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Abstract 

Microorganisms are ubiquitous on earth, and they interact each other to form 

communities, which play unique and integral roles in various biochemical processes and 

functions that are of critical importance in global biogeochemical cycling, human 

health, energy, climate change, environmental remediation, engineering, industry, and 

agriculture. However, identification, characterization, and quantification of microbial 

communities are still limited, due to the extreme diversity and yet-uncultivable nature 

of a vast majority of microorganisms, and our understanding of microbial communities 

is further hindered by complex organization and dynamics of interactions among 

microorganisms. In this work, we developed high-throughput functional gene arrays 

(FGAs), bioinformatics tools and computational methods for analysis of microbial 

metagenomes and interactomes to address some of the limitations, whose powerfulness 

were demonstrated in application studies. 

In the beginning of this work, we developed a high-throughput FGA for characterizing a 

specific group of microorganisms - plant growth promoting microorganisms (PGPMs). 

PGPMs can promote plant growth and suppress disease directly and/or indirectly by 

enhancing soil fertility and plant resistance to biotic and abiotic stresses, thus may 

contribute to the success of invasive plants over native species. However, PGPMs are 

highly diverse in terms of both species richness and plant promoting mechanisms. 

Therefore, it is difficult to study the PGPMs changes along with environment shifts, and 

their subsequent impacts on plant performance and ecosystem functioning. The 

developed high-throughput FGA, termed Plant Associated Beneficial Microorganism 

Chip (PABMC), focused on functional genes from PGPMs that are beneficial to plants. 
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A total of 3,870 probes covering 34 functional gene families were designed in PABMC, 

including six categories: plant growth-promoting hormones, plant pathogen resistance, 

antibiotics, antioxidants, drought tolerance, and secondary benefits (e.g. elicitor of plant 

immune defense response). Computational analysis showed that ~98% of the probes 

were highly specific at the species or strain level.  The PABMC was also applied to 

investigate PGPMs’ responses to Ageratina adenophora (A. adenophora) invasion in a 

natural grassland, and showed A. adenophora invasion increased the alpha diversity and 

shifted the composition of PGPM communities compared with what from the native 

site. The PABMC uncovered changes in abundance of a key gene related to drought 

tolerance, pathogen resistance, antibiotic biosynthesis, and antioxidant biosynthesis, due 

to A. adenophora invasion. These changes may promote the survival and growth of A. 

adenophora over native species in the site we studied. 

Next, we developed GeoChip 5.0, and advanced the FGA based metagenomics 

technology to a new level of comprehensiveness, for analyzing complex microbial 

communities. GeoChip 5.0 was based on Agilent platform, with two formats. The 

smaller format contained 60K probes (GeoChip 5.0S), majorly covering probes from 

carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cyclings and energy 

metabolism probes. The larger format (GeoChip 5.0M) contained all probes in GeoChip 

5.0S and expanded to antibiotic resistance, metal resistance/reduction, organic 

contaminant remediation, stress responses, pathogenesis, soil beneficial microbes, soil 

pathogens, and virulence. GeoChip 5.0M contains 161,961 probes covering 

approximately 370,000 representative coding sequences from 1,447 functional gene 

families. These genes were derived from functionally divergent broad taxonomic 
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groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), 

protists (219), and viruses (167 genera, mainly phages). Both computational and 

experimental evaluation indicated that all designed probes were highly specific to their 

corresponding targets. Sensitivity tests revealed that as little as 0.05 ng of pure culture 

DNAs was detectable within 1 µg of complex soil community DNA as background, 

suggesting that the Agilent platform-based GeoChip is extremely sensitive. 

Additionally, very strong quantitative linear relationships were obtained between signal 

intensity and pure genomic DNAs or soil DNAs. Application of the designed FGAs to a 

contaminated groundwater with very low biomass indicated that environmental 

contaminants (majorly, heavy metals) had significant impacts on the biodiversity of 

microbial communities. 

Since next generation sequencing (NGS) technology has revolutionized metagenomics 

and microbial ecology studies, immense improvements made in sequencing speed, 

throughput, and cost. However, NGS technology also produces a formidable number of 

raw reads which poses computational challenges, especially for analyzing deep shotgun 

metagenomics sequencing data. To tackle some of the challenges, we present an 

Ecological Function oriented Metagenomic Analysis Pipeline (EcoFun-MAP), to 

facilitate analysis of shotgun metagenomic sequencing data in microbial ecology 

studies. The EcoFun-MAP consists of reference databases of different data structures, 

with a selective coverage of functional genes that are important to ecological functions. 

Meanwhile, multiple predefined data analysis workflows were built on the databases 

with most updated bioinformatics tools. Furthermore, the EcoFun-MAP was 

implemented and deployed on High-Performance Computing (HPC) infrastructure with 
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high accessible and easy-to-use interfaces. In our evaluation, the EcoFun-MAP was 

found to be fast (multi-million reads/min.) and highly scalable, and capable of 

addressing disparate needs for accuracy and precision. In addition, we showcase the 

effectiveness of the EcoFun-MAP by applying it to reveal differences among 

metagenomes from underground water samples, and provide insights to link the 

metagenomic differences with distinctive levels of contaminants.  

To extend an emerging dimension of microbial community analysis, that is the analysis 

of complex microbial interactions, we provided a generalized Brody distribution (GBD) 

based Random Matrix Theory approach (GBD-RMT approach) for inferring microbial 

data association networks. The GBD-RMT approach addresses several limitations of a 

previous Random Matrix Theory (RMT)-based approach in the capability of detection 

and interpretability of detected thresholds. The GBD-RMT approach is capable of 

quantitatively characterizing the dynamics of Nearest Neighboring Spacing Distribution 

(NNSD) of eigenvalues against candidate thresholds, and detecting both the critical 

transitions and thresholds in NNSD dynamics using trend analysis. In our evaluation, 

the GBD-RMT approach successfully detected the critical thresholds in all of the 

numerically simulated and real datasets, including those for which the previous method 

failed. It also had higher detection resolution, and gained higher confidence and 

interpretability in detected critical thresholds. Meanwhile, the GBD-RMT approach 

integrated improvements for detecting more types of data association and reducing 

compositional data bias. In addition, the GBD-RMT approach uncovered a remarkable 

overlap between the critical transitions and the plateaus of scale-freeness from the 
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inferred networks, and the overlap is showed to be statistically significant and universal 

in complex biological systems in our analysis.  

All the developed technologies and computational methods in this work provided 

powerful and up-to-date means for analyzing complex metagenomes, and should be 

ready to serve for improving our understanding of microbial communities in the studies 

of microbial ecology and global change biology. 
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Chapter 1: Introduction 

1.1 Limitations of culture-dependent methods in microbial ecology research 

Microorganisms are almost ubiquitous in the biosphere, and their existence and 

functions, to a large extent, shape the biogeochemical cycling of essential elements for 

life on earth. The science about microbial diversity, community composition, function, 

interaction, succession, and responses to stimuli in various ecosystems greatly benefit 

our survival through promoting our exploration of nature, and the development of 

agriculture, medical care, waste treatment, etc. (Curtis, Head et al. 2003, Zhou, Deng et 

al. 2014). However, the detection, identification, and characterization of 

microorganisms in the environment has been challenged by their tiny body size, 

enormous diversity, versatile and variable functional roles, and complicated interactions 

amongst themselves and with their biotic and abiotic surroundings (Gans, Wolinsky et 

al. 2005, Schloss and Handelsman 2006, Sogin, Morrison et al. 2006, Roesch, Fulthorpe 

et al. 2007, Zhou, He et al. 2015).  

Before the popularization of high-throughput metagenomic technologies, microbial 

ecology research solely depended on cultivation-dependent microbiology. The 

identification and characterization of microbial taxa were based on morphology (of cells 

or colonies) and physiology tests after separation of the organism of interest from a vast 

background community, followed by cultivation. Limitations in such methodology 

include several. First, 99% of the microorganism discovered are yet uncultivable in 

known media (Rappe and Giovannoni 2003), posing the question of losing a majority of 

the diversity and potential functional roles in observations of microbial communities in 

niche-rich environments such as soil, ocean, and even human body (Whitman, Coleman 
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et al. 1998, Kallmeyer, Pockalny et al. 2012). Second, although the morphology 

description and physiological tests are necessary to characterize a specific organism, 

these methods are low in efficiency to screen communities of microorganisms in 

defined habitats. Third, the added difficulty in co-culturing different microorganisms 

hinders the possibility to study microbial interactions (Fuhrman 2009, Zhou, Deng et al. 

2010). Fourth, the laboratory culture media can hardly simulate natural environments in 

all aspects, biasing the estimation of in situ conditions of microorganisms (Fitter, 

Gilligan et al. 2005, Levin 2006). In a word, using only culture-dependent methods, 

microbial ecology studies can hardly be comprehensive and conclusive.  

1.2 Overview of high-throughput metagenomic technologies 

Since the last decade in the 20th century, cultivation-independent detection of 

environmental microorganisms has been developed and popular in microbial 

community profiling. These methods took advantage of the discoveries of, and the 

molecular techniques to track and distinguish, multiple biomarkers. For example, PCR 

amplification-enabled sequencing of 16S rRNA genes (Schmidt, DeLong et al. 1991), 

amplified ribosomal DNA restriction analysis (Massol-Deya, Weller et al. 1997), 

denaturing gradient gel electrophoresis (Muyzer, De Waal et al. 1993) and terminal 

restriction fragment length polymorphism (Liu, Marsh et al. 1997) can use the 

ribosomal RNA as well as functional gene sequences as biomarkers, phospholipid fatty 

acid analysis (Frostegård, Tunlid et al. 2011) uses the molecular structure of 

phospholipid fatty acids in cell membrane as biomarkers, while Biolog EcoPlates 

(Hadwin, Del Rio et al. 2006) utilize the profile of carbon and nitrogen metabolism 

potentials as biomarkers, to survey the taxonomic or functional group composition of 
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microorganisms present in the environmental samples. During the last decade, more 

efficient, extremely high-throughput technologies that detect several thousand 

biomarkers, or even the whole genome/transcriptome/metabolome, were developed and 

became cost-effective, which revolutionized microbial ecology research by enabling 

deep surveys of the microbial “dark matters”, as well as high-resolution comparisons of 

different communities. These, methods, including next-generation sequencing of 

DNA/RNA (Venter, Remington et al. 2004, Caporaso, Lauber et al. 2012, Loman, 

Misra et al. 2012, Weinstock 2012), PhyloChip (Hazen, Dubinsky et al. 2010), GeoChip 

(He, Deng et al. 2010, Tu, Yu et al. 2014), mass spectrometry-based proteomics (Ram, 

VerBerkmoes et al. 2005), and metabolite analysis (Cui, Lewis et al. 2008), have been 

applied to microbial samples from diverse ecosystems to address a wide range of 

microbial ecology questions.  

Among these technologies, DNA-based high-throughput sequencing and microarray 

technologies are most broadly used as tools to answer the questions of “who is there” 

and “what they are capable of”. Both tools have their own advantage and drawbacks, 

which were compared and discussed in details in terms of the two major categories of 

high-throughput technologies: open and closed formats (Vieites, Guazzaroni et al. 2009, 

Roh, Abell et al. 2010, Zhou, He et al. 2015). “Open format” technologies refer to those 

do not require a priori profiling of the target aspects of sample community, such as 

high-throughput sequencing, fingerprinting, and mass spectrometry-based proteomic 

and metabolomic approaches. Results from these technologies frequently contain 

outcomes that are not previously described, such as new sequences, pathways, etc., 

enabling discovery of novel species, yet often have the problem of undersampling thus 
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loss of low-abundant species. On the contrary, “closed format” technologies use defined 

profiling based on previous knowledge to detect the existence and/or abundance of the 

species, or the level of realized functions, such as microarrays, Biolog EcoPlates, and 

quantitative PCR. These technologies do not recover novel molecular information from 

the sample community but are usually more sensitive to rare members and can be more 

quantitative compared with open format applications. 

Thus, open-format metagenomic sequencing and closed-format microarray could be 

complementary tools, whose combination could comprehensively profile environmental 

microbial samples in high resolution (Zhou, He et al. 2015). Such profiling will aid to 

address fundamental microbial ecology questions, such as community diversity and 

succession, as well as link the molecular information to ecosystem functions. This also 

enables the exploration of complex microbial interactions through network inference 

based on co-occurrence and abundance patterns, from which keystone species with 

ecological importance could be identified.   

1.3 High-throughput sequencing and challenges 

Next generation sequencing (NGS), or high-throughput sequencing technology, utilizes 

the sequencing by synthesis (SBB) approach to track the identity of the fluorescently 

labeled nucleotide during its addition to the nucleotide chain. It allows massively 

paralleled detection of millions of sequences in a single run, revolutionized the 

sequencing ability of classic Sanger chain-termination method. NGS technology 

includes several platforms, such as Illumina, Roche 454, SOLiD sequencing, among 

which Illumina has become the most high-throughput, cost- and time-effective, and 

popular one in many research areas including microbial ecology (Metzker 2010, 
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Shokralla, Spall et al. 2012). Equipped with the ability to get in-depth profiling of 

microbial community from the environmental sample, and discover new microbial 

species and functional modules, NGS technology has greatly facilitated microbial 

ecology studies by unraveling previously hidden information in the microbial 

community “black box”(Tiedje, Asuming-Brempong et al. 1999).  

NGS of DNA has two major applications: amplicon sequencing and metagenomics 

shotgun sequencing (Scholz, Lo et al. 2012). Amplicon sequencing surveys the PCR 

amplicons-based library of phylogenetic marker genes (e.g., 16S and 18S rRNA, ITS) 

or functional genes (e.g., nifH, amoA), but often introduces biased estimation during the 

required PCR amplification. Metagenomic shotgun sequencing avoids PCR and can 

recover sequence fragments from, theoretically, all over the genomes of the DNA 

samples. However, very deep sequencing, which is necessary to reveal microbial 

community functional composition in samples from complex systems, such as soil, post 

great computational challenge in terms of both data storage, transfer, management, and 

the retrieval of biologically meaningful information from the sequences (Scholz, Lo et 

al. 2012). Although the rapid development of bioinformatic tools and databases partly 

enabled the decipher of complex genetic codes, the under-standardized database, varied 

algorithms for each analysis step, and the need for intensive coding still create barriers 

for microbial ecologists to efficiently and accurately clean, analyze, and take 

information from the metagenomic sequencing output. Specifically, developing tools 

that provide efficient and accessible solutions for functional analysis of shotgun 

metagenomics data, with the focus on linking functional composition of the microbial 
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community to ecological functions and geochemical processes, is urgently demanding 

(Gonzalez and Knight 2012, Scholz, Lo et al. 2012). 

1.4 High-throughput DNA microarray and challenges 

As an alternative to NGS, DNA microarray technology has also been advanced and 

broadly used in microbial ecology studies to quantify the relative amount of large 

numbers of sequences of interest simultaneously (Zhou, He et al. 2015). The capacity 

(the number of different spots) of microarray slide kept increasing during the past two 

decades, allowing the detection of thus many different sequences in one hybridization. 

Since microarray is pre-designed per existing database, its output contains only the 

signal intensities (abundance) of known oligos, keeping the size of data relatively low. 

