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Abstract 

Bridge deterioration is a prominent problem in the United States. Bridge deck and 

superstructure elements are often exposed to harsh conditions and their performance is 

critical in the overall sufficiency of a bridge. Many transportation agencies specify 

material properties, mix designs, and construction methods to create long-lasting bridges 

and reduce the possibility of deterioration for typical conditions, but there is another 

factor that may contribute to the problem: “Climate Change”. The impact of a changing 

climate may be more severe in a state with diverse climate conditions, such as Oklahoma. 

According to the American Society of Civil Engineers (ASCE) 2013 Report Card for 

America’s Infrastructure, bridge conditions in the state of Oklahoma were rated D+, 

lower than the national average of C+. Moreover, climate change is emerging as a new 

force acting upon infrastructure. Therefore, studying the impacts of climate change on 

existing bridges is necessary. The overarching objective of this research was to assess the 

impact of climate change on bridge deck and superstructure deterioration in Oklahoma 

by incorporating climate data from the Oklahoma Mesonet and bridge data from the 

National Bridge Inventory over time. Data for climate variables identified through 

investigation of factors affecting bridge deterioration were collected from Mesonet 

stations representing the different regions of Oklahoma for the 18-year time period over 

which data were available. Bridge rating records were then collected from the National 

Bridge Inventory database for bridges within approximately 50 miles of each climate 

station for the same time period. Climate data from different stations were first compared 

using statistical methods to identify pairs of locations with differing climate conditions 

over time. Bridge ratings associated with these climate stations were then compared using 
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the same statistical methods in order to identify possible correlations between climate 

factors and bridge ratings. Differences in freeze-thaw cycles, annual rainfall, and total 

solar radiation were found to correlate with differences in deck or superstructure ratings 

for a number of the climate stations examined, but exact relationships were not clearly 

identifiable by the methods used. 
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1. Introduction 

Most of the world’s land surface transportation relies heavily on bridges. Since 

prehistoric times man has built bridges by imitating nature. Tree bark, stone slabs, wood 

and a host of other materials that can hold weight, were used to build bridges to cross 

rivers or streams. Concrete is currently the most-used construction material for bridges in 

the United States, and throughout the world. A typical bridge has three main elements, as 

shown in Figure 1. First, the deck, which is the traffic carrying roadway or pedestrian 

walkway surface of a bridge. Second, the superstructure, which is the platform that 

supports the traffic and includes the deck slab and girders. It also connects one 

substructure element to the other. Third, the substructure, which transfers the loaded 

weight of the bridge to the foundations. The substructure consists of components such as 

abutments at the ends and intermediate column supports, also called piers or bents. 

 

 

Figure 1. Structural Elements of a Typical Highway Bridge (MDOT, 2017) 
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Bridge deterioration is a prominent problem in the United States, and various 

agencies are conducting extensive research to determine the underlying causes, identify 

maintenance and rehabilitation strategies, and prioritize rehabilitation. Cracking is a 

preeminent sign of concrete bridge deterioration, and nearly half of the bridges in the 

United States showed cracking at an early stage (Krauss and Rogalla, 1996). About 97% 

of the State Highway Agencies have reported early age cracking as the most common 

distress in bridges (Krauss and Rogalla, 1996). Numerous studies have been performed 

on this problem, and several causes have been isolated, including thermal movement, 

freeze-thaw cycles, early age shrinkage, and early age settlement of the foundation soil 

(Krauss and Rogalla, 1996; Babaei, 2005). 

Climate effects, and potentially climate change, may have a large impact on these 

causes of cracking and may contribute to deterioration in other ways. Climate change can 

be defined as a change in the state of the climate that persists for an extended period, 

typically decades or centuries (Wang et al., 2010). Climate change is occurring today as 

a result of anthropogenic effects, especially related to greenhouse gas emissions, which 

has caused widespread concern (Wang et al., 2010). Climate change is anticipated to have 

an impact on concrete bridges through the impacts of extreme weather events, such as 

intense storms, which could disrupt traffic, delay construction activities, and wash out the 

soil and culverts that support bridges (Wang et al., 2010). Hence it is important to 

understand the implications of climate change on existing concrete bridges to facilitate 

effective asset planning and management (Amekudzi et al., 2010). These implications 

may be more important in a state with diverse climate conditions, such as Oklahoma. 
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Very high temperatures can cause buckling of concrete pavements and softening 

of asphalt roads leading to rutting and subsidence, and can place stress on bridge joints 

due to expansion. Higher winter temperatures may lead to more precipitation falling as 

rain rather than snow, which increases drainage problems; and potential extreme low 

temperatures may cause deterioration in the form of cracking resulting from the 

expansion of this water during freezing (Amekudzi et al., 2010). Higher winter 

temperatures can, therefore, cause an increase in frequency of freeze-thaw cycles. It is 

important to regularly inspect bridges for cracking problems associated with these erratic 

temperature changes, which would benefit transportation agencies in determining when 

to make the most cost-effective maintenance measures (Reilly et al., 2006). 

Moreover, drastic climate change is likely to increase the vulnerability of bridge 

infrastructure across the United States (Neumann et al., 2015). Therefore, assessing 

deterioration of bridge decks and superstructures by incorporating climate impact is 

necessary. The overarching objective of the research described in this thesis was to assess 

the relationship between climate data and deterioration of bridge decks and 

superstructures in Oklahoma. This relationship could then be used in conjunction with 

current assessment strategies to come up with possible cost effective solutions to 

counteract climate related problems that may become more prominent in the coming 

years. The Oklahoma Department of Transportation (ODOT) has always envisioned the 

development of an aggressive bridge rehabilitation program, but never possessed the 

resources required to launch a meaningful initiative (ODOT, 2015, p.4). The results 

presented in this thesis are only an initial step in identifying the relationship between 
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climate effects and bridge condition in Oklahoma, but provide information that may be 

useful to decision makers related to bridge maintenance in Oklahoma. 

2. Literature Review 
 

The National Bridge Inventory (NBI) specifies that concrete bridge deterioration, 

in the form of concrete distress and reinforcement corrosion, has become one of the 

leading causes of structural deficiency (Russell, 2004). A number of research projects 

have been conducted on bridge deck cracking, a main cause of bridge deterioration, by 

the National Cooperative Highway Research Program (NCHRP) and several DOTs, 

including Michigan, Texas, Oregon, Utah, New Jersey, Minnesota, and Colorado 

(Brooks, 2000; Brown et al., 2001; Xi et al., 2003; Aktan et al., 2003; Linford and 

Reaveley, 2004). These transportation agencies are investing considerable time and 

resources to analyze and solve the problems, and to provide a summary of many factors 

important to the problem (Russell, 2004). These agencies often specify that material 

properties, mix designs, and construction methods are the main reasons for concrete 

bridge distress (Russell, 2004), but there are a number of potential climate factors that 

may contribute to deck and superstructure distress, which may become more prevalent in 

the future due to climate change. A review of previous research done on bridge deck and 

superstructure cracking due to climate change and research using NBI data to assess 

deterioration is presented in this section. 

2.1 Bridge Deck and Superstructure Deterioration 

 

Bridge deck and superstructure deterioration is mainly caused by physical, 

mechanical, and chemical factors and can be induced by sources external and internal to 

the concrete structure. Physical and chemical deterioration are primarily related to climate 



5  

conditions, and mechanical deterioration is greatly influenced by traffic (Wang et al., 

2010). 

Physical deterioration is associated with freeze-thaw cycles and thermal mismatch 

between hardened cement paste and aggregates (Wang et al., 2010). Thermal 

incompatibility can result in cracking since the different materials expand or contract 

differently with changes in temperature. Mechanical deterioration is associated with 

abrasion, impact, and erosion, which are primarily a result of traffic (Wang et al., 2010). 

Penetration of chemicals from the environment, such as carbonation and chloride 

induced corrosion, are associated with chemical deterioration (Wang et al., 2010). The 

reactions between the constituents of the concrete, such as alkali–silica reaction (ASR), 

alkali–carbonate reaction  (ACR),  and  delayed  ettringite  formation  (DEF),  are   also 

associated with chemical deterioration (Wang et al., 2010). 

 

2.2. Mechanisms of Bridge Deck and Superstructure Cracking 

 

Cracking is the most basic form of deterioration in concrete bridge decks and 

superstructures, and occurs when the tensile stresses in the concrete exceed the tensile 

strength of the concrete at that time. Concrete shrinkage, temperature changes in the 

concrete, and self-weight or traffic loads are some sources causing tensile stresses (Wang 

et al., 2010), but all items described in Section 2.1 eventually lead to cracking. 

A detailed study conducted by Brown et al. (2001) explained the mechanisms 

causing concrete bridge deck and superstructure cracking. The primary factors in the 

cracking problem, as described in their report, are shrinkage, thermal stresses, and 

restraint, and descriptions of several items affecting these factors were included (Brown 

et al., 2001). Brown et al. concludes that the primary source of strain in bridge decks   is 
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shrinkage. Even without additional strain from temperature sources, shrinkage can 

produce enough strain to crack concrete if sufficient restraint is also present (Krauss and 

Rogalla, 1996). 

Another important source of strain in the concrete matrix is the effect of thermal 

stresses. The concrete first sets at a specific temperature. At this temperature, the concrete 

matrix gets locked to zero temperature and any changes in temperature from this value 

will result in volume changes in the concrete. However, both deck and superstructure 

experience temperature changes from cooling off after the heat of hydration subsides, 

seasonal and daily temperature changes, and temperature changes from solar radiation on 

the top surface. These sources lead to significant temperature movements, which occur 

as a result of thermal expansion and contraction of the concrete. “These thermal stresses 

induced can both be high and significantly non-uniform” (Krauss and Rogalla, 1996). 

The dead loads and live loads acting on the structure, along with deflections in the 

formwork, are other important sources of strain in concrete bridge decks and 

superstructures. “Several state departments of transportation considered these to be a 

source of cracking” (Krauss and Rogalla, 1996). 

The final important source of strain (according to Brown et al., 2001) in concrete 

bridge decks and superstructures is the restraint. This follows the principles of modulus 

of elasticity, wherein the restraint of the bridge deck’s movement converts the strain from 

shrinkage or thermal movement to stress. In the case of an unrestrained system, strain 

does not cause cracking. Restraint is of two types: restraint due to ‘internal’ sources and 

restraint due to ‘external’ sources. The chief external source of restraint in the bridge deck 

is due to  the  interaction with  the girders that the bridge deck rests  upon. The   girders 
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restrain the deck’s movement since they will not shrink at the same rate as the bridge 

deck, unless they are concrete and are cast at the same time and using the same material. 

In addition, material differences can also cause differential restraint of temperature 

movements. Rebar, aggregate, and fibers are some of the sources of internal restraint in 

concrete (Krauss and Rogalla, 1996). 

Other factors that influence mechanical cracking are creep and stress relaxation 

of concrete. These can reduce the stresses on the concrete. According to a report by 

Altoubat et al. (2001) creep can reduce shrinkage stresses by 50%, thus doubling the 

capacity of strain at failure. The tensile strength of the concrete is the final factor in the 

cracking process. After the stresses are created by the factors mentioned above, “whether 

the concrete finally cracks or not is determined by comparing the stress to the tensile 

strength of the concrete” (Krauss and Rogalla, 1996). 

2.3. Potential Factors affecting Oklahoma Bridge Deck and Superstructure 

Deterioration 

Several weather and climate factors have the potential to lead to bridge deck and 

superstructure deterioration. Extreme values of rainfall, solar radiation, temperature, and 

humidity may be detrimental to concrete in general, and may increase the influence of 

deterioration mechanisms described in Sections 2.1 and 2.2. The primary modes of attack 

these weather and climate factors might lead to are described herein: (1) Freeze-thaw 

cycles (2) Temperature (3) Carbonation, and (4) Chloride-induced corrosion. 

2.3.1. Freeze-Thaw Cycles 

 

The mechanical process caused when water contained in concrete expands due to 

cycles of freezing, then thaws as a result of warming is called a freeze-thaw cycle 
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(Supernant, 1992). The initial ice crystal formation in concrete begins when water is super 

cooled below its freezing temperature (Korhonen, 1990). Because of these effects, there 

is no thermal contraction in concrete until its temperature drops to 27°F or lower 

(Basham, 1995). If admixtures are present, the freezing temperature may be as low as 

20°F (Basham, 1995). The freezing process causes a 9% expansion in the volume of water 

and dilating pressure builds up within the concrete (Wang et al., 2010). Each cycle of 

freezing causes the water to migrate into unfrozen pores, further building up pressure. 

