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Abstract 

Inspection of parallelism between two surfaces (planes) requires the establishment of a 

datum feature (surface), and determination of the envelope of points containing the 

inspected feature parallel to that datum feature.  Verifying parallelism thus requires the 

establishment of the datum feature, and determining the separating distance between the 

two parallel planes.  The parallelism determination can change with sampling (number 

of data points) and fitting of points.  The datum feature establishment is very important 

to the inspection, and is also dependent on the number of points used to define it.  In 

this thesis, the datum feature is least squares fit from the data collected using coordinate 

metrology.  The inspected feature is then enveloped by minimum separation planes that 

contain the maximum deviation between the points.  The separating distance between 

the enveloping planes is calculated, and termed the Parallelism Tolerance.  

 

Three levels each, of two sets of data representing the datum feature and inspected 

feature are collected, for 15 aluminum plates (3 parallelism geometries, 5 replicates).  

The independent factors are analyzed against the calculated parallelism values. 

Experimental analysis shows significant effect of sample size on the parallelism 

computed.  As would be expected, the best parallelism values were obtained at the 

combination of the highest levels of sampling points for datum feature establishment 

and inspected feature verification.
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CHAPTER 1: INTRODUCTION 

In recent years, the demand for more complex mechanical products has 

increased along with higher precision requirements. Therefore, the demand dictates 

production processes to be more accurate, and features to be better controlled. The 

inaccuracies in the surfaces can result in improper performance of mechanical 

assemblies. Sampling of parts and features plays an important role in the verification of 

manufactured features. 

Geometric feature verification is a procedure essential to inspect tolerances of 

size, form, orientation, profile, runout and location. Orientation is considered a related 

feature tolerance that requires the establishment of a datum feature. Parallelism is a type 

of orientation tolerance, and hence always must be specified with a datum feature 

callout in engineering drawings. 

In coordinate metrology, fixed sampling techniques are used to obtain discrete 

sampling points. These techniques include systematic, stratified, and random methods 

(Kim & Raman, 2000). The sampled points are often times fit using fitting algorithms 

that employ regression methods (Obeidat & Raman, 2011) or through minimum zone 

estimation. The envelope principle used in the latter determines the tolerance zone, and 

is usually done through optimization or computational geometry.  The ANSI tolerance 

standards are better represented by the envelope principle rather than the least squares 

algorithms employed by Coordinate Measuring Machines. Often larger sample sizes are 

preferred in sampling, and yet good sampling schemes are required to collect the most 

representative points from surfaces. Although extremely large sample sizes, may not 

always be very effective in surface fitting (Dowling et al., 2005, 2007: Obeidat & 
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Raman, 2011), it is also intuitive to use larger samples to better capture feature 

geometries during verification.  

Studies suggest that the sampling techniques and sample sizes have a large 

effect on the efficacy of tolerance verification. Sampling also provides details for 

effective process control (Aguirre Cruz, et al., 2009). This thesis is focused on varying 

sample sizes and sampling methods and studying their effect on the establishment of the 

datum feature and on the determination of the zone of parallelism.  

 

1.1 Research Overview 

Traditional GD&T methods require the establishment of a datum feature in 

order to truly define parallelism of surfaces. This poses a challenge to designers and 

inspection engineers because defining a datum feature for a part with complex as well 

as many features can be quite tedious. Also, as proven is previous studies, sampling 

techniques and sample sizes in related feature determination can be quite difficult to 

develop, if a proper datum is not established 

 

The datum feature establishment is very important to the inspection, and is also 

dependent on the number of points used to define it.  In this thesis, the datum feature for 

a flat plate is least squares fit from the data collected using coordinate metrology.  The 

inspected feature is then enveloped by minimum separation planes that contain the 

maximum deviation between the points.  The separating distance between the 

enveloping planes is calculated, and termed the Parallelism Tolerance.  

 



 

3 

 

Three levels each, of two sets of data representing the datum feature and inspected 

feature are collected, for 15 aluminum plates (3 parallelism geometries, 5 replicates).  

The independent factors are analyzed against the calculated parallelism values. 

Experimental analysis shows significant effect of sample size on the parallelism 

computed.  As would be expected, the best parallelism values were obtained at the 

combination of the highest levels of sampling points for datum feature establishment 

and inspected feature verification. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW  

This chapter discusses datum planes, models to establish datum planes, parallelism and 

its verification, studies of coordinate metrology, sampling methods, and regression 

analysis.  

 

2.1 Terminology 

 Geometric Dimensioning & Tolerancing: Geometric Dimensioning & 

Tolerancing or GD&T is a system that outlines and communicates geometric 

tolerances. It utilizes various established symbols in order to define different 

geometric features. It specifies the theoretical geometry of a part and the 

allowable deviations from it. Various standards exist to understand the symbols 

and communicate the rules used in GD&T. (ASME, 2009) 

 Metrology: The science of measurement. 

 Tolerance: The allowable deviation from absolute or theoretical feature. 

 Datum: It is a theoretical plane, line or a point used to reference geometric 

tolerances.  

 Datum feature: It is an important functional feature of a part that is controlled 

during measurement. 

 Datum Reference Frame (DRF): It is an orthogonal coordinate system that 

establishes the actual position of a feature in accordance to its geometric 

tolerance. It is an essential tool for verification, inspection and analysis of 

geometric tolerances (Wu & Gu, 2016) 
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 Parallelism: It is a property of two lines or planes that never intersect. Surface 

parallelism controls parallelism between two features. 

 Coordinate Measuring Machine (CMM): It is a machine widely used to inspect 

geometric dimensions and tolerances with the help of a computer software. 

 Sampling: It is the selection of a subset of units from within a statistical 

population to estimate characteristics of the whole population 

 Regression Analysis: In statistical analysis regression analysis is a technique for 

estimating the relationships among variables. 

 PC- DMIS: Coordinate measuring machine software used to acquire data from 

CMM’s.  

 MATLAB: It is a computing platform that allows implementation of various 

mathematical and numerical applications.  

 Normal Vector: It is a vector that is perpendicular to an object or a surface at a 

given point.  

 

2.2 Datum  

Datum is an integral part of GD&T for the determination of the location and orientation 

of tolerances. A widespread use in inspection of parts, the datum plane is substantiated 

by mating planes to imperfect datum features on the parts. The datum planes are used to 

establish distance and orientation on models that give information of the location and 

orientation of tolerance zones (Shakarji & Srinivasan, 2016). 
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Figure 1: Deriving a datum plane from a datum feature (Source: Shakarji & 

Srinivasan, 2016) 

  

The Datum reference plane (DRF) is an orthogonal coordinate system that establishes 

the actual position of a feature in accordance to its geometric tolerance. It is an essential 

tool for verification, inspection and analysis of geometric tolerances. It is essential to 

establish the composition fundamentals of DRF in order to automate feature verification 

(Wu & Gu, 2009). 

Datum systems are the backbone for connected geometric features of a part 

which determines the orientation and location of tolerance zones (Ebermann et 

al. 2016).  According to Ebermann et al. (2016), there has been an attempt to change 

from dimensional to geometric tolerancing that has made datum systems more 

important than ever. The current knowledge and research efforts still stand short in 

defining standardized measures for verification and also in realizing datum systems in a 

function oriented design process (Ebermann et al.  2016). 

The theory of a datum plane is a non-standardized, yet global concept which is 

employed in almost all tolerance verification processes. Hence, it could be realized from 

a datum feature through multiple reasonable approaches. Currently, there is 

considerable research effort by International Organization for Standards (ISO) and 

American Society for Mechanical Engineers (ASME) to define default datum planes 

(Shakarji & Srinivasan, 2016).  
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The realization of a DRF using standards is done on a per case basis which 

makes it a tedious process to adhere to all conditions of validity (Wu & Gu, 2016). 

ASME Y14.5M established permissible datum features for planar, width, cylindrical, 

spherical geometries. ANSI Y14.5.1M has a list of 52 different DRF’s using various 

combinations of points, lines and planes. 

 

2.2.1 Recent Studies on Datum Realization 

In the recent past, there have been many research studies that have proposed models 

based on different approaches to determine the datum. Gou et al. (2000) proposed an 

approach based on Lie Algebra and homogenous space transformation to determine a 

DRF which describes the datum feature as an elementary geometry while complex 

geometries are eliminated. Mejbri et al. (2005) suggested generic rules validating datum 

reference systems based on part topology. Wu et al. (2003) proposed ways to assess and 

validate a datum for verification of tolerances. Ramaswamy et al. (2001) based their 

model to realize a datum on automatic dimensioning models. (Wu & Gu, 2016) 

Ebermann et al. (2016) proposed an approach to determine a functional data 

system during design proceedings. This functional data system is based on the 

interaction of the indeterminate geometry of the part. Shakarji et al. (2015) proposed an 

algorithmic based on a constrained L1 norms to establish a default planar datum for 

tolerancing standards. Further, Shakarji et al. (2016) proposed an algorithmic based 

model to realize planar datum by employing constrained total least-squares.  

Wu & Gu (2016) proposed rules to construct a datum reference plane. Their study was 

based on the decomposition of the DRF into a point, a line passing through the point 
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and a plane containing the line. They constructed the DRF based on basic datum 

geometries of basic shapes that can be realized using a point, a line or a plane. Mapping 

relationships that exist between the datum features were used to directly obtain datum 

geometries from datum features.  

 

Figure 2: Datum features and derived datum geometries (Source: Wu & Gu, 2016) 

 



 

9 

 

Further, an approach was proposed for a datum geometry composed by multiple datum 

features in which two to three datum geometries are combined to form a new geometry. 

In this, out of all possible combinations, only 5 combination of point-point, line-line, 

plane-line, point-point-point and point-point-line follow the composition principle 

which adheres to generating a new geometry and increasing capability of constraining 

DOF. 

 

 

Figure 3: Datum combinations for multiple datum features (Source: Wu & Gu, 

2016) 

 

Utilizing the above stated methods, the authors established rules for automatic 

establishment algorithm for the DRF. 

According to ISO 5459, the connection between two features of a part is 

validated using the location and orientation of the tolerance zone established by a 

nominal feature taken from the geometrical features of the actual surface as a datum. 

