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Figure 99: Porosity cross-plots with TOC and clay content in Eagle Ford formation. The
behavior in Eagle Ford is similar to Barnett samples in that neither TOC nor clay
fraction shows a strong correlation with porosity. Both Rock Type 1 and Rock Type 3
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Figure 100: SEM images for Rock Type 1 (Top) and Rock Type 3 (Bottom) in Eagle

Ford. Both Rock Type 1 and Rock Type 3 has high porosity. Rock Type 1 has high
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TOC and low clay content while Rock Type 3 has high clay content and low TOC.
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Abstract

Shales are the most common sedimentary rocks found on earth. Most US shale plays are
spatially extensive with regions of different maturity and varying prospects. With
increasing understanding of the heterogeneity, microstructure and anisotropy of shales,
efforts are now directed to identifying sweet spots and optimizing completion zones in
any shale play. Rock typing is a step in this direction. It is becoming an integral part of
the unconventional reservoir characterization workflow.

In this work, an integrated workflow is presented for rock typing using lab
petrophysical measurements, logs, and production data. The key petrophysical
parameters used for rock typing are porosity, total organic carbon (TOC), mineralogical
compositions and mercury injection capillary pressure (MICP). Principal Component
Analysis (PCA) is used to reduce dimensionality of the dataset and improve efficiency
of the clustering algorithms. Unsupervised clustering algorithms like K-Means and Self
Organizing Maps (SOM) are used to define rock types. The integrated workflow is
applied separately for four shale plays namely Barnett, Eagle Ford, Woodford and
Wolfcamp.

A total of 25 wells with core data are considered for rock typing in the four shale
plays. The rock types are upscaled to more than 140 wells representing a 20,000-ft.
depth interval. A manual approach would have been prohibitively time-consuming.

Rock Type 1 is generally characterized by high porosity, high TOC, and high
brittleness. Not surprisingly, Rock Type 1 has the highest positive impact on well

productivity. Rock Type 2 has intermediate values of porosity and TOC and thus,
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moderate source potential and storage. Rock Type 3 has the highest carbonate content
(except Eagle Ford) and poor storage (except Eagle Ford) and source rock potential.

Classification algorithms like Support Vector Machines (SVM) are used to
upscale rock types from core data to logs. The training datasets comprise of depths at
which both core and log data are available. Different logs like gamma ray, resistivity,
neutron porosity and density are used for upscaling. Finally, a rock type ratio (RTR) is
defined based on the fraction of Rock Type 1 over gross thickness. RTR is found to
strongly correlate with normalized oil equivalent production rate.

The study is unique as it integrates core, log, and production data to identify
different rock types. Multiple algorithms are used and the similarity of results between
their outputs further bolstered the confidence in the derived rock types. The rock type
logs can aid the reservoir or production engineer in optimizing perforation intervals and
number of fracture stages. Rock Type 3 is poor reservoir and may not warrant any
perforation or fracturing. On the other hand, Rock Type 1 can be selectively perforated
and fractured to save cost and maximize production from a well. Other applications of
rock typing are 3D reservoir modeling, identifying sweet spots in combination with
seismic attributes, new well locations, improved volumetric estimates and uncertainty

and risk analysis.
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Chapter 1: Introduction

Advancements in reservoir characterization techniques have significantly improved the
success of wildcat drilling from 75% in 1974 to 95% in 2010 (Williams 2008). Rock
typing is one of those techniques. It is central to meaningful interpretation of the diverse
data types acquired over diverse length scales and with varying resolutions for both
conventional and unconventional reservoirs.

In conventional reservoirs, initial rock typing methods used core-derived
permeability-porosity cross-plots. If core data is not available, well log-derived porosity
and permeability values can also be used. Although well logs do not provide direct
estimates of permeability, several correlations have been developed for permeability
estimation (Timur 1968, Coates and Dumanoir 1974, Thomeer 1983). Permeability can
also be derived from NMR logs (Timur-Coates model, SDR model (Kenyon et al.
1988)). Pittman (1992) proposed the use of r35 measurements from mercury injection
experiments using a modified Winland approach. The MICP measurements suffer from
experimental artifacts like compressibility effect before intrusion (Bailey 2009), entry
pressure not enough to see pores smaller than 3 nm, etc. Amaefule et al. (1993)
introduced the concept of Rock Quality Index (RQI) by modifying Kozeny-Carman
equation. He proposed Rock Quality Index (RQI) or Flow Zone Indicator (FZI) cut-offs
to define different rock types. The application of such rock typing techniques is largely
restricted to sandstones and carbonates that are characterized by a large dynamic range
of porosity and permeability values. Rebelle & Bruno (2014) gave a critical review of
different rock typing methods namely FZI, RQI, Lucia classification, J Leverett

function, Thomeer function, etc.



Corbett and Potter (2004) used FZI technique to develop a universal rock typing
scale to compare different wells, reservoirs, fields and basins. They created 10 global
hydraulic units (GHE) with FZI values varying from 0.0938 to 48. They believed that
selecting the same reference frame for different reservoirs will make the rock typing
exercise more robust and predictive, especially where core data is limited. One of the
biggest developments in rock typing was integration across disciplines. Rock typing
was more accurate and predictive when carried out across disciplines like geology,
petrophysics, engineering and covering multiple length scales from pore scale to log
scale. Knackstedt et al. (2010) combined a range of experimental and computational
tools to carry out rock typing across disciples covering diverse length scales. Rebelle et
al. (2009) also discussed the importance of integrating geologic facies (based on
depositional environment and diagenesis), petro facies (based on porosity, permeability,
capillary pressure, etc.), electrofacies (based on logs) and dynamic rock types (based on
two phase relative permeability curves).

In tight sands, however, majority of the conventional rock-typing methods were
found to be inadequate (Rushing et al. 2008) and it was emphasized to include other
quantities such as rock texture and composition, core-based descriptions, clay
mineralogy for effective rock typing. Rahmanian et al. (2010) discussed the importance
of pore and throat structure (distribution, connectivity, geometry, etc.) on storage and
flow capacity of tight porous media. The integrated approach was necessary to generate
robust rock types. Spain and Liu (2011) used mainly NMR and mercury injection
capillary pressure measurements to characterize Cotton Valley tight sandstones in East

Texas. They identified three rock types — Rock Type 1 characterized by large pores



connected by large pore throats, Rock Type 2 having average sized pores connected by
small pore throats and finally Rock Type 3 having small pores connected by small pore
throats.

Merletti et al. (2014) presented another integrated approach using porosity,
mineralogy, photomicrographs and core descriptions. Depositional facies and diagenetic
controls on pore geometry were evaluated to identify three rock types. Rock Type 1 was
rich in fluvial and coastal plain deposits, had high quartz content and a steep porosity-
permeability trend. The higher quartz content prevented mechanical compaction and
grain leaching, thereby preserving primary porosity and preventing secondary porosity
development. Rock Type 2 and 3 had abundant secondary porosity development but had
poor flow capacity due to authigenic clay which occludes pore space and clogs pore
throats. The authors further used Multi Detector Pulsed Neutron (MDPN) logs to
calculate silica content proxy at the log level, which in combination with other logs
were used to determine rock types at log level. There have been several other attempts
to characterize tight sand reservoirs (Walls 1982, Randolph et al. 1984, Davies et al.
1993, Xu and Verdin 2013).

Rock typing is relatively new in unconventional shale reservoirs. Several
operators have already begun incorporating rock typing in their full field modeling and
simulation workflows to help identify sweet spots and optimize fracture placement.
Conventional techniques like Pittman (1992) and Amaefule et al. (1993) are not
adequate because of the limited dynamic range of porosity and permeability in
unconventionals. Secondly, accurate permeability measurements on shale samples are

difficult to make and time consuming. Additionally, other key variables such as source



potential and brittleness are absent in conventional rock typing methods. Lieber and
Dunn (2013) stressed consideration of three parameters for rock typing. They were
hydrocarbons in place (porosity, clay volume, fluid saturations), brittleness (sonic data,
mineralogy) and potential deliverability.

Kale et al. (2010) carried out rock typing for Barnett and included several
petrophysical parameters such as TOC, mineralogy, helium porosity and mercury
injection capillary pressure (MICP). Sondhi (2011) employed a similar approach for the
Eagle Ford shale while Gupta (2012) performed rock typing for the Woodford
formation. Li et al. (2015) used permeability measurements, NMR porosity, and
quantitative mineralogy from 2D Scanning Electron Microscope (SEM) images to
classify four facies in Bakken formation.

Amin et al. (2016) attempted a log-based rock typing for the Eagle Ford
formation using two wells. Triple-combo and Elemental Capture Spectroscopy (ECS)
logs were jointly interpreted to get saturation, porosity and mineralogical compositions.
They computed a TOC log by correlating core measurements with bulk density log.
Additionally, they determined Young’s modulus and Poisson’s ratio logs through Self
Consistent Algorithms (SCA) in absence of acoustic logs. They determined five rock
types and explained higher production in one of the wells due to higher fraction of
brittle rock type. Aranibar et al. (2013) discussed another log-based rock typing case
study from the Haynesville shale. They used bulk density, neutron porosity,
Photoelectric Effect (PE), resistivity, sonic, and ECS logs. These logs were interpreted
to give TOC, Poisson’s ratio, Young’s modulus, total porosity and mineralogical

compositions, which were used as inputs to the neural network.



This study focusses on Wolfcamp, Barnett, Woodford, and Eagle Ford. The
study is unigue as it uses two independent techniques like K-Means and Self Organizing
Maps (SOM) to predict rock types. The upscaling of core based rock types to log based
rock types using a support vector machine algorithm is also unique to this study.
Finally, a large database of production wells was created from Drillinginfo, which had
the required logs. The correlation between Rock Type Ratio (RTR) and production from
these wells differentiates this work from a purely academic exercise to one having

strong implications in the field.
1.1 Organization of Chapters

The thesis is organized in eight chapters. Chapter 2 starts with a brief review of the
laboratory procedures that were used to make petrophysical measurements used in the
study. The chapter is divided into three sections. The first section deals with procedures
for petrophysical measurements like total organic carbon (TOC), mineralogy (Fourier
Transform Infrared Spectroscopy), porosity (low pressure helium porosity), Vp and Vs
(compressional, P-wave and shear, S-wave velocities), Young’s modulus (nano-
indentation), mercury injection capillary pressure (MICP), etc. The second section gives
details about the log analysis techniques used to calculate porosity and TOC logs. The
third section of Chapter 2 gives a general overview of data mining and analytic
techniques. Specifically, it deals with different clustering algorithms like K-means
(Lloyd 1957, Macqueen 1967) and SOM (Kohonen and Honkela 2007) which help to
find meaningful relationships in multi-dimensional data and define rock types. The
section also describes classification algorithms like SVM (Cortes and Vapnik 1995) that

were used to upscale rock types from core to logs.



Chapters 3, 4, 5, and 6 show the complete workflow applied to four shale plays
namely Barnett, Eagle Ford, Woodford, and Wolfcamp, respectively. The chapters
begin with a brief geological background, which helps to understand the context of rock
typing. The chapters also summarize the core, log, and production data available for
each shale play. Then, the results of clustering and rock typing analysis are presented.
Thereafter, for each play, the rock types are upscaled and upscaled logs are presented as
well section windows. Finally, a Rock Type Ratio (RTR) is created based on the
fraction of the best rock type over gross thickness. This RTR is shown to have a strong
correlation with normalized production for different wells thus validating the robustness
of the rock typing workflow.

Chapter 7 uses SEM images to establish micro-structural controls on different
petrophysical properties like porosity, TOC, etc. SEM images are also used to validate
the rock typing exercise by showing the stark differences in the microstructure between
different rock types.

Chapter 8 summarizes the rock typing results from the preceding chapters and
gives some useful insights by comparing results from different shale plays. The
methodology described in this work can easily be extended to several other applications
such as the optimization of well locations (3-D reservoir modeling), well trajectories

(with real-time Logging while drilling) and well completions.



Chapter 2: Experimental Procedure

2.1 Laboratory Measurements

Petrophysical measurements were done in Integrated Core Characterization lab (IC%).
Different measurements used in this study were porosity, mineralogy, TOC, V,, Vs,
Young’s modulus, source rock analysis data (S1, S2), mercury injection capillary
pressure (MICP), etc.
2.1.1 Porosity Measurements
Helium porosity measurements were made using Karastathis’ (2007) method. In his
method, samples are dried at 100 “C for 24 hours. The samples are then cooled to room
temperature in a desiccator. Bulk volume is measured using mercury immersion
technique. The samples are crushed to fine particle size (392 £192 um, Kale 2009). The
mass loss during crushing is kept to a minimum (<0.1 wt. %) and calculated porosity is
corrected for the weight loss. The crushed samples are kept at 100 °C for 24 hours to
remove any moisture. Finally, grain volume is measured using a helium porosimeter
and porosity is calculated from grain and bulk volumes. Karastathis (2007) showed that
porosities measured using this technique are comparable with porosities from
commercial labs.
2.1.2 Mineralogy Measurements

The mineralogy of the samples is determined using Fourier Transform Infrared
Spectroscopy (FTIR). Different minerals have different signatures on the absorbance
spectrum. The technique is used to identify sixteen minerals by inverting the absorbance
spectrum. The inversion package developed in IC? lab allows quantification (in wt. %)

of the following minerals; quartz, calcite, dolomite, aragonite, siderite, oligoclase,



albite, orthoclase, illite, chlorite, kaolinite, smectite, mixed-layer clays, apatite,
anhydrite, and pyrite. The accuracy of FTIR is comparable to X-ray diffraction and
point counting. In particularly shales, FTIR gives better quantitative clay volume
measurement (Sondergeld and Rai 1993; Ballard 2007).

The key precaution to take while preparing the samples is to remove moisture
and any organic carbon as they exhibit strong peaks in the mid-infrared region, which
masks the absorption peaks of other minerals. To prevent this, the samples are ashed in
low temperature plasma asher where organics are oxidized at low temperatures.

2.1.3 TOC measurement
TOC measurements were done using dry pyrolysis technique (Law 1999). The samples
were crushed to fine particles (35 Mesh) and carefully acidized to remove any
carbonate. This step is critical as carbonates can artificially inflate the TOC. The
acidized samples are dried to remove the acid and then burned inside the TOC
apparatus. The organic carbon is combusted to generate carbon dioxide, which is
measured and converted to TOC by wt. %.

The measurements do not contain free volatile hydrocarbons as these are
removed during the drying process. Thus, dry-pyrolysis measurements can be smaller
than pyrolysis flame-ionization detection (PFID) TOC if there are considerable free
volatile hydrocarbons present in the sample.

Source rock potential is governed by three factors namely source rock richness,
source rock quality and source rock maturity. TOC is a measure of source rock richness.
A higher TOC is indicative of higher source rock potential provided kerogen quality

and maturity are favorable.



