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Abstract 

The ultimate recovery factor is strongly affected by petrophysical parameters, 

engineering data, structures, and drive mechanisms. The knowledge of the recovery factor 

is needed for multiple decision makings and it should be known in the whole development 

process. This study is to estimate the recovery factor from a different perspective with 

traditional methods. 

This study capitalizes on existing database from the same basin, but explores 

parametric relationships between different reservoirs using data analytics. Given that 

there are hundreds of attributes to characterize a reservoir, and some of the records in a 

database may not be accurate or contradictory to each other, the propose is to use 

dimensionless quantity first to categorize them based on similarity theorems. Using 

independent dimensionless variables not only reduces the number of variables for data 

analytics, but also they have particular physical meanings. This research presents a 

comparative study of different data mining techniques and statistical significance of 

various geological, reservoir and engineering parameters. A public dataset related to oil 

fields in Gulf of Mexico is used for this study.  

This dataset consists of 4000 oil reservoirs and each reservoir has 80 attributes.  

Initial data cleaning was carried out on this dataset to remove reservoirs with erroneous 

data entries. Dimensionless reservoir parameters are defined and used for the study to 

make the models consistent to other reservoirs. In the model development, 80% dataset 

was used to train the model and the rest dataset was used to evaluate the trained models. 

A few models based on their intrinsic design predicted the ultimate recovery factor with 

an accuracy of 8-9%, and a few other models predicted the same with an accuracy of 10-
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12%. Ensemble of a few models predicted oil recovery factor with and accuracy of  6%. 

In addition to predicting ultimate recovery factor, relative importance of various 

dimensionless parameters, and sensitivity of ultimate recovery factor to reservoir and 

engineering parameters is studied. This kind of study uses already available reservoir data 

to provide a quick means to evaluate new oil reservoirs even with limited data. 
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1. Introduction 

1.1 Purpose and Significance of the Study 

Data Analytics has been used in upstream oil industry from a long time. Data 

analytics techniques such as linear regression were used even before the advent of 

computers and numerical simulation. But recently significant development of data 

analytics algorithms, increasing computational power and decreasing data storing and 

data handling costs enabled effective simulation of complex relationships in E&P data.  

This study uses analogous reservoirs data and data analytics for predicting 

ultimate recovery of oil reservoirs in Gulf of Mexico. Dimensionless reservoir parameters 

representing various reservoir characteristics were defined along with geological and 

engineering parameters.   Predictive power and importance of various parameters were 

measured and predictors having significant predictive power were used  for further study. 

A comparative study of different data analytics techniques such as multi linear 

regression, robust regression, least absolute shrinkage and selection operator, decision 

trees, k nearest neighbours, random forests and artificial neural networks has been carried 

out. Based on the intrinsic methodology of these algorithms, a few methods predicted 

recovery factor with a mean error of 10-12% whereas a few predicted the same with an 

error of 9-10%. But Ensemble model due to its capability to combine multiple models 

predicted ORF with an accuracy of 6%.   

The code is made in such a way that it can be upscaled to other reservoirs and 

fields. Inclusion of different kinds of development strategies and EOR techniques used 

can help in predicting the best combination of production strategies and EOR techniques 

for improving the ultimate recovery factor.  This kind of analytical models provides 
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methodology for predicting ball point ultimate recovery factor and helps in reducing the 

number of reservoir simulation cases that has to be run. These models can also be used 

with partially available reservoir data. 

1.2 Objectives 

The objectives of the study were as follows 

1. Defining dimensionless parameters to characterize development strategy and 

heterogeneity of the reservoir based on the available data. These numbers will 

be used along with conventional dimensionless parameters and qualitative 

reservoir parameters for making predictive models. 

2. Building data analytical models based on the data related to already exploited 

reservoirs to predict ultimate recovery factor of new reservoirs. Using 

dimensionless parameters to reduce the number of parameters and to make the 

models easily scalable to new reservoirs.  

3. Evaluating the developed models not only based on the error metrics but also 

on their ability to capture the natural trend in the data. Also evaluating the 

models based on their ability to reproduce natural trends exhibited by oil 

reservoirs. 

1.3  Outlay of the thesis 

This thesis is divided into five chapters. Chapter 2 discusses about previous works 

related to this study, new dimensionless numbers defined and methodology of various 

data analytical models. Previous data analytical models developed by Arps et al (1956), 

Isehunwa & Nwankwo (1994), Gulstad (1995), Sharma et al (2010), Darhim et al (2016) 

and Srivastava et al (2016) are discussed in first section of this chapter. Second section 
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of this chapter describes the logic behind development number and heterogeneity number. 

Final section explains modelling techniques likes Multiple linear regression, Robust and 

Penalized regression, regression trees, Random forests, k nearest neighbors  and Artificial 

neural networks.  

 Chapter 3 discusses about sequence of data filtering and processing applied to the 

available dataset such that it can be used for building various analytical models. Section 

two of this chapter discusses various data processing and transformation techniques like 

identification and removal of outliers, Skewness and Box cox transformation, centering 

and scaling the predictors and converting categorical predictors into dummy variables.  

Final section in this chapter explains concept of bias and variance and requirement of test 

data to evaluate data analytical models.  

 Chapter 4 discusses various steps in each modelling techniques used in this study. 

It also explains the logic behind various error metrics and visualizations used to evaluate 

the relationship between predictors and ultimate oil recovery factor.  Chapter 5 

summarizes the work done in this thesis followed by conclusions and recommendations 

for future work.  
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2. Review of Literature 

In this chapter, previous works carried out by the different authors on use of data 

analytics for predicting the performance of oil and gas reservoirs is reviewed. Use of data 

analytics for predicting the performance of oil and gas reservoirs dates back to 1945. 

Many researchers, Craze and Buckley (1945), Vietti et al (1945), Muskat and Taylor 

(1946), Guthrie and Greenberger (1955), Arps (1955), Arps et al (1955), Isehunwa and 

Nwankwo (1994), Gulstad (1995), Oseh and Omotara (2014), Srivastava et al (2015), and 

Priyank et al (2016) used different data analytics techniques to develop relationship 

between oil recovery factor and reservoir properties. In recent times, due to the 

improvements in the computational power and analytical algorithms, researchers are 

using sophisticated algorithms such as self-organizing maps(SOM), Decision Trees and 

Random Forests, Artificial Neural Networks and fuzzy logic for predicting recovery 

factor using reservoir and fluid parameters.  This chapter describes different stages of 

data analytical models developed by various researchers and data analytical techniques. 

2.1 Previous Data Analytics models 

Guthrie and Greenberger (1955) model was based on 73 sandstone reservoirs with 

water drive mechanism. Reservoir and fluid properties such as permeability, porosity, oil 

viscosity, formation thickness, connate water saturation, oil formation volume factor, 

depth of the reservoir, well spacing and area were used as predictor variables and recovery 

factor (RF) is the target variable. The developed correlation is as follows 

𝐸𝑅 = 0.2719 log 𝑘 + 0.25569 𝑆𝑤𝑖 − 0.1355 log µ𝑜 − 1.5380𝜙 −

0.00003488𝐻 + 0.11403                   (2 - 1) 
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This correlation predicted 50 percent of the time within 6.2% of the actual value 

and 75 percent of the time within 9.0% of the actual value. Arps et al.  (1972) model was 

based on data from 312 sandstone reservoirs. It had different equations for water drive 

reservoirs and depletion drive reservoirs. The relationship for recovery factor for water 

drive reservoirs is as follows 

𝐸𝑅𝑤𝑎𝑡𝑒𝑟 𝑑𝑟𝑖𝑣𝑒
= 0.54898(𝜙

(1−𝑆𝑤𝑖)

𝐵𝑜
)𝐴(

𝐾µ𝑤𝑖

µ𝑜𝑖
)𝐵𝑆𝑤𝑖

𝐶  (
𝑃𝑖

𝑃𝑎
)𝐷             (2 - 2) 

Where  

A=0.0422, B=0.0770, C=-0.1903, D=-0.2159 

The correlation coefficient for predicted and actual recovery factors for the above 

model is 0.958. The relationship for solution gas drive reservoirs is as follows 

𝐸𝑅𝑠𝑜𝑙 𝑔𝑎𝑠 𝑑𝑟𝑖𝑣𝑒
= 41.815(𝜙

(1−𝑆𝑤𝑖)

𝐵𝑜
)𝐴(

𝐾∗1000

µ𝑜𝑏
)𝐵𝑆𝑤𝑖

𝐶  (
𝑃𝑖

𝑃𝑎
)𝐷             (2 - 3) 

Where 

A=0.611, B=0.0979, C=0.3722, D=0.1741 

The limitation of the study is selection of small number of reservoirs. 

2.1.1 Arps  and Isehunwa & Nwankwo (1994) 

Arps et al. (1956) developed a residual oil saturation model for water drive 

reservoirs and depletion drive reservoirs. The equations developed  are as follows 

𝑅𝐹𝑤𝑎𝑡𝑒𝑟𝑑𝑟𝑖𝑣𝑒 =  
1−𝑆𝑤𝑖−𝑆𝑜𝑟

1−𝑆𝑤𝑖
                  (2 - 4) 

𝑅𝐹𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 = 1 −  
1−𝑆𝑤−𝑆𝑔

1−𝑆𝑤
                 (2 - 5) 

Isehunwa & Nwankwo (1994) further developed Arps model based on data from 12 

reservoirs in Niger Delta. They induced a constant C into Arps model.  
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𝑅𝐹 = 𝐶 ∗  
1−𝑆𝑤𝑖−𝑆𝑜𝑟

1−𝑆𝑤𝑖
                   (2 - 6) 

Where C is 0.8447862 for the set of reservoirs considered in the study.  This model is 

based on only a few reservoirs and may not be generalized.  