With this amount of pressure built up over time, the thawing process, which normally 

begins when the weather becomes warmer, has the potential to cause cracking when it 

starts to melt the ice (Wang et al., 2010). The pore walls of the concrete material resist 

the expansion when ice forms in the capillaries. This creates a dilating pressure that may 

be relieved if water is allowed to escape into the non-saturated voids within the concrete. 

Cracking of the concrete material will occur when the material’s structure is unable to 

resist the pressure (Wang et al., 2010). 

If freezing is slow, water redistributes itself by moving towards the colder areas 

before freezing and forms ice lenses. If freezing is rapid, water has less chance to move 

towards the colder areas and so it freezes in place, creating uniformly distributed ice 

crystals. However, these crystals are quite harmful to the concrete material health since 

they might weaken the bond between cement paste and aggregate (Korhonen, 1990). 

Damage to concrete infrastructure and improvement of concrete durability in 

freezing and thawing exposures can be controlled by using the process of air entrainment 

(NRMCA, 2004). Entrained air bubbles, which are microscopic in size (0.01 inches or 

less) and evenly distributed over the paste, provide space to absorb the expansion and 
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relieve the pressure built up when water in the concrete freezes and expands (NRMCA, 

2004). In addition to damaging the hardened concrete due to freeze-thaw cycles, an up to 

50% strength reduction can occur if concrete freezes before reaching a compressive 

strength of 500 psi (Supernant, 1992). 

2.3.2. Temperature 

 

Temperature changes in concrete are normally caused by environmental 

conditions or by cement hydration (the exothermic chemical process in which the cement 

reacts with the water in the concrete mixture producing calcium silicate hydrate binder 

and other compounds) (Grybosky, 1990). Materials tend to expand and contract when 

subjected to changes in temperature. Most materials expand when they are heated and 

contract when they are cooled. This behavior applies for concrete as well. Concrete tends 

to expand as temperature rises and contract as temperature falls, when free to deform. 

The size of the concrete structure does not make it immune to the effects of temperature 

(Grybosky, 1990). 

There are two types of temperature loading effects to consider (Keogh and 

O’Brian, 1999): 

1. Changes in effective temperature causing expansion and contraction in the deck 

resulting in global deformation. 

2. Differences in temperature between the top surface of the deck and at various 

levels throughout the depth of the deck causing the deck to locally distort. 

2.3.2.1. Thermal Expansion and Contraction: Uniform Temperature Changes 

 

Uniform changes in temperature, in which the entire depth of the deck and 

superstructure undergoes an increase or decrease in temperature due to cycles of hot   or 



10  

cold weather, cause axial expansion and contraction, which may lead to large scale 

increase in stresses (Keogh and O’Brian, 1999). The thickness of the wearing surface and 

the form of the construction are governing factors in determining the difference between 

the ambient temperature and effective temperature within a bridge deck (Keogh and 

O’Brian, 1999). The AASHTO LRFD Bridge Design Specifications section 3.12.2.1 

specifies that in “moderate climates, concrete bridges must be designed for temperatures 

in the range of 10 °F to 80 °F” (AASHTO, 2012). 

2.3.2.2. Differential Temperature Changes 

 

In addition to uniform changes, bridges are subjected to differential changes in 

temperature on a daily basis, such as in the morning when the sun shines on the top of the 

bridge heating it up faster than the interior parts of the bridge. The reverse phenomenon 

tends to take place in the evening when the deck is warm in the middle but is cooling 

down at the top and the bottom surfaces (Keogh and O’Brian, 1999). When one face of a 

superstructure is exposed to direct sunlight and the other side is in shade then transverse 

temperature differences occur (Keogh and O’Brian, 1999). 

Due to these potentially erratic changes in temperature, the bridge deck and 

superstructure might deflect upwards or downwards due to compressive or tensile strains 

caused by a non-uniform heating of the bridge element throughout its depth (Brenner et 

al., 2011). When this happens, the stress generated (when different parts of the bridge 

element expand by different amounts) may exceed the strength of the material, causing 

cracks to form. This process of deflection, either upwards or downwards, is called 

‘thermal bowing’ (Brenner et al., 2011). 
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2.3.3. Carbonation 

 

Carbonation in concrete is caused by the penetration of atmospheric carbon 

dioxide into the concrete pore water, which then creates an acidic solution at a relative 

humidity of between 50% and 70% (Wang et al., 2010). When reinforcing bars are placed 

in concrete a thin protective layer of ferrous oxide is formed. This thin layer protects the 

reinforcing bars from exposure to oxygen and water which are the prime causes for 

rusting to begin. This layer can only be maintained at high pH values (greater than 12) 

(Wang et al., 2010). When the pH of concrete drops to a critical value (pH less than 7) it 

creates an acidic solution where the reinforcement becomes passive, causing initiation of 

corrosion and consequent damage (Alberto et al., 1997). If this is left unchecked, 

carbonation can also lead to spalling (Alberto et al., 1997). 

2.3.4. Chloride-induced Corrosion 

 

The destructive and unintentional attack of a metal is called corrosion. Corrosion 

is electrochemical in nature and a serious form of degradation of reinforced concrete. The 

corrosion of steel causes concrete deterioration in bridge decks. During the corrosion 

process, ferrous hydroxide and ferric hydroxide, are the two-major rust/corrosion 

products produced, and can cause considerable expansion (Wang et al., 2010). The typical 

product of corrosion, ferrous hydroxide, is four times in volume that of the consumed 

ferrite. This expansion generates internal stress, ultimately leading to cracking, 

delamination, and spalling (Wang et al., 2010). 

Chlorides are the most common ions to destroy the thin layer of ferrous oxide 

formed when reinforcing bars are placed in concrete and which protects the bars from 

exposure to oxygen and water (Wang et al., 2010). When chlorides from the atmosphere, 
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deicing salts, or any other outside source penetrate the concrete to the level of the steel, 

they accumulate on the steel reinforcement at a critical level and destroy the protective 

layer described in Section 2.3.3. (Wang et al., 2010). The effects of chloride-induced 

corrosion include cracking or spalling, rust staining, excessive deflection, and ultimate 

failure of structural members (Wang et al., 2010). 

2.4. Climate Change 

 

The Earth’s changing climate is affecting America’s infrastructure and human 

health and in many ways. Across the United States, extreme climate events are becoming 

more common with sudden temperature rises and shifting patterns of snow and 

precipitation. Following this set of changes, climate scientists are confident that the 

climate will not stay the same as before (EPA, 2015). The United States Environmental 

Protection Agency (EPA) has stated that this change in climate is due to increased heat 

collected by the Earth or a decrease in the amount of heat that is let out of the atmosphere. 

Heat exits the Earth as the Earth’s surface is warmed by solar energy. This 

warmed Earth then radiates heat back into the atmosphere. Greenhouse gases in the 

atmosphere, such as water vapor, carbon dioxide, methane and nitrous oxide, allow the 

lower atmosphere to absorb the heat radiated from the Earth’s surface and eventually trap 

heat within the atmosphere, thereby preventing the planet from becoming an icy sphere. 

These same gases, according to the EPA (2015), are the main cause for climate change 

when the quantities in the atmosphere change. Over the past century or so, the amounts 

of greenhouse gases within Earth’s atmosphere have been increasing rapidly, mainly due 

to the burning of fossil fuels, industrial activities, and overuse of natural resources. As a 
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result of all these factors, global temperatures have increased with increasing carbon 

dioxide levels. 

This change in global temperatures is projected to increase the frequency and 

intensity of heat waves, which are likely to be more severe, and cause sea level rise that 

could amplify storms in coastal areas. Amplified storms in turn cause floods, damaging 

bridges and transportation infrastructure (NRC, 2008). It is expected that most 

transportation infrastructure being built now will last for 50 years or longer. Therefore, it 

is extremely important to understand how climate change might affect these investments 

in the future (NRC, 2008). 

2.5. Condition of Oklahoma Bridges 

 

According to the American Society of Civil Engineers (ASCE) 2013 Report Card 

for America’s Infrastructure, bridge conditions in the state of Oklahoma were rated D+, 

lower than the national average of C+ (ASCE, 2013). Oklahoma’s infrastructure is in 

need of immediate attention. Many years of continued deferred maintenance due to a lack 

of state funding led to the current situation of Oklahoma’s bridge and highway system 

problems (ODOT, 2015). From 1985 to 2005 transportation investments were flat and, as 

a result, the condition of the infrastructure experienced a decline that will take many years 

of committed, focused and dedicated resources to correct (ODOT, 2015). During the 20- 

year period, bridges deteriorated at a rate far beyond the available funding for repair. 

The Oklahoma Section of ASCE and those from 37 other states work together in 

order to develop a state-specific report card to complement the national report card for 

America’s infrastructure (ASCE, 2013). The ASCE Oklahoma committee assessed data 

reaching as far back as 10 years and followed grading guidance developed by ASCE for 
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the Report Card for Oklahoma’s Infrastructure. The seven fundamental grading 

components that were considered are (ASCE 2013): 

 Capacity: a measure of how much reserve remains in the system 

 

 Condition: a measure of ability of the system to perform as it was designed 

 

 Funding: a measure of the past, current and predicted future investment 

 

 Future Need: a measure of the projected demand and projected importance 

 

 Operations and Maintenance: a measure of past, current and predicted future ability 

 

 Public Safety: a measure of the danger posed by an ineffective system 

 

 Resilience: a measure of the ability for a system to withstand occasional overloads 

The Report Card utilizes a 10-point grading scale. The seven fundamental grading 

components were assigned a weighting factor by the committee and was graded for each 

infrastructure category (ASCE, 2013, p.3): 

 90-100 = A: Exceptionally Performing 

 

 80-89 = B: Satisfactorily Performing 

 

 70-79 = C: Marginally Performing 

 

 60-69 = D: Poorly Performing 

 

 59 or Below = F: Failing Infrastructure 

 

This first-ever Report Card for Oklahoma’s Infrastructure gave the Oklahoma’s 

bridges a grade of D, lower than the national average. When the report was issued in 2013, 

approximately one in five bridges that Oklahoma motorists crossed each day were 

structurally deficient or deteriorating to some degree, and the state of Oklahoma was 

consistently rated as having the worst bridges in the nation (ASCE 2013). In 2010, Tulsa, 

Oklahoma was  ranked  #1  for  having  the  highest  percentage  of structurally-deficient 
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bridges for metropolitan areas with a population of 500,000 to 1 million people (ASCE, 

2013). Tulsa had 27.5% or 783 bridges (ASCE, 2013) rated as structurally deficient in 

2013. 

ASCE specifies that the average age of bridges in the United States is 42 years 

old, while the average age of Oklahoma bridges is 44.6 years, and most bridges are only 

designed to last 50 years (ASCE, 2013). As of 2010, 10,922 of Oklahoma’s bridges were 

over 50 years old and Oklahoma City, Oklahoma in 2010 was ranked #1 for the highest 

percentage of structurally-deficient bridges for metropolitan areas with a population of 1 

to 2 million people (ASCE, 2013). 

Deficient bridges and poorly maintained transportation infrastructure will have a 

detrimental impact on Oklahoma’s commerce, job creation and economic growth. Most 

importantly, this condition could endanger the safety of the citizens. The ASCE reviews 

and rates bridges every 4 years (ASCE, 2013), with the help of volunteers from public 

agencies, private firms and nonprofit groups. ASCE may prepare a new report for the 

period 2013-2017, and it is hoped that this report might see some key improvements in 

Oklahoma’s grade following the continued efforts of ODOT. 

2.6. ODOT’s Efforts in Improving Bridge Conditions 

ODOT has accelerated bridge replacement through a focused and concentrated 

effort beginning in 2006, which has allowed the Department to replace or reconstruct 

1,072 bridges in the last 10 years and has improved the bridges in Oklahoma since the 

ASCE report in 2013 (ODOT, 2015). A large number of bridge decks were effectively 

repaired by ODOT mainly using crack and surface sealers apart from a portfolio of other 

methods. These repairs were a part of the surface preservation program, which greatly 
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slows down the deterioration process (ODOT, 2015). The primary objective of a surface 

and crack sealer is to prevent capillary action at the surface, thus preventing the 

penetration of water and chloride ions into the concrete deck (Gordon et al., 2011). 

The bold and visionary plan of ODOT’s former director and present secretary of 

transportation – Gary Ridley; was implemented by Oklahoma’s Governor, Mary Fallin, 

to reduce the number of structurally-deficient bridges to near zero by the end of the 

decade (ASCE, 2013). Following the Governor’s bridge improvement and turnpike 

modernization plan (Fallin, 2011); ODOT has been working hard to address bridge needs 

by increased funding (ASCE, 2013). Oklahoma’s focus and progress is evident with the 

2015 annual bridge inspection reports revealing that the 1042 structurally-deficient 

bridges recorded in 2001 were reduced to 372 in 2014 of the total recorded 6,812 bridges, 

as shown in Figure 2 (ODOT, 2015). 

