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Abstract

In modern RF systems, tunable devices are increasingly necessary to provide agility

in crowded spectral environments. The antenna, as an integral part of any wireless

system, must be capable of operating well at multiple frequencies and in a variety

of environments where space and spectrum are at a premium. This work presents

a novel method of magnetic reconfiguration through actuation of a ferrofluid load

with a permanent magnetic field. When compared with previously published meth-

ods utilizing DC voltage, ferrofluid actuation has the benefit of providing electrical

isolation between the tuning mechanism and the tunable element. Furthermore, we

show in this work that magnetic actuation of ferrofluid allows for continuous tuning

across frequency with a permanent magnet bias, as opposed to conventional mag-

netic tuning methods which normally require application of a variable magnetic

field to a stationary load. Magnetic actuation of ferrofluid can be accomplished at

a distance with a combination of magnets, and the system remains configured by

the local bias magnet even after removal of the positioning field. Thus, magnetic

tuning at a distance with ferrofluid offers a way to compensate for antenna package

loading effects in situ. This work shows that magnetic tuning with a repositionable

ferrofluid load has a broad range of applications in reconfigurable filter and antenna

design.

xiii



Chapter 1

Introduction

Modern microwave systems must operate in spectral environments that are becom-

ing ever more saturated. One technique utilized to avoid interference with nearby

systems is cognitive radio [1]. Microwave systems using cognitive radio are able to

detect which frequencies are currently in use in the vicinity, and adapt in real time

to operate within available frequency bands [1]. Cognitive radio techniques benefit

greatly from the use of components capable of operation over a wide range of fre-

quencies [2]. As the front end of the microwave transmit/receive chain, the antenna

typically has the greatest impact on the overall system noise figure when receiving

because the antenna is the first element in the cascaded receiver network [3]. Con-

sequently, an efficient tunable narrowband antenna results in a lower system noise

figure than a broadband antenna cascaded with a filter, because the smaller band-

width effectively filters out-of-band noise [4], reducing interference from neigh-

boring systems operating at nearby frequencies [2]. A reconfigurable narrowband

antenna can also have better efficiency and radiation characteristics at its operating

frequency than a similar form factor broadband antenna with an operating band-

width that matches the tunable bandwidth of the tunable antenna [5]. Thus, tunable

narrowband antennas are particularly desirable in mobile applications where power

and space are limited [4]. In addition to the performance advantages of tunable nar-
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rowband operation, this work will show that a reconfigurable antenna can also be

designed with the capability to compensate for loading effects due to the antenna’s

environment. Antennas rarely operate in an environment analogous to free space,

so nearby objects have an effect on the reactive nearfield and the antenna’s radiation

and input impedance characteristics [5]. The antenna reconfiguration method pre-

sented in this work provides antennas with the capability to adapt in-situ to detuning

effects due to the surrounding environment.

Many schemes currently exist for antenna reconfiguration: from loading with

varactors [6]–[9], to stationary magnetic biasing of ferrite substrates [10]–[12], to

use of “Micro-Electro-Mechanical System” (MEMS) switches and microfluidics

[13]–[18]. Reactive loading with varactors or similar electrically-controlled de-

vices often requires high DC voltages of up to 30 V or more, and additional design

considerations such as RF chokes in order to isolate the RF and DC circuitry, re-

sulting in increased design complexity [6]–[9]. Magnetically-controlled devices

utilizing stationary biasing of ferrite materials offer inherent electrical isolation be-

tween the reconfiguration mechanism and the antenna, but require high magnetic

field strengths which are most easily obtainable with permanent magnets [10]. The

authors of [10] use a YIG (yttrium iron garnet) ferrite as a substrate, and spacers

with a permanent magnet to vary the distance between the magnet and the substrate,

effectively changing the strength of the bias field applied to the substrate [10]. The

authors of [19] also use a special supporting structure to vary the distance between

a permanent magnet bias and their antenna (Figure 1.2(b)). In practice, an electro-

magnet is desirable for continuous control of the field [10], but this is not practical

for low power applications, as electromagnets require high currents in order to gen-

erate significant magnetic fields. The authors of [11] use an electromagnet to bias

a patch antenna on a YIG substrate, but the bias field strength of the electromagnet

2



(a) (b)

(c)

Figure 1.1: Examples of electrical reconfiguration of antennas: (a) Tunable
patch antenna end-loaded with varactors [6], (b) “Pixel” antenna utilizing MEMS
switches [14], (c) Microfluidic patch antenna using conductive liquid alloy [15].

is limited to 48 kA/m. The tunable bandwidth is likely restricted by the limitations

of the electromagnet, because the electromagnet is unable to deliver strong enough

fields to bias the ferrite to its saturation magnetization of 100 kA/m [11]. Large

tunable bandwidths can be obtained with MEMS technology, but antennas utilizing

MEMS switches are typically not continuously reconfigurable, because the system

operates by switching between discrete states (see Figure 1.1(b)) [13], [14], [20].

Microfluidic tuning is analogous to MEMS technology in that it involves physi-

cal relocation of a load, and it shows promise in applications where continuous

tunability is desirable; however, a significant drawback is that microfluidic sys-
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(a) (b)

Figure 1.2: Examples of magnetic tuning of ferrite-loaded antennas: (a) Tunable
antenna using plastic deformation [21], (b) Tuning of a stationary ferrite with a
variable magnetic field [19].

tems normally require a pump to reposition the fluid, increasing device complexity

[16]–[18]. Additionally, microfluidic systems using liquid metal often suffer from

oxidation-related issues that can inhibit repeated reconfiguration [17].

This work presents a novel method of tuning through magnetic control of a fer-

rofluid load. Magnetic tuning through actuation of a ferrofluid load avoids the issues

normally involved in microfluidic tuning, because ferrofluid is a non-conductive

material not prone to oxidation, and is attracted to a DC magnetic field. Thus,

the fluid is repositionable through movement of an external magnetic “bias field”

and does not require a pumping system. Additionally, the method presented in this

work is preferable to voltage-controlled reconfiguration if high electrical isolation

is desired between the tuning mechanism and the RF system. The magnetically-

tuned system shown in this work does not require additional design considerations

to prevent electrical interference between the tuning mechanism and the RF cir-

cuitry because the tuning mechanism is magnetically coupled with the RF system

and thus inherently electrically isolated. Finally, this method of tuning can be ac-

complished at a distance with the combination of a permanent magnetic bias which
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Figure 1.3: Diagram of repositionable ferrofluid load. Upon application of an ex-
ternal positioning field, the local bias is pulled away from the fluid such that it can
move along the length of the plastic guide. After removal of the positioning field,
the local magnet is again attracted to the fluid and kept in place with friction.

remains localized on the device, and an external magnetic positioning field (Figure

1.3). Upon removal of the external field, the local permanent magnet is attracted

to the ferrofluid in the channel and remains in place due to the attraction between

the materials and friction between the magnet and the ground plane. This tuning

method combines both the advantages of magnetic tuning and microfluidic con-

figuration without the inherent drawbacks normally present in each, and provides

a way to compensate for device packaging effects without an applied voltage or

physical access to the device. Furthermore, the presented method of magnetic tun-

ing is advantageous because it does not require a controlled power source when

done with permanent magnets, and offers a continuous tuning range that does not

require placement of spacers between the permanent magnets and the device or a

high power electromagnet, in contrast to [10] and [11]. Finally, this work presents

a method of magnetic actuation of a physically repositionable load that allows for

simple continuous tuning across the tunable range, as opposed to some methods

like [13] and [20], which use electrical or magnetic forces to actuate a mechanical

switch between discrete modes of operation.
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An overview of magnetic tuning methods is given in Chapter 2. Conventional

magnetic tuning is typically accomplished through biasing of ceramic ferrite ma-

terials, so an investigation of ferrite magnetic behavior and tuning methods is pre-

sented. Several soft ferrite testing methods were attempted in an effort to better

understand magnetic biasing mechanisms, and these results are shown in Section

2.3. Chapter 3 presents an analysis of ferrofluid at microwave frequencies. In Sec-

tion 3.3, a testing method for characterizing magnetic fluid behavior under vary-

ing magnetic bias strengths is demonstrated. Electromagnetic properties of several

ferrofluids under a range of magnetic bias strengths from 0 to 74 kA/m and fre-

quencies from 200 MHz to 5 GHz were measured, and the results are shown in

Section 3.4. Chapter 4 introduces the novel method of magnetic reconfiguration

proposed by this work in the form of a tunable microstrip stub element. Since the

proposed ferrofluid-based tuning mechanism involves fluid volumes on the order

of milliliters and dimensions on the order of millimeters, the proposed device is

not a Micro-Electro-Mechanical System, but rather a “Milli-Magneto-Mechanical

System”. A simple transmission line model for the tunable microstrip element is

present in Section 4.2, and a comparison between the modeled, simulated, and mea-

sured results is given in Section 4.3. Chapter 5 proposes several tunable patch

antenna designs based on the tunable element demonstrated in Chapter 4. Patch

antennas are designed with the aid of a transmission line model, and simulated,

measured, and predicted performance of the antennas in free space is presented. To

demonstrate impedance reconfigurability, results are shown for two different super-

strates covering the improved tunable patch antenna design in Section 5.4. Chapter

6 demonstrates a tunable slot antenna design based on the same tunable stub mech-

anism where the microstrips are coupled to the slot, and a transmission line model

for the slot antenna is developed and compared with simulation. Finally, Chap-
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ter 7 presents conclusions and directions for future research involving tuning with

magnetically-actuated ferrofluid loads.
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Chapter 2

Magnetic Tuning With Ferrites

2.1 History and Theory of Magnetic Tuning

Historically, magnetic tuning has been accomplished through stationary biasing of

ceramic ferrites. These methods usually suffer from higher losses due to the larger

conductivity of ferrite materials compared to typical low-loss substrates [2]. One

ferrite often utilized at microwave frequencies due to its lower loss is Yttrium Iron

Garnet (YIG) [22]. As shown by Figure 2.1, increasing the strength of the biasing

field effectively increases the resonant frequency of YIG, reducing its loss at lower

frequencies, and also modifying the real part of the magnetic permeability [22].

YIG is just one example of a ferrite, but it demonstrates a typical property of ferrites

where the resonant frequency shifts upwards as the bias field strength is increased.

As shown in Chapter 3, a similar effect is also exhibited by ferrofluid. There are two

main classifications of ferrites: “Hard” and “Soft”. This classification is essentially

a measurement of how easily the magnetic domains can change alignment, and is

best visualized through the material’s hysteresis curve (Figure 2.2) [23].
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(a) (b)

Figure 2.1: Real and imaginary permeability values of YIG composite under vary-

ing bias fields and frequencies [22]. The maximum bias strength tested by the

authors is 72.4 kA/m (One Oersted equals 79.6 A/m).

Soft ferrites have tall and narrow hysteresis loops, indicating that they exhibit a

large change in magnetic flux density as a magnetic field is applied. Hard ferrites

have wider hysteresis loops, meaning that a larger coercive field is required to over-

ride their remanent magnetization. As one might expect, hard ferrites behave more

like permanent magnets than soft ferrites. The hysteresis curve is a convenient way

to visualize the change in magnetic permeability µ as a function of the applied mag-

netic field intensity, and also the resulting magnetic flux density. The permeability

is represented by the slope of the hysteresis curve, and the magnetic flux density is

represented by the resulting ~B value. The flux density in the material, ~B, is defined

as

~B = µ0(1 + χm) ~H = µ0µr ~H = µ ~H (2.1)

where µr represents the relative permeability of the material and ~H is the applied

field intensity [24]; in general, µr is a nonlinear function of ~H [24]. This nonlinear

behavior is often exploited to enable magnetically tunable devices through applica-
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Figure 2.2: Typical hysteresis loop of a ferrite [25]. The H axis represents the
magnetic field intensity applied, and the B axis represents the resulting magnetic
flux density in the ferrite. Soft ferrites have tall and narrow hysteresis loops, and
hard ferrite hysteresis loops are short and wide.

tion of a magnetic “bias field” which changes the permeability and hence modifies

the phase velocity of a wave traveling through the material [24]. This behavior,

combined with low conductivity, gives ferrites wide applicability at high frequency

as phase shifters and inductive cores [24].

The point where the hysteresis curve intersects the horizontal axis is called the

coercive field intensity, which is the intensity of the magnetic field necessary to

break the alignment of the ferrite’s magnetic domains and reorient them in a differ-

ent direction [24]. As field strength increases above the coercive field intensity, the

magnetic flux density follows the hysteresis curve up to its maximum value where it

hits saturation: the point where any further increase in applied field does not result

in an increase in magnetic flux in the ferrite [24]. After removal of the applied field

in a magnetic material, the flux density will decrease along the hysteresis curve un-
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til it hits its “remanent flux density”, which is the point of intersect with the vertical

axis; this point is the inherent magnetization of the material that remains after the

biasing field is removed, and thus it represents the strength of a permanent magnet’s

flux density [24].

