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Abstract 

Polymers offer several advantages such as low cost, light weight, corrosion 

resistance and ease of processing, however, they have much lower intrinsic thermal 

conductivity (<0.5 W/mK) compared to metals (> 20 W/mK) which hinders their 

widespread applicability in thermal management technologies. Enhancement in thermal 

conductivity of polymer materials will lead to their more widespread use in applications 

such as power electronics, electric motors and heat exchangers. The focus of this research 

is on the effect of molecular alignment on thermal conductivity enhancement of 

polyethylene/graphene (PE/GNP) nanoplatelet composite materials.  

Pure high density polyethylene and PE/GNP nanocomposites with 7 and 10 wt% 

graphene nanoplatelets are prepared using melt-compounding method. Mechanical 

stretching is applied to achieve molecular chain alignment and several characterization 

techniques (Wide Angle X-ray Spectroscopy, Laser Scanning Confocal Microscopy, 

Scanning Electron Microscopy and Atomic Force Microscopy) are used to investigate the 

impact of mechanical stretching on PE chains and GNP flakes alignment. Finally, thermal 

conductivity of specimens is measured using a created set-up based on the Angstrom 

method. The obtained results demonstrate the promise of alignment effects in achieving 

high thermal conductivity values.  
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Chapter 1: Introduction 

The use of carbon-based polymer nanocomposite materials has increased 

significantly over recent decades with applications ranging from aerospace structures to 

electronic packaging materials. They have great advantages in terms of weight, stiffness, 

durability, and the ability to form complex geometries. The thermo-electro-mechanical 

properties of polymers are improved by taking advantage of the superior performance of 

fillers, such as carbon fibers, carbon black, carbon nanotubes (CNTs), and graphene 

nanoplatelets (GNPs). 

Polymer heat exchangers [1,2] (Figure 1.1) based on polymers such as 

polyethylene and polypropylene are widely used in applications including water 

desalination  [3], solar energy harvesting [4], automotive control units [5] and micro-

electronics cooling [6–8]. Polymers offer several advantages such as lower cost and 

weight which make them more economically competitive compared with metallic heat 

exchangers. Moreover, the energy required to produce polymers is about two times lower 

than common metals, making them environmentally attractive. Polymers, due to their 

resistance to chemicals, also improve reliability in corrosive environments such as natural 

gas liquefaction in offshore applications and condensing boilers where they hold potential 

to replace expensive metals such as titanium [9,10]. 

Polymeric materials have much lower intrinsic thermal conductivity (<0.5 W/mK) 

compared to metals (> 20 W/mK) which limits their more widespread applicability in 

thermal management technologies [11].  
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In this work polyethylene (PE) will be used as the base polymer and graphene 

nanoplatelets will be used as filler material due to their high intrinsic thermal conductivity 

(1500-5000 W/mK) [12–14]. Alignment has been explored as means to achieve high 

thermal conductivity. The structure of typical Polyethylene (PE) nanocomposites is 

shown in Figure 1.2. The polymer chains themselves exist in randomly oriented 

crystalline regions called lamellae which are interspersed with amorphous regions. While 

the thermal conductivity of the polymer within the crystalline regions is high, the random 

orientation of these leads to a convoluted heat conduction path which, leads to an overall 

poor thermal conductivity. Similarly, the GNPs are randomly oriented which also limits 

their contribution to thermal conductivity enhancement along a given direction. By 

aligning both the polymer lamellae and GNPs along a given direction (Figure 1.2), high 

thermal conductivity values along that direction can be achieved. Alignment in this work 

has been achieved by stretching. Stretching has been demonstrated to lead to alignment 

of both the polymer lamellae [15–17] and dispersed filler material [18–20]. This research 

uses simultaneous alignment for the first time to achieve nanocomposite with high 

thermal conductivity.  

 

  

Figure 1.1. Monoblock polypropylene heat exchanger by AB Segerfrojd 
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Nysten et al. [21] studied both the longitudinal and the transverse thermal 

conductivity of a stretched polyethylene film with draw ratio of 40 to get a better 

understanding of the thermal conductivity in semi-crystalline polymers. They found that 

the alignment of the polymer chains can increase the longitudinal thermal conductivity to 

10 W/mK at 100 K. 

Henry et al. [22] used molecular dynamics simulations to calculate the thermal 

conductivity of single polyethylene chains. They estimated that the thermal conductivity 

of single PE chains can exceed 100 W/mK if the chain is longer than 40 nm. In another 

work Choy et al. [23] studied the thermal conductivity of oriented polyethylene both 

along and perpendicular to the draw direction for draw ratio between 1-25. They found 

that the thermal conductivity of the sample with draw ratio of 25 is 13.8 W/mK (at 300 

K). Later the thermal conductivity of ultra-oriented polyethylene of ultrahigh molecular 

weight was measured 37.5 W/mK at draw ratio of 50 [24]. 

Recently, thermal conductivity of a single Polyethylene (PE) fiber with aligned 

chains (Figure 1.3) was measured to be 104 W/mK almost 200 times larger than thermal 

conductivity of bulk PE (~0.5 W/mK) [25]. Similarly in another work, PE films 

Figure 1.2. Highly aligned PE/GNP nanocomposite 
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comprised of highly aligned PE chains were found to exhibit thermal conductivity of 

almost 20 W/mK, comparable to thermal conductivity of metals such as titanium (~22 

W/mK) [26].  

Huang et al. [27] found that alignment of 0.4 vol% carbon nanotubes increase the 

thermal conductivity of carbon-based polymer nanocomposite to 0.65 W/mK. Aligned 

CNT arrays were fabricated using chemical vapor deposition (CVD) method. Marconnet 

et al. [28] recently demonstrated alignment of carbon-nanotubes in a polymer matrix to 

result in a composite k of ~ 4.8 W/mK (almost 20 times higher than the base polymer). 

In this study only the dispersed CNTs were aligned but not the base polymer.  

