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Abstract 

 Permeability is an extremely important property of shale. It is essential to know 

permeability as it can aid engineers in developing drilling and production strategies and 

help executives make important financial decisions. However, the measurement of shale 

permeability has long been a challenge in the industry due to shale’s extremely low 

porosity and permeability (in Nano Darcy range). Conventional method of measuring 

shale permeability may take hours even days. This work presents a new permeability 

measurement method named three-point beam bending test that was originally invented 

and developed by Scherer in 1992. This method approximates shale permeability that is 

in reasonable agreement with the theoretically predicted values from empirical equations. 

In this thesis, orthotropic poroelastic solutions of the pore pressure and load decay 

are derived and studied. The thesis also extends the poroelastic solutions to 

poroviscoelastic solutions to accommodate the viscoelasticity of the shale. 

 Viscoelastic properties of shale complicate the problem, thus two viscoelastic 

models are introduced in this thesis. The analytical solutions pore pressure and load decay 

under constant deflection test are plotted and investigated. Influence of anisotropy, 

viscoelastic properties and sensitive of permeability on the solutions are studied. In 

practice, the permeability of the shale beam is approximated by matching the analytical 

solution of the load decay to the experimental data acquired from the constant deflection 

test.  

 At last, potential limitations of the experiment and improvements are discussed. 



1 

Chapter 1: Introduction 

Shale has been a trending research focus in the petroleum industry and will 

continue to be investigated as techniques to produce from conventional resources have 

been studied thoroughly. Porosity and permeability are two essential factors to determine 

the quality of a reservoir. While the measurement of porosity is relatively easy, the 

measurement of the permeability of shale is complicated due to its viscoelastic behavior 

and organic-rich character. Conventional techniques such as steady state method (Figure 

1) and pulse decay techniques (Figure 2) are time-consuming to measure extremely low 

permeability of shale. There are also numerous empirical formulas developed to 

approximate permeability based on porosity and pore sizes, etc. These empirical formulas 

have their limitations too such as failing to account for shale anisotropy and viscoelastic 

properties of shale; they are also proven to be inadequate for permeability estimation in 

the Nano-Darcy range (Comisky et al., 2007).  

The bending of the beam under the three-point beam bending test is essentially a 

three-dimensional deformation of porous materials problem containing a viscous fluid. 

What makes the simulation of the test challenging is that shale possesses anisotropic 

and viscoelastic properties. To formulate the equations to solve the three-dimensional 

poroviscoelastic deformation of shale, the literatures on theory of deformations, 

anisotropic materials and poroviscoelasticity have been studied for this thesis.  

The three-dimensional theory of deformation of porous materials saturated with 

a viscous fluid was developed by Biot (1941) and this is served as the fundamental 

governing equations of an isotropic elastic material. Later, the theory was extended to 

fit anisotropic elastic porous solids (Biot 1955). Not until 1956 did Biot introduce the 
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poroviscoelasticity theory where viscoelasticity is considered. More recently, 

Abousleiman et. Al. (1993) were able to isolate and quantify the simultaneous existence 

of poro- and viscoelastic effects. Numerical and analytical applications were 

subsequently developed in problems of boreholes (Abousleiman et al, 1996), anelastic 

strain recovery (Abousleiman et al, 1999 & Abousleiman et al, 2000), Articular 

Cartilage (Hoang and Abousleiman, 2009), human brain tissues (Mehrabian and 

Abousleiman, 2011) and shale reservoirs (Hoang and Abousleiman, 2012).  

To solve the difficulty of measuring extremely low permeability and account for 

the viscoelastic properties, a new technique called three-point beam bending test was 

initially developed by Scherer in 1992 and recently used on shale. The experiment set up 

is illustrated below (Figure 3). Under the load, the fluid saturated porous beam is 

deformed and a pore pressure gradient is induced due to different strain in the skeleton. 

Fluid will start to flow out of the beam in the upper part and flow in in the lower part to 

achieve pressure equilibrium. The load required to sustain a constant deflection decreases 

as time elapses and is a function of permeability. The free body diagram is illustrated in 

Figure 4. Analytical solutions of the load decay under constant deflection have been 

obtained hence by recording the load along with time under constantly deformed beam, 

one could predict the permeability of the material by matching the collected data with 

analytical solutions. This method was originally designed to approximate the 

permeability of gel and cement paste, which are assumed to be isotropic poroelastic 

material when saturated with fluid (Scherer, 1992, 1994, 2000). Scherer also extended 

the solutions to transversely isotropic poroelastic materials (Scherer, 2004; Scherer et al., 
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2007, 2009). And in 2012, experiments were performed on shale and permeability of 

shale was approximated accounting its viscoelastic behaviors and anisotropic characters.  

 The motivation behind this work is that scholars have claimed recently that shale 

is orthotropic besides being transversely isotropic in most cases (Crook et al. 2002). 

Therefore, obtaining orthotropic poroviscoelastic solutions for the three-point beam 

bending test is important. Figure 5 shows the calcareous laminated woodford shale under 

microscope, revealing strong degree of anisotropy (Sierra et al 2010). Up till this point, 

the analytical solutions have not been derived for orthotropic shale with consideration of 

viscoelastic properties. This work presents the orthotropic solutions to fill in the blank in 

this research area. The orthotropic constitution equations relating stress, strain and pore 

pressure (Hoang and Abousleiman, 2012), are used to formulate and derive the analytical 

solutions for the three-point beam bending problem. 

