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Abstract 

Brittleness within unconventional shale plays is a major component in reservoir 

stimulation. Mineralogy measured in nearby wells estimates brittleness and can be 

correlated to elastic parameters measured in well logs and surface seismic data.  Brittle 

zones are dominated by high quartz and TOC while ductile zones are dominated by clay 

and calcite with lower TOC. λρ and µρ calculated from prestack inversion seismic data 

predictes brittle and ductile zones, which is validated using microseismic data. Near the 

heel of the well, many microseismic events propagated into the more ductile Forestburg 

limestone. Using a borehole image log, it appears that open and partially open fractures 

allow perforation energy to travel into the overlying more ductile formations. Near the 

toe of the well events occur in the more brittle areas of the target Barnett Shale formation. 

Correlating fracture type with curvature, low (near zero) values of most positive curvature 

are highly fractured and contains the most microseismic activity. Creating a brittleness 

volume, microseismic events occur in brittle and less brittle zones with the exception of 

the events that occur in the ductile Forestburg limestone due to an increase in open and 

partially open fractures towards the heel of the well.
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Chapter 1: Introduction 

Most conventional petroleum systems consist of a separate source, seal, and reservoir. 

Hydrocarbons generation begins with an organic rich rock subjected to high temperatures 

at depth, oil and gas is expulsed and migrates to a porous reservoir rock and is trapped by 

an impermeable seal. In contrast to conventional reservoirs, unconventional shale 

reservoirs where the source, seal, and reservoir are in the same rock having little to no 

permeability. To produce the hydrocarbons from the reservoir special recovery methods, 

such as hydraulic fracturing, is needed to create the necessary permeability.   

The majority of the production in the Barnett Shale comes from zones that are high in 

quartz and lower in clay (Bowker, 2003). He also shows the Barnett Shale has an average 

porosity of 6%. The identification of brittle from ductile zones is key to stimulation 

success within shale-gas plays. Several methods to estimate brittleness have been defined 

with not one method being a universal method. Jarvie et al. (2007), define brittleness to 

be controlled by mineralogy: clay, calcite, quartz, and TOC. Javie et al.’s (2007) 

brittleness index provides a smooth transition between brittle and ductile regions. In 

contrast, Grieser and Bray (2007) define brittle and ductile regions based on Poisson’s 

ratio and Young’s modulus, and provide an empirical template for the Barnett Shale 

(Figure 1.1).      

The use and combination of seismic data, well log information, and seismic attributes are 

commonly used to create maps of hydrocarbon reservoirs. These maps can be used to 

identify potential drilling hazards such as karsts features that are frequently found in 

carbonate rocks (Sullivan et al., 2006) as well as brittle zones within an existing reservoir 

for better recovery methods.  
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The objective of this thesis is to identify brittle from ductile zones within the Barnett 

Shale from the use and combination of seismic and well log data. Beginning with 

mapping the formations of interest to gain a broad understanding of the regional geology 

in the area of study. The geomechanical properties will be calculated and plotted against 

Perez (2013) brittlness template. Followed by, a seismic prestack inversion to calculate 

the λρ and μρ using the impedance volumes to estimate brittleness and mineralogy. 

Estimations will be validated using thirteen stages of microseismic events and the event 

behavior along the lateral portion of the well will be investigated using an image log to 

correlate fracture types with most positive curvature. Using Perez’s (2013) brittleness 

template, a brittleness volume for the Barnett Shale and validated with microseismic 

events. I quantify my results using histograms to correlate fracture type, curvature, λρ-

μρ, and brittleness classification at each microseismic event location. Microseismic 

events occur in the more brittle and less brittle areas with the exception of those events 

in the more ductile Forestburg formation, due to an abundance of open and partially open 

fractures. 
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Figure 1. 1: Cross-Plot of Poisson’s ratio and Young’s 

modulus indicating brittle and ductile regions (Grieser 

and Bray, 2007). 
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Chapter 2: Geologic Background 

Regional Geology 

The Fort Worth Basin is a N-S trending foreland basin with an area of 15,000 mi2 in north 

Texas and southwestern Oklahoma which formed during the late Paleozoic Ouachita 

orogeny during the formation of Pangea (Montgomery et al., 2005) (Figure 2.1). The Fort 

Worth Basin is an asymmetrical wedge shaped basin bounded by the Ouachita structural 

front to the east, Llano uplift to the south, Red River and Muenster Archs to the north, 

and the Bend arch to the west. 

Montgomery et al., (2005) observed that the major structural features located within the 

Fort Worth Basin include major and minor faulting, local folding, karst collapse features 

within the carbonate Ellenburger, fractures associated with fault trends, and fracture fills 

with carbonate cement. Another significant structural element present within the Fort 

Worth Basin is the Mineral Wells fault, a basement feature that experienced periodic 

rejuvenation in the late Paleozoic. The Mineral Wells fault bisects the Newark field, the 

most prolific hydrocarbon field within the Fort Worth Basin, and influences depositional 

patterns, thermal history, and migration pathways within the Barnett Shale (Montgomery 

et al., 2005). 

The Fort Worth Basin contains several significant formations including the Ellenburger, 

Viola and Simpson, Barnett Shale (Lower and Upper), Forestburg, Marble Falls, and 

Caddo (Figure 2.2). The Ellenburger is a carbonate formation with karst collapse features, 

with associated breccias and fractures, that developed during a drop in sea level resulting 

in platform exposure and extensive karst-related deposits (Kerans, 1988). Overlying the 

Ellenburger is the erosional Viola and Simpson formations characterized by dense, 
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crystalling and dolomitic limestone confined to the northeastern part of the basin. Above 

the erosional surface are the Mississippian deposits with alternating sequences of shallow 

marine limestones and organic rich shales known as the Barnett Shale. The Barnett Shale 

is broken up into two sections, Lower and Upper Barnett Shale, that are separated by the 

Forestburg limestone (Montgomery et al., 2005). The Lower Barnett Shale contains 

higher Quartz content compared to the Upper Barnett that has higher carbonate content 

(Perez, 2013). This study is focused on the Barnett Shale formation. 

Barnett Shale 

The Mississippian Barnett formation located in the Fort Worth Basin is an unconventional 

shale gas play where the source, reservoir, and seal is all located within the same 

formation. Though there is continued debate as to how the Barnett was deposited, for this 

paper we will assume the strata was deposited in a deep-water system with poor 

circulation that allowed for the accumulation of organic matter. Barnett deposition is 

estimated to have occurred over a 25-million-year period with the source of sedimentation 

coming from debris transported to the basin from the shelf or upper oxygenated slope by 

hemipelagic mud plumes, dilute turbidites, and debris flows. Most of the sedimentation 

in the Fort Worth Basin of Mississippian age comes from the Chappel Shelf (carbonates) 

to the West and the Caballos Arkansas island chain to the south (terrigenous) (Loucks et 

al., 2007). 