 

Figure 2. Structurally Deficient Bridges in Oklahoma (ODOT, 2015) 
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2.7. Previous Research Efforts 

 

A number of previous research efforts have used National Bridge Inventory (NBI) 

data for identifying and modeling variables affecting bridge deterioration. A number of 

statistical and probabilistic methods have been utilized for identifying correlations and 

trends in the data. Significant research efforts have been conducted to evaluate and 

manage bridges based on NBI data or NBI type data using various techniques, such as 

numerical modeling, field testing, geographic information system (GIS) software, 

statistical analysis, probabilistic analysis, and artificial intelligence (Cesare et al., 1992; 

Madanat and Ibrahim, 1995; Morcous et al., 2002; Bolukbasi et al., 2004; Tapan and 

Aboutaha, 2008; Agrawal and Kawaguchi, 2009; Cheung et al., 2009; Elbehairy et al., 

2009; Metzger and Huckelbridge, 2009). 

Chase, Small, and Nutakor presented ‘An In- Depth Analysis of the National 

Bridge Inventory Database Utilizing Data Mining, GIS and Advanced Statistical 

Methods’ in 1999 (Chase et al., 1999). This paper facilitated a study of relationships 

between bridge behaviors and other factors, such as climate and geographical location. 

The relationships were identified by extracting the bridge condition information for 

functionally obsolete bridges, structurally deficient bridges, and those in need of 

maintenance using different data warehousing and mining techniques from NBI, then 

combining these data with climate information using GIS software (Chase et al., 1999). 

Using the expanded data sets from the combined NBI and GIS databases, three different 

regression analysis models (a linear model, a non-linear non-parametric model and a non- 

linear parametric model) were applied to map the relationship between bridge condition 

states   (deck,   superstructure,   and   substructure)   and   possible   factors   influencing 
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deterioration (Chase et al., 1999). The variables included in this study were age, average 

daily traffic, precipitation, frequency of deicing, temperature range, freeze-thaw cycles, 

and type of bridge construction. As per this paper the generalized linear model gave the 

best prediction (Chase et al., 1999). 

Mishalani and Madanat developed a bridge deterioration model with a stochastic 

approach and demonstrated the model using 1460 observations of bridges in NBI 

condition states of 7 and 8 taken from the 10-year period between 1974 and 1984 

(Mishalani and Madanat, 2002). Structural types, highway class, traffic loading, age, and 

wearing surface types were the considered parameters. The effect of rehabilitation was 

eliminated from the data, but routine maintenance was not considered separately. The 

transition probability modeling method of state-based discrete-time was used for the 

model (Mishalani and Madanat, 2002). A Weibull distribution was used in the duration 

models for the two condition states and a 95% confidence interval was used in comparing 

variables. In this paper, mechanical processes due to abrasion and impact and chemical 

processes were found to be primary factors causing bridge deterioration, depending on 

the bridge rating (Mishalani and Madanat, 2002). 

Research by Bolukbasi et al. published in 2004 estimated the future condition of 

highway bridge components from 2,601 Illinois bridges in the period of 1976–1998, using 

the NBI data (Bolukbasi et al., 2004). The bridge condition data was extracted and filtered 

by removing bridges for which reconstruction works were not recorded, to avoid 

erroneous future bridge condition predictions (Bolukbasi et al., 2004). Two methods were 

used to develop reasonable deterioration curves for the bridges. In method 1, the condition 

ratings adjustment was done on the basis of the notion that unless there is evidence of 
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reconstruction or repair work, the condition rating cannot be greater than previous ratings, 

and in method 2, deterioration curves were constructed using data that represented the 

duration between consecutive inspections (Bolukbasi et al., 2004). These methods were 

applied to the rating data collected and bridge deterioration models were compared. Both 

methods showed that traffic volume has an important effect on bridge deterioration 

(Bolukbasi et al., 2004). 

Research by Wu published in 2010 examined a range of NBI data for all states 

using exploratory data analysis tools to analyze the bridge data, using both GIS and 

MATLAB (a computing application) (Wu, 2010). Location, average daily traffic, 

structure length, deck width, structure type, ownership, maintenance responsibility, 

bridge design, environmental impacts, and critical bridges were the bridge parameters 

considered (Wu, 2010). The results of the study included information on patterns for types 

of bridge deficiency, load rating, design load, functional classification, bridge design, 

scour conditions, and fracture critical bridges in both time and space (Wu, 2010). The 

results were summarized in the form of statistics for each state and were intended to be 

useful to users, bridge owners, and design engineers involved in designing and 

maintaining bridges. The results in the research indicated differences in design loads over 

time. Some inconsistent spatial patterns in design load and load rating were identified. 

One specific finding was that bridges in the eastern United States were generally designed 

with lower design load standards (Wu, 2010). Type of deficiency exhibited significant 

patterns in spatial distribution. Wu points out that the study indicated additional 

knowledge could be gleaned from further study of the NBI database over time. 

Specifically studies related to effect of spatial distribution on condition rating, further 
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investigation of patterns discovered, inclusion of additional data sets such as climate data, 

and identification of factors resulting in bridges being labeled as structurally deficient or 

functionally obsolete would be useful (Wu 2010). 

Collective efforts to identify critical sources of bridge deterioration in North 

Dakota were made by Kim and Yoon in 2010. Their paper presented the performance of 

constructed bridges in cold regions through examining the bridges in North Dakota using 

a combined multiple regression and GIS technology (Kim and Yoon, 2010). These 

softwares were employed to evaluate and identify the critical sources affecting 

deterioration (Kim and Yoon, 2010). Physical, material, and environmental factors were 

examined with bridge data. The NBI data used for this study included 5,289 constructed 

bridges and 2,801 concrete deck slabs inspected during the year between 2006 and 2007 

(Kim and Yoon, 2010). GIS software was used to visually assess the condition of bridges 

in North Dakota. Technical information including physical conditions, functional class, 

structural ratings, and longitude and latitude coordinates of individual bridges were 

collected. The bridge data for structurally deficient, open, and functionally obsolete 

bridges was linked to the precipitation, temperature, demographic population, lane use, 

and agriculture information obtained within the GIS model (Kim and Yoon, 2010). This 

linked data was used to further examine the factors influencing the bridge deterioration. 

Kim and Yoon conducted an ordinary least-square multiple regression analysis to 

identify the critical sources of bridge deterioration by engaging the present condition of 

the bridges with contributing factors within a given period (Kim and Yoon, 2010). They 

also included information related to bridge maintenance and rehabilitation into the 

regression analysis, to examine their relationships with bridge deficiency. A correlation 
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function called the Pearson’s correlation was used to examine the mutual relationship of 

each of the above-mentioned variables (Kim and Yoon, 2010). The coefficient of 

correlation value typically measures the correlation on a scale with 1 indicating perfect 

positive correlation, 0 indicating no correlation at all, and negative 1 indicating perfect 

negative correlation (Kim and Yoon 2010). The alpha value (level of significance) of 0.05 

was used, which means a 95% confidence level to support the correlation between two 

variables. 

The condition evaluation of the bridge decks was done by using three categories, 

good rating from 7 to 9, fair rating from 5 to 6, and poor rating from 1 to 4 (Kim and 

Yoon 2010). According to their research the most critical bridges in North Dakota were 

girder-type bridges with steel members. The bridges comprised of prestressed concrete 

members and timbers included more functionally obsolete bridges than structurally 

deficient bridges (Kim and Yoon 2010). They concluded that corrosion and impact of 

heavy trucks were the primary source of deterioration for the steel bridges and the deck 

slabs (Kim and Yoon 2010). The possible sources of the corrosion as per their report were 

due the use of deicing salts and the contribution of rain and snow melting, including the 

effect of chloride. As a result of these, uniform corrosion was observed in a number of 

steel-plate girder bridges during their inspection (Kim and Yoon 2010). Their 

observations indicated that most of the truss bridges in North Dakota showed significant 

deterioration, so they recommended that truss bridges may not be an adequate structural 

system in cold regions such as North Dakota (Kim and Yoon 2010). As a conclusion, they 

identified that year built, followed by the volume of traffic, and the presence of water in 
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structural systems were the most contributing parameters to bridge deterioration (Kim 

and Yoon 2010). 

Tolliver and Lu (2011) conducted a case study analyzing bridge deterioration rates 

of the northern plains region. A regression model including five main variables: bridge 

material, bridge design, operating rating classification, average daily traffic, and the state 

where the bridge was located was analyzed over a 95-year period to study the effects of 

these variables (Tolliver and Lu, 2011). The effects were represented using indicator or 

dummy variables that shift the intercepts of the regression, creating many unique levels 

or categories (Tolliver and Lu, 2011). 

A study by Lee published in 2012 examined the cause of bridge deterioration by 

analyzing NBI data. The bridge parameters considered in this study were traffic volume, 

structure type and deck protection systems, material type, and age (Lee, 2012). The results 

of the study indicated that bridge age, span length, average daily traffic, location, and 

highway system, in addition to other factors, might have an effect on structural deficiency 

(Lee, 2012). 

A report by the Bridge Division of Texas DOT concentrated on NBI data for 

bridges in the state of Texas, focused on the change in the bridge conditions from 2004 

to 2014 (Texas DOT, 2014). The results of this study indicated a growing number of 

bridges in the state, but a reduced percentage of structurally deficient bridges, and that 

the majority of funding for bridges was spent on bridge rehabilitation and repair (Texas 

DOT, 2014). 

Nasrollahi and Washer statistically analyzed the NBI data of 4270 bridge 

superstructures in  Oregon  to  estimate  inspection  intervals  for  constructed    bridges 
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(Nasrollahi and Washer, 2015). Specifically, the time-in-condition rating (the time a 

bridge has a specific condition rating) for superstructure components was examined from 

NBI data using typical statistics. The data distribution for time-in-condition was assessed 

using the Anderson-Darling method. Normal, lognormal, exponential, Weibull, and 

gamma distributions were examined in this research. The Weibull distribution was found 

to provide the best overall representation of the data with the lognormal distribution also 

being competitive for lower condition ratings (i.e. 4 or 5), and the normal distribution 

provided a good fit for higher condition ratings (i.e. 8). The Weibull distribution was used 

to provide the most flexibility in estimating time to failure and the probability of 

deterioration was predicted using this distribution (Nasrollahi and Washer, 2015). 

Overall, it was determined that the time in a particular rating decreased as the rating 

decreased (Nasrollahi and Washer, 2015). 

A paper by Kim and Queiroz examined a data set comprising 1,002,172 bridge 

decks and superstructures from inspection years 2010–2014, to assess the performance of 

bridge members in the United States (Kim and Queiroz, 2017). The condition ratings of 

bridge members (year-built, average daily traffic, deck conditions, and superstructure 

conditions) were extracted from the NBI, and the entire country was categorized into four 

different temperature-gradient service zones (Zone 1, Zone 2, Zone 3, and Zone 4) as per 

the American Association of State Highway Transportation Officials (AASHTO) Load 

and Resistance Factor Design (LRFD) Bridge Design Specifications (Kim and Queiroz, 

2017). The performance of these members was examined statistically and 

probabilistically, using the NBI’s nine-point condition rating scale in conjunction with 

the effect of traffic, temperature changes, and precipitation (Kim and Queiroz, 2017). 
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After all the data was organized, ‘Big Data’ analytics were used to establish trends 

in bridge performance (Kim and Queiroz, 2017). ‘Big Data’ uses software capable of 

determining scientific relationships between independent and dependent variables of 

interest, by examining massive data sets. Then data for all four zones were subjected to 

factorial analysis using a two-factor analysis of variance (ANOVA) test to examine 

statistical correlation of year-built with the condition ratings of bridge decks and 

superstructures. In ANOVA, an F statistic value was calculated for year-built vs deck and 

superstructure ratings, and compared with a critical value at a certain level of significance. 

