of charge throughout the squall line. It
appears that both the transition zone and stratiform regions have in situ charge
occurring. Given the continuity of the slope of the radar and lightning features, the
charging mechanisms in these parts of the squall line are likely similar to the primary

charging mechanisms within the convection
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Figure 35(b) and Figure 36(b) are the scans of Kjp, which started immediately
prior to the 204225 flash. Both are shown because the flash occurred in the middle of
sampling Figure 36(b). The radar beam was descending from approximately 5°
elevation above the flash initiation point when the flash occurred. Despite this, the
transition zone Kpp region did not change much between Figure 35(b) and Figure
36(b). In fact, the areal extent of the transition zone Kjp region increased between the
two scans. It is possible that the charge regions strengthened between Figure 35(b)
and Figure 36(b), and this flash did not consume enough charge to significantly alter
the electric fields.

Figure 37(b) shows the K},p field following Figure 36(b). It is interesting that
the areal extent of the negative K, region weakened significantly between those
scans. A strong flash did occur nearby was at 204237 UTC, twelve seconds after the
204225 flash, which would have occurred early in sampling Figure 37 when the radar
beam was at a low elevation angle and ascending. This second flash was over three
km from the 204225 flash and over seven km from the radar beam. This implies that
not all flashes affect the negative K, regions the same way, and that some flashes are
strong enough to affect the electric fields of a storm even from seven kilometers away.

Horizontally dominant flashes exhibited two traits not commonly found in
vertically dominant flashes: (i) 23 of the 29 horizontally dominant flashes initiated and
propagated where the negative K, region(s) was horizontally extensive, possibly
indicating horizontally extensive charge regions as Kpp became more horizontally
extensive in the later stages of the squall line. The other six flashes did not propagate

around a negative Kpp region. This is unusual because there should have been electric
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fields and negative K,p around the regions of charge the lightning propagated through.
These six flashes are part of a set of eight outlier flashes and are addressed in chapter
5. (i1) the lightning channels sloped downward toward the stratiform region more than
they extended into the convective region, possibly due to the front to rear flow of the
squall line advecting charge rearward along with sedimentation as the dissipating cells

became more shallow towards the rear of the transition zone.

4.1.3. Flashes within a Sweep

One way to definitively show that electric fields affect K, is to capture a
change in K, due to a lightning flash in the middle of SR2 sampling the negative Kjp
region. RHIs took 14-15 seconds to collect, and occasionally, the flash rates increased
to 15 flashes per minute. Only 46 flashes met the four flash analysis criteria outlined
in Chapter 2, but there were still other flashes in the near proximity of the radar
sweeps and could have affected the local electric fields and resultant K,p. This was
part of the motivation for analyzing K, and flashes using the 5-RHI means, since the
means would capture the dominant, more slowly varying regions of K. It could then
be shown that the flashes were strongly associated with those dominant features
without needing to determine the effects of every flash in the storm.

It was found that ray-by-ray changes in K, due to a flash were only
significant if the flash nearly exactly intercepted the radar beam spatially and
temporally. If there was not an exact intersection , the only way to determine if a flash
affected the negative Kjp regions was to analyze the scan prior to the flash and after

(as performed in section 4.1.2). There were nine flashes that occurred in the middle of
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collecting RHIs where the radar beam was near the flash location spatially and
temporally. Only one of the nine flashes intersected the radar beam.

Figure 39(a) shows this flash overlayed on the K, field, where the beam is
ascending. At around 10 km north from the radar and 4-5 km above the ground, there
was a visible couplet of relatively extreme K, values. The flash channels pass
through the radar beam at this location and cause a visible effect on the K, field.
Following the intersection, as the beam continued to ascend weak positive K,p values
were recorded instead of the extreme negative K,p values that would otherwise have
been expected. This suggests that that the electric fields weakened and particles
returned to horizontal orientation in less than a tenth of second (time between rays).
The strong positive K,p values were not present in the previous scan (Fig. 39a),
indicating that they were induced by the flash.

For flashes that occurred near the location of the radar beam as it was sampling
the negative Kjp region, K,p values are expected to become more positive since a
flash would deplete charge, weaken the electric field, and cause particles to return to
horizontal orientation. Measurements by Mendez (1969) and Hendry and McCormick
(1976) showed that particles returned to horizontal steady state in fractions of a second
following a flash, but it took sometimes as long as 10 seconds for the fields to return to
a similar strength as before the flash. Note that the 10 seconds would vary with
charging rate, but it is much longer than the time it takes for particles to return to
horizontal.

The effects of lightning on the K, field can be more complex. Lightning may

not deplete all the charge in a region, and instead may cause non-uniform charge
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distributions, or gaps, in existing layers of charge (Mansell et al. 2010). This would
leave irregular electric fields before mixing and charging mechanisms homogenizes
the charge distribution. The scan time durations are relatively long compared to the

time scales of electric field changes due to lightning flashes.

4.1.4. Multi-flash Composites

Figure 42 shows a multi-flash composite for 203305-203925 UTC, during the
squall line’s mature stage. Five initiation points occurred in the upper portions or
north of the transition zone Kpp region. The sixth was just above the melting level in
the reflectivity maximum and initiated a cloud-to-ground strike. At this point, both
branches showed visible downward sloping toward the stratiform region. Both
branches propagated in positive K,p values following the zero-Kj,p contour,
“hugging” the transition zone Kpp region. It should also be noted that the initiation
points, channels, and the negative Kj,p region are farther north than earlier in the squall
line’s life cycle.

Figure 43 shows a multi-flash composite for 204917-205721 UTC, as the
squall line approached its dissipation stage. Five initiation points occurred in the
transition zone Kpp region, and the sixth was just above the melting level in the
reflectivity maximum associated a cloud-to-ground flash. The negative Kjp region
seems much more disorganized than in the mature stage. The lightning channels still
slope downward toward the stratiform region loosely following the zero K, contours.

The most notable detail in Figure 40-Figure 43 is the fact that the K, regions

were surrounded by two horizontally stratified layers of charge throughout all stages
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of the squall line life cycle. These horizontal layers would cause the vertically
oriented electric fields that tilt ice crystals and show up as negative K,p regions in
SR2 RHIs. The fact that the lightning flashes and negative K}, regions move
northward and are always together suggests that the negative Kj,p regions depict the
general locations of the electric fields that cause the lightning.

It should be noted that the effects of the northward propagation of the squall
line and the composite means using scans during a timespan as long as 3-9 minutes
caused some of the negative Kjp signal to be lost due to averaging between negative
and positive values on the edges of the negative K, regions. This made the zero-Kjp
contours much thicker than in previous figures. Because of the northward and sinking
movement of the K, regions with time, it can be inferred that zero-K,p values on the
north and north-lower sides of the negative K, regions are becoming negative with
time by the effects of propagation, and zero-Kjp values on the south and south-upper

sides of the negative K, regions are becoming positive.

4.1.5. General Distributions of Radar Values
There are numerical patterns worth noting in the radar values associated with
lightning channels. The nearest bins within 150 m of each LMA point were
interrogated to generate time series and histograms. Panel (g) of Figures Figure 19-
Figure 37 are of histogram distributions of the K}, values closest to the LMA sources.
The distribution for 5-RHI mean scans was found to be much more narrowly centered
on the mean than the single scans. However, the means of the K, values that flashes

propagated through were near zero for both 5-RHI mean scans and single scans, with a
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slight positive bias on the order of 0.2 deg km™. This suggests that flashes propagate
through weak positive Kp,p values, as seen visually earlier in the analysis.