This datum system has been derived by combining two or three datums and forms a 

coordinate system for the part. Yet, ISO 5459 does not determine the extraction/ 

partition surfaces for datum calculation. There were mentions of these strategies in ISO 

14406, which yet again does not have standardized rules to determine measuring points 

that supply information regarding the surface. (Ebermann et al., 2016). 
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Figure 4: Datum system of planes according to ISO 5459 (Source: Ebermann et 

al. 2016) 

 

The current studies and standards show that there is still a long way to go for 

standardized datum realization techniques. The proposed studies that we discussed in 

this section are unique, yet still require time and effort to establish valid datum systems. 

 

2.3 Parallelism 

 

2.3.1 Parallel Lines 

“Two lines that never intersect each other at any point in a two dimensional space are 

said to be parallel.” (Parallel and Perpendicular Lines, 2017) 

The lines do not meet at their given lengths and even when extended to infinity. This 

means theta the perpendicular distance between the lines should remain constant at 

every given point in space. In a three dimensional set-up, these lines can be parallel if 
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they lie on the same plane. In a situation where these lines do not lie on the same plane, 

they are called skew lines. (Parallel and Perpendicular Lines, 2017) 

Additionally, the two lines when intersected by a transverse line make interior 

angles which sum to 180°. If the sum is lesser or greater than 180°, the lines will 

intersect at some point if extended beyond their lengths.  

For two lines to be parallel in a Euclidean space, the following conditions should be 

met: 

 The lines have to be equidistant at every given point 

 The two lines lie on the same plane and never intersect even on extending them 

to infinity. 

 The two lines when intersected by a third line (transverse line) in the same 

plane, the corresponding angles are equal. 

(Parallel (geometry), 2016) 

 

 

 

Figure 5: Parallel Lines intersected by a transverse line (Parallel (geometry), 2016) 
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Mathematically, two lines are parallel if they have equal slopes. For the equation, 

𝑦 = 𝑚𝑥 + 𝑐 

‘m’ is the slope of the line. Consider two lines with equations, 

𝑓(𝑥) = 𝑚𝑥 + 𝑏  and  𝑔(𝑥) = 𝑛𝑥 + 𝑐 

The corresponding slopes of the lines ‘n’ and ‘m’ should be equal for them to be 

parallel. That is,  𝑚 = 𝑛. 

 

The perpendicular distance between the lines parallel lines, 𝑓(𝑥) and 𝑔(𝑥) is calculated 

as, 

𝑑 =
|𝑏 − 𝑐|

√(𝑚2 + 1)
 

(Parallel and Perpendicular Lines, 2015) 

 

2.3.2 Line parallel to a plane 

Further, a line can also be parallel to a plane. Given that a line does not lie in a plane, 

the line is said to be parallel to the plane only if the line and the plane do not intersect at 

any given point. Also, they are parallel if and only if the distance from a point on line to 

the nearest point in plane is not dependent on the location of the point on the line. 

(Parallel (geometry), 2016) 

 

2.3.3 Parallel Planes 

Two planes are said to be parallel if the two planes never intersect each other in a three 

dimensional space. If the two planes are not parallel, they intersect each other in a line. 
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Additionally, if two planes are parallel to the same plane, all three planes are parallel to 

each other. That is, consider planes 𝑃, 𝑄 𝑎𝑛𝑑 𝑅.  If 𝑃 ∥ 𝑄  and  𝑅 ∥ 𝑄,  

𝑃 ∥ 𝑄 ∥ 𝑅 

 

Figure 6: Parallel planes P, Q and R (Parallel and Perpendicular Planes, 2017) 

 

Mathematically, If the two planes are parallel in Hessian normal form, if  

|�̂�1 ∙ �̂�2| = 1   𝑜𝑟  

�̂�1 × �̂�2 = 0 

Where, �̂�1 𝑎𝑛𝑑 �̂�2 are corresponding normal vectors of the two planes (Gellert et 

al., 1989) 

 

2.3.4 Planes and associated angle  

If two planes are not parallel they always intersect in a line. In Hessian normal form, the 

line of intersection is perpendicular to normal vectors, �̂�1 𝑎𝑛𝑑 �̂�2. 
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Figure 7: Normal vector to a plane (Weisstein,"Plane.") 

 

The equation of a plane with normal vector �̂�  through the point  𝑋𝑜 = (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) is  

𝑛 ∙ (𝑋𝑜 − 𝑋) = 0 

Where, 𝑋 = (𝑥, 𝑦, 𝑧). Substituting the above values, the equation of the plane becomes  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

Where, the normal vector, 𝑛 = [𝑎 𝑏 𝑐]   (Weisstein,"Plane.") 

The equation of a plane can also be determined using three points on the corresponding 

plane. 

 

The angle between two intersecting planes is determined by the dot product of the two 

corresponding normal vectors of the concerned planes. 

Mathematically, let us consider two planes and their equation, 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑑1 = 0   𝑎𝑛𝑑 

 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑑2 = 0   

Where, their corresponding normal vectors are, 

𝑛1 = (𝑎1, 𝑏1, 𝑐1)  𝑎𝑛𝑑 𝑛2 = (𝑎2, 𝑏2, 𝑐2) 
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Figure 8: Angle between two Intersecting planes (Angle between Two Planes, 2017) 

 

For the above, the angle between the two planes is given by, 

𝑐𝑜𝑠𝜃 = �̂�1 ∙ �̂�2 

Or 

𝑐𝑜𝑠𝜃 =
𝑎1𝑎2+𝑏1𝑏2+𝑐1𝑐2

√𝑎1+
2 𝑏1

2 + 𝑐1
2 + √𝑎2

2 + 𝑏2
2 + 𝑐2

2
 

The angle ′𝜃′is called dihedral angle which is determined by, 

𝐶𝑜𝑠𝜃 =
n1 ∙ n2

|n1||n2|
 

That makes,  

 𝜃 = cos−1
n1 ∙ n2

|n1||n2|
 

For the associated planes to be parallel,  

𝜃 = 0 

If the two planes are parallel and never intersect each other, the normal vectors of the 

two planes are proportional to each other in the form that, 

𝑎1

𝑎2
=

𝑏1

𝑏2
=

𝑐1

𝑐2
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In GD&T, a plane is said to be parallel if it is equidistant from the datum plane at all 

given points on the plane.  

 

2.3.5 Equation of plane passing through a point and parallel to given plane 

The equation of a plane that passes through a point and parallel to a given plane is 

determined by,  

𝑟 ∙ �̂� = 0 

Where 𝑟 is the point on the plane and �̂� is the normal to the given plane.  

 

2.3.6 Distance between two parallel planes 

The distance between two parallel planes is derived from the method to find the 

distance between a point and a plane. Hence, it is obtained by selecting a point on either 

plane and then using the other plane's equation in the formula for the distance between a 

point and a plane. 

Using the same equations for the planes illustrated in the previous section, this distance 

‘D’ is calculated by the formula,  

𝐷 =
|𝑎1𝑥2+𝑏1𝑦2 + 𝑐1𝑧2 + 𝑑1|

√𝑎1
2 + 𝑏1

2 + 𝑐1
2

 

Where, 𝑎1𝑏1𝑐1 𝑎𝑛𝑑 𝑑1 are taken from the equation of the first plane and 𝑥2, 𝑦2,𝑧2 are 

coordinates of a point on the second plane. 

The distance ‘D’ between these 2 planes remains the same throughout all points on both 

panes. 
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2.3.7 Parallel Measurement 

Based on the feature in concern to be measured, parallelism is defined in two different 

ways in GD&T.  The tolerance that controls parallelism between two surfaces or 

features is called ‘Surface Parallelism’ and is most common form of parallelism. This 

tolerance is controlled in similar ways as flatness (tolerance zone is determined using 

two parallel planes). Another form of parallelism is called ‘Axis Parallelism’ which 

controls the magnitude of parallelism between the central axis of specific parts and the 

datum. This feature is usually controlled by a cylinder outlining a theoretical parallel 

axis (Parallelism, GD&T Basics). 

 

Figure 9: Feature Control Frame (Parallelism, GD&T Basics) 

 

Parallelism describes the parallel orientation the concerned feature to the datum 

surface or line. For a three dimensional tolerance zone, Parallelism establishes the 

orientation of a plane parallel to the datum plane. Based on the datum, the tolerance 

establishes the 0° angle between the parts by controlling where the surface can be 

oriented. 
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To control parallelism, the concerned surface or the feature that needs to be measured 

and the datum need to be determined. (Parallelism, GD&T Basics) 

 

According to Bewoor and Kulkami (2009), Parallelism between two planes is 

measured by employing a test mandrel and a dial indicator that act like a datum 

supported along one of the planes. The dial indicator takes measure along the surface of 

the other plane in concern. According to the authors, parallelism is established by the 

measure of the distance between the two planes. If the measured readings do not exceed 

or fall short of the specified limits, the surface is deemed to be parallel. The above 

stated method is used to determine parallelism between an axis and a plane. Parallelism 

between two cylindrical axes is determined by moving the dial indicator from the axis 

of the datum. (Bewoor and Kulkami, 2009) 

 

Figure 10: Dial Indicator system to measure parallelism (Source: Bewoor and 

Kulkami, 2009) 

 

A study on parallelism measurement of optical micro units was proposed by Kerobyan 

et al. (2013). In this study, a laser beam is projected through a screen with a miniscule 

hole which illuminates a plate which is under inspection. To provide divergence, a lens 
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(negative/positive) is kept before the screen. The result of the laser beam reflection 

between two surfaces creates circular, concentric fringes. If the center of the whole 

perfectly aligns with the center of the fringes, the plate is at absolute parallelism. 

(Kerobyan et al. 2013) 

 

Another system to measure parallelism proposed by Hwang et al. (2007), uses a 

three-probe system to measure parallelism of ultra-precision guideways (rails). This 

model uses three probes 𝑃1, 𝑃2 𝑎𝑛𝑑 𝑃3 to simultaneously measure parallelism and 

straightness of the rails. Here,  𝑃1 𝑎𝑛𝑑  𝑃2 measure parallelism and 𝑃3 measures 

straightness. In addition, a surface plate is used increase the accuracy of parallelism 

measurement (50 𝜇-inch accuracy). Two gauges that are in conjunction are directly 

placed one above the other at a given height. This whole measuring setup moves 

through the guiderails as in the model proposed earlier. (Hwang et al. 2007) 

 

Figure 11: Three probe system to measure parallelism of ultra-precision 

guideways (Source: Hwang et al. 2007) 
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Taylor (2015) proposed a model for non-datum inspection of parallelism and 

perpendicularity. He used the least square method to fit the points of the surfaces to be 

inspected into trend lines and measured the distance between these lines to determine 

parallelism. This study applied to both continuous and discontinuous surfaces. 