 Gulstad (1995) developed a model for predicting the recovery factor using multi-

linear regression on water drive and solution gas drive reservoirs with including the 

heterogeneity of the reservoir. The equations developed by Gulstad are as follows 

𝑅𝐸𝐶𝑤𝑎𝑡𝑒𝑟𝑑𝑟𝑖𝑣𝑒 =  −279 + 0.44(𝑂𝑂𝐼𝑃) − 56.70 ln(µ𝑜𝑎) − 119.45 ln(𝑆𝑤) +

0.04(𝑃𝑒𝑝) − 4.73(µ𝑜𝑖) + 4.38(µ𝑜𝑎) + 0.24(𝑂𝑂𝐼𝑃)𝑐𝑎𝑙𝑐 − 0.88(𝑇)             (2 - 7) 

𝑅𝐸𝐶𝑠𝑜𝑙.  𝑑𝑟𝑖𝑣𝑒 = −264.034(𝑂𝑂𝐼𝑃) + 29.37 ln(𝑅𝑠𝑖) − 0.06𝜆𝑜 − 12.64ln(ℎ)         (2 - 8) 

It can be observed from the solution drive equation that formation thickness has 

negative impact on recovery factor. It can also be observed that a few important factors 

such as number of wells, area of the reservoir were not included in the equation.  

2.1.2 Sharma et al 

 Sharma et al.  (2010) used TORIS and GASIS data sets for  building statistical 

models to predict ultimate recovery factor. TORIS data set was developed by the National 

Petroleum Council (NPC) for assessing the EOR potential (Sharma et al., 2010). This 

database consists of over 1300 oil reservoirs with 29 variables each. Whereas the Gas 

Information System (GASIS) is a similar data base for gas fields (Sharma et al., 2010). 

Sharma et al. used  various data analytical models such as multiple linear regression and 

Principal component analysis to model the effect of various reservoir and fluid parameters 

on ultimate recovery factor. Oil recovery factor (ORF) is split into different categories 

and likelihood of recovery factor being in each bin is also estimated. One of the 
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limitations of this study is poor cross validation. Even though the model is built on more 

than 1300 reservoirs, it is cross validated only on 6 reservoirs.  

 Darhim et al. (2016) used artificial neural networks to predict oil recovery factor. 

Predictors related to asset economics, technology, facilities, start of production, number 

of wells, reservoir architecture, rock and fluid properties and others were used. Two 

Artificial neural networks were developed with different levels of complexity. Both these 

Artificial neural networks predicted ultimate recovery factor with an accuracy of 9.5% 

and 8.0%; respectively. In addition to regular predictors, this model quantified the type 

of technologies used in the field such as 4D-Seismic, 3D-Seismic, VSP, type of tertiary 

recovery techniques used, type of secondary recovery techniques, type of artificial lift, 

Asset remoteness and facilities etc. This model cannot be interpreted openly due to the 

use of artificial neural networks.  

 Srivastava et al. (2016) used dimensionless numbers with data mining techniques 

to predict the recovery factor of oil fields having water drive in Gulf of Mexico.  The 

reservoirs considered for the study are clustered into different groups using k-means 

clustering. The predictions on each cluster is evaluated based on the correlation between 

predicted and actural ORF. This study concentrates only on water drive reservoirs in Gulf 

of mexico.  Training and test data were not defined for more reliable evaluation of the 

model. Additionally, Srivastava’s model does not include the reservoir heterogeneity 

effect on recovery factor. 
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2.2 Dimensionless parameters 

It can be observed that most the predictive models discussed in the previous 

section are reservoir dependent and can’t be scaled to apply them for predicting RF in 

different fields.  This calls for a model that can be independent on field scale. This work 

continues based on the dimensionless numbers described in Srivsatavas model 

(Srivastava et al. 2016) with two additional dimensionless parameters discussed as 

follows. 

2.2.1 Development number 

This number is defined to represent the extent of development in the field and  is 

defined as follows 

𝐷𝑒𝑣 𝑛𝑢𝑚𝑏𝑒𝑟 =  
𝑘∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑙𝑙𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟
                 (2 - 9) 

It can be observed that :  

i. For the same area and number of wells, higher permeability leads to higher 

development number and vice versa. 

ii. For same permeability and area of the reservoir, higher number of wells leads to 

higher development number and vice versa. 

iii. Similarly, for same number of wells and permeability, reservoirs with low area 

will have high development number and reservoirs with high area will have low 

development number.  

It can also be observed that development number defined above is dimensionless.  

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  [𝐿]2         𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝐴𝑟𝑒𝑎 =  [𝐿]2 

𝐷𝑒𝑣 𝑛𝑢𝑚𝑏𝑒𝑟 =
[𝐿]2∗𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠

[𝐿]2
                          (2 - 10) 
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Development number can be further improved by incorporating average number of wells 

produced over the reservoir life. Time factor is not incorporated in this study due to non 

availability of time data in the dataset.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑙𝑙𝑠 =
(𝑤1𝑡1+𝑤2𝑡2+𝑤3𝑡3+⋯𝑤𝑛𝑡𝑛)

𝑡
              (2 - 11) 

𝐷𝑒𝑣 𝑛𝑢𝑚𝑏𝑒𝑟 =  
𝑘∗𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑙𝑙𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟
               (2 - 12) 

2.2.2 Heterogeneity number 

The heterogeneity of the reservoir plays very crucial role in oil recovery and 

should be included in recovery factor estimation model. There are different ways to 

characterize heterogeneity of a reservoir, and in this study the heterogeneity number is 

defines as follows. 

𝐻𝑒𝑡𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟 =  
1

(𝑁𝑇𝐺)(
𝑂𝑖𝑙 𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎
)
              (2 - 13) 

It can be observed that if NTG=1 and oil area is equal to the total area of the 

reservoir, the heterogeneity number will be equal to 1. The lower the product of NTG and 

𝑂𝑖𝑙 𝐴𝑟𝑒𝑎 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎
 the higher will be the Hetro number. Reservoirs having low NTG or low 

𝑂𝑖𝑙 𝐴𝑟𝑒𝑎 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎
  or both will have high heterogeneity number. With the available data in the 

data set, heterogeneity of the reservoir is incorporated into the model with this 

heterogeneity number.   
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2.3 Data Analytics Models 

2.3.1 Multiple Linear Regression 

A linear regression models can be expressed as 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4+ . . . . . . . 𝛽𝑛𝑥𝑛 + 𝑒𝑖             (2 - 14) 

The error metric sum of squared errors (SSE) for ordinary least squares regression is as 

follows  

𝑆𝑆𝐸 =  ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1                 (2 - 15) 

The objective of least squares regression is to obtain combination of  beta 

coefficients which minimizes the sum of squared errors (SSE). Where yî represents the 

numeric outcome, β0 represents the intercept, βi represents the coefficient of ith predictor 

xi. ei represents the random error. The predictors x1, x2, x3 …….  can be independent or 

can be combination of multiple predictors to depict non linear interactions between them. 

The beta parameters (β0, β1, β2, ……) are estimated in such a way that the error metric 

SSE is minimized. Each variant of linear regression such as robust regression and 

penalized regression has a different definition for error metric to attain optimum balance 

between bias and variance. The beta parameter estimation by ordinary least squares 

regression tends to have minimum bias whereas parameter estimates by other regression 

techniques such as robust regression and penalized regression tends to balance between 

bias and variance. This tradeoff between bias and variance characterizes their predictions 

(Graybill & Franklin 1976).  

The advantage of linear regression is easy interpretability of the model. Predictors 

with negative beta coefficients have negative impact on the target variable where as 

predictors with positive beta coefficients have positive impact on the target variable. It 
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can also be understood that predictors having higher beta coefficients have higher 

weightage on target variable than predictors having lower beta coefficients. The main 

limitations of linear regression is it cannot model non linear interactions between 

predictors implicitly. All non linear interactions should be tried and interactions having 

statistical significance should be entered into the model explicitly.  

The beta coefficients for ordinary least squares regression (OLS) can be computed 

using the matrix multiplication shown below (Graybill 1976).  

(𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Where X is the matrix of predictor parameters and Y is the matrix of target variable. 

Matrix (𝑋𝑇𝑋) is invertible only if 

a) None of the predictors can be expressed as a linear combination of others 

b) Number of observations is more than number of predictors. 

The determinant of (𝑋𝑇𝑋) will tend to zero if highly correlated predictors are present in 

the data. In that case beta coefficients will get inflated and loose their meaning. This 

makes it necessary to remove highly correlated predictors before modelling. 