Figure 44 shows a histogram of the values of K, for the 5-RHI mean scan and
closest single scan prior to the flash at the location of the initiation point. The 5-RHI
mean had a mean initiation K, value of 0.053 deg km™ and the closest single scan
had a mean initiation Kp,p value of 0.042 deg km™. Both of these values are very close
to zero, suggesting that flashes initiate where there would be some electric fields to
rotate particles to 45°, but not necessarily the strongest electric fields as would be
expected in the more negative Kpp regions. It is possible that other flashes are
interfering with the K fields prior to the flash being analyzed. The 5-RHI means
depict the most slowly varying K,,p signatures over an 80-second period, but rapidly
changing areas are smoothed out or simply not captured by the radar.

Another factor of note are the Z values in the negative Kj,p regions. Figure
45 shows a time series of Zi during the period when it was reliable. It was found that
the mean Z,, was approximately 0 dB for both K, regions, suggesting that the
particles in these regions were in fact ice crystals and not conical graupel. This
supports the concept that negative signatures in Kjp are due to vertical alignment of

ice crystals induced by electric fields.

4.2. Kpp Structure and Evolution of Oklahoma Squall Line
Figures Figure 46-Figure 49 show the K,p fields of the Oklahoma squall line
as it progressed southward from the radar. These figures were picked to illustrate the

various characteristics of the negative K, regions as the squall line progressed.
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One detail of note is that the convective K, region that was well established in
the Florida squall line was often absent in the Oklahoma squall line. Even in Figure
48, there appears to be a developing negative Kj,p region ahead of the main reflectivity
maximum, but this is actually the north (upshear) side of a new reflectivity maximum
developing aloft. This may be due to the environment and propagation speed of the
Oklahoma squall line compared to the Florida squall line. The Florida environmental
wind was weak, the squall line propagated slowly, and the individual cells were close
to stationary, moving parallel to the convective line. This may have caused some
charged particles to be advected both behind and a little ahead the squall line’s
convective line. The Oklahoma environmental wind was strongly westerly and veered
with height in the low levels. Additionally, the Oklahoma squall line propagated twice
as fast as the Florida squall line with the individual cells moving rearward away from
the convective line. It is possible that charged particles were advected toward the
stratiform region and the upper level flow did not advect a significant amount of
charged particles ahead of the convective line. Without sufficient amounts of charged
particles ahead of the convective line, electric fields would be weak and negative Kjp
would not appear in this region.

Another interesting detail is that the transition Kjp region was often broken
into smaller pockets and was not as contiguously elongated as in the Florida squall
line. This is possibly due to the faster propagation speed of the Oklahoma squall line
extenuating the spacing between individual updraft cells. But it also appears that the
distribution of charging within the Oklahoma squall line was different from the Florida

squall line. For much of the time it was sampled by SR2, the squall line had relatively
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weak reflectivity above 6 km altitude. Hence, there may have been less graupel aloft
in the part of the Oklahoma squall line sampled by SR2 than was in the part of the
Florida squall line sampled by SR2. Both early (Fig. 47) and then late (Fig. 50), the 40
dBZ contour extended to greater altitudes and the negative KDP region was more
extensive than for the times shown in Figs. 48-49.

Additionally, as the cells within the Florida squall line were nearly stationary
with respect to the ground, it is possible that the transition zone Kjp region from the
Florida squall line was the conglomeration of smaller negative Ky, regions that would
normally be associated with individual cells like in Figures Figure 47 and Figure 48.
Individual updrafts would generate ice crystals, supercooled droplets, and graupel that
are the necessary ingredients for charge separation. It is possible that the resulting
high-density charged particles remained mostly with their original cell while the
lower-density particles were advected rearward consistent with the large, smooth
sloping charge region in the conceptual models of Biggerstaff and Houze (1991a) and
Stolezenburg (1998a) and consistent with the observed transition zone Kpp region in
the Florida squall line.

One way to test if there was a simple relationship between negative Kjp areas aloft
and precipitation-sized hydrometeors within individual cells is to examine correlations
between the size and magnitude of the negative Kjp regions and the reflectivity

maximas associated with the cells.
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4.3. Area Analyses of Kpp and Reflectivity in both Squall Lines

An attempt was made to find correlations between the negative K,p regions
and the reflectivity maxima of the squall lines. These regions were identified by
isolating the zero-Kj» and 35 dBZ contours above the melting level using multiple
Gaussian smoothing techniques. The cross-sectional areal extent, means, height,
center distance, and most extreme values for each region were computed and presented
as time-series plots in Figures Figure 50-Figure 55 for the Florida squall line and
Figure 56-Figure 60 for the Oklahoma squall line. Correlations were made between
the transition zone Kpp region and the reflectivity maxima (Table 1). Correlations
with the convective Kjp region were not included because none were statistically
significant. This may be due to the fact that the convective K, region was not always
present and fluctuated strongly. However, some of the correlations between the
transition zone Kpp region and the reflectivity maxima were statistically significant.

The areal extents of the reflectivity maxima and transition zone K, region had
a moderate correlation for both cases: 40.7% in Florida and 77.3% in Oklahoma. This
implies that the transition zone K region grew as the reflectivity region grew to a
certain extent. Such a pattern is somewhat illustrated in Figure 50 and Figure 56.
While the lower-frequency inflections do seem to follow each other loosely, the
correlation is not obvious. The development of a new cell may cause a growth in the
negative K,p region because it would have created additional charge separation and
more ice crystals to be tilted in the electric field. However, reflectivity is most
strongly affected by larger particles. Higher reflectivity would not necessarily indicate

that more ice particles are being injected into the upper levels, but possibly larger
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ones. If lower density charged particles did develop in the new cells, the increase in
upper level divergence induced by a new cell would advect smaller particles into the
transition zone along trajectories as described by Biggerstaff and Houze (1991a).
This would lead to more extensive charge regions and a growth in the transition zone
Kpp region. Unfortunately, it is not possible to accurately determine the size
distribution of cloud ice particles from radar reflectivity and verify that this is the
reason for the areal extent correlations.

The mean values in both regions had weak correlations in both cases. The only
statistically significant correlation was achieved by lagging the Kjp time series by
7.65 minutes, and the correlation was still only -43.5%. The inverse correlation could
be explained by the fact that an increase in reflectivity could suggest an increase in
particles. This could cause more charge separation through collisions, which would
lead to increased electric fields and the negative Kjp region. Thus, an increase in
reflectivity value could lead to a decrease in K,p value. However, the correlation is
weak and it was hardly present in the Oklahoma case. This inverse correlation is
somewhat apparent in Figure 52, where the Kj,p y-axis has been flipped to more easily
see the peaks and valleys that align. Even visually, there appears to only be a weak
relationship.

Mean height had moderately-high correlations of 57.9% and 83.8% for the
Florida and Oklahoma cases, respectively, without any time lag. This would suggest
that descending reflectivity maxima lower the charge region through the life cycle of
the cell. The oscillation in heights due to new cells developing aloft can be seen

visually in Figure 53 and Figure 58.
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Mean distance had high correlations above 90% in both cases without time lag.
This is because both the reflectivity maxima and transition zone Kj,p region
propagated with the storm.

Most extreme values of each region had almost no correlation. It is likely that
many complex processes could cause large local fluctuations in reflectivity without
affecting the storm electric fields.

Overall, there was at least moderate correlation between the transition zone
Kpp region and the reflectivity cores in areal extent, mean height, and mean distance.
Thus, it is reasonable to entertain the possibility that the transition zone Kpp region
was associated with or affected by individual convective cells. However, the
evolution of electric fields may change at a faster rate compared to updraft cell life
cycles. While there may be a link in the long-term fluctuations of both features, the
long term signal experienced high frequency fluctuations as a result of other processes.
These may include microscale charging mechanisms, mixing from cell interactions, or
affects from non-sampled features adjacent to the RHIs. Such difference in timescales
between the Kj,p region and reflectivity may also have prevented higher correlations.