However, this study had not factored in the result of sampling on inspection efficiency. 

Also, it does not say much about the surfaces being measured, merely compares trend 

lines after fitting a least squares line. (Taylor, 2015) 

 

2.4 Coordinate Measuring Machine (CMM) 

Coordinate measuring machines are widely used in verification and measurement of 

various geometric dimensions and tolerances in the world of manufacturing technology.  

CMM’s are commonly accepted tools for tolerance inspection throughout the global 

industry. This can be owed to advances in the field of computer numerical control 

technology. (Wu & Gu, 2016) 

CMM’s can measure discrete coordinate data of the actual surface that pertains 

to both the datum and the concerned feature. It establishes mathematical algorithms to 

determine the DRF while locating the tolerance zone that results in the analysis of 

comparison between the actual position of the feature and the tolerance zone. This 

technique of measurement employed by CMM’s help eliminate shortcoming associated 

with traditional methods of measurement and can be applied to automated inspection of 

larger number of parts in one go. (Wu & Gu, 2016) 
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The CMM uses a probe to collect data across the surface of the part. The control 

of the probe could be either manual or automated depending on the part under 

consideration, the application and the kind of machine. The probe is used to collect 

coordinate measurements as guided through the operator either manually or through 

computer control. The data establishes the features, location and dimensions of the part 

under control. These features include almost all GD&T features discussed in previous 

sections. A computer controlled CMM has advantages over manual CMM’s as the 

former is a more time efficient device which can inspect large number of parts in a 

shorter period of time.     

A CMM comprises of three basic components, namely, the housing, the probe 

and the software. The housing consists the 3D measuring plane and the corresponding 

guiderails. The housing is made of aluminum alloys or similar and a ceramic annex is 

provided to obtain rigidity of z-axis. The bridge which connects to the probe is 

suspended on two legs. The bridge is guided through air bearings for its motion along 

the Y-Axis which brings down friction to zero.  

The probe is used to collect data from the surface of the part. There are different kinds 

of probes available to use with CMM’s, namely, optical, laser and tactile (mechanical) 

and their use depends on the application and the kind of machine. Optical probes are 

non-contact probes that scan the image of the surface under inspection. The advantage 

associated with optical probes pertains to the fact that it can take larger number of data 

points and low chances of mechanical damage to the probe system. However, it cannot 

be used for 3D parts with low resolution. The laser probe captures high resolution 3D 

images of the surface and is a very effective and sophisticated of measuring.  
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Depending on the operation and the kind of probes used to suit the, they can measure at 

angles between -90° to +90° vertically and can be rotated from -180° to +180°. In 

traditional CMM’s, the probe had to be guided physically to record data, but in recent 

times come equipped with driving motors that can be automated using a computer 

software. The contact diameter of the probe is much smaller than the feature under 

inspection (Woody & Bauza, 2007). There are also developments in micrometrology 

probes but aren’t being used as an established probe system due to issues with reliability 

and susceptibility to damage and environmental conditions. Also, smaller and lighter 

probes can cause false triggers and take longer to collect data (Weckenmann & 

Hoffmann, 2006).  

The first CMM was built in the 1950’s that only took measurement in two dimensional 

coordinates. This was enhanced in the 1960’s where it began measuring in 3D.  The 

most common kind of CMM is the 3D-Bridge CMM. 

 

Since the 1970’s, the CMM’s come equipped with a computer control 

mechanism. These usually consist of a processing unit, a display monitor, a data 

collection software and a controller (jogbox). The jogbox or the computer program is 

used to direct the probe over the surface under inspection. The collected data is sent 

over to the software through various encoders and is available to the operator for use 

and analysis.  

In most constructions of the CMM, sophisticated design features like low friction air 

bearings and reduced vibration installation mountings are incorporated to reduce error 

and increase accuracy and precision. (Schaffer, 1982) 
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The various modes to operate while working with CMM’s are manual control, manual 

computer-assisted, motorized computer-assisted and direct computer control. 

The direct computer controlled or DCC mode is the most sophisticated and can handle 

intricate data processing and mathematical functions and high precision inspection 

functions by automated control. (Elmaraghy et al., 1990) 

The disadvantages of using a CMM is the intricate technology which makes it a 

difficult equipment to learn and operate on. Further, CMM programming is an acquired 

skill and is not common knowledge.  

  

2.5 Sampling 

Sampling is the procedure that helps identify the way to choose units from the 

concerned population while keeping the objective in mind. This sample should be a 

representative of the population and should be able to estimate the population totals and 

averages. The efficiency of sampling is an important factor to consider while collecting 

samples. Hence, the selection method should be accurate, low cost and optimized. 

(Cochran, 1977) 

Sampling errors are common during sampling which might occur due to the fact 

that the population being measured does not always involve the whole population and 

only a part of it. Sampling errors can be identified by the inconsistency between the 

population and sample estimates. These errors can be minimized by selection of larger 

sample sizes. (Cochran, 1977) 

Selection of sample points is crucial to measure the feature of a part. The points 

should be selected in such a way that it represents the features of the surface, 
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irrespective of the profile, complexity. An efficient sampling strategy must have 

optimal sample points and optimal sample size. A statistical approach to find the sample 

points would be better than the use of knowledge of manufacturing process, material 

properties etc., simply because it is not always possible to have the knowledge of the 

products in detail (Wu et al., 2000) 

Aguirre Cruz (2007) used Hammersley distribution to sample points in his study 

on developing decision support for form verification of manufactured parts. The forms 

in his study included cone, sphere, cylinder, frustum and torus. He sampled these 

geometries using the Hammersley technique as it was found to be a more effective 

method of sampling in various studies and because the coordinates of this sequence are 

representative of points inspected by a CMM (Aguirre Cruz, 2007). 

Various sampling methods have been established and can be employed 

depending on the need of the experiment. To name a few, we have simple random 

sampling, stratified sampling, systematic sampling, and cluster sampling. 

 

2.5.1 Sampling Techniques 

 Simple Random Sampling 

According to Stuart (1976), “a simple random sampling is one selected 

by a process which gives every possible sample (of that size from that 

population) the same chance of selection”. Also, according to Cochran (1977) it 

is stated as a method of selecting n out of N units from a population such that 

every one of the 𝑐𝑛
𝑁  distinct samples has an equal chance of being drawn. So, for 

selecting ‘n’ number of samples out of population ‘N’, each unit has an equal 
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probability of getting selected at the first and each subsequent draw. The units of 

the population are arranged in an order starting from 1 extending to N. A 

sequence of random numbers between the arrangements is drawn for which the 

chance of selection of all these available units from the population is equal in the 

first draw. Therefore, all of the different 𝑐𝑛
𝑁  samples have an equal chance of 

being selected. After selecting n samples in n draws, the probability of selection 

becomes   
1

𝑐𝑛
𝑁 . (Sukhatme et al., 1970), (Cochran, 1977) & (Kim & Raman, 

2000). 

 

 Stratified Sampling 

This sampling method employs stratification to improve the estimation 

precision. The accuracy of the sample estimate of the population mean is a 

function of the sample size and the variability of population. The estimate can be 

optimized by increasing the sample size and also by reducing variability of the 

population. (Ray, 1968) 

According to Sukhatme et al. (1970), for this method, the population ‘N’ is 

divided into subpopulations ‘𝑁1, 𝑁2, ……𝑁𝐿’ which are called strata, where the 

subpopulations do not consist of repetitions and sum up to the population. A 

sample is drawn from each stratum. Stratified random sampling is when a 

simple random sample is taken from each stratum. (Kim & Raman, 2000) 

𝑁1 + 𝑁2+.…… .+ 𝑁𝐿 = 𝑁 
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 Systematic Sampling 

 In this method of sampling, the first selection determines the selection of the 

rest of the sample. The first selection is made based on random selection and the 

subsequent selections are regulated by automatic selection. The units of the 

population are arranged in an order starting from 1 extending to N, a sample of n 

units is selected by considering a random number 𝑖 ≤ 𝑘 for which  𝑁 = 𝑘 × 𝑛. 

Here, the selected number ‘i’ and every kth unit are considered to be the sample n. 

(Kim & Raman, 2000) 

This method has more advantages over simple random sampling as it is easy to draw 

and execute samples. Uniform sampling is a part of systematic sampling. This can 

be represented in a ‘square grid’ pattern for one-dimensional sampling. (Cochran, 

1977) 

 Cluster Sampling  

This method is similar to stratified sampling. The difference lies in the 

fact that cluster sampling does not represent all divided subpopulations. (Konijn, 

1973). Hence, the population is divided into smaller units and are called 

elements of the population. Here, groups of elements are clusters. (Sukhatme et 

al., 1970) & (Kim & Raman, 2000). 
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Figure 12: Coordinates of Sampling Methods: Hammersley, Halton-Zaremba, 

aligned systematic, aligned random respectively. (Source: Kim & Raman, 2000) 

 

2.5.2 Sample size  

The process of sampling using a CMM is a discrete method that presents much 

approximation. The larger the sample size, the lesser the error. If there are infinite 

points on a surface, the number of errors tend to zero whereas if there are finite points, 

we will have a non-zero value of the error. In a study by Kim & Raman (2000), 4, 8, 16, 

32 and 64 points were chosen at random on a flat plate while measuring flatness.  
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In a study proposed by Rao (2006), the sample size varies according to shape 

and profile of the surface and it also depends upon the length to width ratio of that 

surface. Neural network and neuro-fuzzy techniques were employed to determine 

sample sizes in that study. Yet, the drawbacks of both studies included not factoring in 

the uncertainties that could arise in determination of the sample sizes of the surface. It is 

known that manufacturing process plays an important role in finding the sample size. 

But, since the type of manufacturing process may vary from product to product, it is 

essential that the surface roughness is considered for the sample size identification 

(Rao, 2006). Rao used samples that factored in varying surface roughness while 

inspecting the flatness of the surface, while Kim focused on sampling techniques to 

measure flatness of the surface. 