Figure 2.3 shows the primary structural elements of the Barnett Shale within the Fort 

Worth Basin. The Barnett shale is bounded by the Muenster arch on the Northeast, 

Ouachita thrust belt in the Southeast, Llano Uplift northern extension bend arch to the 

West, and Red River Uplift to the North. Based on Montgomery et al., (2005) the major 
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structural elements include faults on various scales, folds, fractures related to faulting, 

and karst collapse features.  

The Barnett Shale is one of the world’s most prolific unconventional shale gas plays and 

is located in northern Texas. Though it has long been recognized as a probable source 

rock for hydrocarbons, prior to the 1980’s the Barnett Shale was not a target for 

hydrocarbon exploration. However, owing to unexpected gas shows and production from 

the Barnett Shale convinced Mitchell Energy and Development Corp. to explore the shale 

formation as a possible hydrocarbon reservoir. The low permeability of the tight shale 

rock resulted in uneconomic production within the Barnett. With the continued 

progression of engineering practices and completion techniques resulted in an economic 

hydrocarbon formation (Montgomery et al., 2005). 

According to Schmoker et al. (1996); and Pollastro (2003) the Barnett Shale is interpreted 

as a continuous natural gas accumulation in the Fort Worth basin. Zuo et al., 2013 defines 

a continuous natural gas accumulation reservoir as an unconventional reservoir with 

continuous distributed hydrocarbons that make up a large proportion of an 

unconventional reservoir system. Much of the production is in Newark East field 

(400mi2) where the formation ranges from 300-500ft in thickness and gas saturation of 

about 75% at depths of 6500-8500ft. Bounding the Barnett shale stratigraphically is the 

overlying carbonate, Marble Falls group, and underlying the formation is the carbonate 

Ellenburger group that is heavily karsted. Separating the Lower and Upper Barnett is the 

Forestburg limestone. These bounding limestone formations (Marble Falls, Forestburg, 

and Ellenburger) act as fracture barriers when the formation is hydraulically fractured. 
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The stratigraphic units of interest for this study are Mississippian in age and is shown in 

Figure 2.4 which is a generalized stratigraphic section of the Barnett shale with over and 

underlying formations. A more detailed section is also shown in Figure 2.3 with the 

approximate well location used for this study. The Barnett section is broken up into three 

different units. These units include the Upper Barnett, Lower Barnett, and Forestburg 

limestone. Above the Barnett Shale is the Marble Falls and Caddo limestone formations, 

and beneath the Lower Barnett is the Base Barnett Unconformity and the Ellenburger 

which is a carbonate formation of Ordovician age that has an abundance of karst features 

due to subaerial exposure during a time of low sea level.    

According to Perez’s (2013) study using seven elemental capture spectroscopy (ECS) 

logs, the Lower Barnett Shale has higher quartz content compared to the Upper Barnett 

Shale. Perez also found that the Forestburg was dominated by calcite with a signature low 

gamma ray response compared to the Lower and Upper Barnett.  

The Barnett shale is a unique shale-gas play for a multitude of reasons. First, the Barnett 

shale is highly heterogeneous therefore should not be thought of as a “blanket” 

depositional environment with clay, quartz, and carbonate as the dominant mineral 

(Karastathis, 2007). Because of this heterogeneity, some areas are more brittle compared 

to other areas and therefore fracture much easier during stimulation.  Second, the 

production from within the Barnett are at greater depths therefore higher pressures 

compared to other shale-gas reservoirs. Third, natural fractures do not appear to be 

essential for production within the Barnett shale and in some cases, hinder the well 

performance. The uniqueness of the Barnett has resulted in many challenges amongst 
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geoscientists and engineers whose primary focus is to characterize and produce from the 

Barnett Shale reservoir (Montgomery et al, 2005). 

As stated before to enhance recovery in unconventional shale plays hydraulic fracturing 

is performed to create and reopen preexisting fracture networks that create sweet spots 

for hydrocarbon accumulation. Horizontal drilling and hydraulic fracturing has greatly 

increased the recovery and profitability of these low permeability shale gas plays. 

However, fracture locations are important because fracture networks near an existing 

aquifer can become a geologic hazard during production. For this study, the combined 

use of seismic, seismic inversions, well logs, seismic attributes, mineralogy, and TOC 

one can detect brittle zones that can be targeted when hydraulic fracturing to enhance 

production and profitability of a shale gas play. 
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Figure 2. 2: Generalized 

stratigraphic column of the 

northerns portion of the 

Fort Worth Basin showing 

significant formations 

(Bowker, 2007). 
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Figure 2. 3: Areal extent of the Barnett Shale within 

the Fort Worth Basin based on hydrocarbon 

production. The red star indicates the area of study 

(Montgomery et al., 2005). 
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Figure 2. 4: Generalized stratigraphic column of the Fort Worth Basin and 

Barnett Shale with approximate well location used in this study (courtesy of 

Pioneer Natural Resources). 
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Chapter 3: Methods  

Brittleness 

A rock is considered to be brittle if when subjected to increasing stress, and exhibits little 

deformation before failing/breaking with little absorbed energy before failure. In contrast, 

if a rock is subject to increasing stress and undergoes large amounts of deformation before 

failing/breaking, with large amounts of absorbed energy before failure, the rock is 

considered to be ductile. Figure 3.1 shows a generalized diagram of the stages of 

deformation a rock undergoes when it is subjected to increasing stress. Elastic 

deformation is the first stage of deformation. Within the elastic deformation phase the 

applied stress deforms the rock; however, when the load is removed the rock returns to 

its original shape. Ductile is the next stage of deformation. When stress is applied to a 

rock the material deforms taking on a new shape; and when the stress is removed the rock 

remains deformed. The final stage of deformation is when the rock fails/fractures. When 

stress is continuously increased, the rock deforms until the rock breaks. 