1.1 Objective of this Thesis 

The objective of this thesis work is to study the impact of simultaneous alignment 

of polymer chains and graphene nanoplatelets on the thermal conductivity of 

polyethylene/graphene nanocomposites. Above large enhancements in thermal 

conductivity through alignment of either the base polymer or the dispersed nano-filler 

suggests that even higher enhancement in thermal conductivity values can be achieved if 

Aligned PE Chains 

PE Nanofiber 

Figure 1.3. Polyethylene fiber with aligned chains [25] 
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both the polymer matrix and the dispersed nanofiller (GNPs in this work) are 

simultaneously aligned. Extensive experimental work has been done for the first time to 

support this hypothesis.  
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Chapter 2: Polymer Nanocomposite Synthesis 

In this chapter materials and methods implemented for polyethylene/graphene 

(PE/GNP) nanoplatelet composite material synthesis have been explained. High density 

polyethylene is used as a matrix and graphene nanoplatelets (~ 60 nm thickness and ~ 5 

μm lateral size) are as a filler for nanocomposite fabrication. Polymer nanocomposites 

are prepared using melt-compounding.  

2.1 Materials 

2.1.1 High Density Polyethylene 

The polyethylene used in this study was high density polyethylene with melt index 

2.2 g/10 min available from Sigma-Aldrich. The properties of this polymer are shown in 

Table 2.1.  

Table 2.1. High density polyethylene properties (from Sigma-Aldrich) 

Melt index 2.2 g/10 min (190 °C/2.16kg) 

Hardness 65 (Shore D, ASTM D 2240) 

Transition 

temperature 
Softening point 123 °C (Vicat, ASTM D 1525) 

Density 0.93-0.97 (g/cm3) 

Linear formula H(CH2CH2)nH 

 

High density polyethylene has been chosen as a matrix for in this study because 

it already possesses a high thermal conductivity value in comparison to other polymers 

[29–32]. Moreover, the effect of polyethylene chains alignment on thermal conductivity 

enhancement has been well studied [21–25].  
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2.1.2 Specific Heat and Density Measurement of High Density Polyethylene  

Specific heat of the pure high density polyethylene specimen is measured using 

Differential Scanning Calorimetry (DSC) technique. Moreover, density of high density 

polyethylene is measured using Pycnometer (AccuPyc 1340V2.0). Tables 2.2 and 2.3 

present the specific heat analysis and density of pure polyethylene respectively. 

Table 2.2. Specific heat analysis of high density PE 

Temperature (ºC) Specific Heat (J/gºC) 

0 2.0 

6.85 2.0 

16.85 2.1 

26.85 2.1 

36.85 2.2 

46.85 2.4 

56.85 2.5 

 

Table 2.3. Density measurement of PE 

Density of PE (g/cm3) 0.98  

 

2.1.3 Graphene 

Graphene is a two-dimensional (2D) material, formed of a lattice of hexagonally 

arranged carbon atoms. The term graphene is typically applied to a single layer of 

graphite, although common references also exist to bilayer or trilayer graphene. Most 

thermal properties of graphene are derived from those of graphite and bear the imprint of 

the highly anisotropic nature of this crystal. For instance, the in-plane covalent sp2 bonds 

between adjacent carbon atoms are among the strongest in nature (slightly stronger than 
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the sp3 bonds in diamond), with a bonding energy of approximately 5.9 eV. By contrast, 

the adjacent graphene planes within a graphite crystal are linked by weak van der Waals 

interactions (∼ 50 meV) with a spacing of h ≈ 3.35 Å. The strong and anisotropic bonding 

and the low mass of the carbon atoms give graphene and related materials unique thermal 

properties [33]. 

Fugallo et al. [12] using first-principles transport calculations found that at room 

temperature, the highest predicted thermal conductivity has the value of 3600 W/mK for 

naturally occurring graphene and 4300 W/mK for the isotopically pure graphene. In 

another study, Balandin et al. [13] experimentally demonstrated 2D to 3D dimensional 

crossover of heat conduction in few layer graphene (FLG). They prepared FLG samples 

by standard mechanical exfoliation of bulk graphite and suspended across trenches in 

Si/SiO2. The width of the suspended flakes was 5 to 16 μm. They extracted thermal 

conductivity values in the range of 3080-5150 W/mK for a set of graphene flakes.  

Recently, Balandin [34] demonstrated that in-plane thermal conductivity of 

graphene at room temperature is among the highest of any known material, about 2000–

4000 W/mK for freely suspended samples. The upper end of this range is achieved for 

isotopically purified samples with large grains, [35] whereas the lower end corresponds 

to isotopically mixed samples or those with smaller grain sizes. Naturally, any additional 

disorder or even residue from sample fabrication [36] will introduce more phonon 

scattering and lower these values further. For comparison, the thermal conductivity of 

natural diamond is ∼2200 W/mK at room temperature [37,38] (that of isotopically 

purified diamond is 50% higher, or ∼ 3300 W/mK). In particular, Figure 2.1 shows 
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presently known ranges of thermal conductivity at room temperature, with the implication 

that all lower bounds could be further reduced in more disordered samples. 

 

By contrast, heat flow in the cross-plane direction of graphene and graphite is 

strongly limited by weak interplane van der Waals interactions. The thermal conductivity 

along the cross-plane direction of pyrolytic graphite is a mere ∼ 6 W/mK at room 

temperature [39].  

2.1.4 Characterization of Graphene Flakes 

2.1.4.1 Size and Thickness Measurement of GNP Flakes Using Scanning Electron 

Microscopy (SEM) and Atomic Force Microscopy (AFM)  

Highest quality graphene with minimal defect density has been used for this study 

to facilitate achievement of ultra-high thermal conductivities. The flakes used in this 

study have very low defect density due to being produced directly from raw graphite by 

Figure 2.1. Room-temperature ranges of thermal conductivity k for diamond, 

graphite (in plane), carbon nanotubes (CNTs), suspended graphene, SiO2-supported 

graphene, SiO2-encased graphene, and GNRs [33] 
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mechanical exfoliation. Table 2.4 presents the properties of graphene flakes used in this 

study.  