 

2.5.3 Sampling in coordinate metrology  

Lin and Chen (1997) established models to find the measuring point positions of surface 

composition features followed by estimating the positions of the measuring points on 

the surface (Obeidat & Raman, 2011). Studies show that larger sample sizes are needed 

for higher accuracy of results (Namboothiri and Shunmugam, 1999: Obeidat & Raman, 

2011). In 1995, Woo et al. studied the flatness and the roughness of surfaces by using 

Uniform and Stratified sampling, Hammersley, Halton-Zaremba to collect sample data. 

This study showed that uniform, random and stratified method did not provide good 

estimations of the surface. Yet, the sample size was not factored in during this study.  
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Table 1: Average discrepancy rate for accuracy of flatness (Source: Kim & 

Raman, 2000) 

 

 

Uppliappan et al. (1997) proposed a study on the sampling process for cylinder 

inspection for which they employed equidistant sampling and spiral sampling 

techniques for data collection. The relation between form error and the sampling 

algorithm and the fitting algorithm used to fit the substitute geometry was studied in this 

research. Cho and Kim (1995) proposed a model for inspection of sculptured surfaces 

using a coordinate measuring machine (CMM) where the optimum measuring point 

locations were established based on the mean curvature analysis and a region selection 

ratio constant.  

Various methods to determine the optimum probe path that minimizes the 

inspection time and the measuring errors was also determined in this study. Pahk et al. 

(1995) proposed an inspection system for manufacturing molds incorporating CAD. 

Uniform distribution sampling, and surface curvature were employed in that study. The 

points were sampled on the surface using an amalgamation of both the techniques. For 

their experiment they divided the surfaces into subintervals and the points were 

randomly distributed. Lee et al. (1997) combined the use of Hammersley sequence and 

a stratified sampling method and proposed a sampling strategy for geometric features on 

a surface. The efficiency of Hammersley, uniform sampling and random sampling were 

compared in this study. The number of sample points were reduced using quadratic 



 

30 

 

systems by employing a strategy based on Hammersley and uniform sampling method 

which yielded the same level of accuracy. 

  Badar et al. (2005) established an adaptive sampling method to reduce the 

sample size. This study estimated the region of maximum error based on the error 

profile of the surface. They concluded that the accuracy of the procedure in which the 

initial points were estimated to determine other inspection points is similar to the 

method which considers the population measurement points. In another study of 

experimental analysis to determine the performance of adaptive sampling methods in 

straightness and flatness verification, Badar et al. studied the effects of different factors 

on the sample size and on the error. These factors included manufacturing process and 

step size of the search algorithm in straightness and flatness. In a recent study, Obeidat 

and Raman (2009) proposed three techniques to inspect free form surfaces as a function 

of their free form surfaces geometry. Based on the critical regions, this model reduced 

the number of sampling points. 

 

2.5.4 Search Algorithm  

In a study by Badar et al. (2003), Initial set of data points were obtained to evaluate 

form tolerances using the least squares (LS) technique and minimum zone (MZ) 

methods. The initial points are guided by geometry of the part and are also based on 

manufacturing conditions. For the initial sample, a fit feature and the corresponding 

deviation 𝑒𝑖 of each point was obtained using the linear least squares (LS) technique. 

Then a search method was used to intelligently pick the next points until an optimum 

𝑒𝑚𝑎𝑥 was reached. The search was performed in both the positive and negative 
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directions from the fit surface. For straightness, a region-elimination (RE) search was 

employed to choose additional data points. Three iterations were allowed with the 

intervals of, Δ/2, and Δ/4, where Δ=4*step size. The algorithm started from a point that 

had the maximum deviation among the initial data points in the negative or positive 

direction, depending on which direction a solution was being sought. For flatness, two 

pattern search methods, tabu search and hybrid search, were applied to sample data 

points outside the initial set. Hybrid search (HS) developed was a combination of 

coordinate search, Hooke-Jeeves pattern search and tabu search (TS). (Badar et al, 

2005) 

 

Figure 13: Region elimination algorithm - straightness estimation (Source: Badar 

et al., 2003) 
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Figure 14: Hybrid search algorithm for flatness inspection (Source: Badar et al., 

2003) 

 

 

2.6 Regression Analysis 

“Regression analysis is a statistical method that defines the relationship between 

variables. Many variables can be considered while the concentration is between a 

dependent variable (y) and one or more independent variables (x1, …, xn).” (Regression 

Analysis, 2017) 

 This investigates how the average value of the dependent variable is affected by the 

independent variable. A function of the independent variables (regression function) is 

established that best estimates the relationship. (Regression Analysis, 2017).  

There are various methods of performing linear and nonlinear regression analysis, 

including the parametric Least Squares, as well as Nonparametric Regression, which 
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has more flexibility in terms of variables and dimensions. The assumption made to 

simplify the ease of use of methods depends on how the data is collected. The validation 

of these regression methods can be done using R-squared and the F-test (Regression 

Analysis, 2017). 

In parametric regression, unknown parameters are represented by β. So, 

y ≈ f(x, β). 

Where n is the number of x data points and k is number of β unknowns, n > k for 

accurate results. The error ‘e’ assumes normal distribution, where (n – k) is called the 

“degrees of freedom”. Higher degrees of freedom may have more efficient results 

(Regression Analysis, 2017). 

For Simple linear regression, n data points are considered with only one independent 

variable x and two parameters β0 and β1. The dependent variable follows, 

yi = β1xi + β0 + ei for i = {1,…,n}. 

With a random sample supplied for this, yi is estimated by ŷi where,  

. 

the error ei is the vertical difference between the actual value of the dependent variable 

and its estimated value for the independent variable or, mathematically, 

ei = yi – ŷi. 

This error is called “residual” (Regression Analysis, 2017).  

Multiple linear regression, can be used to analyze two or more independent 

variables and three or more parameters. For a model with three independent variables, 

the independent variable will look like, 

  

1 0
ˆ

i iy x  

3 2

3 2 1 0i i i i iy x x x e       
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Where,  i = {1,…,n}. 

For  p independent variables , we have (p + 1) parameters. The error estimation is 

similar to simple linear regression. (Regression Analysis, 2017). 

 

2.6.1 Method of Least Squares  

The least squares (LS) method was the primary form of regression analysis, developed 

in the early nineteenth century. This method minimizes the sum of squared errors 

(SSE), also known as residuals sum of squares (RSS). From simple linear regression, 

, 

The estimates for the parameters  and β are construed as,  

  

 , 

where  is the mean of the x values,  is the mean of the y values, and n is the 

number of data points. The error variance  is then calculated using 

, 

Which is called the mean square error. The parametric errors are calculated by using 

their respective standard deviations β and ,  
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. 

Parametric errors, β and  are used to determine confidence intervals and hypothesis 

testing analysis (Regression Analysis, 2015). 

Least squares are usually used in forecasting and fitting problems. In forecasting, it 

gives an estimate for future behavior of data when it the assumption is that the 

dependent variables are subject to the same types of residual observations like in the 

model creation. For true relationship fitting, the independent variable is believed to 

contain negligible or zero error. That is, only the dependent variables are estimated for 

errors (Gorard, 2004).  

For Least squares, the sum of the errors from the mean always equals zero, 

. 

And also, sum of the squares of errors from the mean is always less than the sum of the 

squares of the same vertical errors taken from any other y value. That is, 

, 

Here, yO is a y value not equal to the mean as least squares minimizes this error. Hence, 

error is estimated as the vertical distance between the value and the mean (Kenney, 

1947).  
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2.6.2 Least squares fitting of planes 

A best fitting plane to a set of points can be determined using the least squares 

regression method with an assumption that z is functionally dependent on the x and y. 

For a set of samples, 

(𝑥𝑖 ,𝑦𝑖, 𝑧𝑖) where i=1, 2, …. m 

A, B, and C is determined so that the plane z = Ax + By + C best fits the samples and 

the sum of the squared errors between the 𝑧𝑖 and the plane A𝑥𝑖+B𝑦𝑖  +C is minimized. 

Here, that the error is measured only in the z-direction.  

The error function for the least squares minimization is defined as, 

𝐸(𝐴, 𝐵, 𝐶)  =  ∑[(A𝑥𝑖 + B𝑦𝑖  + C) − 𝑧𝑖  ]
2

𝑚

𝑖=1

 

Where E is nonnegative and in the shape of hyperparaboloid whose vertex occurs when 

the gradient satisfies ∇E = (0, 0, 0) for which a system of three linear equations in A, B, 

and C is derived. Hence, 

[
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[
𝐴
𝐵
𝐶
] =

[
 
 
 
 
 
 ∑ 𝑥𝑖𝑧𝑖

𝑚

𝑖=1

∑ 𝑧𝑖𝑦𝑖

𝑚
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Which gives us, z = Ax + By + C. This can be an ill-conditioned linear system and 

hence, averages  �̅� =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1  , �̅� =

1

𝑚
∑ 𝑦𝑖

𝑚
𝑖=1   and 𝑧̅ =

1

𝑚
∑ 𝑧𝑖

𝑚
𝑖=1   are computed and 

subtracted from the data, and the fitted plane is 𝑧 − 𝑧̅ =  𝐴(𝑥 − �̅�)  +  𝐵(𝑦 − �̅�) where, 

[
𝐴
𝐵
] = [

∑ (𝑥𝑖 − �̅�)2𝑚
𝑖=1 ∑ (𝑥𝑖−�̅�)(𝑦𝑖 − �̅�)𝑚

𝑖=1

∑ (𝑥𝑖−�̅�)(𝑦𝑖 − �̅�)𝑚
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑚

𝑖=1

]

−1

[
∑ (𝑥𝑖−�̅�)(𝑧𝑖 − 𝑧̅)𝑚

𝑖=1

∑ (𝑥𝑖−�̅�)(𝑧𝑖 − 𝑧̅)𝑚
𝑖=1

]  

(Least Square fitting of data, 1999)  
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CHAPTER 3: EXPERIMENTAL SET- UP AND METHODS USED 

In this chapter, we will discuss how the experiment was set-up and the modelling 

techniques used to design and validate our model.  