2.3.2 Robust and Penalized Regression 

The balance between bias and variance of multiple linear regression can be 

manipulated by changing the objective function. With increasing degee of error term in 

the objective function, the model will become more sensitive to outliers and will have 

more variance. Table 1 shows the objective function of Least absolute value (L1) 

regression which is less sensitive to outliers than OLS regression. Figure 1 shows the 

relationship between residuals and their contribution to objective function. It can be seen 

that higher residuals get more weightage in OLS regression than L1 regression. Multiple 
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linear regression based on Huber loss function (Huber 1964) uses squared residuals for 

residuals with magnitude less than k and absolute value for residuals more than k. L1 

regression and linear regression based on Huber loss function are two variants of robust 

regression methods.  

Models with near zero (𝑋𝑇𝑋) determinant will have high variance due to inflated 

beta coefficients. Penalized regression controls variance of these models by adding 

penalty for higher beta coefficients in objective function. Table 1 shows objective 

functions of ridge regression, Least absolute shrinkage and selection operator and Elastic 

net regression which are variants of penalized regression  (Hoerl 1970; Tibshirani 1996; 

Zou & Hastie 2005).   ∑(𝑦𝑖 − �̂�𝑖)2 term represents the bias of the model and ∑ 𝛽𝑗
2
, ∑ |𝛽𝑗| 

represents the variance of the model. The trade off between bias and variance can be 

changed by changing  λ value. Using |𝛽𝑗| in objective function shrinks the coefficients of 

predictors to zero which provides LASSO additional feature selection ability (Tibshirani 

1996). The number of predictors and model accuracy of LASSO can be optimized by 

changing λ. As the value of λ increases, more important predictors will remain in the 

model and less important predictors will get discarded. Additional advantage of LASSO 

over MLR is automatic feature selection and elimination of highly correlated predictors.  
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Model 
Contribution of each observation to loss 

function 

Ordinary least squares regression ∑(𝑦𝑖 − �̂�𝑖)2 

Least absolute value (L1) 

regression. 
∑ |𝑦𝑖 − �̂�𝑖| 

Huber loss function 

1

2
(𝑦𝑖 − �̂�𝑖)2  𝑖𝑓   |𝑦𝑖 − �̂�𝑖|  ≤   𝑘 

𝑘|𝑦𝑖 − �̂�𝑖| −
1

2
𝑘2    𝑖𝑓   (𝑦𝑖 − �̂�𝑖)   >   𝑘 

Ridge regression ∑(𝑦𝑖 − �̂�𝑖)2 +  𝜆 ∑ 𝛽𝑗
2
 

Least absolute shrinkage 

operator (LASSO) 
∑(𝑦𝑖 − �̂�𝑖)2 +  𝜆 ∑ |𝛽𝑗| 

Elastic net regression ∑(𝑦𝑖 − �̂�𝑖)2 + 𝜆1 ∑ |𝛽𝑗| +  𝜆2 ∑ 𝛽𝑗
2
 

Table 1: Loss function for different variants of multiple linear regression 

 

 

Figure 1: Residuals and their contribution to objective function (Kuhn & Johnson 

2013) 
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2.3.3 Regression Trees 

Classification and regression trees (CART) is the one of the oldest modelling 

techniques. Based on their approach classification and regression trees can model non 

linear interactions between predictors. CART models splits the data using if-else 

conditions on  various predictors such that sum of with in sum of squared error (SSE) in 

each group is minimized (Breiman et al. 1984).  Figure 2 shows the schematic of how 

regression tree  splits the observations based  on predictor variables. The groups of 

observation at the end of the regression tree are called as leaf nodes. The objective 

function of a regression tree having n leaf nodes is defined as follows 

𝑆𝑆𝐸𝑛 =  ∑ ∑ (𝑦𝑖 − 𝑦�̅�)𝑖 Є 𝑆𝑗

𝑛
𝑗=1                 (2 - 16) 

𝑆𝑗  and 𝑦𝑗  represents the observations and mean of  jth leaf node respectively. 

Based on the above definition, large size trees will  always produce smaller 𝑆𝑆𝐸𝑛 

Complexity parameter is used to penalize large sized trees as shown below (Breiman et 

al. 1984). 

𝑆𝑆𝐸𝑐𝑝 = 𝑆𝑆𝐸 + 𝐶𝑝 ∗ ( 𝑁𝑜. 𝑜𝑓 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒𝑠)                   (2 - 17) 

Figure 3 shows relationship between 𝐶𝑝, crossvalidated error and size of regression tree. 

As 𝐶𝑝 decreases, size of the tree increases and optimum size of the tree is where minimum 

cross validated error is observed. Standard error bars in Figure 3 represent the tolerance 

for selecting the size of the tree. Tree size having relative error within one standard error 

of best tree size can be selected for reducing the complexity.  
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Figure 2: Decision Tree model   

 

Figure 3: Change in 𝑪𝒑 with regression tree size 
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Advantages of regression trees include 

 Automatic feature selection 

 Robust to outliers 

 Doesn’t require normalization of predictors 

 Easy to interpret 

One of the major disadvantages of regression trees is instability (Breiman 1996). 

Regression trees are highly unstable and addition of new data will lead to change in the 

structure of the tree and decision rules (high variance). Other disadvantages include finite 

number of outcome levels, ability to make only linear splits and selection bias for 

predictors with higher number of factor levels (Loh & Shih 1997).   

2.3.3 Random Forests 

Random forests model is an ensemble of many regression trees and each node in 

these trees is split based on randomly selected ‘m’ predictors (Breiman 2001) . The main 

objective of Random forests is to use large number of decorrelated trees for prediction. 

Decorrealtion is achieved by making splits based on randomly selected predictors. The 

final outcome of random forest is average prediction of all the trees in the model. This 

kind of decorrelated ensemble models brings out the signal with suppressing the noise 

(Breiman 2001).  

The variance of Random forests model increases with increasing ‘m’.  As ‘m’ 

approaches total number of predictors in the model, the random forests model will tend 

to ack like a single regression tree. The number of trees in the random forest can be as 

many as possible but should be within the limits of computational power. The 

performance of the random forest model improves with increasing number of trees and 
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reaches plateau at optimum point. Advantages of random forests model include stable 

predictions, automatic feature selection, robust to outliers, doest require normalization of 

predictors and resistant to overfitting. Even though individual trees in the random forest 

model can be interpreted, the actual model in whole cannot be interpreted.  

2.3.4 K-Nearest Neighbors 

The K-Nearest neighbors model identifies k nearest neighbors in training data to 

any instance of new data based on distance metric calculated on predictor variables 

(Cover & Hart 1967). The outcome of the prediction can be any one of the summary 

statistics such as mean, median or mode of the target variable of k nearest neighbors.  

Table 2 shows a few distance metrics used for identifying k nearest neighbors. 

Method Distance Expression 

Euclidean distance √∑(𝑥𝑎𝑗 − 𝑥𝑏𝑗)2

𝑃

𝑗=1

 

Murkowski distance √∑|𝑥𝑎𝑗 − 𝑥𝑏𝑗|
𝑞

𝑃

𝑗=1

𝑞

 

Manhattan distance ∑ |𝑥𝑎𝑗 − 𝑥𝑏𝑗|

𝑃

𝑗=1

 

Table 2: Distance Metrics for k nearest neighbors 

The scale of the predictors highly effects the weightage of the predictor in 

calculating distance metric. It is important to center and scale the predictors before 

calculating distance metrics. In case of high dimensional datasets, number of predictors 

in the model can be selected based on statistical significance of predictors.  
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2.3.5 Artificial Neural Networks 

Artificial neural networks (ANN) are one of those modelling techniques which 

can implicitly model nonlinear relationships between predictors (Bishop 1995). ANNs 

loosely mimic the way biological brain works using large clusters of neurons connected 

by axons. Biological brain is much faster than computers in tasks such as pattern 

recognition. By mimicking biological brain, ANNs have extra advantage in tasks where 

human brain is good at.  

 The outcome of ANNs is a linear combination of inputs from hidden nodes which 

in turn are linear combination of inputs from other hidden nodes or predictor variables. 

Artificial neural networks can have one or more than one hidden layers. The linear 

combination at each node can be transformed using appropriate nonlinear, linear, 

exponential, or logical functions. An example of typical calculation in neural network is 

as follows 

ℎ𝑘(𝑥) = 𝑔(  𝛽0𝑘 + ∑ 𝑥𝑗  𝛽𝑗𝑘 𝑃
𝑖=1 )             (2 - 18) 

𝑔(𝑢) =
1

(1+ 𝑒−𝑢)
                   (2 - 19) 

𝑓(𝑥) =  𝛾0 +  ∑ 𝛾𝑘 ℎ𝑘
𝐻
𝑘=1                  (2 - 20) 

 Figure 4 shows a typical sequence of modelling in ANN. 𝛽𝑗𝑘 depicts the effect 

of the jth predictor on kth hidden unit. γk  is the contribution of each hidden unit to the 

outcome. For a model with P predictors and H hidden units, the total number of 

parameters that has to be estimated is equal to 𝐻( 𝑃 + 1) + 𝐻 + 1 . The objective of 

ANN is to calculate beta parameters such that the squared error is minimized. Beta 

parameters are initialized to random values and are corrected using gradient descent 

techniques such as back propagation algorithm (Rumelhart et al. 1986). Though ANNs 
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can model non linear interactions between predictors implicitly, these models are difficult 

to interpret.  