Table 2.4. Specifications of GNP flakes available at Graphene Supermarket 

Average flake thickness  ~ 60 nm 

Specific surface area <15 m2/g 

Color Black 

Purity 98.5% 

Particle (lateral) size ~ 3-7 microns 

 

The thickness of GNP flakes has been characterized using an Asylum Research 

MFP-3D atomic force microscope (AFM) in the tapping mode (Figure 2.2). The lateral 

size of the GNP flakes has been measured through scanning electron microscopy (SEM) 

using a Zeiss NEON 40EsB High resolution SEM. Figure 2.3 shows the SEM images of 

graphene flakes indicating roughly 5 µm large flakes interspersed with some larger flakes. 
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2.1.4.2 Raman and X-ray Photoelectron Spectroscopy of Graphene  

Raman spectroscopy (and Raman imaging) has become a powerful, noninvasive 

method to characterize graphene and related materials. A large amount of information 

such as disorder, edge and grain boundaries, thickness, doping, strain and thermal 

conductivity of graphene can be learned from the Raman spectrum and its behavior under 

Figure 2.2. AFM image of a GNP flake showing an ~80 nm thick flake 

Figure 2.3. SEM images of GNP flakes for lateral size characterization 
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varying physical conditions. Raman spectroscopy uses a monochromatic laser to interact 

with molecular vibrational modes and phonons in a sample, shifting the laser energy 

down (Stokes) or up (anti-Stokes) through inelastic scattering. Identifying vibrational 

modes using only laser excitation, Raman spectroscopy has become a powerful, 

noninvasive method to characterize graphene and related materials [40]. 

In graphene, the Stokes phonon energy shift caused by laser excitation creates two 

main peaks in the Raman spectrum: G (1580 cm-1), a primary in-plane vibrational mode, 

and 2D (2690 cm-1), a second-order overtone of a different in-plane vibration, D (1350 

cm-1). The G band position is highly sensitive to the number of layers present in the 

sample and is one method for determining layer thickness and is based upon the observed 

position of this band for a particular sample. The D band is known as the disorder band 

or the defect band and it represents a ring breathing mode from sp2 carbon rings, although 

to be active the ring must be adjacent to a graphene edge or a defect. The band is typically 

very weak in graphite and is typically weak in high quality graphene as well. If the D 

band is significant it means that there are a lot of defects in the material.  

The intensity of the D band is directly proportional to the level of defects in the 

sample. The last thing to note about the D band is that it is a resonant band that exhibits 

what is known as dispersive behavior. This means that there are a number of very weak 

modes underlying this band and depending on which excitation laser is used, different 

modes will be enhanced. The consequence of this is that both the position and the shape 

of the band can vary significantly with different excitation laser frequencies, so it is 

important to use the same excitation laser frequency for all measurements when 

characterizing with the D band. The 2D band is the second order of the D band, sometimes 
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referred to as an overtone of the D band. It is the result of a two-phonon lattice vibrational 

process, but unlike the D band, it does not need to be activated by proximity to a defect. 

As a result, the 2D band is always a strong band in graphene even when there is no D 

band present, and it does not represent defects. This band is also used to determine 

graphene layer thickness. 

Raman spectra in this work were collected using a Horiba LabRam HR Raman 

confocal microscope with a 633 nm laser, 300 grooves/mm grating, 50 micron pinhole, 

and 50x objective lens. 

Oxygen content of graphene is also measured through X-ray photoelectron 

spectroscopy (XPS) using an Omicron XPS system with a DAR400 dual Mg/Al X-ray 

source and an Argus detector. Figure 2.5 shows the XPS analysis of Sample-C graphene 

indicating an oxygen content of only 2.8%. 
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2.2 Processes Involved 

2.2.1 Micro-compounding 

DSM Xplore 5 cc micro-compounder (Figure 2.6) has been used for PE/GNP 

nanocomposite fabrication by melting and mixing polyethylene pellets and graphene 

nanoplatelets. In melt-compounding a mixture of polymer pellets and filler material is 

melted and mixed for a pre-determined time under high shear conditions in a sealed 

mixing compartment containing two conical mixing screws.  
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Figure 2.5. XPS analysis of the graphene 
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Two key variables that determine the uniformity of dispersion of graphene within 

the nanocomposite are the mixing time and mixing temperature.  Mixing times ranging 

from 4 min to 90 mins and mixing temperatures of 180 °C to 270 °C has been used during 

the study. Increasing the mixing time provides a more uniform dispersion; longer times 

however can also damage the GNPs. Furthermore, lower temperature prevents to achieve 

a well-dispersed graphene flakes and also higher temperature damages the polyethylene 

chains. It has been observed that 200-220 ºC is the optimal temperature for compounding 

polymer nanocomposites. 

2.2.2 Compression Molding 

At the end of mixing period as the mixture of melted polyethylene and GNPs is 

taken out, the blended material is compression-molded using 1 MPa pressure at 145 C for 

15 min to fabricate approximately 1-mm-thick specimens for stretching. The pressure 

was sustained while the specimens were allowed to cool down gradually to the ambient 

temperature (typically, 23 C) at a typical rate of 2.5 C/min. Carver hot press has been 

used for molding.  

Figure 2.7. Carver hot press for compression molding 
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2.2.3 Mechanical Stretching 

Alignment of PE chains and GNPs within the nanocomposite has been achieved 

by mechanical stretching. We used a motor driven apparatus, capable of applying 100 lb 

of force, to stretch the nanocomposites (Figure 2.9). The slide can apply very low strain 

rates of 20µm/min which is desirable to ensure uniform stretching and prevent sample 

failure. Brittle failure of the samples is also overcome by heating the sample to 60-70 C 

by using a heater.  The heater itself is placed on another motorized platform to move it 

back and forth along the length of the sample to ensure uniform stretching.  

 

 

Figure 2.9. Linear motorized slide used for mechanical stretching 

 

Motorized Slide 

Nanocomposite Sample 

Heater 

Figure 2.8. PE/GNP sample before stretching 
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Using this set-up we were able to achieve high stretch ratios. Figure 2.10 shows a 

stretched sample with draw ratio of 5. 

  

Figure 2.10. Stretched PE/GNP specimen with draw ratio of 5 
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Chapter 3: Thermal Conductivity Measurement 

This chapter describes thermal conductivity measurement of the polyethylene-

graphene nanocomposite samples. Thermal conductivity is measured through the 

measurement of thermal diffusivity (𝐾), specific heat (𝑠) and density (𝜌) using the 

relationship, 𝑘 = 𝜌𝑠𝐾. Specific heat is measured using a differential scanning calorimeter 

while density is measured using the Archimedes principle. Thermal diffusivity in this 

work is measured using the Angstrom method described below.  

3.1 Angstrom Method 

Through the Angstrom method thermal diffusivity is measured by measuring the 

diffusion of heat along a material by applying a periodic heat pulse at one end while the 

other end is left at the temperature of the surrounding medium. A heat wave propagates 

down the length of the material, both losing amplitude and experiencing a phase shift. 

The fluctuations in temperature as a function of time are measured at two locations along 

the sample, comparison of the temperature waves leads to a determination of the thermal 

diffusivity value for the material. 