Additionally, reflectivity may be too simple of a measurement to depict the
amount of graupel, ice crystals, or supercooled water droplets available for interactions
to cause charging. A possible way to achieve higher correlations would be to find how
many of each type of hydrometeor exist in the upper portions of the updraft region.
Unfortunately, size distributions are difficult to compute for frozen particles due to the
low dielectric factor which limits the utility of differential radar reflectivity for

estimating particle size distributions. Moreover, cloud particles do not have sufficient
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size to significantly affect radar reflectivity. It may be possible to look at graupel
volume using a dual-pol hydrometeor classification algorithm, and correlating that
with the negative Kpp regions. A hydrometeor classification analysis would be
tedious to perform using this dataset since Z, had a non-steady bias, but it could
possibly be better related to the charging better since graupel-ice collisions is a
significant mechanism for charging in the convective region (e.g. Saunders 1993).

Most correlations were not strong for this study, but improvements could be
made to the methods in future studies to possibly obtain stronger relationships and to
better evaluate how individual convective cells are related to the physical

characteristics of the negative Kjp regions.
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Chapter 5: Discussion

5.1 Kpp and Lightning Flashes

Thirty-eight of the forty-six flashes propagated along contours in Kjp, usually
initiating in an area of near zero Kpp in or adjacent to a major negative K region and
propagating into positive Kjp values that surrounded the negative K,p area.

Initiation is expected to occur in the area with the largest electric fields (e.g.
Kasemir 1960; Leob 1966; Mazur and Ruhnke 1993, 1998). The strongest electric
fields can orient larger particles (Weinheimer and Few 1987). Since thunderstorm
charge regions are believed to be predominantly horizontally stratified (e.g. as in the
squall line charge conceptual model in Stolezenburg et al. 1998a), electric fields are
assumed to have the strongest component in the vertical direction. Strong vertical
orientation of particles in the upper area of clouds prior to a flash has been observed
by Krehbiel et al. (1996) and others.

In this study, lightning did not always initiate in the region of strongest vertical
orientation, which presumably would be associated with the strongest electric field.
The average Kpp value in the 5-RHI means associated with the initiation point was
0.053 deg km™ (Figure 44), and while near zero K, values indicate some (~45°)
vertical tilting of ice crystals, it was not the strongest vertical alignment signature that
was observed. The conceptual model in Figure 18 suggests the zero K, contour
around the negative Kjp region is not where the maxima in electric field would be
located. Instead, the initiation points appear to be farther into the positive charge
regions. It is possible that the electric field and charge regions changed too drastically

prior to the flashes to be depicted in the 5-RHI means. Moreover, the 3-km scale of

55



the least-square fit window in computing K, may have smoothed the gradients
between negative and positive Kpp regions, making it difficult to infer too much about
the magnitude of the electric field at the initiation location. However, it is interesting
that initiation points occurred inside or adjacent to the dominant negative K,p regions
depicted in the 5-RHI means. This suggests that the broader scale character of the
negative Kpp region and implied electric fields did not change too drastically prior to a
flash.

Flash channels were found to propagate through positive K, values usually
surrounding the negative Kjp region. The mean K,p value that flashes propagated
through was 0.242 deg km™ (Figure 69), and all but three flashes averaged propagating
through positive Kj» values. This is consistent with the conceptual model in Figure
18 since zero and positive K,p contours around the negative Kpp region correspond to
regions of changing and weaker electric fields than the maximum. Though the 1-D
approximation to Gauss’ Law (Eq. 2), this corresponds to a region of high charge
density. Lightning propagates through high charge density regions (Kasemir 1960,
Mazur and Ruhnke 1998, Maggio et al. 2005, Marshall et al. 2005, Lund et al. 2009).
However, flash channels did diverge from zero-K,p contours and branch well into the
positive K,p regions. According to (Eqg. 2) if there is non-zero charge density, then the
electric field must be changing with height. However, electric fields can still change
with height in a region of uniform charge density without becoming strong enough to
rotate ice crystals. This is conceptualized in the vertical profiles of electric field and
charge density in Figure 18. There is significant positive charge density aloft even in

the region where electric fields do not change much with height.
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It should be noted that flash leaders seek out the highest charge densities in a
local area relative to the flash leader. A flash leader depletes the charge of a region it
enters and alters local electric fields since lightning can be modeled as a charged
conductor. This allows a flash leader to seek regions of charge that are locally high,
even if they are not the greatest charge density in the squall line. Experiments by
Williams et al. 1985 revealed that lightning jumps from charge region to charge region
once consuming charge locally. Recent lightning modeling simulations have produced
relatively realistic flash behaviors by allowing flash leaders to alter local electric fields
and charge regions as they propagate (Mazur and Ruhnke 1998, MacGorman et al.
2001, Mansell et al. 2002, Mansell et al. 2010). Indeed, lightning can propagate
through regions of positive Kj,p values aloft, which it is hypothesized may contain
only locally rich pockets of charge.

The eight flashes that did not propagate around a negative K, region were
generally different from those that did. Five of the eight flashes initiated and/or
propagated along the edge of the clouds and K, field (Figure 61-64, 66-67). The
flashes may have propagated through charge in the screening layer of clouds. The
screening layers were not diagnosed by the radar K, field for several reasons. First,
filtering of K,p on pyyy removed most edge values. Second, computing Kpp from ¢pp
using a 3-km wide least squares fit led to erroneous values when ingesting noisier ¢pp
values on the edges and outside the cloud. This made it difficult to separate electric
field effects from data uncertainty. Third, screening layers are thin, based on inferred
measurements from electric field meters (e.g. Vonnegut et al. 1962, Marshall et. al.

1989, Marshall and Rust 1991) and may be weak compared to the magnitudes needed
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to tilt ice crystals. Fourth, fewer crystals on the edge of the cloud would lead to less
rotation of ¢,p and there would not be precipitation-sized particles present to back-
scatter the forward-scatter phase shift if it did occur. Many of the charged particles in
the screening layer are aerosols, which would not be observable by cm-wavelength
weather radars even if the electric fields were strong.

One of the remaining three flashes was a bidirectional cloud-to-ground flash
(see Figure 67), structured with the upward branch extending into a negative charge
region, and the downward branch extending to the ground through positive charge.
Both branches extended through mostly positive Kjp values; however, the signature at
this altitude does not indicate that electric fields were weak. Since the melting level
was at around 6 km in the convective region, the downward propagating branch was
extending through rain, which would cause positive Kjp values since falling rain drops
are oblate spheroids. The upward branch did follow the zero-K,p contour like other
flashes with a positive bias, but this is again close to the melting level. It is possible
the particles were either liquid water, coated in liquid water, or precipitation-sized
aggregates. Thus, it is not possible to attribute the positive Kjp values to horizontal
alignment from weak electric fields in this region.

The final two flashes (see Figures Figure 64 and Figure 68), did propagate in a
manner to avoid negative Kpp regions but mostly travelled through regions of positive
Kpp. The first flash (Fig. 65) initiated near a small, negative, convective Kjp region
with several of the LMA sources propagating around the negative K,p region, as in the
other analyzed flashes. But here, there was also a cluster of sources along the front-

edge screening layer and several LMA sources that appeared to extend rearward
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towards the transition zone negative Kpp region. This combination of flash activity
gave an unusual appearance to the propagation of the flash relative to the overall Kpp
field. In the later flash (Fig. 69), the flash activity was also diverse. The flash initiated
at a relatively low altitude (about 6.8 km) near the bottom edge of the forward part of
the transition zone negative K,p region. Much of the negative leader navigated around
regions of negative K that sloped rearward through the transition zone. However,
one branch of the negative leader propagated forward and tapped into the forward-
edge screening layer. Meanwhile, the positive leader propagated into inferred negative
charge in regions of relatively high radar reflectivity that would mask any electric field
effect on Kpp. The complex nature of these two flashes made generalization about the
relationship between Kj,p and flash structure difficult to ascertain.