 Brittleness is a function of, but not limited to, rock strength, lithology, texture, effective 

stress, temperature, fluid type (Handin and Hager, 1957; 1958; Handin et al., 1963; Davis 

and Reynold, 1996), diagenesis, and TOC (Wells, 2004). There is not one universal way 

to measure brittleness; however, with the combination of well log information and 

geomechanical properties, such as Young’s modulus (E) and Poisson’s ratio (υ), one can 

make estimates of a rock’s brittleness. The importance of differentiating brittle from 

ductile zones is critical to hydraulic fracturing, where the goal is to develop a fracture 

network to increase the permeability within a zone of interest to allow the flow of 

hydrocarbons from the rock volume to the well bore to increase the oil and gas recovery.  
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I hypothesize that the Barnett Shale will be most brittle in areas with high quartz and 

TOC, while the more ductile areas will be more calcite rich and exhibit low TOC. This 

hypothesis is based on previous studies performed within the Barnett Shale by Perez and 

Marfurt (2013) and Bowker (2003a).  This hypothesis was tested using both well logs and 

seismic data to calculate geomechanical properties and correlating those values to known 

values of pure minerals of quartz, calcite, and clay. Perez and Marfurt (2013) brittleness 

template calculated using mineralogy data from wells in a nearby location within the 

Barnett Shale (Figure 3.2), was used to test my hypothesis.  

Seismic Interpretation 

Eight formation tops were mapped using commercial software: Caddo, Marble Falls, 

Upper Barnett, Forestburg, Lower Barnett, Barnett Hard Shale, Base Barnett 

Unconformity, and the Ellenburger. Formation tops are used to perform the seismic 

prestack inversion to estimate brittle and ductile areas. Figure 3.3 shows the eight 

formation tops mapped in this study. The Ellenburger appears to be heavily karsted in the 

southwestern corner of the depth-structure map, confirmed by a horizon slice through the 

variance volume and vertical slices through the seismic amplitude volume (Figure 3.4). 

Karst collapse features that connect the Ellenburger aquifer to the Barnett Shale are 

known to be geologic drilling hazards and should be avoided to avoid water production 

from the underlying aquifer (Qi et al., 2014). Overall, the Barnett and Forestburg 

formations in this survey are relatively flat reflectors within the survey with little structure 

other than the karst collapse (Figure 3.4).  
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Brittleness Average 

Grieser and Bray (2007) introduced a brittleness estimate using full wave sonic data to 

compute mechanical properties such as Young’s modulus and Poisson’s ratio. Young’s 

measures the stiffness of a material (Figure 3.5) while Poisson’s ratio measures the lateral 

expansion of a material divided by its axial compression (Figure 3.6). Grieser and Bray 

(2007) cross-plot Young’s modulus versus Poisson’s ratio and hypothesize that rocks 

with low Young’s modulus and high Poisson’s ratio are ductile, while rocks with high 

Young’s modulus and low Poisson’s ratio are more brittle. First they normalize Young’s 

modulus: 

                                         𝐸𝑏𝑟𝑖𝑡𝑡𝑙𝑒𝑛𝑒𝑠𝑠 =
𝐸−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
,                            (3.1) 

where E is Young’s modulus and where Emin and Emax are the minimum and maximum 

values of Young’s modulus measured from the well log data. Next, they normalize 

Poisson’s ratio: 

                                             𝜐𝑏𝑟𝑖𝑡𝑡𝑙𝑒𝑛𝑒𝑠𝑠 =
𝜐−𝜐𝑚𝑎𝑥

𝜐𝑚𝑖𝑛−𝜐𝑚𝑎𝑥
,                         (3.2) 

where υ is Poisson’s ratio and where υmin and υmax are the minimum and maximum values 

of Poisson’s ratio measured from the well log data. Using Ebrittleness and υbrittleness they 

define the brittleness average (BA) to be: 

                                      𝐵𝐴 =
𝐸𝑏𝑟𝑖𝑡𝑡𝑙𝑒𝑛𝑒𝑠𝑠+𝜐𝑏𝑟𝑖𝑡𝑡𝑙𝑒𝑛𝑒𝑠𝑠

2
.                           (3.3) 

Using the compressional (Vp) and shear (Vs) wave velocity well logs, Poisson’s ratio and 

Young’s modulus are (Mavko, 2009): 

𝜐 =
(

𝑉𝑝

𝑉𝑠
)

2

−2

{2[(
𝑉𝑝

𝑉𝑠
)

2

−1]}

,                                   (3.4) 

 and: 
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 𝐸 = 2𝜌𝑉𝑠
2(1 + 𝜐),                                   (3.5) 

 where ρ is the density. 

Following Perez (2013) following Wang and Gale (2009), the brittleness index (BI) was 

computed based on mineralogy: 

                             𝐵𝐼𝑊𝑎𝑛𝑔 (2009) =
𝑄𝑧+𝐷𝑜𝑙

𝑄𝑧+𝐷𝑜𝑙+𝐶𝑎+𝐶𝑙𝑦+𝑇𝑂𝐶
                     (3.6) 

where Qz is percent quartz, Dol is percent dolomite, Ca is percent limestone, Cl is percent 

clay, and TOC is percent total organic content. Perez (2013) calculated the brittleness 

index based on ECS log data. He then plotted gamma ray versus brittleness index for all 

the formations and divided the data into four equal brittleness types: brittle, less brittle, 

less ductile, and ductile zones. Perez (2013) observed that the brittle zones are due to 

higher quartz seen in the mid to lower part of the Lower Barnett. Interestingly, this more 

brittle area also contains greater amount of TOC, due to the depositional relationship 

between high quartz content in relation to high organic material preserved from radiolara 

and preserved in deeper less oxygenated water (Singh, 2008).  

The results of the calculated geomechanical properties are shown and displayed in Figure 

3.7. In general, the more ductile Forestburg limestone and underlying Base Barnett 

Unconformity (Perez’s Viola formation) formations are considered to be fracture barriers 

for the locally more brittle Barnett Shale (Hill, 1992). Both the Forestburg and Base 

Barnett Unconformity lie in the more ductile regions of the Poisson’s ratio and Young’s 

modulus crossplot.  

Total Organic Carbon (TOC) and its influence on Brittleness 

TOC is the measure of the organic richness of a rock by measuring the organic carbon  

and kerogen content in a rock sample (Jarvie, 1991) and is vital component within the 
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Barnett Shale. TOC is measured in weight percent and is good measurement of the 

hydrocarbon potential of a source rock. Based on Wang et al’s. (2009) equation 3.6, as 

TOC increases the brittleness index (BI) of a rock sample decreases. However, Bowker 

(2003a) and Perez (2013) found that quartz rich zones within the Barnett Shale are 

correlated to high TOC and are more brittle and productive with the effect of increased 

kerogen not compensated by a greater increase in quartz. In contrast, the more ductile 

intervals in the Barnett Shale have low TOC with high clay and calcite content.   