2.1.4 Source Rock Analysis (SRA)
In pyrolysis flame-ionization detection (PFID), the sample is kept in an inert
atmosphere and progressively heated to 550°C. First, the volatile hydrocarbons are
vaporized and are recorded as S1 peak. S1 peak mostly corresponds to mobile
hydrocarbons and is important from rock typing point of view. S1 together with TOC is
indicative of source rock potential. As the temperature rises, kerogen in the sample
cracks to generate hydrocarbons, hydrocarbon-like compounds, (recorded as S2 peak),
CO- (recorded as S3 peak), and water. The residual carbon is recorded as S4. All peaks
namely S1, S2, S3 and S4 are reported in mg/gm of rock. Welte (1984) and Law (1999)
are some excellent references on source rock analysis (SRA).
2.1.5 Young’s Modulus (E)

A nanoindenter apparatus can be used for Young’s modulus measurement on core
samples. The equipment used in this study was Agilent G200 nanoindenter. The
Young’s modulus is calculated from continuous measurement of load and displacement.
A magnet and coil assembly moves the indenter. A capacitance displacement gauge is
used for measuring displacement in the vertical direction. An optical microscope is used
to select locations for indentation. Figure 1a shows the schematic of nanoindenter. The
instrument can apply forces as low as 1nN and measure displacements as small as 0.1
nm.

A single nanoindentation experiment consists of gradually loading the sample at
33 mN/sec for 15 seconds. The peak load at the end of 15 seconds is 50 gf. The peak
load is held for 10 seconds before unloading the sample. Figure 1b shows a typical

loading-unloading curve during a nanoindentation experiment. Young’s modulus



calculation is done at the peak load (P). Stiffness of an elastic body is a measure of

resistance to deformation. It is given by the expression
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dh P
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Figure 1 a) Schematic of nanoindenter showing the magnet and coil force actuator
assembly and the capacitive displacement measurement assembly b) Typical shape
of loading-unloading curve during a nanoindentation experiment (Hay and Pharr
2000).

Where h is the displacement, A is the indentation area and E* is the reduced
Young’s modulus. In the above equation, dP/dh is calculated from the unloading curve
at the peak load. Indentation area is calculated through an area function dependent on
the contact height. The above equation is used to calculate the reduced Young’s
modulus. It is called reduced Young’s modulus because displacements occur in both the

sample and the indenter. The sample Young’s modulus is calculated using the

expression




Where vi, Ei are the Poisson’s ratio and Young’s modulus of the sample
respectively. v’, E’ are the corresponding values for the indenter. A diamond Berkovich
tip indenter is used for which Poisson’s ratio and Young’s modulus are known. The
Poisson’s ratio for the sample is assumed to be 0.25. Hay and Pharr (2000) noted that a
+0.1 uncertainty in Poisson’s ratio results in only about 5% uncertainty in Young’s
modulus.

A key requirement for nano-indentation is the smooth sample preparation. The
IC? lab procedure involves mechanical polishing using silicon carbide papers from 180
to 1200 grit size. At the end of mechanical polishing, top and bottom surfaces should be
parallel and maximum thickness difference should not exceed 0.01 mm. It is followed
by broad beam argon ion milling for 3 hours. A total of 100 measurements (four 5*5
arrays) are made and averaged to yield the Young’s modulus. The instrument is
calibrated using fused silica before making measurements on the shale sample.

The static Young’s modulus measurements from nanoindenter compares well
with dynamic measurements. Shukla et al. (2013) showed the comparison for several
formations namely Wolfcamp, Woodford, Haynesville and Kimmeridge. Figure 2
shows the comparison.

2.1.6 Mercury Injection Capillary Pressure
Mercury injection capillary pressure (MICP) is used to measure pore throat sizes and
connected pore space as a function of pressure. The pressure steps are varied from 5 to
60,000 psia. The mercury intruded into the sample is recorded at each pressure step and
the collected data is used to generate a capillary pressure curve for the sample. Once

pressure reaches 60,000 psia, it is gradually reduced and extrusion volume is measured
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as a function of pressure. The intrusion and extrusion curves are used to determine
hysteresis which can be useful to determine if actual intrusion of mercury into the

sample has taken place.
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Figure 2: Comparison of dynamic and indentation Young's modulus. There is a
very strong correlation given by R? of 0.94 (Shukla et al. 2013).

The sample is dried, placed in a special assembly called penetrometer and
sealed. The assembly with sample is entered into the low-pressure section of AutoPore
IV machine. Pressure is reduced to 200 mm of mercury and maintained at that level for
one hour to remove trace moisture and air from the sample and apparatus. Thereafter,
mercury is introduced at 5 psia to fill the void volume in the penetrometer and surround
the sample. The pressure is increased to 20 psia and time is given to attain pressure
equilibrium.

The penetrometer assembly is than taken out of the low-pressure section and
transferred to the high-pressure section. The pressure is increased based on pre-

identified steps up to 60,000 psia. At each pressure step, pressure is stabilized for over
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60 seconds before increasing the pressure to the next pressure step. External pressure is
applied using nitrogen in the low-pressure section and with mineral oil in the high-
pressure section. As mercury enters the pore space, the mercury filled length of the
penetrometer stem decreases. The stem of penetrometer is made of glass and coated
with metal film from outside and thus acts as a capacitor. The capacitance of the
penetrometer stem changes with decreasing mercury level during the intrusion cycle.
This change in capacitance can be converted to intruded mercury volume at each
pressure step.

However, if the sample is very tight and mercury intrusion does not happen until
higher pressures, the sample compresses which leads to a decrease in the mercury
volume in the penetrometer stem. This may be interpreted as intrusion. This false
intrusion can be detected by plotting the incremental intrusion as a function of pressure.
Bailey (2009) discusses the details about the corrections to the capillary pressure data.

2.1.7 Ultrasonic Measurements
The ultrasonic measurements were made on horizontal plugs one inch in diameter; core
lengths varied from one to two inches. The top and bottom faces of the plugs are
polished to be parallel to each other and perpendicular to the plug axis.

Pulse transmission technique (Junck and Benson, 1973) is used for ultrasonic
velocity measurements. A sample is placed inside an impermeable neoprene jacket. The
jacket is larger than the sample to accommodate endcaps at both ends. Each end cap has
three piezoelectric transducers (P, S1 and S2). The end caps are fastened to the jacket

using hose clamps and the entire assembly is pressure sealed from external fluid.
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The three piezoelectric crystals at each endcap generate compressional (P) and
two orthogonally polarized shear waves (S1 and S2). The waves travel through the
sample and are recorded at the other end. The length of the plug and travel times are
used to determine velocities. Measurements are done at several confining pressure steps
namely 500, 750, 1000, 1500, 2000, 2500, 3000, 4000, 5000 and 6000 psi.

2.1.8 SEM Images
SEM images were analyzed using FEI Helios Nanolab 600 Dual-Beam Focus lon Beam
(FIB) and Scanning Electron Microscope (SEM). The detailed procedure is explained in

Curtis et al. (2011) and Curtis et al. (2012).
2.2 Log Analysis

2.2.1 Porosity Calculation
There are mainly three different types of porosity logs namely density, neutron and
sonic; none measures porosity directly. They are indirect nuclear and acoustic
measurements from which porosity can be derived. The interpretation of these logs are
effected by many variables downhole, thus, a combination of these logs is required for
accurate porosity determination.

In density logs, the radioactive sources namely Ce and Co are employed to emit
gamma rays. These interact with electrons of the formation and get absorbed. The
electrons emit gamma rays which are recorded as a count rate proportional to formation
density. Advanced schematic like dual detector scheme helps to compensate for
mudcake and minor hole irregularities. This arrangement helps to calculate Ap. i.e.
correction for mudcake and borehole effects which can be added to long spacing

detector response to calculate formation density (Bassiouni 1994).

14



In neutron logs, neutrons are emitted into the formation. They are slowed down
by elastic and inelastic scattering. When sufficiently slowed, some of them are absorbed
and thus, capturing nuclei emit gamma rays. Some of the unabsorbed neutrons are also
deflected back towards the detectors. Thus, based on the tool configuration, detectors
can either detect gamma rays or neutrons. The elements that mainly slow down the
neutrons are the hydrogen nuclei as they are roughly equal in mass compared to a
neutron. With one collision with hydrogen nuclei, it loses 50% of its energy. Therefore,
the neutron log mainly responds to hydrogen concentrated in pore fluids and thus
responds to porosity (Bassiouni 1994).

The interpretation of both density and neutron logs are effected by uncertainties
in lithology, fluid type, and saturation. In unconventional reservoirs, grain densities also
need to be corrected for TOC. To reduce the uncertainty and get a better estimate of
porosity, different logs like gamma ray, resistivity, neutron, and density are combined
and variables like Vclay, fluid saturations and porosity are solved simultaneously. The
log porosity in this study was calculated using the standard integrated workflow in a
commercial software.

2.2.2 TOC Calculation
Total organic carbon (TOC) as measured in the laboratory is widely used to evaluate
unconventional reservoirs. A wide array of log based methods are available to calculate
TOC. Passey et al. (1990) is one of the most commonly used methods. It is also known
as “Alog R” method. In the original paper, the method was applied using sonic and
resistivity logs. But, density and neutron data can also be used. Different equations used

to calculate TOC using different log sets are given below:
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ES
m) +0.02 = (DTC — DTCbase)

ALogR = log(

TOCs = SF1s * (AlogR * 107(0.297 — 0.1688 * LOM)) + SO1s
Where RESD is the deep resistivity in any zone (ohm-m), RESDbase is the deep
resistivity baseline in non-source rock (ohm-m), DTC is the compressional sonic log
reading (usec/ft.), DTCbase is the sonic baseline in the non-source rock (usec/ft.), LOM
is the level of organic maturity (unitless), SF1s and SO1s are scale factor and scale

offset to calibrate to the lab values of TOC. Similar equations for density and neutron

logs are given below.

RESD

ALogR = log (RESDbase

) — 2.5 x (DENS — DENSbase)

TOCd = SF1d * (AlogR * 10(0.297 — 0.1688 = LOM)) + SO1d

RESD

ALogR = log (RESDbase

) + 4.0 » (PHIN — PHINbase)

TOCn = SF1n * (AlogR * 107(0.297 — 0.1688 * LOM)) + SO1n

Where RESD is the deep resistivity in any zone (ohm-m), RESDbase is the deep

resistivity baseline in non-source rock (ohm-m), DENS is the density log reading

against the source rock, DENSbase is the baseline density log reading against non-

source rock, PHIN is the neutron log reading against source rock, PHINbase is the

baseline neutron log reading against non-source rock, LOM is the level of organic

maturity (unitless), SF1d, SO1d, SF1n and SO1n are scale factors and scale offsets to
calibrate to lab values of TOC.

LOM typically ranges from 6 to 14. Default LOM for a gas shale is 8.5 and for

an oil shale is 10.5. Elzarka and Younes (1987) show how LOM values can be derived

based on vitrinite reflectance values. In the current study, resistivity, neutron, and
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density logs were available and thus the above four equations were used for TOC
calculation. Laboratory measured TOC values were also available to calibrate the

modelled TOC logs.
2.3 Data Mining and Analytics

2.3.1 Overview

Commercial and scientific data collection and storage has increased tremendously in the
last decade. For instance, Yahoo has petabytes of web data, Facebook has more than
one billion users, and Amazon records several million items every day. The storage
devices like disk drives, server systems, etc. have become ultra-cheap leading to a spike
in the data collection. The ideology is to collect whatever data you can, whenever you
can and the expectation is that the gathered data may be of immediate use or in future
for a purpose not envisioned currently.

Thus, a new field has emerged called Data Mining and Analytics that consists of
people that mine databases of exhaustive data and discover patterns and models that are
valid, useful, unexpected, and understandable. In other words, data mining is non-trivial
extraction of implicit, previously unknown, and potentially useful information from the
data. A typical workflow for data mining process is shown in Figure 3.

Many times, gathered data has noise due to many factors which are beyond
control. For instance, when taking measurements in the lab, humidity, temperature,
human and machine errors can lead to different values of a property on the same
sample. Thus, first step in data mining, is data preprocessing, where data needs to be

checked for outliers, quality, redundant, un-useful and missing values.
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Figure 3: Data Mining Workflow

The next step is transformation which basically involves removing bias from the
samples. It also includes reducing dimensionality of the data so that it becomes easier to
process. To remove the bias, all attributes are scaled and the data is normalized so that
any one parameter does not dominate the results. In this study, we used petrophysical
measurements like porosity, TOC, clay, carbonate, and quartz content to define
different rock types. Porosity and TOC generally vary between 2-15 % whereas
mineralogical compositions vary between 0-100%. Thus, to prevent mineralogical

compositions from dominating the results, all attributes are normalized between their

respective minima and maxima.

Principal Component Analysis (PCA) is used to reduce the dimensionality of the

data. The idea behind PCA is to identify directions in multidimensional space that
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contain most of the variations observed in the data. Principal components are linear
combination of different input parameters (TOC, porosity, mineralogy in this case). In
general, the first few principal components explain most of the variance in the data.
Thus, instead of using 5 variables (such as TOC, porosity, quartz, clays, and carbonates)
for clustering, it is sufficient if we use first three to four principal components.

The third step in data mining workflow is to discover information using various
data mining and analytic techniques. The data mining tasks generally consists of
following: Classification, Clustering, Association, Regression, and Anomaly detection
(Tan et al. 2006). In Classification, existing records or attributes are grouped into
several classes and new data is assigned to any one of the classes depending on a
measure of proximity. For instance, psychological evaluations of people can be used to
assign them to different groups with increasing tendencies of criminal intent. In
Clustering, based on a measure of similarity, data points are divided into many clusters.
The points in the same cluster are more similar to each other than to the data points in
different clusters. For instance, fracture dimensions, reservoir properties, etc. can be
used to cluster wells into two categories namely good producers and poor producers. In
Association, the relationships between different attributes are studied and occurrence of
one is predicted based on the occurrence of other. For example, data from a supermarket
can be analyzed to identify if someone buys milk, how likely he/she is to buy eggs as
well. In Regression, a value of a given continuous variable is predicted based on the
values of other variables, assuming a linear or nonlinear model of dependency. For

instance, prediction of stock prices based on historical data. Finally, in Anomaly
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detection, data is analyzed to determine significant deviations from normal behavior; for
example, using credit card transactions to analyze fraud detection.

The fourth step is to analyze the results using various visual mechanisms along
with prior knowledge to make meaningful conclusions. There are several visual
techniques available like cross-plots, box plots, rose or pie diagrams, etc.

Not all algorithms are applicable to all situations. Selection of data mining
algorithm should be carefully evaluated based on objective, domain expertise and data
availability (Tan et al. 2006). In this study, Principal Component Analysis (PCA) was
used to reduce the dimensionality of the data. Clustering algorithms namely K-means
and Self Organizing maps (SOM) were used to define different rock types, and
classification algorithm like Support Vector Machines (SVM) was used to upscale rock
types from cores to logs. These techniques are discussed in detail in the following
sections.