To account for the viscoelasticity of shale, poroviscoelastic solutions for the three-

point beam bending test have been derived in this work based on the correspondence 

principle (Hoang and Abousleiman, 2012).  
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Figure 1. CoreTest AP608 instrument used to measure porosity and permeability: 

time consuming for shale (OU IC3 Lab)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pulse decay technique to measure rock permeability 
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Figure 3. Schematic of three-point beam bending test: the beam is bent to a constant 

deflection in the center and immersed in the liquid bath. 
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Figure 4. Free body diagram of the beam to which a force is applied in the three-

point beam bending test 
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Figure 5. Thin section of the Woodford shale which reveals strong anisotropy 

(Sierra et al 2010). 
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Chapter 2: Problem Description 

2.1 Laboratory Set-up 

To measure the permeability using the three-point beam bending technique, the 

saturated sample is instantly bent to a certain degree and remained that constant deflection 

while the load required to sustain it is recorded. The equipment is shown in Figure 6 

below. The beam is fully saturated before the test starts. Strictly careful procedures are 

conducted in order to prevent any air bubbles to intrude the medium (Scherer 2012). The 

samples are also laterally sealed to prevent any flow except in the direction of load. This 

is done intentionally so that permeability in only one direction is measured otherwise flow 

in more than one direction obscures the interpretation of the experiment (Scherer 2012).  

 Under constant deflection bending test, a load is exerted on the beam to sustain 

the constant deflection of the beam being placed on two supporters. The beam is kept in 

a liquid bath that contains the same liquid as the one saturated inside the beam.  

 In the experiment, the samples are sealed laterally on sides to prevent fluid flow. 

Fluid can only flow through the upper and lower surfaces of the beam and permeability 

is measured in the direction fluid can flow. Therefore, to approximate the permeability of 

an anisotropic shale which varies in different directions, the sample should be cored and 

placed in multiple ways. Take a transversely isotropic shale beam (figure 7) as an example 
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Figure 6. Three-point beam bending test equipment (OU PoroMechanics Lab) 
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2.2 Simulation 

The Cartesian coordinate system (Figure 8) is established in a way that x-axis is 

vertical, y-axis is lateral and the z-axis is longitudinal. The origin is in the center of the 

far-left surface of the beam.  
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Figure 8. Cartesian coordinate for the three-point beam bending test throughout 

this work. The origin is in the center of the left most surface of the beam. 
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Figure 7. Placement of transversely isotropic beam: (a) measurement of 

permeability perpendicular to layers; (b) measurement of permeability parallel to 

layers 
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the lateral edges are sealed and fluid is only allowed to flow in the x direction. 

The simulation of the test is therefore treated as a one dimensional poroviscoelastic 

problem.  In chapter 5, the solutions for pore pressure and load decay are presented under 

two-dimensional condition as fluid can flow in both x and y directions to fully study the 

experiment. Also, poroelastic solutions are derived and presented first before moving 

onto the more advanced poroviscoelastic solutions. 

 The author simulates the test and obtain the solutions for pore pressure and load 

decay by treating the beam as isotropic and anisotropic materials as illustrated below: 
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The beams are assumed to be homogeneous in the simulation, which means that 

the properties of the material are uniform throughout the beam at all locations. 

 Isotropic: Share the same physical properties in all direction 
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Figure 9. (a) Isotropic, (b) transversely isotropic, and (c) orthotropic materials 

encountered in this work and how their properties distinguish from each other. 
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 Transverse Isotropic: Share the same physical properties in the isotropic plane but 

different physical properties in the direction perpendicular to the isotropic plane 

 Orthotropic: no common physical properties in all direction 

 

2.3 Initial and Boundary Conditions 

Boundary conditions and initial conditions (detailed derivation in appendix) for the pore 

pressure in the simulate are illustrated below: 

Table 1. Initial and Boundary conditions in the simulation 

I.C. t = 0+ 

𝑝0 = 𝐶1𝑧𝑥 

𝐶1(𝑀𝑖𝑗, 𝑀, 𝐿, ∆) 

B.C. 

 

x = ±a p = 0 

y = ±b p = 0 

 

Throughout the test, the beam is bent to a certain deflection and kept constant 

while the load required to sustain the constant deflection is recorded as the fluid is flowing 

through the surface the beam. Figure 10 is a schematic of the boundary conditions while 

reactions of the beam in the test.  

 

 



13 

 

 

 

 

 

 

 

 

Under constant deflection Δ, the beam experiences compression in the upper half 

and tension in the lower half (Figure 10) which is expressed as σz. There is no normal 

stress σx in x or σy in the y direction. At time t=0 when the deflection is instantly 

introduced, the variation of the fluid content 00   (the subscript 0 represents the initial 

value at t=0 everywhere in this paper) since the beam is incompressible initially and no 

fluid can instantly inside the medium. Therefore, the volumetric strain 00   as well 

since no fluid is drained.  

Under constant deflection, the normal strain in z direction z  is a constant and 

expressed as: 

LzL
L

zLx

Lz
L

xz

z

z
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24
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

                                                                        (2.1) 

The bending moment zM  is related to the principal stress in z direction z : 


A

zz xdAM                                                                                                  (2.2) 

Figure 10. Boundary conditions in the simulation: beam is sealed laterally at two far 

ends. Fluid can flow in only x and y direction.  C stands for compression, T stands 

for tension. Δ is the deflection. 
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Where A is the cross-sectional area of the beam. The load the related to the moment as: 

LzL
zL

M
F

Lz
z

M
F

z

z








2/ ,
2

2/0 ,
2

                                                                                    (2.3) 

Before the test starts, the beam is fully saturated with the experimental fluid. 

Essentially during the test, the fluid inside the beam is squeezed out when a load is applied 

in the center of the beam to keep it bending at a constant deflection. During this process, 

the force needed to sustain the constant deflection decreases due to hydrodynamic 

relaxation and viscoelastic relaxation.   
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Chapter 3: Governing Equations 

Throughout this work, the compressive stress and strain are taken as positive. 