No cuttings or core were given for this study so TOC was modeled using Passey’s 

equation (3.7): 

  𝑇𝑂𝐶 = (∆𝐿𝑜𝑔𝑅) ∗ 102.297−0.1688∗𝐿𝑂𝑀,                (3.7) 

where LOM is the Level of Organic Metamorphism that relates to thermal maturity and 

where 

∆𝐿𝑜𝑔𝑅 = 𝑙𝑜𝑔10 [(
𝑅𝑒𝑠

𝑅𝑒𝑠𝑏𝑎𝑠𝑒 𝑙𝑖𝑛𝑒
) + 0.02 ∗ (∆𝑡 − ∆𝑡𝑏𝑎𝑠𝑒 𝑙𝑖𝑛𝑒)].   (3.8) 

In these equations Resbase line and ∆tbase line represent the deep resistivity and the sonic 

baseline measured in a non-source rock. The results of this calculation are shown as track 

9 of Figure 3.7. The modeled TOC results were compared to Perez (2013) TOC 

measurements for validation. I anticipate the high TOC regions to occur in the more brittle 

zones due to corresponding high quartz content.            

λρ and μρ 

λρ-μρ are seismic measurements of the Lame parameters incompressibility (λ) and rigidity 

(μ). For good quality seismic gathers one can estimate P-impedance, Zp, and S-

impedance, Zs. For very high quality long offset data one can also estimate density, ρ. In 

the absence of such long offset data: 
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                                     𝜆𝜌 = (𝜌𝑉𝑝)2 − 2(𝜌𝑉𝑠)2 = 𝑍𝑝
2 − 𝑍𝑠

2                       (3.9) 

                                                𝜇𝜌 = (𝜌𝑉𝑠)2 = 𝑍𝑠
2                              (3.10) 

where Zp is P-impedance (ρVp) and Zs is S-impedance (ρVs), ρ is the the density and Vp 

and Vs are the compressional and shear wave velocities. Goodway et al. (1997) found that 

λρ-μρ crossplots from seismic and well log data can reveal information about lithology 

and pore fluid. 

Mavko et al. (2009) published moduli, density, and velocities for common minerals, 

including the primary minerals that comprise the Barnett Shale including: quartz, calcite, 

and clay (Table 3.1). Using Mavko et al.’s (2009) values for these three minerals, Perez 

and Marfurt (2013) generated a mineralogy ternary diagram in λρ-μρ space from well and 

seismic data. I will use Perez and Marfurt’s (2013) template and color bar to distinguish 

brittle and ductile zones.  

Prestack Seismic Inversion 

The objective of prestack seismic inversion is to obtain estimates of P-wave impedance, 

S-wave impedance (and density if far offsets are available) which can then be used to 

predict fluid and lithology properties.  

Wavelets are extracted from angle-limited stacks using Fatti’s et al.’s (1994) 

approximation to the Zoeppritz equations: 

                 𝑅(𝛳) ≈
∆𝑍𝑝

2𝑍𝑝
(1 + 𝑡𝑎𝑛2(𝛳)) − 8[

𝑍𝑠

𝑍𝑝
]2 ∆𝑍𝑠

𝑍𝑠
𝑠𝑖𝑛2(𝛳),         (3.11) 

where Zp is the background model P-impedance, Zs is the background model S-

impedance, ∆Zp is the vertical change in P-impedance, ∆Zs is the vertical change in S-

impedance, and ϴ is the angle of incidence. Using equation 3.11, the angle-limited stacks 

can be inverted to obtain P-impedance and S-impedance (Verma, 2015). 
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With the combination of seismic data, P-wave sonic, S-wave sonic, and density from well 

log information one can invert seismic prestack data to obtain estimates of P and S 

impedance. Wavelets were extracted using the well that had an average phase of -51 

degrees (Figure 3.8) therefore, a +51 degrees phase shift was applied to the seismic to 

phase match the data. Next, Well 4P was tied to the seismic data using the previously 

mapped formation tops to the synthetic prestack response (Figure 3.9).  Following the 

standard workflow for the commercial software (Hampson and Russell 2005; Russell et 

al., 2006) wavelets were extracted for 0-10, 11-20, and 21-30 degrees angle-limited stacks 

(Figure 3.10). Farther offsets were not used because of misalignments with far offset 

traces due to data conditioning and anisotropy effects of the Marble Falls formation 

discussed briefly in the appendix which may be investigated further in another study. 

Figure 3.11 shows the correlation and error between the modeled gathers and the 

measured gathers. There was a high correlation of 91.2% with an error of 41.1%. The 

error does not appear to be geological so it was interpreted as random noise. 

 Using Fatti’s equation, equation 3.11, the three angle limited stacks were simultaneously 

inverted to obtain P and S impedances (Figure 3.12). Figure 3.13 shows an additional 

inversion analysis in a crossline orientation.  Next, the relative error was calculated using: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
|𝑎𝑛𝑔𝑙𝑒 𝑔𝑎𝑡ℎ𝑒𝑟−𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑎𝑛𝑔𝑙𝑒 𝑔𝑎𝑡ℎ𝑒𝑟|

𝑟𝑚𝑠(𝑎𝑛𝑔𝑙𝑒 𝑔𝑎𝑡ℎ𝑒𝑟)
,       (3.12)                   

where rms is the root mean square of the amplitude of the gathers. Dividing by the rms 

results gives a relative error that is independent from amplitude variations between traces. 

The median of the relative error between the top of the Upper Barnett to the top of the 

Ellenburger was computed using a commercial software workflow (Figure 3.14). The 

error is low with a median error of ~0.025 (2.5%) with a maximum error of 6%.  



20 

Using the calculated P-impedance and S-impedance from the prestack inversion λρ and 

µρ were computed using equations 3.7 and 3.8. Just like in the case of the well log λρ-µρ 

crossplots, mineral ternary plot was created in the λρ-µρ space using a color bar (Figure 

3.15). 

Microseismic Data 

Microseismic events are known to be indicators of fractured or damaged rock volumes 

that have been brought to failure due to high stresses such as those induced by hydraulic 

fracturing (Cai et al., 2011). The imaging and interpretation of microseismic events 

provides interpreters insight about the fracture network within the reservoir (Maxwell et 

al., 2010).  