2.3.2 Principal Component Analysis (PCA)
PCA is used to reduce dimensionality of a dataset with a large number of correlated
attributes (Pearson 1901, Hotelling 1933). Graphically, PCA rotates the original axis of
the data to the direction having maximum variance (Figure 4). New attributes are
created as a result which are linear combination of existing variables. These new
attributes are orthogonal and unrelated to each other. Thus, only a few of them can
explain the maximum variability in the data. Therefore, instead of dealing with large
number of correlated attributes, a few principal components can be used which

significantly decreases the processing time and increases accuracy.
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Figure 4: Graphical representation of the axis rotation during PCA (Srivastava

2016)
Mathematically, the principal components are the eigenvector of the covariance

C —1xxT
X7 p

matrix of the original attributes. The covariance matrix of Xanyn is given by

The principal component (P) can be given by,
P=ETX

Where E is the eigenvector for the covariance matrix. Each principal component

is a linear combination of original attributes with different weights. The higher the

weight, implies higher the importance of that component. In practice, it is more

practical to use correlation matrix instead of covariance matrix. This removes the units

of measure dependency by scaling the variables to same range of values. The main
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assumption in PCA is that different attributes are linearly correlated. Thus, it cannot
account for non-linear relationships.
2.3.3 K-means Clustering

It is one of the most popular clustering algorithms (Lloyd 1957, Macqueen 1967). It
requires a predefinition of the number of clusters required which is sometimes seen as a
disadvantage. However, data variability can be exploited to overcome this drawback.
The optimum number of clusters can be chosen based on inter-cluster variance and
intra-cluster variance plot shown in Figure 5. Intra-cluster variance refers to the
variance between data points in the same cluster. It is also known as sum-of-squares

within (SSW) all clusters. It is given by,

g ni

SSW = ZZ(xij —x)'(xi; — %)

i=1j=1
Here, Xij refers to a data point within a cluster and x is the mean of the cluster.
Inter-cluster variance refers to the variance between data points of different clusters. It

is also known as sum-of-squares between clusters. It is given by,
)
SSB = ) m(%— 0)'(% - %)
i=1

Here, X, is the mean of any one cluster and x is the mean of all the clusters. The
point at which SSW and SSB clusters start flattening out defines the optimum number
of clusters as after that point, increasing the number of clusters does not significantly

improve the rock typing definition.

22



e

)
5 3 .
S O 7 a...-c—a-'“"'“‘-
o - a-ﬂ"
7] P2
u— ©
o 8 e
£ u/
S
w o /
2 8-
5 ©
5] \
-
(=] 8 o '
£ = Ne
= ~
= Fan
< 9 ﬁn“""-a-..n

8 n Se—oeg_g

2 4 6 8 10 12 14
Number of Clusters

Figure 5: K-Means can create multiple scenarios with different number of clusters.
In each case, it identifies the intra-cluster variance (red curve) and inter-cluster
variance (green curve). The point at which the curves start flattening out defines
the optimum number of clusters.

K-means clustering typically consists of four steps. The first step is to choose
the number of clusters. One way to do it is through the SSW-SSB method as explained
above. After choosing the number of clusters, cluster centroids are randomly assigned in
the data. In the second step, the points closest to each centroid are assigned to that
group. In other words, SSW (sum-of-squares within a cluster) is minimized. In the third
step, cluster means are reassigned. For each cluster, centroid is assigned as the mean of
the observations belonging to that group. In Step 4, the steps 2 and 3 are repeated until
convergence is achieved, i.e. centroids do not change with successive iterations. Figure

6 (Guido 2016) shows the schematic of K-means clustering in which three clusters were

identified.
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Step 1 Step 2

Step 3

Figure 6: Schematic of K-means clustering (Guido 2014)

2.3.4 Self-Organizing Maps (SOM)
SOM (Kohonen and Honkela 2007, Chon and Park, 2008) is an unsupervised
classification algorithm which is a simpler form of neural nets. A self-organizing map is
a lower (usually 2D) dimensional representation of a multi-dimensional dataset. It can
be very useful for finding patterns in the data like common features in well logs or

cores.
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The SOM network is created from a 2D lattice of nodes. Each node has specific
topological position (x, y location in the lattice) and contains a vector of weights of the
same dimension as the input vectors. Figure 7 shows a schematic of a 2D lattice of
nodes. Each node has three vector weights basically percentages of blue, green, and red.

This is a training grid which is used for generating SOM (Pang 2003).
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Figure 7: A 4X4 Training SOM Grid. Each node has three vectors basically
percentages of blue, green, and red (Pang 2003).

The data is generally randomly distributed as shown in Figure 8 (Pang 2003).
This is also called the latent space. The algorithm randomly selects a node from data
grid (latent space) and tries to find the closest match from the training grid. The closest
match for any data point is termed Best Matching Unit (BMU). The BMU is identified

by minimizing the Euclidean distance as shown below,
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Dist = \/(Rdata - Rtraining)2 + (Gdata - Gtraining)2 + (Bdata - Btraining)2

Where R, G and B represent percentages of red, green, and blue.

Figure 8: Raw data to be clustered using SOM (Pang 2003)

Once the best matching unit is identified, the region around the node in the data
grid is selectively optimized to resemble more closely the BMU. The nodes in the
neighborhood are modified within a neighborhood radius which can be adjusted based
on user’s need (Figure 9). The modification of the weights of the neighboring nodes is

done using an equation,

R R R R
G = |G +allG -G
Blyew LBloia Blgmy Blowa

Where a is the neighborhood weight and it usually decreases as you go farther

from the central node (Figure 9).
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Figure 9: Schematic of neighborhood radius. The neighborhood weighing factor,
a, decreases as you go farther from the central node (Pang 2003).

This process is repeated for all the nodes of the data grid and after multiple
iterations the data grid starts unveiling clusters. The process is stopped when
convergence is reached that is iterations does not change the latent space as shown in

Figure 10 (Pang 2003).

Figure 10: Post convergence latent space or data grid (Pang 2003)
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2.3.5 Support Vector Machines (SVM)

SVM (Cortes and Vapnik 1995) is a classification algorithm mainly suited for binary
classification or 2-class problems but it can be used for multi-class problems as well.
The mathematical details are described in Steinwart and Christmann (2008). A training
dataset consists of data points with different attributes where the class for each data
point is already known. For instance, in case of rock typing, different data points can
represent different core depths. The attributes can be TOC, porosity, mineralogical
fractions, etc. The corresponding classes can be Rock Type 1, Rock Type 2, etc.

SVM algorithm plots the data in multiple dimensions and tries to identify
boundaries called hyperplanes between different classes. Examples of hyper-planes are
shown in Figure 11 (Thornton 2017) for both linear and non-linear classifications

between the blue- and the red-colored points.

a) AN b) T

Figure 11: Examples of hyperplane in SVM. The separation between different
clusters is termed a hyperplane and its geometry can be linear, polynomial, or
radial. a) shows an example of radial hyper plane. b) shows an example of linear
hyperplane (Thornton 2017)

A hyperplane can be chosen in many ways as shown in Figure 12 (Opencv

2017). Selection of an optimal hyperplane becomes critical. It should be farthest from

the training observations.
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Figure 12: Different hyperplanes possible between two classes (Opencv 2017)

The training observations closest to the hyperplane are called support vectors.
Optimal hyperplane is selected based on “Maximal margin classifier” principle i.e.

hyperplane should be farthest away as possible from support vectors (Figure 13).
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Figure 13: Optimal hyperplane selection (Opencv 2017)

Once optimal hyperplane is selected, algorithm calculates the distance of each
data point in the test dataset and assigns it to one of the classes. This algorithm was used

to upscale data from core to logs.
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2.4 Rock Typing Workflow

Figure 14 shows the rock typing workflow. The first step in the workflow is to prepare a
comprehensive database of laboratory data like TOC, porosity, mineralogy, etc. These
data were selected as these represent the most commonly done measurements in the lab.
These measurements have high accuracy and lower associated errors. Finally, they
explain the maximum variance in the data and are sufficient to distinguish different rock
types.

In the next step, key parameters are determined for rock typing and clustering
algorithms like K-means and Self Organizing maps are used to define rock types. In the
third step, clustering results are analyzed to ensure petrophysical relevance. In fourth
step, once rock types are defined at the core level, a classification technique called SVM
or Support Vector Machines, is used to upscale the rock types at the log level. Finally,
in fifth step, rock types are populated in many wells and correlated with production

data.

Core Data — porosity, mineralogy, total organic carbon

Clustering algorithms — K-Means, Self Organizing
Maps

Test clusters — Source Rock Analysis, nano-
indentation data

Upscale core data to log data — Support Vector
Machines

Correlating clusters to production data, etc.

Figure 14: Rock Typing Workflow
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This workflow is unique and extensive. First, two independent techniques like
K-Means and SOM are used to predict rock types. Second, the upscaling of core based
rock types to log based rock types using SVM is new and very effective. Finally, a
strong correlation is seen between rock types and production data which makes the

workflow practically useful.
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Chapter 3: Barnett Formation

3.1 Study Area Description

Barnett is one of the prominent shale gas plays in US. Figure 15 shows the Barnett shale
play (Pollastro et al. 2007). It is a Mississippian shale located in the Delaware and Fort
Worth basins in North Texas. It has produced more than 69 MMbbl oil, and 19.2 Tcf
gas so far (based on drilling info, checked Dec 16, 2016). It varies in thickness between
100 to 700 ft. (Kinley 2008). The depths of Barnett formation vary between 7,000-
18,000 ft. (Kinley 2008). Barnett is slightly over-pressured with average pressure

gradient of 0.52 psi/ft. (Slatt et al. 2008).
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Figure 15: Barnett shale play extent (Pollastro et al. 2007)
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Figure 16 shows the north-south and west-east cross-sections through the Fort
Worth basin (Bruner and Smosna 2011). Barnett was deposited during Paleozoic in a
back-arc setting. Barnett play consists of upper Barnett, lower Barnett and Forestburg
limestone. Lower Barnett lies directly over regional angular unconformity. The
Forestburg limestone separates the upper and lower Barnett shale members. It is quite

thick in the north (~200 ft.) and thins towards south (few feet).

Figure 16: North-south and west-east cross-sections through Fort Worth Basin,
illustrating the structural position of Barnett formation between Muenster arch,
Bend arch and Llano uplift (Bruner and Smosna 2011)

Singh (2008) identified 10 different lithofacies in Barnett. They were namely

siliceous non-calcareous mudstone, siliceous calcareous mudstone low calcite, siliceous
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calcareous mudstone high calcite, silty-shale, phosphatic deposits, limy mudstone,
dolomitic mudstone, calcareous laminae, concretions, and fossiliferous deposits. Out of
these, lithofacies 1, 2, 3 and 6 are dominant and are responsible for majority of the
petrophysical variation. Majority of the cored interval also consists of these four
lithofacies. Lithofacies 1 and 2 are associated with high TOC and high porosity. On the

other extreme, Lithofacies 6 is very tight with little porosity and very low TOC.
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Figure 17: Isopach map for Barnett. Contour interval equals 50. (Bruner and
Smosna 2011). The north-eastern and eastern portions of the play have the
greatest thickness.
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Figure 17 shows the isopach map for Barnett (Bruner and Smosna 2011). The
north-eastern and eastern portions of the basin have the highest thickness. Figure 18a
shows the TOC map for Barnett (Sarmiento et al. 2013). The TOC map shows that
majority of the play (including the thick eastern and north-eastern parts) are very low in
TOC. Southern part of the basin has the highest TOC. Figure 18b shows the vitrinite
reflectance map and thus shows the maturity of the Barnett play (Sarmiento et al. 2013).
Majority of the high TOC region lies in immature window. The thick eastern and north-
eastern parts of the basin lie in the gas maturity window. This explains the high gas

potential of the Barnett play.
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Figure 18: a) TOC distribution map of the Barnett formation (Sarmiento et al.
2013). Fig. 11 b) - Vitrinite reflectance map indicating thermal maturity across the
play. Values <0.55 %Ro are considered immature, 0.55 — 1.15 are oil prone, 1.15 —
1.4 are condensate prone and values >1.4 are dry gas prone (Sarmiento et al.
2013).
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Figure 19 shows the cumulative gas production bubble map of the Barnett
formation. The bubble plot affirms that eastern, north-eastern, and south-eastern
portions of the Bakken play have the greatest producing wells. These areas are
characterized by thick shales (Figure 17), gas maturity window (Figure 18b) and high

production (Figure 19). Thus, these are the sweet spots of Barnett shale play.
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Figure 19: Gas production bubble maps for Barnett shale play. Area concentrated
with larger bubbles defines the “sweet spot.”
Figure 20 shows the wells having the core and the log data which were used for

rock typing. Three wells had core data (shown as red bubbles) which were in over-

mature, gas rich, stratigraphically thick part of the Barnett shale play. Core data was
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available for 211 plugs in these 3 wells. Only gamma ray and resistivity logs were
available for 2 wells (out of the three wells having the core data). Thus, gamma ray and

resistivity logs were used for upscaling from core to log level.
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Figure 20: Wells with core and log data for rock typing. 3 wells (red bubbles) had
core data which mainly lie in over mature, gas rich, stratigraphically thick part of
the Barnett shale play. Core data were available for 211 plugs. Additional 44 wells
(shown as black bubbles) were taken for correlation of rock types with production
data. They did not have the core data but had the required logs.

3.2 Core-Derived Rock Typing

The five petrophysical measurements from core data namely porosity, TOC, clay,
quartz, and carbonate content were used for defining rock types in Barnett. PCA was
applied to reduce dimensionality of the clustering problem. Figure 21 shows that the

first three principal components explain more than 85% of the variance in the data.
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Thus, instead of using 5 variables, it is sufficient to use the first three principal

components.
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Figure 21: Principal Component Analysis results. The percentage variance
explained by each component is listed in the figure. The first three principal
components explain more than 85% of the variance in the data.

The optimum number of rock types were defined to be three based on the SSW-
SSB method. The results are shown in Figure 22. K-Means and SOM clustering

techniques were used to define rock types. K-means and SOM gave very similar results.

Different rock types and their characteristics are shown in Figure 23.
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Figure 22: K-Means creates multiple scenarios with different number of clusters.
In each case, it identifies the intra-cluster variance (red curve) and inter-cluster
variance (green curve). The elbow effect represents change in slope. The elbow
effect occurs around 3 clusters which represents the optimum number of clusters.
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Figure 23: a) Clusters created on a SOM map b) Rose diagram (or pie diagram)
shows the petrophysical properties distribution for different rock types/clusters.
The size of the pie is proportional to the value of the petrophysical property. Rock
Type 1 has high TOC and porosity while Rock Type 3 has high carbonates and low
porosity and TOC.

The different rock types were analyzed for their petrophysical relevance. While
porosity is a direct indicator of storage potential, TOC is the total organic content and
S1 signifies the amount of movable hydrocarbons in the core. High values of TOC and
S1 peaks generally indicate higher source rock potential. The other key parameter
governing the production from a well in unconventional shale reservoirs is the
brittleness of the rock. Mineralogy from FTIR may be utilized as indicators of
brittleness. Minerals like quartz are very brittle while on the other hand, clay minerals
are ductile.