 

Figure 4: Schematic of basic ANN ( Kuhn & Johnson 2013). 
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3. Data preparation 

The data set used in this study has 13289 reservoirs and each reservoir has 82 

attributes (BOEM).  Only one Reservoir having missing data is removed and this left the 

data with 13288 instances. The following techniques have been applied to clean the data 

before analysis. 

3.1 Data Filtering 

Table 3 shows the sequence of steps followed for data filtering. Reseroirs with play type 

(B1, R1, X2) are removed from the data set as the number of reservoir instances with this 

play types are less than the number of predictors. Similarly reservoir instances with 

structure (F, I, G, H) were also removed from the dataset. These type of reservoir 

instances would result in singular matrices which cannot be solved for estimating beta 

coefficients. Categorical predictors in the dataset are converted into dummy variables to 

incorporate them into regression models. As further described in section 3.3.6, a 

categorical predictor with n levels will require n dummy variables to represent it in 

regression models. It is necessary to minimize the number of levels in categorical 

predictors to minimize total number of predictors in the model. Table 4  shows the 

approach followed for re organizing factor variables.  

 Table 5 shows dimensionless reservoir parameters  that are calculated  and 

merged with original data set. The definitions for dimensionless reservoir parameters 

provided by Shook et al., 1992  well be used in this study. In addition to these, end-point 

mobility ratio is also calculated and merged with the dataset. 80% and 40% of effective 

permeability is considered as relative permeability of oil and water respectively.  

 



21 

 

Filter 

No 
Reason Conditions used 

Remaining 

Reservoirs 

1 Missing Data Sub setting complete cases 13288 

2 Selecting oil reservoirs 

SD_TYPE==” O” |   

SD_TYPE==” B” | 

SD_TYPE==0 

5019 

3 
Deselecting reservoirs 

having GOR>30 
oilRes$GOR<30 4313 

4 

Dropping reservoirs 

having play type B1, 

R1, X2 due to very few 

observations 

PLAY_TYPE != ‘B1’ & 

PLAY_TYPE != ‘R1’ & 

PLAY_TYPE != ‘X2’ 

4244 

5 

Dropping reservoirs 

having structure F, G, 

H, I due to very few 

observations 

FSTRU != F & FSTRU !=I & 

FSTRU != G & FSTRU != H 
4011 

6 

Dropping reservoirs 

having drive O, GCP, 

SLG, UNK 

DRIVE != O & DRIVE !=GCP & 

DRIVE != SLG & DRIVE != 

UNK 

3724 

7 

Dropping reservoirs 

having zero OIP, ORF, 

BHCOMP, 

PERMEABILITY 

OIP !=0 & BHCOMP !=0 & 

PERMEABILITY !=0 & ORF 

!=0 

3342 

8 

Considering reservoirs 

which produced more 

than 80% of estimated 

recoverable oil 

P_CUMOIL> 0.8* P_RECOIL 3038 

Table 3: Steps followed for data filtering 
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Predictor Original factors levels 
Releveled factor 

level 

CHRONOZONE 

MML, MUL, MLM, Mmmm, 

MUM, MMM, MLL, MUU, 

KUL, MLU 

MIOCENE 

PL PLIO_LWR 

PU, PU-PL PLIO_UPR 

PLU-LL, PLM, PL, PLU, 

PLL 
PLEISTOCENE 

DRIVE 

DRIVE==’0’ UNK 

DRIVE==’GCP’ 

COM (Merging Gas 

cap with combination 

drive reservoirs) 

Table 4: Re organizing factor variables 

 

Dimensionless number Formula 

Capillary Number (Npc) 𝑁𝑃𝑐 =  
𝜆𝑟2

𝑜 𝜎

𝐿𝑈𝑡
√𝜙𝐾𝑥 

Gravity Number (Ng) 𝑁𝑔 =  
𝐾𝑧𝜆𝑟2

𝑜 𝛥𝜌𝑔𝑐𝑜𝑠𝛼

𝑢𝑡

𝐻

𝐿
 

Aspect Ratio (Rl) 𝑅𝑙 =  
𝐿

𝐻
√

𝐾𝑧

𝐾𝑥
 

Density Number (Dn) 𝑁𝜌 =
𝜌𝑜

𝛥𝜌
 

Development factor 𝐷𝑒𝑣𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑘 ∗ 𝑁𝑜 𝑜𝑓 𝑤𝑒𝑙𝑙𝑠

𝐴𝑟𝑒𝑎
 

Heterogeneity factor 𝐻𝑒𝑡𝑟𝑜𝑓𝑎𝑐𝑡𝑜𝑟 =  
1

(
𝑜𝑖𝑙 𝐴𝑟𝑒𝑎

𝑡𝑜𝑎𝑙 𝐴𝑟𝑒𝑎
)(𝑁𝑇𝐺 𝑟𝑎𝑡𝑖𝑜)

 

Table 5: Dimensionless paramters used in the study 
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3.2 Identifcation and Removal of extreme predictors 

 Different descriptive statistics and visualizations were used to identify and remove 

nonphysical data entries. Reservoir instances with any one of the predictors having 

nonphysical entries was removed from the dataset.  

a) End Point Mobility Ratio 

 Table 6 shows the distribution of End Point Mobility Ratio in the original data set. 

It can be observed that the 3rd quartile of the data is below 1 and maximum value is 27. 

Also Figure 5 shows skewed distribution of End point mobility ratio in the original 

dataset.  It indicates that reservoir instances with very high end point mobility ratio would 

be outliers. In this study, reservoirs having End Point Mobility Ratio more than 10 were 

removed from the dataset 

Min 1st Quartile Median Mean 3rd Quartile Max 

0.249 0.576 0.701 0.854 0.875 27 

Table 6: Summary statistics of End point mobility ratio 

 

 

Figure 5: Skewed distribution of End point Mobility Ratio  
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b)  Density Number ( 𝑵𝝆 ) 

Table 7 shows the the distribution of 𝑁𝜌 in original dataset. Most of the 

reservoirs in the dataset are having 𝑁𝜌 between 3.628 and 6.738 and the maximum 

value of 𝑁𝜌  is 141.5. Also Figure 6 shows the skewed distribution of density 

number. Reservoir instances having 𝑁𝜌 more than 15 are considered as outliers 

and removed from the data set. Similarly summary statistics of each predictor is 

verified and reservoirs having extreme values in any of their predictors were removed 

from the dataset.  

Min 1st Quartile Median Mean 3rd Quartile Max 

3.628 5.421 5.896 6.312 6.738 141.5 

Table 7: Summary statistics of 𝑵𝝆 

 

 

Figure 6:  Skewed distribution of 𝑵𝝆 
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3.3 Data transformation 

Figure 7 shows the initial distribution of the predictors in the data set. It can be 

observed that these predictors are in different scales. To have uniform weightage for all 

the predictors in modelling techniques like LASSO, k nearest neighbours and ANN they 

have to be normalized, scaled and centered. Therefore predictors number of wells, density 

number (𝑁𝛼), capillary number (𝑁𝑝𝑐), development factor, gravity number (𝑁𝑔) were 

normalized as described in the following sections. Heterogenity number is not normalized 

to preserve its physical meaning 

 

Figure 7: Distribution of predictors in original dataset 
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3.3.1 Skewness and Box-Cox transformation 

An unskewed distribution is roughly symmetric about the mean, whereas right 

skewed distribution has more percentage of values left of the mean in a histogram plot. 

Similarly left skewed distribution has more percentage of values on right side of the mean. 

Skewness statistic is defined as follows  

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑(𝑥𝑖−𝑥)̅̅ ̅3

(𝑛−1)𝑣3/2
                  (3 - 1) 

𝑤ℎ𝑒𝑟𝑒   𝑣 =  
∑(𝑥𝑖−𝑥)̅̅ ̅2

(𝑛−1)
                  (3 - 2) 

 Box-Cox transformation can be used to transform skewed data into normally 

distributed data (Box, 1964). It is defined as follows 

𝑥′ =  
𝑥𝜆_𝑏𝑜𝑥𝑐𝑜𝑥−1

𝜆_𝑏𝑜𝑥𝑐𝑜𝑥
                  (3 - 3) 

Where λ_boxcox is the transformation coefficient. λ_boxcox is calculated using trail and 

error method, by plotting transformed data in a normal quantile plot. λ_boxcox having 

highest correlation is considered as the best suitable λ_boxcox for the transformation. If 

the λ_boxcox is near to zero, applying log transformation will be suitable for normalizing 

the data.  Table 8 shows the skewness of each predictor used in the analysis. 
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Predictor Skewness 

Porosity -0.33 

Sw 0.59 

Permeability 2.5 

No. of wells 5.2 

Npc 15.9 

Ng 22.3 

Nalpha 1.8 

Dev_factor 22.6 

Heterogenity factor 2.16 

Table 8: Skewness of each predictor in the original dataset 

3.3.2 Centering and Scaling 

Certain data analysis techniques such as k-means clustering and PCA require all 

the predictors in common scale. In general predictors such as porosity will be in the order 

of 0.1 and predictors such as 𝑁𝑝𝑐 will be in the order of 105. It is necessary to center and 

scale these predictors such that all of them will have similar influence on the predictive 

model. Predictor variables are centered and scaled using the following transformation. 