The processing of signal intensity values is usually standardized, even done 

automatically in developers’ software, hence time-saving. Most importantly, 

microarrays are highly sensitive in capturing low-abundance and in focal species, while 

efficiently discard any irrelevant information. Different types of microarrays are 

customized based on scientific questions. For example, PhyloChip uses taxonomic 

marker sequences to depict the composition of the microbial community, and GeoChip 

discloses the metric of biogeochemically important microbial functional genes, both 

widely applied on microbial communities from various habitats (Zhou, He et al. 2015). 

With the increasing size of sequence database, one challenge of microarray technology 

is to optimize the probe design to take advantage of the large capacity of the array for 

more accurate detection of more genes from more complex community. First, the 

coverage of sequences should be high to capture as many as possible fragments in the 

community that matches certain function or taxa. Second, the probe sequences should 



7 

 

be well distinguishable from each other to avoid non-specific hybridization. Third, 

multiple control probes should be designed and able to be used as the reference in data 

normalization. The second challenge for microarray technology is to develop easily 

accessible computer software that allows the quick and accurate design of customized 

array for different suits of scientific questions and hypothesis testing. All these tasks 

require heavy computational resources regarding the size and update rate of the current 

database. 

1.5 Inference of microbial association networks  

In almost any environment, microorganism cells are interacting with each other, or 

interconnected through various biotic and abiotic environmental factors (Atlas and 

Bartha 1986, Whipps 2001). For example, inside the sewage treatment active sludge, 

different types of microorganism form mutualism through substrate chain. Such 

interactions greatly shape the ecosystem functioning of the microbial community and 

represent another important dimension, besides the diversity and abundance, of a 

microbial community (Zhou, Deng et al. 2010, Widder, Besemer et al. 2014, Shi, 

Nuccio et al. 2016). In complex systems, such as soil, the interactions of microbes are 

extremely hard to observe, characterize and validate. With the assistance of high-

throughput metagenomic technologies and the accumulation of microbial community 

richness, abundance, and functional profiling records, it becomes increasingly attractive 

to find ways to detect and quantify the community interactions directly from these data 

without prior knowledge of the relationships. 

The data association network inference is among a number of methods that have been 

developed for characterizing microbial community interactions based on abundance 
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observations (Faust and Raes 2012). It offers the opportunity to examine meaningful 

interactions in large communities, although is not able to determine the causality 

between given pairs of variables. Two important processes in the inference of data 

association networks are 1) detection of data association; and 2) selection of threshold 

of data association strength (Faust and Raes 2012). Different methods can be used in 

these two steps, and the corresponding outcomes largely influence the properties of 

constructed network. Therefore, these methods should be carefully evaluated and 

validated before using them in drawing any biological conclusion. 

The detection of data association requires a fast, general and comprehensive technique 

for detecting and quantifying random variable associating patterns and strength. While 

earlier studies tended to only explore the linear relationships indicated by the Pearson 

Correlation Coefficient(Pearson 1901) (PCC), emerging studies applied various data 

association techniques to recover more complex data association (e.g. nonlinear 

dependence), which is broadly existed among ecological interactions (e.g., predation, 

competition and mutualism), extending the scope and precision of interactions that data 

association network can recover.  

Until recently, most studies have selected the association strength threshold empirically, 

so the constructed networks are inevitably subject to artificial deviations. To solve the 

problem, a random matrix theory (RMT)-based approach is developed to automatically 

and objectively detect such a threshold. RMT has been a powerful tool for identifying 

and modeling the phase transitions and dynamics with disorder and noise in complex 

systems, including biological systems. The applicability of the RMT in biological 

systems has been previously demonstrated for inferring metabolic, protein, functional 
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gene and microbial ecological networks (Luo, Zhong et al. 2006, Luo, Zhong et al. 

2006, Luo, Yang et al. 2007, Zhou, Deng et al. 2010, Zhou, Deng et al. 2011), and an 

RMT-based molecular ecological networks analysis pipeline (MENAP) constructed by 

Deng et al (Deng, Jiang et al. 2012) has been used to computationally facilitate the 

network inference. However, the current approach has several limitations. First, the 

MENAP is limited in detecting data associations other than linear correlation, as it relies 

on the PCC. Second, the MENAP doesn’t have any preprocessing step to remove 

compositional data bias. Third, the MENAP occasionally failed to detect critical 

thresholds occasionally. In addition, the MENAP calls critical threshold on each 

candidate cutoff without telling how good it is for the threshold, which is a lack of 

quantitative assessment, and made the inferred networks less interpretable. Therefore, 

for improving the inference of microbial data association networks, those limitations 

need to be addressed.  

1.6 Objectives of this study 

This dissertation aimed at addressing some of the technological and computational 

needs in two metagenomic methods, the functional gene array (FGA) and NGS for 

microbial community profiling, and developing algorithms for characterizing the 

microbial interactomes based on the data generated from the FGA and NGS platforms. 

Following summarized research focus of each chapter. 

In Chapter 2, we developed the Plant Associated Beneficial Microorganism Chip 

(PABMC), which the first high-throughput functional gene array (FGA) focusing on 

characterizing genes benefiting plants from plant growth promoting microorganisms 

(PGPMs).  In the PABMC, a total of 3,870 probes were designed and computationally 



10 

 

verified to be highly specific, which covered 34 functional gene families from six 

selected major functional categories, including plant growth-promoting hormones, plant 

pathogen resistance, antibiotics, antioxidants, drought tolerance, and others (e.g. elicitor 

of plant immune defense response). Meanwhile, the effectiveness of the PABMC was 

demonstrated in an application study to investigate PGPMs’ responses to Ageratina 

adenophora (A. adenophora) invasion in a natural grassland. The application found the 

changes in diversity, composition, and abundances of key genes in the microbial 

communities, which may promote the survival and growth of A. adenophora over native 

species on the site. 

In Chapter 3, we further developed a new generation of comprehensive and high-

density FGA, GeoChip 5.0, based on Agilent platform, for tackling challenges in the 

representation, specificity, sensitivity and quantitation in analyses of complex microbial 

communities. The full version of GeoChip 5.0 contains 161,961 probes covering 

approximately 370,000 representative coding sequences from 1,447 functional gene 

families that are involved in a diverse range of physiochemical and biogeochemical 

processes, for example, carbon and nitrogen cycling, contamination remediation, and 

antibiotic resistance. These genes were derived from functionally divergent broad 

taxonomic groups, including bacteria, archaea, fungi, protists, and viruses. Both 

computational and experimental evaluations were conducted, proving that GeoChip 5.0 

is highly specific, sensitive, and quantitative. Application of GeoChip 5.0 to 

contaminated groundwater samples indicated that it is effective and efficient in 

detecting the responses of microbial functional gene abundances and diversity to heavy 

metal contaminants, demonstrating its potential in promoting researches in human 
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health, agriculture, energy, climate change, ecosystem management, and environmental 

restoration.  

Chapter 4 presents an Ecological Function-oriented Metagenomics Analysis Pipeline 

(EcoFun-MAP), designed and developed to ease functional analyses of shotgun 

metagenome sequencing data derived from microbial ecology studies. The EcoFun-

MAP consists of reference databases of different types that enable use of bioinformatics 

tools with distinctive features, and has a selective coverage of functional genes that are 

important to ecological functions. Meanwhile, multiple predefined data analysis 

workflows were built on the databases with most updated bioinformatics tools, which 

allows to processing input sequencing reads, assign them to genes that are important to 

ecological functions. Furthermore, the EcoFun-MAP was implemented and deployed on 

High-Performance Computing (HPC) infrastructure with high accessible and easy-to-

use interfaces. In our evaluation, the EcoFun-MAP was found to be fast (multi-million 

reads/min.) and highly scalable, in the meantime accurate and precise. In addition, we 

showcase the effectiveness of the EcoFun-MAP by applying it to reveal differences 

among metagenomes from underground water samples and provide insights to link the 

metagenomic differences with distinctive levels of contaminants. 

Chapter 5 a generalized Brody distribution (GBD) based Random Matrix Theory 

approach (GBD-RMT approach) for inferring microbial data association networks. The 

GBD-RMT approach acquires the GBD unifying Wigner-Dyson and Poisson 

distribution with one single parameter, β, which can be used as a quantitative indicator 

of the transition progress of the NNSD. Maximum Likelihood Estimation (MLE) based 

method was used for obtaining the best estimation for the β. Meanwhile, the critical 
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transitions and thresholds were detected using trend analysis on the β dynamics 

generated from the snapshots of a series of data association matrix reductions with 

cutoff values from low to high. In the evaluation of the GBD-RMT approach, both in 

silico and real datasets were used for demonstrating the effectiveness of the approach. 

Comparisons were also made between the GBD-RMT approach and the previous 

approach (Luo, Zhong et al. 2006, Luo, Yang et al. 2007). In addition, the GBD-RMT 

approach was used for uncovering a remarkable linkage between the critical transition 

of β series and the plateau of scale-freeness from the inferred networks, and the linkage 

is showed to be statistically significant and universal in complex biological systems in 

our analysis.  

The conclusion chapter summarized the development of the two high-throughput FGAs 

for the specific and general purpose, respectively, the bioinformatic pipeline for 

function-oriented analysis of shotgun metagenome sequencing data and the 

computational approach for inferring data association networks. Overall, the work in 

this dissertation offered new and up-to-date technological and computational resources 

for advancing metagenomics studies in microbial ecology.  
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Chapter 2: Development of a Functional Gene Array to Characterize 

Plant Growth Promoting Microorganisms Beneficial to Plants 

2.1 Abstract 

Plant growth promoting microorganisms (PGPMs) can promote plant growth and 

suppress disease directly and/or indirectly by enhancing soil fertility and plant 

resistance to biotic and abiotic stresses thus may contribute to the success of invasive 

plants over native species.  However, PGPM is highly diverse in terms of both species 

richness and plant promoting mechanisms. Therefore, it is difficult to study the PGPMs 

changes along with environment shifts, and their subsequent impacts on plant 

performance and ecosystem functioning. Here we developed a microarray focusing on 

functional genes from PGPMs that are beneficial to plants, termed Plant Associated 

Beneficial Microorganism Chip (PABMC), to investigate soil PGPMs’ responses to the 

invasive plant species Ageratina adenophora (A. adenophora) invasion in a natural 

grassland. A total of 3,870 probes covering 34 functional gene families were designed 

in PABMC, including six categories: plant growth-promoting hormones, plant pathogen 

resistance, antibiotics, antioxidants, drought tolerance, and secondary benefits (e.g. 

elicitor of plant immune defense response). Computational analysis showed that 

~98% of the probes were highly specific at the species or strain level.  By applying 

PABMC to soil, we found that A. adenophora invasion increased the alpha diversity 

and shifted the composition of PGPM communities compared with what from the native 

site. The abundance of a key gene related to drought tolerance (tre_arc) was 

significantly increased by the invasion, while those for pathogen resistance (sid_arc and 

sid_fun) were significantly decreased. Different directions of significant changes were 
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observed in response to the A. adenophora invasion, for both antibiotic biosynthesis, in 

which abundances increased in two genes (lgrD and pabA) and decreased in three 

(lmbA, phzF and strR), and antioxidant biosynthesis, in which abundances increased in 

one gene (per_bac) and decreased in two (cat_arc and sod_nickel). These changes may 

promote the survival and growth of A. adenophora over native species in the site we 

studied. In summary, the PABMC provides a novel and high-throughput tool to 

characterize soil PGPM communities and was proved to be effective when applying in 

investigating PGPM changes under A. adenophora invasion.  
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2.2 Introduction 

Plant root exudates and plant debris incorporated into soils cooperatively affect soil 

microbial community composition, structure, diversity and functions (Grayston, Wang 

et al. 1998, Garbeva, Van Veen et al. 2004, el Zahar Haichar, Marol et al. 2008, 

Berendsen, Pieterse et al. 2012, Turner, Ramakrishnan et al. 2013, Chaparro, Badri et 

al. 2014, Shi, Nuccio et al. 2016). Meanwhile, soil microorganisms have detrimental, 

neutral or beneficial influences on plant growth and survival (Stacey and Keen 1995, 

Barka and Clément 2008, Van Der Heijden, Bardgett et al. 2008, Mendes, Kruijt et al. 

2011), though the nature of their influences may change according to plant types and 

environmental niches. Plant beneficial microorganisms in soil have been well reported 

to endow various benefits for plant health, contributing to the success of the beneficiary 

plants in natural or agricultural ecosystems (Davison 1988). For example, soil PGPMs 

can promote plant growth through releasing plant hormones (e.g. auxins, cytokinins, 

gibberellins, ethylene and abscisic acid) (Frankenberger Jr and Arshad 1995) or plant 

hormone precursors (e.g. 1-aminocyclopropane-1-carboxylate) (Lugtenberg and 

Kamilova 2009), prevent deleterious effects of soil-borne pathogens through generating 

siderophores (i.e. small iron-binding molecules) (Kloepper, Leong et al. 1980) or 

antibiotics (Glick 1995) productions, and assist plants in tolerating drought through the 

regulation of aquaporins to improve soil water status (Maurel 1997). PGPMs can also 

alter soil properties through solubilizing nutrients, reinforcing resistance of plants to 

stress, stabilizing soil aggregates, and improving soil structure (Rodrı́guez and Fraga 

1999).  
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PGPMs were reported to interact with invasive plants differently from their interactions 

with native plant species (Klironomos 2002, Callaway, Thelen et al. 2004, Van Der 

Heijden, Bardgett et al. 2008, Rout and Callaway 2009). They may mediate plant 

invasions directly or indirectly through diverse mechanisms including enemy escape 

(Klironomos 2002), allelopathic weapon (Cipollini, Rigsby et al. 2012), local pathogen 

accumulation (Eppinga, Rietkerk et al. 2006, Mangla and Callaway 2008), reinforced 

mutualism (Reinhart and Callaway 2004), native mutualism interruption (Stinson, 

Campbell et al. 2006, Callaway, Cipollini et al. 2008) and soil dynamics alteration 

(Ehrenfeld 2003). For example, compared with native species, some exotic invasive 

plant species were less suppressed by soil-borne pathogens (Van Grunsven, Van Der 

Putten et al. 2007), promoted certain soil pathogens to  impede seedling growth of the 

native plant species (Mangla and Callaway 2008), and disrupted native mutualistic 

plant-microbe interaction  (Stinson, Campbell et al. 2006). Therefore, understanding the 

interaction between PGPMs and plant invasions is essential to prevent further exotic 

invasions and facilitate the restoration of invaded ecosystems. There has been persistent 

interest (Callaway and Aschehoug 2000, Klironomos 2002, Callaway, Thelen et al. 

2004, Batten, Scow et al. 2006, Broz, Manter et al. 2007, Rout and Callaway 2009, 

Lorenzo, Pereira et al. 2013, Maron, Klironomos et al. 2014, Carey, Beman et al. 2015, 

Kowalski, Bacon et al. 2015, Gornish, Fierer et al. 2016, McLeod, Cleveland et al. 

