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Abstract 

Shales are the most common sedimentary rocks found on earth. Most US shale plays are 

spatially extensive with regions of different maturity and varying prospects. With 

increasing understanding of the heterogeneity, microstructure and anisotropy of shales, 

efforts are now directed to identifying sweet spots and optimizing completion zones in 

any shale play. Rock typing is a step in this direction. It is becoming an integral part of 

the unconventional reservoir characterization workflow.  

In this work, an integrated workflow is presented for rock typing using lab 

petrophysical measurements, logs, and production data. The key petrophysical 

parameters used for rock typing are porosity, total organic carbon (TOC), mineralogical 

compositions and mercury injection capillary pressure (MICP). Principal Component 

Analysis (PCA) is used to reduce dimensionality of the dataset and improve efficiency 

of the clustering algorithms. Unsupervised clustering algorithms like K-Means and Self 

Organizing Maps (SOM) are used to define rock types. The integrated workflow is 

applied separately for four shale plays namely Barnett, Eagle Ford, Woodford and 

Wolfcamp.  

A total of 25 wells with core data are considered for rock typing in the four shale 

plays. The rock types are upscaled to more than 140 wells representing a 20,000-ft. 

depth interval. A manual approach would have been prohibitively time-consuming. 

Rock Type 1 is generally characterized by high porosity, high TOC, and high 

brittleness. Not surprisingly, Rock Type 1 has the highest positive impact on well 

productivity. Rock Type 2 has intermediate values of porosity and TOC and thus, 
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moderate source potential and storage. Rock Type 3 has the highest carbonate content 

(except Eagle Ford) and poor storage (except Eagle Ford) and source rock potential.  

Classification algorithms like Support Vector Machines (SVM) are used to 

upscale rock types from core data to logs. The training datasets comprise of depths at 

which both core and log data are available. Different logs like gamma ray, resistivity, 

neutron porosity and density are used for upscaling. Finally, a rock type ratio (RTR) is 

defined based on the fraction of Rock Type 1 over gross thickness. RTR is found to 

strongly correlate with normalized oil equivalent production rate.  

The study is unique as it integrates core, log, and production data to identify 

different rock types. Multiple algorithms are used and the similarity of results between 

their outputs further bolstered the confidence in the derived rock types. The rock type 

logs can aid the reservoir or production engineer in optimizing perforation intervals and 

number of fracture stages. Rock Type 3 is poor reservoir and may not warrant any 

perforation or fracturing. On the other hand, Rock Type 1 can be selectively perforated 

and fractured to save cost and maximize production from a well. Other applications of 

rock typing are 3D reservoir modeling, identifying sweet spots in combination with 

seismic attributes, new well locations, improved volumetric estimates and uncertainty 

and risk analysis. 
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Chapter 1: Introduction 

Advancements in reservoir characterization techniques have significantly improved the 

success of wildcat drilling from 75% in 1974 to 95% in 2010 (Williams 2008). Rock 

typing is one of those techniques. It is central to meaningful interpretation of the diverse 

data types acquired over diverse length scales and with varying resolutions for both 

conventional and unconventional reservoirs.   

In conventional reservoirs, initial rock typing methods used core-derived 

permeability-porosity cross-plots. If core data is not available, well log-derived porosity 

and permeability values can also be used. Although well logs do not provide direct 

estimates of permeability, several correlations have been developed for permeability 

estimation (Timur 1968, Coates and Dumanoir 1974, Thomeer 1983). Permeability can 

also be derived from NMR logs (Timur-Coates model, SDR model (Kenyon et al. 

1988)). Pittman (1992) proposed the use of r35 measurements from mercury injection 

experiments using a modified Winland approach. The MICP measurements suffer from 

experimental artifacts like compressibility effect before intrusion (Bailey 2009), entry 

pressure not enough to see pores smaller than 3 nm, etc. Amaefule et al. (1993) 

introduced the concept of Rock Quality Index (RQI) by modifying Kozeny-Carman 

equation. He proposed Rock Quality Index (RQI) or Flow Zone Indicator (FZI) cut-offs 

to define different rock types. The application of such rock typing techniques is largely 

restricted to sandstones and carbonates that are characterized by a large dynamic range 

of porosity and permeability values. Rebelle & Bruno (2014) gave a critical review of 

different rock typing methods namely FZI, RQI, Lucia classification, J Leverett 

function, Thomeer function, etc. 
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Corbett and Potter (2004) used FZI technique to develop a universal rock typing 

scale to compare different wells, reservoirs, fields and basins. They created 10 global 

hydraulic units (GHE) with FZI values varying from 0.0938 to 48. They believed that 

selecting the same reference frame for different reservoirs will make the rock typing 

exercise more robust and predictive, especially where core data is limited. One of the 

biggest developments in rock typing was integration across disciplines. Rock typing 

was more accurate and predictive when carried out across disciplines like geology, 

petrophysics, engineering and covering multiple length scales from pore scale to log 

scale. Knackstedt et al. (2010) combined a range of experimental and computational 

tools to carry out rock typing across disciples covering diverse length scales. Rebelle et 

al. (2009) also discussed the importance of integrating geologic facies (based on 

depositional environment and diagenesis), petro facies (based on porosity, permeability, 

capillary pressure, etc.), electrofacies (based on logs) and dynamic rock types (based on 

two phase relative permeability curves).  

In tight sands, however, majority of the conventional rock-typing methods were 

found to be inadequate (Rushing et al. 2008) and it was emphasized to include other 

quantities such as rock texture and composition, core-based descriptions, clay 

mineralogy for effective rock typing. Rahmanian et al. (2010) discussed the importance 

of pore and throat structure (distribution, connectivity, geometry, etc.) on storage and 

flow capacity of tight porous media. The integrated approach was necessary to generate 

robust rock types. Spain and Liu (2011) used mainly NMR and mercury injection 

capillary pressure measurements to characterize Cotton Valley tight sandstones in East 

Texas. They identified three rock types – Rock Type 1 characterized by large pores 
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connected by large pore throats, Rock Type 2 having average sized pores connected by 

small pore throats and finally Rock Type 3 having small pores connected by small pore 

throats.  

Merletti et al. (2014) presented another integrated approach using porosity, 

mineralogy, photomicrographs and core descriptions. Depositional facies and diagenetic 

controls on pore geometry were evaluated to identify three rock types. Rock Type 1 was 

rich in fluvial and coastal plain deposits, had high quartz content and a steep porosity-

permeability trend. The higher quartz content prevented mechanical compaction and 

grain leaching, thereby preserving primary porosity and preventing secondary porosity 

development. Rock Type 2 and 3 had abundant secondary porosity development but had 

poor flow capacity due to authigenic clay which occludes pore space and clogs pore 

throats. The authors further used Multi Detector Pulsed Neutron (MDPN) logs to 

calculate silica content proxy at the log level, which in combination with other logs 

were used to determine rock types at log level. There have been several other attempts 

to characterize tight sand reservoirs (Walls 1982, Randolph et al. 1984, Davies et al. 

1993, Xu and Verdin 2013).  

Rock typing is relatively new in unconventional shale reservoirs. Several 

operators have already begun incorporating rock typing in their full field modeling and 

simulation workflows to help identify sweet spots and optimize fracture placement. 

Conventional techniques like Pittman (1992) and Amaefule et al. (1993) are not 

adequate because of the limited dynamic range of porosity and permeability in 

unconventionals. Secondly, accurate permeability measurements on shale samples are 

difficult to make and time consuming. Additionally, other key variables such as source 
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potential and brittleness are absent in conventional rock typing methods. Lieber and 

Dunn (2013) stressed consideration of three parameters for rock typing. They were 

hydrocarbons in place (porosity, clay volume, fluid saturations), brittleness (sonic data, 

mineralogy) and potential deliverability.  

Kale et al. (2010) carried out rock typing for Barnett and included several 

petrophysical parameters such as TOC, mineralogy, helium porosity and mercury 

injection capillary pressure (MICP). Sondhi (2011) employed a similar approach for the 

Eagle Ford shale while Gupta (2012) performed rock typing for the Woodford 

formation. Li et al. (2015) used permeability measurements, NMR porosity, and 

quantitative mineralogy from 2D Scanning Electron Microscope (SEM) images to 

classify four facies in Bakken formation.  

Amin et al. (2016) attempted a log-based rock typing for the Eagle Ford 

formation using two wells. Triple-combo and Elemental Capture Spectroscopy (ECS) 

logs were jointly interpreted to get saturation, porosity and mineralogical compositions. 

They computed a TOC log by correlating core measurements with bulk density log. 

Additionally, they determined Young’s modulus and Poisson’s ratio logs through Self 

Consistent Algorithms (SCA) in absence of acoustic logs. They determined five rock 

types and explained higher production in one of the wells due to higher fraction of 

brittle rock type. Aranibar et al. (2013) discussed another log-based rock typing case 

study from the Haynesville shale. They used bulk density, neutron porosity, 

Photoelectric Effect (PE), resistivity, sonic, and ECS logs. These logs were interpreted 

to give TOC, Poisson’s ratio, Young’s modulus, total porosity and mineralogical 

compositions, which were used as inputs to the neural network.  
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This study focusses on Wolfcamp, Barnett, Woodford, and Eagle Ford. The 

study is unique as it uses two independent techniques like K-Means and Self Organizing 

Maps (SOM) to predict rock types. The upscaling of core based rock types to log based 

rock types using a support vector machine algorithm is also unique to this study. 

Finally, a large database of production wells was created from Drillinginfo, which had 

the required logs. The correlation between Rock Type Ratio (RTR) and production from 

these wells differentiates this work from a purely academic exercise to one having 

strong implications in the field. 

1.1 Organization of Chapters 

The thesis is organized in eight chapters. Chapter 2 starts with a brief review of the 

laboratory procedures that were used to make petrophysical measurements used in the 

study. The chapter is divided into three sections. The first section deals with procedures 

for petrophysical measurements like total organic carbon (TOC), mineralogy (Fourier 

Transform Infrared Spectroscopy), porosity (low pressure helium porosity), Vp and Vs 

(compressional, P-wave and shear, S-wave velocities), Young’s modulus (nano-

indentation), mercury injection capillary pressure (MICP), etc. The second section gives 

details about the log analysis techniques used to calculate porosity and TOC logs. The 

third section of Chapter 2 gives a general overview of data mining and analytic 

techniques. Specifically, it deals with different clustering algorithms like K-means 

(Lloyd 1957, Macqueen 1967) and SOM (Kohonen and Honkela 2007) which help to 

find meaningful relationships in multi-dimensional data and define rock types. The 

section also describes classification algorithms like SVM (Cortes and Vapnik 1995) that 

were used to upscale rock types from core to logs.  
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Chapters 3, 4, 5, and 6 show the complete workflow applied to four shale plays 

namely Barnett, Eagle Ford, Woodford, and Wolfcamp, respectively. The chapters 

begin with a brief geological background, which helps to understand the context of rock 

typing. The chapters also summarize the core, log, and production data available for 

each shale play. Then, the results of clustering and rock typing analysis are presented. 

Thereafter, for each play, the rock types are upscaled and upscaled logs are presented as 

well section windows. Finally, a Rock Type Ratio (RTR) is created based on the 

fraction of the best rock type over gross thickness. This RTR is shown to have a strong 

correlation with normalized production for different wells thus validating the robustness 

of the rock typing workflow. 

Chapter 7 uses SEM images to establish micro-structural controls on different 

petrophysical properties like porosity, TOC, etc. SEM images are also used to validate 

the rock typing exercise by showing the stark differences in the microstructure between 

different rock types.  

Chapter 8 summarizes the rock typing results from the preceding chapters and 

gives some useful insights by comparing results from different shale plays. The 

methodology described in this work can easily be extended to several other applications 

such as the optimization of well locations (3-D reservoir modeling), well trajectories 

(with real-time Logging while drilling) and well completions. 
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Chapter 2: Experimental Procedure 

2.1 Laboratory Measurements 

Petrophysical measurements were done in Integrated Core Characterization lab (IC3). 

Different measurements used in this study were porosity, mineralogy, TOC, Vp, Vs, 

Young’s modulus, source rock analysis data (S1, S2), mercury injection capillary 

pressure (MICP), etc.  

2.1.1 Porosity Measurements 

Helium porosity measurements were made using Karastathis’ (2007) method. In his 

method, samples are dried at 100 ˚C for 24 hours. The samples are then cooled to room 

temperature in a desiccator. Bulk volume is measured using mercury immersion 

technique. The samples are crushed to fine particle size (392 ±192 µm, Kale 2009). The 

mass loss during crushing is kept to a minimum (<0.1 wt. %) and calculated porosity is 

corrected for the weight loss. The crushed samples are kept at 100 ˚C for 24 hours to 

remove any moisture. Finally, grain volume is measured using a helium porosimeter 

and porosity is calculated from grain and bulk volumes.  Karastathis (2007) showed that 

porosities measured using this technique are comparable with porosities from 

commercial labs. 

2.1.2 Mineralogy Measurements 

The mineralogy of the samples is determined using Fourier Transform Infrared 

Spectroscopy (FTIR). Different minerals have different signatures on the absorbance 

spectrum. The technique is used to identify sixteen minerals by inverting the absorbance 

spectrum. The inversion package developed in IC3 lab allows quantification (in wt. %) 

of the following minerals; quartz, calcite, dolomite, aragonite, siderite, oligoclase, 
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albite, orthoclase, illite, chlorite, kaolinite, smectite, mixed-layer clays, apatite, 

anhydrite, and pyrite. The accuracy of FTIR is comparable to X-ray diffraction and 

point counting. In particularly shales, FTIR gives better quantitative clay volume 

measurement (Sondergeld and Rai 1993; Ballard 2007).  

The key precaution to take while preparing the samples is to remove moisture 

and any organic carbon as they exhibit strong peaks in the mid-infrared region, which 

masks the absorption peaks of other minerals. To prevent this, the samples are ashed in 

low temperature plasma asher where organics are oxidized at low temperatures. 

2.1.3 TOC measurement 

TOC measurements were done using dry pyrolysis technique (Law 1999). The samples 

were crushed to fine particles (35 Mesh) and carefully acidized to remove any 

carbonate. This step is critical as carbonates can artificially inflate the TOC. The 

acidized samples are dried to remove the acid and then burned inside the TOC 

apparatus. The organic carbon is combusted to generate carbon dioxide, which is 

measured and converted to TOC by wt. %.  

The measurements do not contain free volatile hydrocarbons as these are 

removed during the drying process. Thus, dry-pyrolysis measurements can be smaller 

than pyrolysis flame-ionization detection (PFID) TOC if there are considerable free 

volatile hydrocarbons present in the sample.  

Source rock potential is governed by three factors namely source rock richness, 

source rock quality and source rock maturity. TOC is a measure of source rock richness. 

A higher TOC is indicative of higher source rock potential provided kerogen quality 

and maturity are favorable. 
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2.1.4 Source Rock Analysis (SRA)   

In pyrolysis flame-ionization detection (PFID), the sample is kept in an inert 

atmosphere and progressively heated to 550°C. First, the volatile hydrocarbons are 

vaporized and are recorded as S1 peak. S1 peak mostly corresponds to mobile 

hydrocarbons and is important from rock typing point of view. S1 together with TOC is 

indicative of source rock potential. As the temperature rises, kerogen in the sample 

cracks to generate hydrocarbons, hydrocarbon-like compounds, (recorded as S2 peak), 

CO2 (recorded as S3 peak), and water. The residual carbon is recorded as S4. All peaks 

namely S1, S2, S3 and S4 are reported in mg/gm of rock. Welte (1984) and Law (1999) 

are some excellent references on source rock analysis (SRA).  