𝑥𝑖
′′ =

𝑥𝑖−𝑚𝑒𝑎𝑛(𝑥𝑖)

𝑠𝑑(𝑥𝑖)
                   (3 - 4) 

Figure 8 shows the distribution of predictors number of wells, development factor and 

capillary number before and after transformation. It can be observed that these parameters 

which are not having any variance before transformation exhibits significant variance 

after transformation. 
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Figure 8: Predictor variables before and after transformation 

 

3.3.3 Removal of outliers 

Outliers are those data instances with extreme values which represent unusual 

circumstances. Sometimes they might have entered by mistake. If outliers are not 

removed, the derived model without correction to outliers has a poor capability in 

predicting the general trend. Ordinary least squares regression is sensitive to outliers 

whereas penalized regression models such as L1 regression, regression based on Huber 

loss function are somewhat resistant to outliers. 

There are various methods available to identify and remove outliers. One of them 

is based on number of standard deviations. In this study an observation is considered as 

outlier if it is 3 standard deviations away from the mean and is removed from the data. 
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Figure 9  shows the distribution of porosity before and after transformation. It can be 

observed that porosity is converted into standard deviation units and outliers were 

removed.  

 

  

 

 

 

 

 

 

 

3.3.4 Error metrics 

In this study, Root mean square error (RMSE) and Mean absolute 

error(MAE) are used to evaluate the accuracy of different data analytical models. 

The RMSE and MAE are defined as follows 

𝑅𝑀𝑆𝐸 =  √1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛
𝑖=1       (3 - 5) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|𝑛

𝑖=1       (3 - 6) 

𝑤ℎ𝑒𝑟𝑒 𝑦𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑅𝐹 𝑎𝑛𝑑 𝑓(𝑥𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑂𝑅𝐹  

  

Outliers 

Figure 9: Distribution of porosity in different data sets 
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3.3.5 Bias and Variance 

Bias of an estimator is the difference between the estimated value and original 

value. Variance of an estimator of the sensitivity of the model to small changes in 

predictors. Models which are less complex may have bias on the training data but will 

perform better on new data. Whereas models which are more complex will have low bias 

on the training data but may perform poor on new data. Figure 10 shows behavior of 

models with different variance (complexity). It can be seen that as the complexity of the 

model increases, MSE on the training data reduces where as MSE on new data decreases 

upto some extent and then increases. This point is considered as the optimum complexity 

of the model. 

 

Figure 10: Balancing Bias and Variance ( Kuhn & Johnson 2013 ) 

  

High Variance 

Low Variance 
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3.3.6 Dummy Variables 

Dummy variables act like a proxy for categorical predictors in the dataset.  They 

take only 0 or 1 to indicate the presence or absence of a particular category for any 

reservoir instance. Table 9 shows the process of converting categorical predictors into 

dummy predictors. Any categorical predictor originally having 4 levels will require 4 

dummy predictors to represent the original predictor. For example structure of the field 

(FSTRU) having 4 levels (A, B, C, D) is split into four dummy variables FSTRU.A, 

FSTRU.B, FSTRU.C, FSTRU.D. Structures having positive impact on the recovery will 

have positive coefficients for their dummy variables and viceversa. To reduce the total 

number of predictors in the model , categorical predictors were releveled to fewer number 

of levels.  

Reservoir FSTRU 

Res-1 A 

Res-2 B 

Res-3 C 

Res-4 D 

 

 

 

 

 

 

Reservoir FSTRU.A FSTRU.B FSTRU.C FSTRU.D 

Res-1 1 0 0 0 

Res-2 0 1 0 0 

Res-3 0 0 1 0 

Res-4 0 0 0 1 

Res-5 0 0 0 0 

Res-6 0 0 0 0 

Table 9: Example showing converting categorical variables into dummy variables 
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3.4 Training and Test data sets. 

Once the original dataset has been processed, six different datasets were made for 

various modelling techniques.  Table 10 shows the training and test datasets defined for 

various modelling techniques. “GoM_original” is the original dataset without 

nonphysical entries and is further split into training and test data. This dataset is used for 

Regression tree and Random forest models. GoM_processed dataset is obtained after 

normal transforming, scaling, and centering the original dataset. This dataset is used for 

Multi linear regression, Robust regression, LASSO, prediction using kNN and Artificial 

neural network models. GoM_proc_nooutliers is obtained from GoM_processed after 

removing outliers.  

Data Set Modelling techniques Comments 

GoMTrain_original Regression Tree 

Random Forest 
Original dataset  

GoMTest_original 

GoMTrain_processed Multi linear regression 

kNN 

Artificial Neural Network 

Removed extreme values 

Normal transformation 

Centering and Scaling 
GoMTest_processed 

GoMTrain_proc_nooutliers Multi linear regression 

kNN 

Artificial Neural Network 

Removed outliers 
GoMTest_proc_nooutliers 

Table 10: Data Sets used in the Study 

To evaluate different models, training and test data sets are separated. Figure 11 

shows the distribution of target variable ORF in training and test dataset.  It can be 

observed that similar distributin of ORF is maintained in training and test data sets.  This 

ensures unbiased error metrics for evaluating predictive models. 
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Figure 11: Distribution of ORF in training and test data 
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4. Evaluation of Modelling Techniques  

With the processed data various modelling techniques were used to predict 

ultimate recovery factor using dimensionless predictors. A few models are easy to 

interpret but have limitations in modelling whereas few other modelling techniques are 

difficult to interpret but have better modelling capabilities. It is always essential to 

balance between complexity and interpretability. 

4.1 Multiple Linear Regression 

4.1.1 Multiple linear regression without nonlinear terms 

Multiple linear regression model is fit on 20 dummy variables and 10 numeric 

predictors to predict target variable ultimate recovery factor using dataset 

“GoMTrain_processed”. Table 11 and Table 12 shows the coefficients of categorical and 

numeric predictors respectively. The asterisks in the table depicts the statistical 

significance of the predictor. Predictors with “***” has a p value of less than 0.001.  

Table 13 shows other model statistics. The units of residuals in residuals plot is same as 

the Oil recovery factor (ORF). The residuals are standardized and converted into standard 

deviation units to make them consistent. The formula for converting residuals into 

standardized residuals is shown as follows where 𝑠𝑖  is the standardized residual 

corresponding to residual 𝑟𝑖 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙     𝑠𝑖 =
𝑟𝑖

√
1

𝑛−1
∑ 𝑟𝑖

𝑛
𝑖=1

                 (4 - 1) 

Standardized residual is measured in units of standard deviations. Standardized residuals 

of more than 2.5 standard deviations are considered as outliers. 
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Predictor Variable Estimate 
Std. 

Error 

t 

value 
Significance 

Intercept) 0.365 0.010 37.901 *** 

FSTRU.A -0.019 0.009 -2.098 * 

FSTRU.B -0.020 0.011 -1.869 . 

FSTRU.C 0.008 0.009 0.913   

FSTRU.D -0.040 0.010 -3.827 *** 

FSTRU.E -0.040 0.012 -3.34 *** 

PLAY_TYPE.A1 0.031 0.008 3.909 *** 

PLAY_TYPE.F1 -0.036 0.007 -5.235 *** 

PLAY_TYPE.F2 -0.043 0.011 -3.926 *** 

CHRONOZONE2.MIOCENE -0.004 0.006 -0.719   

CHRONOZONE2.PLEISTOCENE -0.004 0.006 -0.689   

DRIVE.COM -0.009 0.008 -1.084   

DRIVE.DEP -0.034 0.009 -3.693 *** 

DRIVE.PAR -0.001 0.005 -0.122   

RES_TYPE.N 0.030 0.013 2.314 * 

RES_TYPE.S 0.002 0.008 0.279   

Table 11: Coefficients of Categorical Predictors  

 

 

 

 

 

 

 

 

  

  

Predictor Variable Estimate 
Std. 

Error 
t value Significance 

POROSITY -0.010 0.003 -2.974 ** 

SW 0.005 0.006 0.744   

BHCOMP -0.084 0.006 -14.016 *** 

Mobility_Ratio_endpoint 0.024 0.003 6.937 *** 

Nalpha -0.074 0.007 -10.597 *** 

Np 0.004 0.004 1.071   

Ng -0.172 0.015 -11.61 *** 

Npc -0.081 0.014 -5.988 *** 

Dev_factor 0.151 0.007 22.532 *** 

Hetro_factor -0.016 0.004 -4.622 *** 

Table 12: Coefficients of Numeric Predictors 
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Redidual standard error on 1997 

degrees of freedom 

0.099 

𝑅2 0.644 

Adjusted 𝑅2 0.639 

RMSE on test data 9% 

MAE on test data 7% 

Table 13: Multiple Liner Regression model Statistics 

 

Figure 12 depics the relationship between standardized residuals and predicted 

values. It shows that reservoir instances “1261_EI88_K4”, “0961_EI238_c09”, 

“1361_EI188_N0” have very high standardized residuals. This could be due to some 

unusual reservoir management techniques or errors in data entry. The area marked with 

red circle in Figure 12 shows negative ORF  predicted by MLR model.  