2.2 Stationary Ferrite Loading Experiments

We began our initial investigation by loading combinations of soft and hard ferrites

onto a rectangular slot antenna in different configurations in order to determine the

magnetic characteristics that would be most advantageous and potentially allow for

antenna reconfiguration at a distance. Both soft and hard properties were desirable

to enable reconfiguration at a distance, because the ferrite must have a tunable per-

meability and also exhibit remanance in order to remain configured after removal

of the bias. The goal of this initial investigation was to determine more clearly the

magnetic properties desired in a custom-sintered ceramic with both soft and hard

properties by using the results from a well-characterized antenna as a starting point.

Due to the required time investment and the difficulties in sintering ferrite ceramics,

we first attempted magnetic tuning with a combination of commercially-available

ferrites.
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(a) (b)

Figure 2.3: Performance of soft ferrite absorber materials from Kitagawa Industries

[26]: (a) IM-02 RF absorber, (b) NSSR-10G RF absorber.

The soft ferrite materials used to load the antenna were obtained from Kitagawa

Industries [26]. These soft ferrite sheets are designed to work as RF absorbers at

frequencies above UHF, but they have useful soft magnetic properties in the UHF

range below 1 GHz (see Figure 2.3). As the provided data indicates, the NSSR-10G

material should have a relative permeability in the range of µr = 5 at 700 MHz, and

the IM-02 material should have a permeability in the range of µr = 8 at 700 MHz.

Thus, the permeability varies as a function of both the applied field strength and

frequency. Above 700 MHz, these materials begin to exhibit significant magnetic

loss tangents. The soft ferrite materials were loaded onto the ends of a rectangular

slot antenna in various combinations, as shown in Figure 2.4.
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Figure 2.4: Simple rectangular slot antenna loaded with NSSR-10G material

squares and biased with hard ferrite permanent magnets. The slot is 160 mm long,

12 mm wide, and fabricated on a 60 mil Rogers RO3006™ substrate. The antenna

is center-fed with a coaxial feed configured as a Dyson-like balun [27].

Figures 2.5 and 2.6 show results for a few notable tuning configurations of the

rectangular slot antenna. As the results in Figure 2.5 show, changing the place-

ment of a magnetic bias results in tuning of the slot resonant frequency between

650 and 750 MHz. Application of different sizes and strengths of biases to the

same location, as shown in Figure 2.6, results in an even larger tunable range from

approximately 550 to 700 MHz.
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Figure 2.5: Tuning effect of a changing magnetic bias field on the stationary NSSR-

10G end loads. Modification of the bias location on the end load relative to the

center of the slot tunes the antenna between 650 and 750 MHz.

Tuning effects only remain as long as the permanent magnetic bias remains in

place, indicating that changing the physical placement of the bias on a magnetic

load also has the potential to tune the resonant frequency of an antenna. The bias

magnets are hard ferrite ceramics, and thus they also have a dielectric loading effect

on the ends of the slot. In order to better characterize the operation of the antenna,

several tests were done on the ferrite materials, and results are presented in the next

section.
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Figure 2.6: Tuning effect of a changing magnetic bias field strength on the sta-

tionary NSSR-10G end loads; Bias 1 is the strongest, and Bias 3 is the weakest.

Modification of the bias intensity on the end loads tunes the antenna between 550

and 700 MHz.

2.3 Ferrite Material Testing

A testing method was devised to extract the permittivity and permeability data from

the ferrites provided by Kitagawa, both to confirm the provided data and to test at

frequencies outside of the given range. The soft ferrites are sheets, so they are not

well-suited to testing in a coaxial measurement system. In addition, testing with a

waveguide measurement system is impractical at frequencies below the R band be-

cause the physical dimensions become prohibitively large. Thus, a testing method

based on slotline loading was developed. In order to form a better theoretical model

for how these materials behave as antenna loads, characterization of the materials
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was attempted in the slot antenna’s frequency range of operation (0.4 – 1 GHz).

A method to determine the frequency-dependent permittivity and permeability of

the sheets was developed using slotline loading and Cohn’s method to analyze the

loaded slot [28], [29]. Three slotline standards were fabricated for TRL calibration

of a network analyzer such that the line standard could be loaded with a test mate-

rial. Analysis of this method and data is presented in the next section. Additionally,

testing of the hysteresis curves was attempted, and this analysis is presented in Sec-

tion 2.3.2.

2.3.1 Slotline Testing of Ferrite Materials

Slotline TRL calibration standards were fabricated using a 60 mil Rogers RT/duroid®

5880 substrate with a slot offset 20 mm from the center to improve the current-

balancing effect of the feed [27]. In order to ensure high accuracy in the mea-

surements obtained from this setup, the standards were fabricated to have the same

electrical length to the edge of the sample holder section (outlined center section on

the “Line” standard in Figure 2.7(b)).
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(a) (b)

(c)

Figure 2.7: Slotline TRL calibration standards: (a) Thru standard, (b) Line standard,

(c) Reflect standard. The standards calibrate the network analyzer to the sample

plane marked by the black lines in (b).

Even a small difference in coaxial feed length on the order of 1 mm has a notable

effect on calibration accuracy. Group delay comparison can be used to determine

the material’s electromagnetic characteristics. A material with a large permittivity

or permeability will shorten the effective wavelength and reduce the phase veloc-

ity of the wave as it travels down the line, resulting in a longer delay. In order to

reliably determine the properties of the load, high precision is required in the TRL

calibration due to the small variance in group delay that results from changing the
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superstrate’s properties. Figure 2.8(a) shows a surface plot of the effective wave-

length in the slot as a function of both frequency and relative permittivity calculated

with Cohn’s method [28], [29]. The relative permeability is set to unity in order to

reduce the number of variables. As the plot shows, the effective wavelength varies

as a function of relative permittivity of the material loaded onto the slot line. This

variation in wavelength results in a small change in group delay as the quasi-TEM

wave propagates across the sample (Figure 2.8(b)). In order to test an unknown

material, the calculated group delay using Cohn’s method must be matched to the

measured group delay from the slotline measurements.
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Figure 2.8: Effective slot wavelength normalized to free space wavelength, and

calculated group delay using the effective wavelength when a 60 mil superstrate of

varying dielectric constant is placed over the slot: (a) Effective slot wavelength, (b)

Calculated group delay.
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Figure 2.9: Measured electromagnetic behavior extracted with application of the
NRW algorithm to a 1 mm thick 12x12 mm sheet of NSSR-10G tested on the slot-
line measurement system: (a) Relative permittivity, (b) Relative permeability.

An initial guess is made for the material properties of the slotline load using

the Nicholson-Ross-Weir (NRW) algorithm, which is accurate for most coax and

waveguide measurement systems [30], [31]. This guess is then used to determine

the starting point for a range of values for the property, which are each evaluated

using Cohn’s method for a sandwich slotline in order to determine the effective

wavelength in the slot as a function of the material parameters [28], [29].

The plots in Figures 2.9(a) and 2.9(b) represent properties extracted using the NRW

algorithm, which is not designed to be applied to a loaded slotline. However, as

shown by the extracted data, the algorithm still returns physically reasonable results

for the material, though the extracted permeability values are markedly lower than

those given by the Kitagawa-provided datasheet for NSSR-10G (Figure 2.3(b)).

The NRW-extracted data represent a starting value for a range of test values loaded

into Cohn’s iterative process in order to determine the effective wavelength and

group delay of the wave in the slot. Then, the measured group delay of the sample

can be compared with the theoretical value in order to determine the loading effect
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of the sample on the slot.

Unfortunately, the test setup was not precise enough to measure the material

properties accurately. A 1 mm change in transmission line length in the coaxial

feed results in a time delay change on the order of 5 ps. This is too much error for

the method to work accurately with the current set of slotline standards, because as

shown in Figure 2.8(b), loading the slot with a superstrate with εr = 8 only results

in a delay change of roughly 7 ps compared to a load with εr = 1 (for a 60 mil

superstrate). Increasing the thickness of the load to 180 mil results in the calculated

delay shown in Figure 2.10(b). As Figure 2.10(b) shows, increasing the superstrate

(sample) thickness does result in an increase in group delay variance for the entire

setup, but the change in group delay as a function of permittivity of the load is still

not large enough to significantly reduce the potential errors resulting from slight

line length differences.
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Figure 2.10: Effective slot wavelength normalized to free space wavelength, and

calculated group delay using the effective wavelength when a 180 mil superstrate

of varying dielectric constant is placed over the slot: (a) Effective slot wavelength,

(b) Calculated Group Delay.
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For a line length difference on the order of 1 mm, the potential for error is nearly

25% for the 180 mil loaded superstrate. In order to improve the accuracy of this

testing method, the slotlines must be fabricated to a very high degree of precision,

and the superstrate load must be positioned precisely in the same location on the

line for each measurement. Slotline testing of ferrite sheet materials has potential,

but suffers from inaccuracies due to the small uncertainty in the electrical lengths of

the coaxial feeds soldered onto the TRL test standards (Figure 2.7). Reasonable ac-

curacy was not obtainable with the fabricated slots, so another method, presented in

the next section, was developed to determine the hysteresis curves and permeability

of the ferrites.

2.3.2 Hysteresis Testing of Ferrite Materials

In order to determine the full hysteresis curve of a magnetic material, the applied

magnetic field intensity must be strong enough to overcome the material’s inherent

coercive field intensity. In order to test the ability to “overwrite” the hard ferrites

for hysteresis characterization, a test setup was devised to apply a large DC current

opposing the magnet’s remanent flux density (Figure 2.11). Voltage is applied to

the coil such that its magnetic field opposes the polarity of the magnet’s remanent

field according to the Right Hand Rule [24]. The floating magnet on top will drop

if the current through the coil on the bottom magnet is strong enough to overcome

the bottom magnet’s remanent flux density.
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Figure 2.11: Test setup for attempted re-biasing of hard ferrites. Current is applied

to the coil on the bottom magnet to oppose its remanent field such that any change

in the distance between the magnets indicates a change in the flux density of the

bottom magnet.

At a coil current of 10 amps, the magnetization of the bottom magnet showed no

change. A stronger current was not attempted due to heating of the coil and the

magnet – after 15 seconds of 10 amps being applied, the temperature of the mag-

net exceeded 115 degrees Fahrenheit (46 degrees Celsius). Hysteresis testing of

hard ferrites requires high power levels because the coercive field intensity must be

overcome on each cycle of the applied current wave. If the applied H field is not

strong enough to realign the ferrite’s magnetic domains and reverse the remanent

flux density with each cycle, the resulting plot will not show the hysteresis of the

material; hence, no further work was attempted to determine the hysteresis curves

of the hard ferrites.
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The soft ferrites have lower coercive field intensities, so hysteresis testing is

more practical than with the hard ferrites. First, strips of both NSSR-10G and IM-

02 were cut, stacked, and wrapped to form square cross-section toroids as in Figure

2.12(b). The toroids were then wrapped with primary and secondary windings of

magnet wire as in Figure 2.12(a). This formed a transformer with the stacked soft

ferrite sheets as the core, theoretically allowing calculation of the hysteresis of the

material through measurement of the difference in input and output voltages to the

two coils. One coil was used to excite the ferrite core, and the second was induc-

tively coupled to the first through the core. The hysteresis curve, which is a function

of the core’s permeability, was then be extracted. Hysteresis becomes difficult to

measure at higher frequencies for several reasons: The Tektronix AWG7122C sig-

nal generator used to generate the primary side voltage can output frequencies up

to 6 GHz. At 700 MHz, only 17 points are generated per cycle of the sine wave,

resulting in high-frequency noise in the measurements and reducing their precision.

Furthermore, the signal generator can output a maximum voltage of 1 Vpp.

(a) (b)

Figure 2.12: Measurement of soft ferrite toroid. Soft ferrite sheets are cut into 4

mm wide strips, layered, and curved to form a 4 mm square cross-section toroid: (a)

Close-up picture of toroid, (b) Toroid wrapped with coils on measurement circuit.
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Figure 2.13: Measured hysteresis curves for the IM-02 toroid: (a) 700 MHz, (b) 400
MHz. The curves indicate that not enough power is being delivered to the toroid to
induce a measurable hysteresis effect in the material.

At a characteristic impedance of 50 Ω, this is equivalent to only 2.5 mW of time-

averaged power, which is likely not enough to drive the soft ferrite material into

magnetic saturation. Finally, the reactance due to the capacitance between the

windings becomes significant at higher frequencies. Coil capacitance is unavoid-

able even when the windings are touching, due to the circular cross-section of the

wire. These effects reduced the accuracy of the measurements, but testing was still

attempted in order to obtain a better idea of the shape of the curve and expected

values.