2016) in investigating roles of soil microbiota in the spread of invasive species in native 

ecosystems. However, most of them used traditional methods (e.g. phospholipid fatty 

acid analysis) with low resolution (citation) or only focused on a few microbial species 

or mechanisms. Comprehensive coverage of PGPM or insights into responses of PGPM 
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metagenomes to plant invasions is still lacked and our understanding of interactions 

between PGPMs and invasive plants was still limited. 

It remains challenging to characterize soil microbial communities due to the enormous 

diversity and as-yet-uncultivated nature of the majority of microorganisms (Whitman, 

Coleman et al. 1998, Gans, Wolinsky et al. 2005, Schloss and Handelsman 2006, 

Roesch, Fulthorpe et al. 2007). Characterizing PGPMs is even more difficult because 

they are highly diverse in plant promoting mechanisms, and usually less abundant in the 

microbial community. Functional gene array-based technologies, such as GeoChip, 

have been shown to be as reliable and comprehensive tools to analyze the functional 

diversity, composition and structure of microbial communities (He, Gentry et al. 2007, 

Zhou, Kang et al. 2008, Van Nostrand, Wu et al. 2009, Waldron, Wu et al. 2009, Wang, 

Zhou et al. 2009, He, Deng et al. 2010, He, Xu et al. 2010, Lu, He et al. 2012, Trivedi, 

He et al. 2012, Zhou, Liu et al. 2013, Tu, Yu et al. 2014). It can harness the unique or 

conservative regions of the genes encoding key enzymes involved in the synthesis of 

the metabolites that can be used as indicators to detect and identify gene hosts. Since 

most PGPMs benefit plant growth and survival through distinctive metabolites, it is 

possible to use functional gene array to detect microbial functional genes beneficial to 

plants. To our knowledge, however, no functional gene array has been developed so far 

to target PGPMs functional genes specifically.  

In this study, we developed a specific functional gene array, termed Plant Associated 

Beneficial Microorganism Chip (PABMC), focused on key functional gene families 

involved in plant beneficial metabolite synthesis for investigating PGPMs. We 

computationally evaluated and verified the specificity of the PABMC based on the 
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sequence identity, continuous matching stretch, and hybridization energy. The 

developed PABMC was used for study changes of PGPMs along with different 

intensities of plant invasion in a natural grassland in southeast China where the rapid 

expansion of Ageratina adenophora (A. adenophora) has been occurring, and in the 

most serious cases, transforming the diverse local community into monoculture and 

posing a serious threat to native biodiversity and productivity. As demonstrated in this 

study, the PABMC provides an effective high-throughput tool for characterizing 

microbiomes of PGPM and obtaining insights into their diversity, composition, and 

structure. 

2.3 Materials and methods 

2.3.1 Designing and selecting oligonucleotide probes for the PABMC 

Oligonucleotide probes (50-mers) targeting microbial genes benefiting plants were 

designed and selected for the PABMC based on a scheme (Figure 2.1) that has been 

used and validated for efficient functional gene array development (He, Gentry et al. 

2007, He, Deng et al. 2010, Tu, Yu et al. 2014). First, functional gene families of 

interest were selected from the literature, including those that play crucial roles in the 

synthesis of metabolites benefiting plants through pathogen resistance, plant hormone 

promotion, antibiotic activity, stress tolerance and other processes. Keywords related to 

these gene families were identified, and keyword-based queries were manually crafted 

and submitted for protein sequence retrieval from the NCBI online public databases (i.e. 

GenBank). Next, seed sequences were manually chosen to build profile hidden Markov 

models and verify coding sequence (CD) candidates using HMMER 2.3.2 (Eddy 1998). 

Oligonucleotide probes were then designed to target corresponding nucleotide 
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sequences of the verified sequences using CommOligo 2.0 (Li, He et al. 2005). Each of 

the designed probes was further searched against NCBI nt and env_nt databases using 

BLAST programs in order to validate the specificity. Best probes from all valid ones 

were selected and then synthesized onto microarrays by Roche NimbleGen (Madison, 

WI). 

 

Figure 2.1 The scheme of the automated workflow constructing the PABMC. Similar 

procedure and criteria as described for GeoChip 3 (He et al., 2010) has been used for 

sequence retrieval and probe design and selection.  

2.3.2 Sample collection, DNA preparation, and microarray hybridization  

Nine bulk soil samples were collected from an A. adenophora invaded region in 

Yunnan province, China in December 2010. As shown in the sampling map, Figure S 

1), three replicated samples (A1 - A3) were collected from center of a patch where A. 

adenophora was dominant (coverage of A. adenophora ≥ 60%, age of invasion ≥ 5 

years); three replicated samples (AX1 - AX3) were collected from a mixed region 
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around the edge of the patch where A. adenophora and native plants co-existed 

(coverage of A. adenophora is between 10% to 30%, coverage of native plants is 

between 30% to 50%); and three replicated samples (N1 - N3) were collected from area 

outside the patch which was not invaded by A. adenophora but dominated by native 

plants (coverage of native plants ≥ 40%). The DNA preparation and microarray 

hybridization in study used a procedure that was described previously in details (Tu, Yu 

et al. 2014). Briefly, soil DNA was extracted and purified using previously described 

methods (Zhou, Bruns et al. 1996). The DNA (1.5 μg) was measured by PicoGreen 

(Ahn, Costa et al. 1996) and then labeled with Cy-3 and nucleotides (Wu, Liu et al. 

2006). After labeling, the DNA was purified and evaluated using a QIA quick 

purification kit (Qiagen) and NanoDrop (NanoDrop Technologies Inc.), respectively. 

Next, the DNA was dried and rehydrated with 2.68 µL sample tracking control buffer, 

and then were incubated, vortexed, and then centrifuged. The samples was mixed with 

hybridization buffer (7.32 µL) and 2.8% Cy5-labeled CORS target (Tu, Yu et al. 2014). 

The samples (6.8 µL) were then loaded to the array and hybridized at 42°C 

approximately 16 h with mixing (Tu, Yu et al. 2014). 

2.3.3 Microarray data pre-processing 

The hybridized microarray slides were scanned and imaged using a NimbleGen MS 200 

Microarray Scanner (Lu, He et al. 2012). Resulting images were then gridded using 

NimbleScan software (Roche NimbleGen) with a prepared gridding file. In order to 

remove noise and obtain more reliable microarray data for further analyses, probes with 

the coefficient of variance (CV) greater than 0.8 were removed.  Remaining probes 

were considered positive if their signal-to-noise ratio (SNR; (probe signal-
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background)/background SD;) was at least 2 as previously described (Cui, Lewis et al. 

2008). Signal intensity of each spot across all arrays was normalized to the same level 

with the mean signals of pre-spiked CORS probes (Liang, He et al. 2010). All 

hybridization data are available at the Institute for Environmental Genomics, University 

of Oklahoma (http://ieg.ou.edu/4download/). 

2.3.4 Statistical analysis 

Preprocessed microarray data obtained from each environment sample were used for 

statistical analyses by the vegan package in R 2.9.1 (Team 2012). Plant beneficial gene 

diversity was calculated using functional gene richness, Simpson’s index, and Shannon-

Wiener’s diversity index. Non-metric Multidimensional Scaling (NMDS) analysis was 

used to determine the overall changes in the occurrence and distribution of plant 

beneficial genes in each microbial community (Zhou, Kang et al. 2008). Three different 

non-parametric analyses for multivariate data were performed to measure the overall 

differences of community functional gene structure among samples from regions 

suffering different invasion levels: 1) analysis of similarities (ANOSIM) (Clarke and 

Ainsworth 1993), 2) non-parametric multivariate analysis of variance using distance 

matrices (ADONIS) (Anderson 2001), and 3) multi-response permutation procedure 

(MRPP) (McCune, Grace et al. 2002, Mielke and Berry 2007). Bray-Curtis similarity 

index was used to calculate the distance matrix for all three methods. The multivariate 

dispersion of functional gene for each site was estimated using the Marti Anderson's 

PERMDISP2 procedure (Anderson 2006), which was based on the Euclidean distances 

between site samples and the site centroid on the principal coordinate axes. Beta 

diversity for each site was estimated using Whittaker's definition (Whittaker 1960) by 

http://ieg.ou.edu/4download/
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dividing gamma diversity (total functional gene richness) by alpha diversity (mean 

functional gene richness). Transformation of signal intensity to Z-score was performed 

for each probe across all samples, and then all probes were clustered using complete-

linkage based hierarchical cluster analysis (Defays 1977) for signal intensity contrasting 

in a heat map. The significance of functional gene abundance differences between 

control and treatment samples was evaluated using the LSD test.  

2.4 Results 

2.4.1 Summary of PABMC probe design 

The development of the PABMC started from ~130,000 amino acid sequences retrieved 

from NCBI protein database using manually crafted keyword query, and 42,605 of them 

were confirmed as valid targets for coverage of the PABMC. Further, about 20,000 

coding sequences in NCBI nucleotide database were found to match up with confirmed 

protein targets and selected for probe design. More than 100,000 50-mer 

oligonucleotide probes were designed and then searched for specificity verification. 

Finally, a total of 3,870 best targeted probes were selected for synthesizing the PABMC 

in this study. These probes targeted 6,178 genes, coding sequences from 34 gene 

families, and are capable of detecting and identifying 1,761 PGPM species or strains, as 

listed in Table 2.1. Among these, 1,096 (28.3%) probes are gene-specific, targeting 

only a single gene sequence, while 2,774 (71.7%) probes are group-specific, targeting 

two or more gene sequences sharing a very high similarity among them. The PABMC 

also has both positive and negative controls for hybridization validation and data 

normalization, including 640 positive control probes (80 replicates × 8 degenerate 

probes) targeting 16S rRNA sequences, 1689 negative control probes specifically 
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targeting seven hyperthermophile genomes, and common oligonucleotide reference 

standard probes for data normalization and comparison.  

 

Figure 2.2 PABMC design results yielded from each intermediate step (timeline is from 

left to right). The PABMC development started from 123,823 candidate sequences, and 

only 42,605 sequences were confirmed to be sequences of interest using Hidden 

Markov Model screening. 20,583 nucleotide sequences were found on the basis of 

confirmed protein sequences, and 102,948 raw probes were designed. Finally, 3,870 

probes have been selected for PABMC synthesis. 

2.4.2 Selected functional genes for PABMC 

Based on beneficial mechanisms, we divided selected genes into six functional 

categories: (i) pathogen resistance, (ii) promotion of plant hormone production, (iii) 

antibiotic synthesis, (iv) antioxidants, (v) drought resistance, and (vi) other beneficial 

processes. The rationale for selecting these functional groups is described below.  

(i) Pathogen resistance genes. PGPMs can protect plants from disease or reduce their 

susceptibility. Siderophores are small, high-affinity iron chelating compounds generally 

produced under iron-limiting conditions to scavenge iron (Bossier, Hofte et al. 1988, 

Neilands 1995). The synthesis of siderophores in PGPMs provides an important 

mechanism to suppress pathogens (Miethke and Marahiel 2007). Thereby, a total of 299 
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probes were developed for siderophore biosynthesis protein (sid), including 187 group-

specific probes and 112 gene-specific probes and covered 478 bacterial, archaeal and 

fungal siderophore biosynthesis protein coding sequences from 145 strains (Table 2.1).  

Table 2.1 Summary of plant beneficial gene probes on the PABMC 

Functional Category 

No. of 

function

al gene 

families 

No. of 

group- 

specific 

probes 

No. of 

sequence- 

specific 

probes 

No. of 

covere

d 

CDS’s 

No. of covered 

microbial 

species 

(strains) 

Pathogen resistance 3 187 112 478 145 

Antibiotic 10 695 114 1092 459 

Antioxidant 8 853 443 2640 430 

Drought tolerance 2 119 233 624 85 

Hormone promotion 8 725 138 1043 487 

other 3 195 56 301 155 

Total 34 2774 1096 6178 1761 

 

(ii) Plant hormone biosynthesis genes. Soil microorganisms can release plant hormones 

to accelerate plant growth, stimulate germination and elongation, break dormancy, 

stimulate bolting, and delay senescence (Srivastava 2002, Osborne and McManus 

2005). A total of 863 probes were developed for hormone production genes, including 

725 group-specific probes and 138 gene-specific probes, covering 1043 gene sequences. 

Functional gene families chosen in this section include those coding gibberellin 

biosynthesis protein (gas), necrosis and ethylene-inducing protein (nep), ethylene 

biosynthesis protein (eth), spermine (spe) biosynthesis protein, cytokinins biosynthesis 

protein (cks), and spermidine synthase (sped_bac for bacterial, sped_arc for archaeal 

and sped_fun for fungi).  

(iii) Antibiotic biosynthesis genes. Antibiotic biosynthesis by PGPMs serves as a 

competition strategy to protect themselves and suppress competitors (Raaijmakers and 

Mazzola 2012), from which plants may receive benefits if their antagonistic microbial 
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counterparts or pathogens were suppressed. A total of 809 probes were selected and 

designed for antibiotic activity related genes. These included 695 group-specific and 

114 gene-specific probes, covering 1090 nucleotide gene sequences. Antibiotic 

biosynthesis-related proteins covered bacilysin biosynthesis protein (bacA), linear 

gramicidin biosynthesis protein (lgrD), lincomycin biosynthesis protein (imbA), 

chloramphenicol biosynthesis protein (pabA), isopenicillin N synthesis protein (pcbC), 

phenazine biosynthesis protein (phzF), epidermin biosynthesis protein (epiA), 

pyrrolnitrin biosynthesis protein (prnB), subtilin biosynthesis protein (spaR) and 

streptomycin biosynthesis protein (strR).  

(iv) Antioxidant biosynthesis genes. Synthesizing antioxidant enzymes is a key defense 

mechanism for microorganisms to prevent reactive oxygen chemical species from 

producing hydroxyl radicals, thereby limit or prevent cell damage (Mates 2000). 

Antioxidant enzymes in soil can benefit plants not only by preventing oxidative injuries 

(Gianfreda 2015) to plant roots but also by protecting mutualistic plant-microbe 

symbiosis (Santos, Hérouart et al. 2000). Here, 1,296 probes were developed for 

antioxidant biosynthesis genes; 853 were group-specific and 443 were gene-specific. 

These probes were designed to cover 2,640 gene sequences encoding catalase (cat_bac 

for bacterial genes, cat_arc for archaea genes and cat_fun for fungal genes), peroxidase 

(per_bac for bacterial genes, per_arc for archaea genes and per_fun for fungal genes), 

and superoxide dismutase (sod).  

(v) Drought resistance genes. Trehalose is a natural alpha-linked disaccharide that can 

be synthesized by microorganisms to work as a water retainer in soil (Luyckx and 

Baudouin 2011). When cells experience dehydration, trehalose can form a gel phase to 
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prevent disruption of internal organelles, assisting plants with prolonged desiccation 

tolerance (Luyckx and Baudouin 2011). This functional category includes a total of 352 

selected probes; 233 were gene-specific and 119 were group-specific. These probes 

were designed to cover 624 gene sequences encoding trehalose synthase (tre_arc for 

archaea genes and tre_fun for fungal genes). However, no probes have been selected on 

the basis of our design criteria for covering bacterial strains.  