As mentioned earlier, one of the biggest problems with analyzing flashes
projected onto K, RHIs is the time difference between the evolution of electric fields
and the scan time. This is problematic not only because of electric fields changing
rapidly prior to and following a flash, but also because of contamination from other
flashes. Several flashes in this study’s dataset which met the analysis criteria outlined
in Chapter 2 had other flashes in the same region of the squall line within a few
seconds prior to or following the analyzed flash. Thus, the radar-observed changes in
Kpp may not have been due entirely to the specific flash being analyzed. It is likely
the radar did not depict rapid changes in the electric field due to the difference in scan
time and electric field evolution time. Measurements by Mendez (1969) and Hendry

and McCormick (1976) found that ice crystals reorient to horizontal in less than a
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second, and return to vertical in a few more seconds or less. Fifteen-second RHIs
cannot capture such rapid changes.

To compensate for the mismatch in sampling frequency compared to the
frequency of the phenomena, the flash structures were compared to 5-RHI mean fields.
This time and spatial average helped delineate the stronger and slower varying part of
the negative Kj,p region. Overall, the lightning propagated as expected within the 5-
RHI means, but not perfectly.

Another factor that negatively affects the analysis is the extent to which it is
reasonable to apply horizontal symmetry of K, signatures along the convective line.
The east-west distance between a K, measurement over ICLRT between the 8.5 and
12.5 azimuth scans was 0.77 km, and between scans, there were occasionally visible
differences in the radar signatures simply from scanning in slightly different directions
(especially early on in the squall line’s life cycle). The assumption was that 5 km from
the radar beam was the extent of the horizontal symmetry. It is very possible that the
Kpp ice-alignment signatures vary spatially between individual cells in the squall line.
The spatial variability in K,p should be investigated using several radars to sample
RHIs through a squall line from different locations along the line and comparing the
signatures.

One assumption made in this study is that electric fields are primarily vertically
oriented, hence, the vertical alignment of ice crystals and the focus on negative Kpp
signatures. However, on the microscale, several modeling studies have indicated that
electric fields point in many directions in thunderstorms due to complex charging,

turbulence, and lightning dissipating the charge non-uniformly (e.g. Mansell et al.
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2005, Mansell et al. 2010). Detection of horizontal electric fields is not possible with
the use of Kjp because horizontal alignment of crystals in horizontal electric fields is
the same alignment as non-electrified ice crystal aerodynamically forced orientation.

The macroscopic examination at how flashes compare to the Kj,p fields in a
squall line reveals that the lightning flashes are generally associated with the dominant
regions of vertically aligned crystals and generally propagate around the negative Kpp
region with a positive bias throughout the life cycle of the squall line. To draw
definite conclusions on how individual flashes affect ice crystal alignment and Kjp
signatures, phased array radars with much faster scanning capabilities would be
needed.

The motivation for filtering out lower values of pyy, on ¢pp When computing
Kp,p was to remove the effects of resonance. For C-band radars like SR2, backscatter
resonance occurs when the radar beam passes through particles 4 mm in diameter or
larger (e.g. Tromel et al. 2013). This causes a rapid increase in differential phase in
the back-scattered signal. When the beam passes through a region of large particles
and emerges on the other side, the resonance effects stop and there is an apparent
decrease in ¢ppp. This causes a negative Kjp signature on the far side of the region of
large particles. This is seen above the melting layer and on the far side of convective
cells. pyy is relatively low ( < 0.9) in the melting layer, and filtering out those values
from ¢pp also removes some of the anomalously high values caused by resonance.
Interestingly, the negative Kjp region above the melting layer was a little weaker, but
still present after the filtering up to 0.97 (as seen in Figure 16). This could mean that

these values may be partially the product of electric fields near the melting layer,
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which have been measured by electromagnetic field meter soundings (e.g.
Stolezenburg et al. 1998a). Willis and Heymsfeld (1989) found that cloud ice crystals
were present just above the melting level in a similar squall line observed over
Oklahoma, which could be tilted in the electric fields.

Resonance does pose a problem in analyzing Kpp in squall lines with distinct
spacing between cells (such as the Oklahoma squall line) because it becomes difficult
to determine which negative Kj,p signatures are a product of resonance and which are
due to electric fields. The transition zone Kjp region in both the Florida and
Oklahoma squall lines tended to be located on the near side of the cells and would not
have been affected by resonance from convective cores. On occasion, the convective
Kpp region was in the locations that may be affected by resonance. However, in the
Florida squall line, this was also a region of flash initiation and propagation. Thus, it
is not likely that negative Kjp region is simply an artifact of resonance. In the
Oklahoma squall line, however, many negative K,p regions between cells looked as
though they could be associated with resonance, while others were above and on the
near side of the cells. Without LMA data, it is not possible to discern if these were
also electrically active regions. More case studies would need to be collected to draw

conclusions as to the electrical activity between cells.

5.2 Kpp Evolution and Driving Mechanisms
This evolution of the K,p regions with the squall line evolution is displayed in

the Kpp evolution conceptual model in
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Figure 70. The structures are based mostly on the 5-RHI mean fields and multi-flash
composites in the Florida squall line; though, the incorporation of individual
convective cell structures was influenced by the 5-RHI mean fields of the Oklahoma
squall line.

In the formative stage of the Florida squall line, there are two convective Kjp
regions, one upshear (that eventually becomes the transition zone Kjp region) and the
other downshear, which has been referred to in this study as the convective, negative
Kpp region. Initially, these two regions are nearly symmetric around the convective
core, assuming the upper level flow is dominated by the updraft divergence.

In the intensifying stage, the squall line begins to propagate downshear and
new cells developed from low-level convergence along the gust front. The transition
zone Kpp region starts to elongate as new cells form and additional charge advection
occurs from the mature cell updraft. The convective K, region shrinks as a more
dominant front to rear flow (from vertical transport of storm-relative low-level
momentum) reduced the charge advection ahead of the convection. Additionally,
increased subsidence beneath the forward anvil sublimates some of the charged ice
crystals, decreasing the charge region in this area. As the melting band developed, so
did the negative Kjp layer above the melting level, which may possibly be due to
resonance effects, but could also be due to in situ charging mechanisms.

In the mature stage, the transition zone Kjp region elongates even more and
slopes well into the transition zone Kjp region and a little into stratiform region. This
IS in response to charge particles and in-situ charging in new cells merging with those

of old cells and strong, deeper, front-to-rear flow through the squall line allowing for
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more upshear charge advection as the mature-stage updrafts are tilted rearward by
excessive horizontal vorticity gained through buoyancy gradients along the cold pool
(Rotunno et al. 1988). The convective Kj,p region is an inconsistent feature in this
stage, as it merges with the transition zone K, region shortly after developing above a
new convective cell, possibly due to in-situ charging.

In the dissipating stage, the transition zone and convective Kjp regions merge,
weaken and descend. The gust front surges ahead of the convective line, reducing the
depth of forced lifting and generating few and weaker new cells. Hence, charge
advection weakens and existing charged particles fall out of the squall line.

Overall, multi-flash composites revealed that the transition zone Kjp region
elongated horizontally as the squall line matured. Simultaneously, flashes also
elongated horizontally and continued to surround the transition zone Kjp region. In
both squall line cases, the convective Kpp region weakened in the squall lines’ mature
stage, and in the Florida case vertically dominant flashes became less frequent in the
mature stage. This horizontal elongation of negative K, signatures and associated
flashes may have been related to the horizontal spreading of charge throughout the
squall line.