Hysteresis curves were determined using curve-fitted data from the Tektronix

DPO70G04 oscilloscope. The measured hysteresis curve for the IM-02 material

at 700 MHz is plotted in Figure 2.13(a). In order to illustrate the frequency depen-

dency of hysteresis, the IM-02 hysteresis curve was also measured at 400 MHz. The

plot in Figure 2.13(b) is closer in shape to what is expected for a hysteresis curve;

however, the absence of saturation points in the first and third quadrants (points 1

and 4 in Figure 2.2) indicates that the test setup is not delivering enough power

to drive the material into saturation. Figure 2.13 indicates that the cited inaccura-
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cies inherent to the test setup are too significant for accurate measurement of the

materials.

2.4 Conclusions

Loading a rectangular slot antenna with ferrite material has the potential to enable

magnetic tunability. However, tuning of the antenna at a distance was not possible

because the loading ferrite’s permeability only stayed configured as long as the bias

magnet remained in place. Furthermore, ferrites are difficult to characterize in the

desired frequency range, and are limited in frequency by their loss. Magnetic be-

havior, being inherently nonlinear, is difficult to model and measure. These factors

combined make predictable, continuous magnetic tuning at a distance through sta-

tionary biasing of ferrites impractical for the targeted application. However, as the

stationary biasing results in Figure 2.5 show, changing the location of a bias field

on a stationary ferrite has a tuning effect on the antenna. This tuning is due to both

biasing of the magnetic material, and the bias magnet itself working as a reposi-

tionable load. In order to implement tunability at a distance, magnetic actuation of

a movable load is more likely to be effective than stationary loading, because if the

load can be moved magnetically, it will remain in place after removal of the posi-

tioning field due to the magnetic attraction between the local bias and the loading

material. This conclusion was the impetus for the development of a tunable system

using magnetically-actuated ferrofluid following the schematic shown in Figure 1.3.

The rest of this work is focused exclusively on magnetic actuation of ferrofluid in

order to tune a variety of structures.
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Chapter 3

Magnetic Reconfiguration With Ferrofluid

3.1 Ferrofluid-Based Devices

Ferrofluid is a magnetically-reactive liquid originally developed by NASA as a fluid

that could be manipulated in a zero-gravity environment [32]. It typically consists

of magnetic particles with a diameter of approximately 10 nm suspended in an oil-

based solution [33]. Water-based solutions also exist, but tend to be problematic, as

the suspended particles are more prone to formation of aggregates over time [34].

Ferrofluid has been used in reconfigurable devices at frequencies below UHF.

As demonstrated by [35], ferrofluid is useful as an inductive load (Figure 3.1). The

authors in [35] use a variable magnetic bias field to change the spatial distribution of

the fluid over the coil, effectively changing the inductance of the device by modify-

ing the magnetic loading of the coil [35]. Practical operation of the device is limited

to frequencies lower than 300 MHz, because at higher frequencies the inductance

does not change significantly as a function of the bias field [35]. Ferrofluid also

finds application in sensing devices. One such device uses magnetic loading due to

the movement of ferrofluid in an inclinometer (Figure 3.2) [36]. The device senses

a change in its angle of incline when gravity causes the ferrofluid to move, changing

the magnetic field sensed by the Hall Effect sensor [36].
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Figure 3.1: Ferrofluid-based variable inductor designed by [35].

Another application of ferrofluid is in the optical range of frequencies [37]. In

[37], a fiber coupler is made reconfigurable through application of ferrofluid (Figure

3.3). The coupler operates at optical frequencies where absorption is high, so rather

than utilizing ferrofluid as a variable load, the authors take advantage of the high

absorption and employ a “laser-induced thermal effect” to shift the refractive index

of the fluid as a function of the laser’s power [37].

Figure 3.2: Ferrofluid-based inclinometer designed by [36].
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Figure 3.3: Optically-tunable fiber coupler designed by [37].

Many conventional reconfigurable devices utilizing ferrofluid exploit the fluid’s

magnetic effects. This limits usage of the fluid to frequencies lower than UHF

because the magnetic loss tangent increases significantly as a function of frequency.

However, as shown in the next section, application of a strong permanent magnetic

bias field increases the resonant frequency of ferrofluid and significantly reduces its

magnetic effects at lower frequencies. This enables low-loss ferrofluid loading at

frequencies in the UHF range.

3.2 Ferrofluid Characteristics at UHF

The magnetic particles in ferrofluid have two main forms of relaxation: Brownian

relaxation due to physical rotation of the particles in the carrier fluid, and Néel

relaxation due to the spontaneous reorientation of the particle’s internal magnetic

moment [33], [38]. Since ferrofluid typically consists of particles with a diameter

on the order of 10 nm, and the Néel relaxation time τN is an exponential function

of particle volume [38] while the Brownian relaxation time τB is a linear function

of volume [33], τN is typically much smaller than τB in ferrofluid [39]. Thus, the

effective relaxation time

τeff =
τNτB
τN + τB

(3.1)
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is dominated by the Néel relaxation time [39]. This is generally true for ferrofluids

consisting of magnetite particles on the order of 10 nm [40]. This work focuses

exclusively on magnetite-based fluids, so τN << τB [40], and any shift in reso-

nant frequency due to a magnetic bias field is due primarily to modification of τN .

Magnetic biasing of ferrofluid has the effect of increasing the magnetic resonance

frequency of the fluid through increasing the fluid’s Néel relaxation time, so appli-

cation of a bias field significantly reduces the relative permeability and magnetic

loss tangent at frequencies much lower than the magnetic resonance [33], [41].

3.3 Ferrofluid Measurement Process

A coaxial test method based on the NRW algorithm [30], [31] was designed in

order to characterize ferrofluid in the frequency range of 200 MHz - 5 GHz. The

testing system consists of a coaxial test structure formed from modified N-type thru

connectors from Pasternack (Figures 3.4 and 3.5(a)), in a similar method to the one

detailed in [42]. To provide a variable DC magnetic bias for the fluid while under

test, Helmholtz coils (Figure 3.5(b)) were fabricated to output up to a 74 kA/m

DC magnetic field. This allowed for characterization of the ferrofluid at different

frequencies under a variety of controlled bias conditions. The Helmholtz coils were

wrapped around a 3D printed coil holder in the Brooks coil configuration in order to

maximize their inductance [43]. The coils were separated by a distance greater than

their radii, and thus were not in the ideal Helmholtz configuration. According to a

study of optimum coil spacing in [44], magnetic field uniformity within 1% along

the primary axis of the coils can be obtained even when the coils are separated

by a distance up to 38% greater than the Helmholtz spacing. The fabricated coils

were spaced at a distance 30% greater than their optimal Helmholtz spacing of 35.9
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mm, so they produce less than a 1% variation in field strength between the coils.

The sample holder was filled with ferrofluid, and then the response was measured

on the network analyzer and the S-parameters were saved for each 5 kA/m step of

magnetic bias field strength, up to 74 kA/m. In addition, a maximum bias field of

approximately 134 kA/m was applied to the sample by two large Neodymium bar

magnets. The field produced by the bar magnets varied from 130 kA/m to 138 kA/m

within the sample volume, resulting in a spatial variation of roughly 6%, which was

greater than the variation in the field due to the coils.

Figure 3.4: Side view of coaxial sample holder fabricated from two N-type thru
connectors in a similar setup to the one used in [42]. Ferrofluid is filled through the
filling hole into the region labeled “Sample Volume” between the connectors.

(a) (b)

Figure 3.5: Ferrofluid measurement system: (a) Sample holder composed of two
N-type thru connectors from Pasternack, (b) Sample holder centered between the
Helmholtz coils.
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However, since the measured loss tangent peak in EFH1 occured around 5 GHz at

the maximum bias field strength (Figure 3.8(b)), the uncertainty in measured data

was small at frequencies much lower than the resonance. Several types of ferrofluid

were tested, and all samples came from Ferrotec Corp. [45]. Magnetic fields were

measured with the Allegro™ MicroSystems A1302 Hall-Effect sensor.

3.4 Ferrofluid Measurement Results

3.4.1 Oil-Based Ferrofluid

EFH1 is a well-characterized oil-based ferrofluid with a magnetic particle concen-

tration of 7.9% and a saturation magnetization of 44 mT [46]. Surface plots of

the dielectric and magnetic behavior of EFH1 are shown in Figures 3.6 and 3.7

respectively. Several trends are notable in these plots. Measurements confirm the

expected behavior of ferrofluid under bias predicted by [41] and [33]. As shown in

Figure 3.7(b), the peak in the magnetic loss tangent shifts higher in frequency as

the magnetic bias field strength increases.
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Figure 3.6: Surface plots of measured dielectric effects of EFH1 ferrofluid over a
frequency range of 200 MHz to 5 GHz, and a magnetic bias field strength range of
0 to 74 kA/m: (a) Real relative permittivity, (b) Dielectric loss tangent.
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Figure 3.7: Surface plots of measured magnetic effects of EFH1 ferrofluid over a
frequency range of 200 MHz to 5 GHz, and a magnetic bias field strength range of
0 to 74 kA/m: (a) Real relative permeability, (b) Magnetic loss tangent.

Figure 3.8 shows the magnetic behavior of EFH1 across frequency both at zero

magnetic bias, and at the maximum bias field strength. As shown by Figure 3.8(b),

the magnetic loss tangent is reduced to below 0.05 below 2.5 GHz. Designs using

ferrofluid as a load can exploit this behavior by applying an appropriately strong

permanent bias field to the fluid. In addition, Figure 3.6 shows that, as expected,

the measured dielectric behavior of the fluid is essentially independent of the bias

field strength.

32



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

EFH1 
r
'

r
 Zero Bias

r
  Max Bias

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (GHz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

EFH1 tan
m

tan
m

 Zero Bias

tan
m

 Max Bias

(b)

Figure 3.8: Measured magnetic behavior of EFH1 at zero bias and at a maximum
bias field strength of 134 kA/m: (a) Real relative permeability, (b) Magnetic loss
tangent. At frequencies below 2.5 GHz, the maximum bias field significantly re-
duces the magnetic loss tangent and also reduces the real part of the relative perme-
ability to a near constant value of 1.2.

EMG900 has a magnetic particle concentration of 17.7% and a saturation mag-

netization of 99 mT [47], so it exhibits a stronger attraction to the magnetic bias

field than EFH1. As shown in Figure 3.9, the maximum strength bias field also

increases the magnetic resonant frequency and reduces the loss tangent of EMG900

at lower frequencies. However, EMG900 also exhibits a higher loss tangent than

EFH1, making it less efficient as a load. Ultimately, the choice of ferrofluid particle

concentration is dependent on system requirements. For high efficiency designs, a

low concentration is desirable in order to minimize loss. In some cases, certainty

of fluid placement may be more important than high efficiency, so a higher parti-

cle concentration may be more advantageous. These results indicate that at maxi-

mum magnetic bias strength, both EFH1 and EMG900 can be modeled as movable

dielectrics with a weak magnetic response at frequencies much lower than their

magnetic resonances, simplifying the design and analysis process of devices loaded

with oil-based ferrofluid.
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Figure 3.9: Measured magnetic behavior of EMG900 at zero bias and at a maxi-
mum bias field strength of 134 kA/m: (a) Real relative permeability, (b) Magnetic
loss tangent. At frequencies below 2.5 GHz, the maximum bias field significantly
reduces the magnetic loss tangent and also reduces the real part of the relative per-
meability to a near constant value of 1.3.

3.4.2 Water-Based Ferrofluid

A water-based ferrofluid, EMG700 [48], was also tested. The dielectric constant of

water-based ferrofluids is much higher than for oil-based fluids, meaning that the

fluid will cause a much greater change in propagation velocity and wave impedance

and potentially offer a larger tunable range. However, even under a bias strength

of 134 kA/m, the measured dielectric loss tangent is far too high for the fluid to be

useful as a low-loss load at microwave frequencies (Figure 3.10(b)). Additionally,

water-based ferrofluids are more likely to form aggregates over time than oil-based

fluids [34]. Due to their higher loss and lower stability, water-based ferrofluids were

not incorporated into tunable designs in this work.
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Figure 3.10: Measured electromagnetic properties of EMG700 at the maximum bias
field strength of 134 kA/m: (a) Relative permittivity and permeability, (b) Dielectric
and magnetic loss tangents.