Hydraulic fracturing is the process of injecting fluid at high pressures through perforated 

holes, typically water with additives to make it slippery and to suppress corrosion, as well 

as sand or ceramic grains to prop open any induced fractures. The objective is to create 

or open existing fractures within a rock to allow the flow of hydrocarbons in the rock, up 

and through the well bore, and to the well head.  When stress is applied to a brittle rock 

the rock fails/fractures. So long as the pressure is not increased further, the more 

ductile/plastic rocks act as a seal. Injected fluid decreases the effective stress in the rock 

shifting the Mohr circle to the left (Figure 3.16) towards the failure curve.  

In most cases, when a rock fails a microseismic event occurs. Because brittle rocks fail 

easier than ductile rocks, microseismic events are good indicators of brittle zones, 

allowing them to calibrate surface seismic data inversion-based brittleness estimations. 

In general, more brittle rocks contain more microseismic events than ductile rock zones. 

Plotting the microseismic events alongside the seismic data the events were used as a 
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validation for the brittleness estimates, estimated using λρ and µρ. Microseismic events 

were recorded for each of the thirteen hydraulic fracturing stages.  

Fracture Detection Using Borehole Image Logs 

Borehole imaging uses a variety of methods to obtain an image of the borehole wall based 

on some property contrast. One of the more common methods is recording changes in 

micro-resistivity along the borehole, allowing the interpreter to map fracture locations 

and orientations. Image logs are acquired by applying an electrical current to the borehole 

wall and then measuring its resistivity (Cook, 2016). The borehole image provides 

information about the borehole geometry which can be used to interpret breakouts, natural 

fractures, induced fractures, and the stress field (Tingay et al., 2008). Fractures are 

interpreted as either resistive or conductive. Resistive fractures are interpreted to be 

mineralized and impermeable while conductive fractures are interpreted to be open and 

permeable to fluid flow (Stearns, 2015).  

Borehole images are acquired and interpreted for the horizontal section of well 2H 

courtesy of Baker Hughes. Image logs provide information about the fractures on the 

borehole wall. In this survey, the image logs will identify any zones of weakness that may 

be reactivated by the microseismic data. Understanding the relationship between fracture 

type and microseismic event activity within a formation can result in better well planning 

to reduce cost when hydraulically fracturing an unconventional shale play. 

Curvature Attribute 

Structural curvature is a seismic attribute computed by using the inline and crossline dips 

calculated from the seismic amplitude data (Chopra and Marfurt, 2008). Structural 

curvature measures strain which can often be correlated with natural fractures (Staples, 
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2011). Figure 3.17 shows a schematic 2D section of a curved surface showing anticlinal 

and synclinal structures as seen in outcrops. Previous studies by Staples (2011) found a 

correlation between fracture intensity and curvature based on a plate bending analysis, 

with fractures most likely to occur in areas with the highest amounts of strain. For this 

reason, one can hypothesize that there may be more natural fractures along the very 

concave and convex portions of synclinal and anticlinal structures. 

Brittleness Classification Volume 

Using commercial software I created a brittleness classification horizon probe between 

the top of the Forestburg limestone and the top of the Base Barnett Unconformity 

formations using λρ and μρ volumes as an input. Using the brittleness template from 

Perez and Marfurt (2013); brittle, less brittle, less ductile, and ductile regions were 

classified for the horizon probe. The horizon probe was converted into a seismic volume 

the brittleness classification was extracted at every microseismic event location to test 

the hypothesis that events correspond to brittle and less brittle zones.  

Study Limitations 

Only one pilot well with well logs was available and one deviated well with microseismic 

events was available within the seismic study area. The limited amount of well data 

creates a significant amount of uncertainty when attempting to validate the results. 

Another limitation is when solving for brittleness average it is only a function of 

compressional and shear velocities as well as densities and does not take into 

consideration mineral composition and percentages. However, using the brittleness 

template based on the calculated brittleness index log based on the ECS log from Perez 

(2013) I was able to reduce some of the uncertainty. When computing λρ-µρ for quartz, 
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clay, and calcite by Mavko et al. (2009) the mineral ternary diagram used for this study 

assumed a porosity of zero percent which ignores the contribution of natural fractures and 

pores.  

No core data are available for this study which therefore lacks direct laboratory 

measurements of geomechanical properties. Log measurements were used to estimate 

geomechanical properties which can result in some amount of uncertainty. Well log 

measurements themselves are prone to some error. According to Perez (2013) ECS only 

measures elemental abundances and relies on rules to reconstruct mineral assemblies, and 

is not able to differentiate between different mineral forms that can exhibit different 

geomechanical strengths that affect the geomechanical properties of the rock itself. 

Lastly, borehole images only image the borehole wall and the surrounding area of the 

borehole is unknown. With the lack of real rock data the images cannot be directly 

validated (Donselaar and Smith, 2005). 
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Figure 3. 1: Stages of deformation with increasing stress. 
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Figure 3. 2: Map view showing well 4P used in this study relative to Perez and 

Marfurt (2013) study wells. 
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Figure 3. 5: Stress-strain diagram of a rock volume subjected to 

increasing stress, the slope of the linear portion of the line intersecting 

the origin is Young’s Modulus. The steeper the slope the larger Young’s 

modulus. 
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Figure 3. 6: Poisson’s ratio is the measurement of the expansion of a 

material divided by the axial compression (ε1/ε2). The larger the Poisson’s 

ratio, the more brittle a material. The average Poisson’s ratio for the three 

main minerals in the Barnett are given by: Quartz= 0.064, Clay= 0.14, 

Calcite= 0.3. 
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Table 3. 1: λρ, μρ, Young’s Modulus, and Poisson’s Ratio values for the three 

most common pure minerals within the Barnett Shale by (Mavko, et al., 2009). 
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Figure 3. 9: Seismic data to well tie. The red horizontal lines are the formation 

tops used to compute the well-tie using the measured gathers. To the left of the 

blue line are the offsets that were considered for this study and to the right are 

offsets that were muted (>30 degrees)  (discussed in Appendix A). 
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Figure 3. 10: Wavelet extracted from the 4P well for the angle limited stacks. 

The wavelets are extracted for angles 0-10, 11-20, 21-30, and all angles 

combined with amplitude ranges from -25 to 50. 
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Figure 3. 11: Misfit between the modeled and measured gathers. The 

error is the difference between the two. 
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Figure 3. 12: (a) Variance extracted along the Base Barnett 

Unconformity formation. Yellow arrow indicates a karst collapse 

feature, (b) Calculated average P impedance from the top of the 

Barnett to the top of the Base Barnett Unconformity formation. Yellow 

arrow indicates a high anomalous impedance in a karst collapse 

feature, (c) Calculated average S impedance from the top of the 

Barnett to the top of the Base Barnett Unconformity formation.  