A 95% significance level (alpha = 0.05) was employed in this study (Kim and Queiroz, 

2017). If the F value was greater than 0.05, the effect of year-built was statistically 

significant on the condition rating of the bridge. At the end of this factorial analysis Kim 

and Queiroz implied that, to examine the performance of existing bridge members year- 

built was a crucial factor to be considered (Kim and Queiroz, 2017). They also determined 

that the type of structure played an important role on the performance of bridges in a 

particular area (Kim and Queiroz, 2017) 

They concluded by making the following observations (Kim and Queiroz, 2017): 

 

1) Zones 1 and 3 were subjected to higher traffic-induced distress than the bridges in 

Zones 2 and 4 due to increased fatigue cycles and possible overload, 2) Bridges 

constructed in Zones 1 and 4 experienced more temperature-induced deformations mainly 

due to average differences in maximum and minimum temperature cycles than those in 

Zones 2 and 3, 3) The amount of precipitation in Zone 1 was consistently low, with Zones 

2 and 3 showing similar precipitation patterns, in contrast to the precipitation of Zone 4 

which was significantly higher. This paper hypothesized that the ratings of the decks and 
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superstructures exhibited a normal probability distribution, and performance uncertainty 

associated with the bridge members increased with an increase in service year, including 

a change in deterioration (Kim and Queiroz, 2017). Their probability-based analysis 

indicated that the bridge members in Zones 1 and 3 deteriorated more than the members 

in Zones 2 and 4, possibly due to higher traffic and thermal loadings. Also, the rate of 

deterioration of bridge decks was higher than that of bridge superstructures (Kim and 

Queiroz, 2017). 

Summary 

 

This literature review considered: 1) the factors that affect bridge deck and 

superstructure conditions, 2) important climatological variables, 3) the factors influencing 

fluctuations in climate, 4) Oklahoma ODOT’s practices in improving bridge deck and 

superstructure conditions and its decision process for maintenance, 5) Previous research 

efforts using NBI data and deterioration models. Previous research shows that NBI bridge 

data can be used to identify trends in bridge behavior and deterioration over time. Climate 

variables, structure type, and location of the bridges may have effects on the deterioration 

of bridges over time and should be considered. 

3. Research Methods and Approach 
 

3.1. Collecting Climate and Bridge Data 

 

Climate data related to the variables identified in the literature review (freeze- 

thaw cycles, rainfall, solar radiation, and temperature) were collected for the various 

regions of Oklahoma primarily using the Oklahoma Mesonet (McPherson et al., 2007; 

Brock et al., 1995). The Oklahoma Mesonet is a network of 120 automated environmental 

monitoring stations located on or near 10-meter (33 ft.) tall towers, designed to    collect 
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weather information (e.g., wind speed, rainfall, temperature) and transmit observations to 

the central facility every 5 minutes, 24 hours per day, every day of the year. The central 

facility is headquartered at the National Weather Center on the University of Oklahoma 

(OU) campus. The Mesonet stations cover each of Oklahoma’s counties. The website 

hosts a comprehensive cluster of other useful information including weather updates, 

agriculture, forecast, public safety, and fire management. 

3.1.1. Selection of Climate Stations 

 

The process of filtering began with identifying climate stations representative of 

the different regions of Oklahoma, which was done by accessing the ‘Local Weather’ 

option from the Mesonet website as shown in Figure 3. The local weather option in the 

website is an effective tool to get a compact visual distribution of Mesonet climate 

stations over the entire state. The yellow dots within each county on the map in Figure 3 

represent the climate stations. The locations of all stations in terms of latitude and 

longitude were collected for overlapping climate station with bridge locations. In the 

event of having more than one station in a county, the station having a larger number of 

bridges in close proximity, as described later in this section, was selected for data 

collection. 
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Figure 3. Mesonet Station Selection Chart (McPherson et al., 2007; Brock et al., 1995) 

 
Maps of the ODOT Field Divisions and Mesonet Climate Divisions, shown in 

Figure 4 and Figure 5, were used along with the climate station locations to select climate 

stations representative of each of those regions, so that all the bridges in that region could 

be related to one climate station or two depending on the number available in each region. 



28  

 
 

Figure 4. ODOT Field Division Map (ODOT, 2015) 
 

 

Figure 5. Mesonet Climate Divisions (McPherson et al., 2007; Brock et al., 1995) 
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Locating open bridges close to each climate station (within 50 miles) was one of 

the most important tasks to compare the effects of climate variables on bridge condition. 

The main sources used in this task were the National Bridge Inventory (NBI) (FHWA, 

2017), Google Maps (Google, 2017), and other bridge data resources such as Bridge 

Hunter (Baughn, 2016) and Ugly Bridges (Baughn, 2016). The NBI is a database, 

compiled by the Federal Highway Administration (FHWA), having unified information 

about bridges in the United States including identification information, location, 

operational conditions, bridge types and specifications, and other bridge data including 

functional description and geometric data (Lubkin and Blades, 2016). Google Maps 

proved extremely useful when overlapping climate station and bridge locations by 

allowing both to be plotted on a single map. Ugly Bridges and Bridge Hunter are 

searchable versions of the NBI, giving detailed information about bridges in a more 

presentable way. 

Oklahoma County is used as an example to show the procedure followed to find 

open bridges near a selected climate station. Finding open bridges near a climate station 

started with accessing the Bridge Hunter website and establishing a clear boundary for 

the station of interest. Figure 6 shows the Bridge Hunter boundary for Oklahoma County. 

The main purpose of the boundary was to avoid confusion with bridges from neighboring 

counties. Once the boundary was set, the Ugly Bridges filter for open bridges was used, 

and the website displayed the total number of open bridges for that county. Figure 7 shows 

the Ugly Bridges distribution of open bridges for Oklahoma County. The climate station 

location was entered into Google Maps using the latitude and longitude, which then sets 

up a pin point representing the location of the selected climate station. This location was 
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then searched over Ugly Bridges by using the zoom function. If the climate station was 

located close to any school, creek, or any major landmark, it made the process less 

difficult. Once the exact location as shown by Google Maps was identified on Ugly 

Bridges and Bridge Hunter collectively, the number of open bridges within a 50-mile 

window surrounding that selected climate station was identified. The same process was 

repeated for all other climate stations. The stations selected for data collection are listed 

in Table 1 along with their location, the climate and ODOT divisions represented, and the 

number of bridges within 50 miles. Not all bridges in close proximity were identified 

during preliminary selection of the climate stations. Additional bridges were identified 

and used for data collection and statistical analysis of differences in bridge rating once 

the climate stations used for analysis were selected. The Oklahoma climate division labels 

used in Table 1 are defined in Table 2. 

 

 

Figure 6. Oklahoma County Boundary (Baughn, 2016) 
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Figure 7. Total Open Bridges in Oklahoma County (Baughn, 2016) 

Table 1. Mesonet Stations Selected for Data Collection 

Climate 

Division 

ODOT 

Division 

Mesonet 

Station 

 
Latitude 

 
Longitude 

Bridges <50 miles 

Station 

Selection 

Final for 

Analysis 

EC – 6 1 Westville 36.011° 94.644° 7 10 

SE – 9 2 Idabel 33.830° 94.880° 10 23 

SE – 9 2 Wister 34.984° 94.687° 7 65 

C – 5 3 Norman 35.236° 97.464° 7 29 

C – 5 4 Stillwater 36.120° 97.095° 4 56 

NC – 2 4 Breckinridge 36.412° 97.693° 3 30 

WC – 4 5 Bessie 35.401° 99.058° 6 17 

SW – 7 5 Tipton 34.439° 99.137° 6 4 

PH – 1 6 Beaver 36.802° 100.530° 3 19 

SC – 8 7 Burneyville 33.893° 97.269° 3 17 

NE – 3 8 Copan 36.909° 95.885° 10 42 

NE – 3 8 Inola 36.142° 95.450° 14 43 
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Table 2. Mesonet Climate Divisions 

ID Location 

PH-1 Pan Handle 

NC-2 North Central 

NE-3 Northeast 

WC-4 West Central 

C-5 Central 

EC-6 East Central 

SW-7 Southwest 

SC-8 South Central 

SE-9 Southeast 

 

3.1.2. Collection of Climate Data 

 

Having selected the climate stations based number of bridges and distribution 

across the ODOT and climate regions, daily data for temperature, rainfall, humidity and 

solar radiation for the filtered climate stations were obtained from Oklahoma Mesonet for 

the date range of January 1, 1997 to December 31, 2015. These variables were selected 

for potential effects on bridge condition based on the results of the literature review. 

These data were sorted using Microsoft Excel to determine yearly freeze-thaw cycles for 

the stations listed in Table 1, based on the following criteria: maximum temperature 

greater than or equal to 32 °F, minimum temperature less than or equal to 25 °F, rainfall 

greater than or equal to 0.01 inches, and average humidity greater than or equal to 80%. 

These criteria were selected based on review of literature related to the effect of freeze- 

thaw cycles on structures (Section 2.3.1) and standard tests for examining freeze-thaw 

resistance in the laboratory. Table 3 shows an example of how a freeze-thaw cycle   was 
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determined based on the previously discussed criteria for the Norman Mesonet station in 

the year 2015. 

Table 3. Example of Freeze-Thaw Cycles Filtering for Norman Station in 2015 

February 2015   

Temperature, °F Avg Humidity, % Rainfall, inches 

Max Min 

46 22 85 0.05 

35 21 80 0.01 

42 20 89 0.05 

Freeze-Thaw Cycles 3  

 

March 2015   

Temperature, °F Avg Humidity, % Rainfall, inches 

Max Min 

44 23 84 0.01 

42 9 82 0.07 

Freeze-Thaw Cycles 2  

 

December 2015   

Temperature °F Avg Humidity, % Rainfall, inches 

Max Min 

33 21 87 0.04 

Freeze-Thaw Cycles 1  

 

All other months have - 0 Freeze-Thaw Cycles 

 

Total 2015 ---> 6 Freeze-thaw Cycles 

 

 

Temperature, rainfall, humidity and solar radiation data were collected and 

filtered on a monthly basis from the Oklahoma Mesonet website. The ‘Past Data and 

Files’ option navigates to a new window, displaying station monthly summaries as shown 

in Figure 8. The station monthly summaries were then accessed, which displays a new 

tab where month, year and station selection can be made, as shown in Figure 9. The 

selection for each required year, month and station was made and the page displayed 
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comprehensive data for that selected range. An example for the Norman station is shown 

in Figure 10 for April 2015. Average values for each month were compiled for each 

station from these monthly summaries. 

 

 

Figure 8. Oklahoma Mesonet Past Data and Files Tab (McPherson et al., 2007; Brock et 

al., 1995) 
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Figure 9. Station Monthly Summaries Home (McPherson et al., 2007; Brock et al., 

1995) 

 
 

Figure 10. Summary for Norman- April 2015 (McPherson et al., 2007; Brock et al., 

1995) 
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Once the information for temperature, rainfall, solar radiation and humidity was 

collected for the 1997-2015 range, the data were arranged in Microsoft Excel for every 

selected station as: Average Yearly Temperature, Average Yearly Difference between 

Maximum and Minimum Temperature, Total Yearly Rainfall, Total Yearly Freeze -Thaw 

Cycles, and Total Yearly Solar Radiation. 

3.1.3. Bridge Data 

 

Comprehensive information for open bridges in close proximity (within an 

approximately 50-mile radius) to climate stations was gathered for the years from 1997 

to 2015 from the NBI database in the form of ASCII files. Excel was then used to sort the 

bridge data to identify bridges that are within the targeted range of the filtered climate 

stations. The ASCII files provide a summary of data submitted annually to the FHWA by 

the states, federal agencies, and tribal governments for each bridge in accordance with 

the National Bridge Inspection Standards (NBIS) (Lubkin and Blades, 2016). The most 

important bridge information used for narrowing down bridge data included: structure 

number, county code, latitude, longitude, open-closed-posted, type of service, kind of 

material/design, type of design/construction, deck condition, superstructure condition, 

substructure condition (substructure data comparisons were also used since the data were 

available with deck and superstructure data), type of work proposed, deck structure type, 

wearing surface type, and average daily traffic. 

The information relating to identifying specific variables was collected from ‘The 

Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s 

Bridges’ Guide (FHWA, 1995). This is a document published and maintained by the 

FHWA, which provides more thorough and detailed guidance in evaluating and   coding 
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specific bridge data. The items in the guide are expanded to provide detailed and explicit 

explanations for coding (FHWA, 1995). The collected ASCII bridge data files were 

imported into Excel and sorted using the variables discussed previously and coding 

information retrieved from the bridge guide as primary filters. The variables used for 

filtering are discussed in the following sections. 

3.1.3.1 County Code 

 

The NBI assigned the FIPS code (Federal Information Processing Standards) for 

all counties in Oklahoma. The county codes corresponding to the selected Mesonet 

stations are shown in Table 4. These codes were used to filter the bridge information to 

identify bridges located near each climate station. 