3.5 Conclusions

EFH1 ferrofluid shows potential as a low-loss load at microwave frequencies in the

UHF range when under a strong magnetic bias. Analysis of devices using ferrofluid

as a load under strong magnetic bias is simplified because the relative permeability

of the fluid is significantly reduced by the bias field. As long as the ferrofluid

is biased with a strong enough field and limited to operation below a frequency

threshold, it behaves as a dielectric with a weak magnetic response dependent on

the bias strength and the fluid’s particle concentration. As shown in Figures 3.8 and

3.9, EMG900 has a higher loss tangent than EFH1 under an equivalent bias, which

agrees with results from [49]. EFH1 has a lower particle concentration, but is still

attracted strongly enough to a bias field to be repositioned; thus, EFH1 is a prime

candidate for this tuning method because of its lower particle concentration and its

oil base. The main trade-off in the design of ferrofluid-tuned devices is between

efficiency and predictability. Too much reduction in particle concentration results

in less attraction between the ferrofluid and the bias field, increasing the uncertainty
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of the fluid’s position. Since the fluid is modeled as a simple block of material in

transmission line analysis (Section 4.2), any uncertainty in fluid placement reduces

its accuracy.

EFH1 was chosen as a reasonable trade-off between mechanical mobility, load-

ing effect, and loss. Below approximately 2.5 GHz, EFH1 has a magnetic loss

tangent of approximately 0.05 or lower, and a dielectric loss tangent below 0.025

under a magnetic bias of 134 kA/m or higher. In the same frequency range, its real

relative permeability is a near constant 1.2, and its dielectric constant is approxi-

mately 3. For the rest of this work, EFH1 is used exclusively as the ferrofluid load.

The electromagnetic properties used in modeling and simulation are given by the

measured properties at maximum bias shown in Figure 3.11.
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Figure 3.11: Measured electromagnetic properties of EFH1 at the maximum bias
field strength of 134 kA/m: (a) Relative permittivity and permeability, (b) Dielectric
and magnetic loss tangents.
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Chapter 4

Tunable Microstrip Stub Using Repositionable Ferrofluid Load

Microstrip circuits are ubiquitous in the world of RF engineering because of their

ease of fabrication and planar nature [3]. A tunable microstrip element is easily

integrated with existing microstrip circuitry, and with planar antennas like patches

and slots. Loading ferrofluid in the substrate of a microstrip element ensures high

electrical isolation, because the ferrofluid is repositioned with a magnet on the other

side of the ground plane. The tunable element acts as a continuously tunable capac-

itive reactance when the microstrip length is less than or equal to λ
4

[24]. Tuning is

accomplished through physical repositioning of a ferrofluid load, resulting in mod-

ification of the substrate properties of the stub and the microstrip’s characteristic

impedance and propagation constant. This complicates device fabrication some-

what because the load must be placed in a channel in the substrate in order to have

a large impact on the electric fields of a microstrip circuit. However, the increasing

prevalence of 3D printers with the ability to print multiple materials will facilitate

easy fabrication of these tunable devices in the near future [50]. Some implications

of 3D printer technology will be discussed in more depth in the final chapter.

Ferrofluid allows for tuning of a microstrip stub element when loaded in the

substrate beneath the microstrip [51]. This design can be loaded onto several types

of antennas as shown in Chapters 5 and 6, resulting in tunability of the antennas
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through modification of the stubs. The electric fields in a microstrip transmission

line are mostly confined to the substrate region between the strip and the ground

plane, so modification of the substrate will have a large effect on the fields. The ge-

ometry of a microstrip line allows for easy placement and confinement of fluid in a

channel, which can be repositioned through magnetic actuation from the other side

of the ground plane. This has the added benefit of the tuning system being electri-

cally isolated from the RF transmission line due to the ground plane. When loaded

properly onto an antenna structure, the stub acts as a reactive load, meaning that

the radiating fields are not directly affected by the ferrofluid. Thus, antennas loaded

with ferrofluid in this manner have the potential to perform at higher efficiency than

conventional magnetically-tuned antennas where the entire substrate is a magnetic

material. Finally, the design is planar, and integrates easily with planar and confor-

mal antennas such as patches and slots. The tunable microstrip stub was originally

designed as a two port filter element in order to simplify testing and analysis of

the input impedance characteristics of the stub. Due to the non-radiating nature of

the structure and the ability to easily measure energy transmission through the sys-

tem, testing was done solely on a network analyzer without the need for anechoic

chamber testing.

4.1 Design and Fabrication

The microstrip element is a tunable stub designed to operate as a first order But-

terworth lowpass filter, so the stub impedance is made to be half of the 50 Ω feed

impedance [3]. Figures 4.1 and 4.2 show the design which consists of a single,

tapered microstrip stub with a characteristic impedance of 25 Ω centered between

the ports. The stub design impedance of 25 Ω requires a relatively large stub width
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of 10.69 mm when placed onto a 70 mil Rogers RO4350B™ substrate, so the extra

capacitance due to the width of the stub is mitigated with the addition of tapers at

the stub attachment point as suggested by [52]. The filter element is fabricated us-

ing two substrate layers as shown in Figure 4.4. The bottom layer is 60 mil thick

and is composed of the ground plane and a channel cut using a milling machine to

the width of the stub, twice the stub length, and a depth of 50 mils. Using Devcon 5

Minute® epoxy, the bottom layer is bonded to a 10 mil thick top layer, onto which

the microstrip design is etched using photolithography.

Figure 4.1: Top view of the tunable microstrip stub element loaded with a movable
ferrofluid load.

Figure 4.2: Side view of the tunable microstrip stub element. The fluid channel
is “sandwiched” between two 10 mil layers of RO4350B™ due to the fabrication
process. The fluid is actuated with a Neodymium bias magnet from the other side
of the ground plane.
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Following bonding, the 0.588 ml volume channel is filled halfway with 0.294 ml of

ferrofluid and the filling hole is sealed off with a drop of epoxy. EFH1 was chosen

as the loading ferrofluid because of its relatively low loss up to 2.5 GHz when under

a 134 kA/m bias (Section 3.5).

A stack of five cylindrical Neodymium magnets is used to tune the microstrip

stub element. Each magnet has a 12 mm diameter and 2 mm thickness, so the to-

tal stack height is 10 mm (Figure 4.3). The channel has a width of 10.7 mm, so

the 12 mm diameter magnet is able to fully bias the entire width of the channel

without being unnecessarily large. A cylindrical magnet has a well-characterized

field, making determination of the magnet’s magnetization vector from the mea-

sured strength at the magnet face a relatively straightforward task. Measurement

with the A1302 sensor yielded a value of approximately 138 kA/m for a single 2

mm thick disk magnet when touching the face of the sensor to the center of the

magnet. At a distance of 1.54 mm (60 mils) normal to the face of the magnet and

centered on the z axis, the field strength is reduced to 106 kA/m. At the edge of the

magnet normal to the face at the same distance, the measured field strength was 90

kA/m. Since the edges of the magnet overlap the edge of the ferrofluid channel, and

the farthest distance to the channel along the z axis is 60 mils (see Figure 4.2), a

single disk magnet applies a field strength of at least 90 kA/m to the entire channel

volume normal to the face of the magnet.

Figure 4.3: Cylindrical bias magnet dimensions and magnetic field orientation.
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In order to increase the bias field strength, the cylindrical magnets can be stacked.

The A1302 sensor saturates at 150 kA/m, so higher field strengths must be mea-

sured at a distance from the stack of magnets. Theoretical field strengths can also

be calculated with measurement of a single magnet and solution of

~H = âz
M0

2

[
z√

z2 + b2
− z − L√

(z − L)2 + b2

]
, (4.1)

for M0, as shown in [24]. Solving (4.1) with the measurement for a single cylindri-

cal magnet results in M0 = 8.55x105. Thus, a stack of five cylindrical magnets has

a theoretical maximum field intensity of 198 kA/m at a distance of 120 mils from

the face of the stack along the z axis. When measured at a distance of 120 mils

from the face, a stack of five magnets resulted in a field intensity of 149 kA/m. The

measured value is lower because the discontinuities between the magnets reduce the

overall field intensity [24]. At the edge, the measured intensity was 90 kA/m, and

this increased to 146 kA/m at a distance of 60 mils. The theoretical field intensity

at the center of the face at a distance of 60 mils is calculated to be 277 kA/m, but

as shown by the results at 120 mils, the actual field intensity is roughly 25% less

than its theoretical value. Therefore, the stack of five magnets has a field intensity

between 146 kA/m at the edge and up to ≈ 210 kA/m at the center of its face at a

distance of 60 mils. Consequently, the fluid above the magnet is biased to a field

strength of greater than 134 kA/m and can be modeled with the properties in Figure

3.11.

The fluid tracks the bias magnet placement, and gravity does not have a signifi-

cant influence on the fluid as confirmed with 3D printed channels with dimensions

approximately equal to the channel cut into the substrate shown in Figure 4.5. The

fluid leaves traces on the inner surface of the channel which could be mitigated with
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Figure 4.4: Depiction of fabricated layers. A 50 mil depth channel is milled out of
the 60 mil substrate, and the microstrip design is etched onto the 10 mil substrate.
The stub is aligned with the channel and the layers are bonded together with Devcon
5 Minute® epoxy. The channel is then filled halfway by volume with ferrofluid.

an oleophobic coating in future designs. This was attempted by coating the plex-

iglass with Tekon®B Protective Treatment, but no reduction in fluid tracing was

observed. Future designs should incorporate a coating in the channel to reduce this

effect - one potential solution is a “PDMS-silica nanocomposite coating” which ex-

hibits both hydrophobic and oleophobic properties [53]. Coating the inside of the

channel with this material would improve performance by reducing the loss associ-

ated with the coating of ferrofluid left on the inner faces of the channel, since this

fluid layer is unbiased and therefore lossy. It would also improve predictability and

repeatability, and boost the accuracy of the simple block model currently used to

model the ferrofluid under bias (Section 4.2). PDMS coatings are already used in

tunable microfluidic devices [17], [54].
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(a) (b)

Figure 4.5: 3D printed channel of approximately the same dimensions as the milled
substrate channel showing fluid migration over a period of five minutes. (a) Imme-
diately after moving the magnet to the right side of the channel, (b) Five minutes
after moving the magnet to the right side of the channel.

4.2 Transmission Line Model

The circuit model of the filter element is shown in Figure 4.6. A bias magnet under-

neath the ground plane is used to localize the ferrofluid and move it along the length

of the channel, changing the properties of the substrate beneath the stub and tuning

the filter element. Due to the fluid’s strong attraction to the permanent magnet, the

fluid is modeled as a movable block material “sandwiched” between two 10 mil

substrate layers (see Fig. 4.2). The top and bottom substrate layers are included in

the calculation of the bulk properties of the substrate under the microstrip for the air

and ferrofluid sections through application of the Maxwell Garnett mixing formula

[55], where the two 10 mil RO4350B™ layers are approximated as inclusions in the

70 mil thick matrix medium of either air or ferrofluid (depending on the section)

with a mixing ratio of 2
7
.
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Figure 4.6: Circuit model of the stub as two series sections of transmission line

loaded with a open circuit fringing capacitance Coc. Modification of la and lf

(lstub = la + lf ) models movement of the ferrofluid block.

The Maxwell Garnett formula is designed to model spherical inclusions in a

matrix medium [55], but it has been found to be a good approximation of the bulk

relative permittivity and permeability for the three-layer substrate in spite of the

planar arrangement of the medium. An advantage of using this formula is that

it approximates the effective loss of the medium as well, and is simpler and less

computationally intensive than more involved methods for dealing with multilayer

substrates [55]. The bulk dielectric constant of the substrate is then used to find

the effective permittivity for the microstrip with formulas from [56]. The relative

permeability of the fluid is close to unity, so the propagating wave will still ex-

hibit quasi-TEM behavior as it would with a pure dielectric substrate [57]. Thus,

the effective relative permeability may be easily derived from the effective relative

permittivity as shown by [57] with the simple relation

µeff (w/h, µ) =
1

εeff (w/h, µ−1)
. (4.2)

44



Microstrip impedance Zf for the ferrofluid section is calculated using

Zf = Zc

√
µeff
εeff

(4.3)

from [57], where εeff is determined by formulas given in [56] and Zc is the char-

acteristic impedance for an identical microstrip with a vacuum substrate according

to [56]. Propagation constants γa and γf are determined by combination of the

dielectric and magnetic loss [57], and conductor loss [3] into a single attenuation

constant α, which is added to wavenumber β to form the complex propagation con-

stant γ = α + jβ for each section of the stub. The equivalent line length loc due to

the fringing capacitance Coc of the microstrip is calculated with the method in [58]

using the effective permittivity of the ferrofluid section. Movement of the ferrofluid

is modeled by increasing the physical length of the air section la and decreasing the

physical length of the ferrofluid section lf by an equal amount, i.e. la + lf = lstub.