The parameters governing storage and source potential for different rock types

in Barnett are shown in Figure 24. Rock Type 1 has the high storage and source
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potential. Rock Type 2 has high storage (porosity) but low TOC (source potential).

Rock Type 3 has low porosity and TOC.
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Figure 24: Parameters governing storage and source potential in Barnett. Clearly,
Rock Type 1 has the high storage and source rock potential. Rock Type 2 has high
storage (porosity) but low TOC (source potential). Rock Type 3 has low porosity
and TOC.

The average mineral content for different rock types in Barnett are shown in
Figure 25. Rock Type 1 has high quartz content and is likely the most brittle of the three
rock types. Coupled with high storage and source rock potential, this rock type is

expected to have the largest impact on production. Rock Type 2 is the most ductile of

the three rock types due to highest clay content.
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Figure 25: Average mineral content for different rock types in Barnett. Rock Type
1 has high quartz content. It is more brittle compared to the other two rock types.
Rock Type 2 has the highest clay percentage and is the most ductile of the three
rock types.
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Kale et al. (2010) worked on a part of the same dataset used in this study. They
came up with three petrofacies. In their study, Petrofacies 1 represented calcite lean
(<10 wt. %), high quartz, high clays, high porosity, and high TOC facies. Petrofacies 2
represented moderate calcite content (10-25 wt. %), high porosity, moderate clays and
quartz, and low TOC facies. Petrofacies 3 was calcite rich, and low porosity and TOC.
The results obtained by Kale et al. (2010) are similar to the results of this study. Also,
they were able to group 10 lithofacies identified by Singh (2008) and come up with
three broad lithofacies groups, quite distinct from each other. These broad lithofacies
groups were basically equivalent to the three petrofacies identified from core
measurements. Thus, the three petrofacies were both geologically and petrophysically
relevant.

Mercury injection capillary pressure data were also available for 100 core plugs
in this study. The capillary pressure curves for most of the samples were interpreted to
lie in one of the three broad categories. The average petrophysical properties of the
three categories were comparable to the properties of the three rock type groups.

Incremental and cumulative mercury intrusion plots, normalized by helium pore
volume, for the three rock types are shown in Figure 26. The cumulative intrusion plot
in Rock Type 1 samples which had high storage and source rock potential, shows that
the ratio of mercury to helium volume varies between 0.65 to 0.80. In Rock Type 2
samples, this ratio varies between 0.40 to 0.60 and it varies between 0.30 to 0.45 for
Rock Type 3 samples. It may mean that the connected pore volume decreases as we go

from Rock Type 1 to Rock Type 2 and Rock Type 3. It is interesting to note that both
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rock types 1 and 2 had similar range of helium porosity but Rock Type 2 has much

lower connectivity then Rock Type 1.
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Figure 26: Representative normalized incremental and cumulative mercury
intrusion plots for the three rock types in Barnett. Pore volume connectivity
decreases from Rock Type 1 to Rock Type 2 to Rock Type 3. Rock Type 3 is very
tight and does not have an inflection point as shown by monotonously increasing
incremental intrusion curve.

The shape of the capillary pressure curves is also different for the three

categories or rock types. In Rock Type 3 samples, the incremental injection curve
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increases monotonically without reaching a plateau or an inflection point even at 60,000
psia. This shape is characteristic of very tight rocks where the dominant pore size may
be smaller than 3 nm. The cumulative intrusion plots in both Rock Type 1 and Rock
Type 2 exhibit considerable hysteresis between saturating and desaturating curves,
implying that not all the mercury that enters the sample during the intrusion cycle
comes out when the pressure is released during the extrusion cycle. This is a sign of real
Hg intrusion into the sample and storage potential

However, in Rock Type 3, cumulative intrusion curves in Rock Type 3 exhibit
almost overlapping saturating and desaturating curves. The lack of hysteresis between
saturating and desaturating curves is a sign of false intrusion/blank effect due to sample
and Hg compression at high pressures. Samples exhibiting this type curve have high
calcite content and very low porosity.

In Rock Type 1 and Rock Type 2 samples, the capillary pressure curve exhibit a
distinct maximum before 60,000 psia. For Rock Type 1 samples, the average dominant
pore throat size is 8 nm while for Rock Type 2 samples, it is 4 nm. Thus, Rock Type 1
samples have the highest permeability. Rock Type 2 samples may be effected by
presence of higher clay fraction.

Kale et al. (2010) also did an independent MICP data study and grouped
different plugs based on capillary pressure curve characteristics. These groups were
then tied back to the different petrofacies. They concluded that Petrofacies 1 and 2
samples had high hysteresis and showed high connectivity. Petrofacies 3 samples
(calcite rich facies) showed low connectivity and negligible hysteresis. Thus, results in

this study were similar to their study.
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3.3 Extending Core-Based Classification to Well Logs

In Barnett play, gamma ray and resistivity were the only logs available in two out the
three wells which had the core data. Thus, these two logs were used for upscaling.
Figure 27 shows the distribution of gamma ray and resistivity for different rock types.
Rock Type 1 had high gamma ray and high neutron porosity consistent with high TOC
and high porosity measured in the lab. Rock Type 3, on the other hand, had lowest

neutron porosity consistent with lowest helium porosity measured in the lab.
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Figure 27: Gamma ray and resistivity distribution for different rock types in the
Barnett formation. Rock Type 1 shows high gamma ray and resistivity due to high
TOC.

To do the upscaling, log data were extracted corresponding to depths where core
data were available. The core-based rock types were derived from K-means and SOM
clustering. This then constituted the training data for the Support Vector Machines
(SVM) classification algorithm. A test was done where different SVM models were
tested like linear, polynomial, and radial. A large part of the training dataset was used to
train the model and then the prediction was made on a small portion of the training
dataset. The efficiency or accuracy of a model was gauged by the fact if the model

could predict the same rock types from log data as were obtained from the core-based
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clustering. Radial SVM model gave the best results and therefore, was used for
prediction. The trained model was. used to predict rock types in uncored wells and
remaining section of the cored wells where core data were not available. The rock type
logs for the two sample wells (W13 on left, W14 on right) are shown in Figure 28. The
lower Barnett is richer in Rock Type 1. Thus, the lower Barnett has higher TOC and

quartz compared to upper Barnett. The rock type logs for other wells are shown in

Appendix B.
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Figure 28: Rock type logs (track 3; black=Rock Type 1, green=Rock Type 2, and
red=Rock Type 3) for two sample wells (W13 on left, W14 on right) in Barnett.
The lower Barnett is richer in Rock Type 1. Thus, lower Barnett has higher TOC
and quartz compared to upper Barnett.
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3.4 Relating rock types to Production Data

Kale et al. (2010) compared the production data in the two wells where rock typing
study was carried out. They identified that Well A had thick continuous Petrofacies 1
layers, much higher Net to Gross (NTG) (83.7 % of Petrofacies 1) compared to Well B
which had thinner Petrofacies 1 layers interspersed with Petrofacies 2 and 3 layers. The
NTG in Well B was also considerably lower (51.7 % of Petrofacies 1). The production
in Well A was observed to be 42% higher than Well B possibly because of this different
distribution of Petrofacies. A more exhaustive correlation of the production data was
carried out for this study to validate the practical utility of the rock typing exercise.

Rock Type 1 had high storage and source rock potential in the Barnett
formation. Additionally, it was also the most brittle of the three rock types. Thus, Rock
Type 1 is expected to be the key driver in production. A Rock Type 1 ratio (RTR) was
created by dividing the Rock Type 1 thickness with the gross thickness (i.e.
RT1+RT2+RT3) for all the wells. This was correlated with normalized production.

The spatial locations of wells for which rock types were upscaled are shown in
Figure 20. All the wells were vertical wells. Figure 29 shows the comparison of RTR
with normalized production. Normalized production here refers to first 24 months’
cumulative gas normalized by the zone thickness. A strong positive correlation suggests
that Rock Type 1 is the key rock type controlling the production.

A sensitivity study was done to compare 12 months, 24 months and cumulative
production (average well life 11 years) as shown in Figure 30. Almost perfect
correlation between 12 months and 24 months’ production suggest that likely the wells

are still in transient phase and interference effects between adjacent fractures and wells
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have not kicked in. Also, high correlation coefficients between different production
metrics suggest that any one metric could be used for production correlation.

The set of wells lying along the green trend line show high productivity while
wells lying along red trend line show relatively lower productivity. The wells having
high productivity are from different counties; namely, Denton, Wise and Parker. The
commonality among these high productivity wells is that they were all completed by
one operator. The wells lying along the red trend line were completed by other
operators. Thus, it appears that the reason for multiple trends in Figure 29 can be

attributed to different completion practices used by various operators.
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Figure 29: Normalized production correlated with the Rock Type Ratio (RTR) in
Barnett. A strong positive correlation suggests Rock Type 1 is the key rock type
controlling the production. The set of wells lying along the green trend line show
high productivity while wells lying along red trend line show relatively lower
productivity. The commonality among these high productivity wells is that they
were all completed by one operator. Thus, it appears that the reason for multiple
trends in the figure can be attributed to different completion practices used by
various operators.
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Figure 30: Comparison of different production metrics namely 12 months’ gas
production, 24 months’ gas production and cumulative gas production (average
well life 11 years). Almost perfect correlation between 12 months and 24 months’
production suggest that likely the wells are still in transient phase and interference
effects between adjacent fractures and wells have not kicked in. Also, high
correlation coefficients between different production metrics suggest that anyone
could be used for production correlation.
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Chapter 4: Eagle Ford Formation

4.1 Study Area Description

Eagle Ford is one of the most prominent shale plays in US. It is late Cretaceous in age
with more than 1.5 billion barrels oil, and 4.2 Tcf gas produced so far (based on drilling
info, checked Dec 16, 2016). It varies in thickness between 150 to 450 ft. (Callantine
2010). The depths of Eagle Ford formation vary from 7,000 ft. to 12,000 ft. (CLR
2010). Eagle Ford is slightly over-pressured with pressure gradient varying from 0.4 to
0.7 psi/ft. (CLR 2010). It has 4 different basins namely Maverick, Hawkville, San
Marcos and East Texas. Traditionally, some experts do not consider East Texas basin as
a part of Eagle Ford play due to its very high clay content compared to rest of the Eagle

Ford. Figure 31 (Tuttle 2010) shows the Eagle Ford shale play.

Sabine Arch

Figure 31: Eagle Ford shale play. The figure shows the four major basins in Eagle
Ford namely Maverick, Hawkville, San Marcos and East Texas (Tuttle 2010).
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Figure 32 shows the depositional environment for Eagle Ford (Breyer et al.
2012). The sediment influx is evident from north-east. East Texas basin has mainly
deltaic deposits. This is primarily the reason for higher clay fraction in this basin.
Marine shelf and slope deposits are evident as one moves towards central, western, and
southern parts of the play. The marine deposits are very rich in carbonates. The slope
deposits are deeper compared to shelf deposits and are expected to have higher maturity

than the northern shelf deposits.
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Figure 32: Depositional environment for Eagle Ford (Breyer et al. 2013). The
sediment influx is evident from north-east. East Texas basin has mainly deltaic
deposits. The other three basins have marine shelf and slope deposits and are rich
in carbonates.

Figure 33 shows the isopach thickness map for Eagle Ford play (EOG 2010).
The blue color represents thickness of 350 ft. The orange color represents lower
thickness of 30 ft. The thickness increases as one goes seaward. Figure 34 shows the

TOC maps for upper and lower Eagle Ford (Tian 2014). The TOC maps are only
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available for a part of the Eagle Ford play. The red color represents high TOC and blue

color represents low TOC. Generally, lower Eagle Ford is more rich in TOC. The TOC

varies from 1 to 6 % in upper Eagle Ford and from 2 to 12 % in lower Eagle Ford. It is

evident from Figure 33 and Figure 34 that thicker parts of the Eagle Ford play are

associated with higher TOC.
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Figure 33: Isopach thickness map for Eagle Ford play (EOG 2010). The blue color
represents greater thickness of 350 ft. The orange color represents lower thickness
of 30 ft. The thickness increases as one goes seaward.
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Figure 34: (Left) TOC map for upper Eagle Ford. (Right) TOC map for lower
Eagle Ford (Tian 2014). The TOC map is available only for a part of the play.
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Figure 35 shows the oil, gas, and condensate regions in the Eagle Ford play
(Tuttle 2010). Slope deposits are deeper and expected to be more mature compared to
the northern shelf deposits. Thus, as one goes north, maturity decreases and there is a

transition from gas to oil.

%y Nulech

Figure 35: Oil, gas, and condensate regions in the Eagle Ford play (Tuttle 2010).

The oil and gas production bubble maps are shown in Figure 36. The bubble
maps show that southern part of the play is more gas prone and northern part of the play
is more oil prone. The bubble maps also show that the western and northern parts of the
play contain highest oil production wells. These areas are characterized by thick shales
(Figure 33), high TOC (Figure 34) and oil maturity window (Figure 35) and high

production (Figure 36). Thus, these are also the sweet spots of Eagle Ford play.
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Figure 36: Cumulative oil and gas production bubble maps for Eagle Ford
formation. Areas having larger bubbles represent sweet spots in Eagle Ford.
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Figure 37: Wells with core and log data for rock typing. 12 wells had core data
(shown as red bubbles). They are spread throughout the Eagle Ford play but were
mainly limited to the condensate window. Core data were available for 263 depth
points. An additional 17 wells (shown as black bubbles) were taken for correlation

of rock types with production data. They did not have core data but had the
required logs.
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Figure 37 shows the wells having the core data (red bubbles) which were used
for rock typing. Twelve wells were available which spread throughout the Eagle Ford
play but were mainly limited to the condensate window. Core data were available for
263 plugs in these 12 wells. Out of the 12 wells which had core data, triple combo logs
were available in only 3 wells while 3 more wells had gamma ray and resistivity. Thus,

gamma ray and resistivity logs were used for upscaling from core to log level.
4.2 Core-Derived Rock Typing

Five petrophysical measurements from core data namely porosity, TOC, clay, quartz
and carbonate content were used for defining rock types. PCA was done to reduce
dimensionality of the clustering problem. Figure 38 shows that the first three principal
components explain around 90% of the variance in the data. Thus, instead of using 5

variables, it is sufficient to use first three principal components.
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Figure 38: Principal Component Analysis results. The percentage variance
explained by each component is listed in the figure. The first three principal
components explain around 90% of the variance in the data.

The optimum number of rock types were defined to be three based on the SSW-

SSB method. The results are shown in Figure 39. K-Means and SOM clustering
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techniques were used to define rock types. K-means and SOM gave very similar results.

Different rock types and their characteristics are shown in Figure 40.
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Figure 39: K-Means creates multiple scenarios with different number of clusters.
In each case, it identifies the intra-cluster variance (red curve) and inter-cluster
variance (green curve). The elbow effect represents change in slope. The elbow

effect occurs around 3 clusters which represents the optimum number of clusters.