Table 4. FIPS County Codes Corresponding to Selected Mesonet Stations 

Station County County Code 

Westville Adair 1 

Idabel McCurtain 89 

Wister Leflore 79 

Norman Cleveland 27 

Stillwater Payne 119 

Breckinridge Garfield 47 

Bessie Washita 149 

Tipton Tillman 141 

Beaver Beaver 7 

Burneyville Love 85 

Copan Washington 147 

Inola Rogers 131 
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3.1.3.2. Latitude and Longitude 

 

Trying to triangulate the exact location of a bridge close to a climate station based 

on latitude and longitude is difficult. Limit values were applied in Excel when filtering 

bridges based on location. A range of 1.0° was used for the filters, which corresponds to 

a distance of 69 miles. For example, from Table 1 the Wister climate station coordinates 

are Latitude = 36.011° and Longitude = 94.644°. So, to sort bridges located close to this 

location, the filter for Latitude was set for 36.000° to 37.000° and the filter for Longitude 

was set for 95.000° to 96.000° was used in Excel. This then returned the open bridges 

with these numbers and making bridge filtering relatively less cumbersome. 

3.1.3.3. Open-Closed-Posted 

 

This provides information about the actual operational status of a bridge structure. 

Since only open bridges were of interest to this study, ‘Code A’, corresponding to open 

bridges with no restrictions, was selected for sorting (FHWA, 1995). 

3.1.3.4. Type of Service on Bridge 

 

This indicates the type of service used on the bridge and the following codes were 

used in filtering the data (FHWA, 1995): 

 Code 1 – For Highways 

 

 Code 5 – For Highway Pedestrians 

 

The remaining codes described in the guide are for buildings or plaza, railroads, highway 

railroad, pedestrian bicycle bridges, overpass structure at an interchange, third level 

(interchange), fourth level (interchange), and others, which were not of interest for this 

research. 
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3.1.3.5. Structure Type 

 

This section is divided into two parts and is represented as Kind of material/design 

and Type of design/construction. Only concrete bridges were considered as they are the 

dominant bridge type in Oklahoma and in order to limit the number of variables involved. 

The following codes were used to filter the data to identify slab or 

stringer/multibeam/girder bridges (FHWA, 1995): 

Kind of Material / Design 

 

 Code 1 – Concrete 

 

 Code 5 – Prestressed Concrete 

Type of Design / Construction 

 Code 1 – Slab 

 

 Code 2 – Stringer/Multibeam or Girder 

 
3.1.3.6. Deck, Superstructure and Substructure Condition 

 

Since one of the primary objectives of this project involved evaluating effect of 

climate conditions on bridge condition, this section played a very important role in 

determining the results. Deck condition, superstructure condition, and substructure 

condition were represented as rating codes. The deck condition rating and superstructure 

rating describe physical condition of all traffic supporting structural members. The 

substructure rating deals with the physical conditions of piers, abutments, piles, fenders, 

footings and other components. However, all three factors are described using the 

following codes (FHWA, 1995): 

 N – Not Applicable 

 

 9 – Excellent Condition 
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 8- Very Good Condition 

 

 7 – Good Condition – some minor problems 

 

 6 – Satisfactory Condition – structural elements show minor deterioration 

 

 5 – Fair Condition – structural elements are sound but have minor losses and 

cracking 

 4 – Poor Condition – advanced section loss, deterioration, spalling or scour 

 

 3 – Serious Condition – loss of section, serious deterioration, spalling or scour 

 

 2 – Critical Condition – advanced deterioration of primary structural elements. 

 

 1 – Imminent Failure Condition – major deterioration, bridge is closed to traffic 

 

 0 – Failed Condition – out of service and beyond corrective action 

 

Only rating codes 5-9 were considered because this research focused on open bridges in 

excellent to fair condition in order to evaluate effects on bridges where preventative 

measures would still be useful. The ratings 0-4 represent bridges in deteriorated condition 

and are closed to traffic. 

3.1.3.7. Type of Work Proposed 

 

This section discusses the type of work proposed on the bridge structure to 

improve it to a point that it will provide the type of service needed. The codes used are as 

follows (FHWA, 1995): 

 Code 31 – Replacement of bridge or other structure because of substandard 

load carrying capacity or substandard bridge roadway geometry 

 Code 35 – Bridge rehabilitation because of general structure deterioration or 

inadequate strength 
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These codes are associated with bridges that have reached a level of deterioration 

requiring repair, which was of interest in this study. 

3.1.3.8. Deck Structure Type 

 

The Deck Structure Type indicates the type of deck system on the bridge. Since 

this project was concerned with concrete bridges, ‘Code 1’, which corresponds to cast-in 

place concrete, was selected for sorting (FHWA, 1995). 

3.1.3.9. Wearing Surface/Protective System 

 

The Type of Wearing Surface/Protective system indicates the covering for the 

bridge. The codes used in sorting the data for this item are as follows (FHWA, 1995): 

 Code 1 – Monolithic Concrete 

 

 Code 6 – Bituminous 

 

‘Monolithic concrete’ and ‘Bituminous Concrete’ (asphalt) are the two most common 

types of wearing surfaces that would be affected by the climate variables considered in 

this study. 

3.1.3.10. Average Daily Truck Traffic 

 

Average Daily Truck Traffic shows the percentage of average daily traffic 

consisting of large semi-trucks. Vans, pickup trucks and other light trucks are not 

included in this category. Traffic volume significantly influences the level of 

deterioration of bridges. Since this research is concerned mainly about open bridges 

currently in use by traffic, this filter helps to sort out bridges accordingly. All data sets in 

this item were considered provided it was not left blank, which is done when average 

daily traffic is not greater than 100 (FHWA, 1995). 
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3.1.4. Summary of Task 

 

Having applied all filters over the NBI bridge data, the structure number, deck 

rating, superstructure rating, and substructure rating for the years 1997-2015 were pulled 

out individually and were arranged into separate tables shown in Appendix B, with 

bridges corresponding to each Mesonet climate station arranged by ascending order of 

structure number. The filtering process reduced the number of bridges considered in this 

research from the total of 6800 state highway system bridges to the numbers considered 

for each climate shown in Table 1. Similarly, climate variable data (total freeze-thaw 

cycles, total solar radiation, total rainfall, average yearly temperature, and average 

difference between maximum and minimum temperature) corresponding to the Mesonet 

climate stations for each year from 1997-2015 were summarized and are shown in 

Appendix A. 

3.2. Integrating Climate Data with NBI Data 

 
3.2.1. Quantifying Change in Bridge Rating 

 

The NBI bridge and climate data for each selected station were sorted and 

organized for the 19-year (1997-2015) time frame. The bridges having rating data for less 

than 10 years of the period of interest were not considered and information for these 

bridges is not included in Appendix B. The missing rating data is representative of bridges 

which were constructed very recently or discontinued during the period of interest. The 

change in bridge rating over a 10-year period was selected in order to have a metric for 

comparison. For example, the total number of bridges associated with the Norman 

Mesonet station for the bridge deck rating section was 29. Now, rating values are checked 

for each bridge and finally the average is calculated. If there are 22 bridges having 0 
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change in rating, 6 have 1 change, and 1 has 2 change the average bridge deck rating 

change = ((22*0) + (6*1) +(1*2)) /29 = 0.28. The same procedure was repeated for 

superstructure and substructure ratings changes for all the selected climate stations and 

the results for each station for bridge deck condition, superstructure condition and 

substructure condition were tabulated as shown in Table 5, and plotted as shown in 

Figures 11-13 to allow for comparison between regions. It was assumed that only a 

decrease in bridge rating was representative of deterioration and data indicating an 

increase in rating were not considered in order to eliminate the effects of major repairs. 

This did not take into account the effects of routine maintenance which may have kept 

the rating at a consistent level. 
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Table 5. Average Bridge Rating Changes 

Station Deck Rating Superstructure 

Rating 

Substructure 

Rating 

Wister 0.15 0.17 0.13 

Idabel 0.44 0.82 0.38 

Copan 0.22 0.15 0.29 

Inola 0.39 0.34 0.56 

Norman 0.28 0.36 0.46 

Stillwater 0.30 0.23 0.29 

Tipton 0.75 0.75 0.75 

Beaver 0.21 0.26 0.44 

Bessie 0.33 0.59 0.66 

Breckinridge 0.33 0.24 0.57 

Burneyville 0.29 0.18 0.05 

Westville 0.25 0.30 0.25 
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Figure 11. Average Deck Rating Change 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Average Superstructure Rating Change 
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Figure 13. Average Substructure Rating Change 
 

The average change in rating over time was also considered for multiple 10 year 

periods if additional data were available for each bridge in a station for all deck, 

superstructure and substructure ratings. Considering again Norman as the station of 

interest again for example, and a total of 19 years’ data is available for any bridge, the 

data would be broken into two 10 year periods with one beginning at the initial data point 

and one ending at the last data point. If the first 10-year period is checked and if there is 

a change of 1 in rating, the average is calculated as 1/10= 0.1. Now, for the remaining 10- 

year period if there is a change of 2 in rating, the average is taken as 2/10= 0.2; the average 

for that particular bridge for the two 10-year periods is (0.1+0.2)/2 = 0.15. These average 

change calculations were repeated for all bridge ratings for each selected station, and were 

used for the final analyses. 

A
ve

ra
ge

 S
u

b
st

ru
ct

u
re

 R
at

in
g 

C
h

an
ge

 



47  

3.2.2. Climate Data Analysis 

 

The climate data (average temperature, average difference between maximum and 

minimum temperature, total yearly rainfall, total yearly freeze-thaw cycles, and total 

yearly solar radiation), as described in section 3.1.2, were plotted over time. These plots 

are shown in the respective sections in Chapter 4. Visible differences in the mean value 

for the time period considered were used to identify stations for more in depth statistical 

tests to determine whether the visible differences in the mean were statistically 

significant. This was done to produce representative values while reducing the required 

number of statistical tests. 

3.2.3. Bridge and Climate Data Analysis 

 

At least two station pairs representing visibly different curves and two station 

pairs representing visibly similar curves for each climate variable were selected for 

further analysis, and are shown in Table 6. 

Table 6. Selected Climate Station Pairs for Analysis 

Avg Yearly 

Temperature 

Avg Diff in 

Max and Min 

Temperature 

Total 

Rainfall 

Total 

Freeze-Thaw 

Cycles 

Total Solar 

Radiation 

Inola- 

Burneyville 

Westville- 

Beaver 

Westville - 

Tipton 

Copan-Tipton Westville - Tipton 

Westville- 

Tipton 

Norman- 

Tipton 

Norman- 

Idabel 

Burneyville- 

Stillwater 

Copan-Tipton 

Norman- 

Bessie 

Bessie-Inola Bessie- 

Burneyville 

Idabel-Wister Wister- Inola 

Copan- 

Breckinridge 

Idabel- 

Stillwater 

Wister- 

Copan 

Burneyville- 

Norman 

Burneyville- 

Breckinridge 

 

 

The normalized bridge data for the 19-year period (described in section 3.2.1) and 

climate data for selected stations was subjected to statistical analysis using a  ‘Student’s 
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t-test’ to identify possible correlations. This statistical test was used since it is appropriate 

for small sample sizes (smaller than 30) and can be used to identify differences in mean 

values for samples following a normal distribution. It was assumed that all variables 

examined in this research would follow a normal distribution. This was used as an initial 

starting point in the analysis of climate and bridge condition data. Some previous research 

has shown that a normal distribution provides a good representation of rating data for 

higher rating values (Nasrollahi and Washer, 2015) such as those considered in this 

research. 

The t-test was developed by William Sealy Gosset under the pseudonym 

‘Student’, hence the name. The t distribution in the t-test describes samples drawn from 

a full population described by a normal distribution. The t-distribution for each sample 

size is different, and the larger the sample, the more the distribution resembles a normal 

distribution. This analysis method performs a statistical hypothesis test based on the 

assumption of equality of the population means underlie each sample. Excel’s ‘Analysis 

Toolpak’ was used to perform the analyses as it had all of the functions required for the 

selected analysis methods and was readily available. This tool calculates and displays the 

results for the given data and parameters using the appropriate statistical functions. More 

detail on the underlying statistical functions can be found in any statistics text (i.e. Chase 

and Bown, 1997). The Excel ‘Analysis Toolpak’ comes with many tools performing a 

variety of functions, and the tool used for this research was the ‘Student’s t-Test: Two- 

Sample Assuming Equal Variances’ function. 

This t-test form assumes that the two data sets came from distributions with the 

same variances. It is referred to as a homoscedastic t-test. This test was chosen as a 
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reasonable starting point since the variables compared had similar sources of error and 

the population variance was unknown. This t-test can be used to determine whether the 

two samples are likely to have come from distributions with equal population means. A 

single tail significance level (alpha) of 0.05 (meaning a 95% confidence level to support 

the correlation between two variables) was selected for evaluating difference in the mean 

based on typical usage in previous research. Within Excel, the probability P (T<=t) was 

calculated and compared with the alpha value of 0.05. If the P value is less than 0.05 then 

there is a significant difference, and if the P value is greater than 0.05 there is not a 

significant difference. 