(a) 

(b) (c) 
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Figure 3. 14: Median relative error from the prestack data inversion from the 

top of the Upper Barnett to the top of the Base Barnett Unconformity. 
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Figure 3. 16: Mohr circle diagram. Mohr circle shifts left when fluid injected. 

σ1 is the maximum effective stress and σ3 is the minimum effective stress, and P 

is the pressure of the fluid. 
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Figure 3. 17: Schematic 2D section of a curved surface featuring anticlinal 

and synclinal structures. Positive curvature is defined as anticlinal features 

while negative curvature is defined as synclinal features. The curvature (k) is 

defined by 1/r, where r is the radius of the circle that is tangent and fits to 

each point of the curve (Roberts, 2001). 
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Chapter 4: Results 

Young’s Modulus and Poisson’s Ratio Cross Plots 

Crossplotting Poisson’s ratio versus Young’s modulus shows relationship between the 

two moduli (Figure 4.1a). Limestone formations exhibit a moderate to high Young’s 

modulus with a high Poisson’s ratio while shale formations exhibit a moderate Young’s 

modulus values with a low Poisson’s ratio with the exception of the Upper Barnett. 

Overlaying Perez and Marfurt’s (2013) brittleness template and overlaying it on the 

Young’s modulus versus Poisson’s ratio in Figure 4.1b shows that the limestone 

formations (Caddo, Marble Falls, and Forestburg) fall in the more ductile zones of the 

template while the Lower Barnett lies in the more brittle zones. The Upper Barnett is 

more ductile compared to the Lower Barnett sections due to a higher carbonate content. 

Karastathis (2007) found using FTIR, that the most abundant carbonate minerals within 

the Upper Barnett was calcite, dolomite, siderite, and aragonite. 

TOC and Brittleness Affects 

Wang and Gale (2007) show that total organic carbon (TOC) should increase brittleness. 

In the case of the Barnett Shale the more brittle zones have high TOC, due to the 

association of TOC with biogenic quartz. Using Passey’s equation, TOC was modeled 

and plotted in color against λρ versus μρ in Figure 4.2. High TOC corresponds with more 

brittle formations like the Barnett Shale, while low TOC corresponds with more ductile 

formations like the Forestburg, Marble Falls, and Base Barnett Unconformity.  

λρ-μρ Crossplots 

Using the calculated Lame parameters from Figure 3.7 to create a λρ-μρ crossplot, 

Perez and Marfurt’s (2013) brittleness template was overlayed on the λρ-μρ space 
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(Figure 4.3). The Lower Barnett and the Barnett Hardshale are the most brittle portions 

of the Barnett, while the carbonate Forestburg, Base Barnett Unconformity, and the 

Marble Falls (formations that bound the Barnett) lie within the ductile regions. 

Overlaying the mineral ternary diagram for quartz, clay, and calcite, based on Mavko et 

al. (2009) the more ductile zones are rich in calcite while the more brittle zones are rich 

in quartz and clay content and low in calcite. In contrast, Grieser and Bray’s (2007) 

brittleness average displayed in Figure 3.7, shows the Upper Barnett, Forestburg, Lower 

Barnett, and Barnett Hardshale, to be ductile and the Marble Falls and Base Barnett 

Unconformity to be brittle. This prediction is counter to Hill’s (1992) observation and 

inconsistent with microseismic event location. Greiser and Bray’s (2007) is an empirical 

relationship between Poisson’s ratio and Young’s modulus does not consider 

mineralogy or other geologic factors that may affect brittleness. Therefore, these results 

are not reliable when determining brittleness zones. 

λρ and μρ from Seismic Prestack Inversion 

From the prestack inversion P and S impedance estimates were used to predict the 

geomechanical behavior of the Barnett Shale. A vertical slice of λρ and μρ of the seismic 

volume is shown in Figure 4.4 A and B. The limestone formations (Caddo, Marble Falls, 

Forestburg, Base Barnett Unconformity, and Ellenburger) exhibit higher λρ and μρ values 

compared than the Barnett shale formations. A gamma ray log is shown with the vertical 

section of the λρ and μρ seismic volumes. Low gamma ray values indicate limestone 

formations while high gamma ray values are indicative of the more radioactive Barnett 

Shale formations.  
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Figure 4.5 A shows a λρ-μρ crossplot using a 2D color bar. These values are then used to 

color the seismic volume which can then be correlated to lithology based on the 

examination of the ternary diagram. 2D histogram from Figure 4.5 (B) clipped λρ to range 

between10-70 [GPa][g/cm3] and μρ to range between 10-40 [GPa][g/cm3] to better span 

the spectrum. Limestone formations: Marble Falls, Forestburg, and Base Barnett 

Unconformity are represented by purple, magenta, and blue colors which correspond to 

calcite rich formation. The Barnett Shale is dominated by green, yellow, and red colors 

which correspond to clay and quartz rich formations. Comparatively, the Lower Barnett 

is more quartz rich compared to the more clay rich Upper Barnett (Figure 4.6).   

Validating Brittleness Estimations with Microseismic 

Microseismic events correspond to a rock failing due to some force, in this case hydraulic 

fracturing. The rock that breaks is considered to be a more brittle rock/formation 

compared to those that do not. The surrounding well bore area is the area that was 

stimulated by hydraulic fracturing where the microseismic events associated with Well 

2H cluster around the wellbore.  

The microseismic events were measured during fourteen different fracturing stages for 

the NW trending horizontal well 2H. Only thirteen stages will be considered due to 

inaccurate coordinate information for the first stage of events. These thirteen stages with 

the corresponding microseismic events are shown in an aerial view in Figure 4.7. Figure 

4.8 shows all stages of microseismic events in a vertical seismic section of λρ-μρ. Figure 

4.8 shows the events to be clustered about the wellbore. The majority of the events lie 

within the Lower Barnett, indicative of a more brittle zone. The events abruptly 

discontinue at the Base Barnett Unconformity suggesting an excellent fracture barrier. 
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Above the Lower Barnett is the Forestburg, the microseismic events significantly 

decrease but do not abruptly decrease, as they do at the Base Barnett Unconformity. 

Henry (2016) attributes this to the lithology of the Forestburg consisting of the massive 

carbonate beds interbedded with less massive shale and clay stone beds. The lower 

portion of the Forestburg has a λρ-μρ response similar to the Barnett Shale. The 

interbedded shales make the lower Forestburg more brittle than the upper portion of the 

Forestburg formation has more calcite and is thus more ductile. For this reason there are 

significantly less microseismic events in the upper Forestburg compared to the lower 

Forestburg.  