2.1.5 Young’s Modulus (E)  

A nanoindenter apparatus can be used for Young’s modulus measurement on core 

samples. The equipment used in this study was Agilent G200 nanoindenter. The 

Young’s modulus is calculated from continuous measurement of load and displacement. 

A magnet and coil assembly moves the indenter. A capacitance displacement gauge is 

used for measuring displacement in the vertical direction. An optical microscope is used 

to select locations for indentation. Figure 1a shows the schematic of nanoindenter. The 

instrument can apply forces as low as 1nN and measure displacements as small as 0.1 

nm.  

A single nanoindentation experiment consists of gradually loading the sample at 

33 mN/sec for 15 seconds. The peak load at the end of 15 seconds is 50 gf. The peak 

load is held for 10 seconds before unloading the sample. Figure 1b shows a typical 

loading-unloading curve during a nanoindentation experiment. Young’s modulus 
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calculation is done at the peak load (P). Stiffness of an elastic body is a measure of 

resistance to deformation. It is given by the expression  

𝑑𝑃

𝑑ℎ
= 2𝐸∗√

𝐴

𝑃
 

 

Figure 1 a) Schematic of nanoindenter showing the magnet and coil force actuator 

assembly and the capacitive displacement measurement assembly b) Typical shape 

of loading-unloading curve during a nanoindentation experiment (Hay and Pharr 

2000).  

 

Where h is the displacement, A is the indentation area and E* is the reduced 

Young’s modulus. In the above equation, dP/dh is calculated from the unloading curve 

at the peak load. Indentation area is calculated through an area function dependent on 

the contact height. The above equation is used to calculate the reduced Young’s 

modulus. It is called reduced Young’s modulus because displacements occur in both the 

sample and the indenter. The sample Young’s modulus is calculated using the 

expression 
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Where vi, Ei are the Poisson’s ratio and Young’s modulus of the sample 

respectively. v’, E’ are the corresponding values for the indenter. A diamond Berkovich 

tip indenter is used for which Poisson’s ratio and Young’s modulus are known. The 

Poisson’s ratio for the sample is assumed to be 0.25. Hay and Pharr (2000) noted that a 

±0.1 uncertainty in Poisson’s ratio results in only about 5% uncertainty in Young’s 

modulus.  

A key requirement for nano-indentation is the smooth sample preparation. The 

IC3 lab procedure involves mechanical polishing using silicon carbide papers from 180 

to 1200 grit size. At the end of mechanical polishing, top and bottom surfaces should be 

parallel and maximum thickness difference should not exceed 0.01 mm. It is followed 

by broad beam argon ion milling for 3 hours. A total of 100 measurements (four 5*5 

arrays) are made and averaged to yield the Young’s modulus. The instrument is 

calibrated using fused silica before making measurements on the shale sample.  

The static Young’s modulus measurements from nanoindenter compares well 

with dynamic measurements. Shukla et al. (2013) showed the comparison for several 

formations namely Wolfcamp, Woodford, Haynesville and Kimmeridge. Figure 2 

shows the comparison.  

2.1.6 Mercury Injection Capillary Pressure 

Mercury injection capillary pressure (MICP) is used to measure pore throat sizes and 

connected pore space as a function of pressure. The pressure steps are varied from 5 to 

60,000 psia. The mercury intruded into the sample is recorded at each pressure step and 

the collected data is used to generate a capillary pressure curve for the sample. Once 

pressure reaches 60,000 psia, it is gradually reduced and extrusion volume is measured 
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as a function of pressure. The intrusion and extrusion curves are used to determine 

hysteresis which can be useful to determine if actual intrusion of mercury into the 

sample has taken place.  

 

Figure 2: Comparison of dynamic and indentation Young's modulus. There is a 

very strong correlation given by R2 of 0.94 (Shukla et al. 2013). 

 

The sample is dried, placed in a special assembly called penetrometer and 

sealed. The assembly with sample is entered into the low-pressure section of AutoPore 

IV machine. Pressure is reduced to 200 mm of mercury and maintained at that level for 

one hour to remove trace moisture and air from the sample and apparatus. Thereafter, 

mercury is introduced at 5 psia to fill the void volume in the penetrometer and surround 

the sample. The pressure is increased to 20 psia and time is given to attain pressure 

equilibrium.  

The penetrometer assembly is than taken out of the low-pressure section and 

transferred to the high-pressure section. The pressure is increased based on pre-

identified steps up to 60,000 psia. At each pressure step, pressure is stabilized for  over 
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60 seconds before increasing the pressure to the next pressure step. External pressure is 

applied using nitrogen in the low-pressure section and with mineral oil in the high-

pressure section. As mercury enters the pore space, the mercury filled length of the 

penetrometer stem decreases. The stem of penetrometer is made of glass and coated 

with metal film from outside and thus acts as a capacitor. The capacitance of the 

penetrometer stem changes with decreasing mercury level during the intrusion cycle. 

This change in capacitance can be converted to intruded mercury volume at each 

pressure step.  

However, if the sample is very tight and mercury intrusion does not happen until 

higher pressures, the sample compresses which leads to a decrease in the mercury 

volume in the penetrometer stem. This may be interpreted as intrusion. This false 

intrusion can be detected by plotting the incremental intrusion as a function of pressure. 

Bailey (2009) discusses the details about the corrections to the capillary pressure data. 

2.1.7 Ultrasonic Measurements 

The ultrasonic measurements were made on horizontal plugs one inch in diameter; core 

lengths varied from one to two inches. The top and bottom faces of the plugs are 

polished to be parallel to each other and perpendicular to the plug axis.  

Pulse transmission technique (Junck and Benson, 1973) is used for ultrasonic 

velocity measurements. A sample is placed inside an impermeable neoprene jacket. The 

jacket is larger than the sample to accommodate endcaps at both ends. Each end cap has 

three piezoelectric transducers (P, S1 and S2). The end caps are fastened to the jacket 

using hose clamps and the entire assembly is pressure sealed from external fluid.  
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The three piezoelectric crystals at each endcap generate compressional (P) and 

two orthogonally polarized shear waves (S1 and S2). The waves travel through the 

sample and are recorded at the other end. The length of the plug and travel times are 

used to determine velocities. Measurements are done at several confining pressure steps 

namely 500, 750, 1000, 1500, 2000, 2500, 3000, 4000, 5000 and 6000 psi.  

2.1.8 SEM Images 

SEM images were analyzed using FEI Helios Nanolab 600 Dual-Beam Focus Ion Beam 

(FIB) and Scanning Electron Microscope (SEM). The detailed procedure is explained in 

Curtis et al. (2011) and Curtis et al. (2012).  

2.2 Log Analysis 

2.2.1 Porosity Calculation 

There are mainly three different types of porosity logs namely density, neutron and 

sonic; none measures porosity directly. They are indirect nuclear and acoustic 

measurements from which porosity can be derived. The interpretation of these logs are 

effected by many variables downhole, thus, a combination of these logs is required for 

accurate porosity determination. 

In density logs, the radioactive sources namely Ce and Co are employed to emit 

gamma rays. These interact with electrons of the formation and get absorbed. The 

electrons emit gamma rays which are recorded as a count rate proportional to formation 

density. Advanced schematic like dual detector scheme helps to compensate for 

mudcake and minor hole irregularities. This arrangement helps to calculate ∆. i.e. 

correction for mudcake and borehole effects which can be added to long spacing 

detector response to calculate formation density (Bassiouni 1994).  
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In neutron logs, neutrons are emitted into the formation. They are slowed down 

by elastic and inelastic scattering. When sufficiently slowed, some of them are absorbed 

and thus, capturing nuclei emit gamma rays. Some of the unabsorbed neutrons are also 

deflected back towards the detectors. Thus, based on the tool configuration, detectors 

can either detect gamma rays or neutrons. The elements that mainly slow down the 

neutrons are the hydrogen nuclei as they are roughly equal in mass compared to a 

neutron. With one collision with hydrogen nuclei, it loses 50% of its energy. Therefore, 

the neutron log mainly responds to hydrogen concentrated in pore fluids and thus 

responds to porosity (Bassiouni 1994).  

The interpretation of both density and neutron logs are effected by uncertainties 

in lithology, fluid type, and saturation. In unconventional reservoirs, grain densities also 

need to be corrected for TOC. To reduce the uncertainty and get a better estimate of 

porosity, different logs like gamma ray, resistivity, neutron, and density are combined 

and variables like Vclay, fluid saturations and porosity are solved simultaneously. The 

log porosity in this study was calculated using the standard integrated workflow in a 

commercial software.  

2.2.2 TOC Calculation 

Total organic carbon (TOC) as measured in the laboratory is widely used to evaluate 

unconventional reservoirs. A wide array of log based methods are available to calculate 

TOC. Passey et al. (1990) is one of the most commonly used methods. It is also known 

as “∆log R” method. In the original paper, the method was applied using sonic and 

resistivity logs. But, density and neutron data can also be used. Different equations used 

to calculate TOC using different log sets are given below: 
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∆LogR = log (
RESD

RESDbase
) + 0.02 ∗ (DTC − DTCbase) 

TOCs = SF1s ∗ (∆logR ∗ 10^(0.297 − 0.1688 ∗ LOM)) + SO1s 

Where RESD is the deep resistivity in any zone (ohm-m), RESDbase is the deep 

resistivity baseline in non-source rock (ohm-m), DTC is the compressional sonic log 

reading (usec/ft.), DTCbase is the sonic baseline in the non-source rock (usec/ft.), LOM 

is the level of organic maturity (unitless), SF1s and SO1s are scale factor and scale 

offset to calibrate to the lab values of TOC. Similar equations for density and neutron 

logs are given below.  

∆LogR = log (
RESD

RESDbase
) − 2.5 ∗ (DENS − DENSbase) 

TOCd = SF1d ∗ (∆logR ∗ 10^(0.297 − 0.1688 ∗ LOM)) + SO1d 

∆LogR = log (
RESD

RESDbase
) + 4.0 ∗ (PHIN − PHINbase) 

TOCn = SF1n ∗ (∆logR ∗ 10^(0.297 − 0.1688 ∗ LOM)) + SO1n 

 Where RESD is the deep resistivity in any zone (ohm-m), RESDbase is the deep 

resistivity baseline in non-source rock (ohm-m), DENS is the density log reading 

against the source rock, DENSbase is the baseline density log reading against non-

source rock, PHIN is the neutron log reading against source rock, PHINbase is the 

baseline neutron log reading against non-source rock, LOM is the level of organic 

maturity (unitless), SF1d, SO1d, SF1n and SO1n are scale factors and scale offsets to 

calibrate to lab values of TOC.  

LOM typically ranges from 6 to 14. Default LOM for a gas shale is 8.5 and for 

an oil shale is 10.5. Elzarka and Younes (1987) show how LOM values can be derived 

based on vitrinite reflectance values. In the current study, resistivity, neutron, and 
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density logs were available and thus the above four equations were used for TOC 

calculation. Laboratory measured TOC values were also available to calibrate the 

modelled TOC logs.  

2.3 Data Mining and Analytics 

2.3.1 Overview 

Commercial and scientific data collection and storage has increased tremendously in the 

last decade. For instance, Yahoo has petabytes of web data, Facebook has more than 

one billion users, and Amazon records several million items every day. The storage 

devices like disk drives, server systems, etc. have become ultra-cheap leading to a spike 

in the data collection. The ideology is to collect whatever data you can, whenever you 

can and the expectation is that the gathered data may be of immediate use or in future 

for a purpose not envisioned currently.  

Thus, a new field has emerged called Data Mining and Analytics that consists of 

people that mine databases of exhaustive data and discover patterns and models that are 

valid, useful, unexpected, and understandable. In other words, data mining is non-trivial 

extraction of implicit, previously unknown, and potentially useful information from the 

data.  A typical workflow for data mining process is shown in Figure 3.   

Many times, gathered data has noise due to many factors which are beyond 

control. For instance, when taking measurements in the lab, humidity, temperature, 

human and machine errors can lead to different values of a property on the same 

sample. Thus, first step in data mining, is data preprocessing, where data needs to be 

checked for outliers, quality, redundant, un-useful and missing values.  
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Figure 3: Data Mining Workflow 

 

The next step is transformation which basically involves removing bias from the 

samples. It also includes reducing dimensionality of the data so that it becomes easier to 

process. To remove the bias, all attributes are scaled and the data is normalized so that 

any one parameter does not dominate the results. In this study, we used petrophysical 

measurements like porosity, TOC, clay, carbonate, and quartz content to define 

different rock types. Porosity and TOC generally vary between 2-15 % whereas 

mineralogical compositions vary between 0-100%. Thus, to prevent mineralogical 

compositions from dominating the results, all attributes are normalized between their 

respective minima and maxima.  

Principal Component Analysis (PCA) is used to reduce the dimensionality of the 

data. The idea behind PCA is to identify directions in multidimensional space that 
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contain most of the variations observed in the data. Principal components are linear 

combination of different input parameters (TOC, porosity, mineralogy in this case). In 

general, the first few principal components explain most of the variance in the data. 

Thus, instead of using 5 variables (such as TOC, porosity, quartz, clays, and carbonates) 

for clustering, it is sufficient if we use first three to four principal components.  

The third step in data mining workflow is to discover information using various 

data mining and analytic techniques. The data mining tasks generally consists of 

following: Classification, Clustering, Association, Regression, and Anomaly detection 

(Tan et al. 2006). In Classification, existing records or attributes are grouped into 

several classes and new data is assigned to any one of the classes depending on a 

measure of proximity. For instance, psychological evaluations of people can be used to 

assign them to different groups with increasing tendencies of criminal intent. In 

Clustering, based on a measure of similarity, data points are divided into many clusters. 

The points in the same cluster are more similar to each other than to the data points in 

different clusters. For instance, fracture dimensions, reservoir properties, etc. can be 

used to cluster wells into two categories namely good producers and poor producers. In 

Association, the relationships between different attributes are studied and occurrence of 

one is predicted based on the occurrence of other. For example, data from a supermarket 

can be analyzed to identify if someone buys milk, how likely he/she is to buy eggs as 

well. In Regression, a value of a given continuous variable is predicted based on the 

values of other variables, assuming a linear or nonlinear model of dependency.  For 

instance, prediction of stock prices based on historical data. Finally, in Anomaly 
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detection, data is analyzed to determine significant deviations from normal behavior; for 

example, using credit card transactions to analyze fraud detection.  

The fourth step is to analyze the results using various visual mechanisms along 

with prior knowledge to make meaningful conclusions. There are several visual 

techniques available like cross-plots, box plots, rose or pie diagrams, etc.  

Not all algorithms are applicable to all situations. Selection of data mining 

algorithm should be carefully evaluated based on objective, domain expertise and data 

availability (Tan et al. 2006). In this study, Principal Component Analysis (PCA) was 

used to reduce the dimensionality of the data. Clustering algorithms namely K-means 

and Self Organizing maps (SOM) were used to define different rock types, and 

classification algorithm like Support Vector Machines (SVM) was used to upscale rock 

types from cores to logs. These techniques are discussed in detail in the following 

sections.  