Considering that the temperature changes in this experiment are periodic, the 

measurements of the power input used to heat the system are not required. Also, instead 

of absolute measurements of the temperature, only relative changes in magnitude of 

temperature as a function of time and position must be recorded. For this experiment 

applied periodic heat pulse at one end of the sample will cause a temperature pulse to 

travel down the length of the sample. Part of the heat traveling down the length of the 

sample will be transmitted through conduction, part will heat the sample itself, and part 
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of the heat will be lost to the air through radiation. The heat transfer equation in the sample 

can be written as 

0

 to radiation Heat conducted
Created in Rod Change in rod's temperature

( ) .

Lost

dQ T
dV R T T ds k T ds s dV

dt t



    
                                           (3.1) 

where T is the temperature,   is the gradient operator, ds is an element of surface area, 

and k is the thermal conductivity of the rod. Because there is no heat source within the 

rod, equation 1 can be simplified using 0
dQ

dt
 Green’s first theorem is used to transform 

the integral over the surface in the second and third term on left side of eq. (3.1) into a 

volume integral. For a rod of cross sectional area, A and perimeter P, the above heat 

transfer equation is transformed into: 

2

02
( ) 0

T T PR
k s T T

x t A


 
   

                                                                                    (3.2) 

where T is the temperature, T0 is the ambient temperature and R represents the 

emissivity of the material. T0 further simplify the equation, we can replace T-T0 and 

rewrite it as 0T T    

In this experiment, a periodic heat wave with a frequency of 𝑤 = 2𝜋𝑓 (f is the 

inverse of the period of the heat wave) is applied to the rod. The solution for the 

temperature profile can be written as a sum over all the harmonics as, 

( , ) ( ) inwt

n

n

x t C x e




 
                                                                                                 (3.3) 

Substituting eq. (3.3) into eq. (3.2), leads to the following equation for Cn(x) (eq. 3.4) 

2

2
( ) 0inwtn

n n

C
K HC inwC e

x


  


                                                                             (3.4)   
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where 𝐾 =
𝑘

𝑠𝜌
 , 𝐻 =

𝑃𝑅

𝐴𝑠𝜌
,. Because of a complete orthogonal set in eq. (3.4), all 

coefficients must disappear. Then: 

2

2
( ) 0n

n

C
K C H inw

x


  


                                                                                           (3.5)                              

The solution of eq. (3.5) is: 

0( ) n x

n nC x C e



                                                                                                         (3.6)                                                                                                                                               

Where n

H inw

K



  and n n ni    . Then 2 2 2( ) 2n n n n n n ni i            

By setting the real and imaginary parts of n  equal to each other, we get eqs. (3.7) and 

(3.8); 

2 2

n n

H

K
                                                                                                                   (3.7)    

   2 n n

nw

K
                                                                                                                 (3.8)             

Thermal diffusivity is determined through the knowledge of n and n which are 

determined experimentally using the method described below. By plugging the eq. (3.6) 

into eq. (3.3), we get 

0( , ) n x inwt

n

n

x t C e e









                                                                                              (3.9)              

Since the temperature decays with increasing length, the chosen solution of eq. (3.9) is, 

0( , ) [ ][ ]n x inwt

n

n

x t C e e









                                                                                      (3.10)                                                              

Plugging n n ni     in eq. (3.10) leads to 
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( )

0( , ) n nx i nwt x

nx t C e e
   

                                                                                       (3.11) 

The coefficient Cn0 determine the form of the heat wave at x=0. As a general solution, 

assume 
0 0

i

n nC A e   , where An0 and γn are real numbers. One of the particular solutions 

of the eq. (3.11) is: 

0( , ) sin( )nx

n n nx t A e nwt x
  

                                                                       (3.12) 

For the temperature variation, the imaginary part of the complex function has been 

chosen. In this experiment, temperature variation with respect to time at two different 

points along the sample, x1 and x2 is measured and recorded (see Figure 3.1). 

The amplitude of the nth sine wave at x1 is An1 and can be represented by 1

1 0
nx

n nA A e


 ; 

the corresponding phase constant is 1 1n n n x     . At x2 the amplitude for the same 

harmonic is 2

2 0
nx

n nA A e


 and the related phase constant is 2 2n n n x     The ratio of 

the amplitude is 
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                                                                                    (3.13) 

From the above equation 𝛼𝑛 can be determined through the measurement of amplitude 

ratio and the distance between the thermocouples using the following equation,  

2 1

ln

( )

n
n

r

x x
 


                                                                                                            (3.14) 

where  𝐿 = (𝑥2 − 𝑥1)  is the distance between two temperature locations as shown in 

Figure 3.1. The difference in phase of the two harmonics at the points x1 and x2 is  

12 1 2 1 2 2 1( ) ( ) ( )n n n n n n n nx x x x                                                        (3.15) 
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From the above equation 𝛽𝑛 can be determined through the measurement of phase 

difference and the distance between the thermocouples using the following equation,  

12

2 1( )

n
n

x x


 


                                                                                                             (3.16) 

By plugging eqs. (3.14) and (3.16) into eq. (3.8) for the first harmonic we obtain, 

2
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12
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2 (ln )n
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k wL
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                                                                                               (3.17) 

Where K is the thermal diffusivity and k represents thermal conductivity. Since 12nt
w


 

thermal diffusivity can be derived using 
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2 (ln )
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

                                                                                                          (3.18) 

where Δt is time delay of the sine wave between thermocouple 1 and 2. Therefore, when 

one end of the sample was heated by sine periodic heat wave and other end just placed in 

ambient temperature, measurement of the phase difference and amplitude ratio of the two 

temperature profiles (as shown in Figure 3.1) yields the thermal diffusivity.  

3.2 Sample Preparation for In-plane Thermal Conductivity Measurement 

Preparing samples for in-plane thermal conductivity measurement using the 

Angstrom method includes creating a small resistance heater with 1-2 mm width in the 

middle of specimens (Figure 3.1). A high resistance wire with resistance of 80 Ω/ft is 

used for making the heater and it is covered with high thermal conductivity thermal paste 

to create a perfect contact with the sample. After making the heater, two thermocouples 

are attached to the sample with 2 and 6 mm distance from the heater respectively. A 
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sinusoidal heat wave has been applied through the heater using a function generator and 

temperature profile at both locations are detected using a data acquisition system.  