RT1 RT3
a) b)

Figure 40: a). Clusters created on a SOM map b) Rose diagram (or pie diagram)
shows the petrophysical properties distribution for different rock types/clusters.
The size of the pie is proportional to the value of the petrophysical property. Rock
Type 1 has high TOC and porosity while Rock Type 3 has high clays and low
TOC.

The parameters governing storage and source potential for different rock types

in Eagle Ford are shown in Figure 41. Clearly, Rock Type 1 has the highest porosity,

TOC and S1 values. Rock Type 1 has the highest storage and source potential.
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Figure 41: Parameters governing storage and source potential in Eagle Ford.
Clearly, Rock Type 1 has the highest porosity, TOC and S1 value, Rock Type 1 has
the highest storage and source potential.

The average mineral content for different rock types in Eagle Ford is shown in
Figure 42. All rock types have little quartz and thus cannot be differentiated based on
quartz content for brittleness. However, Rock Type 3 has the highest clay percentage.
Wells 10, 11 and 12 (Figure 37) are rich in Rock Type 3. These wells lie in detrital
deltaic deposits. This explains why these wells are different and clay rich compared to

other wells in carbonate rich marine shore/shelf deposits. The Rock Type 3 has high

porosity but very small TOC/S1. Thus, Rock Type 3 is ductile and has poor source rock

potential.
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Figure 42: Average mineral content for different rock types in Eagle Ford. Rock
Type 3 has high clay content. Wells rich in Rock Type 3 lie in the East Texas basin.
This rock type has high porosity but poor source rock potential.

56



Mercury injection capillary pressure data were also available for 220 core plugs.
The capillary pressure curves for most of the samples were interpreted to lie in one of
the three broad categories. The average petrophysical properties of the three categories

were comparable to the three rock types.
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Figure 43: Representative normalized incremental and cumulative mercury
intrusion plots for the three rock types in Eagle Ford. Pore volume connectivity
decreases from Rock Type 1 to Rock Type 3 to Rock Type 2. Rock Type 2 is very
tight and does not have an inflection point as shown by monotonously increasing
incremental intrusion curve.
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Incremental and cumulative mercury intrusion plots, normalized by helium pore
volume, for the three rock types are shown in Figure 43. Because of normalization,
intrusion scale varies between 0 and 1. The normalization helps to determine
connectivity of the sample. In Rock Type 1 samples, which had the highest storage and
source rock potential, the cumulative intrusion plot shows that the ratio of mercury to
helium volume varies between 0.6 to 0.75. In Rock Type 3 samples, this ratio varies
between 0.5 to 0.65 and it varies between 0.3 to 0.4 for Rock Type 2 samples. Thus, it
shows that the connected pore volume decreases from Rock Type 1 to Rock Type 3 and
Rock Type 2. It is interesting to note that both rock types 1 and 3 have similar range of
helium porosity but Rock Type 3 has lower connectivity then Rock Type 1.

The shapes of the capillary pressure curves also clearly distinguish the three
rock types. In Rock Type 2 samples, the curve injection increases monotonously
without reaching a plateau or an inflection point even at 60,000 psia. At 60,000 psia,
equivalent pore size which the mercury could pass through is 3 nm. This shape is
characteristic of very tight rocks where the dominant pore size may be smaller than 3
nm.

The incremental capillary pressure curves exhibit a distinct maximum before
60,000 psia for Rock Type 1 and Rock Type 3 samples. The inflection point defines the
dominant pore throat. A larger value of the dominant pore throat means higher
permeability. For Rock Type 1 samples, the average dominant pore throat size was 13
nm while for Rock Type 3 samples, it was 5 nm. Rock Type 1 samples had the highest

permeability. Rock Type 3 samples may be effected by presence of higher clay fraction.
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4.3 Extending Core-Based Classification to Well Logs

The next step was to extend the core-based classification to well log data. This is
necessary because in general, not all intervals within a well are cored and additionally,
it may be necessary to determine the distribution of rock types in uncored wells. The
logs were only available for vertical pilot holes and thus, there was an inherent
assumption that properties do change as you go away from wellbore. In Eagle Ford,
gamma ray and resistivity logs were available for six out of the twelve wells which had
the core data. Thus, these two logs were used for upscaling. The distributions of gamma
ray and resistivity for different rock types are shown in Figure 44. Rock Type 1 and
Rock Type 3 both show high gamma ray possibly due to high TOC and high clays,
respectively. Also, Rock Type 1 shows a high resistivity due to high oil saturation and
Rock Type 3 shows a lower resistivity due to high water saturation and high clays.

Thus, core and log data are consistent with each other.

= ]
N =] A °
o -
= i ]
-~ :
8_ 4
E‘— T ‘EO ©
< ! : é07 e
e : : £ ™ : 8
g9 ’ < : i .
x 2 ; 209 | 3 3 —
@ H =0 ' }
- — | 2 N
S ) i — 0
LR : ¢ ——
0 ' : 2-
-
N
Q - :
T T T O T T T
1 2 3 1 2 3
Rock Type Rock Type

Figure 44: Gamma ray and resistivity distribution for different rock types in the
Eagle Ford from the depth points at which both core and log data were available.
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The trained SVM model was used to predict rock types in uncored wells and
remaining section of the cored wells where core data were not available. The rock type
logs for two sample wells (W10 on left, W6 on right) in the Eagle Ford are shown in
Figure 45. W10 is in East Texas basin and is very rich in Rock Type 3. W6 is in San
Marcos basin and is rich in Rock Type 1. W6 is expected to have a better production
rate than W10. The rock type logs for other wells in Eagle Ford are shown in Appendix
A. These include wells which had both core and log data, and wells which only had log

data.
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Figure 45: Rock type logs (track 4; black=Rock Type 1, green=Rock Type 2, and
red=Rock Type 3) for two sample wells (W10 on left, W6 on right) in Eagle Ford.
W10 is located in East Texas basin and is very rich in Rock Type 3. W6 is located
in San Marcos basin and is rich in Rock Type 1.

60



Next, an innovative method was devised to check the quality of populated rock
type logs and asses the robustness of the SVM algorithm. Since, the triple combo logs
were available for three wells, porosity and TOC logs were modelled using resistivity,
gamma ray, neutron and density logs. The triple combo logs and the calculated porosity
and TOC logs for Well 10 and Well 6 are given in Figure 46. The methodology has

been described in 2.2 Log Analysis section.
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Figure 46: Calculated logs (rock types in track 4; black=Rock Type 1, green=Rock
Type 2, and red=Rock Type 3) namely porosity and TOC logs for two sample wells
(Well 10 on left, W6 on right). The red curve represents the modelled curves. The
black filled circles represent the core measurements that were used for calibration.

Box plots were created to see the distribution of calculated TOC and porosity

based on the rock type log. The box plots are shown in Figure 47. The results reassert
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the conclusion based on core-derived rock types (Figure 41). Rock Type 1 has the
highest source rock and storage potential. Rock Type 3 though has a high porosity but
lacks TOC. This cross-check validates the rock type upscaling method and lends

credibility to further analysis with the production data.
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Figure 47: Box plots showing distribution of calculated TOC and porosity logs
based on populated rock type log. The distributions reassert the conclusions based
on core derived rock types.

4.4 Relating rock types to Production Data

In Eagle Ford, Rock Type 1 had the highest storage and source rock potential. Thus,
Rock Type 1 is expected to be the key driver of the production. A Rock Type 1 ratio
(RTR) was created by dividing the Rock Type 1 thickness with the gross thickness (i.e.
RT1+RT2+RT3) for all the wells. This was then correlated with normalized production.
The positive correlation between the two validates the robustness and practical utility of
the rock typing exercise. It also highlights the value that can be generated by doing such

an exercise in unconventional reservoirs.
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The spatial locations of the wells for which rock types were upscaled are shown
in Figure 37. Red represents wells with cores and black represents additional wells
which did not have the core data. All the wells were horizontal wells and their lateral
length varied from 600 to 6000 ft. To make a fair comparison, the production was
normalized by the lateral length. The comparison of RTR with normalized production is
shown in Figure 48. Normalized production here refers to first 24 months’ cumulative
barrel of oil equivalent (BOE) normalized by the lateral lengths. A strong positive
correlation suggests that Rock Type 1 is the key rock type controlling production. There
are some outliers which are expected due different completion treatments, etc.

Comparison of different production metrics namely 6 months’ BOE, 24 months’
BOE and cumulative BOE (average well life 5 years) is shown in Figure 49. Very high
correlation coefficients between different production metrics suggest that anyone could

be used for production correlation.
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Figure 48: Normalized production correlated with the Rock Type Ratio (RTR). A
strong positive correlation suggests Rock Type 1 is the key rock type controlling
the production. The correlation of fit does not include points inside black boxes.
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Figure 49: Comparison of different production metrics namely 6 months’ BOE, 24
months’ BOE and cumulative BOE (average well life 5 years). Very high
correlation coefficients between different production metrics suggest that anyone
could be used for production correlation.
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Chapter 5: Woodford Formation

5.1 Study Area Description

The Woodford formation is a Devonian-Mississippian shale located in the Anadarko,
Arkoma and Ardmore basins in Oklahoma and Texas. The Woodford formation extent
and distribution is given in Figure 50 (Jarvie 2008, Lantana 2013). It has produced more
than 87 MMbbl oil, and 4.6 Tcf gas so far (based on drilling info, checked Dec 16,
2016). It varies in thickness between 150 to 400 ft. (CLR 2010). The depths of
Woodford formation vary between 4,800 to 10,000 ft. (CLR 2010). Woodford

formation is over-pressured with pressure gradient varying between 0.60-0.65 psi/ft.

(CLR 2010).
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Woodford formation was deposited in the Devonian, around 360 million years
ago, (MYA). It was deposited as organic rich shale in an ancient seaway. The low
oxygen environment facilitated preservation of oil prone organic matter. In early
Pennsylvanian, plate collision resulted in formation of Anadarko, Ardmore and Arkoma
basins. In late Pennsylvanian, there was rapid subsidence and sedimentation. It was
during this period that majority of the overlying sandstone reservoirs were deposited.
By early Permian, oil generation and migration into overlying conventional reservoirs
had started. The entire depositional sequence is shown in Figure 51 (CLR 2010).

Devonian 360 Million years ago (MYA)

B Woodford

[ penn sands

Figure 51: Deposition of Woodford formation (CLR 2010). Woodford was
deposited in the Devonian in ancient seaway.

The common lithologies found in Woodford formation are black shale, chert,
sandstone, siltstone and dolostone. The most productive lithologies are siliceous and
include cherts and cherty black shales. Siliceous formations in Woodford are highly
brittle and contain natural fractures. Chert and quartz in Woodford have different

66



sources and distributions. Quartz is detrital while chert is biogenic and represents
siliceous radiolaria. Chert deposits are organic rich and where they are thermally
mature, they form optimum exploration targets.

Figure 52 shows the isopach map for Anadarko basin (Caldwell and Johnson
2013). Anadarko basin has thickest Woodford formation among the three basins.

Isopach maps for Ardmore and Arkoma basins could not be found in the literature.
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Figure 52: Isopach map for Anadarko basin, Woodford (Caldwell and Johnson
2013).

Figure 53 and Figure 54 show the TOC and vitrinite reflectance map for
Woodford formation, respectively (Comer 2005). The TOC map shows that Anadarko
basin has the highest TOC and the vitrinite reflectance map shows that Anadarko basin

lies in oil maturity window. Thus, Anadarko basin is likely to have the best oil
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production in Woodford shale play. South Central Oklahoma Oil Province (SCOOP)
and Sooner Trend Anadarko Basin Canadian and Kingfisher Counties (STACK), the

most prolific Woodford regions lie in the Anadarko basin.
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Figure 53: TOC map for Woodford formation. Anadarko basin has the highest
TOC among the three basins: Anadarko (outlined as black), Arkoma (outlined as
purple) and Ardmore (outlined as blue). (Comer 2005)
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Figure 54: Vitrinite reflectance map for Woodford formation. Majority of the
Anadarko (outlined as black) and Arkoma (outlined as purple) basins are in oil
maturity window. Ardmore basin (outlined as blue) is comparatively immature
(Comer 2005).

68



Figure 55 shows the cumulative oil production bubble map for Woodford play.
It affirms that Anadarko basin has the highest production. This area is characterized by
thick shales (Figure 52), high TOC (Figure 53), oil maturity window (Figure 54) and
high production (Figure 55). The Anadarko basin is in general a high potential area in
the Woodford play. More specifically, SCOOP (South Central Oklahoma QOil Province)
and STACK (Sooner Trend Anadarko Basin Canadian and Kingfisher Counties) areas
inside Anadarko basin are the sweet spots of Woodford play. The operators are
interested in these two areas because of two major reasons. First, they have a relatively
higher liquid content compared to rest of the basin and second, the water cut in these
regions is very low compared to rest of the basin. A recent ruling in Mar 2016 mandated
a reduction in the number of injection wells in several counties of Oklahoma by 40%
due to impending danger of induced earthquakes. Thus, with strong regulations against
water injection, operators are particularly interested in SCOOP and STACK areas due

to their low water cut.
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Figure 55: Oil production bubble map for Woodford play.
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Figure 56 shows the wells having the core and log data and which were used for
rock typing. Seven wells were available which had core data and majority of them were
in Anadarko basin. Core data were available for 411 plugs in these 7 wells. Triple
combo logs were available in all 7 wells. Thus, gamma ray, resistivity, neutron, and

density logs were used for upscaling logs from core to log level.
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Figure 56: Wells with core and log data for rock typing. 7 wells had core data
(shown as red bubbles) and most of which were in Anadarko basin. Core data
were available for 411 depth points. Additional 12 wells (shown as black bubbles)
had triple combo logs but no core data. Rock type logs were populated in these 12
wells for correlation with production data.

5.2 Core-Derived Rock Typing
The same five petrophysical measurements from core data namely porosity, TOC, clay,
quartz, and carbonate content were used for defining rock types in Woodford, as were
used in Eagle Ford and Barnett. PCA was done to reduce dimensionality of the

clustering problem. Figure 57 shows that the first three principal components explain
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more than 90% of the variance in the data. Thus, instead of using 5 variables, it is
sufficient to use first three principal components. The optimum number of rock types
were defined to be three based on the SSW-SSB method. The results are shown in

Figure 58.
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Figure 57: Principal Component Analysis results. The percentage variance
explained by each component is listed in the figure. The first three principal
components explain more than 90% of the variance in the data.

1000 1500

SSW, SSB

500
|

Number of Clusters

Figure 58: K-Means creates multiple scenarios with different number of clusters.
In each case, it identifies the intra-cluster variance (red curve) and inter-cluster
variance (green curve). The elbow effect represents change in slope. The elbow
effect occurs around 3 clusters which represents the optimum number of clusters.
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Next, K-Means and SOM clustering techniques were used to define rock types.
Different rock types and their characteristics are shown in Figure 59. The parameters
governing storage and source potential for different rock types in Woodford are shown

in Figure 60.
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Figure 59: a) Clusters created on a SOM map b) Rose diagram (or pie diagram)
shows the petrophysical properties distribution for different rock types/clusters.
The size of the pie is proportional to the value of the petrophysical property. Rock
Type 1 shows high porosity and TOC while Rock Type 3 shows high carbonates,
low porosity, and TOC.
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Figure 60: Parameters governing storage and source potential in Woodford. Rock
Type 1 has the highest storage and source rock potential.
Rock Type 1 has the highest storage and source potential. The average mineral

content for different rock types in Woodford are shown in Figure 61. Rock Type 1 has
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high quartz content and is likely the most brittle of the three rock types. Again, it is

expected to have the largest impact on production.