3.1 Orthotropic Poroelasticity 

The stress, strain and pore pressure are related in the constitutive equations for 

orthotropic material as below (Abousleiman 2014):  

p
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)( 321   zzyyxxMp                                                                    (3.2) 

Where ijM  is the stiffness coefficients, i  is the Biot’s effective stress 

coefficient in the ith direction; p  is the pore pressure,   is the variation of fluid content, 

M is the Biot’s modulus, sK  is the grain bulk modulus, fK  is the fluid bulk modulus 

and   is the porosity. 
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Only normal stress zz  in z direction exists in this bending test and both xx  and 

yy  are absent. When the beam is sustained at constant deflection, the longitudinal strain 

in z direction can be expressed as: 
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Figure 11. Schematic illustration of the bending of the beam under constant 

deflection when saturated with fluid. Fluid is squeezed out from the outer surface of 

the beam. 
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 Above are the general governing equations for orthotropic materials. These 

equations can be used for isotropic and transversely isotropic materials as well by simply 

manipulating Young’s Moduli 1E , 2E  and 3E . For instance, isotropic materials inherit 

uniform Young’s moduli in all direction: 321 EEE  . Therefore, stiffness coefficients 

would equate each other as: (assuming 323121   ): 

231312

332211

MMM

MMM




                                                                                            (3.5) 

Hence stiffness coefficient matrix would be simplified as: 
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

111212

121112

121211

MMM

MMM
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                                                                                          (3.6) 

And therefore, other poroelastic parameters become: 

1211

321

63 MMM iijj 

 
                                                                                         (3.7) 

 Governing equations of transversely isotropic materials are readily obtained in the 

same fashion by manipulating Young’s Moduli.  

 Other governing equations include Darcy’s Law and continuity equations as listed 

below: 

 Darcy’s Law: 
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


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


                                                                                                        (3.8) 

Where xq  and yq are the fluxes along x and y direction, xk  and yk  are the permeability 

along x and y direction and   denotes the fluid viscosity. Assumption has made it that 



18 

there is no flow in the z direction because the length is much longer than the vertical and 

lateral dimension so that all of the low will perpendicular to z axis (Scherer, 1992). 

 Continuity equation: 

y

q

x

q

t

yx














                                                                                           (3.9) 

Which indicates that the rate of fluid content variation is equal in magnitude and opposite 

in direction compared to fluid flow rate.  

3.2 Orthotropic Poroviscoelasticity 

 Compared to poroelasticity, Poroviscoelasticity captures the visco properties of 

the materials: Young’s Moduli are now time dependent. Most of the shales are 

viscoelastic materials, therefore a poroviscoelastic model would be more accurate than a 

poroelastic one.  

 To simulate the viscoelasticity of the beam, a model that transforms Young’s 

Moduli to be time-dependent is needed. Two models are used in this study to present an 

insight on how viscoelastic beams are handled differently than elastic ones in the 

simulation.  

Zener Model: 

]1[)( 0

t

eEtE


                                                                                   (3.10) 

Sone-Zoback Model: 

 tEtE 0)(                                                                                                    (3.11) 

With the aid of correspondence principle (Hoang and Abousleiman, 2012), which 

states that 

“Any constituitive relation or formula for material coefficients of anisotropic 

linear poroviscoelasticity can be obtained from the corresponding expression in 
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anisotropic linear poroelasticity by replacing multiplication with Stieltjes convolution 

product.” Therefore Eq. 4.1 and 4.2 become: 
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))()()(()( 321   zzyyxx ttttMp                               (3.13) 

Where  denotes the Stieltjes integral: 


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t

dgtftgtf )()()()(                                                                                      (3.14) 

The correspondence principle also states that “the formulation and solution to the 

same boundary and initial value problem in anisotropic linear porovscoelasticity can be 

obtained from those in poroelasticity by replacing poroelastic material coefficients with 

The Carson transform of the poroviscoelastic counterparts.” Therefore by applying 