 

3.1 Experimental Model 

There are two objectives of this study are: 

1. To develop a simple method to inspect parallelism, and   

2. To investigate the effect of the sampling techniques and sample sizes used in the 

computation of the datum feature, and in the verification of the inspected 

(related) surface.  

 

3.1.1 Sampling Strategy 

There are many sampling methods which can be employed while working with a CMM. 

The sampling techniques used for this study are chosen from these commonly used 

methods of sampling in coordinate metrology. We have chosen to use the simple 

random sampling technique and the aligned systematic sampling technique. We 

compare these two techniques for evaluating their effectiveness in verifying parallelism 

using CMMs.  

1. Aligned Systematic Sampling 

The aligned systematic sampling technique is a uniform model of sampling. The 

surface of the part being measured is divided into in to 𝑛 × 𝑛 rows and columns 

of equal length and width. The matrix grid for two-dimensional aligned 

systematic sampling is shown in figure 17.  
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Figure 15: Coordinates of Aligned Systematic Sampling 

 

• The measure of the width of each column and each row depends on the length 

and width of the part. These measures is represented as 𝑑𝑐 & 𝑑𝑟 where, the 

former is the height of each column and the latter is the height of each row. The 

measure is given by, 𝑑𝑐 =
𝑏

𝑛
 𝑎𝑛𝑑 𝑑𝑟 =

𝑙

𝑛
 where b, l are the length and width of 

the part. The first sample is collected at the point (𝑑𝑐,  𝑑𝑟) on the matrix grid. 

The rest of the samples are collected using a systematic incremental approach 

with the deviation from 𝑑𝑐  𝑎𝑛𝑑  𝑑𝑟 on the x and y coordinate axis accordingly. 

Incremental step value for consecutive points depend on sample size. 

The approach uses the form, (𝑥𝑑𝑐 , 𝑦𝑑𝑟) to attain sample points throughout the 

grid where 𝑥 = 1,2, ……𝑛 − 1 𝑎𝑛𝑑 𝑦 = 1,2……𝑛 − 1 for maximum number of 

samples. 
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2. Simple Random Sampling  

This technique is achieved by collecting n sample points from a population of N 

points where each point has an equal chance of being selected. For this reason, 

we generated a set of random coordinates within the specified range for 𝑥 𝑎𝑛𝑑 𝑦 

(which depends on the alignment and dimensions of the part) for each part. 

These coordinates were then fed to the CMM program to determine the exact 

location on the 3-D surface and to collect data accordingly.  

 

3.1.3 Sample Sizes 

According to Kim et al. (2000), a sample size beyond the size of 64 shows the most 

accurate inspection results while measuring flatness of a surface.  

Samples were collected in order to show the effect of sample sizes on the inspection. 

Hence, three samples of 10, 33 and 100 samples were collected for each of the two 

surfaces of each part for each sampling technique. 

 

3.1.4 Necessary Software 

We employed four different computer programs in our study. The first software used 

was MS Excel which helped in random coordinate generation for random sampling, 

representation of collected data, and also representation of analyzed data and results.  

CMM software program PC-DMIS by Hexagon Metrology was used to collect sample 

data for systematic aligned sampling and random sampling methods, using the PFx 

Microval 454 CMM system. This software aided in automated DCC collection of 

sample points for all parts inspected. The alignment of the parts under inspection was 
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done manually as required by the program. After each alignment, the software 

recognized the surface and geometry of the part under inspection and was able to collect 

the data automatically by employing a coded program and manual alignment.  The 

coded program is attached in Appendix C. This code was developed by Kim et al. 

(2000) and was modified to the current specifications.  

This thesis also employed MATLAB version R2017a to analyze the samples and 

calculate the error value for the inspected parts. The mathematical approach to inspect 

parallelism was coded in MATLAB which provided the error function based on the 

samples collected. The coded program file for MATLAB is attached in Appendix B. 

Another statistical analysis software called Minitab was used for data analysis and 

hypothesis testing. 

 

3.1.3 Necessary Equipment 

The Brown & Sharpe®, MicroVal™ PFx 454 CMM was used to inspect parallelism of 

the sample parts. The MicroVal™ PFx 454 is a fixed bridge CMM which utilizes the 

PC-DMIS software for computer control. The parts were clamped and fixed on the 

worktable by clamping tools to ensure that the parts are rigidly fixed and do not move 

during sample collection. The dedicated remote jogbox was used to align samples. 
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CHAPTER 4: EXPERIMENTAL DESIGN  

 

4.1 Inspection Samples 

The samples used in this study are rectangular blocks of aluminum metal. A total of 15 

sample blocks with varying top plane angles were fabricated and were used to inspect 

parallelism. The dimensions of each block was set at 2.5 × 2.5 × 0.5 𝑖𝑛𝑐ℎ𝑒𝑠^3. We had 

five replicates for each top plane angle. The top plane angles were set at 0°, 5° and 10°. 

The tolerance of the machined blocks was determined to be ±0.010 inches. 

 

4.2 Sampling Design 

 

4.1.2 Sampling Techniques 

We use two different approaches to collect samples: simple random sampling and 

systematic aligned sampling. 

 

4.1.2 Selection of Sample Sizes 

Samples were collected in order to study the effect of sample sizes on the inspection. 

Hence, three levels of sample sizes (10, 33 and 100 samples) were collected for each of 

two surfaces (datum feature, inspected feature) for each part, for each sampling 

technique. For this experiment, thus we have nine levels of sample size combinations 

which are achieved by the combination of three sample sizes for each of the two 

surfaces. The levels are as described in the table below 
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Table 2: Levels of Sampling 

Level Sample (𝒏𝟏&𝒏𝟐) 

𝒏𝟏- Sample size for datum 

feature 

𝒏𝟐- Sample size for 

inspected feature 

 

Level 1 10 & 10 

Level 2 10 & 33 

Level 3 33 & 10 

Level 4 33 & 33 

Level 5 10 & 100 

Level 6 100 & 10 

Level 7 33 & 100 

Level 8 100 & 33 

Level 9 100 & 100 

  

4.3 Experimental Response Parameter  

We have selected our error function as our response parameter which will tell us about 

the effect of our factors on the parallelism inspection. This error function is the 

parallelism tolerance, and is measured by the distance between the minimum spacing 

planes that encompass the farthest deviations of the inspected (related) feature. 
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4.4 Design of Experiment 

A design is considered with four factors of independent variables that affect the 

dependent variable. The four factors have levels and are identified as: 

1. Top Plane Angle (0, 5 and 10) 

2. Sampling Technique (Aligned and Random) 

3. Sample Size for Datum (10, 33 and 100) 

4. Sample Size for Top (10, 33 and 100) 

The dependent variable is the Parallelism tolerance  

Table 3: Factors of Experimental Model 

Dependent Variable: 

Parallelism 

Tolerance 

Factor A Factor B Factor C Factor D 

Top Plane 

Angle 

Sampling 

Technique 

Sample 

Size for 

Datum 

Sample 

Size for 

Top 

 

The factors have levels. The first factor has 3 levels, second has 2, third and fourth both 

have 3 levels as mentioned above. This gives us a 𝟑 × 𝟐 × 𝟑 × 𝟑 factorial design. We 

also have 5 similar parts for each top plane angle which gives us 5 replicates of each 

reading. We test the effect of each factor on our dependent variable.  

 

4.5 Experiment Procedure 

The datum surface is fit into a best fitting plane using the least squares method. The 

inspected feature is then enveloped by minimum separation planes that contain the 

maximum deviation between the points. The error is determined by measuring the 

distance between these separation planes. The effect of sampling size and technique is 
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studied by collecting samples of different sizes for all sample blocks in an aligned and 

also random manner. This method is represented in the figure below: 

 

 

Figure 16: Inspection Design 

 

4.5.1 Suppositions 

We have made the following suppositions while designing our experiment. These 

suppositions pertain to both measurement and analysis stages of the model. 

1. One of the surfaces under inspection is considered as an assumed datum feature 

and the parallelism between the two surfaces (Datum feature and inspected 

surface) is measured using this supposition. 

2. The average value of error was assumed to be the estimated deviation of the 

inspected surface from its absolute theoretical value. This is called the 

parallelism tolerance. 
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4.5.2 Sample Collection 

The first step of this experiment is to collect the samples using the Brown & Sharpe®, 

MicroVal™ PFx 454 CMM. The data is collected from each of the 15 blocks for both 

the datum feature and inspected feature for the mentioned sample sizes through the 

adopted sampling techniques. The two sides of dimensions 2.5 × 2.5 were the sampling 

areas. For samples with 0° top plane angle, it is not necessary to determine the datum 

feature side of the two surfaces but while sampling for the 5° and 10° top plane angle 

we assume the tapered side as the inspected feature and the other surface as the datum 

feature. The data is collected in in three-dimensional form with 𝑥, 𝑦, 𝑧 coordinates for 

each sample point. More than 2 surfaces can be measured to be parallel using our model 

but we have only considered two for this study and inspected for parallelism between 

the two surfaces. 

 

4.5.3 Creation of Best fitting Planes 

A best fitting plane is calculated for the datum feature by least square plane fitting using 

the sampling points for that surface. The planes are fit using the regression least squares 

fitting algorithm using a MATLAB code. 

The best fitting plane to a set of collected sample points is determined using the least 

squares regression method with an assumption that z is functionally dependent on the x 

and y. For our given set of samples, 

(𝑥𝑖 ,𝑦𝑖, 𝑧𝑖) where i=1, 2, …. m 
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A, B, and C is determined so that the plane z = Ax + By + C best fits the samples and 

the sum of the squared errors between the 𝑧𝑖 and the plane A𝑥𝑖+B𝑦𝑖  +C is minimized. 

Here, that the error is measured only in the z-direction.  