100

ERT1 MWRT2 MERT3 77

Quartz Clays Carbonates

Figure 61: Average mineral content for different rock types in Woodford. Rock
Type 1 has high quartz content. It is more brittle compared to other two rock
types. Rock Type 2 has the highest clay percentage and is the most ductile of the
three rock types.

Mercury injection capillary pressure data were also available for 112 core
depths. Incremental and cumulative Hg intrusion plots, normalized by helium pore
volume, for the three rock types are shown in Figure 62.

In Rock Type 1 samples, the cumulative intrusion plot shows that the ratio of
mercury to helium volume varies between 0.65 to 0.80. In Rock Type 2 samples, this
ratio varies between 0.50 to 0.65 and it varies between 0.40 to 0.55 for Rock Type 3
samples. This shows the connected pore volume decreases as we go from Rock Type 1
to Rock Type 2 and Rock Type 3.

In Rock Type 3 samples, the incremental intrusion curve increases
monotonically without reaching a plateau or an inflection point even at 60,000 psia.
Rock type 3 samples were very tight, characterized by high carbonate percentage and a
higher grain density.
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Figure 62: Representative normalized incremental and cumulative mercury
intrusion plots for the three rock types. Rock Type 1 has the highest dominant
pore throat size and highest connected volume. On the other end, Rock Type 3
shows signs of false intrusion and has lowest connected volume.

The cumulative intrusion plots in both Rock Type 1 and Rock Type 2 exhibit
considerable hysteresis between saturating and desaturating curves, implying real Hg

intrusion into the sample. The almost overlapping saturating and desaturating curves in

Rock Type 3 may be indicative of false intrusion. The average dominant pore throat
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size is 6 nm for Rock Type 1 samples, while for Rock Type 2 samples, it is 4 nm. Thus,
Rock Type 1 samples have the highest permeability. Rock Type 2 samples may be

effected by presence of higher clay fraction.
5.3 Extending Core-Based Classification to Well Logs

In the Woodford, triple combo logs were available for all the seven wells that had core
data. Again, the logs were only available for vertical pilot holes and thus, there was an
inherent assumption that properties do change as you go away from wellbore. The
gamma ray, neutron, density, and resistivity logs were used for upscaling. Figure 63
shows the distribution of gamma ray, neutron porosity and density logs for different
rock types. The logs were consistent with the core data and were found adequate for

upscaling the rock types.
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Figure 63: Gamma ray, density, and neutron logs distribution for different rock
types in Woodford. Rock Type 1 has low density, high gamma ray and high
neutron porosity consistent with high TOC and high lab measured porosity. Rock
Type 3, on the other hand, has highest density and lowest neutron porosity
consistent with high carbonates in lab measured mineralogy.

To do the upscaling, following the same procedure as in Eagle Ford and Barnett,
log data were extracted corresponding to depths where core data were available. The

trained the SVM model was used to predict rock types in uncored wells and remaining
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section of the cored wells where core data were not available. Figure 64 shows the rock
type logs for two sample wells (W16 on left, W18 on right). The rock type logs for the

remaining wells are given in Appendix C.
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Figure 64: Rock type logs (track 4; black=Rock Type 1, green=Rock Type 2, and
red=Rock Type 3) for two sample wells (W16 on left, W18 on right) from the
Woodford formation.

The quality of populated rock type logs was checked and the robustness of the

SVM algorithm was assessed. Since, the triple combo logs were available for all seven

wells, porosity and TOC logs were modelled using resistivity, gamma ray, neutron, and
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density logs. The triple combo logs and calculated porosity and TOC logs for Well 16

and Well 18 are given in Figure 65.
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Figure 65: Calculated logs (rock types in track 4; black=Rock Type 1, green=Rock
Type 2, and red=Rock Type 3) namely porosity and TOC logs for two sample wells
(Well 16 on left, W18 on right). The red curve represents the modelled curves. The
black filled circles represent the core measurements that were used for calibration.
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Figure 66: Box plots showing distribution of calculated TOC and porosity logs
based on populated rock type log. The distributions reassert the conclusions based
on core derived rock types.

Box plots (Figure 64) were created to show the distribution of calculated TOC

and porosity based on the rock type log. The results reassert the conclusion based on
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core derived rock types (Figure 60). Rock Type 1 has the highest source rock and
storage potential followed by Rock Type 2 and Rock Type 3. This cross-check validates

the rock type upscaling method and lends credibility to further analysis with production

data.

5.4 Relating rock types to Production Data
Same exercise was carried in Woodford wells. Figure 56 shows the location of the
wells. Some of the wells were horizontal, some were vertical. Figure 67 shows the
comparison of RTR with normalized production. Vertical well production was

normalized by zone thickness and horizontal well production by lateral length. A

positive correlation between normalized production and RTR is evident.
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Figure 67: Normalized production correlated with the Rock Type Ratio (RTR). a)
Correlation plot for horizontal wells. b) Correlation plot for vertical wells. A

positive correlation on both the plots suggests that Rock Type 1 is the key rock
type controlling the production.
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Comparison of different production metrics namely 12 months’ BOE, 24 months’ BOE

and cumulative BOE (average well life 7 years) is shown in Figure 68. Very high

correlation coefficients between different production metrics suggest that anyone could

be used for production correlation.
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Figure 68: Comparison of different production metrics namely 12 months’ BOE,
24 months’ BOE and cumulative BOE (average well life 7 years). Very high
correlation coefficients between different production metrics suggest that anyone
could be used for production correlation.
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Chapter 6: Wolfcamp Formation

6.1 Study Area Description

The Wolfcamp formation is mainly located in the Permian basin in Texas and New
Mexico. It is a late Cretaceous shale. It has produced more than 962 million barrels oil,
and 4.2 Tcf gas so far (based on drilling info, checked Dec 16, 2016). The average
thickness is around 2000 ft. (Wilson et al. 2016). The depths of Wolfcamp formation
range from 5,500 to 11,000 ft. (Pioneer 2013). Wolfcamp is over-pressured with
pressure gradient varying between 0.55-0.70 psi/ft. (Pioneer 2013). Figure 69 shows the

Wolfcamp shale play (Cortez 2012).
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Figure 69: Major basins in the Texas and New Mexico areas (Pioneer 2014). The
two major basins namely Delaware and Midland together form Permian basin.
The Wolfcamp formation in the Permian basin forms the Wolfcamp shale play
(Cortez 2012).

The Permian basin is an asymmetric basin. It underwent active subsidence and

increased levels of shale, limestone, and arkosic sand deposition from Mississippian to

early Permian time (Heckel 1986). Intricate faulting and differential rates of subsidence
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produced several sub-basins namely the Delaware basin, the Central basin platform and
the Midland basin. The area is marked by extreme stratigraphic discontinuity which has
been a major concern for the oil and gas operators in this region. Figure 70 shows the
stratigraphic column and Figure 71 shows the regional cross-section (Cortez 2012). In
the Delaware basin, Wolfcamp formation is being targeted with horizontal wells and is
commingled with Bone Spring sands. In the Midland basin, the combination of

Wolfcamp and Spraberry is being exploited.
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Figure 70: Stratigraphic column of the Permian Basin (Cortez 2012).
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Figure 71: The regional cross-section A-A' showing stratigraphy and lithology
across the Permian basin (Cortez 2012).

Lower Permian (Wolfcamp and Leonard shales) in Midland basin were
deposited in an intra-cratonic deep water basin surrounded by shallower carbonate
platforms (Hamlin and Baumgardner 2012). The depositional systems alternated
between siliclastic, turbidite systems to hemipelagic, calcareous systems. The sediment
transport to the basin was controlled by changes in sea-level. During high stand,
platforms were submerged and acted as carbonate factories. The sediment influx to the
basin was mainly carbonate derived from the platforms and hemipelagic clay and silt.
On the contrary, during low stand, carbonate platforms were exposed and sediment
influx to the basin comprised of siliclastic sediments.

The lithologic description of Wolfcamp formation in Midland basin is given by
Cortez (2012). He identified four different facies from core descriptions. They were
namely siliceous mudrock, calcareous mudrock, muddy carbonate-clast conglomerates

and skeletal grainstone. Siliceous mudrock has an average clay content of 40%. The
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clay type is mainly illite. The remaining mineralogy consists of carbonate, quartz,
feldspar, pyrite, and apatite. Carbonate content is generally less than 20 wt.%.
Calcareous mudrock are like siliceous mudrock but are a shade lighter due to increased
carbonate content (>20 wt.%). These rocks are also organically less rich compared to
siliceous mudrock. Muddy conglomerates were deposited as debris flows and have a
very high carbonate content (~ 62 wt.%). Lastly, skeletal grainstone are turbidite
deposits. These rocks have little clay (~ 8 wt.%) and low TOC. These rocks contain
significant amount of diagenetic quartz which can exceed 50 wt.% (Cortez 2012).

The first two facies namely the siliceous mudrock and calcareous mudrock are
the dominant facies. They have few sedimentary structures and high TOC compared to
the other two facies. TOC varies inversely with carbonates as carbonates are detrital and

non-biogenic (Hamlin and Baumgardner 2012).
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Figure 72: (Left) Isopach map for Wolfcamp in Midland basin. The polygon
marked by green dashed curve represents thickest Wolfcamp formation in
Midland basin. (Right) Isopach map for Wolfcamp in the Delaware basin. Orange
and yellow shaded areas have thicker Wolfcamp compared to the blue shaded area
(Parsley 2014).
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Figure 72 shows the isopach maps for Wolfcamp formation in the Permian basin
(Parsley 2014). The maps show that western part of the Delaware basin and central
region of the Midland basin have the thickest Wolfcamp formation. Figure 73 shows the
vitrinite reflectance map for Wolfcamp formation (Holmes and Dolan 2014). It is
evident that Delaware basin may be partly gas prone while Midland basin is entirely oil

prone.
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Figure 73: Vitrinite reflectance map for Wolfcamp formation (Holmes and Dolan
2014). It shows that part of Delaware basin is in gas/condensate maturity region
while Midland basin is entirely in oil maturity region.

Figure 74 shows the oil and gas production bubble maps for Wolfcamp
formation. The oil bubble plot shows that the highest oil production occurs in Midland
Basin which lies in the oil maturity window (Figure 73). This area lies in the core area

that is thickest part of the Midland Basin (Figure 72 Left). The gas bubble plot indicates

that majority of the gas production is limited to Delaware basin which is in the gas
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maturity window (Figure 73). The production is highest in the western part of the basin
which is thickest part of the Delaware basin (Figure 72 Right). Thus, the isopach map,
vitrinite reflectance map and production data map, are consistent with each other and

can be used to determine the sweet spots in the Wolfcamp shale play.

o,

£ Lubbock Lo
.ﬁ
| . ’ L4
| s
1,500,000 - 2,000,000 [0 - s )
2,000,000 -2,500,000 A
2,500,000 - 45,052,340 - Se :
> 45,052,340 . “f" & . o :
v'. « ¥ 2 \-’O " : ’ s P
§ Lt' g e “l& o

.‘Gas Bubble Map

Oil Bubble Map

Figure 74: Oil and gas production bubble maps for Wolfcamp formation. The oil
bubble plot shows that the highest oil production occurs in Midland Basin which
lies in the oil maturity window (Figure 70). The gas bubble plot indicates that
majority of the gas production is limited to Delaware basin which is in the gas
maturity window (Figure 70).

Figure 75 shows the wells having the core and log data which were used for
rock typing. Three wells were available all of which were in the Midland basin. Core
data were available for 212 plugs in these 3 wells. Only gamma ray and neutron

porosity logs were available in all the three wells. Thus, these two logs were used for

upscaling rock types from core to log level.
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Figure 75: Wells with core and log data for rock typing. 3 wells had core data
(shown as red bubbles) and all of them are in Midland Basin. Core data were
available for 212 depth points. Additional 39 wells (shown as black bubbles) had
logs but no core data. Rock type logs were populated in these 39 wells for
correlation with production data.

6.2 Core-Derived Rock Typing

Six petrophysical measurements from core data namely porosity, TOC, V,/Vs, clay,
quartz, and carbonate content were used for defining rock types in Wolfcamp. PCA was
done to reduce dimensionality of the clustering problem. Figure 76 shows that the first
three principal components explain more than 86% of the variance in the data. Thus,

instead of using 6 variables, it is sufficient to use first three principal components.
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Figure 76: Principal Component Analysis results. The percentage variance
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components explain more than 86% of the variance in the data.

The optimum number of rock types were defined to be three based on the SSW-
SSB method. The results are shown in Figure 77. K-Means and SOM clustering

techniques were used to define rock types. Different rock types and their characteristics

are shown in Figure 78.

SSW, SSB
600
L

Figure 77: SSW-SSB plot. The elbow effect occurs around 3 clusters which
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represents the optimum number of clusters.
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Figure 78: a) Clusters created on a SOM map b) Rose diagram (or pie diagram)
shows the petrophysical properties distribution for different rock types/clusters.
Rock Type 1 shows high porosity, high TOC, and high clay fraction while Rock
Type 3 shows high carbonates, low porosity, and low TOC.

The parameters governing storage and source potential for different rock types
in Wolfcamp are shown in Figure 79. Rock Type 1 has the highest porosity, TOC and
S1 values. Based on Figure 79, Rock Type 1 has the highest storage and source
potential followed by Rock Type 2 and then Rock Type 3. The average mineral content
for different rock types in Wolfcamp are shown in Figure 80. Rock Type 1 has high

clay content and is likely the most ductile of the three rock types.
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Figure 79: Parameters governing storage and source potential in Wolfcamp.
Again, Rock Type 1 has the highest storage and source rock potential.
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Figure 80: Average mineral content for different rock types in Wolfcamp. Rock
Type 2 has high quartz content. It is more brittle compared to other two rock
types. Rock Type 1 has the highest clay percentage and is thought to be the most
ductile of the three rock types.

Rock Type 2 has the highest quartz percentage. This suggests that Rock Type 2
is very brittle and can fracture easily. Rock Type 2 may play a key role in governing
fracture growth and initiation. Wells having higher proportion of Rock Type 2 may
need smaller and farther spaced perforations compared to wells that lack Rock Type 2.
This behavior is different from previous shale plays where the most productive rock
type was also the most brittle, based on mineralogy data.