The microseismic events for stages 2-7 are clustered about the well bore in the Lower 

Barnett and Barnett Hardshale. However, stages 8-14 closer towards the vertical portion 

of the well exhibit more diffuse events that  the events occur into the lower portion of the 

Forestburg.  

Figure 4.9 extracts λρ and μρ values for each microseismic event location. As anticipated, 

most of the events lie in the brittle, less brittle, and less ductile zones (Figure 4.10). 

However, there is cluster of events corresponding to the ductile region of the brittleness 

template. Stages 8-14 give rise to events that are less clustered near the heel of the 

wellbore and located in the limestone Forestburg formation above the Lower Barnett. 

These un-clustered microseismic events may be due to an increase in pressure when 

injecting hydraulic fluids near the heel of the well, may be due to some geologic 

parameter or a combination of both. 
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Borehole Image Logs 

Image logs were used to understand the relationship between microseismic events and 

event location along the wellbore. Baker Hughes conducted a detailed fracture study 

using borehole image logs. They concluded the structures or bedding had dip magnitudes 

of less than 10 degrees with a general south orientation. Five faults were interpreted with 

no preferred apparent strike direction. 125 open fractures exhibited a general 

northeast/southwest orientation. 8 shear or induced fractures exhibited no preferred 

apparent strike direction. 75 cemented fractures exhibited a general northwest/southeast 

orientation. The open fractures were highly conductive while the closed/partially closed 

fractures had a much lower conductivity. 

Plotting the fracture types along the wellbore (Figure 4.11) the open fracture and partially 

open fracture intensity is significantly higher towards the heel of the wellbore and 

decreases towards the toe. The increase in fracture intensity can create a zone of weakness 

and facilitate the microseismic events to propagate vertically opening these zones of 

weakness into shallower, less brittle formations.  

Fracture Association with the Curvature Attribute 

Figure 4.12 shows the most positive curvature attribute overlaid by the seismic amplitude 

and variance. From Figure 4.11 open and partially open fractures occur in areas with low 

positive values of the most positive curvature occurring near the heel of the well. Figure 

4.13 A and B is a vertical section of the most positive curvature. Non-clustered 

microseismic events, towards the heel of the well, are correlated to the positive values of 

the most positive curvature and open fractures. The events appear to be tightly clustered 

near the more negative or less positive values of the most positive curvature near the mid 
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portion of the horizontal well path. Near the toe of the well the events that occur in the 

positive values of the most positive curvature are less tightly clustered compared to the 

events that occur in the negative part of the most positive curvature and is associated with 

an increase in open fractures. To conclude, microseismic events are located within the 

ductile Forestburg limestone formation where there is an abundance of open and partially 

open fractures that is associated with positive values of the most positive curvature, while 

events are most clustered around the wellbore in areas with negative values of the most 

positive curvature containing less open fractures.   

A quantitative analysis between positive curvature values and open fractures is shown 

using a histogram in Figure 4.14. 79% of all the open fractures occur in areas having low 

positive values (near zero) of most positive curvature. However, open fractures avoid 

high values of most positive curvature. 19% of open fractures occur in areas with negative 

values of most positive curvature. There is a significant decrease in open fractures as 

curvature increases, this will be discussed further in the next section. Additionally, a 

quantitative analysis was conducted between most positive curvature values and partially 

open fractures (Figure 4.15).  

Curvature Association with the Microseismic Events 

Figure 4.15 is a histogram of the extracted most positive curvature attribute values at 

each microseismic event location. There are a total of 1,397 microseismic event samples 

with 47% of events associated with curvature values ranging from 0-0.1 and nearly 78% 

of all events associated with positive values of most positive curvature. However, there 

is a significant decrease in microseismic events as curvature increases. Microseismic 

events tend to avoid areas with high curvature values and cluster about areas with low 
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positive values (near zero) and negative values of most positive curvature, just like in 

the case of open and partially open fractures. Thompson (2010), found that 

microseismic activity occurred more often in more negative or near zero values of 

positive curvature due to sealing of fractures in the ridge like structures. In this study, I 

find that most of the events avoid areas of high values of positive curvature (Figure 

4.16) and cluster about low (near zero) or negative values of positive curvature further 

supporting Thompson (2010) hypothesis. 

Brittleness Classification  

A brittleness classification volume was created using a horizon probe with the top of the 

horizon probe corresponding to the Upper Barnett and the base of the horizon probe 

corresponding to the Base Barnett Unconformity (Figure 4.17). Microseismic events are 

clustered within the brittle and less brittle zones apart from the events that occurred in 

the overlying ductile Forestburg Limestone. The brittleness classification was extracted 

for every microseismic event location (Figure 4.18). Nearly, 60% of the microseismic 

events occur in brittle and less brittle zones. The events that occur in the less ductile and 

ductile zones are primarily in stages (7-14) and correspond to the un-clustered events 

towards the heel of the well. Figure 4.19 is the brittleness classification extracted at 

every microseismic event location for stages 2-6, the stages that are more clustered 

towards the toe of the well. From Figure 4.19 the number of events occurring in the 

ductile and less ductile regions is significantly less. Nearly 72% of events from stages 

2-6 occur in brittle and less brittle regions. 
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Figure 4. 2: (a) Perez and Marfurt’s (2013) TOC values with the overlaying 

ternary diagram, (b) Modeled TOC values for all formations, (c) Modeled TOC 

values for only the Barnett Shale. Red circle indicates the Barnett Hardshale, 

orange circle indicates the Lower Barnett, and the blue circle indicates the Upper 

Barnett. (d) Modeled TOC of the Upper Barnett, Lower Barnett, and Barnett 

Hardshale formations overlaid with the ternary diagram. 
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(A) 

(B) 

Figure 4. 4: Vertical slices along line AA’ through (A) μρ (B) λρ. The well 

displays gamma ray. 
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Figure 4. 7: Arial view of the pilot well 4P and the 

deviated well 2H with its corresponding microseismic 

events. Different colors represent the 13 different stages 

1250ft 
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Figure 4. 9: λρ and μρ values [(GPa)(g/cm3)] extracted at each microseismic 

event location for all stages along with the brittleness template and ternary 

diagram of the three most common minerals in the Barnett Shale. 
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Figure 4. 10: λρ and μρ values [(GPa)(g/cm3)] extracted at each microseismic 

event location for the first five stages along with the brittleness template and 

ternary diagram of the three most common minerals in the Barnett Shale. 
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Figure 4. 11: (A) Vertical slice through the λρ-μρ volume with the image log 

plotted along the borehole of well 2H. White box indicates a zone of more open 

fractures. (B) Same as A with added microseismic events. 
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Figure 4. 12: Amplitude data co-rendered with most positive curvature in the 

vertical seismic section and energy ratio similarity co-rendered with most 

positive curvature in a time slice. Well 2H displaying the fracture type on the 

horizontal section of the well. Open fractures are more abundant where a 

positive curvature anomaly exists. 
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Figure 4. 13: (A) Vertical slice through the most positive curvature co-

rendered with seismic amplitude volumes along with well 2H with the 

corresponding fracture type from image logs, (B) Vertical section of the 

most positive curvature attribute co-rendered with seismic amplitude along 

with the 13 stages of microseismic. Black box indicates an area with high 

open and partially open fracture intensity and un-clustered microseismic 

events. 
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5,000 ft. 