 

Figure 12: Non linear trend in standardized resicuals vs predicted ORF plot 
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Figure 13 shows the normal Q-Q plot of residuals in which quantile values of 

residuals are plotted along with quantile values of a normal distribution. These points will 

fall on a straight line if residuals are normally distributed which is one of the 

charecteristics of MLR model. It can be observed that the residuals deviated from straight 

line at extremes.  Figure 14 depicts the relationship between predicted ORF and error vs 

original ORF. Figure 15  shows the distribution of absolute error with MLR without non 

linear interactions.  Figure 12 and Figure 14 indicate the presence of non linear 

interactions between predictors and indicate that independent predictors are not sufficient 

to model the trend.  Dimensionless numbers like gravity number, capillary number and 

endpoint mobility ratio has different kind of weightage in reservoirs with different 

geometries and heterogeneities. It is necessary to add non linear terms to the model to 

capture these kind of interaction between the predictors.  

 

Figure 13: Normal Q-Q plot of residuals (MLR) 
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Figure 14: MLR- Prediction and Error vs Original ORF 

 

 

Figure 15: Distribution of absolute error on Test data (MLR) 

Table 14 shows predictors related to one of the reservoirs in test data set which has high 

error of 0.53. It can been observed that high error may be due to extreme predictors which 

are not sufficient to charectrize the actual reservoir. It may also be due to inadequateness 

of the dimensionless parameters defined in the study 
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Predictor 
Original 

value 

Transformed 

Normalized value 

Ng 9.7e+14 2.9 

Npc 9.2e+10 2.9 

Hetro_factor 7.1 2.6 

Original ORF 0.36 

Predicted ORF -0.16 

Table 14: Extreme Predictors of Reservoir "1361_EI188_N0" 

4.1.2 Multiple linear regression with nonlinear terms 

Figure 14 has indicated the presence of non linear interactions between the 

predictors. To capture nonlinear interactions between the predictors, multiple linear 

regression model with all possible interactions between the predictors is generated. 

Figure 16 shows the relationship between predicted ORF and error vs original ORF with 

all possible non linear interactions. It can be observed that MLR with all possible non 

linear interactions can model the trend in the data. The trend in the residuals indicates that 

the model didn’t left out signal in the dta. The RMSE and MAE of MLR with all possible 

interactions were 9% and 7.3% respectively.  

With 30 predictors in initial data set, MLR with all possible interactions had 

𝐶2
30 + 30 = 245  predictors.  Among all possible interactions, predictors FSTRU: 

Mobility_Ratio_endpoint, FSTRU: Play_type, , FSTRU: CHRONOZONE2, FSTRU: 𝑁𝜌 

had statistical significance. Only  these interactions were used to simplify the model. This 

is because only a few dimensionless numbers may have signigicance in a partciular 

geometry. For example, gravity number and buoyancy number will have significance in 

reservoirs with a significant dip. Figure 17 shows relationship between predicted ORF 

and error vs original ORF for MLR with limited non linear interactions. Non linear trend 
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in the plot indicates requirement of more number of predictors and feature selection 

methods. 

 
Figure 16: MLR (All Non linear predictors) – Diagnostics 

 

 
Figure 17: MLR (limited non linear predictors) – Diagnostics 
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4.2 Robust regression 

As discussed in chapter-2.3 robust regression is relatively less sensitive to outliers 

due to its loss function. Depending on the tradeoff between bias and variance, loss 

function and tuning parameters can be selected. In this analysis Tukey Bi square M 

(Anderson 2008) estimation model is used.  

Coefficients Value Std.Error t value 

Intercept 0.3583 0.0091 39.5004 

FSTRU.A -0.0108 0.0086 -1.2528 

FSTRU.B -0.0287 0.0101 -2.8319 

FSTRU.C 0.0059 0.0084 0.7 

FSTRU.D -0.0299 0.0099 -3.0301 

FSTRU.E -0.0339 0.0112 -3.0283 

PLAY_TYPE.A1 0.0333 0.0073 4.5922 

PLAY_TYPE.F1 -0.0353 0.0065 -5.431 

PLAY_TYPE.F2 -0.0472 0.0104 -4.5488 

CHRONOZONE2.MIOCENE -0.0056 0.0057 -0.9711 

CHRONOZONE2.PLEISTOCENE -0.0002 0.0056 -0.0321 

DRIVE.COM -0.0165 0.0078 -2.1276 

DRIVE.DEP -0.0348 0.0085 -4.1124 

DRIVE.PAR 0.0001 0.0048 0.0233 

RES_TYPE.N 0.0212 0.0119 1.7765 

RES_TYPE.S 0.0055 0.0074 0.7372 

POROSITY -0.0119 0.0031 -3.8792 

SW 0.0084 0.0054 1.5507 

BHCOMP -0.092 0.0054 -16.9382 

Mobility_Ratio_endpoint 0.032 0.0036 8.9234 

Nalpha -0.0751 0.0062 -12.1536 

Np 0.0019 0.0035 0.5453 

Ng -0.1845 0.0132 -14.0248 

Npc -0.0889 0.012 -7.3804 

Dev_factor 0.1675 0.006 28.1273 

Hetro_factor -0.0197 0.0034 -5.8667 

Table 15: Coefficients of predictors for Robust Regression 

Table 15  and Table 16 shows the coefficients of predictors and model statistics of  

Robust regression respectively. Figure 18 shows the distribution of absolute error of test 
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data using robust regression model. It can be observed that the spread of the error is wide 

with respect to MLR model due to higher bias than MLR model. 

Redidual standard error on 

1996 degrees of freedom 
0.085 

RMSE on test data 9.3% 

MAE on test data 7.2% 

Table 16: Robust Regression Model Statistics 

 

 

Figure 18: Distribution of Absolute Error (Robust Regression) 
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4.3 Penalized Regression model (LASSO) 

As described in capter-2.3 Least absolute shrinkage and selection 

operator(LASSO) is capable of automatically discarding highly correlated predictors. 

Figure 19 shows the relationship between λ, number of predictors and model accuracy. 

It can be observed that model accuracy with 23 predictors is similar to model accuracy 

with all the predictors. Figure 20 shows the path of coefficients with increasing λ value. 

The λ value can be changed to select optimum number of predictors and model accuracy. 

Table 17 and Table 18 shows the predictor coefficients and model statistics for λ values 

of 0.0098 and 0.014 respectively. It can be observed that interpretability of the model 

increased with small compormize of 0.5 % (MAE)  in model accuracy.  

 

Figure 19: Lambda vs No. of Predictors and Model Accuaracy 

 

Figure 21 shows the relationship between predicted ORF, Error and original 

ORF. Similar to MLR model non linear trend can be observed which indicates non linear 

effect of predictors on target variable. This is because except feature selection LASSO 

No. of Predictors 
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acts similar to MLR and cannot model non linear interactions between predictors 

implicitly.  

 

Figure 20: Coefficient path vs value of λ 

Coefficient Value 

(Intercept) 0.346 

Dev_factor 0.071 

PLAY_TYPE.A1 0.013 

FSTRU.C 0.003 

Mobility_Ratio_endpoint 0.000 

BHCOMP -0.002 

Hetro_factor -0.005 

DRIVE.COM -0.008 

Nalpha -0.036 

Npc -0.041 

DRIVE.DEP -0.051 

Ng -0.086 

No.of Predictors 11 

λ 0.0098 

MAE 9.5% 

RMSE 11.0% 

Table 17: Model Parameters λ=0.0098 (11 Predictors) 
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Predictor Value 

(Intercept) 0.347 

Dev_factor 0.051 

PLAY_TYPE.A1 0.000 

FSTRU.C 0.000 

Nalpha -0.011 

Ng -0.030 

DRIVE.DEP -0.047 

Npc -0.063 

No. of Predictors 7 

λ 0.014 

MAE 10% 

RMSE 12.1% 

Table 18: Model Parameters λ=0.014 (7 Predictors) 

 

Figure 21: LASSO (11 Predictors) Prediction and Error vs Original ORF 
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4.4 K Nearest Neighbors 

In k nearest neighbours model, k nearest reservoir instances are selected from 

training data based on distance metric (Eucledian distance in this study). ORF of new 

reservoir is predicted using the mean ORF of k nearest neighbors in the training data. 

Figure 22 shows relationship between number of neighbours used for prediction and 

error on test dataset.  It can be observed that optimum error rate is achieved by using 25 

predictors for prediction. The RMSE and MAE for kNN model with 25 neighbours were 

13.2% and 10.6% respectively. 

Figure 23 shows that kNN model could not predict the trend. Except in the range 

of (0.3, 0.45) kNN model has significant error. Figure 24 shows the histogram of absolute 

error of Knn. More than 50% of the predictions on test data had an error of greater than 

10%. This could be due to giving equal importance to all the predictors in the data.  

 

Figure 22: No. of Neighbours vs Accuracy plot 
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Figure 23: kNN (25 Neighbours) Prediction and Error vs Original ORF 

 

 

Figure 24: Distribution of Absolute Error (kNN-25 Neighbours) 
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4.5 Regression trees 

As discussed in chapter 2.3.3, an extensive regression tree is built initially using 

a low cost-parameter (Cp). Figure 25  shows the relationship between cross valided error, 

complexity parameter and size of the tree.  The optimum tree size is 7 with a Complexity 

Parameter is 0.01. Figure 26 and Figure 27 shows regression trees of sizes 7 (𝐶𝑝 = 0.01) 

and 24 ( 𝐶𝑝 = 0.005) respectively. Even though these two trees are of different sizes, 

they have similar accuracy.  