2.3.2 Principal Component Analysis (PCA) 

PCA is used to reduce dimensionality of a dataset with a large number of correlated 

attributes (Pearson 1901, Hotelling 1933). Graphically, PCA rotates the original axis of 

the data to the direction having maximum variance (Figure 4). New attributes are 

created as a result which are linear combination of existing variables. These new 

attributes are orthogonal and unrelated to each other. Thus, only a few of them can 

explain the maximum variability in the data. Therefore, instead of dealing with large 

number of correlated attributes, a few principal components can be used which 

significantly decreases the processing time and increases accuracy.  
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Figure 4: Graphical representation of the axis rotation during PCA (Srivastava 

2016) 

 

Mathematically, the principal components are the eigenvector of the covariance 

matrix of the original attributes. The covariance matrix of Xa by b is given by 

𝐶𝑋 =
1

𝑏
𝑋𝑋𝑇 

The principal component (P) can be given by,  

𝑃 = 𝐸𝑇𝑋 

Where E is the eigenvector for the covariance matrix. Each principal component 

is a linear combination of original attributes with different weights. The higher the 

weight, implies higher the importance of that component. In practice, it is more 

practical to use correlation matrix instead of covariance matrix. This removes the units 

of measure dependency by scaling the variables to same range of values. The main 
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assumption in PCA is that different attributes are linearly correlated. Thus, it cannot 

account for non-linear relationships.  

2.3.3 K-means Clustering 

It is one of the most popular clustering algorithms (Lloyd 1957, Macqueen 1967). It 

requires a predefinition of the number of clusters required which is sometimes seen as a 

disadvantage. However, data variability can be exploited to overcome this drawback. 

The optimum number of clusters can be chosen based on inter-cluster variance and 

intra-cluster variance plot shown in Figure 5. Intra-cluster variance refers to the 

variance between data points in the same cluster. It is also known as sum-of-squares 

within (SSW) all clusters. It is given by,  

𝑆𝑆𝑊 =∑∑(𝑥𝑖𝑗 − 𝑥𝑖̅)′(

𝑛𝑖

𝑗=1

𝑔

𝑖=1

𝑥𝑖𝑗 − 𝑥𝑖̅) 

Here, xij refers to a data point within a cluster and 𝑥 is the mean of the cluster. 

Inter-cluster variance refers to the variance between data points of different clusters. It 

is also known as sum-of-squares between clusters. It is given by,  

𝑆𝑆𝐵 =∑𝑛𝑖(

𝑔

𝑖=1

𝑥𝑖̅ − 𝑥̅)′(𝑥𝑖̅ − 𝑥̅) 

Here, 𝑥𝑖̅ is the mean of any one cluster and 𝑥̅ is the mean of all the clusters. The 

point at which SSW and SSB clusters start flattening out defines the optimum number 

of clusters as after that point, increasing the number of clusters does not significantly 

improve the rock typing definition.  
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Figure 5: K-Means can create multiple scenarios with different number of clusters. 

In each case, it identifies the intra-cluster variance (red curve) and inter-cluster 

variance (green curve). The point at which the curves start flattening out defines 

the optimum number of clusters.  

 

K-means clustering typically consists of four steps. The first step is to choose 

the number of clusters. One way to do it is through the SSW-SSB method as explained 

above. After choosing the number of clusters, cluster centroids are randomly assigned in 

the data. In the second step, the points closest to each centroid are assigned to that 

group. In other words, SSW (sum-of-squares within a cluster) is minimized. In the third 

step, cluster means are reassigned. For each cluster, centroid is assigned as the mean of 

the observations belonging to that group. In Step 4, the steps 2 and 3 are repeated until 

convergence is achieved, i.e. centroids do not change with successive iterations. Figure 

6 (Guido 2016) shows the schematic of K-means clustering in which three clusters were 

identified.  
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Figure 6: Schematic of K-means clustering (Guido 2014) 

 

2.3.4 Self-Organizing Maps (SOM) 

SOM (Kohonen and Honkela 2007, Chon and Park, 2008) is an unsupervised 

classification algorithm which is a simpler form of neural nets. A self-organizing map is 

a lower (usually 2D) dimensional representation of a multi-dimensional dataset. It can 

be very useful for finding patterns in the data like common features in well logs or 

cores.  
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The SOM network is created from a 2D lattice of nodes. Each node has specific 

topological position (x, y location in the lattice) and contains a vector of weights of the 

same dimension as the input vectors. Figure 7 shows a schematic of a 2D lattice of 

nodes. Each node has three vector weights basically percentages of blue, green, and red. 

This is a training grid which is used for generating SOM (Pang 2003).  

 

 

Figure 7: A 4X4 Training SOM Grid. Each node has three vectors basically 

percentages of blue, green, and red (Pang 2003). 

 

The data is generally randomly distributed as shown in Figure 8 (Pang 2003). 

This is also called the latent space. The algorithm randomly selects a node from data 

grid (latent space) and tries to find the closest match from the training grid. The closest 

match for any data point is termed Best Matching Unit (BMU). The BMU is identified 

by minimizing the Euclidean distance as shown below,  
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𝐷𝑖𝑠𝑡 = √(𝑅𝑑𝑎𝑡𝑎 − 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2 + (𝐺𝑑𝑎𝑡𝑎 − 𝐺𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2 + (𝐵𝑑𝑎𝑡𝑎 − 𝐵𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2 

Where R, G and B represent percentages of red, green, and blue.  

 

Figure 8: Raw data to be clustered using SOM (Pang 2003) 

 

Once the best matching unit is identified, the region around the node in the data 

grid is selectively optimized to resemble more closely the BMU. The nodes in the 

neighborhood are modified within a neighborhood radius which can be adjusted based 

on user’s need (Figure 9). The modification of the weights of the neighboring nodes is 

done using an equation,  

[
𝑅
𝐺
𝐵
]

𝑁𝑒𝑤

= [
𝑅
𝐺
𝐵
]

𝑜𝑙𝑑

+ 𝛼 [[
𝑅
𝐺
𝐵
]

𝐵𝑀𝑈

− [
𝑅
𝐺
𝐵
]

𝑂𝑙𝑑

] 

Where α is the neighborhood weight and it usually decreases as you go farther 

from the central node (Figure 9).  
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Figure 9: Schematic of neighborhood radius. The neighborhood weighing factor, 

, decreases as you go farther from the central node (Pang 2003). 

 

This process is repeated for all the nodes of the data grid and after multiple 

iterations the data grid starts unveiling clusters. The process is stopped when 

convergence is reached that is iterations does not change the latent space as shown in 

Figure 10 (Pang 2003).  

 

Figure 10: Post convergence latent space or data grid (Pang 2003) 
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2.3.5 Support Vector Machines (SVM) 

SVM (Cortes and Vapnik 1995) is a classification algorithm mainly suited for binary 

classification or 2-class problems but it can be used for multi-class problems as well. 

The mathematical details are described in Steinwart and Christmann (2008). A training 

dataset consists of data points with different attributes where the class for each data 

point is already known. For instance, in case of rock typing, different data points can 

represent different core depths. The attributes can be TOC, porosity, mineralogical 

fractions, etc. The corresponding classes can be Rock Type 1, Rock Type 2, etc.   

SVM algorithm plots the data in multiple dimensions and tries to identify 

boundaries called hyperplanes between different classes. Examples of hyper-planes are 

shown in Figure 11 (Thornton 2017) for both linear and non-linear classifications 

between the blue- and the red-colored points.  

 

Figure 11: Examples of hyperplane in SVM. The separation between different 

clusters is termed a hyperplane and its geometry can be linear, polynomial, or 

radial. a) shows an example of radial hyper plane. b) shows an example of linear 

hyperplane (Thornton 2017) 

 

A hyperplane can be chosen in many ways as shown in Figure 12 (Opencv 

2017). Selection of an optimal hyperplane becomes critical. It should be farthest from 

the training observations.  

a) b) 
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Figure 12: Different hyperplanes possible between two classes (Opencv 2017) 

 

The training observations closest to the hyperplane are called support vectors. 

Optimal hyperplane is selected based on “Maximal margin classifier” principle i.e. 

hyperplane should be farthest away as possible from support vectors (Figure 13).  

 

Figure 13: Optimal hyperplane selection (Opencv 2017) 

 

Once optimal hyperplane is selected, algorithm calculates the distance of each 

data point in the test dataset and assigns it to one of the classes. This algorithm was used 

to upscale data from core to logs.  
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2.4 Rock Typing Workflow 

Figure 14 shows the rock typing workflow. The first step in the workflow is to prepare a 

comprehensive database of laboratory data like TOC, porosity, mineralogy, etc. These 

data were selected as these represent the most commonly done measurements in the lab. 

These measurements have high accuracy and lower associated errors. Finally, they 

explain the maximum variance in the data and are sufficient to distinguish different rock 

types. 

In the next step, key parameters are determined for rock typing and clustering 

algorithms like K-means and Self Organizing maps are used to define rock types. In the 

third step, clustering results are analyzed to ensure petrophysical relevance. In fourth 

step, once rock types are defined at the core level, a classification technique called SVM 

or Support Vector Machines, is used to upscale the rock types at the log level. Finally, 

in fifth step, rock types are populated in many wells and correlated with production 

data.  

 

Figure 14: Rock Typing Workflow 

 

Core Data – porosity, mineralogy, total organic carbon

Clustering algorithms – K-Means, Self Organizing 
Maps

Test clusters – Source Rock Analysis, nano-
indentation data

Upscale core data to log data – Support Vector 
Machines

Correlating clusters to production data, etc. 



31 

This workflow is unique and extensive. First, two independent techniques like 

K-Means and SOM are used to predict rock types. Second, the upscaling of core based 

rock types to log based rock types using SVM is new and very effective. Finally, a 

strong correlation is seen between rock types and production data which makes the 

workflow practically useful.   
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Chapter 3: Barnett Formation 

3.1 Study Area Description 

Barnett is one of the prominent shale gas plays in US. Figure 15 shows the Barnett shale 

play (Pollastro et al. 2007). It is a Mississippian shale located in the Delaware and Fort 

Worth basins in North Texas.  It has produced more than 69 MMbbl oil, and 19.2 Tcf 

gas so far (based on drilling info, checked Dec 16, 2016). It varies in thickness between 

100 to 700 ft. (Kinley 2008). The depths of Barnett formation vary between 7,000-

18,000 ft. (Kinley 2008). Barnett is slightly over-pressured with average pressure 

gradient of 0.52 psi/ft. (Slatt et al. 2008). 

 

Figure 15: Barnett shale play extent (Pollastro et al. 2007) 
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Figure 16 shows the north-south and west-east cross-sections through the Fort 

Worth basin (Bruner and Smosna 2011). Barnett was deposited during Paleozoic in a 

back-arc setting. Barnett play consists of upper Barnett, lower Barnett and Forestburg 

limestone. Lower Barnett lies directly over regional angular unconformity. The 

Forestburg limestone separates the upper and lower Barnett shale members. It is quite 

thick in the north (~200 ft.) and thins towards south (few feet).  

 

Figure 16: North-south and west-east cross-sections through Fort Worth Basin, 

illustrating the structural position of Barnett formation between Muenster arch, 

Bend arch and Llano uplift (Bruner and Smosna 2011) 

 

Singh (2008) identified 10 different lithofacies in Barnett. They were namely 

siliceous non-calcareous mudstone, siliceous calcareous mudstone low calcite, siliceous 
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calcareous mudstone high calcite, silty-shale, phosphatic deposits, limy mudstone, 

dolomitic mudstone, calcareous laminae, concretions, and fossiliferous deposits. Out of 

these, lithofacies 1, 2, 3 and 6 are dominant and are responsible for majority of the 

petrophysical variation. Majority of the cored interval also consists of these four 

lithofacies. Lithofacies 1 and 2 are associated with high TOC and high porosity. On the 

other extreme, Lithofacies 6 is very tight with little porosity and very low TOC. 

 

Figure 17: Isopach map for Barnett. Contour interval equals 50. (Bruner and 

Smosna 2011). The north-eastern and eastern portions of the play have the 

greatest thickness. 
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Figure 17 shows the isopach map for Barnett (Bruner and Smosna 2011). The 

north-eastern and eastern portions of the basin have the highest thickness. Figure 18a 

shows the TOC map for Barnett (Sarmiento et al. 2013). The TOC map shows that 

majority of the play (including the thick eastern and north-eastern parts) are very low in 

TOC. Southern part of the basin has the highest TOC. Figure 18b shows the vitrinite 

reflectance map and thus shows the maturity of the Barnett play (Sarmiento et al. 2013). 

Majority of the high TOC region lies in immature window. The thick eastern and north-

eastern parts of the basin lie in the gas maturity window. This explains the high gas 

potential of the Barnett play. 

 

 

Figure 18: a) TOC distribution map of the Barnett formation (Sarmiento et al. 

2013). Fig. 11 b) - Vitrinite reflectance map indicating thermal maturity across the 

play. Values <0.55 %Ro are considered immature, 0.55 – 1.15 are oil prone, 1.15 – 

1.4 are condensate prone and values >1.4 are dry gas prone (Sarmiento et al. 

2013). 

a) b) 
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Figure 19 shows the cumulative gas production bubble map of the Barnett 

formation. The bubble plot affirms that eastern, north-eastern, and south-eastern 

portions of the Bakken play have the greatest producing wells. These areas are 

characterized by thick shales (Figure 17), gas maturity window (Figure 18b) and high 

production (Figure 19). Thus, these are the sweet spots of Barnett shale play.  

 
 

Figure 19: Gas production bubble maps for Barnett shale play. Area concentrated 

with larger bubbles defines the “sweet spot.” 

 

Figure 20 shows the wells having the core and the log data which were used for 

rock typing. Three wells had core data (shown as red bubbles) which were in over- 

mature, gas rich, stratigraphically thick part of the Barnett shale play. Core data was 
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available for 211 plugs in these 3 wells. Only gamma ray and resistivity logs were 

available for 2 wells (out of the three wells having the core data). Thus, gamma ray and 

resistivity logs were used for upscaling from core to log level. 

 

 
 

Figure 20: Wells with core and log data for rock typing. 3 wells (red bubbles) had 

core data which mainly lie in over mature, gas rich, stratigraphically thick part of 

the Barnett shale play. Core data were available for 211 plugs. Additional 44 wells 

(shown as black bubbles) were taken for correlation of rock types with production 

data. They did not have the core data but had the required logs. 

 

3.2 Core-Derived Rock Typing 

The five petrophysical measurements from core data namely porosity, TOC, clay, 

quartz, and carbonate content were used for defining rock types in Barnett. PCA was 

applied to reduce dimensionality of the clustering problem. Figure 21 shows that the 

first three principal components explain more than 85% of the variance in the data. 
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Thus, instead of using 5 variables, it is sufficient to use the first three principal 

components.  

 

Figure 21: Principal Component Analysis results. The percentage variance 

explained by each component is listed in the figure. The first three principal 

components explain more than 85% of the variance in the data.  

 

The optimum number of rock types were defined to be three based on the SSW-

SSB method. The results are shown in Figure 22. K-Means and SOM clustering 

techniques were used to define rock types. K-means and SOM gave very similar results. 

Different rock types and their characteristics are shown in Figure 23. 

 

Figure 22: K-Means creates multiple scenarios with different number of clusters. 

In each case, it identifies the intra-cluster variance (red curve) and inter-cluster 

variance (green curve). The elbow effect represents change in slope. The elbow 

effect occurs around 3 clusters which represents the optimum number of clusters.  
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Figure 23: a) Clusters created on a SOM map b) Rose diagram (or pie diagram) 

shows the petrophysical properties distribution for different rock types/clusters. 