(vi) Secondary beneficial genes. Three genes families that can bring indirect benefits to 

plants were included in this catalog, including those encoding pectinase (pec) and 

lipopolysaccharides biosynthesis protein (lipo) as elicitors of plant immune defense 

response, as well as 1-aminocyclopropane-1-carboxylate deaminase (acsD) as 

precursors of plant hormone. A total of 251 probes have been designed for covering 301 

coding sequences of pec, lipo and acsD; 195 were group-specific and 56 were gene-

specific. 

2.4.3 Computational evaluation of specificity 

The specificity of all designed probes was assessed computationally with respect to 

sequence identity, continuous stretch length and free energy (He, Wu et al. 2005, He, 

Deng et al. 2010, Tu, Yu et al. 2014). The maximum identity, maximum stretch length, 

and minimal free energy of each probe to their non-target sequences were measured. 

Approximately 88% of the probes had < 60% maximum sequence identity to non-

targets, and only 4% of probes fell within the range of > 86%. About 6% of probes had 

more than 18 bases of maximum continuous stretch (He, Wu et al. 2005) and others 

(94%) with 17 or few bases. Only 0.6% had -35 ~ -30 kcal mol-1 free energy to non-

targets, and other (96%) with > -20 kcal mol-1 free energy to non-targets (Figure 2.3). 
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This assessment indicated most of the designed probes should have specific 

hybridization with their targets. Similarly, group-specific probe specificity was 

evaluated for their minimum sequence identity, minimum stretch length, and maximum 

free energy with their target sequences within a group. More than 97% of probes had a 

perfect identity to their targets, and only 2% of probes had stretch lengths shorter than 

35 bases and 1% of probes had higher than -60 kcal mol-1 free energy (Figure 2.3). The 

results indicated that a vast majority of group-specific probes were very close to their 

targets in identity, stretch length and free energy. All results here showed the designed 

probes should be specific to their targets.  

Table 2.2 Dissimilarity tests of soil microbial communities sampled from three (native, 

mixed and invaded) regions using three statistical methods based on all plant beneficial 

genes detected. 

Sample 
MRPP ANOSIM Adonis 

 P R P F P 

Among three groups 0.112 0.004 0.720 0.003 3.680 0.022 

Invaded vs. Mixed region 0.118 0.103 0.666 0.114 3.387 0.010 

Invaded vs. Native region 0.102 0.128 1.000 0.113 4.676 0.001 

Mixed vs. Native region 0.118 0.101 0.629 0.087 3.288 0.192 
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Figure 2.3 Computational evaluation assessed the specificity of all designed probes on 

the basis of sequence identity (a, b), stretch length (c, d) and free energy (e, f). Left 

panels (a, c, e) showed the assessment of sequence-specific probe specificity to the non-

target sequences.  Right panels (b, d, f) showed the assessment of group-specific probe 

specificity of deigned probes to their target sequences.  

2.4.4 Application of the PABMC to characterize PGPM communities under exotic plant 

invasion 

To understand how soil microbial communities respond to exotic plant invasion, we 

applied the developed the PABMC to analyze soil samples from native, mixed and 

invaded sites. A total of 1499 probes showed positive hybridization signals from the 

invaded site, 1521 probes from the mixed and 1411 probes from the native site. Plant 
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beneficial gene diversity was also disparate by the site. Three alpha diversity indices 

(gene richness, Shannon Index, and Simpson Index) were significantly higher in the 

invaded site than the native site, and no significant difference between mixed site and 

native site or between the mixed site and invaded site were found. The mixed site had 

greater alpha diversity variance (Figure 2.4) and beta diversity than other two sites 

(Figure 2.5). The NMDS analysis compared the overall composition and structure of 

plant beneficial gene in different sites. The results of NMDS provided a good fit of two-

dimensional ordination (stress value = 0.03) on plant beneficial gene dissimilarities, and 

Shepard stress plot showed that the dissimilarities were strongly correlated (R2 = 0.94) 

with the ordination distances (Figure 2.6). NMDS showed a clear separation by site, 

suggesting that the plant beneficial gene structure was altered by different intensities of 

exotic invasion (Figure 2.6). Three complementary non-parametric multivariate 

statistical tests revealed that the composition of soil microbial functional genes 

beneficial to plants differed significantly among three sites (MRPP: δ = 0.112, p = 

0.001, ANOSIM: R = 0.072, p = 0.003; ADONIS: F = 3.680, p = 0.001) or between any 

two pairs (Table 2.2). 

Further analysis of detected probes was presented in a heat map, showing that different 

sites had distinctive probe signal intensity distribution (Figure 2.7a). Analysis of gene 

families (Figure 2.7b) found that the abundance of tre_arc from the category of drought 

tolerance in the mixed and invaded sites was significantly higher than that on the native 

site. Meanwhile, the abundance of sid_arc was significantly lower in the invaded site 

than in the native site. The mixed responses of gene abundance to A. adenophora 

invasion were observed for antibiotic synthesis genes and antioxidant biosynthesis 
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genes. Among them, two antibiotic synthesis genes (lgrD and pabA) significantly 

decreased in the invaded site, while another three genes (lmbA, phzF and spaR) 

significantly increased. Similarly, the abundance of two antioxidant biosynthesis genes 

(cat_arc and sod_nickel) increased and one gene (perl_bac) decreased significantly. 

Nevertheless, the abundances of genes involved in plant hormone biosynthesis and 

other genes (pec, lipo and acsD) didn’t show any significant difference by the site. 

Overall, the PGPM community functional structure and some functional potentials were 

altered by the A. adenophora invasion, towards strengthened stress tolerance, but less 

pathogen resistance.  

 

Figure 2.4 Diversity of plant beneficial genes in microbial communities in samples 

from the A (active; yellow), AX (mixed; green) and N (native; blue) site, calculated as 

functional genes richness, Shannon index, and Simpson index. 
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Figure 2.5 Multivariate dispersion and beta diversity of plant beneficial gene. Samples 

from the A (yellow), AX (green) and N (blue) site was plotted on two principal 

coordinate axes, and centroid for each site was positioned by red dots. The Euclidean 

distance between each sample and the corresponding centroid was plotted using dashed 

black lines. The inner plot indicated that beta-diversity for each site based on 

Whittaker's definition. 

 

Figure 2.6 Non-metric Multidimensional scaling (NMDS) analysis of plant beneficial 

genes detected in A, A. adenophora invaded region; AX, A. adenophora and native 

plants mixed region, and N, native plants growing region. 
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Figure 2.7 (a) Heat map of probe signal Z-score transformed from signal intensity 

across all samples. All probe signal Z-scores were clustered using complete-linkage 

based hierarchical cluster analysis for contrasting purpose. (b) Normalized relative 

abundances of plant beneficial genes detected by the PABMC. Antibiotic and stress 

tolerance genes increased their abundances in the invaded samples, while the abundance 

of pathogen repressing genes decreased. 

2.5 Discussion 

In this study, we developed the PABMC and used it to investigate changes of plant 

beneficial genes in response to plant invasion. To our knowledge, PABMC is the first 

high-throughput functional gene array to characterize plant beneficial genes with 

comprehensive coverage in terms of plant beneficial genes and PGPM species. This tool 

was firstly applied in studying PGPM responses to plant invasion. Detecting and 

profiling soil microbial functional genes beneficial to plants helps understand 
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interactions between PGPMs and plants in agricultural and natural ecosystems, which is 

of economic and ecological importance.  

Comparing with traditional methods (e.g. culturing dependent techniques)(Coats and 

Rumpho 2014), the PABMC has higher throughput as it allows to simultaneously detect 

a broad range of hallmark genes involved in a variety of mechanisms providing plant 

beneficial effects. Thus, functional profile of relatively more comprehensive PGPM 

communities can be captured with single hybridization of the PABMC.  

Other high-throughput platforms, like sequencing (either amplicon metagenomics 

sequencing or shotgun metagenomics sequencing) may be used to character PGPMs as 

well. However, 16S rRNA amplicon sequencing cannot discern PGPMs and obtains 

taxonomical or phylogenetical profiles for the whole soil microbial community, while 

functional gene amplicon sequencing might be restricted by a narrow inclusion of 

genetic markers that were insufficient for covering a majority of PGPM species. Also, 

detection of rare species or sequences in both methods is likely skewed by dominant 

species or contaminants, which might be a serious issue for profiling PGPMs which 

might be rare and unusual. Sensitivity and quantitativity issues for sequencing are 

mostly caused by selective PCR process that is a prerequisite for amplicon sequencing, 

but can be avoided for functional gene array. In contrast, functional gene arrays enable 

rapid and cost effective metagenomics comparative analysis across samples and 

ecosystems, which allows more investment in replication which is crucial for the 

reproducibility and success of metagenomics studies.  

The functional gene array based technologies (e.g. GeoChip (He, Gentry et al. 2007, 

He, Deng et al. 2010, Tu, Yu et al. 2014), PathoChip (Lee, Van Nostrand et al. 2013) 
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and StressChip (Zhou, He et al. 2013)) have been shown in a number of studies to be 

effective in studying composition, structure, diversity and dynamics of microbial 

communities and establishing linkages between microbial communities and 

environmental variables in a variety of ecosystems (Zhou, Kang et al. 2008, Hazen, 

Dubinsky et al. 2010, He, Xu et al. 2010, Zhou, Xue et al. 2012, Zhou, Liu et al. 2013, 

Xue, M. Yuan et al. 2016). The PABMC was developed in a way consistent with the 

development of GeoChip, which was computationally and experimentally evaluated to 

be specific, sensitive and quantitative in detecting taxa and functional genes (He, Gentry 

et al. 2007, He, Deng et al. 2010, Lee, Van Nostrand et al. 2013, Zhou, He et al. 2013, 

Tu, Yu et al. 2014). 

Specificity is one of the most critical issues in functional gene array technology, 

especially for characterizing microbial communities with complicated structures and 

composition. In PABMC development, probe specificity control was evaluated and 

verified using criteria that were proved to work in previous GeoChip versions (He, Wu 

et al. 2005, Liebich, Schadt et al. 2006). These criteria used for designing both gene-

specific and group-specific probes have been well evaluated and established in a series 

of experiments (He, Wu et al. 2005, Liebich, Schadt et al. 2006). Testing results of 

previous studies showed that probes designed with these criteria were highly specific 

for sequence targeting (He, Wu et al. 2005, Liebich, Schadt et al. 2006). In addition, 

sequence overall similarity, continuous identical subsequence length and hybridization 

free energy were considered at the same time for high quality probe selection by 

CommOligo 2.0, ensuring all designed probes were specific to all coding sequences in 

the input file and with similar thermodynamic properties (Li, He et al. 2005). 
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Additionally, all designed probes were checked against the NCBI nt and env_nt 

databases for specificity, and non-specific probes were discarded. Fourth, computational 

evaluation showed that only a trivial portion of the designed probes (~1%) were close to 

the thresholds of previously established criteria (He, Wu et al. 2005). During the probe 

design, the total number of probes initially designed was more than 100,000, but only 

~3.6% of them were used for PABMC synthesis after specificity verification and probe 

selection, and this should greatly reduce the risk of non-target cross hybridization. 

During preprocessing of hybridization results, the cutoff of probe intensity was set at 

1,000 and the cutoff of SNR was set at 2, which should also reduce the false positives 

(He, Deng et al. 2010, Lu, He et al. 2012). 

Exotic plant invasion causes regional aboveground biodiversity loss. To investigate the 

effectiveness of PABMC and responses of PGPMs to the exotic plant invasion, the 

PABMC was applied to characterize soil microbial communities from a region have 

been invaded by A. adenophora. It uncovered the impacts of plant invasion on 

microbial communities harboring plant beneficial genes, and offered metagenomic 

insights into how invasive plant interacted with and receive benefits from PGPMs and 

eventually established successional success. Composition and structure of plant 

beneficial gene in the invaded site is different from what in the native site, suggesting 

PGPM community was shifted and its diversity was increased by the A. adenophora 

invasion. The A. adenophora invasion also promoted the diversity of plant beneficial 

gene, likely for its own good as microbial diversity was closely tied with plant 

production and other terrestrial ecological functions (Wagg, Bender et al. 2014, 

Delgado-Baquerizo, Maestre et al. 2016). The higher microbial diversity was likely 
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caused by the plant-microbe interactions in soil, especially negative feedback (e.g. 

allelochemicals toxin production), which are the forces reorganizing microbial 

composition, and leading to species replacement and diversification (Reynolds, Packer 

et al. 2003). This speculation was supported by a recent finding of A. adenophora may 

release allelochemicals in root exudates (Yang, Qiu et al. 2013). Once a more diverse 

PGPM community occurs in soil, more diverse forms of benefits may be unlocked to A. 

adenophora, and led to its successful invasion. 

Interestingly, the mixed site had greater the highest beta diversity than both the invaded 

and native site, suggesting PGPM community shift depends on the intensity of A. 

adenophora invasion. Because the mixed site could be seen as an intermediate state 

during the invasion, and PGPMs in the mixed site could be under the bilateral 

influences derived from both native plants and A. adenophora, different samples from 

the mixed site were possibly less homogenized as a result of the bilateral influences. 

This result is also consistent with a more general pattern that plant diversity promotes 

microbial beta diversity [50]. However, it may require data of multiple time points as 

snapshots for different invasion phases to confirm the implication.  

The abundance of plant beneficial gene was changed by A. adenophora invasion in a 

way that could favor the establishment of A. adenophora. The potential for drought 

tolerance increased in the invaded site. Yunnan province is under the seasonally arid 

climate (dry season usually falls between November and April), and an extreme drought 

prolonged over the period of 2009-2010 (Yang, Gong et al. 2012). Thus, water 

preserving mechanism may be important for the success of the invasion. Our results 

revealed that A. adenophora may also gain from escaping the local pathogen 
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suppression as a strategy to gain fitness. The pathogen resistance potential in the 

invaded site was significantly lower than in the native site, which may support the 

“Enemy Escape Hypothesis” (Keane and Crawley 2002). This hypothesis suggests that 

A. adenophora was not affected by or was less affected by the native pathogens. In 

addition, there were both significant increases (2 genes) and decreases (3 genes) in the 

abundance of antibiotic biosynthesis genes. We speculated that A. adenophora might 

actively overturn belowground antibiotic regulatory landscape by suppressing original 

antibiotic synthesizers established in the native site in favor of substitute synthesizers. 

However, further studies are required to examine A. adenophora root exudates, soil 

properties, and the surrounding microbiota in order to confirm these hypotheses.  