To better explain, data from one selected pair of climate stations considering the 

climate variable of rainfall is shown in Table 7. Accessing the data analysis function in 

Excel opened a tab shown in Figure 14, and data from both stations (Westville and Tipton) 

were selected for analysis. The alpha value of 0.05 was selected before starting the 

analysis process. Excel then created a new worksheet as shown in Figure 15, the P (T<=t) 

value was checked and compared with the alpha value, and the results were tabulated as 

shown in Table 8. Table 8 includes the complete set of results from statistical tests for 

both different and similar curves for the rainfall variable. The same process was repeated 

for all climate variables. A comparison was then made for the normalized bridge ratings 

using the same station pairs as examined for differences in climate variables. Tables 9-11 

show bridge deck, superstructure and substructure data analysis values for station pairs 

related to the rainfall variable, with each table including a complete set of tests for climate 

curves with both different and similar values. 
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Table 7. Example Station Data for Assessing Difference in Rainfall Variable 

Year Total Yearly Rainfall in 

Westville, inches 

Total Yearly Rainfall in Tipton, 

inches 

1997 208 153 

1998 167 122 

1999 162 113 

2000 181 110 

2001 159 111 

2002 167 110 

2003 178 95 

2004 184 145 

2005 163 129 

2006 157 97 

2007 177 135 

2008 189 93 

2009 220 148 

2010 164 115 

2011 185 62 

2012 127 106 

2013 179 113 

2014 182 100 

2015 201 156 
 

 

 

Figure 14. Sample Worksheet for Rainfall Variable Data Analysis 
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Figure 15. Sample Output from t-Test Worksheet 

 

Table 8. t-Test Results for Climate Comparison – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.00003 Yes 

Norman-Idabel 0.00043 Yes 

Bessie-Burneyville 0.17669 No 

Wister-Copan 0.02566 Yes 

 

 

Table 9. t-Test Results for Deck Rating Reductions 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.17422 No 

Norman-Idabel 0.18289 No 

Bessie-Burneyville 0.18619 No 

Wister-Copan 0.43589 No 

 

 

Table 10. t-Test Results for Superstructure Rating Reductions 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.03289 Yes 

Norman-Idabel 0.01793 Yes 

Bessie-Burneyville 0.09432 No 

Wister-Copan 0.15902 No 
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Table 11. t-Test Results for Substructure Rating Reductions 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.00149 Yes 

Norman-Idabel 0.02793 Yes 

Bessie-Burneyville 0.13728 No 

Wister-Copan 0.05574 No 

 

 

Finally, the climate analysis results were compared with each of the bridge deck, 

superstructure, and substructure rating comparisons to find a possible correlation between 

rainfall and bridge rating data. This was done by matching ‘Yes’ (indicator of significant 

difference) results in a climate data set to ‘Yes’ results in a bridge rating data set. So, on 

comparing Table 8 and Table 9, it can be seen that the data does not support rainfall 

having an impact on deck rating change, because the deck ratings all have ‘No’ results 

(indicating no significant difference or a possible case of statistical similarity) even 

though two of the stations compared had significantly different rainfall. On comparing 

Table 8 and Table 10, and Table 8 and Table 11 it can be seen that station pairs Westville 

– Tipton and Norman – Idabel, have matching results. By this it can be said that rainfall 

may have an influence over superstructure and substructure rating changes. However, 

Wister – Copan did not exhibit differences in superstructure and substructure ratings even 

though they did have a difference in rainfall, which indicates that another factor may be 

involved. The same process was used for all other climate variables, results of which are 

discussed in Chapter 4. 

4. Results 
 

4.1. Student’s t-Test for Average Temperature 

 

The plots for average temperature versus time for all considered climate stations 

are shown in Figure 16. Climate stations with visible differences in average temperature 
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selected for analysis of bridge rating differences are shown by square points and dashed 

lines while other stations are shown by circular points and solid lines. The t-test values 

for the station pairs selected from visible examination (listed in Table 6 of section 3.2.2) 

for the climate variable average temperature and the corresponding bridge data (deck 

rating, superstructure rating, and substructure rating) are shown in Tables 12-15. 

 
 

Figure 16. Average Yearly Temperature plotted over time 

 

 

 

Table 12. t-Test Climate Analysis Results – Average Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Inola-Burneyville 0.00147 Yes 

Westville-Tipton 0.00562 Yes 

Norman-Bessie 0.18997 No 

Copan-Breckinridge 0.16364 No 
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Table 13. t-Test Results for Deck Rating Change – Average Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Inola-Burneyville 0.20778 No 

Westville-Tipton 0.17422 No 

Norman-Bessie 0.08055 No 

Copan-Breckinridge 0.01179 Yes 

 

 

Table 14. t-Test Results for Superstructure Rating Change – Average Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Inola-Burneyville 0.18785 No 

Westville-Tipton 0.03289 Yes 

Norman-Bessie 0.39249 No 

Copan-Breckinridge 0.00404 Yes 

 

 

Table 15. t-Test Results for Substructure Rating Change – Average Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Inola-Burneyville 0.20436 No 

Westville-Tipton 0.00149 Yes 

Norman-Bessie 0.07271 No 

Copan-Breckinridge 0.01867 Yes 

 

 

The t-test climate analysis results shown in Table 12 were compared with the t- 

test results for each of the bridge deck, superstructure, and substructure rating changes, 

shown in Tables 13-15, to find a possible correlation between average temperature and 

bridge rating data. On comparing the results, it was observed that only one station pair, 

Westville – Tipton, showed a possible correlation (Yes-Yes). This can be seen in 

superstructure and substructure rating change comparison with climate results, shown in 

Tables 12, 14, and 15. The station pairs representative of no correlation (No-No) may be 

statistically identical. 
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Since there was no correlation with the bridge deck rating change and this climate 

variable has only one station pair matching, it was not clear whether average temperature 

may affect rating changes, but this does not seem likely based on the available 

information. Hence, this climate variable was not considered for further analysis. 

4.2. Student’s t-Test for Average Difference between Maximum and Minimum 

Temperature 

The plots for average difference between maximum and minimum temperature 

versus time are shown in Figure 17 for all climate stations. Climate stations with visible 

differences selected for analysis of bridge rating differences are shown by square points 

and dashed lines while other stations are indicated by circular points and solid lines. No 

data were available for the Westville station after 2015. The t-test results for the station 

pairs identified from visible examination (listed in Table 6 of section 3.2.2) for the climate 

variable average difference between maximum and minimum temperature and the 

corresponding bridge data (deck rating, superstructure rating, and substructure rating) are 

shown in Tables 16-19. 
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Figure 17. Average Difference in Max/Min Temperature over time 

 
Table 16. t-Test Climate Analysis Results for Avg. Difference Max/Min Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Beaver 0.00015 Yes 

Norman-Tipton 0.00078 Yes 

Bessie-Inola 0.08086 No 

Idabel-Stillwater 0.17058 No 

 

 

Table 17. t-Test Results for Deck Rating Change – Avg. Max/Min Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Beaver 0.11056 No 

Norman-Tipton 0.24083 No 

Bessie-Inola 0.41070 No 

Idabel-Stillwater 0.19522 No 
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Table 18. t-Test Results for Superstructure Rating Change – Avg. Max/Min 

Temperature 
 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Beaver 0.02015 Yes 

Norman-Tipton 0.06038 No 

Bessie-Inola 0.37171 No 

Idabel-Stillwater 0.21129 No 

 

Table 19. t-Test Results for Substructure Rating Change – Avg. Max/Min Temperature 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Beaver 0.02015 Yes 

Norman-Tipton 0.06038 No 

Bessie-Inola 0.37171 No 

Idabel-Stillwater 0.21129 No 

 

 

The t-test climate analysis results shown in Table 16 were compared with each of 

the bridge deck, superstructure, and substructure rating changes, shown in Tables 17-19, 

to find a possible correlation between average difference in maximum and minimum 

temperature and bridge rating data. On comparison, it was observed that only one station 

pair, Westville – Beaver, showed a possible correlation (Yes-Yes). This can be seen in 

superstructure and substructure rating change comparison with climate results, shown in 

Tables 16, 18 and 19. The station pairs representative of no correlation (No-No) may be 

statistically identical. 

Since there was no correlation with the bridge deck rating change and this climate 

variable has only one station pair matching, it is unclear whether average difference in 

maximum and minimum temperature may affect rating changes, but this does not seem 

likely based on the available information. Hence, this climate variable was not considered 

for further analysis. 
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4.3. Student’s t-Test for Total Yearly Rainfall 

 

The plots for total yearly rainfall versus time for all climate stations are shown in 

Figure 18. Climate stations with visible differences selected for analysis of bridge rating 

differences are shown by square points and dashed lines while other stations are indicated 

by circular points and solid lines. The t-test values for the station pairs identified from 

visible examination (listed in Table 6 of section 3.2.2) for the climate variable total yearly 

rainfall and the corresponding bridge data (deck rating, superstructure rating, and 

substructure rating) are shown in Tables 20-23. 

 
 

Figure 18. Total Yearly Rainfall over time 
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Table 20. t-Test Climate Analysis Results – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.00035 Yes 

Norman-Idabel 0.00043 Yes 

Bessie-Burneyville 0.17669 No 

Wister-Copan 0.02560 Yes 

 

 

Table 21. t-Test Results for Deck Rating Change – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.17422 No 

Norman-Idabel 0.18289 No 

Bessie-Burneyville 0.18619 No 

Wister-Copan 0.43589 No 

Table 22. t-Test Results for Superstructure Rating Change – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.03289 Yes 

Norman-Idabel 0.01793 Yes 

Bessie-Burneyville 0.09432 No 

Wister-Copan 0.15902 No 

 

 

Table 23. t-Test Results for Substructure Rating Change – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.00149 Yes 

Norman-Idabel 0.02793 Yes 

Bessie-Burneyville 0.13728 No 

Wister-Copan 0.05574 No 

 

 

The climate analysis results shown in Table 20 were compared with the t-test 

results for each of the bridge deck, superstructure, and substructure rating changes, shown 

in Tables 21-23, to find a possible correlation between total rainfall and bridge rating 

data. On comparison, it was observed that two station pairs, Westville – Tipton and 
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Norman – Idabel, showed a possible correlation (Yes-Yes). This can be seen in 

superstructure and substructure rating change comparisons with climate results, shown in 

Tables 20, 22, 23. The station pairs representative of no correlation (No-No) may be 

statistically identical. 

Since there was no correlation with the bridge deck rating change, but this climate 

variable has two station pairs matching for superstructure and substructure, it may have 

an influence over bridge rating changes. Hence, this climate variable was considered for 

further analysis (section 4.6). 

4.4. Student’s t-Test for Total Yearly Freeze-Thaw Cycles 

 

The plots for total yearly freeze-thaw cycles versus time for all climate stations 

are shown in Figure 19. Climate stations with visible differences selected for analysis of 

bridge rating differences are shown by square points and dashed lines while other stations 

are indicated by circular points and solid lines. The erratic nature of these curves indicates 

that a normal distribution may not be representative of the underlying data, potentially 

affecting the applicability of the t-test. The t-test values for the station pairs identified 

from visible examination (listed in Table 6 of section 3.2.2), for the climate variable total 

yearly freeze-thaw cycles and the corresponding bridge data (deck rating, superstructure 

rating, and substructure rating) are shown in Tables 25-27. 
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Figure 19. Total Yearly Freeze-Thaw Cycles for all stations over time 

 

 

 

Table 24. t-Test Climate Analysis Results – Total Yearly Freeze-Thaw Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Copan-Tipton 0.11024 No 

Burneyville-Stillwater 0.28741 No 

Idabel-Wister 0.00226 Yes 

Burneyville-Norman 0.35697 No 

 

 

Table 25. t-Test Results for Deck Rating Change – Total Yearly Freeze-Thaw Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Copan-Tipton 0.04442 Yes 

Burneyville-Stillwater 0.30857 No 

Idabel-Wister 0.00392 Yes 

Burneyville-Norman 0.26138 No 
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Table 26. t-Test Results for Superstructure Rating Change – Total Yearly Freeze-Thaw 

Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Copan-Tipton 0.00071 Yes 

Burneyville-Stillwater 0.19885 No 

Idabel-Wister 0.00046 Yes 

Burneyville-Norman 0.12675 No 

 

 

Table 27. t-Test Results for Substructure Rating Change – Total Yearly Freeze-Thaw 

Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Copan-Tipton 0.01134 Yes 

Burneyville-Stillwater 0.01639 Yes 

Idabel-Wister 0.23080 No 

Burneyville-Norman 0.30865 No 

 

 

The climate analysis results shown in Table 24 were compared with the t-test 

results for each of the bridge deck, superstructure, and substructure rating changes, shown 

in Tables 25-27, to find a possible correlation between total yearly freeze-thaw cycles and 

bridge rating data. On comparison, it was observed that two station pairs, Burneyville – 

Stillwater and Idabel – Wister, exhibited a possible correlation (Yes-Yes). The station 

pairs representative of no correlation (No-No) may be statistically identical. This can be 

seen in deck and superstructure rating comparisons with climate results shown in Tables 

24, 25, and 26. There was no correlation with the substructure rating change, but since 

this climate variable had two station pairs matching with deck and substructure, it 

potentially has an influence on bridge rating changes. Hence, this climate variable was 

considered for further analysis (section 4.6). 
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4.5. Student’s t-Test for Total Yearly Solar Radiation 

 

The plots for total yearly solar radiation versus time for all climate stations are 

shown in Figure 20. Climate stations with visible differences selected for analysis of 

bridge rating differences are shown by square points and dashed lines while other stations 

are indicated by circular points and solid lines. The t-test values for the station pairs 

identified from visible examination (listed in Table 6 of section 3.2.2) for the climate 

variable total yearly solar radiation and corresponding bridge data (deck rating, 

superstructure rating, and substructure rating) are shown in Tables 29-31. 