As the channel is exactly twice the length of the stub, the maximum value for la is

equal to lstub. At this offset value, the substrate beneath the microstrip is entirely

loaded with air, but the fringing fields at the end are still located in the ferrofluid

load. Thus, loc is still calculated with the effective permittivity of the ferrofluid sub-

strate even at maximum bias offset. This is an approximation, as the method given

by [58] assumes a homogeneous substrate around the microstrip discontinuity; thus,

the accuracy of the determined loc will be highest in the middle of the tunable range,

since the microstrip and the fringing fields will be nearly entirely contained within

the ferrofluid-loaded substrate.

45



The air-loaded substrate section of the stub is modeled as

ABCDa =

 cosh(γala) Zasinh(γala)

1
Za

sinh(γala) cosh(γala)

 , (4.4)

and the ferrofluid-loaded section is modeled as

ABCDf =

 cosh(γf (lf + loc)) Zfsinh(γf (lf + loc))

1
Zf

sinh(γf (lf + loc)) cosh(γf (lf + loc))

 (4.5)

which is a standard representation of a lossy transmission line in [3]. The sections

are combined into a single matrix by multiplying to represent the cascade where

ABCDstub = ABCDa ∗ ABCDf , which represents the transmission line char-

acteristics for the entire stub loaded with the fringing capacitance. From standard

network theory in [3], ABCD parameters can be used to find the input impedance,

Zin, for a loaded 2-port network, which simplifies to

Zin =
ABCDstub(1, 1)

ABCDstub(2, 1)
(4.6)

for an open circuit end load impedance [3]. The overall system response of the two

port network is determined by centering the shunt input admittance 1
Zin

between the

50 Ω feed lines connecting the stub to the ports.

4.3 Results

As shown by Figures 4.7, the filter with the reconfigurable stub element has a mea-

sured tunable range of 640 MHz, resulting in a fractional tunable bandwidth of 29%.

Figure 4.7 shows that measured attenuation in the stopband remains below -30 dB
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for the entire tunable range. One notable result is that a bias magnet offset of 5

mm actually results in a lower tuned frequency than an offset of 0 mm (Figure 4.7).

This is likely due to the bias magnet’s diameter being less than the length of the fluid

block, resulting in uncertainty in the spatial distribution of the fluid in the channel

as the bias magnet nears the channel ends. At the channel ends, the bias field will

not be centered on the fluid, potentially changing the shape of the fluid and reduc-

ing the accuracy of the “block” model. Thus, there is a degree of uncertainty in the

exact value of la for the measured data due because the bias magnet diameter is 12

mm while the stub length is 21.67 mm; however, the trend of operating frequency

increasing with bias magnet offset is readily apparent and repeatable. Another po-

tential explanation is that the volume of fluid actually filled is not exactly half of

the channel volume, and is in fact slightly less. This would load the stub more at a

small offset than at zero offset, since the fringing fields would be loaded with fluid

at a slight offset but loaded with air at zero offset. Antenna designs presented in

Chapter 5 and 6 implementing this tuning method incorporate fluid channels with a

length greater than twice the stub length in order to allow for some tolerance in the

volume of fluid filled, and improve fluid-placement predictability.

A comparison between the transmission line model, simulation in HFSS [59],

and measurement at the ends of the tunable range is shown in Figure 4.8. The

calculated and simulated results use the measured properties of EFH1 under the

maximum bias (Figure 3.11). The transmission line model exhibits a frequency shift

in the predicted insertion loss at the high end of the tuning range (Figure 4.8(a)),

which is most likely due to a higher-order electromagnetic effect that the model

is unable to capture. The shift indicates that the transmission line model is less

accurate when predicting the loading effects of the air-filled section of the stub,

potentially meaning that the Maxwell-Garnett approximation is not as accurate for
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Figure 4.7: Measurement of the microstrip stub filter element as the bias magnet
edge is placed at 5 mm increments from the stub attachment point: (a) Insertion
loss, (b) Return loss. The stub has a tunable fractional bandwidth of 29%.

the air section as it is for the ferrofluid section. This behavior is not unexpected,

as air exhibits a much greater difference in permittivity from Rogers RO4350B™

substrate than EFH1. The transmission line model also predicts significantly lower

insertion loss at the high end of the tunable range, which could be due to the model

not completely capturing the loss associated with the fringing fields at the end of

the stub. Overall, strong agreement is seen between the transmission line model,

simulation, and measurements.

4.3.1 Tuning at a Distance

In order to tune the stub element at a distance, an external magnetic bias field is

applied. Figure 4.10 shows the back side of the filter element with a stack of five

cylindrical Neodymium disk magnets sitting behind the ferrofluid. The bias mag-

nets are attracted to the ferrofluid, and remain in place regardless of the orientation

of the stub. Repositioning the magnets moves the fluid beneath the stub, which

tunes frequency response of the filter element. The magnets can be repositioned by
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Figure 4.8: Comparison of the calculated, simulated, and measured filter element
response at the ends of the tunable range (la = 0 mm and la = lstub): (a) Insertion
loss, (b) Return loss. The transmission line model exhibits a slight frequency shift
from the measured and simulated results at the high end of the tunable range.

directly moving the magnets if the ground plane of the device is accessible. Oth-

erwise, they can be repositioned at a distance with the assistance of a 3D printed

plastic structure to align the permanent bias magnets along the channel as shown

in Figure 4.11, and an external biasing field (which in its simplest form may be

another permanent magnet). Figure 4.9 shows a cross-sectional view of the setup.
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Figure 4.9: Diagram of repositionable ferrofluid load. Upon application of an ex-

ternal positioning field, the local bias is pulled away from the fluid such that it can

move along the length of the plastic guide. After removal of the positioning field,

the local magnet is again attracted to the fluid, and remains in place due to the

attraction between the magnet and the fluid.

Figure 4.10: Uncovered tunable stub element ground plane showing permanent bias
magnets in place. The stub is tunable through manual movement of the magnets if
the ground plane is physically accessible.
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(a) (b)

Figure 4.11: 3D printed permanent magnet guide: (a) Upside down view, (b) After
covering the local bias magnets. Securing the plastic magnet guide to the ground
plane allows for tuning at a distance through application of an external positioning
field to lift the internal magnets and move them. This is possible at distances up to
28 mm away from the container edge.

4.3.2 Repeatability of Tuning

EFH1 exhibits an attractive force to a magnetic bias, which increases the friction

between the bias magnet and the ground plane. This friction is what makes the sys-

tem resistant to detuning due to gravity or movement. As long as the system does

not experience an excessive amount of force, a stack of five cylindrical bias magnets

is sufficient to remain in place regardless of orientation of the device. Figure 4.12

demonstrates a comparison of the filter element’s response at different orientations.

As the data shows, the magnetic bias field is strong enough to oppose the effects

of gravity such that fluid remains localized around the bias. When the stub is ori-

ented such that gravity causes the fluid to flow out from underneath, the response is

identical to the stub biased in the same configuration and oriented such that gravity

exerts a force opposing the fluid placement.
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Figure 4.12: Comparison of stub response with and without a magnetic bias field

at different orientations. No change in insertion loss is noticeable for different

orientations of the device.

In order to test how well device remains tuned to a specific frequency, the stub

was tuned to a frequency of 2.05 GHz and left configured for a period of three

weeks. The orientation was changed occasionally as well to test the effect of gravity.

The response was measured and recorded periodically, and results are shown in

Figure 4.13. The insertion loss null demonstrates a variation of approximately 30

MHz and 4 dB over time. As shown in Figure 4.13(b), the null has a slightly lower

value with each measurement, which could be explained by migration of the thin

layer of fluid left coating the inside of the channel after the initial tuning, such as

seen in Figure 4.5. Some of this variation may be attributable to measurement error

as well.
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Figure 4.13: Variation in the insertion loss of the tunable stub element biased for
an extended period of time and measured periodically: (a) Wideband response, (b)
Close-up of the insertion loss null. A slight variation in tuned frequency over time
is noticeable, and could be due to migration of a thin layer of fluid coating the
channel.

One important consideration is the effect of a bias field remaining applied to the

fluid for an extended period of time. According to [40], magnetite-based ferrofluids

biased at a field strength of 90 kA/m have an upper limit on the stable particle

diameter of 5.3 nm. As EFH1 has a nominal particle size of 10 nm and the bias

field strengths used are in the range of 146 kA/m and higher, the particles may tend

to agglomerate over a long period time. Thus, further work must be done to test

ferrofluid stability over time, and device tuning repeatability and longevity.

4.4 Conclusions

The input impedance to microstrip stub element can be tuned by repositioning a

ferrofluid loaded in a channel in the substrate. The geometry of a microstrip line

ensures that the electric fields largely remain in the substrate between the strip and

the ground plane, so loading this volume with a movable load like ferrofluid has a

significant impact on the overall electromagnetic behavior of the stub. Movement

53



of the fluid changes the relative filling fractions of air and fluid in the substrate

volume, resulting in a tuning effect on the input impedance of the stub. The tun-

able microstrip element is easily loaded onto planar devices like microstrip filters

and patch and slot antennas, and ensures electrical isolation between the RF system

and the tuning system. Compared to conventional ferrite tuning methods, ferrofluid

actuation is superior in that it can be done at a distance, and solely with perma-

nent magnets. Ferrites exhibit a continuous change in permeability as the bias field

strength is changed, but a continuous change in bias field strength requires coils and

a controlled current source, significantly increasing the power draw and complexity

of the system. Tuning through repositioning of permanent magnets, on the other

hand, only requires an external field when repositioning the magnets, and thus re-

quires much less power. Future designs utilizing this loading element are expedited

by development of a computationally efficient transmission line model that shows

strong agreement with measured and simulated results up to a frequency of 3 GHz.
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Chapter 5

Reconfigurable Patch Antenna Using Repositionable Ferrofluid

Loads

This chapter demonstrates several patch antenna designs utilizing variants of the

tunable microstrip stub presented in Chapter 4. Two variants of a stub-loaded patch

antenna are designed and tested, along with an improved patch antenna designed to

overcome the limitations of the first two versions. In addition to symmetric tuning,

the improved patch antenna is covered with two different superstrates, and compen-

sation for the loading of the superstrates is demonstrated through asymmetric tuning

of the stubs. The antennas are designed to be tunable across both frequency and in-

put impedance, making them adaptable to a large range of applications. Stub-loaded

patch antenna design ideas are proposed by [60]–[62]. Many of these designs are

focused on using the stubs to generate dual band operation of the patch antenna

with monolithic stubs, indicating that loading a patch antenna with microstrip stubs

has an impact on the operating frequency of the antenna. This is the impetus for

a stub-loaded patch antenna (Figure 5.1) based on the tunable microstrip element

presented in Chapter 4.

The first patch antenna design using the candidate loading structure is a patch

antenna loaded at each end with a single tunable stub. This symmetric layout al-
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Figure 5.1: HFSS model of the stub-loaded patch antenna design. The coaxial probe
feed point is inset 9 mm from the left edge of the patch. Each stub has a width of 2
mm and a length of 18 mm.

lows for both frequency and impedance tunability. The second design is loaded

with three stubs at each end of the patch in an attempt to improve the tunable band-

width, but measured results show low efficiency and unpredictable performance.

The improved design utilizes smaller fluid channels than the first two designs in

order to reduce fluid loss, and offsets the channel edges from the patch edge by a

small distance to reduce interaction between the radiating fields and the ferrofluid.

5.1 Transmission Line Model

Operation of the patch antenna is modeled by adding the stub input admittance

Yl = 1
Zin

from the tunable stub model in Figure 4.6 to each slot admittance Ys in

Pues and Van de Capelle’s patch antenna transmission line model (Figure 5.2) [63].

Load admittances Yl1 and Yl2 represent the stub input admittances at the edges of

the patch. The stubs can be tuned independently, so Yl1 is equal to Yl2 only during

symmetric tuning of the stubs. The stub width has a reducing effect on the radiating
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slot admittance Ys, which is accounted for by the ratio

r = 1− Wm

We

, (5.1)

whereWm is the width of the stub andWe is the effective width of the patch antenna

as suggested by [63]. For cases where the patch is loaded with multiple stubs at each

end, Wm is simply multiplied by the number of stubs; e.g., the patch loaded with

three stubs of width 2 mm each will have Wm = 6 mm (Section 5.3). This is an

approximation, and its accuracy is reduced as the number of stubs is increased, as

effects like coupling between the loading stubs will become more pronounced.

Figure 5.2: Pues and Van de Capelle’s transmission line model for a rectangular

patch antenna [63] modified to include the stub input admittances Yl1 and Yl2 loaded

at each end of the patch.