In conclusion, we developed the PABMC for detecting a broad range of plant beneficial 

genes from six categories, including plant growth-promoting hormones, plant pathogen 

resistance, antibiotics, antioxidants, drought tolerance, and secondary benefits (e.g. 

elicitor of plant immune defense response). We verified the specificity of the probes 

included in the PABMC was highly specific in the computational evaluation. In the 

showcase study to investigate PGPM communities in natural sites where have been 

invaded by A. adenophora, PGPM communities were shifted towards contributing to 

the success of A. adenophora invasion with increased diversity of genes benefitting 

plants, and changed relative abundance of genes in various categories, demonstrating 

PABMC as a powerful tool for characterizing the composition and structure of PGPM 

communities. It is also important to keep the PABMC updated for analyzing complex 

PGPM communities by incorporating more PGPM strains, and more plant beneficial 
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functional genes and categories in the future, if they will become state-of-art knowledge 

for PGPM study.  
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Chapter 3: Ultra-sensitive and -quantitative Detection of Microbial 

Populations in complex communities with New Functional Gene 

Arrays 

3.1 Abstract 

The rapid development of high-throughput metagenomic technologies over the past 

decade has greatly extended our understanding of complex microbial systems. While 

remarkable advances have been made in the development of high-throughput functional 

gene arrays (FGA) for analyzing complex microbial communities, challenges still 

remain in their representation, specificity, sensitivity, and quantitation. Here we 

developed a new generation of high-density FGA, GeoChip 5.0 based on Agilent 

platform, with two formats. The smaller format contained 60K probes (GeoChip 5.0S), 

majorly covering probes from carbon (C), nitrogen (N), sulfur (S), and phosphorus (P) 

cycling and energy metabolism probes. The larger format (GeoChip 5.0M) contained all 

probes in GeoChip 5.0S and expanded to antibiotic resistance, metal 

resistance/reduction, organic contaminant remediation, stress responses, pathogenesis, 

soil beneficial microbes, soil pathogens, and virulence. GeoChip 5.0M contains 161,961 

probes covering approximately 370,000 representative coding sequences from 1,447 

functional gene families. These genes were derived from functionally divergent broad 

taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 

genera), protists (219), and viruses (167 genera, mainly phages). Both computational 

and experimental evaluation with perfect match (PM)/mismatch (MM) probes indicated 

that all designed probes were highly specific to their corresponding targets. Good 

hybridization could be obtained with 100 ng DNA. Sensitivity tests revealed that as 
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little as 0.05 ng of pure culture DNAs was detectable within 1 µg of complex soil 

community DNA as background. This is equivalent to 0.005% of a population within a 

complex community, suggesting that the Agilent platform-based GeoChip is extremely 

sensitive. Additionally, very strong quantitative linear relationships were obtained 

between signal intensity and pure genomic DNAs (about 99% of probes detected with r 

> 0.9) or soil DNAs (about 97% of the probes detected with r > 0.9) within at least three 

orders of magnitudes. Application of the designed FGAs to a contaminated groundwater 

with very low biomass indicated that environmental contaminants (majorly, heavy 

metals) had significant impacts on the biodiversity of microbial communities.  The 

GeoChip 5.0 developed in this study is the most comprehensive FGA directly linking 

microbial genes/populations to ecosystem processes and functions.  
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3.2 Introduction 

Microorganisms are the most diverse and ubiquitous life on earth. They interact each 

other to form communities integral to various ecosystem processes and functions that 

are of critical importance in global biogeochemical cycling, human health, energy, 

climate change, environmental remediation, engineering, industry, and agriculture 

(Curtis, Head et al. 2003, Zhou, Deng et al. 2014). Despite their importance, however, 

determining microbial community structure and functions remains challenging for 

several reasons. First, microbial diversity is extremely high. Studies indicated that one 

gram of soil could contain 2,000 to 8.3 million species (Gans, Wolinsky et al. 2005, 

Schloss and Handelsman 2006, Roesch, Fulthorpe et al. 2007), a majority of which 

(>99%) have not been cultivated (Rappe and Giovannoni 2003). Numbers of microbial 

cells from environmental habitats are also extremely large, thus it is also impossible to 

directly count the cells. For example, such a number was estimated to be 1.2×1029 in the 

open ocean (Whitman, Coleman et al. 1998), 2.9×1029 in the sub-seafloor sediment 

(Kallmeyer, Pockalny et al. 2012), and 2.6×1029 in soil (Whitman, Coleman et al. 1998). 

These communities also represent a high diversity of functional potential (Sogin, 

Morrison et al. 2006). Establishing mechanistic linkages between microbial biodiversity 

and ecosystem functioning poses another grand challenge for microbiome research. To 

tackle these challenges, more advanced high-throughput metagenomics technologies for 

characterizing complex microbial communities are needed (Zhou, He et al. 2015).  

Most recently, several types of high-throughput technologies have been developed to 

characterize microbial communities, including next generation sequencing (Venter, 

Remington et al. 2004, Frias-Lopez, Shi et al. 2008, Caporaso, Lauber et al. 2012, 
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Loman, Misra et al. 2012, Weinstock 2012), microarrays (e.g., PhyloChip , GeoChip 

(He, Deng et al. 2010)), quantitative PCR (Arya, Shergill et al. 2005), mass 

spectrometry-based proteomics (Ram, VerBerkmoes et al. 2005), and metabolomics (de 

Raad, Fischer et al. 2016). These technologies have provided unprecedented insights 

into our understanding of microbial biodiversity and detection of novel processes and 

functions (Valdes, Glass et al. 2013). Among these, high-throughput sequencing and 

microarrays are two of the most widely used open and closed format technologies 

(Zhou, He et al. 2015), with distinct differences in susceptibility to random sampling 

errors and non-targeted DNAs, ability to detect novel organisms and rare species, 

capability of quantitation, and difficulties in data analysis (Zhou, He et al. 2015). 

Consequently, both have unique advantages and disadvantages in detection specificity, 

sensitivity, quantification, resolutions, and reproducibility (Zhou, He et al. 2015). It is 

highly beneficial if both types of technologies are used in complementary fashions to 

address fundamental questions in microbial ecology (Zhou, He et al. 2015).  

Over the last few decades, a variety of DNA microarray-based technologies have been 

developed for microbial detection and community analysis (He, Van Nostrand et al. 

2011), such as phylogenetic and functional gene arrays (Zhou 2003). Phylogenetic gene 

arrays often contain probes from phylogenetic markers such as rRNA genes, which are 

useful for taxonomical profiling in microbial communities and investigating 

phylogenetic structures. Functional gene arrays (FGAs) target genes involved in various 

functional processes (Zhou, He et al. 2015), which are valuable for assessing the 

functional composition and structure of microbial communities. Although various types 

of FGAs are available (Zhou, He et al. 2015), GeoChip, a generic FGA targeting 
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hundreds of functional gene categories important to biogeochemical, ecological, and 

environmental analyses, is mostly widely used. GeoChip has been shown to be an 

effective, sensitive and quantitative tool for examining the functional structure of 

microbial communities (Wu, Liu et al. 2006, Brodie, DeSantis et al. 2007, Zhou, Kang 

et al. 2008, Hazen, Dubinsky et al. 2010, He, Xu et al. 2010, Zhou, Xue et al. 2012) 

from a variety of environments (He, Deng et al. 2012, Trivedi, He et al. 2012), 

including soils (Zhou, Kang et al. 2008, He, Xu et al. 2010, Trivedi, He et al. 2012, 

Yergeau, Bokhorst et al. 2012, Zhou, Xue et al. 2012), aquatic ecosystems (Taş, van 

Eekert et al. 2009, Kimes, Van Nostrand et al. 2010), extreme environments (Wang, 

Zhou et al. 2009, Mason, Nakagawa et al. 2010), contaminated habitats (Leigh, Pellizari 

et al. 2007, Liang, Li et al. 2009, Liebich, Wachtmeister et al. 2009, Van Nostrand, Wu 

et al. 2009, Xiong, Wu et al. 2010, Xu, Wu et al. 2010, Liang, Van Nostrand et al. 2011) 

and bioreactors (Liu, Wang et al. 2010, Liu, Zhang et al. 2012). 

Although many technical issues regarding microarray technology have been solved, 

several critical bottlenecks still exist. One of the greatest challenges is that most of the 

probes on the current GeoChip were derived from genes/sequences available in publicly 

available databases and do not necessarily fully represent the diversity of the microbial 

communities of interest given the rapid expansion of sequence information in public 

databases. Consequently, it could be difficult to use the current GeoChip to fully 

address research questions in a comprehensive manner if the gene probes on the array 

do not represent the diversity of the microbial communities examined. Thus, further 

developments are needed to improve its representativeness and performance in terms of 

specificity, sensitivity, and quantitation. In this study, we aimed to develop a new 
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generation of more comprehensive and representative FGA, termed GeoChip 5.0. All 

previous functional gene families have been updated and more than 1,000 new 

functional gene families have been added, including those involved in metal 

homeostasis, secondary metabolism, virulence, and phylogenetic markers for fungi, 

protists, and viruses. The newly developed GeoChip 5.0 was systematically evaluated in 

terms of specificity, sensitivity, and quantitative capability. It was then applied to 

analyze the responses of groundwater microbial communities to high concentrations of 

U(VI) and nitrate as well as low pH. Our results demonstrate that the developed 

GeoChip is highly specific, sensitive, and quantitative for functionally profiling 

microbial communities.  

3.3 Materials and methods 

3.3.1 Sequence retrieval and probe design 

Sequence retrieval and probe design for GeoChip 5.0 were performed using the 

GeoChip design pipeline as described previously (He, Deng et al. 2010, Tu, Yu et al. 

2014). Briefly, a keyword query for each protein-encoding gene was submitted to the 

NCBI nr database to retrieve candidate sequences (Figure S 2). Next, sequences that 

had been experimentally confirmed for each protein/enzyme were selected as seed 

sequences, which were then used for building a Hidden Markov Model (HMM) to 

search homologs against and confirm each candidate sequence. Confirmed sequences 

were potential targets for probe design. Then all the targets were searched against the 

legacy probes from previous versions of GeoChip. This was done to determine if any 

targets were covered by legacy probes or if any legacy probes were no longer valid. All 

targets covered by legacy probes were directly assigned to the corresponding probe and 
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excluded from further probe design. Those legacy probes that were no longer valid were 

removed from the collection and the corresponding targets were released and reused for 

probe design. The probe design for novel targets (e.g. targets there were not previously 

covered by any legacy probes) and released targets were performed using a new version 

of CommOligo (Li, He et al. 2005). Two types of probes were designed: gene-specific 

(each probe targets one gene sequence); and group-specific (one probe targets two or 

more highly homologous sequences) (He, Deng et al. 2010). Finally, the newly 

designed candidate probes and all probes from previous GeoChip versions were 

searched against the NCBI nt/env_nt databases to verify their specificity.  

3.3.2 Microarray construction 

Two major formats of the GeoChip 5.0 array were developed.  The smaller format 

(GeoChip 5.0S) has ~60,000 probes per array. For testing various experimental 

parameters, various modifications of GeoChip 5.0S also were made by including 

various perfect match (PM) and mismatch (MM) probes from different pure cultures. 

The larger format (GeoChip 5.0M) has ~180,000 probes per array. All GeoChip 5.0 

microarrays were manufactured by Agilent (Santa Clara, CA, USA) using either the 8 x 

60 K (8 arrays per slide) or the 4 x 180 K (4 arrays per slide).  

3.3.3  DNA extraction, purification, and quantification. 

Genomic DNA from Desulfovibrio vulgaris and Clostridium cellulolyticum were 

extracted using a GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich) in accordance 

with the manufacturer's instructions and recommended pretreatment for Gram-negative 

bacteria. Microbial community samples used to evaluate GeoChip 5.0 performance 

were obtained from BioCON experimental site (Reich, Knops et al. 2001). The soil 
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microbial community DNA was extracted by freeze-grinding mechanical lysis (Zhou, 

Bruns et al. 1996) and purified using a low-melting agarose gel followed by phenol 

extraction. Groundwater samples from the Oak Ridge Integrated Field Research Center 

(Smith, Rocha et al. 2015) were used to evaluate the applicability of newly developed 

GeoChip.  

DNA quality was assessed based on absorbance ratios (A260/A280 and A260/A230) 

using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc., 

Wilmington, DE), and DNA concentrations were measured with PicoGreen (Ahn, Costa 

et al. 1996) using a FLUOstar Optima microplate reader (BMG Labtech, Jena, 

Germany). 

3.3.4 Target DNA preparation, amplification and labeling 

Earlier versions of GeoChip used 1,000 ng of DNA for hybridization, so this amount 

was used as a starting for point for the 5.0M version and 500 ng DNA was used for 

5.0S, since it is half the size of the larger version. The optimal DNA concentrations for 

hybridization were determined with different amounts of DNA templates, ranging from 

1 ng to 1000 ng. 

Whole community genome amplification (WCGA) was used to increase the available 

DNA if there was not enough DNA available. Aliquots (5-10 ng for groundwater 

samples) of DNA were amplified using the Templiphi kit (GE Healthcare) and a 

modified reaction buffer containing 0.1 mM spermidine and 267 ng ml-1 single stranded 

binding protein to improve the amplification efficiency (Wu, Liu et al. 2006). Samples 

were amplified for 6 h. For those groundwater samples without measurable DNA (by 

PicoGreen), the samples were concentrated to a volume of 10 µl and 2-5 µl was used for 
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amplification (initial amplification was attempted with 5 µl and then reduced if 

unsuccessful).  All amplified products (~2 µg) was used for labeling and hybridization. 

DNA (amplified or unamplified) was mixed with 5.5 µl random primers (Life 

Technologies, random hexamers, 3 µg/µl), brought to 35 µl with nuclease-free water, 

heated to 99 °C for 5 min, and immediately placed on ice. Labelling master mix (15 µl), 

including 2.5 µl of dNTP (5 mM dAGC-TP, 2.5 mM dTTP), 0.5 µl of Cy-3 dUTP (25 

nM; GE Healthcare), 1 µl of Klenow (imer; San Diego, CA; 40 U ml-1), 5 µl Klenow 

buffer, and 2.5 µl of water, was added and the samples were incubated at 37°C for 6 h 

in a thermocycler and then at 95°C for 3 min to inactivate the enzyme. After the 

addition of Cy3, samples were protected from the light as much as possible. Labeled 

DNA was cleaned using a QIAquick purification kit (Qiagen) per the manufacturer’s 

instructions and then dried down in a SpeedVac (45°C, 45 min; ThermoSavant). 

3.3.5 GeoChip hybridization 

Because there are two versions of GeoChip 5.0, GeoChip 5.0S and 5.0M, each version 

uses a different volume of hybridization buffer.  The volumes below are the standard 

hybridization conditions for the GeoChip 5.0M, volumes for the GeoChip 5.0S are in 

parentheses.  

Labeled DNA was resuspended into 27.5 µl (11.9 µl) of DNase/RNase-free distilled 

water, and then mixed completely with 99.4 µl (43.1 µl) of hybridization solution 

containing 63.5 µl (27.5 µl) of 2×HI-RPM hybridization buffer, 12.7 µl (5.5 µl) of 

10×aCGH blocking agent, formamide (10% final concentration), 0.05 μg/µl Cot-1 

DNA, and 10 pM common oligonucleotide reference standard (Liang et al., 2010). The 

solution was denatured at 95 oC for 3 min, and then incubated at 37 oC for 30 min. The 
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DNA solution was centrifuged briefly (1 min, 6000 x g) to collect liquid at bottom of 

tube and then 110 µl (48 µl) of the solution was pipetted into the center of the well of 

the gasket slide (Agilent).  The array slide is placed on the gasket slide, array side 

down, sealed using a SureHyb chamber and then placed into the hybridization oven.  

The arrays were hybridized at 67 oC for 24 h.  