Laplace and Carson transform to Eqs. 4.12 and 4.13 yields: 
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)
~~~~(~

311   zzyyxxMp                                                                  (3.16) 

With (~) denoting the Laplace Transform and ( )̄ denoting Carson Transform. 

Laplace transform: dtetfsF st





0

)()(   (4.17) 

Carson Transform: dtetfssF st





0

)()(   (4.18) 

The anisotropic poroviscoelastic parameters are expressed in the new form of: 
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This theory grants solutions to poroviscoelasticity readily as long as the solutions 

to poroelasticity are available and they share the same boundary and initial conditions.  
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Chapter 4: Analytical Solutions 

The beam is sustained under constant deflection throughout the test. Under 

constant deflection condition, the analytical solutions of the load will decrease with time 

for all three cases. However, the rate of load relaxation is different depending on whether 

it is hydrodynamic relaxation, viscoelastic relaxation or the combination of the two and 

the boundary conditions: sealed in one direction or sealed in two directions.  

 Analytical solutions for pore pressure and work for each case are presented below: 

4.1 Poroelastic Solutions 

 By combining Darcy’s Law and continuity equations Eqs. 4.8, 4.9, the following 

equation is obtained: 
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This is the volume balance equation: the left-hand side represents the volume 

change of the system and the right-hand side is the sum of the fluid going in and out of 

the system.   can be expressed as a function of pore pressure p and longitudinal strain 

zz from Eqs. 4.1, 4.2 as: 

zz
MMMM

MMMMMMMM
p

MMMM

MMMM

M



 )

)()(
()

)()(1
( 3

22111212

112321132122322131

22111212

11212121222211 










                                                                                                                                                          

                                                                                                                                     (4.2) 

Therefore, the left-hand side of Eq. 5.1 becomes: 
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Eq. 4.4 indicates that zz is time-independent, thus 0




t

zz
 and Eq. 5.3 becomes  
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After normalizing t, x and y and manipulating Eq. 5.4, it can be transformed into: 
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Where  /t  with , axv /  

and byw / . 2a and 2b are the depth and width of the beam and 
x

y

kb

ka
2

2

 .  

Pore pressure is therefore a function a time t and location x and y inside the beam and is 

expressed as ),,( wvp . 

Take boundary condition 1 as the boundary condition for the Eq. 5.5: 

0),1,(),,1(   vpwp                                                                              (4.6) 

The boundary conditions indicate that at outer surface of the beam the pore pressure is 0 

psi.  

The initial condition for the Eq. 5.5 is obtained from Eq. 5.2 by setting 0  because at 

 0t  no fluid variation has happened yet. Therefore, the initial condition is 
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With the Eqs. 5.5, 5.6 and 5.7, a complete PDE with boundary and initial conditions are 

solved (detailed explanation is in Appendix) and the solution to the pore pressure p  is 

below: 
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Pore pressure: 
 )22(

1 1

0 )cos()sin(
)1()1(

4
manb

ewbva
ba

pp
m n

nm

n

n

m

m












                         (4.8) 

 The three-point bending beam test only creates uniaxial stress along the z-axis 

therefore 0 yyxx  . Manipulating Eq. 4.1 (Detailed explanation is in Appendix), the 

uniaxial stress along z-axis can be expressed as: 
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Moment at the cross section of the beam is expressed as  
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Where dxdydA   

Therefore, after integration, the bending moment zM  could be obtained. The equilibrium 

equation for the beam under small deflection: 
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where CF is the load required to sustain the constant deflection and could be obtained as 

long as zM  is solved (detailed explanation is in Appendix C ). 
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4.2 Poroviscoelastic Solutions 

When the beam is viscoelastic in the simulation, which means that the Young’s 

Moduli are time-dependent, the three-point beam bending test simulation becomes a 

poroviscoelastic problem.  With the aid of correspondence principle (introduced in 

chapter 4), the solutions are easily obtained from poroelastic solutions. Since 

poroviscoelastic simulation shares the same boundary and initial conditions as the ones 

for poroelastic simulation, the solutions are in the same form but in Laplace domain:  

Pore pressure: 
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With (~) denoting the Laplace Transform and ( )̄ denoting Carson Transform. 

To transform them back to time domain, Stehfest Method (Abousleiman, etc., 

1994) is used.  

 For detailed derivation of above solutions, please refer to the appendix. With the 

analytical solutions on hand, the author was able to study the pore pressure change when 

different input was applied in order to study how sensitive pore pressure is to each 

parameter, such as Young’s Modulus, permeability and so on. The analytical solution of 

the load is by all means the most important one. As long as the experiment data of load 

of the three point beam bending test under constant deflection is accessible, one is able 

to match the analytical solution to the data and approximate the permeability of the beam. 

The method of approximation of permeability will be addressed in the further chapter.  
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Chapter 5: Numerical Examples 

 In the petroleum engineering discipline, permeability of the source rock is an 

essential information to engineers since it provides insight on how easy the valuable fluid 

can flow to borehole. Therefore, knowing permeability will aid in determining drilling 

and production strategies and help in making important executive decisions. The three-

point beam bending test is an alternative method of measuring permeability to 

conventional method. The alternative method takes much less time and gives accurate 

results. To fully study such a test, the author simulated the test using Mathematica and 

derive the analytical solutions for the pore pressure change inside the beam and the load 

decay under a constant deflection test. 

 To make the simulation as close to reality as possible, the beam is treated as 

viscoelastic, which means that the Young’s Moduli are time-dependent. For elastic 

materials, one exerted stress corresponds to one strain according to Hooke’s Law. 

However, a viscoelastic material exhibits both elastic deformation and viscous 

deformation (Huang & Ghassemi, 2013). The well-known spring-dashpot models are 

often used to utilized for viscoelastic behaviors: Spring is used to represent elastic 

component of the material and its constitutive equation is given as 

 K   

where K  is the stiffness of the spring. Dashpot is used to represent the viscous 

component of the material and its constitutive equation is shown below as: 

dt

d
    