 

Figure 25: Change in 𝑪𝒑 and Cross validated relative error with Tree Size 

Figure 26 and Figure 27 depicts the way, regression tress make decisions to 

predict target variable. Various measures of central tendency or local regression model 

can be used to predict target variable from filtered ORF values after transversing through 

the tree.  
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Figure 26: Regression tree of size 7, Complexity Parameter 0.01 

 

Figure 27: Regression Tree of size 24, Complexity Parameter 0.005 

  

The RMSE and MAE for a tree size of 9 (No. of splits in the tree) is 13% and 10% 

respectively. Whereas, RMSE and MAE for a tree size of 24 is also 13% and 10% 

respectively. Figure 28 and Figure 29 shows the relationship between predicted ORF  and 

error vs original ORF for tree size of 9 and 24 respectively. It can be observed that the 
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number of levels in the prediction increases with increase in the size of regression tree 

and tends to follow unit slope line. Figure 30 shows that around more than 50% of  

predictions on test data had an error of more than 10% ORF. 

 

Figure 28: Predicted ORF and error vs original ORF  (Tree size-9) 

 

 

Figure 29: Predicted ORF and error vs original ORF  (Tree size-24) 
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Figure 30: Distribution of absolute Error using regression tree ( Size 9) 

 

In addition to prediction, the influence of each predictor on the target variable can 

be estimated depending on the level of appearance, cleanness of the splits and number of 

splits connected to each predictor. If there are any duplicate variables, then they will share 

the variable importance. Figure 31 shows the variable importance of various predictors 

used in the model.  It can be observed that dimensionless parameters such as 𝑁𝑝𝑐, 𝑁𝑔, 𝑅𝑙, 

𝑁𝛼 have high importance than other predictors like Porosity, No. of wells etc. It can also 

be observed that the dimensionless parameter defined for this study “Dev_factor” has 3rd 

highest importance after 𝑁𝑝𝑐 and 𝑁𝑔, 

 

Figure 31: Predictor importance plot based on regression tree splits 
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4.6 Random Forest Model 

As seen in the previous section, regression trees are rigid and its output space is 

limited. A small change or addition in the data may change the tree model. The 

predictions may change with the addition of new data. To address this issue, Random 

forests model uses large number of trees with splits based on randomly selected 

predictors. Figure 32 shows the trend of RMSE using Random forests model with 

increasing number of trees.  The RMSE over test data flattens off at a optimum number 

of trees and wont change with further increase of trees indicaing the robustness of random 

forests to overfitting.  In this research, random forests model with 1000 trees is generated 

with each split in each tree is based on randomly selected 3 predictors. Table 19 shows 

that model statistics of random forest model is similar to MLR. Figure 33 shows 

relationship between predicted ORF and error vs original ORF. Even though there is no 

nonlinear trend in the residuals, random forest model has left away some signal.         

Figure 34 shows that around 40% of test data has residuals of more than 10% ORF.  

 

Figure 32: Decrease in RMSE with No. of trees in Random Forest model 
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Figure 33: Random Forest Model - Prediction and Error vs Original ORF 

 

 

Figure 34: Distribution of Absolute Error ( Random Forest ) 

 

No of Trees 1000 

No of random variables at each split 3 

RMSE on test data 11.1% 

MAE on test data 9.1% 

Table 19: Model Statistics (Random Forest) 
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4.7 Artificial Neural Networks 

Predictive models discussed in previous chapters except linear regression with 

non linear interactions upto some extent have limitations in modelling nonlinear 

interactions between the predictors. Figure 29 and Figure 33 shows that random forests 

and decision tree models were not able depict non linear trend even though they can allow 

nonlinear interactions between predictors up to some extent.  In this section artificial 

neural networks were used to predict ORF by incorporating non linear interactions 

between predictor variables. Artificial neural networks of various dimensions were 

analyzed and the best possible combination of hidden layers and nodes (1 hidden layer 

with 3 nodes) is selected. Simple summation is used as the transformation function at 

hidden nodes. Figure 35 shows the relationship between predicted ORF and error vs 

original ORF. The residuals are more close to zero line than other models discussed so 

far indicating better performance of ANN.   

 

Figure 35: Artificial Neural Network - Prediction and Error vs Original ORF 
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Models with non linear interactions like Regression trees and Random forests 

have left out some signal.  But ANN was able to model the data satisfactorily leaving the 

noise away. Figure 36 shows that around 80% of the predictions on test data had an error 

of less than 8%. Table 20 shows the model statistics of ANN model. It can be observed 

that ANN model has smaller error than models discussed so far.  

 

Figure 36: Distribution of Absolute error (ANN) 

 

No. of Hidden Layers 1 

No. of Nodes in hidden layers 3 

RMSE 8.5% 

MAE 6.0% 

Table 20: ANN model Statistics 
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4.8 Ensemble Modelling 

Few model predictions are good in a specific range of ORF whereas a few other 

models prediction is good in different range of ORF. Figure 37 shows the distribution of 

error vs original ORF  for different modelling techniques. ANN predicted better than 

Random forest at low ORF levels and random forests predicted better than ANN at high 

ORF levels. MLR had high error at low ORF and similar erro as ANN and random forest 

in high ORF level. Ensemble models combine various predictive models to leverage the 

strength of each model. There are different types of ensembling techniques based on the 

target variable to provide better and stable predictions. The aggregate of all the models 

will be less noisy than a single model.  

 

Figure 37: Distribution of Error vs Original ORF for different models 

 

The models used in the analysis Simple linear regression, Random forest and 

Artificial neural network are combined to model more robust model. kNN is not selected 

because of its high error rate. Robust regression and LASSO are not selected because they 
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are similar to simple linear regression.  One of the simplest ensemble model is averaging 

the predictions from all the models. Sometimes weighted average can also be selected. 

Table 21 shows the error metrics of average ensemble model based on Multiple linear 

regression, Random Forest and Artificial neural network. Even though the error is slightly 

higher than the ANN model, the model will be robust and more accurate on new data than 

a single model.  

Models taken for averaging 

MLR 

Random Forest 

ANN 

RMSE 8.8% 

MAE 6.8% 

Table 21: Average Ensemble model statistics 

 

Figure 38: Decision tree Ensemble model for selecting model based on predicted 

ORF 
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Another kind of ensemble is using decision trees.  As discussed earlier a few 

models work better in a specific range of ORF whereas other models work better in a 

different range of ORF. Decision trees as an ensemble technique will help in selecting 

different models at different ranges of ORF. Figure 38 depicts the way decision tree 

selects predicted ORF from various models based on their predicted ORF. It can be 

observed that ANN model is selected between the predicted ORF range of (0.15, 0.45) 

and Random Forests is selected in the extremes. MLR model is not selected because of 

the better performance of Random forest and ANN.  Figure 39 shows the relationship 

between predicted ORF and error vs original ORF of ensemble model.  Even thought the 

number of output levels is limited, they followed the unit slope line and residuals followed 

unitslope line.Table 22 shows that ensemble model based on  decision tree has a 

minimum MAE of 4.6%.  Figure 40 shows that more than 70% of the predictins on test 

data had an error of less than 5%.    

 

Models taken for ensemble MLR, Random Forest, ANN 

RMSE 6.3% 

MAE 4.6% 

Table 22: Decision tree Ensemble model Statistics 
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Figure 39: Final Ensemble model - Prediction and Error vs Original ORF 

 

 

Figure 40: Distribution of Absolute Error (Ensemble model) 
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4.9 Sensitivity Analysis 

The response of the data analytical model to changes in various predictors such 

as porosity, permeability and number of wells was analyzed using Random Forest model. 

Random forest model is selected because it does not need any transformation of the data. 

This model was able to successfully capture the natural tendency of the reservoirs up to 

some extent. Figure 41 shows the effect of change in number of wells on ultimate 

recovery factor for a few sands considered in the study. It can be observed that in all the 

reservoirs, ultimate recovery factor increased up to some extent and flattened after that. 

This indicates that the model has captured the natural tendency of the reservoirs.  

 

 

Figure 41: Effect of No. of wells on ORF 

 

Figure 42 shows the change in ultimate recovery factor with change in porosity 

and keeping all other parameters same. It can be observed that ultimate recovery factor 
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remained constant upto some extent and increased after a certain threshold. It can also be 

observed that ultimate recovery factor decreased after a certain extent of porosity which 

may be due presence of unconsolidated reservoirs in the data set. This is also possible if 

reservoirs with high porosity in the dataset had low ultimate recovery factor due to any 

other reason. But on overall, random forest model captured the dependence of ultimate 

recovery factor on Porosity of the reservoirs.  Figure 43 shows the effect of change in 

 

Figure 42: Effect of Porosity on ORF 

 

permeability on ultimate recovery factor. It can be observed that ORF increases upto some 

extent and flattens out similar to the trend shown with number of wells. This kind of trend 

indicated the effectiveness of random forest model in capturing the relationship between 

prermiability and ultimate oil recovery.  