The error function for the least squares minimization is defined as, 

𝐸(𝐴, 𝐵, 𝐶)  =  ∑[(A𝑥𝑖 + B𝑦𝑖  + C) − 𝑧𝑖  ]
2

𝑚

𝑖=1

 

Where E is nonnegative and in the shape of hyperparaboloid whose vertex occurs when 

the gradient satisfies ∇E = (0, 0, 0) for which a system of three linear equations in A, B, 

and C is derived. Hence, 

[
 
 
 
 
 
 ∑ 𝑥𝑖

2
𝑚

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑚

𝑖=1
∑ 𝑥𝑖

𝑚

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑚

𝑖=1
∑ 𝑦𝑖

2
𝑚

𝑖=1
∑ 𝑦𝑖

𝑚

𝑖=1

∑ 𝑥𝑖

𝑚

𝑖=1
∑ 𝑦𝑖

𝑚

𝑖=1
∑ 1

𝑚

𝑖=1 ]
 
 
 
 
 
 

[
𝐴
𝐵
𝐶
] =

[
 
 
 
 
 
 ∑ 𝑥𝑖𝑧𝑖

𝑚

𝑖=1

∑ 𝑧𝑖𝑦𝑖

𝑚

𝑖=1

∑ 𝑧𝑖

𝑚

𝑖=1 ]
 
 
 
 
 
 

 

Which gives us, z = Ax + By + C. This can be an ill-conditioned linear system and 

hence, averages  �̅� =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1  , �̅� =

1

𝑚
∑ 𝑦𝑖

𝑚
𝑖=1   and 𝑧̅ =

1

𝑚
∑ 𝑧𝑖

𝑚
𝑖=1   are computed and 

subtracted from the data, and the fitted plane is 𝑧 − 𝑧̅ =  𝐴(𝑥 − �̅�)  +  𝐵(𝑦 − �̅�) where, 

[
𝐴
𝐵
] = [

∑ (𝑥𝑖 − �̅�)2𝑚
𝑖=1 ∑ (𝑥𝑖−�̅�)(𝑦𝑖 − �̅�)𝑚

𝑖=1

∑ (𝑥𝑖−�̅�)(𝑦𝑖 − �̅�)𝑚
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑚

𝑖=1

]

−1

[
∑ (𝑥𝑖−�̅�)(𝑧𝑖 − 𝑧̅)𝑚

𝑖=1

∑ (𝑥𝑖−�̅�)(𝑧𝑖 − 𝑧̅)𝑚
𝑖=1

]  

(Least Square fitting of data, 1999) 

Here, 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 define the normal vector ‘n’ to the plane,  

𝑛 =  [𝐴 𝐵 𝐶] 

We find ‘n’ for both surfaces for each part, sample size and sampling technique by 

employing MATLAB. This step is repeated for all necessary factors. 
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4.5.3 Creation of secondary reference planes 

After the creation of the best fitting plane for the datum feature, we find the lowest 

point and the highest point on the inspected feature w.r.t the datum plane.  

The two minimum separation planes are drawn from the lowest and the highest point of 

the inspected feature which are parallel to the fitted datum feature. To find the equation 

of these planes, we use the normal vector of the best fitting datum feature and the points 

that we determined on the inspected feature. So, if n is the normal vector of the datum 

plane, and (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙) and (𝑥ℎ, 𝑦ℎ, 𝑧ℎ) are the coordinates of the lowest and highest 

points on the top plane, the equation of the minimum separation planes are derived from 

the following, 

𝑛(𝑥 − 𝑥𝑙 , 𝑦 − 𝑦𝑙 , 𝑧 − 𝑧𝑙)  = 0    and   𝑛(𝑥 − 𝑥ℎ, 𝑦 − 𝑦ℎ, 𝑧 − 𝑧ℎ)  = 0.  

This is done using the MATLAB code to find the error distance (parallelism tolerance). 

 

4.5.4 Calculating Parallelism Tolerance  

The error distance is determined by calculating the distance between the two parallel 

minimum distance planes. Mathematically, 

𝐷 =
|𝑎1𝑥2+𝑏1𝑦2 + 𝑐1𝑧2 + 𝑑1|

√𝑎1
2 + 𝑏1

2 + 𝑐1
2

 

Where, 𝑎1𝑏1𝑐1 𝑎𝑛𝑑 𝑑1 are taken from the equation of the first plane and 𝑥2, 𝑦2,𝑧2 are 

coordinates of a point on the second plane. 

The distance ‘D’ between these 2 planes remains the same throughout all points on both 

planes. 

We repeat this process for calculating distance between planes created with the three 

sampling sizes that we have. So 3 planes are fit for this experiment for a single 
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sampling technique on a single part. There are 3 planes for the datum feature which has 

one plane each fit from 10, 33 and 100 sample points which are compared with the 3 

different envelopes of the inspected feature which again is generated by 3 different 

sample sizes of 10, 33 and 100.  We compare all 3 planes fit for datum feature with the 

3 envelopes for the inspected feature. This gives us 9 parallelism values depending on 

the sample size combinations. This entire process is repeated to calculate the parallelism 

tolerance for aligned and random measurements.   
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CHAPTER 5: RESULTS AND ANALYSIS 

In this chapter we will discuss the results and analysis of our experimental study. We 

also visually represent the same to observe the results of our experiment. 

 

5.1 Results and Data Representation 

 

5.1.1 Parallelism Measurement 

Parallelism was measured using a coordinate measuring machine for the 15 sample 

blocks of aluminum, 5 replicates of three geometries (varying top plane angle) 

Table 4 to Table 6 show the calculated parallelism for the 15 parts measured using 

CMM with nine-levels of intricacy based on sample size and 2 levels of intricacy based 

on sampling technique. In the table, ‘top’ is used for the inspected feature and ‘datum’ 

is used for the datum feature. All units of experimental analysis are in mm. 
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Table 4: Parallelism for 0°- Part 1 to 5 

 
Units in mm 

  

ALIGNED RANDOM

10 33 100 10 33 100

10 0.5777 0.5778 0.5778 10 0.499 0.4989 0.4989

33 0.5777 0.5778 0.5778 33 0.5163 0.5162 0.5162

100 0.5777 0.5778 0.5778 100 0.5779 0.5778 0.5778

ALIGNED RANDOM

10 33 100 10 33 100

10 0.6102 0.6102 0.6102 10 0.5667 0.5664 0.5664

33 0.6363 0.6362 0.6361 33 0.6113 0.6109 0.6111

100 0.6513 0.6513 0.6513 100 0.6515 0.6511 0.6512

ALIGNED RANDOM

10 33 100 10 33 100

10 0.2971 0.2974 0.2975 10 0.119 0.119 0.1189

33 0.389 0.3894 0.3894 33 0.3724 0.3723 0.3722

100 0.389 0.3894 0.3894 100 0.3896 0.3896 0.3894

ALIGNED RANDOM

10 33 100 10 33 100

10 0.2095 0.2091 0.2092 10 0.1568 0.1566 0.1567

33 0.2507 0.2503 0.2505 33 0.2566 0.2564 0.2565

100 0.2598 0.2594 0.2596 100 0.2597 0.2594 0.2596

ALIGNED RANDOM

10 33 100 10 33 100

10 0.2186 0.2184 0.2185 10 0.257 0.2565 0.2566

33 0.2376 0.2374 0.2376 33 0.2186 0.2182 0.2183

100 0.2599 0.2597 0.2597 100 0.257 0.2565 0.2566
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Table 5: Parallelism for 5°- Part 1 to 5 

 
Units in mm 

 

 

  

ALIGNED RANDOM

10 33 100 10 33 100

10 4.659 4.6591 4.6592 10 5.2701 5.2703 5.2703

33 5.573 5.5731 5.5731 33 5.2873 5.2875 5.2875

100 5.6328 5.6328 5.6329 100 5.6326 5.6329 5.6329

ALIGNED RANDOM

10 33 100 10 33 100

10 5.3339 5.3333 5.3333 10 4.4126 4.4124 4.4126

33 5.8903 5.8897 5.8897 33 5.908 5.9078 5.9079

100 6.1048 6.1042 6.1042 100 5.996 5.9959 5.996

ALIGNED RANDOM

10 33 100 10 33 100

10 4.6085 4.6087 4.6087 10 5.0081 5.0082 5.0082

33 5.1352 5.1353 5.1354 33 5.1455 5.1455 5.1455

100 5.1665 5.1667 5.1667 100 5.1667 5.1668 5.1667

ALIGNED RANDOM

10 33 100 10 33 100

10 4.676 4.6757 4.6756 10 5.0602 5.0601 5.0599

33 5.5985 5.598 5.5979 33 5.7118 5.7116 5.7114

100 5.7779 5.7773 5.7773 100 5.7777 5.7775 5.7773

ALIGNED RANDOM

10 33 100 10 33 100

10 5.8038 5.8036 5.8242 10 2.738 2.7414 2.7415

33 5.9236 5.9234 5.9352 33 6.5038 6.5122 6.5118

100 6.4892 6.489 6.5117 100 6.5038 6.5122 6.5118
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Table 6: Parallelism for 10°- Part 1 to 5 

 
Units in mm 

 

  

ALIGNED RANDOM

10 33 100 10 33 100

10 9.412 9.4114 9.41 10 8.96 8.8775 8.882

33 10.37 10.372 10.37 33 10.65 10.546 10.56

100 10.56 10.561 10.56 100 10.65 10.546 10.56

ALIGNED RANDOM

10 33 100 10 33 100

10 9.38 9.3784 9.379 10 8.989 10.74 8.889

33 10.38 10.383 10.38 33 10.69 10.591 10.58

100 10.52 10.518 10.52 100 10.84 10.74 10.73

ALIGNED RANDOM

10 33 100 10 33 100

10 9.38 9.3784 9.379 10 9.901 9.8963 9.894

33 10.38 10.383 10.38 33 10.42 10.426 10.43

100 10.52 10.518 10.52 100 10.52 10.518 10.52

ALIGNED RANDOM

10 33 100 10 33 100

10 8.846 8.8458 8.846 10 0.271 0.2711 0.271

33 10.17 10.171 10.17 33 3.339 3.3388 3.339

100 10.17 10.171 10.17 100 9.089 9.0895 9.089

ALIGNED RANDOM

10 33 100 10 33 100

10 9.723 9.7238 9.724 10 6.963 6.9627 6.963

33 10.73 10.727 10.73 33 10.91 10.91 10.91

100 10.91 10.91 10.91 100 10.85 10.85 10.85
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Table 7: Mean and Standard deviation of parallelism for inspected parts. 