Where   is the dashpot viscosity (Hoang 2011).  
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Numerous linear viscoelastic models have been constructed with springs and dashpots 

organized in various pattern to simulate distinguished viscoelastic behaviors. Figure 12 

presents the three typical models that are the commonly used.  

 

 

 

 

 

 

 

 

 

Zener and Sone-Zoback models are used in the simulation to demonstrate how 

viscoelastic materials behave differently than elastic materials. If the materials exhibit 

more complicated viscoelastic behaviors, more advanced models should be used.  

 The solution for elastic beam is also obtained to serve as a comparable 

counterpart. The following are the unchanging mechanical properties: Porosity %15 , 

Poisson’s Ratio 3.0  and grain bulk modulus GPaKS 40 . 

Two models are used in this study to simulate the viscoelastic properties of the 

beam: 

Zener Model: 

]1[)( 0

t

eEtE


                                                                                     (5.1) 

(a) (b) 

(c) 

Figure 12. Schemetic representation of different viscoelastic models: (a) Kelvin 

model; (b) Maxwell model and (c) Zener model. 
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origin 

Where   is the percentage of the maximum Young’s Modulus decay at infinitely long 

time to the initial value of it, and   is the characteristic relaxation time. 

The bigger the  is, the smaller value Young’s Modulus can decay to.  

The smaller  the is, the faster the Young’s Modulus decays.  

Sone-Zoback Model: 

 tEtE 0)(                                                                                                      (5.2) 

Where   is characterizes the relaxation rate: higher   leads to a faster rate of decline in 

Young’s Moduli and vice versa. However, Young’s moduli in Sone-Zoback Model will 

not drop asymptotically at infinite time as young’s moduli in Zener model does.  

 The beam is set to be 80 mm in length, 4 mm in width and depth as illustrated 

below. The constant deflection is maintained at 1mm at the center of the beam.  
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Figure 13. (a) The dimension and constant deflection of the beam in the three-point 

beam bending test simulation and (b) (c) (d) the definition of the mechanical 

properties in each direction: Young’s Moduli and permeability in x, y and z 

direction are Ex, kx, Ey, ky, Ez and kz respectively. 

a 

b c d 
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 The above Cartesian coordinates are established for the entire work such that the 

beam is always placed in the way that x-axis is parallel to the depth of the beam, y-axis 

is parallel to the width of the beam and z-axis is parallel to the length of the beam. 

Therefore, to make the beam isotropic, transversely isotropic and orthotropic in the 

simulation, the author needs to adjust input (Young’s Moduli and permeability) in each 

direction.  

 

Table 2. Mechanical properties of isotropic, transversely isotropic and orthotropic 

beam used in the simulation of the three-point beam bending test 

 Isotropic 

Transversely Isotropic 

Orthotropic 

Case 1 Case 2 Case 3 

      

Young’s 

Moduli, E GPa

EEE zyx

6.5

  
GPaEx 6.4  

GPaEE zy 6.5  

GPaEy 6.4

GPaEE zx 6.5  

GPaEz 6.4  

GPaEE yx 6.5  

GPaEx 6.4

GPaEy 6.2

GPaEz 6.5  

Permeability, 

k nD

kkk zyx

4.0


 

nDkx 2.0

nDkk zy 4.0  

nDky 2.0

nDkk zx 4.0  

nDkz 2.0

nDkk yx 4.0  

nDkx 2.0  

nDk y 4.0

nDk z 4.0  

   

 The properties of the fluid input into the simulation are: Viscosity, cp1  and 

fluid bulk modulus, GPaK f 8.0  

 Two important outcomes are studied thoroughly: pore pressure change and load 

decay. The rest of this chapter will dedicate to listing plots of pore pressure change and 
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load decay under various conditions. For example, poroelastic solutions and 

poroviscoelastic solutions are compared to observe the influence of viscoelasticity; 

isotropic, transversely isotropic and orthotropic solutions are compared to detect the 

influence of anisotropy; Also two viscoelastic models are investigated. 

5.1 Effects of Anisotropy 

 In this section, the beam is assigned different mechanical properties to simulate 

isotropic, transverly isotropic and orthotropic materials. Poroelastic solutions are  

Isotropy: Ex=Ey=Ez = 5.6 GPa; kx= ky=kz=0.4nD. 

Transversely Isotropy: Ex = 4.6 GPa, Ey=Ez= 5.6 GPa; kx= 0.2nD, ky=kz=0.4nD. 

Orthotropy: Ex= 4.6 GPa, Ey=2.6 GPa, Ez = 5.6 GPa; kx= 0.2nD, ky=kz=0.4nD. 

 Figure 14 shows the pore pressure distribution along x-axis for isotropic, 

transversely isotropic and orthotropic beams. The mechanical properties that set these 

three cases different are permeability and Young’s Moduli. The initial pore pressure jump 

at t=0+ for isotropic beam is the highest among the three. This is a result of highest overall 

stiffness of the isotropic beam, followed by transversely isotropic beam and orthotropic 

beam at last. The initial pore pressure jump is dominated by Young’s Moduli and is not 

influenced by the permeability. By looking at the pore pressure for each case t= 200s 

isotropic beam also exhibits the highest pore pressure drop rate, followed by transversely 

isotropic beam and orthotropic beam. This phenomenon could be explained by the highest 

overall hydrodynamic relaxation of the orthotropic beam: higher Young’s Moduli and 

higher permeability boosts the hydrodynamic relaxation. Similar trends could be 

observed as well in Figure 15 showing the pore pressure distribution along y-axis. 
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Figure 14. Poroelastic pore pressure distribution along x-axis at y=0mm and 

z=40mm at variable times for isotropic, transversely isotropic and orthotropic 

beams. 
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Figure 15. Poroelastic pore pressure distribution along y-axis at x=1mm and 

z=40mm at variable times for isotropic, transversely isotropic and orthotropic 

beams. 

 

 Figure 16 contains the load decay along with time for isotropic, transversely 

isotropic and orthotropic beams. Isotropic beam with the overall highest stiffness ends up 

with the highest initial load; it also exhibits the fastest load decay rate due to the highest 

hydrodynamic relaxation. The transversely isotropic beam has the second largest initial 

load and second fastest hydrodynamic relaxation rate. The orthotropic beam has the 

smallest initial load and the slowest hydrodynamic relaxation rate among the three. This 

result is intuitive and concurs with the comparison of the pore pressure changes.  
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Figure 16. Poroelastic load decay to sustain a 1mm constant deflection for isotropic, 

transversely isotropic and orthotropic beams. 

 

5.2 Effects of Viscoelastic Properties 

 In this section, the beam is simulated to be a orthotropic material with Ex(0
+) = 

4.6 GPa, Ey(0
+)=2.6 GPa, Ez(0

+) = 5.6 GPa; kx= 0.2nD, ky=kz=0.4nD. Zener Model is 

used to simulate the viscoelastic relaxation: ]1[)( 0

t

eEtE


  with 5.0  and 

s1000 . 

Figure 17 represents the pore pressure distribution along the x-axis at y=0 mm 

and z=40 mm along with different times. The pore pressure is indicated as positive value 

when x > 0 mm and negative when x < 0mm. This sign change is caused by compression 

in the upper half of the beam and tension in the lower half of the beam. Initial pore 