62 

 

 

Figure 43: Effect of Permeability on ORF 
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5. Conclusions and Recommendations 

5.1 Summary of the work 

The main objective of this study is to predict the ultimate recovery factor of oil 

reservoirs using various data analytics techniques. In addition to that the sensitivity of the 

models to changes in predictor variables such as porosity, permeability and number of 

wells is also studied. Various data analytical models were used to predict ultimate 

recovery factor of oil reservoirs in Gulf of Mexico. Error metrics such as Root mean 

square error (RMSE) and Mean absolute error (MAE) were used on test data set to 

evaluate the analytical models used in the study. Figure 44 shows the distribution of error 

for various models. It can be observed that Random forest model and Artificial neural 

network model have better predictions than other models. An Ensemble model is made 

using Multiple linear regression, Random forest model and Artificial neural network to 

take advantage of strengths of these models. This resulted in better RMSE and MAE on 

prediction over test data. Table 23 shows the RMSE and MAE for various data analytical 

models used in this study. 

  

Figure 44: Distribution of absolute error for various models 
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Model RMSE MAE 

Multiple linear Regression 9.0% 7.0% 

Robust linear Regression 9.3% 7.2% 

LASSO 11.0% 9.5% 

K nearest neighbors 12.7% 10.6% 

Decision Tree 13.2% 10.6% 

Random Forest 11.1% 9.0% 

Artificial Neural Network 8.5% 6.0% 

Ensemble Model 6.3% 4.6% 

Table 23: Summary Statistics of various models 

5.2 Conclusions 

Conclusions of the following study were as follows 

1. Two new dimensionless numbers defined in this study characterized the field 

development and heterogeneity of the reservoirs.  These two along with other 

dimensionless numbers can be used to reduce the number of predictors required 

to scale reservoirs for predicting ultimate recovery. Each of these dimensionless 

numbers have physical meaning which helps the model to conncest physical 

processes in oil reservoirs with statistical modelling techniques.  

2. The trend of residuals in MLR model with idependent predictors indicated 

presence of non linear interactions between the predictors. Various models which 

can model non linear interaction were tried to predict ORF. MLR with all possible 

non linear predictors successfully captured the trend but it required 245 predicters 

as input. Inspite of number of predictors, MLR with non linear interactions has an 

advantage of easy interpretability. 
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3.  Random forests model and ANN performed better than MLR in modelling the 

non linear interactions between predictors. ANN had better RMSE of 8.5% which 

is better than other individual models. In addition to prediction Random forest 

model captured the natural relationship between ultimate recovery factor and 

predictors like number of wells, porosity and permeability. Inspite of their ability 

to implicitly model non linear interactions between predictors these models are 

difficult to interpret.  

4. Ensemble model used in the study selects models between MLR, Random forest 

and ANN at different ranges of ORF based on their prediction accuracy. This 

model further boosted the RMSE of prediction to 6.3%. Similar to Random Forest 

and ANN, this model is also difficult to interpret.  

5.  It is necessary to make trade off between between interpretability and modelling 

capability of data analytical models. Based on the task and requirement of 

interpretability and model accuracy, these models can be selected and used to 

predict the ultimate recovery factor of new reservoirs.  

5.2 Scope of future work 

It has been observed that a few models predicted negative values of ORF due to 

extreme values in predictors.  One more limitation of these models is they will not 

replicate real conditions in case of extreme inputs. For example, these models may still 

predict positive ORF in cases with zero number of wells, zero permeability, zero porosity 

etc.  Mathematical models with constraints can be used to model relationship between 

dimensionless parameters and ultimate recovery factor. The parameters of mathematical 
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models can be estimated using maximum likelihood estimation. Simple mathematical 

model for predicting ultimate recovery factor can be defined as follows.  

𝑂𝑅𝐹 = (𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ ) (1 −  𝑒𝑎 𝛷)(1 − 𝑒𝑏𝐵𝐻𝐶𝑂𝑀𝑃)(1 − 𝑒𝑐 𝐷𝑒𝑣𝑓𝑎𝑐𝑡𝑜𝑟)       

(5 - 1) 

 𝑥1, 𝑥2, 𝑥3 …  are predictors which does not have extreme effect on the target 

variable. Whereas, ORF should be zero when any of the parameters 𝛷, BHCOMP and 

Dev_factor is zero. 

Therefore, the following work would be recommended to do in future. 

1. Developing mathematical models as shown in Eqn. (5-1) and using the already 

available data to estimate the model parameters. This work is similar to relating decline 

curve parameters to petrophysical, fluid and development related properties of the 

reservoir using data analytics.  

2. The dimensionless parameters in this study were defined based on the available data in 

the dataset. Development number needs to be further improved to account for 

development pace, stimulation techniques and artificial lift. Reservoir simulation 

studies can be used to further improve this expression to capture various development 

phenomenon.  
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Appendix A: Nomenclature 

API Oil API gravity 

ANN Artificial Neural Network 

BHCOMP 
No. of completion in each sand 

( Wells + Additional completions using workover) 

BOEM Bureau of Ocean and Energy Management 

CART Classification and regression trees 

Cp Complexity Parameter 

CHRONOZONE 

PLU-LL Upper Pleistocene, PLM Middle Pleistocene, PLL  Lower 

Pleistocene, PU Upper Pliocene, PL Lower Pliocene, MLU & MUU 

Upper Miocene, MUM &MMM Middle Miocene, MLM & MUL & 

MML Lower Miocene 

Dev_factor Dimensionless Development factor 

DRIVE 

Dominant drive mechanism 

DEP- Depletion, GCP- Gas cap drive,  WTR- Water Drive  COM- 

Combination drive, PAR- Partial water drive, UNK- Unknown 

g Acceleration due to gravity 

GOR Gas oil Ratio 

H Reservoir thickness 

Hetro_factor Dimensionless Heterogenity factor 

FSTRU 

Field Structure Code 

A- Anticline, B- Fault, C- Shallow Salt Diapir 4000 SS, D- 

Intermediate Salt Diapir 4-10,000 SS, K- Rollover into growth fault 

𝐾𝑥 Average horizontal permeability, md 

𝐾𝑍 Vertical permeability of reservoir , md 

Krw Relative permeability to water 

L Length of reservoir 

LASSO Least absolute shrinkage and selection operator 

PLAY_TYPE Type of Reservoir play 

P_CUMOIL Cumulative oil produced (Bbl) 

P_RECOIL Ultimate reserves (Bbl) 

𝑅2 Coefficient of determination in multi linear regression 
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MAE Mean Absolute Error 

MLR Multiple linear regression 

𝑁𝑔 Dimensionless gravity number 

𝑁𝑝𝑐 Dimensionless capillary number 

NTG Net to Gross ratio 

ORF Ultimate oil recovery factor 

OLS Ordinary least squares 

𝑅𝑙 Dimensionless aspect ratio 

RMSE Root Mean Square Error 

RES_TYPE 
Reservoir Type 

U- Under saturated oil,  S- Saturated Oil 

SPGR Specific gravity of oil 

SD_TYPE 
Type of reservoir 

‘O’ – Oil, ‘G’- Gas, ‘B’- Both, Zero - Unknown  

SSE Sum of squared errors 

𝑆𝑤 Initial water saturation 

𝑈𝑡 Subsurface fluid velocity (oil+water) , ft./day 

�̂�𝑖 Predicted value using model 

𝜆𝑟2
𝜊  Relative mobility of residual phase-2 

𝜌𝑙 Density of non-wetting liquid phase 

𝑁𝜌 Dimensionless density number 

σ Interfacial tension of hydrocarbon-water system 

Δ𝜌 Density difference between oil-water 

𝛼 Dip angle 

𝜙 Porosity 
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Appendix B: R packages used in the study 

Package Purpose 

EnvStats Box cox transformation 

Rpart Regression tree modelling 

Partykit  Visualizing regression trees 

Rattle Visualizing regression trees 

Glmnet Least absolute shrinkage and selection operator 

Flexclust Adjusted box plot 

randomforest Random forst model 

neuralnet 
Artificial neural network 

Nnet 

Readxl Reading data from excel file 

Class K nearest neighbours 

MASS Robust regression 

Hmisc Combined histogram of dataset 

E1071 For measuring skewness 

Caret Unified approach for various data models 

Corrplot Visualizing correlation between predictors 
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Appendix C: Datasets 

Dataset Dimensions Discription 

Rawdata 13289 x 82 
 Initial data set containing oil and gas 

reservoirs of  Gulf of Mexico 

rawDataComlCases 13288 x 82 Initial data set with only complete cases 

oilRes 5019 x 82 
Oil Reservoirs in the dataset which produced 

more than 80% of ulitimate reserves 

oilResClean 3038 x 82 
Oil Reservoirs after removing reservoirs with 

erroneous data 

rCleanSelect, 

GoM_original 
2524 x 18 

Oil Reservoirs selected for the study with 

dimensionless parameters 

GoMTrain_original 2022 x 18 Training dataset with original parameters 

GoMTest_original 502 x 18 Test data set with original paramters 

GoM_Processed 2524 x 31 
Oil Resevoirs selected for the study with 

normalized paramters and dummy variables 

GoMTrain_processed 2022 x 31 
Training data with processed parameters and 

dummy variables 

GoMTest_processed 502 x 31 
Test data with processed parameters and 

dummy variables 

GoM_proc_nooutliers 2423 x 31 

Oil Reservoirs selected with normalized 

paramters and dummy variables without 

ouliers 

GoMTrain_proc_nooutliers 1940 x 31 
Training data with processed parameters, 

dummy variables and no outliers 

GoMTest_proc_nooutliers 483 x 31 
Test data with processed parameters, dummy 

variables and no ouliers 

 