 

Figure 3.1. Thermal diffusivity measurement using Angstrom method, a) prepared 

sample, b) temperature profiles 

 

Figures 3.2 and 3.3 show the extracted temperature profiles for PE/GNP with 7 and 10 

wt% graphene at draw ratio 4.  

a) 

b) 
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Figure 3.2. Temperature profiles for PE/GNP (7 wt%) at draw ratio 4 
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Figure 3.3. Temperature profiles for PE/GNP (10 wt%) at draw ratio 4 
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The in-plane thermal diffusivity measurement is performed inside a high vacuum 

chamber. The chamber is evacuated to below 15 mTorr using a turbo pump in order to 

eliminate the convection heat loss effect. Figure 3.2 shows the created set-up. 

 

 

 

 

 

 

 

 

 

 

  

Thermal conductivity has been calculated using the follow equation: 

𝑘 = 𝜌𝑠𝐾                                                                                                                     (3.19) 

Where 𝑘  is thermal conductivity, K is thermal diffusivity, ρ is density and s is 

specific heat. Specific heat and density are measured using Pycnometer (AccuPyc 

1340V2.0) and Differential Scanning Calorimeter (DSC-Q1000) respectively.  

3.3 Validation of the Angstrom Method by Comparison with Experiment 

In order to validate the accuracy of the Angstrom method for in-plane thermal 

conductivity measurement, a comparison between thermal conductivity of unstretched 

pure polyethylene measured using the Angstrom method and reported values in the 

Vacuum pump 

Function  

generator 

Data acquisition system 

Chamber 

Figure 3.4. Thermal diffusivity measurement set-up based 

on the Angstrom method 
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literature has been conducted. According to the literature [30,32], thermal conductivity 

of pure PE is 0.4-0.5 W/mK. Using the Angstrom method, we were able to achieve 0.5 

W/mK for thermal conductivity of pure PE. It revealed that the Angstrom method is 

significantly accurate and very reliable for this study. Moreover, the Angstrom method is 

benchmarked with Laser Flash Method (LFA) and a good agreement between the two 

methods was obtained. 

3.4 Error Analysis of Thermal Diffusivity Measurement  

Error analysis was performed to calculate the inaccuracy in thermal diffusivity 

measurement using the Angstrom method. 

The main error source in thermal diffusivity measurement using the Angstrom method is 

the distance between the attached thermocouples to the specimen. We observed that the 

distance between thermocouples can vary up to 0.3 mm . This leads to 15 %  error in 

thermal diffusivity measurement.  

As aforementioned thermal diffusivity is measured using the below equation: 
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2 (ln )

x
K

A
t

A






                                                                                                          (3.20) 

And since the main error is caused from the distance between thermocouples then; 
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From eq. (3.21) we could extract 
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based on eq. (3.22) we have; 

2 ( ) 2(0.3)
15%

4

K d x

K x

 
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
 

Using this analysis, the error bars are included in the results presented in chapter 5.  
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Chapter 4: Characterization of Alignment 

This chapter describes the techniques used for characterization of alignment of 

both the polyethylene chains and dispersed graphene flakes. Scanning Electron 

Microscopy (SEM) and Wide Angle X-ray Spectroscopy (WAXS) are used for 

characterization of alignment of polyethylene chains and Laser Scanning Confocal 

Microscopy (LSCM) is implemented for characterization of alignment of graphene 

flakes.  

4.1 Characterization of Alignment of Polyethylene Chains Using Scanning 

Electron Microscopy (SEM) 

SEM is currently the most popular of the microscopic techniques, due to the user-

friendliness of the apparatus, the ease of specimen preparation, and the general simplicity 

of image interpretation. The obvious limitation is that only surface features are easily 

accessible. In a SEM, a focused electron beam (energies between 1 and 50 keV) scans 

line by line over the specimen surface in the evacuated microscope column and forms 

signals based on the interactions between the beam and the sample, which are 

electronically detected and amplified. 

Scanning electron microscopy using a Zeiss NEON 40EsB High resolution SEM was 

performed for characterization of alignment of pure polyethylene sample. As seen in 

Figure 4.1, polyethylene chains are oriented along the stretch direction.  
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The alignment of PE chains is also shown in Figure 4.2, comparing the 

unstretched and stretched PE with draw ratio of 5, at a very high magnification (10K).  

 

 

 

Stretch Direction 

Figure 4.1. SEM images of pure polyethylene, a) Unstretched sample, b) 

Stretched PE with draw ratio of 5 along the longitudinal direction 

a) 

b) 
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a) 

b) 

Figure 4.2. High magnification SEM images of pure polyethylene, a) 

Unstretched sample b) Stretched PE with draw ratio of 5 along the 

longitudinal direction 
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4.2 Characterization of Alignment of Polyethylene Chains Using Wide Angle X-

Ray Scattering (WAXS) Spectroscopy 

The undrawn polyethylene sample has randomly oriented stacks of crystallites. 

Upon drawing, the stacks begin to arrange in the drawing direction and beyond the yield 

point, the stacks begin to transform into fiber-like entities. These fibrous structures are 

composed of piled lamellae with long range order and/or tightly packed extended chains 

which are highly oriented in the drawing direction. As the fibrous structures are formed 

by the orientation process, significant changes in the patterns of both wide and small angle 

X-ray scattering (WAXS and SAXS) experiments are evident. 

Wide-angle X-ray Scattering (WAXS) or wide-angle X-ray Diffraction (WAXD) 

is an X-ray-diffraction technique that is often used to determine the crystalline structure 

of polymers. This technique specifically refers to the analysis of Bragg peaks scattered to 

wide angles, which (by Bragg's law) implies that they are caused by sub-nanometer-sized 

structures. Orientation was measured as a function of draw ratio by wide-angle X-ray 

scattering. Each sample required data acquisition at two different scattering angles (2θ). 

The WAXS measurements were obtained using the coordinate system defined in 

Figure 4.3. The Z axis is defined as the crystalline chain axis (the c-axis) and the angles 

α, β and ε are the angles between the stretching direction, S, and the X, Y, and Z axes, 

respectively. In Figure 4.3, the points a, b and c from a crystalline reflection plane that 

has a unit vector, N, normal to the plane surface. The angle of orientation (ϕ) is the angle 

between N and a unit vector, S, in the stretching direction.  