The size of the pie is proportional to the value of the petrophysical property. Rock 

Type 1 has high TOC and porosity while Rock Type 3 has high carbonates and low 

porosity and TOC.  

 

The different rock types were analyzed for their petrophysical relevance. While 

porosity is a direct indicator of storage potential, TOC is the total organic content and 

S1 signifies the amount of movable hydrocarbons in the core. High values of TOC and 

S1 peaks generally indicate higher source rock potential. The other key parameter 

governing the production from a well in unconventional shale reservoirs is the 

brittleness of the rock. Mineralogy from FTIR may be utilized as indicators of 

brittleness. Minerals like quartz are very brittle while on the other hand, clay minerals 

are ductile. 

The parameters governing storage and source potential for different rock types 

in Barnett are shown in Figure 24. Rock Type 1 has the high storage and source 

b) a) 
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potential. Rock Type 2 has high storage (porosity) but low TOC (source potential). 

Rock Type 3 has low porosity and TOC.  

 

Figure 24: Parameters governing storage and source potential in Barnett. Clearly, 

Rock Type 1 has the high storage and source rock potential. Rock Type 2 has high 

storage (porosity) but low TOC (source potential). Rock Type 3 has low porosity 

and TOC. 

 

The average mineral content for different rock types in Barnett are shown in 

Figure 25. Rock Type 1 has high quartz content and is likely the most brittle of the three 

rock types. Coupled with high storage and source rock potential, this rock type is 

expected to have the largest impact on production. Rock Type 2 is the most ductile of 

the three rock types due to highest clay content. 

 

Figure 25: Average mineral content for different rock types in Barnett. Rock Type 

1 has high quartz content. It is more brittle compared to the other two rock types. 

Rock Type 2 has the highest clay percentage and is the most ductile of the three 

rock types. 
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Kale et al. (2010) worked on a part of the same dataset used in this study. They 

came up with three petrofacies. In their study, Petrofacies 1 represented calcite lean 

(<10 wt. %), high quartz, high clays, high porosity, and high TOC facies. Petrofacies 2 

represented moderate calcite content (10-25 wt. %), high porosity, moderate clays and 

quartz, and low TOC facies. Petrofacies 3 was calcite rich, and low porosity and TOC. 

The results obtained by Kale et al. (2010) are similar to the results of this study. Also, 

they were able to group 10 lithofacies identified by Singh (2008) and come up with 

three broad lithofacies groups, quite distinct from each other. These broad lithofacies 

groups were basically equivalent to the three petrofacies identified from core 

measurements. Thus, the three petrofacies were both geologically and petrophysically 

relevant. 

Mercury injection capillary pressure data were also available for 100 core plugs 

in this study. The capillary pressure curves for most of the samples were interpreted to 

lie in one of the three broad categories. The average petrophysical properties of the 

three categories were comparable to the properties of the three rock type groups.  

Incremental and cumulative mercury intrusion plots, normalized by helium pore 

volume, for the three rock types are shown in Figure 26. The cumulative intrusion plot 

in Rock Type 1 samples which had high storage and source rock potential, shows that 

the ratio of mercury to helium volume varies between 0.65 to 0.80. In Rock Type 2 

samples, this ratio varies between 0.40 to 0.60 and it varies between 0.30 to 0.45 for 

Rock Type 3 samples. It may mean that the connected pore volume decreases as we go 

from Rock Type 1 to Rock Type 2 and Rock Type 3. It is interesting to note that both 
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rock types 1 and 2 had similar range of helium porosity but Rock Type 2 has much 

lower connectivity then Rock Type 1.  

 

Figure 26: Representative normalized incremental and cumulative mercury 

intrusion plots for the three rock types in Barnett. Pore volume connectivity 

decreases from Rock Type 1 to Rock Type 2 to Rock Type 3. Rock Type 3 is very 

tight and does not have an inflection point as shown by monotonously increasing 

incremental intrusion curve.  

 

The shape of the capillary pressure curves is also different for the three 

categories or rock types. In Rock Type 3 samples, the incremental injection curve 
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increases monotonically without reaching a plateau or an inflection point even at 60,000 

psia. This shape is characteristic of very tight rocks where the dominant pore size may 

be smaller than 3 nm. The cumulative intrusion plots in both Rock Type 1 and Rock 

Type 2 exhibit considerable hysteresis between saturating and desaturating curves, 

implying that not all the mercury that enters the sample during the intrusion cycle 

comes out when the pressure is released during the extrusion cycle. This is a sign of real 

Hg intrusion into the sample and storage potential 

However, in Rock Type 3, cumulative intrusion curves in Rock Type 3 exhibit 

almost overlapping saturating and desaturating curves. The lack of hysteresis between 

saturating and desaturating curves is a sign of false intrusion/blank effect due to sample 

and Hg compression at high pressures. Samples exhibiting this type curve have high 

calcite content and very low porosity.  

In Rock Type 1 and Rock Type 2 samples, the capillary pressure curve exhibit a 

distinct maximum before 60,000 psia. For Rock Type 1 samples, the average dominant 

pore throat size is 8 nm while for Rock Type 2 samples, it is 4 nm. Thus, Rock Type 1 

samples have the highest permeability. Rock Type 2 samples may be effected by 

presence of higher clay fraction. 

Kale et al. (2010) also did an independent MICP data study and grouped 

different plugs based on capillary pressure curve characteristics. These groups were 

then tied back to the different petrofacies. They concluded that Petrofacies 1 and 2 

samples had high hysteresis and showed high connectivity. Petrofacies 3 samples 

(calcite rich facies) showed low connectivity and negligible hysteresis. Thus, results in 

this study were similar to their study.  
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3.3 Extending Core-Based Classification to Well Logs 

In Barnett play, gamma ray and resistivity were the only logs available in two out the 

three wells which had the core data. Thus, these two logs were used for upscaling. 

Figure 27 shows the distribution of gamma ray and resistivity for different rock types. 

Rock Type 1 had high gamma ray and high neutron porosity consistent with high TOC 

and high porosity measured in the lab. Rock Type 3, on the other hand, had lowest 

neutron porosity consistent with lowest helium porosity measured in the lab. 

 

Figure 27: Gamma ray and resistivity distribution for different rock types in the 

Barnett formation. Rock Type 1 shows high gamma ray and resistivity due to high 

TOC.    

 

To do the upscaling, log data were extracted corresponding to depths where core 

data were available. The core-based rock types were derived from K-means and SOM 

clustering. This then constituted the training data for the Support Vector Machines 

(SVM) classification algorithm. A test was done where different SVM models were 

tested like linear, polynomial, and radial. A large part of the training dataset was used to 

train the model and then the prediction was made on a small portion of the training 

dataset. The efficiency or accuracy of a model was gauged by the fact if the model 

could predict the same rock types from log data as were obtained from the core-based 
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clustering. Radial SVM model gave the best results and therefore, was used for 

prediction. The trained model was. used to predict rock types in uncored wells and 

remaining section of the cored wells where core data were not available. The rock type 

logs for the two sample wells (W13 on left, W14 on right) are shown in Figure 28. The 

lower Barnett is richer in Rock Type 1. Thus, the  lower Barnett has higher TOC and 

quartz compared to upper Barnett. The rock type logs for other wells are shown in 

Appendix B.  

 

Figure 28: Rock type logs (track 3; black=Rock Type 1, green=Rock Type 2, and 

red=Rock Type 3) for two sample wells (W13 on left, W14 on right) in Barnett. 

The lower Barnett is richer in Rock Type 1. Thus, lower Barnett has higher TOC 

and quartz compared to upper Barnett. 
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3.4 Relating rock types to Production Data 

Kale et al. (2010) compared the production data in the two wells where rock typing 

study was carried out. They identified that Well A had thick continuous Petrofacies 1 

layers, much higher Net to Gross (NTG) (83.7 % of Petrofacies 1) compared to Well B 

which had thinner Petrofacies 1 layers interspersed with Petrofacies 2 and 3 layers. The 

NTG in Well B was also considerably lower (51.7 % of Petrofacies 1). The production 

in Well A was observed to be 42% higher than Well B possibly because of this different 

distribution of Petrofacies. A more exhaustive correlation of the production data was 

carried out for this study to validate the practical utility of the rock typing exercise.  

Rock Type 1 had high storage and source rock potential in the Barnett 

formation. Additionally, it was also the most brittle of the three rock types. Thus, Rock 

Type 1 is expected to be the key driver in production. A Rock Type 1 ratio (RTR) was 

created by dividing the Rock Type 1 thickness with the gross thickness (i.e. 

RT1+RT2+RT3) for all the wells. This was correlated with normalized production.  

The spatial locations of wells for which rock types were upscaled are shown in 

Figure 20. All the wells were vertical wells. Figure 29 shows the comparison of RTR 

with normalized production. Normalized production here refers to first 24 months’ 

cumulative gas normalized by the zone thickness. A strong positive correlation suggests 

that Rock Type 1 is the key rock type controlling the production.  

A sensitivity study was done to compare 12 months, 24 months and cumulative 

production (average well life 11 years) as shown in Figure 30. Almost perfect 

correlation between 12 months and 24 months’ production suggest that likely the wells 

are still in transient phase and interference effects between adjacent fractures and wells 
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have not kicked in. Also, high correlation coefficients between different production 

metrics suggest that any one metric could be used for production correlation. 

The set of wells lying along the green trend line show high productivity while 

wells lying along red trend line show relatively lower productivity. The wells having 

high productivity are from different counties; namely, Denton, Wise and Parker. The 

commonality among these high productivity wells is that they were all completed by 

one operator. The wells lying along the red trend line were completed by other 

operators. Thus, it appears that the reason for multiple trends in Figure 29 can be 

attributed to different completion practices used by various operators. 

 

Figure 29: Normalized production correlated with the Rock Type Ratio (RTR) in 

Barnett. A strong positive correlation suggests Rock Type 1 is the key rock type 

controlling the production. The set of wells lying along the green trend line show 

high productivity while wells lying along red trend line show relatively lower 

productivity. The commonality among these high productivity wells is that they 

were all completed by one operator. Thus, it appears that the reason for multiple 

trends in the figure can be attributed to different completion practices used by 

various operators.  
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Figure 30: Comparison of different production metrics namely 12 months’ gas 

production, 24 months’ gas production and cumulative gas production (average 

well life 11 years). Almost perfect correlation between 12 months and 24 months’ 

production suggest that likely the wells are still in transient phase and interference 

effects between adjacent fractures and wells have not kicked in. Also, high 

correlation coefficients between different production metrics suggest that anyone 

could be used for production correlation.  
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Chapter 4: Eagle Ford Formation 

4.1 Study Area Description 

Eagle Ford is one of the most prominent shale plays in US. It is late Cretaceous in age 

with more than 1.5 billion barrels oil, and 4.2 Tcf gas produced so far (based on drilling 

info, checked Dec 16, 2016). It varies in thickness between 150 to 450 ft. (Callantine 

2010). The depths of Eagle Ford formation vary from 7,000 ft. to 12,000 ft. (CLR 

2010). Eagle Ford is slightly over-pressured with pressure gradient varying from 0.4 to 

0.7 psi/ft. (CLR 2010). It has 4 different basins namely Maverick, Hawkville, San 

Marcos and East Texas. Traditionally, some experts do not consider East Texas basin as 

a part of Eagle Ford play due to its very high clay content compared to rest of the Eagle 

Ford. Figure 31 (Tuttle 2010) shows the Eagle Ford shale play.  

 

Figure 31: Eagle Ford shale play. The figure shows the four major basins in Eagle 

Ford namely Maverick, Hawkville, San Marcos and East Texas (Tuttle 2010). 
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Figure 32 shows the depositional environment for Eagle Ford (Breyer et al. 

2012). The sediment influx is evident from north-east. East Texas basin has mainly 

deltaic deposits. This is primarily the reason for higher clay fraction in this basin. 

Marine shelf and slope deposits are evident as one moves towards central, western, and 

southern parts of the play. The marine deposits are very rich in carbonates. The slope 

deposits are deeper compared to shelf deposits and are expected to have higher maturity 

than the northern shelf deposits.  

 

Figure 32: Depositional environment for Eagle Ford (Breyer et al. 2013). The 

sediment influx is evident from north-east. East Texas basin has mainly deltaic 

deposits. The other three basins have marine shelf and slope deposits and are rich 

in carbonates.  

 

Figure 33 shows the isopach thickness map for Eagle Ford play (EOG 2010). 

The blue color represents thickness of 350 ft. The orange color represents lower 

thickness of 30 ft. The thickness increases as one goes seaward. Figure 34 shows the 

TOC maps for upper and lower Eagle Ford (Tian 2014). The TOC maps are only 
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available for a part of the Eagle Ford play. The red color represents high TOC and blue 

color represents low TOC. Generally, lower Eagle Ford is more rich in TOC. The TOC 

varies from 1 to 6 % in upper Eagle Ford and from 2 to 12 % in lower Eagle Ford.  It is 

evident from Figure 33 and Figure 34 that thicker parts of the Eagle Ford play are 

associated with higher TOC.  

 

Figure 33: Isopach thickness map for Eagle Ford play (EOG 2010). The blue color 

represents greater thickness of 350 ft. The orange color represents lower thickness 

of 30 ft. The thickness increases as one goes seaward. 

 

 

Figure 34: (Left) TOC map for upper Eagle Ford. (Right) TOC map for lower 

Eagle Ford (Tian 2014). The TOC map is available only for a part of the play.  
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Figure 35 shows the oil, gas, and condensate regions in the Eagle Ford play 

(Tuttle 2010). Slope deposits are deeper and expected to be more mature compared to 

the northern shelf deposits. Thus, as one goes north, maturity decreases and there is a 

transition from gas to oil.  

 

Figure 35: Oil, gas, and condensate regions in the Eagle Ford play (Tuttle 2010). 

 

The oil and gas production bubble maps are shown in Figure 36. The bubble 

maps show that southern part of the play is more gas prone and northern part of the play 

is more oil prone. The bubble maps also show that the western and northern parts of the 

play contain highest oil production wells. These areas are characterized by thick shales 

(Figure 33), high TOC (Figure 34) and oil maturity window (Figure 35) and high 

production (Figure 36). Thus, these are also the sweet spots of Eagle Ford play.  
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Figure 36: Cumulative oil and gas production bubble maps for Eagle Ford 

formation. Areas having larger bubbles represent sweet spots in Eagle Ford.   

 

 

Figure 37: Wells with core and log data for rock typing. 12 wells had core data 

(shown as red bubbles). They are spread throughout the Eagle Ford play but were 

mainly limited to the condensate window. Core data were available for 263 depth 

points. An additional 17 wells (shown as black bubbles) were taken for correlation 

of rock types with production data. They did not have core data but had the 

required logs. 
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Figure 37 shows the wells having the core data (red bubbles) which were used 

for rock typing. Twelve wells were available which spread throughout the Eagle Ford 

play but were mainly limited to the condensate window. Core data were available for 

263 plugs in these 12 wells. Out of the 12 wells which had core data, triple combo logs 

were available in only 3 wells while 3 more wells had gamma ray and resistivity. Thus, 

gamma ray and resistivity logs were used for upscaling from core to log level. 

4.2 Core-Derived Rock Typing 

Five petrophysical measurements from core data namely porosity, TOC, clay, quartz 

and carbonate content were used for defining rock types. PCA was done to reduce 

dimensionality of the clustering problem. Figure 38 shows that the first three principal 

components explain around 90% of the variance in the data. Thus, instead of using 5 

variables, it is sufficient to use first three principal components.  