 
 

Figure 20. Total Yearly Solar Radiation over time 
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Table 28. t-Test Climate Analysis Results for Total Yearly Solar Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.00314 Yes 

Copan-Tipton 0.00812 Yes 

Wister-Inola 0.44435 No 

Burneyville-Breckinridge 0.48851 No 

 

 

Table 29. t-Test Results for Deck Rating Change – Total Yearly Solar Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Westville-Tipton 0.17422 No 

Copan-Tipton 0.04442 Yes 

Wister-Inola 0.00020 Yes 

Burneyville-Breckinridge 0.50000 No 

 

 

Table 30. t-Test Results for Superstructure Rating Change – Total Yearly Solar 

Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Westville - Tipton 0.03289 Yes 

Copan - Tipton 0.00710 Yes 

Wister - Inola 0.16907 No 

Burneyville - Breckinridge 0.50000 No 

 

 

Table 31. t-Test Results for Substructure Rating Change – Total Yearly Solar Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Westville - Tipton 0.00149 Yes 

Copan-Tipton 0.01268 Yes 

Wister- Inola 0.00016 Yes 

Burneyville-Breckinridge 0.50000 No 

 

 

The climate analysis results shown in Table 28 were compared with the t-test 

results for each of the bridge deck, superstructure, and substructure rating changes, shown 

in Tables 29-31, to find a possible correlation between total yearly solar radiation and 



65  

bridge rating data. On comparison, it was observed that two station pairs, Copan – Tipton 

and Westville – Tipton, exhibited a potential correlation (Yes-Yes). The station pairs 

representative of no correlation (No-No) may be statistically identical. This can be seen 

in deck, superstructure, and substructure rating change comparisons with climate results, 

shown in Tables 28-31. Since two station pairs with statistically different values of total 

solar radiations also exhibited statistically different changes in bridge rating, total solar 

radiation may have an influence over bridge rating changes. Hence, this climate variable 

was considered for further analysis (section 4.6). 

4.6. Climate Comparison with Additional Stations 

 

Based on comparisons of bridge condition rating changes for stations with 

significantly different climate conditions, it was found that total yearly freeze-thaw 

cycles, total yearly rainfall, and total yearly solar radiation may have an influence over 

changes in bridge ratings over time. Additional station pairs were added to the 

examination of difference in rating changes related to freeze-thaw cycles, rainfall, and 

solar radiation data to get a better understanding of the correlations identified in sections 

4.3, 4.4, and 4.5. The additional station pairs included in the analysis are shown in Table 

32. These station pairs were added to the graphs for these climate variables previously 

shown in Figures 18, 19, and 20. The updated plots are shown in Figures 21-23. 

Table 32. Additional Climate Station Pairs for t-Test Analysis 

Yearly Rainfall Yearly Freeze-Thaw 

Cycles 

Yearly Solar Radiation 

Beaver-Tipton Breckinridge-Stillwater Bessie-Idabel 

Idabel-Copan Beaver-Idabel Wister-Copan 
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4.6.1. Total Yearly Rainfall with Additional Stations 

 

The plots for total yearly rainfall versus time for all selected climate stations are 

shown in Figure 21 with the climate stations chosen for additional data analysis shown 

by triangular points and dash lines. All other stations are indicated by circular points and 

solid lines. The t-test values for the station pairs listed in Table 32 for the climate variable 

total yearly rainfall and the corresponding bridge data (deck rating, superstructure rating, 

and substructure rating) are shown in Tables 33-36. 

 

 

Figure 21. Total Yearly Rainfall with Additional Station Pairs over Time 

 

 

 
Table 33. t-Test Results for Climate Comparison – Total Yearly Rainfall 

 

Station Pair P (T<=t) values Difference Yes/No 

Beaver-Tipton 0.26517 No 

Idabel-Copan 0.27383 No 
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Table 34. t-Test Results for Deck Rating Change – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Beaver-Tipton 0.18619 No 

Idabel-Copan 0.43589 No 

 

 

Table 35. t-Test Results for Superstructure Rating Change – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Beaver-Tipton 0.09432 No 

Idabel-Copan 0.15902 No 

 

 

Table 36. t-Test Results for Substructure Rating Change – Total Yearly Rainfall 

Station Pair P (T<=t) values Difference Yes/No 

Beaver-Tipton 0.13728 No 

Idabel-Copan 0.05574 No 

 

 

The climate analysis results shown in Table 33 were compared with the t-test 

results for each of the bridge deck, superstructure, and substructure rating change, shown 

in Tables 34-36 to find a possible correlation between total yearly rainfall and bridge 

rating change data. On comparison, it was observed that neither of the additional station 

pairs showed a potential correlation (both No-No). However, neither of these station pairs 

exhibited a difference in climate condition over time so no additional inference can be 

drawn beyond that of section 4.3. Based on those results, it can be said that rainfall may 

have an influence over superstructure and substructure ratings. However, Wister – Copan 

exhibited a difference in rainfall over time, but did not exhibit differences in bridge 

ratings, while station pairs Westville – Tipton and Norman – Idabel exhibited differences 

in superstructure and substructure ratings, but did not exhibit differences in deck ratings. 

These results indicate that other factors may also be involved. 
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4.6.2. Total Yearly Freeze-Thaw Cycles with Additional Stations 

 

The plots for total yearly freeze-thaw cycles versus time for all selected climate 

stations are shown in Figure 22 with the climate stations chosen for additional data 

analysis shown by triangular points and dash lines. The t-test values for the station pairs 

listed in Table 32 for the climate variable total yearly freeze-thaw cycles and the 

corresponding bridge data (deck rating, superstructure rating, and substructure rating) are 

shown in Tables 37-40. 

 
 

Figure 22. Total Yearly Freeze-Thaw Cycles with Additional Station Pairs over Time 

Table 37. t-Test Climate Analysis Results for Total Yearly Freeze-Thaw Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Breckinridge-Stillwater 0.03360 Yes 

Beaver-Idabel 0.00536 Yes 
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Table 38. t-Test Results for Deck Rating Change – Total Yearly Freeze-Thaw Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Breckinridge-Stillwater 0.36868 No 

Beaver-Idabel 0.30857 No 

 

 

Table 39. t-Test for Superstructure Rating Change – Total Yearly Freeze-Thaw Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Breckinridge-Stillwater 0.00014 Yes 

Beaver-Idabel 0.19885 No 

 

 

Table 40. t-Test for Substructure Rating Change – Total Yearly Freeze-Thaw Cycles 

Station Pair P (T<=t) values Difference Yes/No 

Breckinridge - Stillwater 0.27570 No 

Beaver - Idabel 0.01639 Yes 

 

 

The climate analysis results shown in Table 37 were compared with the t-test 

results for each of the bridge deck, superstructure, and substructure rating changes, shown 

in Tables 38-40 to find a possible correlation between total yearly freeze-thaw cycles and 

bridge rating change data. On comparison, it was observed that the Breckinridge – 

Stillwater station pair showed a correlation (Yes-Yes) for change in Superstructure rating 

and the Beaver – Idabel station pair showed a correlation (Yes-Yes) for change in 

substructure rating. 

By combining the results from the additional stations with the results presented in 

section 4.4, it can be said that freeze-thaw cycles may have an influence over deck, 

superstructure, and substructure ratings. However, Idabel – Wister did not exhibit 

differences in substructure ratings, Breckinridge – Stillwater did not exhibit differences 

in deck and substructure ratings, and Beaver –Idabel did not exhibit differences in deck 

and superstructure ratings, which indicates that other factors may also be involved. 
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4.6.3. Total Yearly Solar Radiation 

 

The plots for total yearly rainfall versus time for all selected climate stations (are 

shown in Figures 23, with the climate stations chosen for additional data analysis shown 

by triangular points and dash lines. The t-test values for the additional station pairs listed 

in Table 32, for the climate variable total yearly solar radiation and corresponding bridge 

data (deck rating, superstructure rating, and substructure rating) are shown in Tables 41- 

44. 

 
 

Figure 23. Total Yearly Solar Radiation with Additional Station Pairs over Time 

 

 

 
Table 41. t-Test Climate Analysis Results for Total Yearly Solar Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Bessie-Idabel 1.6531E-07 Yes 

Wister-Copan 0.39824 No 
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Table 42. t-Test Results for Deck Rating Change – Total Yearly Solar Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Bessie-Idabel 0.43589 No 

Wister-Copan 0.33585 No 

 

 

Table 43. t-Test Results for Superstructure Rating Change – Total Yearly Solar 

Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Bessie-Idabel 0.048950 Yes 

Wister-Copan 0.15902 No 

 

 

Table 44. t-Test for Substructure Rating Change – Total Yearly Solar Radiation 

Station Pair P (T<=t) values Difference Yes/No 

Bessie-Idabel 0.055746 No 

Wister-Copan 0.001870 Yes 

 

 

The climate analysis results shown in Table 41 were compared with the t-test 

results for each of the bridge deck, superstructure, and substructure rating changes, shown 

in Tables 42-44, to find a possible correlation between total yearly solar radiation and 

bridge rating data. On comparison, it was observed that the Copan – Tipton station pair 

showed a potential correlation (Yes-Yes) for change in deck and superstructure ratings 

and the Bessie – Idabel station pair showed a potential correlation (Yes-Yes) for change 

in superstructure ratings. By combining these results with those from section 4.5, it can 

be said that solar radiation may have an influence over deck, superstructure and 

substructure rating change. However, station pair Westville – Tipton did not exhibit 

differences related to deck ratings, station pair Bessie – Idabel did not exhibit differences 

related to deck and substructure ratings, and station pair Wister – Copan did not exhibit 

differences related to deck and superstructure ratings, which indicates that other factors 

may also be involved. 
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5. Summary, Conclusions and Recommendations 
 

The work described in this thesis consisted of a study into potential relationships 

between the climate variables of average temperature, average difference between 

minimum and maximum temperature, total yearly rainfall, total yearly freeze-thaw 

cycles, and total yearly solar radiation and bridge ratings in Oklahoma. Climate data used 

in this study were collected from the Oklahoma Mesonet and bridge data were collected 

from the National Bridge Inventory (NBI). Pairs of climate stations were chosen based 

on differences in climate variables over time, and change in bridge deck, superstructure, 

and substructure ratings over time for bridges located within approximately 50 miles of 

each station were compared to identify possible correlations in the data. The Student’s t- 

test was used to evaluate potential relationships between the stations. 

The results presented in Chapter 4 indicate that stations Tipton, Copan, Idabel and 

Wister show differences for all three considered climate variables (freeze-thaw cycles, 

rainfall and solar radiation) for the period of time examined. The locations of these 

stations are shown in Figure 24. Differences in these climate variables can be considered 

as a long-term risk issue if changes in the climate occur over time or a short-term risk 

issue in terms of extreme weather events. Bridges in the regions having potential high 

impacts from each of the climate variables may need extra care and treatment. 
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Figure 24. Climate Stations showing differences in climate behaviors 

 

Based on the analysis of results discussed in Chapter 4, the conclusions shown in 

Table 45 were made. The table is representative of the final list of climate stations and 

associated climate variables of freeze-thaw cycles, rainfall, and solar radiation, which 

may to some extent affect the condition of any of the three bridge ratings (deck, 

superstructure and substructure) for each station. 