The graupel-ice non-inductive charging mechanism in thunderstorm updrafts is
thought to provide much of the charge separation that produce observed electric fields
in the convective region (e.g. Saunders 1993, MacGorman and Rust 1998, Lund et al.
2009). Updrafts in ordinary thunderstorms and low shear environments distribute
charge quasi-symmetrically because the flow out of the updraft has no bias in its

direction (MacGorman and Rust 1998). This was depicted in the symmetry of the
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negative Kpp regions in the Florida squall line during its formative stage. However, as
the squall line intensified and began to propagate more quickly, the flow would have
been directed more toward the rear of the storm, as depicted by the 2-D conceptual
model for trailing stratiform squall line systems from Houze et al. (1989). Thus, most
charge that separated in the updraft would have been advected to the rear of the storm
instead of ahead of the storm’s motion. However, charge advection may not have
been the only charging mechanism responsible for electric fields that caused the
transition zone Kpp region. Depositional-growth charging (e.g. Dong and Hallett
1992) may have played a role in developing upper level charge regions, specifically in
the stratiform region mesoscale updraft where deposition is thought to take place (e.g.
Biggerstaff and Houze 1993). By contrast, however, the transition zone is an area of
subsidence, causing depositional growth to be more limited compared to growth in the
stratiform region (Biggerstaff and Houze 1993).

Another charging mechanism that could have caused the electric fields that
produced the transition zone Kjp signature would be the melting charging mechanism
(e.g. Stolzenburg et al. 1994, Shepard et al. 1996). This would result in a region of
negative charge above the melting layer region bright band as seen in studies like
Stolzenburg et al. (1998a). Similarly, in this study, it was found through charge
analysis that flash branches propagated through a negative charge region just above
the melting layer. One caveat worth mentioning though is that this negative charge
region sloped upward toward the convective region. It is not certain if melting was
occurring along this slope. The convective region would have moist adiabatic ascent

that would have increased the altitude of the melting level. The transition zone would
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be associated with dissipating convection that would have some residual positive
buoyancy but also negative buoyance associated with sublimation and evaporational
cooling in the downdrafts (Byers and Braham 1949). It is not clear how perturbed the
melting altitude would be through this region and what consequence that would have
on the slope of the negative transition zone K,p region.

Despite complications associated with different charging mechanisms, the
primary feature worth noting is the general evolution of the vertical alignment, which
started off as two isolated pockets and grew substantially toward the stratiform region
with maturity. This was followed by a weakening in Kjp as the squall line dissipated.

The Oklahoma squall line negative K, structure differed from the Florida
squall line. There was a significantly less sloping of the transition zone Kpp in the
Oklahoma squall line, which may be due to the propagation speed and spacing
between cells and the vertical distribution of precipitation-sized hydrometeors. It is
possible that the faster propagation prevented the charge regions from coalescing and
they remained as pockets tied to individual cells. However, this implies that in situ
charging was dominant over charge advection processes as advection would tend to
more evenly distribute the charged particles. Given the relatively high correlation
between the heights of the transition zone K, region and reflectivity maxima, it
would seem that the in situ charging associated with convective cell lifecycle was an
important part of the overall Kjpstructure. Additionally, there was moderate to high
correlation between the areal extents of the transition zone K region and reflectivity
maxima. This again suggests that the development of new cells led to a growth in the

negative Kpp region.
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However, it should be noted that these correlations do not depict the correlation
of individual cells with individual pockets of Kpp. Only the most dominant
reflectivity maxima above the melting level was correlated with the most dominant
Kpp region in the transition zone. There was also a lot of missing data in the
reflectivity core due to technical issues with selecting the regions and the fact that the
35 dBZ contour did not always extend much above the freezing level. It should also
be noted that the melting level used for this analysis was the level of the bright band,
not the melting level in the convective region. This was chosen because of technical
limitations in selecting the reflectivity maxima with a low reflectivity threshold.
Additionally, there would be even more missing data since the storm’s 35 dBZ contour
max height fluctuated from 4 to 12 km throughout cell life cycles. The melting level
in the convective region would have been around 6 km. This was found by following
the moist adiabat on a sounding with a surface temperature of 30 °C and dewpoint
temperature of 21 °C at 2007 UTC. The main problem with assuming the melting
level is 4 km is that the reflectivity contours do not capture just ice crystals. This is
also limited by the fact that ice crystals often show up in reflectivity values less than
35 dBZ (e.g. Pokharel and Vali 2011). Thus, it would be inaccurate to correlate the
amount of ice generated by an updraft cell as depicted by reflectivity greater than 35
dBZ to the electric fields as depicted by the transition zone Kjp region. However, the
areal extent data does show that an influx of precipitation sized particles is moderately
correlated to vertical alignment signatures. This could imply that the reflectivity
maxima are depicting collisions of precipitation particles in the updraft. A better

method to use for determining which storm attributes lead to electric fields would be
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to use hydrometeor classification algorithms (c.f., Park et al. 2009) to relate ice or
graupel content to the negative K, regions.

Overall, the transition zone Kpp region in the Oklahoma squall line did not
evolve the same way as in the Florida case. It should be noted that the convective Kjp
region was much weaker in the Oklahoma squall line, possibly due to stronger front-
to-rear flow preventing collection of charge above and ahead of the convective region.
Indeed, it is possible that the negative K,p regions are related to the degree at which

the flow within the storm produces sufficient charge advection.

5.3 Future Work

This study identifies a relationship between lightning and K p, but there are
further questions that need to be investigated. Future work should investigate the 3-D
structure of K,p. Conceptual models like Stolzenburg et al. (1998a) depict charge
regions as horizontally stratified parallel to the convective line by assuming 3-D
symmetry. The extent of this symmetry could be tested by using dual-pol radar to
sample parallel to a convective line as it passes, or multiple radars sampling
perpendicular to a convective line from different locations. This could show that
charge regions are well mixed behind a convective line. In contrast, it may reveal
pockets of Kj,p associated with individual cells in the line that get mixed out as they
move into the stratiform region.

Another topic that needs investigation is the effects lightning has on Kpp. Itis
still not known whether the entire Kj,p field fluctuates in response to a flash, or if

lightning only causes changes in certain areas. This can be tested using a phased-array
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or imaging radar and taking rapid volumetric samples though the upper portions of
cloud systems. This could reveal how spatially extensive charge regions are depleted
by a single flash. Furthermore, this study did not address the impacts of cloud-to-
ground flashes. It remains unclear to what extent the negative Ky, aloft is affected by
the dissipation of charge in the lower portions of the cloud.

In addition to the effects of individual flashes on the K}, field, it would be
important to study the evolution of the negative Kj,p region and determine the
processes responsible for the implied electric fields. The area analysis done in this
study was limited by the fact that reflectivity is not a good depicter of the presence of
charging mechanisms. A better technique would be to use hydrometeor classification
to diagnose the concentrations of graupel and ice. This would be a better indication of
where charge separation is occurring within the squall line, since the graupel-ice
collision mechanism is thought to be responsible for most of the charging that occurs
in deep convection (e.g. MacGorman and Rust 1998). The locations of these
hydrometeors in relation to K, could hint at the electrical processes responsible for
electric fields in various locations of the squall line. Additionally, it could reveal
whether or not electric fields are dependent on individual convective updrafts.
Previous studies such as Lhermitte and Krehbiel (1979) have linked flash rates to
increased updraft velocities and increased reflectivity from the development of new
cells. Further investigation could reveal exactly how convective updrafts affect
electric fields.