Figure 4. 16: Depth slice of most positive curvature and 

energy ratio similarity showing the shallower microseismic 

events. Notice, events avoid areas of higher values of 

curvature (yellow arrows) and act as fracture barriers and 

cluster towards lower values and negative dome like features. 
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microseismic events at every event location. 
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Chapter 5: Conclusions 

This study uses well log data, seismic data, microseismic, and borehole image logs to 

map brittle in a Barnett Shale play. Mineralogy is a major factor when determining 

brittleness areas. Brittle zones are those with higher quartz and TOC content and appear 

in the Lower Barnett and the Lower Barnett Hardshale. Ductile zones are clay and 

calcite dominated and appear in the Marble Falls, Forestburg, and the Base Barnett 

Hardshale. In this survey, the Lower Barnett is more brittle than the Upper Barnett 

which has more clay and less TOC content.   

With limited well log information, mapping brittle zones was predicted by seismic 

inversion data and validated by microseismic events. Prestack inversion to calculate λρ 

and μρ differentiates brittle and ductile zones. Microseismic events are then used to see 

where fracture zones are created at each perforation stage, indirectly measuring where 

the more brittle zones lie. Most microseismic events fall within the targeted, brittle, 

Lower Barnett and Barnett Hardshale and do not penetrate the Base Barnett 

Unconformity and Forestburg. In general, the Base Barnett Unconformity and the 

Forestburg act as ductile fracture barriers which is validated by a lack of microseismic 

events in both formations. Consistent with other publications on this area. 

The further the microseismic events move across the lateral of the well, towards the toe, 

the more clustered the events become. However, near the heel of the well, the 

microseismic events became more widespread and less clustered and propagate into the 

more ductile Forestburg limestone formation. I interpret the previously existing open or 

partially open fracture networks shown by the borehole image logs form a zone of 

weakness that allow energy to propagate up and into the Forestburg limestone creating 
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microseismic events where events are normally not expected to be seen. This should be 

noted when planning well production and can be economical by decreasing perforation 

stages when an area is highly fractured. Lastly, 47% of microseismic events occurred 

where curvature values ranged from 0-0.1 and 78% of microseismic events occurred in 

areas with positive curvature values. Open fractures are associated with low (near zero) 

values of positive curvature, supporting Thompson (2010) hypothesis that microseismic 

activity avoids ridge like structures and trends towards more bowl shapes and low 

positive values of positive curvature. 
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Appendix 

Amplitude versus Offset (AVO) 

Amplitude changes from peak to trough or trough to peak within a migrated CMP gather 

are often due to inaccurate velocity picks and subsequent event misalignment when data 

processing. However, these changes in amplitude may also be due to an AVO effect due 

to changes in lithology, hydrocarbons, porosity, and water saturation, and more. To 

address this possibility, AVO curves were made for each of the formation tops used in 

this study, with the objective to see if the amplitude changes at offsets greater than 30 

degrees were due to geology or to processing errors, such as Figure A1. Figures A1-A7 

show AVO curves for the Caddo, Marble Falls, Barnett, Forestburg, Lower Barnett, 

Barnett Hardshale, Base Barnett Unconformity, and the Ellenburger horizons of this 

survey. 

Figure A2 for the top Marble falls formation shows a type 1 AVO effect, or an increase 

in amplitude with offset, starting with a high positive amplitude that decreases with offset 

with a possible phase change at farther offsets. Figure A3 shows the AVO curve for the 

top Barnett Shale. At near and mid offsets of less than 7,000 ft. there is a type 3 AVO 

effect, or a decrease in amplitude with offset, starting with a negative amplitude and 

decreasing to a more negative amplitude. At offsets of roughly 7,000 ft, a significant 

increase in amplitude occurs. This increase may be due to a significant increase in TOC 

or caused by normal moveout (NMO) stretching. Observing the gathers at offsets greater 

than 7,000 ft, there is significant stretching of the gathers, seen by lower frequency with 

offset. Using these far offset gathers will create significant errors in the inversion, so 

muting the far offset gathers is necessary to be accurate. Figure A4 shows bifurcation of 
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the Forestburg formation event. This bifurcation may be due to anisotropy within the 

Forestburg caused by but not limited to changes in lithology, porosity, and fractures. 

When computing an inversion, the algorithm assumes isotropy across the seismic traces 

of the formation of interest, therefore muting the far offset events with bifurcation is 

necessary to obtain inversion results. Lastly, Figure A5 shows possible tuning effects due 

to variable thickness of bedforms (Marfurt, 2001).  

Further research regarding the AVO possibilities within these formations is possible 

However, further data conditioning of the prestack gathers is required for accurate AVO 

and inversion results.  
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Figure A 1: AVO curve for the Caddo formation. Caddo event is a strong 

peak across all offsets. The blue box indicates an anomalous area due to 

near and far offset event not aligned and approaching zero crossing at far 

offsets, possibly due to slow velocity picks. 

Figure A 2: AVO curve for the top Marble Falls formation demonstrating 

a type 1 AVO effect. 
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Figure A 3: AVO curve for the top Barnett Shale, the blue box indicates an 

anomalous area. 

Figure A 4: AVO curve for the Forestburg formation. The blue box 

indicates an area of interest within the Forestburg formation. 
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Figure A 5: AVO curve for the Lower Barnett. The blue box indicates 

possible tuning effects within the Lower Barnett formation. 

Figure A 6: AVO curve for the Barnett Hardshale formation. 
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Figure A 7: AVO curve for the Base Barnett Unconformity formation. 

Figure A 8: AVO curve for the Ellenburger formation. 