According to Pues and Van de Capelle [63], the input admittance to an unloaded

rectangular patch antenna probe-fed at V3 (see Figure 5.2) is

Yin = 2Yc∗[
Yc

2 + Ys
2 − Ym2 + 2YsYccoth(γL)− 2YmYccsch(γL)

(Yc
2 + Ys

2 − Ym2)coth(γL) + (Yc
2 − Ys2 + Ym

2)cosh(2γ∆)csch(γL) + 2YsYc

]
(5.2)
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where

∆ =

∣∣∣∣L2 − L1

∣∣∣∣ =

∣∣∣∣L2 − (L− L1)

∣∣∣∣ (5.3)

and L1 is the offset distance of the feed from the patch [63]. Yc and γ are the

characteristic admittance and propagation constant of the patch, L is the length of

the patch, and Ym is the mutual admittance between the radiating fields at the ends

of the patch [63]. Loading the patch antenna with stubs effectively changes the

admittance of the radiating slot, Ys, so the stub input admittances Yl1 and Yl2 are

added to Ys in (5.2) to account for the loading of the stubs. Return loss in dB is

defined as

RL = −20log10|Γ| (5.4)

where

Γ =
1− Z0Yin
1 + Z0Yin

(5.5)

for a reference impedance Z0 and the antenna input admittance Yin defined in (5.2)

[3]. The optimization process calculates the tuning range by finding the tunable

fractional bandwidth with the formula

BW =
fh − fl√
fhfl

(5.6)

where fh is determined by the highest tunable frequency and fl is determined by

the lowest tunable frequency. In order to optimize the tunable range of the antenna,

a simple optimization algorithm based on the transmission line model is carried out

in MATLAB®. The algorithm optimizes the stub lengths and widths and the width

of the patch in order to maximize the tunable fractional bandwidth, where fh and fl

are required to have RL values of 10 dB or greater as determined by (5.4).
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5.2 Patch Antenna End-Loaded with Single Stub

5.2.1 Design

In order to ensure operation in a frequency range where fluid loss is low, the patch

antenna is designed to have a tunable range below 2.5 GHz. Thus, the optimization

process was constrained to a patch length of at least 32 mm. The algorithm returned

dimensions for the patch of W = 50 mm and L = 32 mm, and the stubs were

optimized to have a width of 2 mm and a length of 18 mm (see Fig. 5.1). In

contrast to the stub loading element design in Chapter 4, the channel width must be

larger than the width of the stubs in order to more completely capture the electric

fields, because the smaller stub width results in a smaller effective permittivity,

which reduces the effective filling factor of the fields

q =
εeff − 1

εr − 1
, (5.7)

according to [64]. As shown by an HFSS simulation of the antenna loaded with

2 mm wide stubs over a varying channel width (Figure 5.14), negligible impact is

noticed on the tunable bandwidth as long as the channel width is kept above 4 mm.

In order to retain as much bandwidth as possible, the channel width was chosen to

be 7.3 mm.
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Some pictures of the patch antenna fabrication process are shown in Figure 5.3.

Fabrication of the antenna is done in a similar manner to the process outlined in

Section 4.1. The antenna is fabricated using two RO4350B™ substrates of 60 mil

and 10 mil thickness. The patch design is etched on the top layer, and the channel

outlines and the feed location are etched onto the bottom layer. The bottom layer

channel outlines are milled out, as shown in Figure 5.3(b), and a hole is drilled

through the substrate at the feed point. The channels are milled to a nominal depth

of 50 mils.

(a) (b)

(c) (d)

Figure 5.3: Fabrication pictures of the single stub-loaded patch antenna: (a) 10 mil
substrate layer with antenna design, (b) Milling of the 60 mil bottom substrate layer,
(c) Bottom substrate layer after channel milling, (d) Filling of the channels with a
syringe.
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The two layers are then aligned, and bonded together with a thin layer of Devcon

5 Minute® epoxy. After the epoxy is cured, the feed hole is drilled through the top

layer, and the SMA connector is soldered to the patch and the ground plane. Finally,

the channels are each filled halfway by volume with EFH1 ferrofluid, and sealed

with a drop of epoxy. In order to reduce the uncertainty of fluid placement near

the channel ends, the channels are designed to have a length 5 mm longer than the

stub length, and the fluid is filled to a volume such that it extends 2.5 mm past the

stub end at zero offset placement (Figure 5.4(a)). Extension of the channel length

beyond twice the stub length results in a larger tunable range because the fluid loads

the fringing fields when la = 0 mm, and the fringing fields are unloaded when the

fluid is at the maximum offset distance (Figure 5.4(b)).

(a) (b)

Figure 5.4: Cross-sectional diagram of fluid placement: (a) At minimum offset, (b)
At maximum offset. Increasing the channel length ensures that the fluid loads the
stub’s fringing fields at minimum offset, and does not load the fringing fields at
maximum offset.

5.2.2 Results

The measured tunable frequency range of the antenna is shown in Figure 5.5(a),

and a comparison of calculated, simulated, and measured values at the high and low

ends of the tunable range is shown in Figure 5.5(b). As with the isolated microstrip

element presented in Chapter 4, the ‘mm’ offset values in the legend correspond to
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the measured offset distance of edge of the bias magnet from the end of the channel

closest to the stub attachment point. The measured tunable bandwidth of 9.9% is

marginally lower than the simulated bandwidth of 14.8%. The ferrofluid channels

were milled to a nominal depth of 50 mils, but the results show that the channel

depth was less than 50 mils in reality. This reduced channel depth was attributed

to human error during manual milling of the channel. A reduction in channel depth

explains the reduced ability to tune to higher frequencies because the air pocket

formed underneath the stub has less effect on the bulk substrate properties in the

channel. Measurements agree relatively well with the simulation at the low end of

the tunable range even with a reduced channel depth because the ferrofluid has a

dielectric constant close to that of the substrate.
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Figure 5.5: Single-stub patch antenna return loss at various bias magnet offset
placements as the stubs are tuned symmetrically: (a) Measured return loss at sev-
eral offsets, (b) Comparison of calculated, simulated, and measured return loss of
the patch antenna at the end points of the tunable range. The measured tunable
fractional bandwidth is 9.9%.

Figure 5.6 shows a mismatch between the E-plane and H-plane measurements

of realized gain at broadside. This is likely due to the changing orientation of the

antenna during testing (see Figure 5.7). When measuring the H-plane, the stubs are

aligned such that any unbiased fluid under the effect of gravity will only load the
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Figure 5.6: Comparison of realized gain measurements and simulations in the E-
plane and H-plane: (a) Realized gain at the lowest tunable frequency, (b) Realized
gain at the highest tunable frequency.

end of one of the stubs. During E-plane measurements, the sideways orientation

of the antenna increases the likelihood that any unbiased fluid will affect the ends

of both stubs, reducing the efficiency at this orientation because unbiased fluid ex-

hibits a much higher magnetic loss tangent. Furthermore, Figure 5.6 demonstrates

measured realized gain at broadside of up to 3 dB less than simulated. This dis-

crepancy is likely due to incomplete biasing of the ferrofluid in the channels, which

results in a higher loss tangent for the fluid and lowered antenna efficiency. This

effect was investigated further with the improved patch antenna design in Section

5.4. Simulation of a thin layer of unbiased ferrofluid coating the channel results in

a reduction in gain on the order of 2 dB, which helps to explain the lower measured

gain of the patch.
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(a) (b)

Figure 5.7: Pictures of antenna orientation during E-plane and H-plane measure-
ments: (a) E-plane orientation, (b) H-plane orientation. Antenna orientation may
have an effect on any unbiased fluid remaining in the channel. E-plane measure-
ments are more likely to suffer from reduced gain if the channels contain unbiased
fluid because both stubs will be affected.
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Figure 5.8: Radiation efficiency for the one stub version of the patch during sym-
metric tuning. Simulated efficiency is above 65% for the entire tunable range, and
increases marginally as a function of tuned frequency.
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5.3 Patch Antenna End-Loaded with Three Stubs

5.3.1 Design

The patch antenna may also be loaded with multiple stubs at each end. An antenna

was designed with three stubs loading each end of the patch (Figure 5.9). The

stubs are spaced by 1
3

of the patch width, as suggested by the authors of [9]. The

same optimization procedure was carried out as with the single stub version of the

patch, the only difference being that Wm (5.1) was multiplied by three in order to

account for the increased number of stubs. Computations with the transmission line

model and simulation in HFSS of this version show an improvement on the tunable

fractional bandwidth of the single stub antenna. However, real world biasing of the

increased amount of fluid requires a much larger and stronger biasing field. The

width of the fluid channel must be increased to the 49 mm width of the patch in

order to properly load all of the stubs. This results in an increase in fluid volume

up to 1.08 cc when the 50 mil channel is filled such that fluid reaches out to the

end of the stubs. In practice, as with the first fabrication of the single stub patch,

the channels did not reach a depth of 50 mil but were actually closer to 35 mil on

average. Nevertheless, the fluid volume was still 0.76 cc which was significantly

more fluid than required for the single stub version (0.12 cc).
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Figure 5.9: Model of patch antenna loaded with three stubs at each end. Each stub
is 2 mm wide and 17.4 mm long. The coaxial feed point is inset 5.5 mm from patch
edge.

5.3.2 Results

The antenna was tuned with two large bar magnets with dimensions of 3 x 0.5 x

0.25 inches. Even though the bias magnet width of 12.7 mm was not as wide as the

19.9 mm long fluid block, the bias magnet fields were strong enough to interfere

with each other, making biasing to lower offsets difficult. Depending on their ori-

entation, the magnets either attracted or repulsed each other when the antenna was

symmetrically tuned to offset values of 10 mm or lower.

Figure 5.10(a) shows the measured return loss of the antenna as the stubs are

tuned symmetrically. Measurements show that performance of the three stub patch

antenna is much less predictable than the single stub design. Figure 5.10(b) shows

a comparison of the calculated, simulated, and measured return loss at the low and

high ends of the tunable range. Both simulation in HFSS and the transmission line

model of the antenna predict a much larger tuning range than measured. The mea-

sured tunable fractional bandwidth is only 3.4%, compared to a simulated fractional

bandwidth of 25.9%. The discrepancy here is likely due to several factors: Since the
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Figure 5.10: Three-stub patch antenna return loss at various bias magnet offset
placements as the stubs are tuned symmetrically: (a) Measured return loss at several
offsets, (b) Comparison of calculated, simulated, and measured return loss of the
patch antenna at the end points of the tunable range. The three stub version has a
lower measured tunable bandwidth of 3.4%, and is less predictable.

ferrofluid channel is the entire width of the patch, at low offset values the fluid sig-

nificantly loads the fringing fields along the entire width of the patch, changing the

distribution of the radiating fringing fields along the patch edges. Furthermore, the

large amount of fluid likely results in incomplete biasing by the permanent magnetic

field, increasing the fluid loss and reducing the efficiency of the antenna. Finally,

the interference between the biasing fields occurring at small offsets likely results

in unpredictable fluid distributions. Performance could potentially be improved by

dedicating individual channels to each stub, but this also would increase the diffi-

culty of fabrication, and each channel would likely be filled with a slightly different

volume of fluid, resulting in unpredictability. Furthermore, even with individual

channels, large bias fields would still be required to actuate the fluid, resulting in

either attraction or repulsion between the bias fields and difficulty in tuning to con-

figurations where the fluid offset is low.
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Figure 5.11: Radiation efficiency computed by HFSS. Efficiency values are com-
parable to the single stub case (Figure 5.8).

5.4 Improved End-Loaded Patch Antenna

5.4.1 Design

Reduction in ferrofluid volume is desirable, since as determined in Section 3.3,

even under a strong permanent magnetic bias, EFH1 exhibits a non-negligible loss

tangent of up to 0.05 below 2.5 GHz, which is more than an order of magnitude

greater than the loss tangent of Rogers RO4350B™ (tanδe = 0.0031). Additionally,

reduction in fluid volume reduces the mass of the fluid and facilitates easier move-

ment with the biasing field and improved tracking of the bias magnet. Reduction in

fluid volume helps to avoid the issues experienced with the original design where

the orientation slightly changed the realized gain of the antenna at broadside (Fig-

ure 5.6), and the unpredictable fluid placement exhibited by the three stub patch

antenna (Section 5.3.2). The first version of the single stub loaded patch antenna

was designed with 7.3 mm wide channels. According to a parametric simulation

run in HFSS, the channel width can be reduced down to 4 mm before the tuning
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range is severely impacted (Figure 5.14). Thus, the channel width was reduced to

5 mm in order to reduce the amount of required fluid and the effect of gravity on

fluid placement. In addition, the fluid channels were offset from the patch edge by a

distance ls = 1.5 mm to avoid interference with the patch’s radiating fringing fields

(Figure 5.15). The patch has a radiating slot of width 1.03 mm according to [58], so

offsetting the fluid channels by 1.5 mm from the patch edge significantly reduces

the interaction between the ferrofluid and the radiating fields. An additional matrix,

ABCDs, is required to account for the section of microstrip line with length ls in

the stub’s transmission line model (Figure 4.6).