Ultrasonic measurements can also be used to infer brittleness. Compressional

wave velocity (Vp), shear wave velocity (Vs) and bulk density (p) can be used to

calculate Poisson’s ratio (v) and Young’s modulus (E) using following formulas.

pvs * (3vp-4vs)

2_y2
V5-V§
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The assumption in the above calculations is that rock is isotropic. However, it is
well known that shales are anisotropic and thus, above calculations may not be
representative of the actual rock. To validate the calculations, Young’s modulus values
calculated from ultrasonic measurements were compared to actual Young’s modulus
measurements made on the rock samples using nano-indentation. The comparison
between the two is shown in Figure 81. The figure shows that ultrasonic measurements

can be used to predict representative rock properties.
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Figure 81: Young's modulus values calculated from ultrasonic measurements
compared against actual Young's modulus measurements on Wolfcamp samples
using nanoindentation. The 1:1 line is shown as black line.

The cross-plot between Young’s modulus and Poisson’s ratio can differentiate
brittle and ductile rocks. Brittle rocks are characterized by low Poisson’s ratio and high
Young’s modulus. The cross-plot for the three rock types is shown in Figure 82. Rock
Type 2 shows high Young's modulus and low Poisson's ratio and appears to be the most

brittle of the three rock types. Thus, mineralogy and ultrasonic measurements both

indicate that Rock Type 2 is the most brittle rock type.
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Figure 82: Cross-plot of Young's modulus and Poisson's ratio obtained from
ultrasonic measurements. Rock Type 2 shows high Young's modulus and low
Poisson's ratio and appears to be the most brittle of the three rock types.

Mercury injection capillary pressure data were also available for 156 core plugs.
Incremental and cumulative Hg intrusion plots, normalized by helium pore volume, for
the three rock types are shown in Figure 83. The cumulative intrusion plot for Rock
Type 1 samples show that the ratio of mercury to helium volume varies between 0.65 to
0.85. In Rock Type 2 samples, this ratio varies between 0.55 to 0.75 and it varies
between 0.25 to 0.45 for Rock Type 3 samples. The connected pore volume decreases
as we go from Rock Type 1 to Rock Type 2 and Rock Type 3.

Rock Type 3 samples were characterized by monotonically increasing
incremental intrusion curve without an inflection point even at 60,000 psia. This shape
is characteristic of very tight rocks where the dominant pore size may be smaller than 3
nm. These samples are characterized by high carbonate percentage and a higher grain
density.

The cumulative intrusion plots in both Rock Type 1 and Rock Type 2 exhibit

considerable hysteresis between saturating and desaturating curves, implying actual
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intrusion. However, in Rock Type 3, cumulative intrusion curves in Rock Type 3
exhibit almost overlapping saturating and desaturating curves. Lack of hysteresis

between saturating and desaturating curves implied false intrusion.
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Figure 83: Representative normalized incremental and cumulative mercury
intrusion plots for the three rock types in Wolfcamp. Rock Type 1 has the highest
dominant pore throat size and highest connected volume. On the other end, Rock
Type 3 shows signs of false intrusion and has lowest connected volume.

For Rock Type 1 samples, the average dominant pore throat size is 5.5 nm while

for Rock Type 2 samples, it is 4 nm. Thus, Rock Type 1 samples have the highest
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permeability. As discussed before, Rock Type 2 samples may be affected by presence

of clay.
6.3 Extending Core-Based Classification to Well Logs

In Wolfcamp, gamma ray and neutron porosity logs were available for all three wells
that have core data; these two logs were used for upscaling. Figure 84 shows the
distribution of gamma ray and neutron porosity logs for different rock types. Rock Type
1 is associated with the highest neutron porosity and highest gamma ray values. This
corresponds well with results from the analysis of core data where Rock Type 1 is
characterized by the highest helium porosity, clay fraction and TOC. The logs were

consistent with the core data and were found adequate for upscaling the rock types.
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Figure 84: Gamma ray and neutron porosity distribution for different rock types.
This data corresponds to depths where both log values and core measurements are
available. Rock Type 1 has highest neutron porosity and highest gamma ray. This
corresponds well with the core data because Rock Type 1 also had highest helium
porosity, clay fraction and TOC from core analysis. Both clay fraction and TOC
contribute to high GR.

To do the upscaling, following the same procedure as in previous three shale

plays, log data were extracted corresponding to depths where core data were available.

93



The trained SVM model was used to predict rock types in uncored wells and remaining
section of the cored wells where core data were not available. Figure 85 shows the rock
type logs for two sample wells (W23 on left, W24 on right). The rock type logs for the

remaining wells are given in Appendix D.
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Figure 85: Rock type logs (track 4; black=Rock Type 1, green=Rock Type 2, and
red=Rock Type 3?) for two sample wells (W23 on left, W24 on right) in Wolfcamp.

The quality of populated rock type logs was checked and the robustness of the
SVM algorithm was assessed. The triple combo logs were available for two wells. The
porosity and TOC logs were modelled using resistivity, gamma ray, neutron, and
density logs. The triple combo logs and calculated porosity and TOC logs for Well 23

and Well 24 are given in Figure 86.
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Figure 86: Calculated logs (rock types in track 4; black=Rock Type 1, green=Rock
Type 2, and red=Rock Type 3) namely porosity and TOC logs for two sample wells
(Well 23 on left, Well 24 on right). The red curve represents the modelled curves.
The black filled circles represent the core measurements used for calibration.
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Figure 87: Box plots showing distribution of calculated TOC and porosity logs
based on populated rock type log. The distributions confirm the conclusions based
on core derived rock types.

Box plots (Figure 87) were created from the calculated TOC and porosity based

on the rock type log. The results confirm the conclusions based on core derived rock
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types (Figure 79). Rock Type 1 has the highest source rock and storage potential
followed by Rock Type 2 and Rock Type 3. This cross-check validates the rock type

upscaling method and lends credibility to further analysis with production data.
6.4 Relating rock types to Production Data

Figure 75 shows the location of the Wolfcamp wells. All the wells considered in
Wolfcamp were vertical wells. Figure 88 shows the comparison of RTR with
normalized production. Vertical well production was normalized by zone thickness. A
positive correlation between normalized production and RTR is evident. Different linear

trends are likely due to different completion practices used by various operators.
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Figure 88: Normalized production correlated with the Rock Type Ratio (RTR). A
positive correlation suggests that Rock Type 1 is the key rock type controlling the
production. Outlier in the black box are not included in the correlation coefficient.

In the Delaware basin, the Wolfcamp formation is produced commingled with
Bone Spring sands. In the Midland basin, the combination of Wolfcamp and Spraberry

is being exploited. Fracture analysis to map the extent of fracturing and whether it

pierced the overlying Dean or Spraberry formations, was not carried out. Thus, the
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production plot may be affected by commingled production. The spread in the cross-
plot can also be explained based on commingled production from Spraberry and Dean,
which have not been accounted for in the RTR; but, still, a general positive trend
suggests Rock Type 1 is sensitive to production which validates the rock typing

exercise.
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Chapter 7: Microstructure Analysis of Different Rock Types

The unconventional shale rocks have a very complex microstructure due to abundance
of different type of minerals, a variety of organic matter and complex diagenetic and
alteration history. The macroscopic properties are a complex interplay of these different
influences and leads to diversity and heterogeneity within and between different shale
plays. Thus, any rock typing exercise cannot be complete without understanding the
microstructural controls behind different rock types. This chapter focusses on
identifying microstructural controls behind different rock types using Scanning Electron
Microscope (SEM) images and tying the images back to the macroscopic data.

Different researchers have proposed different terminology for the type of pores
that can be distinguished on SEM images. Schieber (2010) suggested three categories
for pore types based on his study of six shale successions. The three categories were
phyllosilicate framework (PF) pores, carbonate dissolution (CD) pores and the organic
matter (OM) pores. The phyllosilicate framework pores are generally low aspect ratio
(Figure 89) and associated with clays. These pores are stress sensitive and range in size
from 5 nm to 1000 nm. The carbonate dissolution pores are formed at the boundaries of
carbonate minerals. They are formed during diagenesis when phenolic and carboxylic
acids are generated during maturation of the kerogen. These acids dissolve the
carbonate minerals and generate porosity at the boundaries. These pores generally have
low aspect ratios (Figure 89) and vary in size from 50 nm to 1000 nm. Finally, the
organic pores are generated during maturation and thermal cracking of the kerogen
which is consumed in the process and generates porosity as a byproduct. These pores

are generally elliptical, circular or irregular shaped with high aspect ratio (Figure 89).
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Thus, these pores are orders of degree less stress sensitive then the PF or CD pores.
These pores are also smaller in size and vary from 10 to 100 nm. Organic pores can be
further categorized into three categories namely, intra-particle, inter-particle and
crystalline pores in pyrite framboids. Loucks et al. (2009) observed the different type of
organic nano-pores in Mississippian Barnett shale samples. Curtis et al. (2012) has
shown that in addition to the above general categories of pores, pores are also
associated with other minerals like pyrite, phosphates, etc.
a) b)

Aspect Ratio m Aspect Ratio
m/l<<1 m/l=1

Figure 89: a) Low aspect ratio pore, where major axis of the pore is much larger
than the minor axis. Low aspect ratio pores are particularly stress sensitive. b)
High aspect ratio pore. The major and minor axis of the pore are similar in length.
These pores are comparatively stress resistant.

In this study, SEM images were taken for different rock types in the four shale
plays. The images for different shale plays in Figure 90 show the occurrence of
different pore-types. Even though, the images show that all shale plays contain all the
pore-types but the fraction of each varies spatially both within and between shale plays
which makes them so unique and heterogeneous. For instance, in Barnett SEM image
shown in the Figure 90, 3 % of the porosity existed in the purely organic pore and 40%
of the porosity existed in purely inorganic pore. Remaining 57 % of the porosity existed
in mixed pores, where pore lining comprises of both organic surfaces like kerogen and

inorganic mineral surfaces. The corresponding numbers for Eagle Ford image were 22.5
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% for organic pores, 8.5 % for inorganic pores and 69% for mixed pores, respectively.
The numbers for Woodford image were 9% for organic pores, 22.5 % for the inorganic
pores and 68.5% for the mixed pores, respectively. Thus, Figure 90 shows the huge

variability between different shales at the micro-structure level.
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Figure 90: SEM images from different shale plays showing abundance of different
types of pores. In Barnett SEM image, 3 % of the porosity existed in the purely
organic pore and 40% of the porosity existed in purely inorganic pore. Remaining
57 % of the porosity existed in mixed pores, where pore lining comprises of both
organic surfaces like kerogen and inorganic mineral surfaces. The corresponding
numbers for Eagle Ford image were 22.5 % for organic pores, 8.5 % for inorganic
pores and 69% for mixed pores, respectively. The numbers for Woodford image
were 9% for organic pores, 22.5 % for the inorganic pores and 68.5% for the
mixed pores, respectively. Thus, the figure shows the huge variability between
different shales at the micro-structure level.

It is only logical to assume that different proportions of these different pore

types lead to different macroscopic properties. For instance, the pore-types that have the
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highest volumetric fraction are more likely to be connected and thus, control properties
like wettability and permeability. This conclusion is again based on the fact that all
shale plays have different pore types exhibiting different wettabilities. Phyllosilicate
pores are generally water wet unless they are filled with organic matter in which case
these pores might show an oil wet character. On the other hand, organic pores are
generally considered oil wet.

The above classification and generalization holds true but there are
notable exceptions. One has already been mentioned, that phyllosilicate pores are
generally water wet unless filled with organic matter which might make them more oil
wet. Schieber (2010) showed that in shales with comparatively low TOC (<7 wt. %),
the phyllosilicate pores are open, connected and free of organic matter. But, at higher
TOC values, these pores are filled with kerogen and bitumenite.

Another notable exception was pointed out by Curtis et al. (2012) who pointed it
out that an important factor deciding the aspect ratio of organic pores is whether
kerogen is matrix supported or pressure supported. Kerogen is soft and ductile (Kumar
et al. 2012, Shukla et al. 2013). If kerogen is pressure shadowed by larger resistant
grains, the pores tend to be high aspect ratio. On the other hand, if kerogen supports the
stress, the stress tends to close the pores or make them low aspect ratio. Other reasons
for low aspect ratio pores in the organic matrix is organic matter shrinkage and
fracturing inside organic macerals because of maturation (Lopez 2016). Figure 91

shows few examples of low aspect ratio pores inside organic matter.
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Figure 91: SEM images from the Woodford formation in late condensate window.
(Left) Example showing organic matter filling of the phyllosilicate pores and high
aspect ratio organic pores. (Right) Fractures inside organic matter occur most
likely due to maturation process. This fracture is not likely due to sample
preparation as it is limited inside the organic maceral.

The organic pore development is dependent on many other variables like
kerogen type, localized compaction, presence of water for hydrous pyrolysis, etc.
(Curtis et al. 2011, Curtis et al. 2012). Figure 92 shows examples where adjacent
organic macerals that have experienced similar thermal histories have completely
different organic pore development. Porosity in shales is a complex function of TOC,

thermal maturity, mineral content, texture, relative arrangement of different matrix

components, diagenetic and stress history, etc.
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Figure 92: The highlighted area in both shale samples show adjacent organic
macerals that have experienced similar thermal histories but one has organic pores
while the other has no porosity.
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Determining individual petrophysical properties on first principle basis is not
only difficult but highly dependent on local conditions. At the same time, this highlights
the importance of rock typing in unconventional reservoirs as it integrates all the
available data and collectively identifies clusters having different macroscopic
properties (which are a result of complex interplay of various geological processes as
described above). The rock types are easy to comprehend and are an appropriate tool for
reservoir completion and development.

Rock Type 1 is the best rock type while Rock Type 3 is the worst. Figure 93
shows the best (RT1) and the worst (RT3) rock types for the different shale plays. In all
the shale plays, Rock Type 1 has the highest TOC, high porosity and highest fraction of
movable hydrocarbons. Rock Type 1 images shows considerably more organic matter
(shown by white arrows) compared to Rock Type 3 images. Also, except Eagle Ford, in
all other shale plays, Rock Type 3 has high carbonates and has a very low porosity
(shown by black arrows).

In Eagle Ford, the porosity of the Rock Type 3 is high and the Rock Type 3 is
rich in clays. These results are corroborated by the SEM image in the Figure 93. Finally,
in Woodford and Barnett, Rock Type 1 is characterized by high quartz content. The
quartz mineral grains are visible in abundance in the SEM images in Figure 93. Thus,
the different rock types obtained from macroscopic petrophysical properties have

completely different microstructures and are characteristically different from each other.

103



Ty g ¥
G _Wolfcamp RT3 -

s >

Figure 93: The best (RT1) and the worst (RT3) rock type SEM images for the
different shale plays. Rock Type 1 generally has high porosity and TOC (shown by
white arrows). Rock Type 3 has high carbonates, low TOC and porosity (shown by

black arrows).
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Intraparticle fractures are identified in quartz grains in Rock Type 3. Fractured
grains are not observed in Rock Type 1 or 2 because of presence of softer more ductile
materials like clays and TOC, as they deform and provide a cushion to minerals like
quartz. Figure 94 shows some example images from Woodford and Barnett shale plays.
These intraparticle fractures may not be real and may represent artifacts of sample
preparation. However, if such fractures are formed during sample preparation, there is a

possibility that some of them also exist downhole.