 

Figure 38: Principal Component Analysis results. The percentage variance 

explained by each component is listed in the figure. The first three principal 

components explain around 90% of the variance in the data. 

 

The optimum number of rock types were defined to be three based on the SSW-

SSB method. The results are shown in Figure 39. K-Means and SOM clustering 
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techniques were used to define rock types. K-means and SOM gave very similar results. 

Different rock types and their characteristics are shown in Figure 40. 

 

Figure 39: K-Means creates multiple scenarios with different number of clusters. 

In each case, it identifies the intra-cluster variance (red curve) and inter-cluster 

variance (green curve). The elbow effect represents change in slope. The elbow 

effect occurs around 3 clusters which represents the optimum number of clusters. 

 

Figure 40: a). Clusters created on a SOM map b) Rose diagram (or pie diagram) 

shows the petrophysical properties distribution for different rock types/clusters. 

The size of the pie is proportional to the value of the petrophysical property. Rock 

Type 1 has high TOC and porosity while Rock Type 3 has high clays and low 

TOC.  

The parameters governing storage and source potential for different rock types 

in Eagle Ford are shown in Figure 41. Clearly, Rock Type 1 has the highest porosity, 

TOC and S1 values. Rock Type 1 has the highest storage and source potential.  
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Figure 41: Parameters governing storage and source potential in Eagle Ford. 

Clearly, Rock Type 1 has the highest porosity, TOC and S1 value, Rock Type 1 has 

the highest storage and source potential. 

 

The average mineral content for different rock types in Eagle Ford is shown in 

Figure 42. All rock types have little quartz and thus cannot be differentiated based on 

quartz content for brittleness. However, Rock Type 3 has the highest clay percentage. 

Wells 10, 11 and 12 (Figure 37) are rich in Rock Type 3. These wells lie in detrital 

deltaic deposits. This explains why these wells are different and clay rich compared to 

other wells in carbonate rich marine shore/shelf deposits. The Rock Type 3 has high 

porosity but very small TOC/S1. Thus, Rock Type 3 is ductile and has poor source rock 

potential. 

 

Figure 42: Average mineral content for different rock types in Eagle Ford. Rock 

Type 3 has high clay content. Wells rich in Rock Type 3 lie in the East Texas basin. 

This rock type has high porosity but poor source rock potential.  
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Mercury injection capillary pressure data were also available for 220 core plugs. 

The capillary pressure curves for most of the samples were interpreted to lie in one of 

the three broad categories. The average petrophysical properties of the three categories 

were comparable to the three rock types.  

 

Figure 43: Representative normalized incremental and cumulative mercury 

intrusion plots for the three rock types in Eagle Ford. Pore volume connectivity 

decreases from Rock Type 1 to Rock Type 3 to Rock Type 2. Rock Type 2 is very 

tight and does not have an inflection point as shown by monotonously increasing 

incremental intrusion curve.  
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Incremental and cumulative mercury intrusion plots, normalized by helium pore 

volume, for the three rock types are shown in Figure 43. Because of normalization, 

intrusion scale varies between 0 and 1. The normalization helps to determine 

connectivity of the sample. In Rock Type 1 samples, which had the highest storage and 

source rock potential, the cumulative intrusion plot shows that the ratio of mercury to 

helium volume varies between 0.6 to 0.75. In Rock Type 3 samples, this ratio varies 

between 0.5 to 0.65 and it varies between 0.3 to 0.4 for Rock Type 2 samples. Thus, it 

shows that the connected pore volume decreases from Rock Type 1 to Rock Type 3 and 

Rock Type 2. It is interesting to note that both rock types 1 and 3 have similar range of 

helium porosity but Rock Type 3 has lower connectivity then Rock Type 1.  

The shapes of the capillary pressure curves also clearly distinguish the three 

rock types. In Rock Type 2 samples, the curve injection increases monotonously 

without reaching a plateau or an inflection point even at 60,000 psia. At 60,000 psia, 

equivalent pore size which the mercury could pass through is 3 nm. This shape is 

characteristic of very tight rocks where the dominant pore size may be smaller than 3 

nm.  

The incremental capillary pressure curves exhibit a distinct maximum before 

60,000 psia for Rock Type 1 and Rock Type 3 samples. The inflection point defines the 

dominant pore throat. A larger value of the dominant pore throat means higher 

permeability. For Rock Type 1 samples, the average dominant pore throat size was 13 

nm while for Rock Type 3 samples, it was 5 nm. Rock Type 1 samples had the highest 

permeability. Rock Type 3 samples may be effected by presence of higher clay fraction.  
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4.3 Extending Core-Based Classification to Well Logs 

The next step was to extend the core-based classification to well log data. This is 

necessary because in general, not all intervals within a well are cored and additionally, 

it may be necessary to determine the distribution of rock types in uncored wells. The 

logs were only available for vertical pilot holes and thus, there was an inherent 

assumption that properties do change as you go away from wellbore. In Eagle Ford, 

gamma ray and resistivity logs were available for six out of the twelve wells which had 

the core data. Thus, these two logs were used for upscaling. The distributions of gamma 

ray and resistivity for different rock types are shown in Figure 44. Rock Type 1 and 

Rock Type 3 both show high gamma ray possibly due to high TOC and high clays, 

respectively. Also, Rock Type 1 shows a high resistivity due to high oil saturation and 

Rock Type 3 shows a lower resistivity due to high water saturation and high clays. 

Thus, core and log data are consistent with each other. 

 

Figure 44: Gamma ray and resistivity distribution for different rock types in the 

Eagle Ford from the depth points at which both core and log data were available.  
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The trained SVM model was used to predict rock types in uncored wells and 

remaining section of the cored wells where core data were not available. The rock type 

logs for two sample wells (W10 on left, W6 on right) in the Eagle Ford are shown in 

Figure 45. W10 is in East Texas basin and is very rich in Rock Type 3. W6 is in San 

Marcos basin and is rich in Rock Type 1. W6 is expected to have a better production 

rate than W10.  The rock type logs for other wells in Eagle Ford are shown in Appendix 

A. These include wells which had both core and log data, and wells which only had log 

data.  

 

Figure 45: Rock type logs (track 4; black=Rock Type 1, green=Rock Type 2, and 

red=Rock Type 3) for two sample wells (W10 on left, W6 on right) in Eagle Ford.  

W10 is located in East Texas basin and is very rich in Rock Type 3. W6 is located 

in San Marcos basin and is rich in Rock Type 1. 
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Next, an innovative method was devised to check the quality of populated rock 

type logs and asses the robustness of the SVM algorithm. Since, the triple combo logs 

were available for three wells, porosity and TOC logs were modelled using resistivity, 

gamma ray, neutron and density logs. The triple combo logs and the calculated porosity 

and TOC logs for Well 10 and Well 6 are given in Figure 46. The methodology has 

been described in 2.2 Log Analysis section.  

 

Figure 46: Calculated logs (rock types in track 4; black=Rock Type 1, green=Rock 

Type 2, and red=Rock Type 3) namely porosity and TOC logs for two sample wells 

(Well 10 on left, W6 on right). The red curve represents the modelled curves. The 

black filled circles represent the core measurements that were used for calibration.  

 

Box plots were created to see the distribution of calculated TOC and porosity 

based on the rock type log. The box plots are shown in Figure 47. The results reassert 
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the conclusion based on core-derived rock types (Figure 41). Rock Type 1 has the 

highest source rock and storage potential. Rock Type 3 though has a high porosity but 

lacks TOC. This cross-check validates the rock type upscaling method and lends 

credibility to further analysis with the production data.  

 

Figure 47: Box plots showing distribution of calculated TOC and porosity logs 

based on populated rock type log. The distributions reassert the conclusions based 

on core derived rock types.  

 

4.4 Relating rock types to Production Data 

In Eagle Ford, Rock Type 1 had the highest storage and source rock potential. Thus, 

Rock Type 1 is expected to be the key driver of the production. A Rock Type 1 ratio 

(RTR) was created by dividing the Rock Type 1 thickness with the gross thickness (i.e. 

RT1+RT2+RT3) for all the wells. This was then correlated with normalized production. 

The positive correlation between the two validates the robustness and practical utility of 

the rock typing exercise. It also highlights the value that can be generated by doing such 

an exercise in unconventional reservoirs.   
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The spatial locations of the wells for which rock types were upscaled are shown 

in Figure 37. Red represents wells with cores and black represents additional wells 

which did not have the core data. All the wells were horizontal wells and their lateral 

length varied from 600 to 6000 ft. To make a fair comparison, the production was 

normalized by the lateral length. The comparison of RTR with normalized production is 

shown in Figure 48. Normalized production here refers to first 24 months’ cumulative 

barrel of oil equivalent (BOE) normalized by the lateral lengths. A strong positive 

correlation suggests that Rock Type 1 is the key rock type controlling production. There 

are some outliers which are expected due different completion treatments, etc. 

Comparison of different production metrics namely 6 months’ BOE, 24 months’ 

BOE and cumulative BOE (average well life 5 years) is shown in Figure 49. Very high 

correlation coefficients between different production metrics suggest that anyone could 

be used for production correlation. 

 

Figure 48: Normalized production correlated with the Rock Type Ratio (RTR). A 

strong positive correlation suggests Rock Type 1 is the key rock type controlling 

the production. The correlation of fit does not include points inside black boxes.  
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Figure 49: Comparison of different production metrics namely 6 months’ BOE, 24 

months’ BOE and cumulative BOE (average well life 5 years). Very high 

correlation coefficients between different production metrics suggest that anyone 

could be used for production correlation.   
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Chapter 5: Woodford Formation 

5.1 Study Area Description 

The Woodford formation is a Devonian-Mississippian shale located in the Anadarko, 

Arkoma and Ardmore basins in Oklahoma and Texas. The Woodford formation extent 

and distribution is given in Figure 50 (Jarvie 2008, Lantana 2013). It has produced more 

than 87 MMbbl oil, and 4.6 Tcf gas so far (based on drilling info, checked Dec 16, 

2016). It varies in thickness between 150 to 400 ft. (CLR 2010). The depths of 

Woodford formation vary between 4,800 to 10,000 ft. (CLR 2010). Woodford 

formation is over-pressured with pressure gradient varying between 0.60-0.65 psi/ft. 

(CLR 2010). 

 

Figure 50: Woodford formation extent with the SCOOP play marked in black and 

the STACK play marked in red (Jarvie 2008; Lantana 2013) 
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Woodford formation was deposited in the Devonian, around 360 million years 

ago, (MYA). It was deposited as organic rich shale in an ancient seaway. The low 

oxygen environment facilitated preservation of oil prone organic matter. In early 

Pennsylvanian, plate collision resulted in formation of Anadarko, Ardmore and Arkoma 

basins. In late Pennsylvanian, there was rapid subsidence and sedimentation. It was 

during this period that majority of the overlying sandstone reservoirs were deposited. 

By early Permian, oil generation and migration into overlying conventional reservoirs 

had started. The entire depositional sequence is shown in Figure 51 (CLR 2010).  

 

Figure 51: Deposition of Woodford formation (CLR 2010). Woodford was 

deposited in the Devonian in ancient seaway.  

 

The common lithologies found in Woodford formation are black shale, chert, 

sandstone, siltstone and dolostone. The most productive lithologies are siliceous and 

include cherts and cherty black shales. Siliceous formations in Woodford are highly 

brittle and contain natural fractures. Chert and quartz in Woodford have different 
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sources and distributions. Quartz is detrital while chert is biogenic and represents 

siliceous radiolaria. Chert deposits are organic rich and where they are thermally 

mature, they form optimum exploration targets. 

Figure 52 shows the isopach map for Anadarko basin (Caldwell and Johnson 

2013). Anadarko basin has thickest Woodford formation among the three basins. 

Isopach maps for Ardmore and Arkoma basins could not be found in the literature.  

 

Figure 52: Isopach map for Anadarko basin, Woodford (Caldwell and Johnson 

2013).  

 

Figure 53 and Figure 54 show the TOC and vitrinite reflectance map for 

Woodford formation, respectively (Comer 2005). The TOC map shows that Anadarko 

basin has the highest TOC and the vitrinite reflectance map shows that Anadarko basin 

lies in oil maturity window. Thus, Anadarko basin is likely to have the best oil 
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production in Woodford shale play. South Central Oklahoma Oil Province (SCOOP) 

and Sooner Trend Anadarko Basin Canadian and Kingfisher Counties (STACK), the 

most prolific Woodford regions lie in the Anadarko basin.  

 

Figure 53: TOC map for Woodford formation. Anadarko basin has the highest 

TOC among the three basins: Anadarko (outlined as black), Arkoma (outlined as 

purple) and Ardmore (outlined as blue).  (Comer 2005) 

 

 

Figure 54: Vitrinite reflectance map for Woodford formation. Majority of the 

Anadarko (outlined as black) and Arkoma (outlined as purple) basins are in oil 

maturity window.  Ardmore basin (outlined as blue) is comparatively immature 

(Comer 2005).  
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Figure 55 shows the cumulative oil production bubble map for Woodford play. 

It affirms that Anadarko basin has the highest production. This area is characterized by 

thick shales (Figure 52), high TOC (Figure 53), oil maturity window (Figure 54) and 

high production (Figure 55). The Anadarko basin is in general a high potential area in 

the Woodford play. More specifically, SCOOP (South Central Oklahoma Oil Province) 

and STACK (Sooner Trend Anadarko Basin Canadian and Kingfisher Counties) areas 

inside Anadarko basin are the sweet spots of Woodford play. The operators are 

interested in these two areas because of two major reasons. First, they have a relatively 

higher liquid content compared to rest of the basin and second, the water cut in these 

regions is very low compared to rest of the basin. A recent ruling in Mar 2016 mandated 

a reduction in the number of injection wells in several counties of Oklahoma by 40% 

due to impending danger of induced earthquakes. Thus, with strong regulations against 

water injection, operators are particularly interested in SCOOP and STACK areas due 

to their low water cut. 

 

Figure 55: Oil production bubble map for Woodford play. 
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Figure 56 shows the wells having the core and log data and which were used for 

rock typing. Seven wells were available which had core data and majority of them were 

in Anadarko basin. Core data were available for 411 plugs in these 7 wells. Triple 

combo logs were available in all 7 wells. Thus, gamma ray, resistivity, neutron, and 

density logs were used for upscaling logs from core to log level.  

 

Figure 56: Wells with core and log data for rock typing. 7 wells had core data 

(shown as red bubbles) and most of which were in Anadarko basin. Core data 

were available for 411 depth points. Additional 12 wells (shown as black bubbles) 

had triple combo logs but no core data. Rock type logs were populated in these 12 

wells for correlation with production data. 

 

5.2 Core-Derived Rock Typing 

The same five petrophysical measurements from core data namely porosity, TOC, clay, 

quartz, and carbonate content were used for defining rock types in Woodford, as were 

used in Eagle Ford and Barnett. PCA was done to reduce dimensionality of the 

clustering problem. Figure 57 shows that the first three principal components explain 
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more than 90% of the variance in the data. Thus, instead of using 5 variables, it is 

sufficient to use first three principal components. The optimum number of rock types 

were defined to be three based on the SSW-SSB method. The results are shown in 

Figure 58.  

 

Figure 57: Principal Component Analysis results. The percentage variance 

explained by each component is listed in the figure. The first three principal 

components explain more than 90% of the variance in the data.  

 

 

Figure 58: K-Means creates multiple scenarios with different number of clusters. 