S
a

m
p

li
n

g
 

te
ch

n
iq

u
e 

                                                                     Sample Parts                                                                                    

Unit: mm 

O Degrees 5 Degrees 10 degrees 

P 1  P 2 P 3 P 4 P 5 P 1  P 2 P 3 P 4 P 5 P 1  P 2 P 3 P 4 P 5 

A
li

g
n

ed
 

S
y

te
m

a
ti

c 

S
a
m

p
li

n
g
 

M
ea

n
 

0.5777

7 

0.6325

7 

0.3586

2 

0.2397

9 0.2386 

5.2883

3 

5.7759

3 

4.9701

9 

5.3504

7 

6.0781

9 10.114 

10.093

7 

10.093

7 

9.7294

4 

10.453

6 

S
td

. 
D

 

0.0000

5 0.018 

0.0459

7 

0.0232

3 

0.0178

9 

0.4726

3 

0.3445

8 

0.2715

1 

0.5119

5 

0.3180

3 

0.5336

1 

0.5391

1 

0.5391

1 

0.6627

8 

0.5532

1 

R
a
n

d
o
m

 

S
a
m

p
li

n
g
 

M
ea

n
 

0.531 

0.6096

2 0.2936 

0.2242

6 

0.2439

2 

5.3968

2 5.4388 5.1068 

5.5163

9 

5.2529

4 

10.025

3 

10.310

8 

10.280

1 

4.2330

3 

9.5742

1 

S
td

. 
D

 

0.0359

1 

0.0367

2 

0.1311

9 

0.0506

8 

0.0191

7 

0.1771

4 

0.7706

4 

0.0745

4 

0.3434

3 

1.8844

9 

0.8404

2 

0.7821

1 

0.2898

2 3.8769 

1.9587

6 

 

  



 

 

5
4
 

 



 

 

5
5
 

 



 

 

5
6
 



 

 

5
7
 

 

Figure 17: Aligned vs. Random: Parallelism plot for inspected parts 
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From the above tables and graphs, parallelism was measured in terms of ‘error’ which is 

the distance between the minimum distance planes. The theoretical value of the ‘error 

distance’ for two parallel surfaces should be zero. But for practical reasons, we have 

estimated the error value to be between 0.2 to 0.5 mm based on the tolerance limit. The 

following observations were made for the inspected parallelism: 

 3 out of the 5, 0° degree top plane angle sample blocks were found to be in spec 

with respect to the manufacturer’s specified tolerance level. On an average, the 

‘error distance’ for the parallel parts ranged between 0.22 to 0.63 mm. That 

means, out of the 15 parts inspected, we found out that 3 parts were parallel with 

the specified tolerance. 

 The 5° and the 10° degree top plane angle parts showed significant ‘error 

distance’ which was expected.  

 

5.1.2 Sampling Method 

From the tabulated results and plots of the experiment, the following was observed 

regarding the effect of sampling method on our inspection model: 

 There is more variability in parallelism values in random sampling than that in 

aligned sampling. 

 For smaller sample sizes, random sampling does not seem to be a good 

sampling technique. At lower sample point levels, the deviation within the 

technique, and especially when compared to the results of aligned sampling, is 

quite significant. 
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 For smaller sample sizes, aligned sampling provides a more accurate estimate 

of parallelism. 

 For non-parallel parts, aligned sampling can detect the deviation even with 

smaller sample sizes. 

 For larger sample sizes, the error value for random and aligned are very close. 

Hence, the deviation between these values is small when compared to other 

levels. This tells us that for larger samples, both random and aligned are likely 

to be both equally effective.  

 On an average, the deviation of the distance error within levels for a single 

block is less in aligned sampling compared to random sampling. 

 

5.1.3 Sample Size 

 There is considerable variation between the error values among different levels 

within the same technique due to the sample size combinations used. 

 The error value is the most consistent for the sample size of 100 for the 

inspected feature when compared to the rest of the levels and sizes.  

 The least deviation in the error value is exhibited at 100-100 (Level 9) between 

both techniques. 

 The error value is inconsistent at smaller sample size values, especially where 

sample size for the top surface is concerned. 

 On an average, better and more consistent results are exhibited at higher 

sampling levels for both sampling techniques. 
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 For random sampling, larger sample size show more consistent error values.  At 

smaller levels, the deviations are extreme in some cases. 

 

5.2 Analysis of Results 

We analyze a full factorial design with four factors (3 × 2 × 3 × 3). These factors have 

mixed levels. The design is as explained in section 4.4.  

Factors are identified as: 

A. Top Plane Angle (0, 5 and 10)  

B. Sampling Technique (Aligned and Random) 

C. Sample Size for Datum (10, 33 and 100) 

D. Sample Size for Top (10, 33 and 100) 

For all experiments the confidence level is set to 95%, which gives us  𝛼 = 0.05. We 

also have 5 replicates of each reading.  

Our Hypothesis for the test is as follows: 

Factor A, 𝐻𝑜:  𝜇0 = 𝜇5 = 𝜇10 and 𝐻1:  𝜇0 ≠ 𝜇5 ≠ 𝜇10 

Factor B, 𝐻𝑜:  𝛽𝐴 = 𝛽𝑅 and 𝐻1:  𝛽𝐴 ≠ 𝛽𝑅 

Factor C, 𝐻𝑜:  𝛾10 = 𝛾33 = 𝛾100 and 𝐻1:   𝛾10 ≠ 𝛾33 ≠ 𝛾100 

Factor D, 𝐻𝑜:  𝜃10 = 𝜃33 = 𝜃100 and 𝐻1:   𝜃10 ≠ 𝜃33 ≠ 𝜃100 

Interactions: 

AB, 𝐻𝑜:  (𝜇𝛽)𝑖𝑗 = 0 and 𝐻1: (𝜇𝛽)𝑖𝑗 ≠ 0   

AC, 𝐻𝑜:  (𝜇𝛾)𝑖𝑘 = 0 and 𝐻1: (𝜇𝛾)𝑖𝑘 ≠ 0   

BC, 𝐻𝑜:  (𝛽𝛾)𝑗𝑘 = 0 and 𝐻1: (𝛽𝛾)𝑗𝑘 ≠ 0   

AD, 𝐻𝑜:  (𝜇𝜃)𝑖𝑙 = 0 and 𝐻1: (𝜇𝜃)𝑖𝑙 ≠ 0   
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BD, 𝐻𝑜:  (𝛽𝜃)𝑗𝑙 = 0 and 𝐻1: (𝛽𝜃)𝑗𝑙 ≠ 0   

CD, 𝐻𝑜:  (𝛾𝜃)𝑘𝑙 = 0 and 𝐻1: (𝛾𝜃)𝑘𝑙 ≠ 0   

BCD, 𝐻𝑜:  (𝛽𝛾𝜃)𝑙𝑗𝑘 = 0 and 𝐻1: (𝛽𝛾𝜃)𝑙𝑗𝑘 ≠ 0   

ABD, 𝐻𝑜:  (𝜇𝛽𝜃)𝑖𝑗𝑙 = 0 and 𝐻1: (𝜇𝛽𝜃)𝑖𝑗𝑙 ≠ 0   

ABC, 𝐻𝑜:  (𝜇𝛽𝛾)𝑖𝑗𝑘 = 0 and 𝐻1: (𝜇𝛽𝛾)𝑖𝑗𝑘 ≠ 0   

ABCD, 𝐻𝑜:  (𝜇𝛽𝛾𝜃)𝑖𝑗𝑘𝑙 = 0 and 𝐻1: (𝜇𝛽𝛾𝜃)𝑖𝑗𝑘𝑙 ≠ 0   

Where 𝜇, 𝛽 , 𝛾 𝑎𝑛𝑑 𝜃 are means and 𝑖, 𝑗 , 𝑘 𝑎𝑛𝑑 𝑙 are the levels of the corresponding 

factors 𝐴, 𝐵 , 𝐶 𝑎𝑛𝑑 𝐷. 

 

Table 8: Factor Table 

Factor Information 

Factor              Levels     Values 

PARTS            3            0, 5, 10 

TECHNIQUE  2             A, R   

DATUM          3           10, 33, 100 

TOP                 3            10, 33, 100 

 

 

Table 9: ANOVA Table  

Analysis of Variance 

Source                          DF   Adj SS   Adj MS  F-Value  P-Value   

Model                           53   3885.69    73.31       44.10     0.000   

  Linear                          7   3812.12   544.59     327.56     0.000   

    PARTS                     2    3736.30 1868.15   1123.67     0.000   

    TECHNIQUE           1       14.53      14.53        8.74      0.003   

    DATUM                   2         0.02        0.01         0.01     0.994   

    TOP                          2        61.26     30.63        18.42     0.000   
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Figure 18: Main Effects Plot for Analysis 

 

From the above analysis, we see no significant effect of the datum on our parallelism. 

 

 

Figure 19: Interaction Plot for Analysis 
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The analysis results of the factorial design based on the ‘p’ value showed significant 

difference for top plane angle and sample size for top. Sampling techniques, sample size 

for datum and the interactions between the factors did not show any significant effects. 

Therefore, we fail to reject our null hypothesis for all but A and C. 
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CHAPTER 6: CONCLUSION AND FUTURE SCOPE 

 

6.1 Conclusion 

After the implementation of the model and the analysis, we find that only 3 out of the 

15 parts measured exhibit parallel behavior between the inspected feature and datum 

feature. 10 out of the 15 parts were expected to fail the test due to the top plane angle of 

the parts. However, the two out of the five parts that were designed to exhibit 

parallelism also failed our test. This could be due to a variety of reasons. The reasons 

could be but are not limited to machining or sampling errors. The resulting table for the 

15 parts inspected is listed below. 

Table 10: Inspection Table 

INSPECTION RESULT 

0° 

PART 1 FAIL 

PART 2 FAIL 

PART 3 PASS 

PART 4 PASS 

PART 5 PASS 

5° 

PART 1 FAIL 

PART 2 FAIL 

PART 3 FAIL 

PART 4 FAIL 

PART 5 FAIL 

10° 

PART 1 FAIL 

PART 2 FAIL 

PART 3 FAIL 

PART 4 FAIL 

PART 5 FAIL 

 

Out of the four factors that we considered, only two factors have an effect on the 

Parallelism tolerance.  
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 Factor 1-Sampling Size for Top: This factor has a significant impact on the error 

analysis. Larger sample sizes gave more consistent and efficient results when 

compared to samples of smaller size. The sampling level of 100-100, which had 

100 samples for both the inspected and datum feature gave us the consistent 

value of the error. This value was repeated by both sampling techniques at this 

level. Statistical analysis using ANOVA also showed difference in the means 

across various sample sizes. The mean increases as we move from 10 to 100 

sample size.  