For each of the climate stations in Table 45, the climate variables may cause a 

difference in bridge deterioration behavior. These variables may increase the risk of 

bridge deterioration in the long-term. These results can help inform asset management 

and regular inspection of bridges in these regions to avoid any negative impacts. This 

helps improve ODOT’s ability to predict and assess the vulnerability and resilience of the 

critical bridge infrastructure. Also, quantifying the risk of probable bridge deterioration 

in these regions, under the influence of changing climate has the potential to benefit other 

infrastructure services such as water, power and telecommunications. 
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Table 45. Summary of Potential Effects of Climate Factors on Bridge Ratings near 

Climate Stations 

Station Freeze-thaw 

Cycles 

Rainfall Solar Radiation 

Copan May not Affect Deck and Superstructure Substructure 

Wister Superstructure Deck and Superstructure Substructure 

Idabel Superstructure Superstructure and 

Substructure 

Superstructure and 

Substructure 

Stillwater Superstructure May not Affect May not Affect 

Beaver Substructure May not Affect May not Affect 

Tipton May not Affect Superstructure and 

Substructure 

Deck, Superstructure and 

Substructure 

Westville May not Affect Superstructure and 

Substructure 

Superstructure and 

Substructure 

Norman May not Affect Superstructure and 

Substructure 

May not Affect 

Breckinridge Superstructure May not Affect May not Affect 

Bessie May not Affect May not Affect Superstructure and 

Substructure 
 

 

Climate change is an important global challenge to be addressed in the coming 

years. Most of Oklahoma’s bridges, which are designed to be operational for 50 years, 

are more likely to experience the impact before their intended lifespan. Knowledge of 

potential impacts of future climatic conditions is essential to aid transportation 

departments in managing the structural health of both existing and planned bridge 

infrastructures. This thesis presented an initial attempt to evaluate the potential 

significance of the anticipated impact of climate change to bridge deck and superstructure 

deterioration, and provided good initial correlative analysis linking multiple climate 

factors. Additional statistical analyses considering time-dependent effects should be 

considered to provide better evaluation of the potential impacts of climate change on 

bridges. 
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Appendix A - Climate Variables for all Climate Stations 
 

Table A.1. Wister Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff Max & 

Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze-thaw 

Cycles 

1997 186 185.24 25 61.4 2 

1998 160 189.55 25 63.08 1 

1999 155 189.16 28 63.68 0 

2000 172 187.52 26 62.9 3 

2001 163 182.57 26 62.68 3 

2002 174 183.61 25 61.63 4 

2003 159 185.26 26 61.95 0 

2004 175 180.28 25 62 1 

2005 138 194.71 28 63.27 0 

2006 151 200.05 28 63.09 6 

2007 169 183.59 24 62.63 2 

2008 170 192.03 26 61 4 

2009 213 180.62 24 61.45 4 

2010 185 199.24 26 61.95 2 

2011 159 202.97 27 63.59 6 

2012 157 209.16 28 65.18 1 

2013 200 195.79 25 61.04 6 

2014 192 194.39 24 59.77 8 

2015 196 204.82 25 62.45 4 
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Table A.2. Idabel Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 177 187.58 22 64.56 0 

1998 149 192.65 22 65.37 1 

1999 140 198.3 25 64.5 0 

2000 157 191.01 23 62.87 3 

2001 187 188.36 22 63.2 1 

2002 167 181.64 23 62.66 1 

2003 131 185.85 23 62.266 0 

2004 171 183.45 22 62.95 1 

2005 113 213.05 25 63.54 0 

2006 137 204.94 26 63.91 1 

2007 183 185.01 22 62.91 0 

2008 184 195.06 24 61.62 1 

2009 203 189.39 21 61.95 2 

2010 162 204.35 23 62.62 2 

2011 153 208.76 25 64.5 5 

2012 146 202.42 25 65 1 

2013 171 192.18 23 61.79 1 

2014 170 191.85 22 60.91 2 

2015 198 182.86 22 63.7 0 
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Table A.3. Copan Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 180 189.42 21 61.3 1 

1998 129 179.34 21 60.5 1 

1999 156 190.19 22 61.5 0 

2000 167 196.99 22 61.54 0 

2001 134 197.98 23 61.27 3 

2002 139 194.72 21 59.77 1 

2003 159 193.31 22 59.59 2 

2004 168 184.05 22 60 3 

2005 154 195.55 23 61.5 1 

2006 128 199.04 24 62.5 1 

2007 190 185.82 21 61 11 

2008 173 191.36 22 59 5 

2009 174 191.37 22 59.54 3 

2010 170 200.65 21 60.72 2 

2011 150 201.5 23 61.27 1 

2012 110 202.5 24 64.27 1 

2013 192 186.34 21 59.13 3 

2014 151 190.13 22 58.54 0 

2015 188 182.66 22 60.59 4 
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Table A.4. Inola Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 N/A N/A N/A N/A N/A 

1998 N/A N/A N/A N/A N/A 

1999 N/A N/A N/A N/A N/A 

2000 N/A N/A N/A N/A N/A 

2001 N/A N/A N/A N/A N/A 

2002 162 185.37 23 58.95 3 

2003 177 185.63 23 59.16 2 

2004 170 183.16 22 59.2 3 

2005 144 197.52 24 60.25 1 

2006 139 201.84 25 61.16 4 

2007 172 186.16 21 59.29 8 

2008 178 191.08 23 57.7 2 

2009 192 182.19 20 51.7 3 

2010 168 194.35 22 59.33 3 

2011 164 194.8 24 60.37 4 

2012 117 203 25 62.87 0 

2013 180 190.62 23 57.87 4 

2014 154 192.35 23 57.45 4 

2015 194 189 22 59.83 5 
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Table A.5. Norman Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 154 198.03 21 63.25 0 

1998 115 205.21 21 63.04 0 

1999 123 212.72 22 63.68 0 

2000 142 205.29 21 63.22 0 

2001 72 194.79 21 62.59 0 

2002 111 188.49 21 61.36 0 

2003 137 195.16 23 62.45 3 

2004 167 186.67 21 62.5 0 

2005 132 200.99 22 63.4 2 

2006 117 212.07 23 65.36 0 

2007 173 186.71 20 63 3 

2008 111 208.88 23 62.54 0 

2009 171 198.83 22 62.4 5 

2010 122 209.03 21 62.68 2 

2011 107 220.26 24 64.95 1 

2012 109 215.39 23 66.18 2 

2013 155 201.16 21 61.77 1 

2014 124 203.21 22 61.63 4 

2015 178 194.29 21 62.72 3 
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Table A.6. Stillwater Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 164 190 22 61.7 1 

1998 135 192.55 23 61.75 1 

1999 146 200.71 24 62.86 1 

2000 128 199.2 23 62.72 1 

2001 112 197.4 23 62.27 1 

2002 144 189.28 23 60.72 4 

2003 124 190.85 24 60.86 4 

2004 155 187.71 23 61.59 0 

2005 118 196.53 24 62.81 2 

2006 121 202.62 26 63.77 2 

2007 177 180.13 22 62.22 5 

2008 142 196.8 24 61.31 1 

2009 179 192.42 23 61.59 2 

2010 159 197.59 22 61.9 1 

2011 99 205.39 26 63.4 0 

2012 98 188.03 26 65.09 1 

2013 172 196.66 23 60.54 4 

2014 129 204.59 24 60.4 1 

2015 174 194.91 23 62.18 4 
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Table A.7. Tipton Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 153 213.43 23 63.36 0 

1998 122 217.21 24 64.66 1 

1999 113 224.68 26 66.04 0 

2000 110 213.95 25 66.54 7 

2001 111 213.04 24 64.95 0 

2002 110 211.08 24 63.31 0 

2003 95 217.63 27 64.13 1 

2004 145 200.53 23 64.4 0 

2005 129 211.18 26 64.54 1 

2006 97 224.86 27 66.45 1 

2007 135 204.9 23 64 1 

2008 93 231.34 28 64.18 0 

2009 148 215.24 27 64.09 4 

2010 115 213.92 25 63.81 1 

2011 62 229.82 28 66.63 1 

2012 106 224.68 27 67.45 0 

2013 113 220.7 26 64.13 4 

2014 100 213.1 25 63.4 2 

2015 156 203.55 24 64.54 2 
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Table A.8. Beaver Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 116 202.51 27 59.65 2 

1998 127 213.77 28 58.08 2 

1999 101 215.79 29 59.9 1 

2000 105 213.49 29 60.95 1 

2001 113 213.26 28 60.77 3 

2002 112 216.62 28 59.22 5 

2003 88 211.7 29 59.27 2 

2004 128 201.09 28 59.22 1 

2005 127 205.44 28 59.81 2 

2006 103 218.3 30 60.72 3 

2007 117 227.42 28 59.04 4 

2008 108 223.75 30 58.81 1 

2009 105 213.3 30 58.68 0 

2010 108 215.14 28 59.5 8 

2011 98 226.32 31 60.81 8 

2012 107 227.18 31 62.81 2 

2013 122 221.48 28 59.22 5 

2014 102 212.65 28 58.86 0 

2015 150 208.14 28 60.13 3 
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Table A.9. Bessie Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 162 207.61 21 61.36 1 

1998 112 211.32 23 62.7 0 

1999 113 212.71 24 63.81 0 

2000 142 207.84 23 62.7 4 

2001 128 211.16 23 63.54 2 

2002 129 203.49 22 61.54 6 

2003 109 208.04 24 62.09 3 

2004 157 198.8 22 62.22 0 

2005 143 215.5 23 62.54 4 

2006 111 218.6 25 64.272 2 

2007 161 195.84 22 61.81 9 

2008 104 212.67 25 62.13 2 

2009 131 205.98 24 61.9 2 

2010 115 213.73 24 62.68 1 

2011 86 228.74 26 65.09 0 

2012 100 222.32 25 65.95 1 

2013 132 215.36 24 61.77 5 

2014 106 213.58 24 61.45 1 

2015 147 204.6 23 62.31 3 
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Table A.10. Breckinridge Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 165 198.15 21 61.8 1 

1998 152 199.55 22 61.2 0 

1999 149 208.81 22 61.81 2 

2000 121 208.74 22 61.72 4 

2001 136 207.45 23 61.9 5 

2002 143 195.08 23 59.86 3 

2003 109 198.12 23 60.36 3 

2004 141 195.18 22 60.4 1 

2005 121 199.65 24 61.59 2 

2006 113 210.49 26 62.77 1 

2007 155 189.72 22 60.95 7 

2008 124 201.93 24 59.86 4 

2009 165 199.5 24 60.4 3 

2010 133 205.87 22 60.77 3 

2011 117 215.2 26 62.04 0 

2012 110 217.36 26 64.09 2 

2013 170 202.16 24 59.22 7 

2014 130 198.97 25 59.27 3 

2015 155 194.35 24 61.4 7 
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Table A.11. Burneyville Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 147 194.96 21 57.95 0 

1998 131 199.81 22 65.2 1 

1999 120 215.84 25 66.54 0 

2000 134 198.53 23 66.22 4 

2001 127 200.28 22 64.77 1 

2002 125 192.56 23 63.54 0 

2003 100 198.69 25 64.36 0 

2004 156 184.03 23 64.5 0 

2005 94 199.5 25 65.31 1 

2006 95 212.17 27 66.63 1 

2007 154 190.79 23 64.68 0 

2008 109 211.68 27 64.4 0 

2009 183 201.53 24 64.4 6 

2010 143 207.8 24 64.22 3 

2011 113 218.89 27 66.72 4 

2012 127 210.07 27 66.95 5 

2013 165 210.68 25 64.18 1 

2014 118 206.48 24 63.13 1 

2015 192 193.49 23 64.81 2 
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Table A.12. Westville Climate Variable Data 
Year Total 

Rainfall 

(in.) 

Total Solar 

Radiation 

(MJ/m2) 

Avg Diff/Max 

&Min Temp 

(°F) 

Avg yearly 

Temp 

(°F) 

Total Freeze- 

thaw Cycles 

1997 208 184.43 N/A N/A 2 

1998 167 188.26 20 60.95 1 

1999 162 198.35 21.1 60.08 2 

2000 181 188.4 20.3 58.81 3 

2001 159 184.6 19.9 57.82 5 

2002 167 171.87 20.2 57.82 3 

2003 178 167.17 20.7 58.25 1 

2004 184 170.25 19.3 58.75 3 

2005 163 183.21 22.2 59.84 2 

2006 157 184.28 21.6 61.73 3 

2007 177 178.05 19.8 57.48 5 

2008 189 178.37 20.9 58.87 5 

2009 220 152.98 19 57.57 3 

2010 164 183.96 19.8 58.2 4 

2011 185 188.22 20.3 60.01 4 

2012 127 199.55 21.6 62.6 1 

2013 179 185.11 19.4 57.62 1 

2014 182 187.85 13.8 56.3 2 

2015 201 180.96 19.2 59.25 3 
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