A motivation for gathering more data on the structural relationship between

Kpp and lightning is to someday apply this relationship to operations. If there is in
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fact a relationship between the negative Ky region and lightning, then it may be
possible to diagnose lightning cessation in thunderstorms. Understanding when storms
cease electrical activity could allow for a way to determine when it is safe to resume

outdoor activities.
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Chapter 6: Summary and Conclusions

The negative Kpp signatures from RHIs through a Florida squall line were
compared to flash channel locations. It was found that 38 of 46 flashes which met this
study’s analysis criteria initiated around the dominant negative Kjp regions in the
upper levels in the transition zone and ahead of the convective line. Flashes then
propagated through weakly positive K, values along the zero-Kjp contours
surrounding the negative K,p regions. These positive K,p values may have been
regions of weak electric fields and high charge density. Flash channels tended to be
vertically dominant in orientation early in the squall line’s life cycle, but became more
horizontally dominant and more prevalent around the transition zone Kjp region as the
squall line matured. This was matched by how the transition zone K, region
elongated as the squall line entered its mature phase. Such elongation may have been
due to the advection of charged particles into the stratiform region, or different
charging mechanisms (such as melting charging or deposition-growth charging)
becoming significant in response to the development of the stratiform region.

The negative Kpp signatures from RHIs through an Oklahoma squall line were
compared to the Kj,p signatures from the Florida squall line. It was found that the
Oklahoma squall line lacked a consistent convective Kpp region. It was also found
that the transition Kj,p region often appeared more as pockets than a single region, and
did not slope downward toward the stratiform region. These features could be
attributed to the faster propagation speed causing dominant front to rear flow
increasing updraft cell spacing, and in situ charging with individual convective cells.

These may have lessened the advection of charged particles ahead of the convective
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line compared to the Florida squall line, and explains the absence of a convective Kjp
region.

An area analysis was performed and found moderate correlations between the
areal extents and mean heights of the reflectivity maxima and transition zone Kpp
regions in both squall lines. This indicates that individual convective cells may
contribute to the horizontal extent of electric fields. In the Oklahoma squall line, it
appeared as though some individual cells induced an enhancement in the negative Kjp
region, or a separate negative Kpp pocket. Thus, the results of this study suggest that
squall line electric fields may be tied to the life cycles of individual convective pulses
before being smoothed by advection through the transition zone.

Indeed, it appears plausible to monitor thunderstorm electrification through the

use of Kpp, but faster sampling is needed to accurately predict individual strikes.
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Tables

Table 1. Correlations between variables of the reflectivity maxima and the
transition zone Kpp region. Associated P-values and lag times are to the right of
the correlations. Two correlations were computed for each variable in each case:
one without lagging the Kp region time series, and the other with the amount of
lag that maximizes the correlation.

CORRELATIONS: Between REF Maxima

and 5-RHI Means of Transition Zone K p Region

Florida Oklahoma
Coor P-val Lag Time (min) | Coor P-val Lag Time (min)
Areal 407% | 5x 107'* |o 77.3% | 2x 10727 | 0
Extent | 40705 | 5x 1072 | 77.3% | 2x 10727 | 0
Mean 12.5% 0.041 0 -195% |  0.029 |0
Values | 43500 | 2x 1072 | 765 -22.1% 0.013 0.28
Mean 57.9% | 4x 107%° |0 83.8% | 3x 1073* | 0
Height | 5949, | 2x 1072° | 0.85 85.9% | 5x 10737 | 0.57
Mean 96.4% | 8x 107'%% | 92.6% | 6x 1075* | 0
Distance | 96496 | 8x 1071 | 93.5% | 2 x 107%¢ | 0.57
Extreme | 3.5% 0.566 0 37.1% | 2x 1075 |0
Values 5.1% 0.413 0.28 437% | 5% 1077 |0
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Figures

N2
CININNER  Dey, Time: 278, 17:63:8 EST
135 100 Elev.Azin: 19.2 , 167.7 a

Figure 1: Dual-polarimetric scans prior to a lightning discharge in the storm.
From left to right and top to bottom: co-polar reflectivity, correlation
magnitude, amplitude, depolarization rate, alignment direction, and orientation
plot. Feature of interest is in the alignment direction, where there is a visible
coupling of changing orientation in the upper areas of the storm. Adapted from
Krehbiel et al. (1996)
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Figure 2: Same as Figure 1 except after the flash discharge. Feature of note is
that the alignment direction pattern from Fig. 13 has disappeared. Adapted from
Krehbiel et al. (1996)
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Figure 3: Cross-section of an idealized leading-line/trailing-stratiform (TS)
squall line with associated hydrometeor trajectories and mesoscale flows. Adapted

from Biggerstaff and Houze (1991a)
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Figure 4: Cross-section of charge structure in ordinary cell thunderstorm with a
single updfraft and downdraft, and no stratiform region. Plus signs indicate
positive charge. Minus signs indicate negative charge. 0°C and -25°C levels
indicated. Adapted from Stolzenburg et al. 1998c.
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Figure 5: Line-normal cross-section of idealized TS squall line and associate
charge regions with convective region on right and stratiform region on left. Plus
signs indicate positive charge region, minus signs indicate negative charge region.
Small arrows indicate convective flows and large arrows indicate mesoscale flows.
Adapted from Stolzenburg et al. (1998a)
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Figure 6: Sounding launched from Jacksonville, FL at 12z on July 17, 2012.
Right black line is vertical temperature profile, left is vertical dewpoint
temperature profile. Plot was acquired from the University of Wyoming website.
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Figure 7: 500mb height analysis of the contiguous USA on 12z on July 17, 2012.
Isoheights denoted by black contours and temperature denoted by red dashed
contours. Plot was acquired from the SPC website.
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Figure 8: (Listed left to right, top down) 88D PPIs of reflectivity from the KJAX
radar at 190018 UTC, 195205 UTC, 201100 UTC, 204423 UTC, 211215 UTC, and
211215 UTC. The first fifth panels are zoomed in to the squall line where the
distance between ICLRT and SR2 was 11 km. The sixth panel was zoomed out to
show northern Florida and southern Georgia and illustrate the size of the squall

line.
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Figure 9: Same as Figure 6, but launched from Amarillo, TX at 00z on
September 18, 2016.
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Figure 10: Same as Figure 7, but at 00z on September 18, 2016.
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Figure 11: Same as Figure 8, but data is from KTLX radar in Oklahoma
depicting the Oklahoma squall line at 0845 UTC. Blue line is approximate scan
direction of SR2.
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Figure 12: RHIs of reflectivity (left) and Kpp (middle), and PPI of 88D
reflectivity data (right) at times closest to 194847 UTC, 201704 UTC, 204648
UTC, and 210236 UTC (listed from top down) on July 17, 2012. Blue line in right
panel represents radar beam. Each panel depicts the squall line in its (listed from
top down) formation stage, intensifying stage, mature stage, and dissipating stage.
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Figure 13: RHIs of reflectivity (left) and Kpp (middle), and PPI of 88D
reflectivity data (right) at times closest to 075155 UTC on September 18, 2016
near Blanchard, OK. Blue line in right panel represents radar beam. Squall line
was in the mature phase at the time of scanning with convective line propagating
southeast.
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Figure 14: RHI of pyy sampled at 084329 UTC. Melting level can be denoted by
the elongated dark reds and browns closer to the radar at about 3.5 km AGL.
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Figure 15: Kpp field after computed from a filtered ¢pp on values of py,, less
than 0.95. Negative Kpp region aloft and melting layer Kpp region remain
present.
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Figure 16: Same as Figure 15, but filtered on py,, less than 0.97. Negative Kpp
region aloft and melting layer Kpp region remain present.
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Reflectivity RHI — 083424 UTC
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Figure 17: RHIs taken at 083424 UTC on September 18, 2016 pointing south
through the Oklahoma squall line. Top is reflectivity, bottom left is Kpp with a
filter on pyy values less than 0.8, and bottom right is Kjp with a filter on pyy less
than 0.95. The black contour is of the 50 dBZ contour and the zero-Kpp contour
surrounding the negative Kpp region.
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E