“Woodford RT3 ey _Barnett RT3

Figure 94: SEM images for Rock Type 3 samples in Woodford and Barnett
showing intraparticle fractures (pointed by arrows) in quartz grains.

These intraparticle fractures are likely isolated and thus, do not contribute to
enhancing permeability. The low quartz content and limited fractured grains are not
statistically significant to influence permeability. Grain microfracturing is not expected
in Eagle Ford due to very limited quartz and high clay percentage in Rock Type 3.

The best rock type (RT1) in all the four shale plays has high TOC and porosity.
High TOC and porosity are universal characteristics of good rock types; therefore, it
becomes important to identify what are the geological and microstructural controls on
porosity and TOC. Starting with porosity, the three general types of pores namely

phyllosilicate network, carbonate dissolution and organic are inherently related to clay
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content, carbonate content and TOC, respectively. Out of these three, carbonate
dissolution pores are generally isolated and form a negligible fraction. To understand
which pore-type dominates porosity, cross-plots of porosity vs. TOC, clay content were
analyzed. The results were verified in SEM images. The cross-plots are not expected to
give strong correlations as all the three types of pores coexist and the whole process is
further complicated by diagenetic history. However, it can provide a general guidance.

Figure 95 shows porosity cross-plots with TOC and clay content in Woodford
samples. The TOC cross-plot shows porosity increases with increasing TOC. The
phenomenon is very pronounced in Rock Type 1 at TOC values > 8%. The porosity vs.
clay cross-plot also supports the above argument. It shows a slow and steady increase in
porosity with clay content but Rock Type 1 samples which have high TOC lie much
above the trend. These relationships are also evident in Rock Type 1 SEM images in
Figure 96. Figure 96Error! Reference source not found. shows that the Woodford
samples are dominated by organic pores.

In Figure 96, the image on the right was analyzed to separate organic from
inorganic pores. The results indicate that 26% of the porosity existed in purely organic
pores while only 2% of the porosity existed in inorganic pores. The remaining 72% of
the porosity existed in the mixed pores.

Figure 97 shows the porosity cross-plots of porosity with TOC and clay content
in the Barnett samples. Both the cross-plots show weak correlation. This is likely
because in Barnett, both organic and inorganic porosities are seen in abundance and
neither of them dominates. This is evident in SEM images in Figure 98. This is also

evident by quantitative analysis of the image (enlarged image on the right). Only 2% of
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the porosity existed in organic pores, another 8% in inorganic pores and the remaining

90% in mixed pores.
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Figure 95: Porosity cross-plots with TOC and clay content in Woodford samples.
The TOC cross-plot shows porosity increases with increasing TOC. The
phenomenon is very pronounced in Rock Type 1 or at TOC values > 8%; at higher
TOC, organic porosity dominates. The porosity vs. clays cross-plot shows a slow
and steady increase in porosity with clay content but Rock Type 1 samples which
have high TOC lie much above the trend.

Figure 96: SEM images from Rock Type 1 in Woodford. Images show dominance
of organic porosity.
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Figure 97: Porosity cross-plots with TOC and clay content in the Barnett samples.
Both the cross-plots show weak correlation. This is likely because in Barnett, both
organic and inorganic porosities are seen in abundance and neither of them
dominates

il

F Iz heE Yy \i»\

> '< k) e f/ Fas R
Vi, P
PhyIIosﬂEate \4&\\@' ] E‘: Y B

FrameworkPores \

HV wo
CBS 200 kV 3.5 mm

HFW
415 pm

Figure 98: SEM images from Rock Type 1 in Barnett. Images show abundant
organic and inorganic pores.

Figure 99 shows porosity cross-plots with TOC and clay content in Eagle Ford
samples. In Eagle Ford, both the cross-plots show weak correlation. Both Rock Type 1

and Rock Type 3 has high porosity. Rock Type 1 has high TOC and low clay content
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while Rock Type 3 has high clay content and low TOC. Thus, it is likely that Rock
Type 1 is dominated by organic porosity and Rock Type 3 is dominated by inorganic
porosity. This is evident from SEM images in Figure 100 and from core-based rock

typing results in Figure 41.
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Figure 99: Porosity cross-plots with TOC and clay content in Eagle Ford
formation. The behavior in Eagle Ford is similar to Barnett samples in that neither
TOC nor clay fraction shows a strong correlation with porosity. Both Rock Type 1
and Rock Type 3 show high porosity.

Figure 101 shows porosity cross-plots in the Wolfcamp samples. The porosity vs. clays
cross-plot suggests an increasing porosity with increasing clay content. On the other
hand, there appears to be no correlation between porosity and TOC. Thus, it can be

concluded that phyllosilicate network pores dominate the porosity. The results can be

verified from SEM images in Wolfcamp in Figure 102. In Figure 102, the boxed area on
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the left image is enlarged (right image) to clearly show the inorganic pores in the clay

matrix.

= 4 /
= e

—
= (LSS

HV  det mag « H WD mode
2.00 kV ABS 10 000 x 12.8 pm 4.2 mm Custom

Figure 100: SEM images for Rock Type 1 (Top) and Rock Type 3 (Bottom) in
Eagle Ford. Both Rock Type 1 and Rock Type 3 has high porosity. Rock Type 1
has high TOC and low clay content while Rock Type 3 has high clay content and
low TOC. Images show that Rock Type 1 is dominated by organic porosity and
Rock Type 3 is dominated by inorganic porosity.

A similar analysis was carried to assess the controlling factors behind TOC. The
analysis of different images along with the core data suggested that TOC was generally
found surrounded by quartz grains in Barnett and Woodford samples. This is consistent

with geological and petrophysical analysis. The source of organics in these two plays

were siliceous organisms with skeleton made of silica. On the other hand, in Wolfcamp,
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organic deposition was related to clay content. The TOC in Eagle Ford was related to

carbonate deposition as phytoplanktons like cocoliths are source of organic matter.
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Figure 101: Porosity cross-plots in Wolfcamp formation. The porosity vs. clays
cross-plot suggests an increasing porosity with increasing clay content. On the
other hand, there appears to be no correlation between porosity and TOC. Thus, it
can be concluded that phyllosilicate network pores dominate the porosity.

Figure 102: SEM images in Rock Type 1 in Wolfcamp formation show abundant
phyllosilicate network pores. The boxed area on the left image is enlarged (right
image) to clearly show the inorganic pores in the clay matrix (shown by black

arrows).
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Chapter 8: Conclusions

Different shale plays are very different in terms of depositional environment, lithology,
microstructure, anisotropy, brittleness, source rock gquantity and quality, etc. Geologists
identify many lithofacies (for example, up to 10) based on the above parameters. This
creates many problems for a reservoir or production engineer looking to find ideal
location to drill a well and ideal zones to complete a well. These lithofacies are known
only in wells having core data. These lithofacies are not easy to correlate with logs and
thus, difficult to identify in wells lacking core data. Different lithofacies can have
similar reservoir properties like porosity, permeability, etc. They may not necessarily
represent different flow units and may not offer insights into which zones should be
targeted for completion.

Due to these limitations, rock typing became an essential step in reservoir
characterization workflow. Rock types identify different flow units and they tie the
lithofacies to reservoir flow properties and production. Kale et al. (2010) also showed
that lithofacies can be tied back to the rock types. The current study develops an
integrated work flow for rock typing using lab measurements. The workflow correlates
the core-based rock types with available logs and generates rock type logs. These logs
show a strong correlation with the production from the wells. Data mining algorithms
such as K-Means, SOM, SVM, etc. are very powerful in handling large amount of data
and finding meaningful associations between different data types. The rock types were
upscaled to 140 wells spanning over 20,000 ft. depth. The additional benefit is that the
workflow is largely automated making the rock typing exercise rapid. The manual

approach can be prohibitively time consuming.
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Three rock types were identified in each of the four shale plays. The three rock
types had different storage and source rock potential and different mineralogy. In
general, Rock Type 1 (the best rock type) had high storage and source rock potential
followed by Rock Type 2 and Rock Type 3. An exception to this was Eagle Ford shale
play where Rock Type 3 had higher storage potential compared to Rock Type 2 but had
poorer source rock potential. The reason for this anomaly was sampled wells belonging
to two completely different depositional environments (Deltaic vs. shallow marine
carbonate environments) in Eagle Ford. Deltaic deposits were terrigenous, oxidized and
devoid of any organic carbon.

The three rock types also had strikingly different mineralogies. One rock type
was dominated by quartz, second by carbonates and the third by clays. It was found that
depending on the depositional environment, one of these three mineral groups were
associated with organic carbon. For example, in the Woodford, siliceous radiolarians
were responsible for the organic matter deposition; thus, in Woodford, quartz was
associated with organic carbon. Therefore, Rock Type 1 had the highest quartz content
among the three rock types. Similarly, in the Eagle Ford, pelagic carbonaceous
organisms were responsible for organic matter deposition. Thus, Rock Type 1 had high
carbonate percentage. Along the same lines, Rock Type 1 in Barnett and Wolfcamp had
highest quartz and clay content, respectively.

The three rock types had characteristic mercury injection capillary pressure
curves. Rock Type 1 had highest mercury to helium pore volume ratio, signaling
highest connectivity. It also had high hysteresis and largest dominant pore throat radius.

Rock Type 3, on the other extreme, had lowest mercury to helium pore volume ratio. It
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had a monotonously increasing capillary pressure curve without any inflection point.
This type of curve is characteristic of very tight rocks possibly having a dominant pore
throat radius smaller than 3 nm. Rock Type 3 samples also had virtually over-lapping
cumulative intrusion and extrusion curves likely indicating false intrusion. The only
exception to this was Eagle Ford play where Rock Type 2 had the poorest connectivity
and tight rock signature. Table 1 summarizes the characteristics for different rock types
in the four shale plays studied.

Table 1: Characteristics of Different rock types (data represents 25-75 percentile).

Eagle Ford TOC Porosity | Carbonates Clays Quartz S1
(wt%) | (vol %) (wt %) (wt %) (wt %) (mg/gm
rock)
Rock Type1l | 3.5-5.5 | 7.0-9.0 55-70 10-30 0.0-6.0 2.0-6.0
Rock Type 2 | 1.5-3.0 | 4.5-6.5 70-85 5-15 0.0-4.0 1.5-3.5
Rock Type 3 | 1.5-3.0 | 7.0-9.0 15-35 45-70 0.0-4.0 1.0-2.0
Woodford TOC Porosity | Carbonates Clays Quartz S1
(wt%) | (vol %) (wt %) (wt %) (Wwt%) | (mg/gm
rock)
Rock Type1 | 4.0-9.0 | 5.5-9.0 10-20 18-30 35-50 1.0-5.0
Rock Type 2 | 3.0-5.0 | 5.5-7.0 5-15 42-55 15-30 0.0-4.0
Rock Type 3 | 0.5-4.5 | 2.0-4.0 65-90 0-10 0-10 0.0-2.0
Barnett TOC Porosity | Carbonates Clays Quartz S1
(wt %) | (vol %) (wt %) (wt %) (wt%) | (mg/gm
rock)
Rock Type1 | 3.5-5.5 | 6.0-8.0 5-15 32-40 28-36 0.7-1.1
Rock Type 2 | 2.5-4.5 | 6.0-8.0 7-18 42-52 12-20 0.3-0.8
Rock Type 3 | 1.5-3.5 | 3.5-6.0 30-55 15-30 11-20 0.3-0.7
Wolfcamp TOC Porosity | Carbonates Clays Quartz S1
(wt %) | (vol %) (wt %) (wt %) (Wt%) | (mg/gm
rock)
Rock Type 1 | 2.0-4.0 7-9 0-5 50-60 12-24 1.0-2.2
Rock Type 2 | 1.0-2.0 3-7 0-10 20-35 35-45 1.5-1.8
Rock Type 3 | 1.0-2.0 2-3 45-70 5-15 5-25 0.0-0.2
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The advantage of this integrated workflow is that even though different shale
plays are different in so many ways, this integrated workflow identifies simple
relationships between different petrophysical attributes that are more or less consistent
across different shale plays. The three rock types can be easily correlated to logs and
can be modelled across a shale play. They have a strong link with well productivity and
can be used as tools in completion optimization. The rock type logs can aid the reservoir
or production engineer in optimizing perforation intervals and number of fracture
stages. Rock Type 3 is poor reservoir and may not warrant any perforation or fracturing.
Rock Type 1 is the best reservoir rock. It can be selectively perforated and fractured to
save cost and maximize production from a well. Other applications of the rock typing
are 3D reservoir modeling, identifying sweet spots in combination with seismic
attributes, new well locations, improved volumetric estimates and uncertainty and risk
analysis.

It is important to highlight that rock typing exercise carried out in this study was
based on extensive core, log and production data but it can be further improved by
including several other parameters that effect the production. These parameters were not
included because the data was not available. These parameters include geophysical
attributes (for porosity, natural fractures, etc.), advanced logs (for natural fractures,
water saturation, etc.), completion parameters (fracture half lengths, fracture heights,
fracture conductivities, number of fracture stages, skin effects, etc.) and other reservoir
parameters (pore pressures, near wellbore and far-field stresses, etc.). For instance,
superior fracturing fluids provided by certain service providers increase SRV

(Stimulated Reservoir VVolume) for fractures leading to higher productivity. Different
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operators use different proppant volumes, different fracture spacings, etc. and thus
effects of completion play a major role on the productivity of the well. It was seen in the
production correlation plots (Figure 29 and Figure 88) that different completion
practices may show up as multiple linear trends but without completion data it is
difficult to say for sure. Another example could be change of pore-pressure as we move
from gas to condensate to oil maturity windows within a same shale play. The variation
in pore pressure can also be due to different stress regimes. Thus, productivities may be
different due differences in pore pressure regimes. To include the effects of pore
pressure, one simple method is to normalize the production by pore pressure or look at
well productivities instead of 24 months’ production. But, bottom hole pressure data
was not available in the wells.

The data that will be useful to obtain these different parameters and improve
rock typing definition include seismic, micro-seismic, VSP (Vertical Seismic Profile)
surveys, advanced logs like NMR, sonic, FMI (Formation Micro-imager), proppant
volumes, rate and pressure transient analysis, DFIT (Diagnostic Fracture Injection
Tests), MDT (Modular Dynamics Tester) measurements, etc.

All the well logs were available for the pilot vertical holes. Thus, there was an
inherent assumption that the reservoir properties do not change as we move away from
the wellbore. With long horizontal laterals, this assumption may not hold true and this
might affect the results of production correlation with the rock types. To reduce the
uncertainty, it is recommended to use logs along the horizontal wellbore for production

correlation. These logs were not available for the wells used in this study.
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Appendix A: Rock Type logs for Eagle Ford Wells
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Appendix B: Rock Type logs for Barnett Wells
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Appendix C: Rock Type logs for Woodford Wells
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Appendix D: Rock Type logs for Wolfcamp Wells
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