33 

pressure jump at t=0+s is in a linear relationship along the x-axis because no fluid has had 

flown out of the beam yet when the deflection is applied instantly. t=0+s is also the only 

time when the pore pressure at the upper and lower boundary (x=2 mm and x=-2 mm) is 

not equal to zero. At any time after the constant deflection is instantly applied, the pore 

pressure at the boundary is 0 Psi since the boundary is permeable and exposed to 

atmosphere pressure. The pore pressure along x-axis decreases as time elapses. The is 

phenomenon is called hydrodynamic relaxation. Eventually the pore pressure will reach 

equilibrium where the pore pressure drops to 0. However, the rate of the pressure drop 

seems to decrease as well as time goes. The rate of pore pressure drop is directly related 

to the flow rate of the flow leaking out of the beam. According to Darcy’s Law 

x

pk
q x

x






, the flow rate in x direction is proportionally to pressure difference 
x

p




. At 

t=0+s, the pressure different is biggest; therefore, the flow rate is biggest, so is the pore 

pressure drop. As pressure drops, the flow rate decreases, hence leads to a slower pressure 

drop.  

 The pressure drop is also faster for poroviscoelastic case than that of the 

poroelastic case because poroviscoelastic material exhibits viscoelastic relaxation besides 

hydrodynamic relaxation under constant deflection. Young’s Moduli decreases with time 

for poroviscoelastic material, therefore the load needed to sustain the constant deflection 

drops. Thus, the pore pressure induced in the pores also drops. Such effect is called 

viscoelastic relaxation, which contributes to the pore pressure drop. One can notice that, 
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compared to hydrodynamic relaxation, viscoelastic relaxation is much less significant. 

 

Figure 17. Poroelastic and poroviscoelastic pore pressure distribution along x-axis 

at y=0mm and z=40mm at variable times for transversely isotropic beam. 

 

 Figure 18 illustrates the pore pressure distribution along y-axis at x=1 mm and z= 

40 mm. The initial pore pressure jump at t=0+s is uniform along y-axis and this is the only 

time when the pore pressure at the boundary is bigger than 0. As time elapses and fluid 

flows out of the boundary, the pore pressure starts to drop and it is 0 at the boundary of 

the beam. Viscoelastic relaxation has the same effects on pore pressure along the y-axis 

as it does on that along the x-axis: it allows the pore pressure to drop faster. Also, the 
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overall decline rate of pore pressure slows down along with time.

 

Figure 18. Poroelastic and poroviscoelastic pore pressure distribution along y-axis 

at x=1mm and z=40mm at variable times for transversely isotropic beam. 

 

 Figure 19 shows the load decay under constant deflection for a poroelastic and 

poroviscoelastic beam. For poroelastic case, the initial load at t=0+  is equal to 11.9 N 

while at the end of the simulation t= 10, 000s, the load drops to 11.2 N. 11.2 N is reached 

at approximately t= 1, 000 s and this indicates the end of the hydrodynamic relaxation. 

At this point, the pore pressure has reached equilibrium under this deflection and equals 

to 0 Psi. Under this condition no fluid is flowing inside the beam. 11.2 N is therefore the 

load needed to sustain the constant deflection if the beam is elastic. From 11.9 N to 11.2 

N, 5.8% reduction in load is observed for poroelastic beam.  Once the beam is considered 
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as viscoelastic, the Young’s Moduli will decrease with time following the viscoelastic 

model, in this case, Zener Model. Hydrodynamic relaxation as well as viscoelastic 

relaxation both contribute to the reduction of the load. Therefore, the load required to 

sustain the same deflection is smaller for the poroviscoelastic beam. However, the decay 

of the load is asymptotic to a certain value: 5.6 N in this case. The load will not decrease 

infinitely because the restriction from the Zener Model: as time goes to infinity, Young’s 

Moduli will become less and less time-sensitive. At infinite time, the load required to 

sustain the poroviscoelastic beam at 1mm deflection is 5.6 N and this is a 53% reduction 

in load.  

 

Figure 19. Poroelastic and poroviscoelastic load decay to sustain a 1mm constant 

deflection for transversely isotropic beam. 
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5.3 Effects of Various Shale Viscoelastic Behaviors 

 In this section, two models are used to simulate the viscoelastic properties of the 

beam: Zener Model and Sone-Zoback Model. Realistically shale is not an elastic material. 

Instead, shale would exhibit viscoelastic relaxation under load: Young’s Moduli change 

with time. Both models simulate Young’s Moduli as a function of time to capture the 

characteristic of the shale. 

Zener Model: 

]1[)( 0

t

eEtE


  with s1000  and 5.0  

Sone-Zoback Model: 

 tEtE 0)(  with 008.0  

These two models generate a quite noticeable difference in load decay plots as 

represented in Figure 20. While the initial load is the same, the load under Zener model 

drops significantly faster than Sone-Zoback model, especially after 100s. However, due 

to the formula of Zener model, the load drops asymptotically when time goes to infinity. 

On the other hand, Sone-Zoback allows the load to drop continuously.  
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Figure 20. Poroviscoelastic load decay to sustain a 1mm constant deflection for 

orthotropic beams simulated by different viscoelastic models. 
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Chapter 6: Applications 

6.1 Approximation of Shale Permeability  

The most essential application of the three-point beam bending test is to estimate 

the permeability of the shale by matching the analytical solution of the load to the 

experimental data.  Realistically, shale is conceivably viscoelastic: The Young’s Moduli 

is time-dependent variable rather than a constant value. Therefore, selecting the correct 

viscoelastic model is crucial in generating an analytical solution which will match the 

data well. The author presents the following general steps (Figure 21) to recognize the 

viscoelastic models for shale from the experimental data.  

 To make sure essential information is obtained to determine the viscoelastic 

model for the shale, the experiment should go on for sufficient time that hydrodynamic 

relaxation has ended and all fluid inside the beam is drained, which means that the load 

decay is purely due to the viscoelastic relaxation. 
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The most important part of adopting this procedure is to make sure that the 

experiment has gone on long enough into the pure viscoelastic relaxation phase after the 

hydrodynamic relaxation has ended. The viscoelastic model could only be made as close 

as possible if handful of load during viscoelastic relaxation phase is presented.  

Exponentially Asymptotically  

Observe the load data along with time to decide if 

the load decay asymptotically or exponentially.  

Zener Model Sone-Zoback 

Modify so that the load at the end of 

the simulation matches that at the end 

of the experiment. 

Modify so that the simulated load in 

the pure viscoelastic relaxation phase 

overlaps the experimental load data. 

Modify so that the simulated load in 