After hybridization, slides were disassembled in room temperature Wash Buffer 1 

(Agilent), then transferred to fresh room temperature Wash Buffer 1 on a magnetic stir 

plate set at 200 rpm and incubated for 5 min.  Next, the slides were incubated at 37°C in 

Wash Buffer 2 (Agilent) for 1 min on a magnetic stir plate set at 140 rpm.  Slides were 

then slowly removed from the buffer.  The slide’s hydrophobic coating allowed the 

slide to shed the buffer and dry almost immediately.   

3.3.6 Microarray imaging and signal processing 

The slides were imaged as a Multi-TIFF with a NimbleGen MS200 Microarray Scanner 

(Roche NimbleGen, Inc., Madison, WI, USA) and the data was extracted using the 

Agilent Feature Extraction program, v 11.5.  Extracted data was then loaded onto the 

GeoChip data analysis pipeline (http://www.ou.edu/ieg/tools/data-analysis-

pipeline.html).   

Probe quality was assessed and poor or low signal probes were removed.  Probe spots 

with the coefficient of variance (CV; probe signal SD/signal) > 0.8 were removed. Then 

the signal-to-noise ratio (SNR; (probe signal-background)/background SD) was 

calculated. In general, a local background that represents the actual background signal 

for each spot is used for calculations. As suggested by Agilent, we used the average 

signal of Agilent negative control probes in each sub-array as background signal for all 
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probes in the same sub-array instead of the local background. If all of the Agilent 

negative control probes within a given sub-array fail to yield a valid signal, then the 

mean background signal intensity from one of the adjacent sub-arrays would be used 

instead.  The signal intensity for each spot was calculated for subsequent analysis by 

subtracting the signal intensity of Agilent negative spots within a sub-array. If the net 

difference is less than 0, the spots are excluded for subsequent analysis.  

Data normalization and quality filtering were performed with two steps (Liang, He et al. 

2010, Tu, Yu et al. 2014). First, the mean value of the signal intensity of the common 

oligonucleotide reference standard probes (CORS) (Liang, He et al. 2010) was 

calculated for each array, and then the signal intensity of samples was normalized using 

the maximum average value. Second, we calculated the sum of the signal intensity for 

each sample, and normalized the signal intensity of all spots in an array using the 

maximum sum value. A detailed description of the optimized GeoChip sample 

preparation, hybridization, imaging and normalization methods and reagents and 

equipment needed is in (Van Nostrand, Yin et al. 2016).  

3.3.7 Statistical analysis 

We used various statistical methods for GeoChip data analysis. Pearson correlation 

coefficient (r) was used for estimating linear relationships involved in this study. Three 

different nonparametric multivariate analysis methods, ADONIS (permutational 

multivariate analysis of variance using distance matrices), ANOSIM (analysis of 

similarities) and MRPP (multiresponse permutation procedure), as well as detrended 

correspondence analysis (DCA), were used to measure the overall differences of 

community functional gene structure (Zhou, Xue et al. 2012). The functional gene 
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diversity of microbial community was estimated using Shannon Index, Simpson Index, 

and functional gene richness. Pearson correlation coefficient was used for testing the 

dependence among the environmental factors, and hierarchical cluster analysis (hclust 

in R) was performed for identifying factor clusters. Canonical correspondence analysis 

(CCA) was used for analyzing the linkages between the functional gene structure and 

environmental factors. Welch’s t-test was used for testing level of significance of the 

difference in functional gene richness and alpha diversity between paired groups of 

samples without assuming unequal variances. 

3.4 Results 

3.4.1 Selection of gene families and categories for array fabrications 

All functional gene families from previous GeoChips (410) were updated and included 

in GeoChip 5. During this update, some gene families were combined or separated 

based on newly discovered gene families or increased sequence availability. For 

example, twelve dioxygenase gene families from GeoChip 4 were combined into three 

gene families due to similarities in the sequences of these families; norB was spilt into 

two gene families to differentiate a new subgroup discovered after the design of 

GeoChip 4. GeoChip 5.0 also greatly expanded overall gene and sequence coverage by 

adding more than 1,000 new gene families from functionally divergent broad taxonomic 

groups of bacteria, archaea, fungi, algae, protists, and viruses. The rationales for 

selecting various gene families were provided in various previous publications (He et al. 

2007; 2009; Tu et al. 2014;  (Lee, Van Nostrand et al. 2013), (Zhou, He et al. 2013, Van 

Nostrand, Zhou et al. 2016) (He, Gentry et al. 2007, He, Deng et al. 2010, Lee, Van 

Nostrand et al. 2013, Zhou, He et al. 2013, Tu, Yu et al. 2014).  
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GeoChip 5.0M covered a total of 1,447 gene families involved in carbon (135), nitrogen 

(28), sulfur (27), and phosphorus (7) cycling, antibiotic resistance (19), stress response 

(103), microbial defense (65), metabolic pathways (4), plant growth promotion (115), 

virulence (605), metal homeostasis (119), organic contaminant degradation (105), 

pigments (30) and electron transfer (11) (Table 3.1). The numbers of probes on 

GeoChip 5.0M were substantially more than those in GoeChip 4 for most of the 

functional gene categories, ranging from +29% to 368%. However, the numbers of 

probes in two gene categories (N cycling and organic contaminant degradation) 

decreased slightly due to more coverage by group-specific probes. From the 

taxonomic/phylogenetic perspective, GeoChip 5.0M had targeting probes from ~6,500 

bacterial strains (2721 genera), 282 archaeal strains (101 genera), 625 fungi (297), 362 

protists (219), 86 other lower eukaryotes (64), 1,364 viral strains (167 genera), and 

uncultured/unidentified organisms (Table 3.2). Compared to those in GeoChip 4, 

phylogenetic coverages in GeoChip 5 were substantially increased from 93% to 166%. 

Detailed information with respect to functional gene categories and phylogenies and 

their differences between GeoChip 4 and 5 were presented in Table S1 and S2.  
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3.4.2 GeoChip 5.0 design and overall features 

GeoChip 5.0 was in situ synthesized by Agilent with SurePrint technology. The spots 

are circular and are 30 microns in diameter. Compared to other array technologies, 

Agilent arrays have a wider dynamic range, higher sensitivity, and better quantitative 

capability. GeoChip 5.0S contained ~42K probes for ~95K target genes is focused on 

the analysis of key ecological and geochemical processes by covering only the core 

biogeochemical cycles (C, N, S, and P), and several important genes from other 

categories such as major facilitator superfamily antibiotics efflux pump genes 

(MFS_antibiotic), multidrug efflux transporter genes (Mex), nickel ABC transporter 

genes (nikA) and magnesium transporting ATPase (mgtA), degradation genes for 

relatively common contaminants (such as BTEX), and metals. GeoChip 5.0M is a more 

comprehensive design and contained ~162K probes from ~366K target genes, which 

covered all of the functions on the smaller array, also included a wider range of genes 

from additional functional categories across different organism groups (bacteria, 

archaea, fungi, algae, protists and viruses, Table 3.1 and Table 3.2). GeoChip 5.0M 

was designed for a general survey of environmental, ecological and biogeochemical 

processes. A variety of probes were designed as controls for synthesis, hybridization, 

gridding and data analysis in both GeoChip 5.0S and GeoChip 5.0M (Table 3.3). For 

instance, GeoChip 5.0M contained 12,144 (~7%) probes that served as functional 

features for microarray synthesis, quality control, and position. A total of 4,096 

degenerate probes targeting 16S rRNA sequences and 3,390 Agilent negative control 

probes served as positive and negative controls, respectively, for hybridization. To 

assist with normalization of signal intensity, GeoChip 5.0M had 3,378 probes targeting 
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seven sequenced hyperthermophile genomes and 1,280 common oligonucleotide 

reference standard probes (CORS) (Liang, He et al. 2010). The GeoChip array was 

arbitrarily divided into 256 (8 × 32; 5.0S) or 2,048 (8 × 256; 5.0M) grids. Control 

probes were placed so that each grid had 16 16S control probes and 5 CORS probes at 

specific positions. 16S control probes were splitted into two groups of 8, and were 

placed on each grid at the beginning of the first row and the end of the last row, 

respectively. CORS probes were placed on the central region of each grid. Each grid 

also had 2 or 3 Agilent negative control probes whose positions were randomized. The 

hyperthermophile and functional gene probes were randomly placed across the entire 

array in the available spot space. 

Table 3.3 Summary of probes in GeoChip 5.0M based on broad microbial groups. 

Entry GeoChip 4 
GeoChip 

5.0S 

GeoChip 

5.0M 

% increases in 

GeoChip 5.0M 

since GeoChip 4 

Manufacturers NimbleGen Agilent - 

Feature shape Square Circular - 

Feature size 13 × 13 µm 30 micron (diameter) - 

Maximum features per array  135,000 60,000 180,000 - 

No. of arrays per slide 12 8 4 - 

No. of genes 410 308 1,447 +253% 

No. of probes 82,074 41,781 161,961 +97% 

No. of sequence-specific probes 18,098 10,252 30,640 +69% 

No. of group-specific probes 63,976 31,529 131,321 +105% 

No. of covered CDS 141,995 94,829 365,651 +158% 

No. of covered strains 5247 4,859 9,195 +75% 

16S positive controls 640 1,536 4,096 +540% 

Controls from thermophiles 1,689 1,126 3,378 +100% 

Universal standards 6,000 480 1,280 -78.6% 

Agilent negative controls - 1,565 3,390 - 
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3.4.3 Optimization of hybridization conditions 

Hybridization for Agilent array with 60-mer probes is generally carried out at 65 ˚C to 

achieve good specificity with pure genomic DNAs (Barrett, Scheffer et al. 2004). 

However, GeoChip only uses 50-mer probes and is for detecting microbial populations 

in complex communities of unknown backgrounds, so hybridization conditions need to 

be optimized in terms of hybridization temperature, formamide concentration, and DNA 

amounts to achieve efficient and specific hybridization. First, the temperature is most 

important to determine hybridization specificity and efficiency. Different hybridization 

temperatures, ranging from 60 to 75 ˚C were tested (data not shown). Our results 

indicated that good hybridization can be achieved at 67 ˚C as judged visually (Figure S 

3). Also, although the standard Agilent hybridization protocol does not use formamide, 

our previous studies indicated that adding formamide into hybridization buffer is useful 

to achieve high-specific hybridization with low background hybridization for 

environmental DNAs (Wu, Thompson et al. 2001, Rhee, Liu et al. 2004, He, Gentry et 

al. 2007, He, Deng et al. 2010, Tu, Yu et al. 2014). Thus, different formamide 

concentrations (0%, 10%, 15%, 20% and 25%) were evaluated. Our results suggested 

that efficient hybridizations at 67 ˚C with 10% formamide were obtained (Figure S 3).  

Template DNA concentration also has significant impacts on hybridization efficiency. 

Thus, different amounts of community DNAs were directly labeled with fluorescent 

dyes and hybridized with GeoChip 5.0S or 5.0M. Although the number of spots 

detected increased as DNA concentration increased, a good percentage of spots (> 30%) 

were obtained at 500 ng and 250 ng for both GeoChip 5.0S and 5.0M (Figure S 4a, b) 

respectively. About 18% of spots were detected even at 100 ng community DNAs for 
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GeoChip 5.0M. Based on above the results, 500 ng or 1000 ng community DNAs were 

generally recommended for hybridization at 67 ˚C plus 10% formamide as our standard 

hybridization conditions. 100 ng for direct labeling is acceptable for GeoChip 5.0S if 

the DNA concentration is really low. 

3.4.4 Specificity of designed arrays 

To determine if all designed probes are specific to their corresponding targets, we first 

computationally evaluated the probe specificity against our three design criteria (e.g., 

sequence identity of ≤ 90%, continuous stretch length ≤ 20 bases, and free energy ≥ -35 

cal/mol). For sequence-specific probes, the maximum identity, maximum stretch length 

and minimal free energy to their closest non-target sequences were calculated. The 

majority of the designed sequence- or group-specific probes (82.2%) had less than 60% 

of maximum sequence identities to their non-target sequences in the NCBI databases (nt 

and env_nt) (Figure 3.1a).  Less than 1% of the designed probes showed 86–90% 

sequence identity with their non-target sequences in the databases, and no probes had 

>90% sequence identity with their non-target sequences (Figure 3.1a). Also, the 

majority of the designed probes (93.8%) had maximal continuous sequence stretches of 

less than 19 bp to their non-target sequences in the databases (Figure 3.1c). In addition, 

about 99.3% probes had minimal free energy larger than -30 kcal/mol (Figure 3.1e). As 

previously demonstrated experimentally, the designed probes would be highly specific 

(Liebich, Schadt et al. 2006) if they have < 90-92% sequence identity, < 20 bp 

continuous sequence stretch, and > -35 kcal/mol free energy to their non-target 

sequences in the databases. 
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Figure 3.1 Computational evaluation of the specificity of the designed probes based on 

sequence identity, length of contentious sequence stretch and free energy. The three 

parameters were evaluated by comparing the designed probes to the sequences in the 

databases.  (a) Maximal sequence identity (%) of a probe (sequence- or group-specific) 

to its closest non-target sequences. (b) Maximal sequence stretch length (bp) of a probe 

to its closest non-target sequences. (c) Minimal free energy (kcal/mol) of a probe to its 

closest non-target sequences. (d) Minimal sequence identity (%) of a group-specific 

probe to its targeted group sequences; (e) Minimal sequence stretch length (bp) of a 

group-specific probe to its targeted group sequences; and (f) Maximal free energy 

(kcal/mol) of a group-specific probe to its targeted group sequences.  

For group-specific probes, there are potential mismatches between a group-specific 

probe and the corresponding target sequences. Such mismatches could affect the 

hybridization efficiency and hence the subsequent sensitivity and quantification. Thus, 
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we further required that the group-specific probes to have a minimal sequence identity 

of >94%, minimal continuous stretch length of > 35bp, and maximal free energy of < -

60 kcal/mol (He, Deng et al. 2010, Tu, Yu et al. 2014). As shown in Figure 3.1b, d, and 

f, more than 94% of the designed group-specific probes had a sequence identity of ≥ 

98%, continuous sequence stretch of ≥ 45 bp, and free energy of ≤ -70 kcal/mol to their 

corresponding target sequences. All of the above results were consistent with the probe 

design criteria (He, Deng et al. 2010, Tu, Yu et al. 2014), showing that the designed 

probes were highly specific to their target sequences and efficient hybridization with 

their target sequences can be achieved under the optimal experimental conditions. 

The hybridization specificity of the designed arrays was further evaluated 

experimentally using perfect match (PM)/mismatch (MM) probes (Deng, He et al. 