Figure 5.12: Improved patch antenna design. The coaxial feed point is inset 9 mm
from the patch edge (L1 = 9 mm). Each stub is 2 mm wide and 19 mm long. The
fluid channel width is reduced to 5 mm, and is placed 1.5 mm from the patch edge
in order to avoid interference with the patch’s fringing fields.

Figure 5.13: Rectangular bias magnet dimensions and magnetic field orientation.

69



1.86 1.865 1.87 1.875 1.88 1.885 1.89 1.895 1.9 1.905

Frequency (GHz) 109

-40

-35

-30

-25

-20

-15

-10

-5

|S
1

1
| 
(d

B
)

Lowest Tunable Frequency as a Function of Ferrofluid Channel Width

Channel Width = 2 mm

Channel Width = 3 mm

Channel Width = 4 mm

Channel Width = 6 mm

Channel Width = 10 mm

(a)

2.05 2.1 2.15 2.2 2.25 2.3

Frequency (GHz) 109

-25

-20

-15

-10

-5

|S
1

1
| 
(d

B
)

Highest Tunable Frequency as a Function of Ferrofluid Channel Width

Channel Width = 2 mm

Channel Width = 3 mm

Channel Width = 4 mm

Channel Width = 6 mm

Channel Width = 10 mm

(b)

Figure 5.14: Comparison of simulated single stub patch antenna return loss as the
fluid channel width is changed: (a) At the lowest tunable frequency, (b) At the
highest tunable frequency.

The fluid is biased with a rectangular magnet with dimensions of 6.35 x 6.35 x

19 mm. The rectangular magnet’s measured field intensity at a distance of 120 mils

from the center of its face was 137 kA/m. At the edge, the field strength dropped

to 105 kA/m. At a distance of 60 mils from the face, the sensor saturated at the

center, and measured a field strength of 149 kA/m at the edge. The measurements

are similar to what was measured for the stack of cylindrical magnets, in that across

the entire face at a distance of 60 mils, the field intensity is greater than 146 kA/m.

(a) (b)

Figure 5.15: Cross-sectional diagram of fluid placement: (a) At minimum offset,
(b) At maximum offset. Increasing the channel length ensures that the fluid loads
the stub’s fringing fields at minimum offset, and does not load the fringing fields at
maximum offset.
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5.4.2 Results

Symmetric Tuning

The improved patch antenna design performs much closer to simulation. As shown

by Figure 5.16, the measured fractional bandwidth is 16.6%, which is nearly equal

to the simulated bandwidth of 17.7%. Furthermore, the lowest measured operating

frequency is only 10 MHz lower than simulated, and the highest tunable frequency

is 30 MHz lower. The transmission line model still shows a frequency shift with

the improved design, though the predicted fractional bandwidth of 15.4% is ap-

proximately equal to the measured and simulated values, meaning that the model is

useful for predicting the tunable bandwidth. Figure 5.17 shows that the measured

realized gain increases slightly as the antenna is tuned higher in frequency, and

cross-pol isolation is greater than 20 dB at broadside for both measured cut planes.

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

Frequency (GHz)

-35

-30

-25

-20

-15

-10

-5

0

|S
1

1
| 
(d

B
)

Offset 0 mm

Offset 5 mm

Offset 10 mm

Offset 15 mm

Offset 20 mm

Offset 25 mm

(a)

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

Frequency (GHz)

-35

-30

-25

-20

-15

-10

-5

0

|S
1

1
| 
(d

B
)

TL Model Low

HFSS Low

Measured Low

TL Model High

HFSS High

Measured High

(b)

Figure 5.16: Improved patch antenna return loss at various bias magnet offset place-
ments as the stubs are tuned symmetrically: (a) Measured return loss at several off-
sets, (b) Comparison of calculated, simulated, and measured return loss of the patch
antenna at the end points of the tunable range. The improved patch antenna design
has a measured fractional bandwidth of 16.6%, and shows the strongest agreement
between measurement and simulation out of the three tested patch designs.

71



 
0°

90°

180°

-90°

-35

-25

-15

-5

5
1.770 GHz

1.863 GHz

1.973 GHz

2.075 GHz

(a)

 
0°

90°

180°

-90°

-35

-25

-15

-5

5
1.770 GHz

1.863 GHz

1.973 GHz

2.075 GHz

(b)

Figure 5.17: Measurement of realized gain in the E-plane and H-plane at several
tuned frequencies: (a) E-plane, (b) H-plane. The solid traces are co-polarized pat-
terns, and the dotted traces are measurements of the cross-polarization. The cross-
pol isolation is greater than 20 dB at broadside in both measured planes.

Figure 5.18 shows a comparison between the simulated and measured realized

gain at the lowest and highest tunable frequencies. The measured pattern shape is

very similar to the simulated shape, and is roughly 1.5 - 3 dB lower than simulated.

Simulated radiation efficiency of the improved patch design (Figure 5.19) shows

comparable values to the efficiency simulated for the previous single stub design

(Figure 5.8), though roughly 10% lower at the lowest tunable frequency. Further

optimization of the patch dimensions could potentially improve the efficiency at

lower operating frequencies by increasing the electrical size of the patch.
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Figure 5.18: Comparison of realized gain measurements and simulations in the E-
plane and H-plane: (a) Realized gain at the lowest tunable frequency, (b) Realized
gain at the highest tunable frequency.
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Figure 5.19: Radiation efficiency of the improved patch antenna computed by
HFSS.

73



Asymmetric Tuning

In addition to being tunable in frequency, the patch antenna design has a tunable

input impedance. Tuning each stub to a different fluid offset position loads the

antenna asymmetrically, and modifies the input impedance of the antenna through

movement of the effective electrical location of the feed. In order to test the adapt-

ability of the antenna to environmental effects, two superstrates were applied to the

patch antenna at two different configurations.

In the first test case, the antenna was tuned symmetrically to offset values of 10

mm, resulting in an operating frequency of 1.863 GHz. Then, a 60 mil RO3006™

superstrate was taped over the patch, which modified its input impedance and sig-

nificantly reduced its gain. Finally, the stub closest to the feed was biased to an

offset of 17.5 mm, and the other stub was biased to an offset of 12.5 mm. This

re-tuned the antenna back to its original operating frequency and input impedance,

resulting in a gain pattern nearly identical to the original, as illustrated by Figure

5.20(a). In the second test case, the antenna was tuned originally to an operating

frequency of 1.77 GHz. Then, a 120 mil RO3006™ superstrate was loaded onto the

antenna to simulate a greater environmental loading effect than in the first case. The

additional loading was then compensated for by tuning the stub closest to the feed

to an offset of 20 mm. The results for the second test case are depicted in Figure

5.20(b).
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Figure 5.20: Compensation for loading effects of a RO3006™ superstrate: (a) 60
mil, (b) 120 mil. The superstrate reduces the realized gain (dotted traces), and
compensation through asymmetric tuning returns to pattern to the original shape
and intensity, shown by the solid traces.

Investigation of Channel Coating

The realized gain measurements of both versions of the single stub patch antenna

were consistently 1.5 to 2 dB lower than simulated (Figures 5.6 and 5.18). Part of

this discrepancy can be attributed to measurement and calibration error, but another

possible explanation is that a thin coating of unbiased or partially biased ferrofluid

remains in place inside the channels and is not moved by the bias magnet. Addi-

tionally, RO4350B™ is slightly absorbent, so the substrate may absorb a thin layer

of ferrofluid as well.

Simulations were run in HFSS with ferrofluid both as a thin inside layer on

the channel wall, and as a thin layer absorbed into the substrate. Each layer was

assigned different properties depending on its location relative to the bias field and

the channel wall. The thin layer labeled “No Bias” inside the channel wall (Figure

5.21) was assigned the properties of EFH1 under zero bias, since this layer was not

directly above the bias field in both cases. The “No Bias” layer has a total thickness
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(a)

(b)

Figure 5.21: Cross-sectional schematic of channel coating simulations: (a) Low
frequency configuration, (b) High frequency configuration.

of 6 mils, where the outer half of the layer intersects with the substrate in order

to approximate absorption, and the inner half inside of the channel approximates

ferrofluid that the bias magnet is unable to move. Fluid absorbed into the substrate

likely behaves differently than the bulk of the fluid, so even though the 3 mil layer

labeled “Medium Bias” (Figure 5.21) is positioned directly above the bias magnet

in both configurations, it is assigned the properties of ferrofluid under a 50 kA/m

bias field rather than under the maximum bias field. The ferrofluid block labeled

“Max Bias” (Figure 5.21) is assigned the properties of EFH1 under maximum bias,

and has the same dimensions as in the original simulations.

As Figure 5.22 shows, addition of layers of unbiased ferrofluid reduces the sim-

ulated realized gain to values closer to what was measured. Additionally, the sim-

ulated radiation efficiency is reduced by around 30% at the low end of the tunable

range, and around 15% at the high end (Figure 5.23). The simulated results support

the conclusion that unbiased layers of ferrofluid in the channel have a significant ef-

fect on the efficiency of the antenna, and future fabrication should include a PDMS

[53] coating of the channel surface to improve fluid biasing and mobility.
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Figure 5.22: Comparison of realized gain measurements and simulations with and
without unbiased fluid layer in the E-plane and H-plane: (a) Realized gain at the
lowest tunable frequency, (b) Realized gain at the highest tunable frequency.
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Figure 5.23: Radiation efficiency of the improved patch antenna computed by HFSS
with and without unbiased fluid layer.

5.5 Conclusions

Three patch antenna designs using ferrofluid tuning with loaded stubs were pre-

sented. The stubs function as tunable reactive loads at the patch edge, improving

the efficiency of the antenna over traditional magnetically-tuned antennas loaded

with ferrite material in the main substrate of the radiating element. Additionally,

as the fluid moves out from beneath the stub, the efficiency increases because the

microstrip fields are less exposed to the ferrofluid. This will be improved in future

designs with addition of a channel coating, which will improve mobility of the fluid.

The improved patch antenna design loaded with a single stub and reduced channel

widths has the best combination of tunable fractional bandwidth, efficiency, and

reliability out of the three tested patch designs. This is largely due to the single

stub requiring less fluid volume, making biasing a simpler process compared to

the three stub antenna. When loaded with three stubs, the patch exhibits a greater

tuning range in simulation, but measurements show otherwise, likely due to the dif-
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ficulties in biasing the fluid entirely. The three stub patch antenna has the added

benefit of larger simulated realized gain values across its tunable range, indicating

that it has more potential when strictly considering theoretical performance. How-

ever, fabrication is markedly more difficult for the three stub design, and the extra

volume of fluid required makes effective biasing more difficult because a stronger

and larger bias field is required to move the fluid. Additionally, stronger bias fields

have greater potential to interact with each other, limiting the potential for accurate

tuning of the stubs across their entire range of bias positions. Loading with a single

stub at each end simplifies the fabrication process because much smaller channels

and fluid volumes are required to load the antenna, making the design simpler over-

all from a mechanical standpoint.
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Chapter 6

Reconfigurable Slot Antenna Using Repositionable Ferrofluid

Loads

6.1 Design

A slot antenna is better suited than a patch antenna for operation around 1 GHz and

below because a patch would need to have excessively large dimensions in order to

be resonant. At frequencies below 1 GHz, a patch antenna will suffer reduced band-

width and will also have a lower radiation efficiency than a patch of an equivalent

substrate height designed to operate at a higher frequency [5]. However, because

the fields are oriented differently in a slot antenna, its radiation efficiency is less de-

pendent on its substrate height. In order to avoid complications with fabrication, the

substrate height and material are kept the same as with the patch antenna. Due to

time constraints and the lack of an accurate transmission line model for the slot an-

tenna, fabrication was not attempted and parametric simulations were run in HFSS

as a proof of concept. The work in this chapter shows that the ferrofluid-loaded

stub can be used as a reactive load for many radiators – not just patch antennas. The

slot antenna has a width of 4 mm and a length of 140 mm. The coupled microstrips

have the effect of reducing the slot’s resonant frequency, bringing down the second

resonance to a usable range closer to 1 GHz.
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(a) (b)

Figure 6.1: Tunable slot antenna loaded with coupled microstrip lines and fed with
a coaxial cable configured as a “Dyson-like” balun [27]: (a) Top view, (b) Bottom
view.

The tunable stub-loaded slot antenna relies on coupling between the microstrip

stubs and the slot. As seen in Figures 6.1(a) and 6.1(b), the tunable microstrip

stubs lie beneath the slot on the other side of the substrate. Ferrofluid between

the microstrip lines and the ground plane loads the slot antenna. The microstrip

lines are identical, and each has a length of 95 mm, a width of 5 mm, and is offset

from the center of the slot by 65 mm. The slot and microstrip line dimensions

were chosen through a parametric analysis of the antenna. The slot antenna is fed

with a coaxial cable with the outer jacket soldered to the ground plane and the

inner conductor extending across the center of the slot and attached to the other

side, in a “Dyson-like” balun configuration [27]. This is a somewhat arbitrary feed

choice; the slot could also be fed with a coupled microstrip fed across its center, or

a coplanar waveguide. Future work will examine the effects of different feeds.