 

 

https://en.wikipedia.org/wiki/X-ray_diffraction
https://en.wikipedia.org/wiki/Polymer
https://en.wikipedia.org/wiki/Bragg_peak
https://en.wikipedia.org/wiki/Bragg%27s_law
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cos( ) cos( ) cos( )S i j k                                                                                      (4.1) 

cos( ) cos( ) cos( )N E i F j G k

N ei f j gk

  
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                                                                               (4.2) 

The coefficients of N are denoted e, f and g to simplify the expressions below, and are 

determined from the reflection plane [hkl] and the crystal structure. The angle ϕ is given 

by eq. (4.3).  

cos( ) N.S= cos( ) cos( ) cos( )e f g                                                                    (4.3) 

Squaring and averaging eq. (4.3) gives eq. (4.4) 
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   

 
           (4.4) 

To determine the average value of 𝑐𝑜𝑠2𝜑 experimentally, the scattered intensity at a 

given 2θ was averaged over the azimuthal angle (χ), given by eq. (4.5) 

2 2 2cos ( ) cos ( ) cos ( )                                                                                        (4.5) 

The second term on the right side of eq. (4.5) can be determined from eq. (4.6): 

b) a) 

Figure 4.3. Orientation of polymer chains with respect to stretch direction a) 

WAXS coordinate system, b) WAXS experimental geometry   
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where I is the intensity of the scattered X-rays. In practice, the integrals were replaced 

by sums as shown in eq. (4.7): 
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Eq. (4.4) has a total of six unknowns; hence, without further simplifications, at least five 

crystal planes would be required to determine the orientation functions in each direction. 

The orthogonality of the system provides the sixth equation. 

2 2 2cos ( ) cos ( ) cos ( ) 1                                                                                        (4.8) 

The angles α, β, ε are evaluated from eq. (4.4(. If the pure axial crystal plane reflections 

can be obtained, then only three planes need to be studied and eq. (4.4). Simplifies, as 

shown in eq. (4.9): 
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                                                                                                (4.9) 

Another simplification can be made for particular crystal structure allowing fewer than 

five reflection planes to be required. Because PE has an orthorhombic crystal structure 

that cross-product terms in eq. (4.4) are zero, as shown in eq. (4.10), and only two 

reflection planes were required for characterization: 

2 2 2 2 2 2 2cos ( ) cos ( ) cos ( ) cos ( )e f g                                                  (4.10) 
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PE [110] and [200] reflection planes, at 21.4º and 23.7º, respectively, were used 

for characterization of the crystalline orientation. The values of e, f and g for the [110] 

reflection plane are 0.554, 0.832, and 0, while those of [200] are 1, 0, and 0, respectively. 

The orientation of the pure polyethylene films was quantitatively characterized as cos2(ε), 

where ε is the angle between the stretching direction, S, and the polymer chain axis (Z 

axis). The value of cos2(ε) can be between 0 and 1. If the orientation of the chain axis is 

perpendicular to the stretching direction, then cos2(ε) is 0. If the chain axis is parallel to 

the stretching direction, then cos2(ε) is 1. When the chain axis is randomly distributed 

then cos2(ε) is 1/3 [41,42]. 

Table 4.1 and Figure 4.4 show the orientation of the PE crystallites as a function 

of draw ratio. It reveals that for unstretched PE crystallites are randomly oriented and by 

increasing the draw ratio orientation increases. Moreover, 2D WAXS patterns of the 

various polyethylene films with different draw ratios are shown in Figure 4.5. Patterns 

show orientation effect: upon stretching rings become arcs in WAXS spectra.  

Table 4.1. Orientation of stretched PE as a function of draw ratio 

Draw Ratio cos2(ε) 

1 0.38 

2 0.7 

3 0.79 

4 0.85 

6 0.89 

7 0.92 
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Along Draw Axis 

Figure 4.5. WAXS patterns for a) unstretched, b) draw ratio 2, c) draw ratio 3, d) 

draw ratio 4, e) draw ratio 6 and f) draw ratio 7 for PEs. The stretch direction is 

horizontal 
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4.3 Characterization of Alignment of Graphene Flakes Using Laser Scanning 

Confocal Microscopy (LSCM) 

Alignment of graphene flakes within the nanocomposite was studied using Laser 

Scanning Confocal Microcopy (LSCM). Laser scanning confocal microscopy (LSCM) is 

a light microscopy technique which creates 3D reconstructions, with up to 300 nm 

resolution. The focused beam of a laser is scanned over the sample and the reflected 

intensity is displayed as a function of position to create a digital reflected image of the 

sample. In conventional microscopes, the light is transmitted through the entire specimen 

thickness, requiring that the sample is capable of transmitting light, and that bundles do 

not obscure one another. LSCM circumvents this limitation by utilizing light in the 

reflected light path, while also blocking any out-of-focus light, creating an image as thin 

as 300 nm axially, referred to as an optical section. By collecting a series of optical 

sections along the optical axis (Z-axis), one can generate a 3D reconstruction of a volume 

within an intact specimen. Scanning a focused laser beam allows the acquisition of digital 

images with very high resolution since the resolution is determined by the position of the 

beam rather than the pixel size of the detector.  

Confocal microscopy offers several advantages over conventional widefield 

optical microscopy, including the ability to control depth of field, elimination or reduction 

of background information away from the focal plane (that leads to image degradation), 

and the capability to collect serial optical sections from thick specimens. The basic key 

to the confocal approach is the use of spatial filtering techniques to eliminate out-of-focus 

light or glare in specimens whose thickness exceeds the immediate plane of focus. There 

has been a tremendous explosion in the popularity of confocal microscopy in recent years 
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[43], due in part to the relative ease with which extremely high-quality images can be 

obtained from specimens prepared for conventional fluorescence microscopy, and the 

growing number of applications in cell biology that rely on imaging both fixed and living 

cells and tissues.  

4.4 Principles of Confocal Microscopy 

The confocal principle in epi-fluorescence laser scanning microscope is 

diagrammatically presented in Figure 4.6. Coherent light emitted by the laser system 

(excitation source) passes through a pinhole aperture that is situated in a conjugate plane 

(confocal) with a scanning point on the specimen and a second pinhole aperture 

positioned in front of the detector (a photomultiplier tube). As the laser is reflected by a 

dichromatic mirror and scanned across the specimen in a defined focal plane, secondary 

fluorescence emitted from points on the specimen (in the same focal plane) pass back 

through the dichromatic mirror and are focused as a confocal point at the detector pinhole 

aperture. The significant amount of fluorescence emission that occurs at points above and 

below the objective focal plane is not confocal with the pinhole (termed Out-of-Focus 

Light Rays in Figure 4.6 and forms extended Airy disks in the aperture plane. 