In each case, it identifies the intra-cluster variance (red curve) and inter-cluster 

variance (green curve). The elbow effect represents change in slope. The elbow 

effect occurs around 3 clusters which represents the optimum number of clusters. 
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Next, K-Means and SOM clustering techniques were used to define rock types. 

Different rock types and their characteristics are shown in Figure 59. The parameters 

governing storage and source potential for different rock types in Woodford are shown 

in Figure 60.  

 

Figure 59: a) Clusters created on a SOM map b) Rose diagram (or pie diagram) 

shows the petrophysical properties distribution for different rock types/clusters. 

The size of the pie is proportional to the value of the petrophysical property. Rock 

Type 1 shows high porosity and TOC while Rock Type 3 shows high carbonates, 

low porosity, and TOC.  

 

Figure 60: Parameters governing storage and source potential in Woodford. Rock 

Type 1 has the highest storage and source rock potential. 

 

Rock Type 1 has the highest storage and source potential. The average mineral 

content for different rock types in Woodford are shown in Figure 61. Rock Type 1 has 

a) 
b) 
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high quartz content and is likely the most brittle of the three rock types. Again, it is 

expected to have the largest impact on production. 

 

Figure 61: Average mineral content for different rock types in Woodford. Rock 

Type 1 has high quartz content. It is more brittle compared to other two rock 

types. Rock Type 2 has the highest clay percentage and is the most ductile of the 

three rock types.  

 

Mercury injection capillary pressure data were also available for 112 core 

depths. Incremental and cumulative Hg intrusion plots, normalized by helium pore 

volume, for the three rock types are shown in Figure 62.  

In Rock Type 1 samples, the cumulative intrusion plot shows that the ratio of 

mercury to helium volume varies between 0.65 to 0.80. In Rock Type 2 samples, this 

ratio varies between 0.50 to 0.65 and it varies between 0.40 to 0.55 for Rock Type 3 

samples. This shows the connected pore volume decreases as we go from Rock Type 1 

to Rock Type 2 and Rock Type 3.  

In Rock Type 3 samples, the incremental intrusion curve increases 

monotonically without reaching a plateau or an inflection point even at 60,000 psia. 

Rock type 3 samples were very tight, characterized by high carbonate percentage and a 

higher grain density.  
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Figure 62: Representative normalized incremental and cumulative mercury 

intrusion plots for the three rock types. Rock Type 1 has the highest dominant 

pore throat size and highest connected volume. On the other end, Rock Type 3 

shows signs of false intrusion and has lowest connected volume. 

 

The cumulative intrusion plots in both Rock Type 1 and Rock Type 2 exhibit 

considerable hysteresis between saturating and desaturating curves, implying real Hg 

intrusion into the sample. The almost overlapping saturating and desaturating curves in 

Rock Type 3 may be indicative of false intrusion. The average dominant pore throat 
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size is 6 nm for Rock Type 1 samples, while for Rock Type 2 samples, it is 4 nm. Thus, 

Rock Type 1 samples have the highest permeability. Rock Type 2 samples may be 

effected by presence of higher clay fraction.  

5.3 Extending Core-Based Classification to Well Logs 

In the Woodford, triple combo logs were available for all the seven wells that had core 

data. Again, the logs were only available for vertical pilot holes and thus, there was an 

inherent assumption that properties do change as you go away from wellbore. The 

gamma ray, neutron, density, and resistivity logs were used for upscaling. Figure 63 

shows the distribution of gamma ray, neutron porosity and density logs for different 

rock types. The logs were consistent with the core data and were found adequate for 

upscaling the rock types.  

 

Figure 63: Gamma ray, density, and neutron logs distribution for different rock 

types in Woodford. Rock Type 1 has low density, high gamma ray and high 

neutron porosity consistent with high TOC and high lab measured porosity. Rock 

Type 3, on the other hand, has highest density and lowest neutron porosity 

consistent with high carbonates in lab measured mineralogy. 

 

To do the upscaling, following the same procedure as in Eagle Ford and Barnett, 

log data were extracted corresponding to depths where core data were available. The 

trained the SVM model was used to predict rock types in uncored wells and remaining 
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section of the cored wells where core data were not available. Figure 64 shows the rock 

type logs for two sample wells (W16 on left, W18 on right). The rock type logs for the 

remaining wells are given in Appendix C.  

 

Figure 64: Rock type logs (track 4; black=Rock Type 1, green=Rock Type 2, and 

red=Rock Type 3) for two sample wells (W16 on left, W18 on right) from the 

Woodford formation. 

 

The quality of populated rock type logs was checked and the robustness of the 

SVM algorithm was assessed. Since, the triple combo logs were available for all seven 

wells, porosity and TOC logs were modelled using resistivity, gamma ray, neutron, and 
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density logs. The triple combo logs and calculated porosity and TOC logs for Well 16 

and Well 18 are given in Figure 65.  

 

Figure 65: Calculated logs (rock types in track 4; black=Rock Type 1, green=Rock 

Type 2, and red=Rock Type 3) namely porosity and TOC logs for two sample wells 

(Well 16 on left, W18 on right). The red curve represents the modelled curves. The 

black filled circles represent the core measurements that were used for calibration.  

 

Figure 66: Box plots showing distribution of calculated TOC and porosity logs 

based on populated rock type log. The distributions reassert the conclusions based 

on core derived rock types.  

 

Box plots (Figure 64) were created to show the distribution of calculated TOC 

and porosity based on the rock type log. The results reassert the conclusion based on 
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core derived rock types (Figure 60). Rock Type 1 has the highest source rock and 

storage potential followed by Rock Type 2 and Rock Type 3. This cross-check validates 

the rock type upscaling method and lends credibility to further analysis with production 

data.  

5.4 Relating rock types to Production Data 

Same exercise was carried in Woodford wells. Figure 56 shows the location of the 

wells. Some of the wells were horizontal, some were vertical. Figure 67 shows the 

comparison of RTR with normalized production. Vertical well production was 

normalized by zone thickness and horizontal well production by lateral length. A 

positive correlation between normalized production and RTR is evident. 

 

Figure 67: Normalized production correlated with the Rock Type Ratio (RTR). a) 

Correlation plot for horizontal wells. b) Correlation plot for vertical wells. A 

positive correlation on both the plots suggests that Rock Type 1 is the key rock 

type controlling the production. 
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Comparison of different production metrics namely 12 months’ BOE, 24 months’ BOE 

and cumulative BOE (average well life 7 years) is shown in Figure 68. Very high 

correlation coefficients between different production metrics suggest that anyone could 

be used for production correlation. 

 

Figure 68: Comparison of different production metrics namely 12 months’ BOE, 

24 months’ BOE and cumulative BOE (average well life 7 years). Very high 

correlation coefficients between different production metrics suggest that anyone 

could be used for production correlation.   
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Chapter 6: Wolfcamp Formation 

6.1 Study Area Description 

The Wolfcamp formation is mainly located in the Permian basin in Texas and New 

Mexico. It is a late Cretaceous shale. It has produced more than 962 million barrels oil, 

and 4.2 Tcf gas so far (based on drilling info, checked Dec 16, 2016). The average 

thickness is around 2000 ft. (Wilson et al. 2016). The depths of Wolfcamp formation 

range from 5,500 to 11,000 ft. (Pioneer 2013). Wolfcamp is over-pressured with 

pressure gradient varying between 0.55-0.70 psi/ft. (Pioneer 2013). Figure 69 shows the 

Wolfcamp shale play (Cortez 2012).  

 

Figure 69: Major basins in the Texas and New Mexico areas (Pioneer 2014). The 

two major basins namely Delaware and Midland together form Permian basin. 

The Wolfcamp formation in the Permian basin forms the Wolfcamp shale play 

(Cortez 2012). 

 

The Permian basin is an asymmetric basin. It underwent active subsidence and 

increased levels of shale, limestone, and arkosic sand deposition from Mississippian to 

early Permian time (Heckel 1986). Intricate faulting and differential rates of subsidence 
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produced several sub-basins namely the Delaware basin, the Central basin platform and 

the Midland basin. The area is marked by extreme stratigraphic discontinuity which has 

been a major concern for the oil and gas operators in this region. Figure 70 shows the 

stratigraphic column and Figure 71 shows the regional cross-section (Cortez 2012). In 

the Delaware basin, Wolfcamp formation is being targeted with horizontal wells and is 

commingled with Bone Spring sands. In the Midland basin, the combination of 

Wolfcamp and Spraberry is being exploited. 

 
 

Figure 70: Stratigraphic column of the Permian Basin (Cortez 2012). 
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Figure 71: The regional cross-section A-A' showing stratigraphy and lithology 

across the Permian basin (Cortez 2012).  

 

Lower Permian (Wolfcamp and Leonard shales) in Midland basin were 

deposited in an intra-cratonic deep water basin surrounded by shallower carbonate 

platforms (Hamlin and Baumgardner 2012). The depositional systems alternated 

between siliclastic, turbidite systems to hemipelagic, calcareous systems. The sediment 

transport to the basin was controlled by changes in sea-level. During high stand, 

platforms were submerged and acted as carbonate factories. The sediment influx to the 

basin was mainly carbonate derived from the platforms and hemipelagic clay and silt. 

On the contrary, during low stand, carbonate platforms were exposed and sediment 

influx to the basin comprised of siliclastic sediments. 

The lithologic description of Wolfcamp formation in Midland basin is given by 

Cortez (2012). He identified four different facies from core descriptions. They were 

namely siliceous mudrock, calcareous mudrock, muddy carbonate-clast conglomerates 

and skeletal grainstone. Siliceous mudrock has an average clay content of 40%. The 
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clay type is mainly illite. The remaining mineralogy consists of carbonate, quartz, 

feldspar, pyrite, and apatite. Carbonate content is generally less than 20 wt.%. 

Calcareous mudrock are like siliceous mudrock but are a shade lighter due to increased 

carbonate content (>20 wt.%). These rocks are also organically less rich compared to 

siliceous mudrock. Muddy conglomerates were deposited as debris flows and have a 

very high carbonate content (~ 62 wt.%). Lastly, skeletal grainstone are turbidite 

deposits. These rocks have little clay (~ 8 wt.%) and low TOC. These rocks contain 

significant amount of diagenetic quartz which can exceed 50 wt.% (Cortez 2012).  

The first two facies namely the siliceous mudrock and calcareous mudrock are 

the dominant facies. They have few sedimentary structures and high TOC compared to 

the other two facies. TOC varies inversely with carbonates as carbonates are detrital and 

non-biogenic (Hamlin and Baumgardner 2012). 

 

 

Figure 72: (Left) Isopach map for Wolfcamp in Midland basin. The polygon 

marked by green dashed curve represents thickest Wolfcamp formation in 

Midland basin. (Right) Isopach map for Wolfcamp in the Delaware basin. Orange 

and yellow shaded areas have thicker Wolfcamp compared to the blue shaded area 

(Parsley 2014).  
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Figure 72 shows the isopach maps for Wolfcamp formation in the Permian basin 

(Parsley 2014). The maps show that western part of the Delaware basin and central 

region of the Midland basin have the thickest Wolfcamp formation. Figure 73 shows the 

vitrinite reflectance map for Wolfcamp formation (Holmes and Dolan 2014). It is 

evident that Delaware basin may be partly gas prone while Midland basin is entirely oil 

prone.  

 

Figure 73: Vitrinite reflectance map for Wolfcamp formation (Holmes and Dolan 

2014).  It shows that part of Delaware basin is in gas/condensate maturity region 

while Midland basin is entirely in oil maturity region.  

 

Figure 74 shows the oil and gas production bubble maps for Wolfcamp 

formation. The oil bubble plot shows that the highest oil production occurs in Midland 

Basin which lies in the oil maturity window (Figure 73). This area lies in the core area 

that is thickest part of the Midland Basin (Figure 72 Left). The gas bubble plot indicates 

that majority of the gas production is limited to Delaware basin which is in the gas 
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maturity window (Figure 73). The production is highest in the western part of the basin 

which is thickest part of the Delaware basin (Figure 72 Right). Thus, the isopach map, 

vitrinite reflectance map and production data map, are consistent with each other and 

can be used to determine the sweet spots in the Wolfcamp shale play. 

 

Figure 74: Oil and gas production bubble maps for Wolfcamp formation.  The oil 

bubble plot shows that the highest oil production occurs in Midland Basin which 

lies in the oil maturity window (Figure 70). The gas bubble plot indicates that 

majority of the gas production is limited to Delaware basin which is in the gas 

maturity window (Figure 70). 

 

Figure 75 shows the wells having the core and log data which were used for 

rock typing. Three wells were available all of which were in the Midland basin. Core 

data were available for 212 plugs in these 3 wells. Only gamma ray and neutron 

porosity logs were available in all the three wells. Thus, these two logs were used for 

upscaling rock types from core to log level.  
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Figure 75: Wells with core and log data for rock typing. 3 wells had core data 

(shown as red bubbles) and all of them are in Midland Basin. Core data were 

available for 212 depth points. Additional 39 wells (shown as black bubbles) had 

logs but no core data. Rock type logs were populated in these 39 wells for 

correlation with production data. 

 

 

6.2 Core-Derived Rock Typing 

Six petrophysical measurements from core data namely porosity, TOC, Vp/Vs, clay, 

quartz, and carbonate content were used for defining rock types in Wolfcamp. PCA was 

done to reduce dimensionality of the clustering problem. Figure 76 shows that the first 

three principal components explain more than 86% of the variance in the data. Thus, 

instead of using 6 variables, it is sufficient to use first three principal components.  
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Figure 76: Principal Component Analysis results. The percentage variance 

explained by each component is listed in the figure. The first three principal 

components explain more than 86% of the variance in the data. 

 

The optimum number of rock types were defined to be three based on the SSW-

SSB method. The results are shown in Figure 77. K-Means and SOM clustering 

techniques were used to define rock types. Different rock types and their characteristics 

are shown in Figure 78.  

 

Figure 77: SSW-SSB plot. The elbow effect occurs around 3 clusters which 

represents the optimum number of clusters. 
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Figure 78: a) Clusters created on a SOM map b) Rose diagram (or pie diagram) 

shows the petrophysical properties distribution for different rock types/clusters. 

Rock Type 1 shows high porosity, high TOC, and high clay fraction while Rock 

Type 3 shows high carbonates, low porosity, and low TOC.  

 

The parameters governing storage and source potential for different rock types 

in Wolfcamp are shown in Figure 79. Rock Type 1 has the highest porosity, TOC and 

S1 values. Based on Figure 79, Rock Type 1 has the highest storage and source 

potential followed by Rock Type 2 and then Rock Type 3. The average mineral content 

for different rock types in Wolfcamp are shown in Figure 80. Rock Type 1 has high 

clay content and is likely the most ductile of the three rock types.  

 

Figure 79: Parameters governing storage and source potential in Wolfcamp. 

Again, Rock Type 1 has the highest storage and source rock potential. 

a) b) 
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Figure 80: Average mineral content for different rock types in Wolfcamp. Rock 

Type 2 has high quartz content. It is more brittle compared to other two rock 

types. Rock Type 1 has the highest clay percentage and is thought to be the most 

ductile of the three rock types. 

 

Rock Type 2 has the highest quartz percentage. This suggests that Rock Type 2 

is very brittle and can fracture easily. Rock Type 2 may play a key role in governing 

fracture growth and initiation. Wells having higher proportion of Rock Type 2 may 

need smaller and farther spaced perforations compared to wells that lack Rock Type 2. 

This behavior is different from previous shale plays where the most productive rock 

type was also the most brittle, based on mineralogy data.  