2008). A set of 938 PM probes and a corresponding set of 938 MM probes each for the 

gram negative bacterium, Desulforvibrio vulgaris Hildenborough (DvH) (GC content 

~63%), and the gram positive bacterium, Clostridium cellulolyticum H10 (H10) (GC 

content ~37%) were added to a modified GeoChip 5.0S. Each MM probe was generated 

by dividing the PM probe into 5 equal segments, and then one mismatch was randomly 

introduced into each segment (Deng, He et al. 2008), for a total of 5 mismatches (10% 

difference) in each MM probe. The hybridization signals from the MM probes should 

represent non-specific cross-hybridization (i.e. background noise) to their corresponding 

PM probes (Deng, He et al. 2008). Previous studies suggested that any probes with a 

signal intensity ratio of PM/MM > 1.3 would be considered a positive hybridization 

signal (Hazen, Dubinsky et al. 2010). To test specificity, equal amounts (100 ng) of 

pure culture DNAs were mixed, labeled and hybridized in triplicate with the modified 
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GeoChip 5.0S. Under the hybridization conditions used (67 ˚C and 10% formamide), 

the majority of probes (96.8% for DvH and 95.1% for H10) had PM/MM ratios larger 

than 10 (Figure 3.2). Not a single PM/MM probe had a PM/MM ratio less than 1.3, and 

a very small portion (0.8% for DvH, and 1.2% for H10) of the PM/MM probes had 

PM/MM ratios less than 5. These results suggested that the background noise due to 

cross-hybridization is very small under the hybridization conditions used, and hence the 

designed arrays are highly specific. 

 

Figure 3.2 Experimental evaluation on the specificity of designed arrays with the 

perfect match (PM)/mismatch (MM) strategy. 100ng genomic DNAs was labeled with 

Cy5 and hybridized with a modified GeoChip 5.0S in triplicates. For each PM or MM 

pair probe, the net signal intensity was obtained by subtracting the signal intensity from 

Agilent negative spots within a sub-array from the raw signal intensity. The ratio for 

pair of PM-MM probes was estimated.  

3.4.5 Sensitivity of the designed arrays 

The hybridization sensitivity of the designed arrays was evaluated with genomic DNAs 

from DvH and H10. Pure culture DNAs (0.05, 0.1, 0.5, 1, 5, 10, 50, and 100 ng) were 
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mixed with soil DNAs from a grassland so that the total amounts of DNAs used for 

hybridization were all equal to 1,000 ng. The mixed DNAs were directly labeled with 

Cy5 and hybridized in triplicate with the GeoChip 5.0S containing ~1000 probes from 

DvH and H10 as described above.  

 

Figure 3.3 Sensitivity evaluation of the designed arrays with pure genomic DNAs. 

Various amounts of genomic DNAs from DvH and H10 (0.05 ng - 100 ng) were mixed 

with community DNAs from grassland soils, labeled with Cy5 and hybridized GeoChip 

5.0S in triplicate. GeoChip 5.0S contained 938 probes from DvH and H10 respectively. 

As shown in Figure 3.3, more than 90% (~932) of the pure culture probes were 

detected at a genomic DNA concentration of 0.5 ng (0.05% of the total community) for 

DvH and 5 ng (0.5%) for H10. Over 50% of the probes showed positive hybridization at 

a genomic DNA concentration of 0.1 ng (0.01%) for DvH and 0.5 ng (0.05%) for H10. 

A small percentage of probes (13.6% for DvH, 2.1% for H10) were still detected for 

both DvH and H10 at the lowest concentration of 0.05 ng (0.005%). For the low GC 

content organism (H10), hybridization sensitivity is roughly about 10 times lower than 

the high GC organism (DvH). Taken together, these results suggested that the designed 
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Agilent arrays are highly sensitive, with a detection limit as low as 5×10-4 ~ 5×10-5 

populations within a complex soil community.   

 

Figure 3.4 Quantitative evaluation of the designed arrays with pure culture and soil 

community DNAs. Various amounts of pure culture DNAs (0.05, 0.1, 0.5, 1, 5, 10, 50, 

and 100 ng) and soil community DNAs (1, 5, 10, 50, 100, 250, 500 and 1000 ng) were 

mixed with different amounts of background DNAs (soil DNAs and Salman sperm 

DNAs, respectively) so that the total amounts of DNAs are all equal to 1,000 ng. The 

signal intensity for each spot was corrected by deducting the signal from Agilent 

negative control, and any spots with 0 or negative values were discarded. A total of 937 

and 877 spots for DvH and H10 were included in this analysis respectively. (a) 

Relationship of total signal intensity over all detected spots to the amount of pure 

culture DNAs used. (c) Relationship of total signal intensity for selected representative 

spots to amount of pure culture DNAs used; (e) Distribution of determination 

coefficients (Pearson correlation coefficient, ρ) based on individual spots for pure 

culture detection. (b) Relationship of total signal intensity over all detected spots to the 

amount of soil community DNAs used. (d) Relationship of total signal intensity for 

selected representative spots to amount of soil community DNAs used; (f) Distribution 

of determination coefficients (Pearson correlation coefficient, ρ) based on individual 

spots for soil community detection.  
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3.4.6 Quantitation of the designed arrays 

The quantitative capability of the designed arrays was first evaluated with pure cultures 

of DvH and H10 in the presence of soil DNAs as background (see sensitivity test). Both 

signal intensity and DNA concentrations were log transformed.  The total signal 

intensity for all genes was highly correlated with the total DNAs used in hybridization 

for both DvH (Pearson correlation coefficient, r = 0.982) and H10 (r = 0.961) (Figure 

3.4a). Also, all of the individual genes detected showed significant correlations (r = 

0.824-0.999; p-value < 0.05) with DNA concentrations in at least more than three orders 

of magnitude. Extremely strong correlations between signal intensity and DNA 

concentrations were observed for some representative genes (Figure 3.4c). In addition, 

937 DvH and 877 H10 genes were detected in at least 6 concentrations, and about 99% 

of these detected genes had r > 0.9 (Figure 3.4e). These results indicated that the 

hybridization of the designed arrays is highly quantitative with pure culture DNAs in 

the presence of soil DNAs as background.  

The quantitative nature of the designed arrays was also assessed directly with soil 

DNAs. Different amounts of soil DNAs from a grassland (1, 5, 10, 50, 100, 250, 500 

and 1,000 ng) were mixed with Salman sperm DNAs as a background to make up 1,000 

ng DNA in total. The mixed DNAs were directly labeled with Cy5, and hybridized with 

GeoChip 5.0S. As with pure culture DNAs, strong correlations were observed between 

the total signal intensity and DNA concentrations used for hybridization (Figure 3.4b).  

A total of 2,496 genes were detected in the two highest concentrations (500 ng and 

1,000 ng) and across at least 4 of the rest of 6 concentrations. Among these, all of the 

genes detected on the GeoChip 5.0S showed significant correlations (p-value < 0.05) 



64 

 

between their signal intensity and DNA concentrations across at least three orders of 

magnitude.  Some genes even showed almost perfect correlations (Figure 3.4d). About 

97% of the genes had r > 0.9 (Figure 3.4f). Altogether, the above results suggest that 

the GeoChip hybridization with complex soil DNAs is also highly quantitative across a 

dynamic range of at least three orders of magnitude.  

3.4.7 Application of GeoChip 5.0 to analysis of contaminated groundwater microbial 

communities 

To demonstrate the usefulness of the developed FGAs, we examined the impacts of 

heavy metal contamination on groundwater microbial communities at the Department of 

Energy (DOE) Field Research Center (FRC) in Oak Ridge (TN, USA). The 

groundwater at this field site is heavily contaminated with radionuclides, dissolved 

organic matter, and nitric acid emitted during nuclear weapon development and 

processing. A total of 12 wells were selected, representing 4 different groups of 

contamination levels: no contamination (L0), low contamination (L1), intermediation 

contamination (L2), and high contamination (L3). A total of 41 physical, chemical, and 

biological variables were measured, such as heavy metals (e.g. uranium), pH, nitrate, 

and sulfide (Table S 2). Both DCA and clustering analysis showed that different groups 

of wells were distinctly different among them, and highly similar within individual 

groups (Figure S 5), indicating that the geochemistry and contaminants are quite 

different among these wells. 
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Table 3.4 Impact of contamination on the functional gene diversity and evenness. 

Functional gene diversity for each sample was estimated with Shannon Index, Simpson 

Index and functional gene richness, and was averaged for each contamination level and 

compared with each other. A consensus rank of functional gene diversity among three 

methods was given in the rightest column. Welch’s t-test for the difference between 

functional gene diversities and evenness of each pair of contamination levels. 

Functional gene diversity for each sample was estimated with Shannon Index, Simpson 

Index and functional gene richness. Statistical significance level was p-value equal to 

0.05 or below. The significant testing results were marked in red. 

Contamination 

Level 
Richness Shannon Index Simpson Index Evenness 

L0 52495 ± 2631.3 10.85 ± 0.05 0.9999806 ± 9e-07 0.99928 ± 7.1e-05 

L1 44517 ± 959.6 10.69 ± 0.02 0.9999772 ± 5e-07 0.99938 ± 1.1e-05 

L2 40166 ± 3298.3 10.59 ± 0.08 0.9999747 ± 2e-07 0.99942 ± 1.1e-04 

L3 26112 ± 1459.8 10.16 ± 0.05 0.9999612 ± 2e-07 0.99951 ± 3.9e-04 

Sample 

Grouping 

Welch’s t-test 

Richness Shannon Index Simpson Index Evenness 

t p t p t p t p 

L0 vs. L1 4.934 0.023 5.277 0.015 5.593 0.011 2.348 0.136 

L0 vs. L2 5.061 0.008 4.879 0.013 4.588 0.022 1.891 0.142 

L0 vs. L3 15.2 <0.001 16.187 <0.001 14.185 0.001 0.996 0.418 

L1 vs. L2 2.19 0.141 2.151 0.149 2.103 0.157 0.692 0.559 

L1 vs. L3 18.24 <0.001 15.378 0.001 12.421 0.004 0.575 0.623 

L2 vs. L3 6.75 0.008 7.512 0.002 7.813 0.001 0.367 0.744 

 

Since a very low amount of community DNAs were obtained from the highly-

contaminated wells, a small amount of community DNAs (5-10 ng) were amplified with 

Phi 29 (Wu et al. 2006). Then, all of the amplified DNAs (~2 µg) were hybridized to 

GeoChip 5.0M. A total of 20,295 genes were detected across all samples, varying 

significantly across different samples. As expected, both functional gene richness and 

Shannon-Wiener diversity decreased significantly as contamination increased (Table 

3.4).   

Microbial community functional structure was also quite different among these samples 

as shown in the DCA ordination plots (Figure S 6). Samples from each of the group 

wells, the background, low, moderate and high contaminant wells, were clustered 
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together but well separated from each other (Figure S 6). These results indicated 

contaminants have great impacts on the functional structure of groundwater microbial 

communities.  

 

Figure 3.5 CCA on the selected environmental factors and microbial functional gene 

structure. Top two axis (CCA1 and CCA2) were included, which accounted for 48.1% 

and 10.5% microbial functional gene structure variation, respectively. A total of 5 

environmental factors (U, pH, Cr, Sulfide and DOC) were selected from 41 measured 

variables based on correlation analysis, and 77.46% CCA inertia was constrained by the 

selected factors. 

CCA analysis was performed to further understand what environmental variables 

controlled the groundwater microbial community structure (Figure 3.5). In this study, a 

total of 41 environmental variables were measured and subjectively divided into 5 

major categories: environmental parameters (env. parameters), gas TCD, dissolved 

carbon (C), anion and metal ion (ENIGMA web site). Among these, many were highly 

correlated with each other and five major variable clusters were identified based on the 

correlation analysis (Figure 3.6a). A total of 5 variables, U, pH, Cr, Sulfide and DOC, 

were selected as representatives for the five clusters (boxed in Figure 3.6a) in 
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subsequent CCA analysis. CCA results showed the differences in the functional gene 

composition groundwater microbial communities were significantly (p-value < 0.001) 

correlated with changes in the selected variables (Figure 3.5). These selected variables 

could explain up to ~75% of total variations. Partial CCA analysis showed that U and 

DOC play critical roles in shaping microbial community structure (Figure 3.6b).   

 

Figure 3.6 (a) Heatmap of correlation (Pearson correlation) matrix among all 

environmental factors. The original values of conductivity, Cl, NO,3 SO4, Ag, Al, As, 

Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sr, U and Zn 

were log transformed due to the nature of the measurements. Factor clusters identified 

by hierarchical cluster analysis was boxed by the dashed black lines. (b) Partial CCA on 

the selected environmental factors and microbial functional gene structure. The 

significant models were marked in red. 

3.5 Discussion 

Although development and application of high-throughput metagenomics technologies 

(e.g. next generation sequencing, arrays, mass spectrometry-based proteomics) have 

revolutionized the capabilities for microbiologists to analyze microbial communities in 

the environment, various experimental and computational challenges still exist and 

further advances are needed (Zhou, He et al. 2015). Thus, in this study, we have 

developed a new generation of functional gene arrays (GeoChip 5.0) which contain 



68 

 

161,961 probes covering functional groups involved in microbial carbon (C), nitrogen 

(N), sulfur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, 

metal resistance/reduction, organic contaminant remediation, stress responses, 

pathogenesis and virulence as well as markers specific for viruses, protists, and fungi. 

To the best of our knowledge, this is the most comprehensive functional gene arrays 

currently available for studying microbial communities important to biogeochemistry, 

ecology, environmental sciences as well as human health.  

Compared with previous generations of GeoChip, GeoChip 5.0 has several improved 

features. First, several new functional categories were included, such as microbial 

defense, protist, plant growth promotion, pigments and metabolic pathways, to expand 

our ability to study the associated functional processes. Second, GeoChip 5.0 has a 

more comprehensive coverage in terms of the number of functional gene families and 

the number of targeted genes. The vast expansion of functional gene families will allow 

researchers to analyze more functional processes in more complex ecosystems. In 

addition, GeoChip 5.0 is in situ synthesized by Agilent with smaller spots with higher 

density (Table 3.3). All these distinct features make GeoChip 5.0 a more sensitive and 

comprehensive tool for analyzing complex microbial communities, and linking their 

composition with environmental variables and ecosystem functions.    

Specificity is one of most critical parameters for detection and is particularly important 

for analyzing complex environmental samples such as soils because there are numerous 

homologous sequences for each gene present in a sample. To achieve appropriate 

specificity, we used specific design criteria to improve specificity. First, seed sequences 

of each gene family were carefully selected to build HMM model to confirm the targets 
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for probe design, which should help exclude some of non-target sequences retrieved 

through bulk automatic downloading at the early stage of GeoChip 5.0 development. 

Second, multiple experimentally determined criteria based on sequence identity, 

continuous stretch length and free energy were simultaneously applied to probe 

selection to ensure that the selected probes have the highest specificity (He, Wu et al. 

2005, Li, He et al. 2005). Third, both sequence-specific and group-specific probes were 

designed using experimentally evaluated and established criteria (He, Wu et al. 2005, 

Liebich, Schadt et al. 2006). The specificity of each selected probe was verified again 

by searching against the NCBI databases. Probes from previous GeoChips were verified 

by searching against the updated GenBank databases.  By implementing the above 

quality control protocols, the final probe sets should be highly specific as demonstrated 

by the computational evaluation, which showed that only a very small portion (5%) of 

the designed probes were very close to the criterion thresholds, consistent with previous 

GeoChip versions (He, Wu et al. 2005, He, Gentry et al. 2007, He, Deng et al. 2010, Tu, 

Yu et al. 2014). Our experimental evaluation based on PM/MM strategy showed 

considerable differences (>95% PM probe signal intensities are 10-fold higher) of 

signal intensity between PM probes and MM probes for both high and low GC content 

genomic DNAs. Collectively, these results suggest that the probe design strategy used 

here and for earlier versions of GeoChip is extremely robust and capable of consistently 

producing highly specific probes regardless of the microarray platforms (He, Wu et al. 