the pure viscoelastic relaxation phase 

overlaps the experimental load data. 

 

Figure 21. Simple work flow of determining which viscoelastic model to use based 

on the load decay data. 
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 The experimental data of load decay of a transfer isotropic shale beam from Zhang 

and Scherer (2012) is adopted here to justify the validity of the method. Figure 22 shows 

the normalized load decay data along with time from a constant deflection three-point 

beam bending test. The beam has a dimension of 4mm by 4mm by 80mm and is placed 

in such an orientation that the isotropic plane is parallel to the load direction. The constant 

deflection is set to be 1mm at the center. The beam is sealed laterally in y and z direction; 

therefore, fluid is only allowed to flow in x-direction. 

The mechanical properties of the shale and saturated fluid are provided by Zhang 

and Scherer(2012): porosity, %5.3 , grain bulk modulus, GPaKs 40 , initial 

Young’s modulus in x-direction, y-direction, and z-direction are GPaEx 30)0(  , 

GPaE y 20)0(   and GPaEz 25)0(   respectively. The saturated fluid is ethanol and 

has a bulk modulus of GPaK f 8.0  and fluid viscosity of sPa  001.0 .  
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Figure 22. Experimental data of load decay of a shale under 1mm constant deflection 

three-point beam bending test. 

 

By observing the load data, one could conclude that the Sone-Zoback model is 

more suitable for this shale and by modifying the viscoelastic parameter one can find 

02.0 . With the viscoelastic model and all the necessary data in hand, the author uses 

Mathematica to approximate the permeability: nDkx 19.0 . The analytical solution 

generated by Mathematica is in great agreement with the load data as shown below: 



43 

 

Figure 23. Matching the analytical solution of the poroviscoelastic load decay to the 

experimental data to obtain the estimated permeability. 

 

Figure 23 includes the poroelastic and poroviscoelastic analytical solutions of the 

load decay. The inflection point in the poroviscoelastic load decay coincide with the 

minimum hydrodynamic relaxation point (the point where poroelastic load starts to stay 

flat). From this point onward, the load decay is almost purely caused by the viscoelasticity 

of the beam because the hydrodynamic relaxation can be neglected. 

 

6.2 Sensitivity Studies 

Sensitivity of the permeability on the load decay is studied as well and is shown 

in Figure 24. Permeability is modified to change in the magnitude of ten and compared 
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how the poroviscoelastic load would decay differently. As a result, the load would drop 

in quite different manners as permeability varies. Therefore, the solution is sensitive to 

the data and proves to be a reliable method to approximate permeability.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Poroviscoelastic load decay solutions with modified permeability 

 

Effects of viscoelastic parameter   on load decay is investigated by modifying 

the value of it.   is modified based on the data given. Changing the value of   is an 

important step to generate the best match. Therefore, different values of   should be used 

when a different set of data is given. Figure 25 reveals the effects of various values of 

viscoelastic parameter  .  
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Figure 25. Poroviscoelastic load decay with modified viscoelastic parameter 

 

6.3 Potential Improvement of the Test 

 One of the important steps during matching analytical solution of the 

poroviscoelastic load decay to the real measured data is to find a proper viscoelastic 

model to capture the viscoelasticity of the shale. Finding the right viscoelastic model 

could be a challenge since it is not easy to obtain the exact viscoelastic variables in the 

model when the load data is the only thing given. However, one may neglect the 

viscoelastic model and still approximate the permeability of the shale if he or she can get 

rid the viscoelastic effects and reduce the load decay to a poroelastic one.  

 To do so, one needs to perform an exact constant deflection three-point beam 

bending test on an exact same unsaturated shale beam. By doing so, the load decay data 
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would reflect pure viscoelastic relaxation. Then subtract the load decay caused by 

viscoelastic relaxation from the poroviscoelastic load decay obtained from a saturated 

shale beam. The remaining load decay would be solely due to the hydrodynamic 

relaxation. Thus, one could use the poroelastic solution of the load decay to match the 

data and approximate the permeability.  

 By successfully performing the three-point beam bending test on saturated and 

unsaturated samples manipulating the data, one could avoid coming up with a model to 

capture the viscoelasticity of the shale.  

 Ethanol is used as the fluid to saturate the rock in the experiment because shale 

experiences least swelling when ethanol is sued compared with other fluids. However, 

the practicality of ethanol as the saturation fluid in shale still needs to be justified since 

the molecular size of ethanol is big compared to pore throat size of shale: using ethanol 

may clog the small pores inside shales. 

 Finally, the fact that Darcy’s law is used as the governing equations of fluid flow 

in porous media and the usage of it may not be applicable for shale. The flow of fluid in 

such extremely small pores of shale may not be completely captured when Darcy’s Law 

is used as the fluid flow model. More complicated models need to be introduced to 

accurately simulate the flow. 
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Chapter 7: Conclusions 

 The work develops the orthotropic poroviscoelastic solutions to the three-point 

beam bending test. Factors which influence the pore pressure profile and the load decay 

for a constant deflection test are investigated: anisotropy, permeability, viscoelastic 

parameters and viscoelastic models.  The author concludes that all these factors have 

significant influence on the load decay hence the permeability estimation. Therefore, 

holistic consideration of all the factors are important when a three-point beam bending 

test is performed.  

 Permeability of the shale is approximated from one set of data by fitting the 

analytical solution to the experimental data of load. The matching turns out to be a good 

agreement with the data and therefore the permeability and poroviscoelastic properties 

are successfully approximated.  

 Finding an adequate viscoelastic model to simulate the shale viscoelastic behavior 

and modifying it to fit the experimental data could be a tedious job. The author makes an 

assumption that by performing the three-point beam bending test on an unsaturated and 

saturated sample and manipulate the load decay data to cancel out the viscoelastic 

relaxation. Further experiments need to be done to test the validity of this assumption. 

 The author only tests one set of the data due to the shortage of experimental data 

in hand. The numerical examples are carried out to thoroughly study the test under 

different scenarios. Once more data are available, the analytical solutions derived from 

this work could be readily used.  
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Appendix A: Derivation of the Instantaneous Pore Pressure Jump 