Because only a small fraction of the out-of-focus fluorescence emission is 

delivered through the pinhole aperture, most of this extraneous light is not detected by 

the photomultiplier and does not contribute to the resulting image. The dichromatic 

mirror, barrier filter, and excitation filter perform similar functions to identical 

components in a widefield epi-fluorescence microscope. Refocusing the objective in a 

confocal microscope shifts the excitation and emission points on a specimen to a new 

plane that becomes confocal with the pinhole apertures of the light source and detector.  
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Figure 4.6. Schematic diagram of the optical pathway and principal components in 

a laser scanning confocal microscope [18] 

 

In traditional widefield epi-fluorescence microscopy, the entire specimen is 

subjected to intense illumination from an incoherent mercury or xenon arc-discharge 

lamp, and the resulting image of secondary fluorescence emission can be viewed directly 

in the eyepieces or projected onto the surface of an electronic array detector or traditional 

film plane. In contrast to this simple concept, the mechanism of image formation in a 

confocal microscope is fundamentally different. As discussed above, the confocal 

fluorescence microscope consists of multiple laser excitation sources, a scan head with 

optical and electronic components, electronic detectors (usually photomultipliers), and a 

computer for acquisition, processing, analysis, and display of images. The scan head is at 

the heart of the confocal system and is responsible for rasterizing the excitation scans, as 
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well as collecting the photon signals from the specimen that are required to assemble the 

final image. A typical scan head contains inputs from the external laser sources, 

fluorescence filter sets and dichromatic mirrors, a galvanometer-based raster scanning 

mirror system, variable pinhole apertures for generating the confocal image, and 

photomultiplier tube detectors tuned for different fluorescence wavelengths. Many 

modern instruments include diffraction gratings or prisms coupled with slits positioned 

near the photomultipliers to enable spectral imaging (also referred to as emission 

fingerprinting) followed by linear unmixing of emission profiles in specimens labeled 

with combinations of fluorescent proteins or fluorophores having overlapping spectra 

[43–47]. 

Leica SP8 laser scanning confocal microscope with a 561 nm DPSS laser has been 

used for imaging in this study.  The samples have been imaged with a 63x/1.4 oil 

immersion objective with the pinhole aperture at 0.2 AU and voxel dimensions of 120 

nm x 120 nm x 120 nm and to a depth of 10 µm. Figure 4.7 shows LSCM images of GNPs 

in unstretched PE/GNP (7 wt%) nanocomposite sample and same composition sample 

with different stretch ratios. While GNPs are seen to be randomly oriented in Figure 4.7 

a, Figures 4.7 b-e clearly show alignment of GNPs along the stretch direction. 
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Furthermore, a complete quantitative analysis of GNP alignment within the 

nanocomposite has been performed by analyzing the images in ImageJ software (version 

1.51) to determine the aspect ratio of each GNP in 3D space. The distribution of these 

ratios is presented in the form of box plot in Figure 4.8. 

The aspect ratio is estimated by constructing a bounding box around each GNP 

flake and extracting the aspect ratio (=length/width) for this box. A bounding box is a 

rectangular cuboid in 3D, or a rectangle in 2D, containing a single detected object. With 

this statistical variable, the size of any created objects can be easily determined. For 

randomly orientated flakes the aspect ratio is expected to be close to 1. For the unstretched 

sample (=1) the measured median value of the ratio is indeed ~1 indicating no alignment 
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Figure 4.8. LSCM imaging of a PE/GNP sample in a) unstretched and 

stretched sample with a) draw ratio of 2, c) draw ratio of 3, d) draw ratio 

of 4 and e) draw ratio of 5 

 

Figure 4.9. LSCM imaging of a PE/GNP sample in a) unstretched and 

stretched sample with a) draw ratio of 2, c) draw ratio of 3, d) draw ratio 

of 4 and e) draw ratio of 5 
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(Figure 4.8). As the sample is stretched, the flakes align themselves along the direction 

of stretching, increasing length of the bounding box while decreasing the width, resulting 

in an increase in aspect ratio (=L/W) of the bounding box. Higher aspect ratio is thus a 

measure of a more aligned orientation of GNP flakes within the nanocomposite. For the 

stretched samples, it can be seen from that the aspect ratio increases progressively with 

an increase in draw ratio from =2 to =5 indicating increasing alignment of GNPs with 

draw ratio.  
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Figure 4.11. Aspect ratio of the GNPs within the 

PE/GNP (7 wt%) as a function of draw ratio 

 

Figure 4.12. Thermal conductivity enhancement of 

pure PE, PE/GNP (7 wt%) and PE/GNP (10 wt%) as a 

function of draw ratioFigure 4.13. Aspect ratio of the 

GNPs within the PE/GNP (7 wt%) as a function of 

draw ratio 
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Chapter 5: Results  

This chapter describes the results obtained from this study. Thermal diffusivity 

has been achieved using the Angstrom method. Specific heat and density of specimens 

have been obtained using differential scanning calorimeter and pycnometer respectively. 

Specific heat and density of the specimens have been presented in Table 5.1. 

Table 5.1. Specific heat and density of specimens 

Sample Specific Heat [J/gK] Density [g/cm3] 

Pure Polyethylene 2.18 0.98 

PE/GNP (7 wt%) 2.08 1.02 

PE/GNP (10 wt%) 2.03 1.04 

 

It has been observed that specific heat of PE/GNP specimen has been slightly 

decreased which is due to the presence of graphene nanoplatelets. While, density of 

PE/GNP samples has increased. Calculated thermal conductivity for pure PE, PE/GNP 

(7wt%) and PE/GNP (10 wt%) for draw ratios between 1 to 5 is presented in Table 5.2. 

Table 5.2. Thermal conductivity of pure PE and PE/GNP 

Draw Ratio 
Thermal Conductivity [W/mK] 

Pure PE PE/GNP (7 wt%) PE/GNP (10 wt%) 

1 0.5 1.0 1.4 

2 0.8 2.5 3.3 

3 1.5 3.2 4.3 

4 2.3 4.1 5.3 

5 3.5 5.1 5.9 
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Moreover, thermal conductivity enhancement as a function of draw ratio is shown in 

Figure 5.1. 