Ultrasonic measurements can also be used to infer brittleness. Compressional 

wave velocity (Vp), shear wave velocity (Vs) and bulk density (ρ) can be used to 

calculate Poisson’s ratio (υ) and Young’s modulus (E) using following formulas.  
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The assumption in the above calculations is that rock is isotropic. However, it is 

well known that shales are anisotropic and thus, above calculations may not be 

representative of the actual rock. To validate the calculations, Young’s modulus values 

calculated from ultrasonic measurements were compared to actual Young’s modulus 

measurements made on the rock samples using nano-indentation. The comparison 

between the two is shown in Figure 81. The figure shows that ultrasonic measurements 

can be used to predict representative rock properties.  

 

Figure 81: Young's modulus values calculated from ultrasonic measurements 

compared against actual Young's modulus measurements on Wolfcamp samples 

using nanoindentation. The 1:1 line is shown as black line.  

 

The cross-plot between Young’s modulus and Poisson’s ratio can differentiate 

brittle and ductile rocks. Brittle rocks are characterized by low Poisson’s ratio and high 

Young’s modulus. The cross-plot for the three rock types is shown in Figure 82. Rock 

Type 2 shows high Young's modulus and low Poisson's ratio and appears to be the most 

brittle of the three rock types. Thus, mineralogy and ultrasonic measurements both 

indicate that Rock Type 2 is the most brittle rock type.  
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Figure 82: Cross-plot of Young's modulus and Poisson's ratio obtained from 

ultrasonic measurements. Rock Type 2 shows high Young's modulus and low 

Poisson's ratio and appears to be the most brittle of the three rock types.  

 

Mercury injection capillary pressure data were also available for 156 core plugs. 

Incremental and cumulative Hg intrusion plots, normalized by helium pore volume, for 

the three rock types are shown in Figure 83. The cumulative intrusion plot for Rock 

Type 1 samples show that the ratio of mercury to helium volume varies between 0.65 to 

0.85. In Rock Type 2 samples, this ratio varies between 0.55 to 0.75 and it varies 

between 0.25 to 0.45 for Rock Type 3 samples.  The connected pore volume decreases 

as we go from Rock Type 1 to Rock Type 2 and Rock Type 3.  

Rock Type 3 samples were characterized by monotonically increasing 

incremental intrusion curve without an inflection point even at 60,000 psia. This shape 

is characteristic of very tight rocks where the dominant pore size may be smaller than 3 

nm. These samples are characterized by high carbonate percentage and a higher grain 

density.  

The cumulative intrusion plots in both Rock Type 1 and Rock Type 2 exhibit 

considerable hysteresis between saturating and desaturating curves, implying actual 
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intrusion. However, in Rock Type 3, cumulative intrusion curves in Rock Type 3 

exhibit almost overlapping saturating and desaturating curves. Lack of hysteresis 

between saturating and desaturating curves implied false intrusion.  

 

Figure 83: Representative normalized incremental and cumulative mercury 

intrusion plots for the three rock types in Wolfcamp. Rock Type 1 has the highest 

dominant pore throat size and highest connected volume. On the other end, Rock 

Type 3 shows signs of false intrusion and has lowest connected volume.  

 

For Rock Type 1 samples, the average dominant pore throat size is 5.5 nm while 

for Rock Type 2 samples, it is 4 nm. Thus, Rock Type 1 samples have the highest 
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permeability. As discussed before, Rock Type 2 samples may be affected by presence 

of clay.  

6.3 Extending Core-Based Classification to Well Logs 

In Wolfcamp, gamma ray and neutron porosity logs were available for all three wells 

that have core data; these two logs were used for upscaling. Figure 84 shows the 

distribution of gamma ray and neutron porosity logs for different rock types. Rock Type 

1 is associated with the highest neutron porosity and highest gamma ray values. This 

corresponds well with results from the analysis of core data where Rock Type 1 is 

characterized by the highest helium porosity, clay fraction and TOC. The logs were 

consistent with the core data and were found adequate for upscaling the rock types.  

 

Figure 84: Gamma ray and neutron porosity distribution for different rock types. 

This data corresponds to depths where both log values and core measurements are 

available. Rock Type 1 has highest neutron porosity and highest gamma ray. This 

corresponds well with the core data because Rock Type 1 also had highest helium 

porosity, clay fraction and TOC from core analysis. Both clay fraction and TOC 

contribute to high GR. 

 

To do the upscaling, following the same procedure as in previous three shale 

plays, log data were extracted corresponding to depths where core data were available. 
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The trained SVM model was used to predict rock types in uncored wells and remaining 

section of the cored wells where core data were not available. Figure 85 shows the rock 

type logs for two sample wells (W23 on left, W24 on right). The rock type logs for the 

remaining wells are given in Appendix D.  

 

Figure 85: Rock type logs (track 4; black=Rock Type 1, green=Rock Type 2, and 

red=Rock Type 3?) for two sample wells (W23 on left, W24 on right) in Wolfcamp. 

 

The quality of populated rock type logs was checked and the robustness of the 

SVM algorithm was assessed. The triple combo logs were available for two wells. The 

porosity and TOC logs were modelled using resistivity, gamma ray, neutron, and 

density logs. The triple combo logs and calculated porosity and TOC logs for Well 23 

and Well 24 are given in Figure 86.  
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Figure 86: Calculated logs (rock types in track 4; black=Rock Type 1, green=Rock 

Type 2, and red=Rock Type 3) namely porosity and TOC logs for two sample wells 

(Well 23 on left, Well 24 on right). The red curve represents the modelled curves. 

The black filled circles represent the core measurements used for calibration.  

 

Figure 87: Box plots showing distribution of calculated TOC and porosity logs 

based on populated rock type log. The distributions confirm the conclusions based 

on core derived rock types.  

 

Box plots (Figure 87) were created from the calculated TOC and porosity based 

on the rock type log.  The results confirm the conclusions based on core derived rock 
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types (Figure 79). Rock Type 1 has the highest source rock and storage potential 

followed by Rock Type 2 and Rock Type 3. This cross-check validates the rock type 

upscaling method and lends credibility to further analysis with production data.  

6.4 Relating rock types to Production Data 

Figure 75 shows the location of the Wolfcamp wells. All the wells considered in 

Wolfcamp were vertical wells. Figure 88 shows the comparison of RTR with 

normalized production. Vertical well production was normalized by zone thickness. A 

positive correlation between normalized production and RTR is evident. Different linear 

trends are likely due to different completion practices used by various operators. 

 

Figure 88: Normalized production correlated with the Rock Type Ratio (RTR). A 

positive correlation suggests that Rock Type 1 is the key rock type controlling the 

production. Outlier in the black box are not included in the correlation coefficient.  

 

In the Delaware basin, the Wolfcamp formation is produced commingled with 

Bone Spring sands. In the Midland basin, the combination of Wolfcamp and Spraberry 

is being exploited. Fracture analysis to map the extent of fracturing and whether it 

pierced the overlying Dean or Spraberry formations, was not carried out. Thus, the 
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production plot may be affected by commingled production. The spread in the cross-

plot can also be explained based on commingled production from Spraberry and Dean, 

which have not been accounted for in the RTR; but, still, a general positive trend 

suggests Rock Type 1 is sensitive to production which validates the rock typing 

exercise.  
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Chapter 7:  Microstructure Analysis of Different Rock Types 

The unconventional shale rocks have a very complex microstructure due to abundance 

of different type of minerals, a variety of organic matter and complex diagenetic and 

alteration history. The macroscopic properties are a complex interplay of these different 

influences and leads to diversity and heterogeneity within and between different shale 

plays. Thus, any rock typing exercise cannot be complete without understanding the 

microstructural controls behind different rock types. This chapter focusses on 

identifying microstructural controls behind different rock types using Scanning Electron 

Microscope (SEM) images and tying the images back to the macroscopic data.  

Different researchers have proposed different terminology for the type of pores 

that can be distinguished on SEM images. Schieber (2010) suggested three categories 

for pore types based on his study of six shale successions. The three categories were 

phyllosilicate framework (PF) pores, carbonate dissolution (CD) pores and the organic 

matter (OM) pores. The phyllosilicate framework pores are generally low aspect ratio 

(Figure 89) and associated with clays. These pores are stress sensitive and range in size 

from 5 nm to 1000 nm. The carbonate dissolution pores are formed at the boundaries of 

carbonate minerals. They are formed during diagenesis when phenolic and carboxylic 

acids are generated during maturation of the kerogen. These acids dissolve the 

carbonate minerals and generate porosity at the boundaries. These pores generally have 

low aspect ratios (Figure 89) and vary in size from 50 nm to 1000 nm. Finally, the 

organic pores are generated during maturation and thermal cracking of the kerogen 

which is consumed in the process and generates porosity as a byproduct. These pores 

are generally elliptical, circular or irregular shaped with high aspect ratio (Figure 89). 
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Thus, these pores are orders of degree less stress sensitive then the PF or CD pores. 

These pores are also smaller in size and vary from 10 to 100 nm. Organic pores can be 

further categorized into three categories namely, intra-particle, inter-particle and 

crystalline pores in pyrite framboids. Loucks et al. (2009) observed the different type of 

organic nano-pores in Mississippian Barnett shale samples. Curtis et al. (2012) has 

shown that in addition to the above general categories of pores, pores are also 

associated with other minerals like pyrite, phosphates, etc. 

 

Figure 89: a) Low aspect ratio pore, where major axis of the pore is much larger 

than the minor axis. Low aspect ratio pores are particularly stress sensitive. b) 

High aspect ratio pore. The major and minor axis of the pore are similar in length. 

These pores are comparatively stress resistant.  

 

In this study, SEM images were taken for different rock types in the four shale 

plays. The images for different shale plays in Figure 90 show the occurrence of 

different pore-types. Even though, the images show that all shale plays contain all the 

pore-types but the fraction of each varies spatially both within and between shale plays 

which makes them so unique and heterogeneous. For instance, in Barnett SEM image 

shown in the Figure 90, 3 % of the porosity existed in the purely organic pore and 40% 

of the porosity existed in purely inorganic pore. Remaining 57 % of the porosity existed 

in mixed pores, where pore lining comprises of both organic surfaces like kerogen and 

inorganic mineral surfaces. The corresponding numbers for Eagle Ford image were 22.5 
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% for organic pores, 8.5 % for inorganic pores and 69% for mixed pores, respectively. 

The numbers for Woodford image were 9% for organic pores, 22.5 % for the inorganic 

pores and 68.5% for the mixed pores, respectively. Thus, Figure 90 shows the huge 

variability between different shales at the micro-structure level.  

 

Figure 90: SEM images from different shale plays showing abundance of different 

types of pores. In Barnett SEM image, 3 % of the porosity existed in the purely 

organic pore and 40% of the porosity existed in purely inorganic pore. Remaining 

57 % of the porosity existed in mixed pores, where pore lining comprises of both 

organic surfaces like kerogen and inorganic mineral surfaces. The corresponding 

numbers for Eagle Ford image were 22.5 % for organic pores, 8.5 % for inorganic 

pores and 69% for mixed pores, respectively. The numbers for Woodford image 

were 9% for organic pores, 22.5 % for the inorganic pores and 68.5% for the 

mixed pores, respectively. Thus, the figure shows the huge variability between 

different shales at the micro-structure level. 

 

It is only logical to assume that different proportions of these different pore 

types lead to different macroscopic properties. For instance, the pore-types that have the 
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highest volumetric fraction are more likely to be connected and thus, control properties 

like wettability and permeability. This conclusion is again based on the fact that all 

shale plays have different pore types exhibiting different wettabilities. Phyllosilicate 

pores are generally water wet unless they are filled with organic matter in which case 

these pores might show an oil wet character. On the other hand, organic pores are 

generally considered oil wet.  

 The above classification and generalization holds true but there are 

notable exceptions. One has already been mentioned, that phyllosilicate pores are 

generally water wet unless filled with organic matter which might make them more oil 

wet. Schieber (2010) showed that in shales with comparatively low TOC (<7 wt. %), 

the phyllosilicate pores are open, connected and free of organic matter. But, at higher 

TOC values, these pores are filled with kerogen and bitumenite.  

Another notable exception was pointed out by Curtis et al. (2012) who pointed it 

out that an important factor deciding the aspect ratio of organic pores is whether 

kerogen is matrix supported or pressure supported. Kerogen is soft and ductile (Kumar 

et al. 2012, Shukla et al. 2013). If kerogen is pressure shadowed by larger resistant 

grains, the pores tend to be high aspect ratio. On the other hand, if kerogen supports the 

stress, the stress tends to close the pores or make them low aspect ratio. Other reasons 

for low aspect ratio pores in the organic matrix is organic matter shrinkage and 

fracturing inside organic macerals because of maturation (Lopez 2016). Figure 91 

shows few examples of low aspect ratio pores inside organic matter.  
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Figure 91: SEM images from the Woodford formation in late condensate window. 

(Left) Example showing organic matter filling of the phyllosilicate pores and high 

aspect ratio organic pores. (Right) Fractures inside organic matter occur most 

likely due to maturation process. This fracture is not likely due to sample 

preparation as it is limited inside the organic maceral.  

 

The organic pore development is dependent on many other variables like 

kerogen type, localized compaction, presence of water for hydrous pyrolysis, etc. 

(Curtis et al. 2011, Curtis et al. 2012). Figure 92 shows examples where adjacent 

organic macerals that have experienced similar thermal histories have completely 

different organic pore development. Porosity in shales is a complex function of TOC, 

thermal maturity, mineral content, texture, relative arrangement of different matrix 

components, diagenetic and stress history, etc.  

 

Figure 92: The highlighted area in both shale samples show adjacent organic 

macerals that have experienced similar thermal histories but one has organic pores 

while the other has no porosity. 
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Determining individual petrophysical properties on first principle basis is not 

only difficult but highly dependent on local conditions. At the same time, this highlights 

the importance of rock typing in unconventional reservoirs as it integrates all the 

available data and collectively identifies clusters having different macroscopic 

properties (which are a result of complex interplay of various geological processes as 

described above). The rock types are easy to comprehend and are an appropriate tool for 

reservoir completion and development.  

Rock Type 1 is the best rock type while Rock Type 3 is the worst. Figure 93 

shows the best (RT1) and the worst (RT3) rock types for the different shale plays. In all 

the shale plays, Rock Type 1 has the highest TOC, high porosity and highest fraction of 

movable hydrocarbons. Rock Type 1 images shows considerably more organic matter 

(shown by white arrows) compared to Rock Type 3 images. Also, except Eagle Ford, in 

all other shale plays, Rock Type 3 has high carbonates and has a very low porosity 

(shown by black arrows).  

In Eagle Ford, the porosity of the Rock Type 3 is high and the Rock Type 3 is 

rich in clays. These results are corroborated by the SEM image in the Figure 93. Finally, 

in Woodford and Barnett, Rock Type 1 is characterized by high quartz content. The 

quartz mineral grains are visible in abundance in the SEM images in Figure 93. Thus, 

the different rock types obtained from macroscopic petrophysical properties have 

completely different microstructures and are characteristically different from each other. 
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Figure 93: The best (RT1) and the worst (RT3) rock type SEM images for the 

different shale plays. Rock Type 1 generally has high porosity and TOC (shown by 

white arrows). Rock Type 3 has high carbonates, low TOC and porosity (shown by 

black arrows).  
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Intraparticle fractures are identified in quartz grains in Rock Type 3. Fractured 

grains are not observed in Rock Type 1 or 2 because of presence of softer more ductile 

materials like clays and TOC, as they deform and provide a cushion to minerals like 

quartz. Figure 94 shows some example images from Woodford and Barnett shale plays. 