pMMM zzyyxxxx 1131211                                                                            (A.1) 

pMMM zzyyxxyy 2232212                                                                           (A.2) 

pMMM zzyyxxzz 3332313                                                                           (A.3) 

)( 321   zzyyxxMp                                                                                (A.4) 

Under constant deflection, 0 yyxx  , therefore from B.1 and B.2 
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Substitute B.5 and B.6 into B.4 and express  : 
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             (A.7) 

Fluid flow is governed by Darcy’s law: 
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 (B.8) where yxi ,  since we neglect flow in z-direction 

Mass balance equation: 
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Substitute B.7 and B.8 into B.9 with the knowledge that 0




t

zz
 because flow in z-

direction is assumed to be 0: 
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After normalizing the time and location coordinates and rearranging, the following term 

is obtained: 
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Where  /t  with , axv /

, byw /  with 2a and 2b the depth and width of the beam cross section and 
x

y

kb

ka
2

2

 .  

Substitute B.5 and B.6 into B.4 and rearrange: 
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           (A.11) 

Axial strain (independent of time) can be expressed as (Scherer 1992): 
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Where  is the deflection.  

When the deflection is instantaneously applied, the fluid is not flowing out of the matrix 

therefore in B.12 00  (the subscript 0 indicates an initial value). Substitute B.13 into 

B.12 the initial pore pressure 0P is derived as: 
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where z
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Appendix B: Poroelastic Solutions for Pore Pressure 

The partial differential equation and its boundary and initial conditions are as follows: 

PDE:  
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
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                                                                                                      (B.1) 

BC: 

0),1,(),,1(   vPwP                                                                                           (B.2) 

IC: 

vpwvp 0)0,,(                                                                                                               (B.3) 

where 0p  is a linear function of z and is derived in Appendix B. 

Solutions: 

Step 1: separation of variables: 

)(),(),,( 21  pwvpwvp                                                                                               (B.4) 

Substitute into Eq. A.1, divide both sides by 21 pp  and rearrange: 
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The left-hand side is a function of 2p  and right hand side 1p . Therefore, the equation is 

equal to a constant namely  . 

Now two new PDEs are obtained: 
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                                                                                                              (B.6b)  

Apply separation of variables on 1p  
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)()(p1 wgvf                                                                                                             (B.7) 

Substitute back to A.6 and rearrange: 


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g
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f ''''
                                                                                                 (B.8a) 


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f ''
                                                                                                                     (B.8b) 



 


g

g ''
                                                                                                             (B.8c) 

Where  is a constant since two sides of the equality are independent of each other in 

A.8a. 

Step 2: Solving ODEs: 

Solving the )(2 p  from A.6b: 

  Cep )(2                                                                                                              (B.9) 

Where C is a constant. 

Move on to solve Eq. A.8: 

We are aware of that pore pressure solution behaves like trigonometric functions 

therefore 0  and 0





the solutions to )(vf and )(g  from A.8 are as follows: 

vavaf  sincos 21                                                                                       (B.10a) 

wawag




   sincos 43                                                                               (B.10b) 

Where 1a 2a 3a 4a  are constants. 

The boundary conditions A.2 can be decomposed as boundary conditions for )(vf  as 

follows: 
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0sincos)1( 21   aaf                                                                              (B.11a) 

0sincos)1( 21   aaf                                                                         (B.11b) 

Two cases are obtained from the above boundary conditions: 

Case 1: vmf sin  where ....3.2.1m  with 22 m                                         (B.12a) 

Case 2: vf
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Similarly, two cases from the boundary conditions A.2 for )(wg  are obtained: 

Case 1: vng sin  where ....3.2.1n  with 22
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From A13-A14: 
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Therefore A.9 becomes: 
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The initial condition A.3 can be decomposed as initial condition for 1P  and 2P as follows: 

vpwgvfhwgvfpwvpwvp 021 )()()0()()()0(),()0,,(                                      (B.16) 

The v  term in initial condition A.15 must come from )(vf  hence )(wg  is a constant. 

Therefore, )(vf is in the form of summation of sin functions (A.13a) and )(wg  is in the 

form of summation of cos functions(A.14b) (Carslaw, H. S. and Jaeger, J. C. 1959).  

Hence )(vf and )(wg will take the form of: 
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Where mam   and 
2
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n
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 with Nnm ,  

The solution is the product of A. and A. after applying principle of superposition: 
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Appendix C:  Poroelastic Solutions for Moment and Load 

Substitute B.5 and B.6 into B.3, zz  can be expressed as: 
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where 
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  from Eq. B.13.  

Moment at the cross section of the beam is expressed as 
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becomes: 
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where 
3

4 3ba
I  is the moment of inertia. 

Pore pressure moment at the cross section of the beam is expressed as 
A

p pxdAM  

After the integration: 
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Where  /t  with ,   with 2a 

and 2b the depth and width of the beam cross section and 
x
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ka
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 .  

The load is related to moment by the following equation: 
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Therefore, 
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