 

Figure 5.1 shows the first experimental measurements of thermal conductivity of 

such aligned PE/GNP nanocomposites as a function of draw ratio. PE/GNP 

nanocomposites were prepared with 7 and 10 wt% GNP (~60 nm thickness, ~5 µm lateral 

size). Prepared nanocomposites were subjected to permanent stretching (plastic 

deformation) by different stretch ratios  (=l/l0, where l0 is the initial sample length and l 

is the final length after stretching). Notice that =1 corresponds to unstretched sample.  

Figure 5.1. Thermal conductivity enhancement of pure PE, PE/GNP 

(7 wt%) and PE/GNP (10 wt%) as a function of draw ratio 

 

Figure 3.3. Temperature profiles for PE/GNP (10 wt%) at draw ratio 

4Figure 5.2. Thermal conductivity enhancement of pure PE, 

PE/GNP (7 wt%) and PE/GNP (10 wt%) as a function of draw ratio 
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It can be seen in Figure 5.1 that thermal conductivity of the nanocomposite is 

shifted towards higher values compared to the pure PE case. As the samples are stretched 

to higher ratios, the increasing alignment of involved components (PE chains and GNPs) 

with increasing draw ratio leads to a continuous increase in thermal conductivity for the 

pure PE sample and both PE/GNP nanocomposites. However, while the thermal 

conductivity of the pure PE sample increased by 3.0 W/mK, upon stretching by 5 times, 

relative to the unstretched sample, the thermal conductivity of the nanocomposites 

increased by amount of 4.1 W/mK (7 wt%) and 4.5 W/mK (10 wt%) for the same draw 

ratio. Thermal conductivity enhancement in pure PE sample is due to alignment of PE 

chains alone, k enhancement in the nanocomposite on the other hand is due to alignment 

of both PE chains and GNPs.  These results provide the first direct and strong evidence 

that simultaneous alignment of polymer chains and dispersed GNPs can provide high 

thermal conductivity values. 

k-enhancement can also be compared in terms of the slopes of best-fit linear 

curves for the two samples; (dk/d)pure-PE  0.67 and (dk/d) 10 wt % composite 1.24. It should 

be noted that this ~ 85% increase in slope for the nanocomposite is brought about by an 

addition of 10 wt% GNP.  

Increased effectiveness of aligned GNPs in enhancing thermal conductivity can 

be further seen by noticing that at =1, the increase in k of the nanocomposites relative 

to pure PE sample is almost 0.5 and 1.0 W/mK for 7 and 10 wt% graphene respectively. 

This enhancement is through the addition of GNPs flakes which are randomly oriented. 

At =5, however, the corresponding enhancement is 1.6 and 2.4 W/mK due to 7 and 10 

wt% GNP flakes that are more aligned compared to at =1. The presented results thus 
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provide a new pathway to dramatically enhance the effectiveness of GNP in developing 

high k composite polymeric materials. Finally, it should be noted that the highest thermal 

conductivity achieved in this work of 5.9 W/mK represents almost 12-fold increase over 

the k of pristine PE (~ 0.5 W/mK). This was achieved at a draw ratio of 5 and by addition 

of a mere 10 wt% graphene.  
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Chapter 6: Conclusion and Remarks  

In this work, the following four tasks were accomplished to study the effect of 

alignment on thermal conductivity enhancement of polyethylene-graphene (PE/GNP) 

nanoplatelets composite materials. First, pure polyethylene and PE/GNP nanocomposites 

have been synthesized using melt-compounding method. Pure PE has been prepared at 

200 ºC with 5 minutes mixing time. PE/GNP nanocomposites with 7 wt% and 10 wt% 

have been melt-compounded at 200 ºC for 40 minutes. After melt-compounding, 

compression molding has been performed to prepare the specimens for mechanical 

stretching. Second, specimens have been stretched using a linear motorized slide. For 

each of pure PE and PE/GNP (7 and 10 wt%) 5 stretched samples with draw ratios 

between 2 to 5 have been prepared. Third, several characterization techniques have been 

performed to study the alignment of polyethylene chains and graphene nanoplatelets. 

Wide Angle X-ray Spectroscopy (WAXS) and Scanning Electron Microscopy (SEM) 

have been used for characterization of alignment of polyethylene chains. Moreover, Laser 

Scanning Confocal Microscopy (LSCM) has been applied to investigate the graphene 

flakes alignment in PE/GNP nanocomposites. Atomic Force Microscopy (AFM) and 

SEM used for thickness and lateral size characterization of GNP flakes. 

Four, using a created set-up based on the Angstrom method, in-plane thermal 

conductivity of specimens has been measured. Thermal diffusivity has been extracted 

from the Angstrom method. Specific heat and density of the specimens have been 

achieved using Pycnometer and Differential Scanning Calorimeter respectively. Thermal 

conductivity has been calculated using the below equation: 

𝑘 = 𝜌𝑠𝐾 
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Where k is thermal conductivity, K is thermal diffusivity, ρ is density and s is 

specific heat. Effect of molecular alignment on thermal conductivity enhancement of pure 

PE and PE/GNP (7 and 10 wt%) nanocomposites has been investigated to understand 

both the effect of graphene flakes alignment and also increase of graphene flakes volume 

fraction on thermal conductivity (k) enhancement. The obtained results declared the 

significant impact of alignment on thermal conductivity enhancement. The thermal 

conductivity of the pure PE sample enhanced by 3.0 W/mK, at draw ratio of 5, in compare 

to the unstretched specimen. It means the alignment of PE chains led to 7.2 times k 

enhancement.  

Moreover, these results provided the first direct and strong evidence that 

simultaneous alignment of polymer chains and dispersed GNPs can provide high thermal 

conductivity values. The thermal conductivity of nanocomposites increased to 5.1 W/mK 

(7 wt%) and 5.9 W/mK (10 wt%) for the same draw ratio. Thermal conductivity 

enhancement in pure PE sample is due to alignment of PE chains alone, while k 

enhancement in the nanocomposite is due to alignment of both PE chains and GNPs.   

Furthermore, it has been observed that the highest thermal conductivity achieved 

in this work of 5.9 W/mK represents almost 12-fold increase over the k of pristine PE (~ 

0.5 W/mK). This was achieved at a draw ratio of 5 and by addition of 10 wt% GNP flakes.  
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