These intraparticle fractures may not be real and may represent artifacts of sample 

preparation. However, if such fractures are formed during sample preparation, there is a 

possibility that some of them also exist downhole.  

 

Figure 94: SEM images for Rock Type 3 samples in Woodford and Barnett 

showing intraparticle fractures (pointed by arrows) in quartz grains. 
 

These intraparticle fractures are likely isolated and thus, do not contribute to 

enhancing permeability. The low quartz content and limited fractured grains are not 

statistically significant to influence permeability. Grain microfracturing is not expected 

in Eagle Ford due to very limited quartz and high clay percentage in Rock Type 3. 

The best rock type (RT1) in all the four shale plays has high TOC and porosity. 

High TOC and porosity are universal characteristics of good rock types; therefore, it 

becomes important to identify what are the geological and microstructural controls on 

porosity and TOC. Starting with porosity, the three general types of pores namely 

phyllosilicate network, carbonate dissolution and organic are inherently related to clay 
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content, carbonate content and TOC, respectively. Out of these three, carbonate 

dissolution pores are generally isolated and form a negligible fraction. To understand 

which pore-type dominates porosity, cross-plots of porosity vs. TOC, clay content were 

analyzed. The results were verified in SEM images. The cross-plots are not expected to 

give strong correlations as all the three types of pores coexist and the whole process is 

further complicated by diagenetic history. However, it can provide a general guidance.  

Figure 95 shows porosity cross-plots with TOC and clay content in Woodford 

samples. The TOC cross-plot shows porosity increases with increasing TOC. The 

phenomenon is very pronounced in Rock Type 1 at TOC values > 8%. The porosity vs. 

clay cross-plot also supports the above argument. It shows a slow and steady increase in 

porosity with clay content but Rock Type 1 samples which have high TOC lie much 

above the trend. These relationships are also evident in Rock Type 1 SEM images in 

Figure 96. Figure 96Error! Reference source not found. shows that the Woodford 

samples are dominated by organic pores.  

In Figure 96, the image on the right was analyzed to separate organic from 

inorganic pores. The results indicate that 26% of the porosity existed in purely organic 

pores while only 2% of the porosity existed in inorganic pores. The remaining 72% of 

the porosity existed in the mixed pores.  

Figure 97 shows the porosity cross-plots of porosity with TOC and clay content 

in the Barnett samples. Both the cross-plots show weak correlation. This is likely 

because in Barnett, both organic and inorganic porosities are seen in abundance and 

neither of them dominates. This is evident in SEM images in Figure 98. This is also 

evident by quantitative analysis of the image (enlarged image on the right). Only 2% of 
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the porosity existed in organic pores, another 8% in inorganic pores and the remaining 

90% in mixed pores. 

 

 
Figure 95: Porosity cross-plots with TOC and clay content in Woodford samples. 

The TOC cross-plot shows porosity increases with increasing TOC. The 

phenomenon is very pronounced in Rock Type 1 or at TOC values > 8%; at higher 

TOC, organic porosity dominates. The porosity vs. clays cross-plot shows a slow 

and steady increase in porosity with clay content but Rock Type 1 samples which 

have high TOC lie much above the trend.  

 

 

Figure 96: SEM images from Rock Type 1 in Woodford. Images show dominance 

of organic porosity. 
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Figure 97: Porosity cross-plots with TOC and clay content in the Barnett samples. 

Both the cross-plots show weak correlation. This is likely because in Barnett, both 

organic and inorganic porosities are seen in abundance and neither of them 

dominates 

 

 

Figure 98: SEM images from Rock Type 1 in Barnett. Images show abundant 

organic and inorganic pores.  

 

Figure 99 shows porosity cross-plots with TOC and clay content in Eagle Ford 

samples. In Eagle Ford, both the cross-plots show weak correlation. Both Rock Type 1 

and Rock Type 3 has high porosity. Rock Type 1 has high TOC and low clay content 
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while Rock Type 3 has high clay content and low TOC. Thus, it is likely that Rock 

Type 1 is dominated by organic porosity and Rock Type 3 is dominated by inorganic 

porosity. This is evident from SEM images in Figure 100 and from core-based rock 

typing results in Figure 41.  

 

 

Figure 99: Porosity cross-plots with TOC and clay content in Eagle Ford 

formation. The behavior in Eagle Ford is similar to Barnett samples in that neither 

TOC nor clay fraction shows a strong correlation with porosity. Both Rock Type 1 

and Rock Type 3 show high porosity. 

 

Figure 101 shows porosity cross-plots in the Wolfcamp samples. The porosity vs. clays 

cross-plot suggests an increasing porosity with increasing clay content. On the other 

hand, there appears to be no correlation between porosity and TOC. Thus, it can be 

concluded that phyllosilicate network pores dominate the porosity. The results can be 

verified from SEM images in Wolfcamp in Figure 102. In Figure 102, the boxed area on 
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the left image is enlarged (right image) to clearly show the inorganic pores in the clay 

matrix. 

 

 

Figure 100: SEM images for Rock Type 1 (Top) and Rock Type 3 (Bottom) in 

Eagle Ford. Both Rock Type 1 and Rock Type 3 has high porosity. Rock Type 1 

has high TOC and low clay content while Rock Type 3 has high clay content and 

low TOC. Images show that Rock Type 1 is dominated by organic porosity and 

Rock Type 3 is dominated by inorganic porosity. 

 

A similar analysis was carried to assess the controlling factors behind TOC.  The 

analysis of different images along with the core data suggested that TOC was generally 

found surrounded by quartz grains in Barnett and Woodford samples. This is consistent 

with geological and petrophysical analysis. The source of organics in these two plays 

were siliceous organisms with skeleton made of silica. On the other hand, in Wolfcamp, 

RT1 

RT3 



111 

organic deposition was related to clay content. The TOC in Eagle Ford was related to 

carbonate deposition as phytoplanktons like cocoliths are source of organic matter. 

 
 

 
Figure 101: Porosity cross-plots in Wolfcamp formation. The porosity vs. clays 

cross-plot suggests an increasing porosity with increasing clay content. On the 

other hand, there appears to be no correlation between porosity and TOC. Thus, it 

can be concluded that phyllosilicate network pores dominate the porosity.  

 

 
 

Figure 102: SEM images in Rock Type 1 in Wolfcamp formation show abundant 

phyllosilicate network pores. The boxed area on the left image is enlarged (right 

image) to clearly show the inorganic pores in the clay matrix (shown by black 

arrows).  
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Chapter 8: Conclusions 

Different shale plays are very different in terms of depositional environment, lithology, 

microstructure, anisotropy, brittleness, source rock quantity and quality, etc. Geologists 

identify many lithofacies (for example, up to 10) based on the above parameters. This 

creates many problems for a reservoir or production engineer looking to find ideal 

location to drill a well and ideal zones to complete a well. These lithofacies are known 

only in wells having core data. These lithofacies are not easy to correlate with logs and 

thus, difficult to identify in wells lacking core data. Different lithofacies can have 

similar reservoir properties like porosity, permeability, etc. They may not necessarily 

represent different flow units and may not offer insights into which zones should be 

targeted for completion.  

 Due to these limitations, rock typing became an essential step in reservoir 

characterization workflow. Rock types identify different flow units and they tie the 

lithofacies to reservoir flow properties and production. Kale et al. (2010) also showed 

that lithofacies can be tied back to the rock types. The current study develops an 

integrated work flow for rock typing using lab measurements. The workflow correlates 

the core-based rock types with available logs and generates rock type logs. These logs 

show a strong correlation with the production from the wells. Data mining algorithms 

such as K-Means, SOM, SVM, etc. are very powerful in handling large amount of data 

and finding meaningful associations between different data types. The rock types were 

upscaled to 140 wells spanning over 20,000 ft. depth. The additional benefit is that the 

workflow is largely automated making the rock typing exercise rapid. The manual 

approach can be prohibitively time consuming.  
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 Three rock types were identified in each of the four shale plays. The three rock 

types had different storage and source rock potential and different mineralogy. In 

general, Rock Type 1 (the best rock type) had high storage and source rock potential 

followed by Rock Type 2 and Rock Type 3. An exception to this was Eagle Ford shale 

play where Rock Type 3 had higher storage potential compared to Rock Type 2 but had 

poorer source rock potential. The reason for this anomaly was sampled wells belonging 

to two completely different depositional environments (Deltaic vs. shallow marine 

carbonate environments) in Eagle Ford. Deltaic deposits were terrigenous, oxidized and 

devoid of any organic carbon.  

 The three rock types also had strikingly different mineralogies. One rock type 

was dominated by quartz, second by carbonates and the third by clays. It was found that 

depending on the depositional environment, one of these three mineral groups were 

associated with organic carbon. For example, in the Woodford, siliceous radiolarians 

were responsible for the organic matter deposition; thus, in Woodford, quartz was 

associated with organic carbon. Therefore, Rock Type 1 had the highest quartz content 

among the three rock types. Similarly, in the Eagle Ford, pelagic carbonaceous 

organisms were responsible for organic matter deposition. Thus, Rock Type 1 had high 

carbonate percentage. Along the same lines, Rock Type 1 in Barnett and Wolfcamp had 

highest quartz and clay content, respectively. 

 The three rock types had characteristic mercury injection capillary pressure 

curves. Rock Type 1 had highest mercury to helium pore volume ratio, signaling 

highest connectivity. It also had high hysteresis and largest dominant pore throat radius. 

Rock Type 3, on the other extreme, had lowest mercury to helium pore volume ratio. It 
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had a monotonously increasing capillary pressure curve without any inflection point. 

This type of curve is characteristic of very tight rocks possibly having a dominant pore 

throat radius smaller than 3 nm. Rock Type 3 samples also had virtually over-lapping 

cumulative intrusion and extrusion curves likely indicating false intrusion. The only 

exception to this was Eagle Ford play where Rock Type 2 had the poorest connectivity 

and tight rock signature. Table 1 summarizes the characteristics for different rock types 

in the four shale plays studied.  

Table 1: Characteristics of Different rock types (data represents 25-75 percentile). 

 

Eagle Ford TOC  
(wt %) 

Porosity 
(vol %) 

Carbonates 
 (wt %) 

Clays  
 (wt %) 

  Quartz 
   (wt %) 

S1 
(mg/gm 

rock) 

Rock Type 1 3.5-5.5 7.0-9.0 55-70 10-30 0.0-6.0 2.0-6.0 

Rock Type 2 1.5-3.0 4.5-6.5 70-85 5-15 0.0-4.0 1.5-3.5 

Rock Type 3 1.5-3.0 7.0-9.0 15-35 45-70 0.0-4.0 1.0-2.0 

Woodford TOC  
(wt %) 

Porosity 
(vol %) 

Carbonates 
 (wt %) 

Clays  
 (wt %) 

  Quartz 
   (wt %) 

S1 
(mg/gm 

rock) 

Rock Type 1 4.0-9.0 5.5-9.0 10-20 18-30 35-50 1.0-5.0 

Rock Type 2 3.0-5.0 5.5-7.0 5-15 42-55 15-30 0.0-4.0 

Rock Type 3 0.5-4.5 2.0-4.0 65-90 0-10 0-10 0.0-2.0 

Barnett TOC  
(wt %) 

Porosity 
(vol %) 

Carbonates 
 (wt %) 

Clays  
 (wt %) 

  Quartz 
   (wt %) 

S1 
(mg/gm 

rock) 

Rock Type 1 3.5-5.5 6.0-8.0 5-15 32-40 28-36 0.7-1.1 

Rock Type 2 2.5-4.5 6.0-8.0 7-18 42-52 12-20 0.3-0.8 

Rock Type 3 1.5-3.5 3.5-6.0 30-55 15-30 11-20 0.3-0.7 

Wolfcamp TOC  
(wt %) 

Porosity 
(vol %) 

Carbonates 
 (wt %) 

Clays  
 (wt %) 

  Quartz 
   (wt %) 

S1 
(mg/gm 

rock) 

Rock Type 1 2.0-4.0 7-9 0-5 50-60 12-24 1.0-2.2 

Rock Type 2 1.0-2.0 3-7 0-10 20-35 35-45 1.5-1.8 

Rock Type 3 1.0-2.0 2-3 45-70 5-15 5-25 0.0-0.2 
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The advantage of this integrated workflow is that even though different shale 

plays are different in so many ways, this integrated workflow identifies simple 

relationships between different petrophysical attributes that are more or less consistent 

across different shale plays. The three rock types can be easily correlated to logs and 

can be modelled across a shale play. They have a strong link with well productivity and 

can be used as tools in completion optimization. The rock type logs can aid the reservoir 

or production engineer in optimizing perforation intervals and number of fracture 

stages. Rock Type 3 is poor reservoir and may not warrant any perforation or fracturing. 

Rock Type 1 is the best reservoir rock. It can be selectively perforated and fractured to 

save cost and maximize production from a well. Other applications of the rock typing 

are 3D reservoir modeling, identifying sweet spots in combination with seismic 

attributes, new well locations, improved volumetric estimates and uncertainty and risk 

analysis.  

It is important to highlight that rock typing exercise carried out in this study was 

based on extensive core, log and production data but it can be further improved by 

including several other parameters that effect the production. These parameters were not 

included because the data was not available. These parameters include geophysical 

attributes (for porosity, natural fractures, etc.), advanced logs (for natural fractures, 

water saturation, etc.), completion parameters (fracture half lengths, fracture heights, 

fracture conductivities, number of fracture stages, skin effects, etc.) and other reservoir 

parameters (pore pressures, near wellbore and far-field stresses, etc.). For instance, 

superior fracturing fluids provided by certain service providers increase SRV 

(Stimulated Reservoir Volume) for fractures leading to higher productivity. Different 
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operators use different proppant volumes, different fracture spacings, etc. and thus 

effects of completion play a major role on the productivity of the well. It was seen in the 

production correlation plots (Figure 29 and Figure 88) that different completion 

practices may show up as multiple linear trends but without completion data it is 

difficult to say for sure. Another example could be change of pore-pressure as we move 

from gas to condensate to oil maturity windows within a same shale play. The variation 

in pore pressure can also be due to different stress regimes. Thus, productivities may be 

different due differences in pore pressure regimes. To include the effects of pore 

pressure, one simple method is to normalize the production by pore pressure or look at 

well productivities instead of 24 months’ production. But, bottom hole pressure data 

was not available in the wells.  

The data that will be useful to obtain these different parameters and improve 

rock typing definition include seismic, micro-seismic, VSP (Vertical Seismic Profile) 

surveys, advanced logs like NMR, sonic, FMI (Formation Micro-imager), proppant 

volumes, rate and pressure transient analysis, DFIT (Diagnostic Fracture Injection 

Tests), MDT (Modular Dynamics Tester) measurements, etc.  

All the well logs were available for the pilot vertical holes. Thus, there was an 

inherent assumption that the reservoir properties do not change as we move away from 

the wellbore. With long horizontal laterals, this assumption may not hold true and this 

might affect the results of production correlation with the rock types. To reduce the 

uncertainty, it is recommended to use logs along the horizontal wellbore for production 

correlation. These logs were not available for the wells used in this study.  
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Appendix A: Rock Type logs for Eagle Ford Wells 
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Appendix B: Rock Type logs for Barnett Wells 
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Appendix C: Rock Type logs for Woodford Wells 
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Appendix D: Rock Type logs for Wolfcamp Wells 
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