 Factor 2-Top Plane Angle: The result of the ANOVA shows that there is 

significant difference between the means across the levels of this factor. The 

mean value increases as we move from 0 to 10 which proves the validity of our 

inspection method. 

There was no significant effect of sampling technique and sample size for datum on 

our parallelism value. By the findings of Kim et al. (2000) and our study, we can 

conclude that parallelism is best measured with larger sample sizes that have been 

selected randomly as aligned sampling might have systematic errors which might go 

undetected with larger samples. For smaller sample sizes, aligned sampling can find 

efficient results to show deviation from parallelism. 

 

6.2 Application and Future Scope 

The model that we have proposed could be implemented in many inspection techniques 

in manufacturing. It can be specified as reference models to measure parallelism, and 

reference units to manufacture other parts based on this method. This model can also be 
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applied to inspect various orientation features in coordinate metrology inspection such 

as perpendicularity and angularity.  

This experiment can also be extended by adding more levels to our factors. Hence, 

instead of 3 sample sizes for each surface, we could have 5 or more sample sizes with 

additional refinements based on manufacturing processes employed to make parts. We 

could also add more stratified sampling techniques, and investigate their comparative 

efficiency, in measuring parts using CMM sampling. Lastly, we can increase the 

number of sampling points, by increasing replication, and larger spreads of sampling 

surfaces. 

 

6.3 Limitations 

This model has a few limitations as the parts inspected were free from any projections, 

holes, and other artifacts and defects. It remains to be seen how this model will perform 

in an event that the parts under inspection have such complexities. Also, the surfaces 

under inspection have to be placed in a manner such that both the surfaces can be 

measured at the same time. If the datum surface is aligned on the bed of the CMM, an 

implicit datum gets created. Hence, the clamping position has to be such that both the 

surfaces can be easily accessed for measurement in one setting, without introducing 

positioning/orientation errors. 

Also, the number of parts inspected for this study was much less than the specified 

statistical number (central limit theorem). This sample was further compromised due to 

the fact that 66.66% of our parts were deliberately designed to fail the parallelism test. 

So for each degree of taper, we only had 5 replicates.   
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Appendix A: MATLAB CODE FOR ERROR DISTANCE 
 

xyz=xlsread(FileName1.xlsx');   %%datum plane 

x = xyz(:,1);  

y = xyz(:,2); 

z = xyz(:,3); 

[a,b,c] = bilinreg(x, y, z)   %%function call for lest square plane datum 

n = [a,b,c] %% normal vector of datum 

xyz1=xlsread(FileName2.xlsx')   %%top plane 

x1 = xyz1(:,1); 

y1 = xyz1(:,2); 

z1 = xyz1(:,3); 

[a1,b1,c1] = bilinreg1(x1, y1, z1)   %%function call for lest square plane top 

minIdx1 = find(z1==min(z1))   %%index of row containing smallest z from top plane 

maxIdx1 = find(z1==max(z1))   %%index of row containing largest z from top plane 

minRow1 = xyz1(minIdx1,:)    %%lowest point on top plane 

maxRow1 = xyz1(maxIdx1,:) %%highest point on top plane 

n1 = [a1,b1,c1]  %%normal of top plane 

d= dot(n, minRow1)   %%to calculate value of d in equation of lower secondary plane 

dis= dot(n,maxRow1)-d  

num=abs(dis)   %%finding distance between top higher and lower secondary plane 

deno=norm(n) 

D=num/deno 
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function [a,b,c]=bilinreg1(x,y,z)     %% Least Square Plane fitting for Datum 

mat=[ mean(x.^2) mean(x.*y) mean(x) ; 

          mean(x.*y) mean(y.^2) mean(y) ; 

          mean(x) mean(y) 1 ]; 

vec= [ mean(x.*z) 

          mean(y.*z) 

          mean(z) ]; 

res=(inv(mat)*vec); 

a=res(1); 

b=res(2); 

c=res(3); 

end 

function [a1,b1,c1]=bilinreg(x1,y1,z1)     %% Least Square Plane fitting for Top 

mat1=[ mean(x1.^2) mean(x1.*y1) mean(x1) ; 

          mean(x1.*y1) mean(y1.^2) mean(y1) ; 

          mean(x1) mean(y1) 1 ]; 

vec= [ mean(x1.*z1) 

          mean(y1.*z1) 

          mean(z1) ]; 

res1=(inv(mat1)*vec); 

a1=res1(1); 

b1=res1(2); 

c1=res1(3);  
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Appendix B: CODE FOR SAMPLING IN CMM  

Code developed by Kim et al. (2000) and modified to fit sampling requirements. 

%   To create Aligned systematic sampling sequence. 

file=input (‘Filename’ ,’s’) 

fn=fopen (file, ‘at+’) ; 

nump=1; 

N=input   (‘input the number of the total samples N=’) ; 

xi=0;           %initial value of coordinate of x-axis 

x=1;            %initial # of the sample points of y-axis 

z=1;            %initial # of the sample points of x-axis 

r=.001; 

y=.001; 

while  (x<=z) / (x*z<=N)     % z is the number of the points of x-axis 

           z=ceil (N/x) ;              % x is the number of the points of y-axis 

       if   z- (N/x) > 0 & z~=1 

            z=z-1; 

       else 

            z=z; 

     end 

          w=x 

          x=x+1 

end 

     if w*z~=N 

         z=z-1 ; 

         w=N/z ; 

     else 

     end 

r=1/z ; 

y=1/w ; 

rannumx=1*0.2*r; 
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rannumy=2*0.2*y; 

for  k=1 : w 

     for  h=1 : z 

           xi=rannumx+ (h-1) *r; 

           yi=rannumy+ (k-1) *y 

           point (nump, 1)=nump ; 

          point (nump, 2)=xi; 

          point (nump, 3)=yi; 

     fprint (fn, ‘ %d   %7.4f   %7.4f\n’ , 

point (nump,1) , point (nump,2) , point (nump,3) ) ; 

              nump=nump+1; 

    end 

end 

fclose (fn); 

 

%  Aligned systematic sampling method  

nump=1; 

file=input (‘outputfilename’, ‘s’ ) 

fn=fopen (file, ‘a+’ ) ; 

file1=input (‘outputfilename’ ‘s’ ) 

ft=fopen (file1, ‘a+’ ) ; 

N=input (‘Sample size=’ ) ; 

hor1=input (‘Length of part =’ ) ; 

ver1=input (‘Width of part? =’ ) ; 

height=input (‘height of the probe =’ ) ; 

entrance=input (‘maximum tolerance of the sample part =’ ) ; 

clearance=input (‘between the CMM probe and the sample part =’ ) ; 

seqno=input (what is the number of sequence =’ ) ; 

nump=1 ; 

xi=0;             %initial value of coordinate of x-axis 

x=1;               %initial # of the sample points of y-axis 
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z=1;               %initial # of the sample points of x-axis 

r=.001; 

y=.001; 

while  (x<=z)/ (x*z<=N)     % z is the number of the points of x-axis 

            z=ceil (N/x) ; 

        if  z- (N/x)  >  0  &  z~=1 

        z=z-1 

else 

      z=z ; 

end 

      w=x ; 

      x=x+1 ; 

end 

        if w*z~=N 

            z=z-1 ; 

            w=N/z ; 

        else 

        end 

r=1/z ; 

y=1/w ; 

rannumx=1*0.2*r; 

rannumy=2*0.2*y; 

for  k=1:w 

      for h=1:z 

            xi=rannumx+ (h-1)*r; 

            yi=rannumy+ (k-1)*y; 

            point (nump, 1)=nump ; 

             point (nump, 2)=xi ; 

              point (nump, 3)=yi ; 

             if k==1  &  h==1 

                fprintf (fn, ‘#path PT%d I\n’ ,seqno ) ; 
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                inix=xi ; 

                iniy=yi ; 

             else 

             end 

             point (nump, 1 )=xi*hor1; 

             point (nump, 2 )=yi*ver1; 

             point (nump, 3 )=height; 

             fprintf (fn, ‘  p   1   1            %7.4f           %7.4f          %7.4f/n’ , 

      point (nump, 1) , point (nump, 2) , point (nump, 3) ) ; 

                 nump=nump+1 ; 

             point (nump, 1 )=xi*hor1; 

             point (nump, 2 )=yi*ver1; 

             point (nump, 3 )=height   +   clearance   +   entrance; 

             fprintf (fn, ‘  M   1   1            %7.4f           %7.4f          %7.4f/n’ , 

      point (nump, 1) , point (nump, 2) , point (nump, 3) ) ; 

                 nump=nump+1 ; 

             point (nump, 1 )=xi*hor1; 

             point (nump, 2 )=yi*ver1; 

             point (nump, 3 )=height; 

             fprintf (fn, ‘  p   1   1            %7.4f           %7.4f          %7.4f/n’ , 

      point (nump, 1) , point (nump, 2) , point (nump, 3) ) ; 

                 nump=nump+1 ; 

            end 

      end 

            point (nump, 1 )=inix*hor1 ;                   %  apply the initial value when started 

at first 

            point (nump, 2 )=iniy*ver1 ; 

            point (nump, 3 )=height; 

             fprintf ( fn, ‘  P   1   1            %7.4f           %7.4f          %7.4f/n’ , 

      point (nump, 1) , point (nump, 2) , point (nump, 3) ) ; 

                 nump=nump+1 ; 
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                 fprintf (fn, ‘#endpath\n’ ) ; 

                 fprintf (fn, ‘ MEMORY[%d]=” “ \n’, seqno ) ; 

                 fprintf (fn, ‘ mpl  (MEMORY[%d] , %d)  path PT%d\n’, seqno, N , seqno ) ; 

                 fprintf (ft, ‘ ! \n’ ) ; 

      fprintf (ft, ‘endstat\n’ ) ; 

      fprintf (ft, ‘end_program\n’ ) ; 

      fprintf (ft, ‘#include  %s\n’, file) ; 

      fclose (‘all’ ) ; 

        

 