Figure 18: Conceptual model relating electric fields, charge regions, and Kpp
values. The red box is a region of positive charge density (p > 0) and the blue
box is a region of negative charge density (p < 0). The black dashed line is the
zero-K pp contour, enclosing a region of negative K p represented by the blue
haze. Outside the box are Kpp values greater than zero. On the right are vertical
profiles of three different variables resulting from the charge regions on the left.
Electric field in red has an extrema at point A and changes most rapidly with
height at points B and C. Charge density in blue is zero at point D, has a maxima
at point E, and a minima at point F. Kpp in grey has a minima at point G and is
zero at points H and 1. Note that the points of max slope in electric field (B and
C) are at the same altitude as the inflections in charge density (E and F) and the
zero-Kpp points (H and I). Also note that the extrema in electric field (A) is at
the same altitude as the point of zero charge density (D) and minima in Kpp (G).
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SR2 Products - 20120717: Flash 195301.198 UTC, Scan 195247 UTC (9.5)

_Reflectivity - RHI ~ " . Kop - RHI

b. T 45 30 View of Triggered Flash | 120717 3 195301.198 UTC

53

gk

Height Above Radar Level (km)

e e P AH L ] :
3 =

10 5 ®
Distance from Radar (km) Distance from Radar (km)

Zog - RHI ) s ) ___or-RHI

weBEEES

er (o0
kam Mortn or 582

Height Above Radar Level (km)

o i ¥
Distance from Radar (km)

NEG Kop/MAX Ref Mean Height

......

MAX Ref Mean (deg k)
NEG Kor Height (km)

Figure 19: vertically dominant flash on the convective Kpp region at 195301 UTC
overlayed on 5-RHI mean scan. Pink star shows initiation location, + indicates
positive charge region, and - indicates negative charge region. Subfigures include
(listed left to right and top to bottom) (a) reflectivity RHI, (b) Kpp RHI, (c) 3D
view of flash with radar beam line in blue, (d) Zpr RHI, (e) ¢pp RHI, (f) 88D PPI
with radar beam line in blue, (g) historgram of Kp values at flash points, (h)
timeseries of Kpp and reflectivity regions areal extents, (i) timeseries of Kpp and
reflectivity regions mean values, (j) timeseries of Kpp and reflectivity regions
mean heights, and (k) metadata.
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SR2 Products - 20120717: Flash 195301.198 UTC, Scan 195247 UTC (9.5')
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Figure 20: Same as Figure 19 except single RHI at 195247 UTC.

SR2 Products - 20120717: Flash 195301.198 UTC, Scan 195304 UTC (10.5')
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Figure 21: Same as Figure 20 at 195304 UTC.

88

C RGBT R R R PP > ) > PP S o P g > > P S
Kor (dag k) FESTPETE P FESTEES TSP FEFTEE TSP
Time (0T0) Time wT0) Time (UTC)

Helght (e



SR2 Products - 20120717: Flash 195651.238 UTC, Scan 195636 UTC (12.5')
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Figure 22: Same as Figure 19, but for the flash at 195651 UTC.

SR2 Products - 20120717: Flash 195651.238 UTC, Scan 195636 UTC (12.5')
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Figure 23: Same as Figure 20, but for flash 195651 UTC.
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SR2 Products - 20120717: Flash 195651.238 UTC, Scan 195701 UTC (8.5)
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Figure 24: Same as Figure 21, but for the flash at 195651 UTC.
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Figure 25: Same as Figure 19, but for the flash at 202431 UTC.
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SR2 Products - 20120717: Flash 202431.533 UTC, Scan 202418 UTC (9.5')
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Figure 26: Same as Figure 20, but for the flash at 202431 UTC.
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Figure 27: Same as Figure 21, but for the flash at 202431 UTC.
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SR2 Products - 20120717: Flash 195026.15 UTC, Scan 195009 UTC (10.5')
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Figure 28: Same as Figure 19, but for a horizontally dominant flash at 195026

UTC.
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Figure 29: Same as Figure 20, but for the flash at 195026 UTC.
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SR2 Products - 20120717: Flash 195026.15 UTC, Scan 195026 UTC (11.5)
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Figure 30: Same as Figure 21, but for the flash at 195026 UTC.

SR2 Products - 20120717: Flash 203925.407 UTC, Scan 203900 UTC (8.5')
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Figure 31: Same as Figure 28, but for the flash at 203925 UTC.
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SR2 Products - 20120717: Flash 203925.407 UTC, Scan 203900 UTC (8.5)
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Figure 32: Same as Figure 20, but for the flash at 203925 UTC.

SR2 Products - 20120717: Flash 203925.407 UTC, Scan 203933 UTC (10.5)
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Figure 33: Same as Figure 21, but for the flash at 203925 UTC.
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SR2 Products - 20120717: Flash 204225.348 UTC, Scan 204200 UTC (8.5')

ivity - RHI Kop - RHI o
= S = b W g Y s S e
i
=5 ™ rr
E. 3 &
3 3 > =
3w gw s
ey -4
2 2 = o 2
Z, 2, €
§ o . 103
= 3 20
hi i 2
ER 3 3
2 . 22
3 3 45
° s Ed 10 1 ® -
Distance from Radar (km) Distance from Radar (km)
Zow - RHI dop - RHI
d. "3
W ]
E o T
£ 5.
3 3n
i i
.4 <
i i
Z; gy ]
g o § 7
3 .
%4 £
£ E
22 22
) ) it & .
& £ o SF a0 34 68 0155 100 M3 BT
5 s
k.
K oot 30 peots na net
L W F Ietan 738 e
| SESES— s t oz 3
o i g s £ £
5 2, o2 iz — —': | s a2
H H L ; 5 -§ o
§ o 3o =3 LI 3 B i
{ 3 = L3 2 L .
£ H s 2 H 2 8 ST —
-
5 o 2 2
:
O N e e s s L
Ku g k) FELE T LSS L& E LSS FEETE L LT
e 070 e tor) e 070

Figure 34: Same as Figure 28, but for the flash at 204225 UTC.

SR2 Products - 20120717: Flash 204225.348 UTC, Scan 204200 UTC (8.5')

Kop - RHI

Reflectivity - RHI
o 3

.. W o 30 View o Tiggared Fiash | 120717 o 204225.348 UTC
£ T 3
£ . - n
T ¥ 28
3 3 e
§u S
i i e
2] L £
§ B § B 10}
i i i
£ £ 2
£, £
i i -
: ; - = - i
Distance from Radar (km)
Zo - RHI o - RHI
i & 14
Eu ‘Eu
£ X
] Iu
3
§ §
i .
i @,
H
H i
2 L
£ £
s 3
S £z
. Sk )
5 10 15 d Ed ° ) 1 0
Distance from Radar (km) Distance from Radar (km)
e Woar LAA points et Nt Maan Vaive Timeseriss N
h. i
o b | 10
» o P "
= = ko £ z -
goos B o £ LE 3
REENN S, i3 i
3 wsox g ‘g £ o H i o ] 4
08| 5| Y 0.
du =3 £ [ 3 b R
o - ) EEE (2 EER.
H Y i, [ -~
. gl i ;
n
i R s TP R R I TR P
Ker (deg kamt) ST EEE TS FEL TS E S FEL LT
Time (UTC) Time (UTC) Time (0T0)

Figure 35: Same as Figure 28, but for the flash at 204225 UTC and 2 scans prior

to flash.
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SR2 Products - 20120717: Flash 204225.348 UTC, Scan 204217 UTC (9.5')
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Figure 36: Same as Figure 20, but for the flash at 204225 UTC.

SR2 Products - 20120717: Flash 204225.348 UTC, Scan 204233 UTC (10.5)
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Figure 37: Same as Figure 21, but for the flash at 204225 UTC.
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SR2 Products - 20120717: Flash 200949.723 UTC, Scan 200950 UTC (11.5')
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Figure 38: RHI at 200950 UTC of Kpp immediately prior to the scan in Figure
39. Flash overlayed was from 200949 UTC. The yellow circle represents the
region of interest in Figure 39.