6.2 Transmission Line Model

Analysis of the tunable slot antenna is not as straightforward as with the patch

antenna. The slot antenna is modeled following Ruyle’s transmission line model

for a slot antenna, which can be used to accurately find the input impedance to

a center-fed rectangular slot [65]. Ruyle’s model is modified by the addition of

81



load impedances Zin1 and Zin2 placed at distance lc from the load impedance ZL,

which accounts for loading effect of the slot ends [65]. Zin1 and Zin2 represent

the input impedance to the coupled microstrip lines seen through Das’s ideal cou-

pling transformer [66], and are determined as follows: The input impedance to the

ferrofluid-loaded section, ZinF (Figure 6.3), is calculated with the same analysis

process detailed in Section 4.2. The contribution from ZinM is given by Pozar [3]

as

ZinM = −Zmcoth(γm(lstrip + locm)) (6.1)

where locm is determined using [58] with the permittivity of the microstrip with a

homogeneous RO4350B™ substrate (εr = 3.48). ZinM is kept small by choosing

lstrip = λ
4

at the center frequency, which also improves the accuracy of the coupling

model [66]. Series addition of ZinM and ZinF yields the total input impedance to

the microstrip ZinT seen from the microstrip line side of the coupling transformer.

Using the ratio

Zin =
ZinT
n2

, (6.2)

the value for Zin seen at the slot side of the coupling transformer is obtained [66].

Figure 6.2: Slot antenna transmission line model based on Ruyle’s model [65].
Ferrofluid-tunable microstrips are coupled to the slot at distance lc from the slot end.
Input impedances Zin1 and Zin2 represent the input impedance to the microstrip
seen through Das’s ideal coupling transformer [66].

The final step in the analysis process is to use Ruyle’s transmission line model to
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Figure 6.3: Model of the coupled tunable microstrip. The left side is set to λ
4

at the
middle frequency of the tunable range, and the right side is the familiar tunable stub
element with lstub set to 40 mm.

determine the input impedance to the center-fed slot. This is done with an “equiva-

lent” slot antenna of length lrad and characteristic impedance and propagation con-

stant Zcs and γcs respectively, end-loaded with the parallel combination of ZLatC

and Zin shown in Figure 6.4. According to [3], the input impedance at distance lc

from the slot end due to ZL (Figure 6.2) can be found as

ZLatC = Zcs
ZL + jZcstan(βcslc)

Zcs + jZLtan(βcslc)
. (6.3)

where Zcs is the characteristic impedance of the slot, and

βcs =
2π

λcs
(6.4)

is the effective wavenumber in the slot calculated using Cohn’s method [28]. Loss-

less calculation of ZLatC is sufficient because lc is small relative to the total slot

length, and the primary loss mechanism of the antenna is radiation, which is cap-

tured through analysis of the slot length lrad where lrad >> lc and lrad ≈ lslot.

Current methods for analyzing the microstrip-to-slot coupling treat the transition as
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an ideal transformer with turns ratio 1 : n [66]–[68], where n is dependent on the ra-

tio of the slot characteristic impedance and the microstrip characteristic impedance

[66]. This analysis typically requires that the lengths of the lines extend past each

other by λ
4

[66]–[68]. This is not practical in the case of the model used here for

the antenna, since the distance lc is less than λ
4

(Figure 6.2). Minimization of lc is

desirable in order to retain the accuracy of the model, because the slot’s radiation

conductance is computed for the middle section of the slot between the microstrip

coupling points [65] with the assumption that any contribution to radiation from the

slot ends is small as long as lc is kept small relative the total slot length lslot.

Figure 6.4: Model of the equivalent slot antenna analyzed with Ruyle’s model [65].

6.3 Results

The slot antenna has a simulated fractional bandwidth of 10.8% (Figure 6.5(a)).

At the ends of the tunable range, the predicted return loss according to the trans-

mission line model does not match with the simulated results (Figure 6.5(b)). The

transmission line model does not predict a match at or near the simulated frequen-

cies, though it does predict a single resonance at a lower frequency (Figure 6.6).
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Figure 6.5: Slot antenna return loss at various bias magnet offset placements as the
stubs are tuned symmetrically: (a) Simulated return loss at several offsets, (b) Com-
parison of calculated and simulated return loss of the slot antenna at the end points
of the tunable range. The slot antenna design has a simulated fractional bandwidth
of 10.8%, but the transmission line model does not predict any resonances in the
same frequency range.

The disagreement between the transmission line model and HFSS is likely due

to a higher-order effect for which the model does not account. Inaccuracies in the

transmission model are most likely due to the simplistic coupling model, since the

microstrips are coupled near the slot ends and the slot does not extend λ
4

beyond

the coupling point. The length lc from the coupling point to the end of the slot

is only 5 mm, which is significantly less than a quarter wavelength in the range

of operating frequencies. The accuracy of the coupling model would be improved

with an increase in lc, but the accuracy of the overall transmission line model also

depends on the assumption that lc << lrad, as shown in Section 6.2.
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Figure 6.6: Modeled and simulated input impedance to the slot antenna at the low-
est tunable frequency where la = 0 mm. The transmission line model shows a
frequency shift from simulation, and also predicts fewer resonances than HFSS in
the simulated frequency range.

6.4 Conclusions

As an alternative to the patch antenna, a rectangular slot antenna design was also de-

veloped, but not fabricated due to time constraints and lack of an accurate transmis-

sion line model. A slot antenna is better suited to operation below 1 GHz because

the required size of a patch antenna becomes impractically large at those frequen-

cies. Optimization of the slot antenna design is an ongoing process, as the coupling

model characterizing the interaction between the microstrips and the slot is imper-

fect and limited. However, large scale parametric simulations in HFSS can be run

in order to converge on parameters that work optimally for the desired frequency

range. The rectangular slot antenna design is a potential solution for applications

where a lower frequency range of operation and a less directive pattern is desired.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

As the spectrum continues to fill, tunability is becoming an ever more important

trait in RF system design. This work shows that magnetic tuning with ferrofluid

can offer strategic design advantages for applications where high electrical isola-

tion and low power consumption is desired. Magnetic tuning is conventionally ac-

complished through stationary biasing of ferrites, which requires either a controlled

current source, or physical access to the device in order to allow for continuous tun-

ing across frequency. The method shown in this work is a novel way to accomplish

magnetic tuning, and is more repeatable than conventional microfluidic systems uti-

lizing conductive liquid. The new version of magnetic tuning presented in this work

has many advantages over traditional magnetic tuning, such as the ability to contin-

uously tune across frequency with a permanent magnet, and the ability to tune at a

distance. The tunable stub can be utilized on its own as a two port microstrip filter

element, and can also be loaded onto radiating structures such as patch and slot an-

tennas. End-loading these antennas enables tunability in both operating frequency

and input impedance, and the antenna’s input impedance can be reconfigured “in

situ” to compensate for the loading effect of enclosures through asymmetric tuning
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at a distance with an external magnetic field. Ferrofluid actuation is a powerful way

to improve the adaptability of microwave devices where low power consumption is

desired and physical access to the device is limited.

7.2 Scientific Impact

The tuning method developed as part of this work has several key impacts on the

field of microwave engineering. To the best of the author’s knowledge, this is the

first use of ferrofluid as a movable load beneath a microstrip stub where the pri-

mary loading mechanism of the fluid is dielectric. Because the fluid remains under

the same magnetic bias intensity regardless of placement, analysis of the fluid’s

magnetic effects is simplified.

• The loading method shown in this work ensures that the ferrofluid remains

under a strong, constant bias field, so its magnetic response and any associ-

ated nonlinearities are greatly reduced.

– Ferrofluid’s magnetic properties are used to reposition the fluid, but the

loading effect on the overall structure is only weakly magnetic in nature

and is primarily dielectric, in contrast to typical designs using ferrofluid.

– This tuning method has advantages over conventional magnetic loading

at UHF because ferromagnetic materials are typically too lossy at these

frequencies to function well as tunable loads.

• This work presents a method of magnetic reconfiguration that allows for con-

tinuous tuning across frequency with permanent magnets.

– The nonlinear magnetic response of ferrites is useful for stationary tun-

ing applications, but in order to continuously tune over a frequency
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range, an electromagnet is required to generate a continuously adjustable

magnetic field.

– In contrast to solid ferrite materials, ferrofluids are uniquely suited to

physical relocation, which allows for continuous tuning through reposi-

tioning of the bias field parallel, rather than normal, to the ground plane.

– The magnetic tuning method presented in this work can be accom-

plished with permanent magnets, and does not require spacers or phys-

ical access to modify the distance between the magnet and the device.

• The antenna designs proposed in this work offer a way to reconfigure both in

operating frequency and input impedance.

– Symmetric tuning of the loading microstrip stubs tunes the operating

frequency of the antenna

– Environmental effects on the antenna’s input impedance can be amelio-

rated with asymmetric tuning of the loads.

7.3 Future Work

Several opportunities for future research exist. The block model (Section 4.2) of

the ferrofluid used in simulation and in transmission line modeling is generally an

accurate characterization of the fluid placement. Accuracy is reduced for certain

channel designs, most notably for channels requiring a large amount of fluid such

as the patch antenna loaded with multiple stubs demonstrated in Section 5.3. Work

remains in optimization of the channel shape and size such that an appropriate vol-

ume of fluid is used. In addition, coating the channel with PDMS [53] or a simi-

lar compound will improve the accuracy of the model, as the fluid will leave less
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residue on the channel surface. A coating will likely reduce loss due to the fluid by

improving fluid mobility and ensuring that more of the fluid is biased as expected.

These design improvements come at the cost of increased fabrication complexity;

however, 3D printing technology has advanced to the point where multiple materi-

als can be printed on a single printer, enabling 3D printing of antennas [50]. As this

technology continues to progress, improved designs using ferrofluid-based tuning

will become more practical. An advantage of the additive manufacturing process

is that channels can be formed as part of the substrate, increasing the variety of

available channel shapes and sizes. 3D printing of substrates will also simplify the

addition of an oloephobic coating to the channel, and will facilitate reduction or

even complete removal of the sandwich layers necessary in the current design, re-

sulting in a larger range of tunable reactances for the stub. Removal of substrate

sandwich layers will also improve the loading effect of the ferrofluid on the overall

capacitance of the channel, because even thin sandwich layers of substrate with a

lower permittivity than the load can result in a large reduction of the capacitance of

the overall substrate [52]. Future research should include testing of other varieties

of ferrofluids, and a study of the longevity of ferrofluid-tunable devices operating

under a constant bias field, as ferrofluid has the tendency to agglomerate over time

when exposed to a permanent magnetic bias field greater than 100 mT [69].

Opportunities for future research on antenna loading also exist. As shown by

the reduction in measured realized gain of the patch antenna designs compared to

simulation, loss due to unbiased ferrofluid can reduce the efficiency of the antenna.

Thus, minimization of the volume of fluid is desirable in order to increase the like-

lihood that the fluid is completely biased, and that loss remains low. Fluid volume

can be reduced by decreasing the channel width, as shown by the improved patch

antenna in Section 5.4. However, channel width has an effect on the tunable range
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of the antenna, which is dependent, in part, on the filling fraction of the microstrip

fields [64]. The filling fraction is ultimately depending on the dimensions of the

loading stub, which are determined in this work through an optimization procedure

in MATLAB® utilizing the patch antenna transmission line model (Section 5.1).

In its current form, the transmission line model exhibits a slight frequency shift

from the measured and simulated results across the entire tunable range. Further

work should be done to better capture the loading behavior of the tunable stubs in

order to improve the accuracy of the patch antenna transmission line model and

optimization process. From there, decisions about the channel size and shape will

depend on the filling fraction of the fields, and the desired trade-off between tun-

ing range and antenna efficiency. The slot antenna design was developed through

a parametric analysis in HFSS, as the coupling mechanism between the loaded mi-

crostrips and the slot is not currently well-characterized by the ideal transformer

model proposed by [66] because the microstrips are significantly less than a quar-

ter wavelength from the ends of the slot. As shown by [68], a simple turns ratio

is not sufficient to fully capture the coupling behavior between the microstrip and

slot. Thus, future research remains to better characterize the coupling behavior. As

with the patch antenna, improvements to the transmission line model will facilitate

design guidelines for the slot antenna ferrofluid channel design as well, enabling

exciting opportunities for future tunable antenna designs utilizing ferrofluid loads.
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