SR2 Products - 20120717: Flash 201011.753 UTC, Scan 201006 UTC (12.5
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Figure 39: Same as Figure 38(b,c), but for flash at 201011 UTC. The dashed
green line is the location of the radar beam when the flash occurred. The green
arrow denotes that the radar beam was ascending. The yellow circle highlights
the region where the flash passed through the radar beam plane. The yellow
circle also highlights how the radar was scanning extreme Kpp values, which
abruptly stopped when the flash occurred.
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Multiflash Composite (195048:195326 UTC)
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Figure 40: Multiflash composite of all flashes between 195048 and 195326 UTC
superimposed on the mean of the RHIs between those times for (a) reflectivity
(left) and (b) Kpp (right). Dark red + indicates location positive charge that the
flashes propagated through, dark blue — indicates location of negative charge that
the flashes propagated through, and black dots indicate initiation points. In
panel (b), negative Kpp regions are in shades of blue.
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Figure 41: Same as Figure 40, but for flashes 200638-201137 UTC.
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Multiflash Composite (203305:203925 UTC)
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Figure 42: Same as Figure 40, but for flashes 203305-203925 UTC.
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Figure 43: Same as Figure 40, but for flashes 204917-205721 UTC.
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KDP Initiation Value Histograms
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Figure 44: Histograms of the values of Kp in the 5-RHI mean scan (left) and
closest single scan prior to the flash (right) at the flash initiation location. Red
line denotes the mean of all the initiation values, blue shading represents the

middle 2 standard deviations of initiation values.
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Figure 45: Timeseries of mean Zpg values in the negative Kpp regions 2032 -
2051 UTC. The mean is indicated by the black horizontal line.
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Figure 46: 5-RHI mean around 075051 UTC of (a) reflectivity (left) and (b) Kpp.
The far right panel (c) is data from the nearest 88D scan of reflectivity. The blue
line is SR2’s radar beam.
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Figure 47: Same as Figure 46 at 081036 UTC.
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Figure 48: Same as Figure 46 at 082335 UTC.
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Figure 49: Same as Figure 46 at 083710 UTC.
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Figure 50: Areal extent time series of the transition zone Kpp region and the
reflectivity maxima in the Florida squall line on July 17, 2012. Top panel are
computed using individual RHIs, bottom is computed using 5-RHI means.
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Area: Mean Value
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Figure 51: Same as Figure 50, except plotting the mean value of each region.

2012 July 17: Mean Values with Time (Lagged 7.65 minutes)
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Figure 52: Same as Figure 51(b), except with a 7.65 minute delay in Kpp
transposed on each other. The times on the bottom are of the time of the

reflectivity maxima. Note that the y-axis is flipped for Kp since a stronger Kpp
region contains more negative values.
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Figure 53: Same as Figure 50, except plotting the mean height of each region
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Figure 54: Same as Figure 50, except plotting the mean distance of each region
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Figure 55: Same as Figure 50, except plotting the most extreme values of each
region.
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Figure 56: Areal extent time series of the transition zone Kpp region and the
reflectivity maxima in the Florida squall line on September 18, 2016. Top panel
are computed using individual RHIs, bottom is computed using 5-RHI means.
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Figure 57: Same as Figure 56 except plotting the mean value of each region
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Figure 58: Same as Figure 56, except plotting the mean height of each region
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Figure 59: Same as Figure 56 except plotting the mean distance of each region
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Figure 60: Same as Figure 56, except plotting the most extreme value of each
region
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SR2 Products - 20120717: Flash 200650.458 UTC, Scan 200634 UTC (10.5')
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Figure 61: Outlier flash on the convective K p region at 200650 UTC overlayed
on 5-RHI mean scan. Pink star shows initiation location, + indicates positive
charge region, and - indicates negative charge region. Subfigures include (listed
left to right and top to bottom) (a) reflectivity RHI, (b) Kpp RHI, (c) 3D view of
flash with radar beam line in blue, (d) Zpr RHI, (e) ¢pp RHI, (f) 88D PPI with
radar beam line in blue, (g) historgram of Kpp values at flash points, (h)
timeseries of Kpp and reflectivity regions areal extents, (i) timeseries of Kpp and
reflectivity regions mean values, (j) timeseries of Kpp and reflectivity regions
mean heights, and (k) metadata.
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Figure 62: Same as Figure 61, but for the 200734 UTC flash.
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SR2 Products - 20120717: Flash 200818.364 UTC, Scan 200804 UTC (10.5')
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Figure 63: Same as Figure 61, but for the 200818 UTC flash.
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SR2 Products - 20120717: Flash 200949.723 UTC, Scan 200933 UTC (10.5')
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Same as Figure 61, but for the 200949 UTC flash.

SR2 Products - 20120717: Flash 202916.024 UTC, Scan 202848 UTC (9.5')
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Figure 65: Same as Figure 61, but for the 202916 UTC flash.
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SR2 Products - 20120717: Flash 203425.791 UTC, Scan 203406 UTC (12.5')
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Figure 66: Same as Figure 61, but for the 203425 UTC flash.
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SR2 Products - 20120717: Flash 203447.446 UTC, Scan 203431 UTC (8.5")
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Figure 67: Same as Figure 61, but for the 203447 UTC flash.
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SR2 Products - 20120717: Flash 204917.46 UTC, Scan 204854 UTC (10.5')
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Figure 68: Same as Figure 61, but for the 204917 UTC flash.
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Figure 69: Distribution of the mean values each flash propagated through,
including 5-RHI mean Kpp (left) and reflectivity values (right) that flashes
propagated through after initiation. Mean is denoted by the red vertical line and
the middle three standard deviations is the light blue region.
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Evolution of Negative Kpp Regions

I =Knp < O - =Ref > 35dBZ + = Pos. Charge — = Neg. Charge I

Formative Stage
» Single cell thunderstorm in weak-to-moderate
low-level sheared environment
» Charge advects and sediments around
reflectivity core, creating two regions of
negative K,p assuming outflow has no bias

UONN[OAT] WL,

Intensifying Stage
* New convective cell develops

*  Flow begins to become front to rear

» Charge advection flows dominantly
rearward

» Old cell neg Kpp region falls and elongates

* No neg Kjp region below forward anvil
due to weak charge advection, and
subsidence-driven evaporation of charged
particles

Mature Stage

* Kpp regions of old and new
cells merge and sink, creating
sloped shape

* Melting band develops
shallow layer of negative Kpp

+ Convective Kpp region
appears weaker as new cells
are less vertically oriented

Dissipating Stage

» Shallow new cells

» Convective Kpp region
merges with transition
zone Kpp region

»  Charge regions and
Kpp region descend in
altitude

Figure 70: Time evolution of a squall line with associated Kpp regions, charge
regions, reflectivity, and flows. Notable attributes of each stage are listed on the
right.
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APPENDIX: Supplemental Figures

This appendix is a record of all 46 flashes from the Florida case that met the
four analysis criteria from Chapter 2.2. Displayed are the 5-RHI mean fields nearest
to each flash described in Chapter 4.1.1, which represent the most dominant fields
preceding, during, and following each flash. Discussion regarding flashes that do not
follow the conceptual model can be found in Chapter 5.1.

The 5-RHI means are displayed chronologically. Subfigures include (listed left
to right and top to bottom) (a) reflectivity field, (b) Kpp field, (c) 3D view of flash
with radar beam line in blue, (d) Zpg field, (€) ¢pp field, (f) 88D PPI reflectivity field
with radar beam line in blue, (g) historgram of Kj,p values at flash points, (h)
timeseries of K,p and reflectivity regions areal extents, (i) timeseries of K, and
reflectivity regions mean values, (j) timeseries of K, and reflectivity regions mean

heights, and (k) metadata.
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