2005, He, Gentry et al. 2007, He, Deng et al. 2010, Tu, Yu et al. 2014). 

Sensitivity is another important issue for detection. Due to the differences in printing 

technologies and hybridization protocols, the Agilent-based functional gene arrays 
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appear to be more sensitive than previous version of GeoChip (Wu, Thompson et al. 

2001, Rhee, Liu et al. 2004, Tiquia, Wu et al. 2004, Wu, Liu et al. 2006, Tu, Yu et al. 

2014). For the Agilent-based GeoChip, 0.2-1.0 µg community genomic DNA is enough 

for direct labeling and hybridization, which is not a problem for the majority of 

environmental samples. Also, our studies further showed a detection limit as low as 

5x10-4 ~ 5x10-5 populations can be achieved within a complex soil community. Such 

detection sensitivity is comparable to quantitative PCR.  Collectively, our results 

indicated that the Agilent-based functional gene arrays are extremely sensitive, and 

should be sensitive enough for analyzing environmental samples from many habitats 

such as soils, marine sediments, bioreactors and wastewater treatment plants as 

demonstrated in many previous studies (Zhou 2009, Zhou, He et al. 2015). If the DNA 

concentration is extremely low (as low as ~ 10 fg, ~2 bacterial cells), a modified 

method (Wu, Liu et al. 2006) could be used for amplification that assists with GeoChip 

hybridization. Although more variations could be introduced when extra steps are 

involved, the experimental results are still meaningful as demonstrated by the 

application of GeoChip 5.0 to the analysis of contaminated groundwater microbial 

communities.   

Effective meaningful ecological comparisons across different ecosystems require 

accurate quantitation of taxon and gene abundances. Thus, quantitation is another most 

important parameter for any detection technology. Since conventional PCR 

amplification is used in amplicon-based target sequencing, previous studies 

demonstrated that target gene sequencing is not or is less quantitative in complex 

communities (Zhou, Wu et al. 2011, Pinto and Raskin 2012, Tremblay, Singh et al. 
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2015). This is also consistent with the general consensus that traditional PCR 

amplification is not quantitative (Suzuki and Giovannoni 1996, Qiu, Wu et al. 2001). In 

theory, since no conventional PCR is involved in shotgun sequencing of whole 

communities, it is generally believed that shotgun sequencing should be quantitative 

(Zhou, Wu et al. 2011, Nayfach and Pollard 2016). However, due to high inherent 

variations of experimental protocols and uncertainty in selecting bioinformatics tools 

for analysis (Clooney, Fouhy et al. 2016, Kerepesi and Grolmusz 2016, Nayfach and 

Pollard 2016), it may be impossible to obtain absolute abundance estimations based on 

shotgun sequencing data alone (Nayfach and Pollard 2016). Different from sequencing-

based approaches, absolute abundance of genes can be estimated based on the signal 

intensity from array hybridization, which reflects the absolute abundance for the 

amounts of DNAs used for hybridization. This speculation is supported by the results 

demonstrated in this study. Highly quantitative results were obtained with both complex 

soil DNAs (r = 0.985) and the pure culture DNAs (r = 0.995) in the presence of soil 

DNAs as background. These results are also consistent with previous experimental 

evaluations with both DNAs and RNAs (Rhee, Liu et al. 2004, Tiquia, Wu et al. 2004, 

Wu, Liu et al. 2006, Brodie, DeSantis et al. 2007, Gao, Yang et al. 2007, He, Deng et al. 

2010). 

In summary, the developed GeoChip 5.0 contains ~160K probes, covering ~370K 

sequences in ~1500 gene families. It is the most comprehensive functional gene array 

available for dissecting the functional structure of complex microbial communities. 

Both computational and experimental evaluations demonstrated that the developed 

Agilent-based GeoChip is highly specific, sensitive, and quantitative for characterizing 
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microbial community functional composition and structure, and should be a powerful 

tool for linking microbial communities to various ecosystem functional processes. The 

developed GeoChip is a powerful tool for rapid, high-throughput, sensitive, quantitative 

and cost-effective analysis of microbial 

communities, and can be used a generic tool to address ecological questions important 

to human health, agriculture, energy, climate change, ecosystem management, and 

environmental restoration.  As previously discussed (Zhou, He et al. 2015), both 

sequencing-based open format and array-based closed format have different advantages 

and disadvantages in terms of specificity, sensitivity, quantitation, resolution, 

reproducibility and novel discovery. Thus, they should ideally be used in a 

complementary fashion to address complex ecological questions within the context of 

ecological, environmental and medical applications (Zhou, He et al. 2015). The 

functional gene arrays developed here is an important part of the integrated omics 

toolbox for microbial community analyses. 
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Chapter 4: The EcoFun-MAP: An Ecological Function Oriented 

Metagenomic Analysis Pipeline 

4.1 Abstract 

Functional analysis of deep shotgun metagenomics sequencing is computationally 

challenging. Here we present an Ecological Function oriented Metagenomic Analysis 

Pipeline (EcoFun-MAP), to facilitate analysis of shotgun metagenomic sequencing data 

in microbial ecology studies. The EcoFun-MAP consists of reference databases of 

different data structures, with a selective coverage of functional genes that are important 

to ecological functions. Meanwhile, multiple predefined data analysis workflows were 

built on the databases with most updated bioinformatics tools. Furthermore, the 

EcoFun-MAP was implemented and deployed on High-Performance Computing (HPC) 

infrastructure with high accessible and easy-to-use interfaces. In our evaluation, the 

EcoFun-MAP was found to be fast (multi-million reads/min.) and highly scalable, and 

capable of addressing disparate needs for accuracy and precision. In addition, we 

showcase the effectiveness of the EcoFun-MAP by applying it to reveal differences 

among metagenomes from underground water samples, and provide insights to link the 

metagenomic differences with distinctive levels of contaminants. The EcoFun-MAP is 

open for public use and can be found available at our website: 

http://zhoulab5.rccc.ou.edu:7999.   



74 

 

4.2 Introduction 

Next generation sequencing (NGS) technology has revolutionized metagenomics and 

microbial ecology studies due to immense improvements made in sequencing speed, 

throughput, and cost. It can produce a formidable number of raw reads during a single 

run, which allows in-depth profiling of microbial community from an environmental 

sample and leads to novel discoveries of microbial species. As NGS technology has 

been democratized to microbial ecologists for the past decade, numerous metagenomics 

studies have been enabled to investigate microbial composition, diversity, function, 

dynamics and interaction in diverse and complex environments. Recent remarkable 

examples include studies of microbial communities from tundra (Xue, M. Yuan et al. 

2016) and desert (Rasuk, Fernández et al. 2016) soil, Arctic marine sediments (Algora, 

Vasileiadis et al. 2015), deep-sea hydrothermal vents (Topçuoğlu, Stewart et al. 2016)  

and various hosts (e.g. coral reef). Indeed, NGS technology has facilitated microbial 

ecology studies in an unprecedented way, improved our understanding and mechanistic 

modeling of microbial community (Franzosa, Hsu et al. 2015), and established links 

between diversity and composition of microbial community and the biogeochemical 

state of ecosystem (Schimel 2016).  

NGS technology for metagenomics has two major applications: amplicon sequencing 

and shotgun metagenomics sequencing (Scholz, Lo et al. 2012). Amplicon sequencing 

typically relies on PCR amplification and can target both 16S rRNA genes and specific 

functional genes. It can quickly obtain a distribution profile of taxonomy or certain 

functional genes of an environmental sample at acceptable cost, but it has several 

limitations of which researchers have become more and more aware (Hong, Bunge et al. 
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2009, Sharpton, Riesenfeld et al. 2011, Wylie, Truty et al. 2012, Langille, Zaneveld et 

al. 2013, Logares, Sunagawa et al. 2014, Zhou, He et al. 2015). Most of those 

limitations stem from the selective PCR amplification, which may lead to partial, 

skewed or inaccurate profiles of microbial communities. Instead of being subject to 

limitations, shotgun metagenomics sequencing avoids selective PCR, thus it is capable 

of recovering most parts of a metagenome from an environmental sample, including 

both taxonomically and functionally informative fragments. Therefore, shotgun 

metagenomics sequencing may address the question of not only who are there, but also 

what they can do. This is highly desirable, because it paves a way to meet one of the 

most important goals in the field of microbial ecology: understanding and modeling 

microbial community despite the extreme diversity and complexity of the community, 

which is hardly possible to achieve without addressing both questions at the same time.  

However, fully revealing microbial community functional composition in samples from 

complex systems, such as soil, may require a commensurate depth of shotgun 

metagenomics sequencing, which brings computational challenges, especially to 

microbial ecologists. First, the sheer amount of shotgun metagenomics sequencing data 

is difficult to handle. A single sample can have the data size that is not convenient to do 

normal file operations, and metagenomics projects nowadays can have hundreds of 

samples, which may generate overwhelmingly big volume of data and easily cause 

trouble to store, manage and share. Second, processing and analysis of shotgun 

metagenomics sequencing data are complex and computationally intensive. A typical 

workflow may have major steps including quality assessment, poor read or base 

trimming, assembly (optional), binning (optional), gene prediction (optional), and 
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annotation. Each step is complicated by tool selections and detailed tool settings, and 

computational complexity of the step can be further dependent on multiple factors, such 

as tool algorithm, reference database size, sequencing platform (Oulas, Pavloudi et al. 

2015) and effectiveness of previous steps. Since delivery of increasingly large data 

volume by future NGS technology is expected, advances in informatics and 

computational resources are crucial to meet the requirement of ease and efficiency of 

functional metagenomics analysis, without which shotgun metagenomics studies will 

exhaust available resources and be greatly impeded by the computational bottlenecks.  

Propitiously, development of computational tools and database is rapid. Those 

frequently used computational resources for shotgun metagenomics analysis are 

available and provided in different forms, including standalone programs for specific 

steps of analysis (e.g. FastQC (Andrews 2010), Btrim (Kong 2011), LUCY2 (Li and 

Chou 2004), ABySS (Simpson, Wong et al. 2009), Meta-IDBA (Peng, Leung et al. 

2011), MetaVelvet (Namiki, Hachiya et al. 2012), IDBA-UD (Peng, Leung et al. 2012), 

Prodigal (Hyatt, Chen et al. 2010), FragGeneScan (Rho, Tang et al. 2010), NCBI 

BLAST (Altschul, Madden et al. 1997), BLAT (Kent 2002), Bowtie (Langmead, 

Trapnell et al. 2009, Langmead and Salzberg 2012) and Diamond (Buchfink, Xie et al. 

2015)), reference databases (e.g. NCBI NT and NR (Pruitt, Tatusova et al. 2005, Clark, 

Karsch-Mizrachi et al. 2016), KEGG (Kanehisa, Araki et al. 2008), eggNOG (Powell, 

Forslund et al. 2013), PFAM (Finn, Bateman et al. 2013) and SEED (Overbeek, Olson 

et al. 2014)), integrated analysis pipelines (e.g. IMG/MER (Markowitz, Chen et al. 

2014), MG-RAST (Glass, Wilkening et al. 2010), CAMERA (Seshadri, Kravitz et al. 

2007) and Parallel-META (Su, Pan et al. 2014)). While these resources are becoming 
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more powerful and efficient, there are still barriers hindering shotgun metagenomics 

analysis in microbial ecology. First, lack of computational skills and access to advanced 

computing hardware may cause difficulties for microbial ecologists taking advantage of 

standalone programs and databases. Even installation and configuration of these tools 

and databases can result in a non-trivial amount of work for data analysis novice. 

Second, reference databases are usually for general annotation purpose. As being 

general, those databases are inclusive to annotation needs from distinctive disciplines, 

but it can cause unnecessary computing cost, especially when the sizes of the databases 

is becoming exponentially large due to the explosion of sequencing project submission 

facilitated by NGS technology. Third, integrated analysis pipelines, particularly web-

based pipelines, are more accessible to users with less computational background, but 

most of the available pipelines are only offering graphic user interfaces or automatic 

solutions building upon aforementioned standalone tools and reference databases, which 

may be under-optimized or lack focus and efficiency for functional metagenomics 

analysis in field of microbial ecology. Nevertheless, few tools provided efficient and 

accessible solutions for functional analysis of shotgun metagenomics data with a clear 

focus on linking functional composition of microbial community to ecological functions 

and geochemical processes.  

Here to ease functional analyses of shotgun metagenomics sequencing data derived 

from typical microbial ecology studies, we developed an Ecological Function-oriented 

Metagenomics Analysis Pipeline (EcoFun-MAP), which is designed based on a 

functional gene-centric paradigm. To develop the EcoFun-MAP, we first carefully 

defined the coverage of the EcoFun-MAP by only including functional categories and 
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genes that were important to ecological functions and geochemical processes. Based on 

the coverage, then we collected and curated relevant nucleotide and amino acid 

sequences, and constructed reference databases of different data structures. Next, 

several data processing workflows were designed and build on the databases and 

different tools to provide flexible analysis for addressing disparate needs for speed or 

sensitivity. Then, the EcoFun-MAP was implemented on the basis of High-Performance 

Computing (HPC) infrastructure with web-based user interfaces. In this study, we also 

evaluated speed, accuracy, and precision of the EcoFun-MAP, and demonstrated its 

effectiveness by applying it to analyze metagenomes from underground water samples 

from wells where different levels of contaminants are present.  

4.3 Material and methods 

4.3.1 Selection of functional categories and genes 

We defined applicable scope of EcoFun-MAP and organized it into 15 major categories 

(detailed description and selection rationale in supplementary text) associated with 

geochemical processes and ecological functions that are important to environmental 

metagenomics studies, including Carbon (C), Nitrogen (N), Sulfur (S), and Phosphorus 

(P) cycling, antibiotic resistance, organic contaminant degradation, metal homeostasis, 

stress response, microbial defense, electron transferring, plant growth promotion, 

virulence, protist, virus and others (metabolic pathways, pigment biosynthesis and 

gyrB). We then selected and further categorized functional genes based on their roles in 

the major categories. Finally, three to four levels of organization have been generated 

for selected functional genes. The highest level is the most general class, which is one 

of the 15 major categories, the lowest level is the most specific class, which is the 
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functional genes themselves, and in between are the primary subcategory and secondary 

subcategory. For example (Figure S 7), the C cycling category (144 genes) consists of 

three primary subcategories, including C degradation (60 genes), C fixation (61 genes) 

and Methane (23 genes). The primary subcategory of C degradation has 18 secondary 

subcategories (e.g. Starch degradation, Cellulose degradation and Lignin degradation), 

the C fixation has 8 secondary subcategories (e.g. Calvin cycle, Dicarboxylate/4-

hydroxybutyrate cycle and 3-hydroxypropionate bicycle), and the Methane has two 

secondary subcategories (i.e. Methane oxidation and Methanogenesis). Each secondary 

subcategory has a number of genes ranged from 1 to 21 (Figure S 7). 

4.3.2 Retrieval of functional gene sequences 

National Center for Biotechnology Information (NCBI) Entrez databases (Coordinators 

2013) were used as the source to retrieve functional gene sequences for constructing 

EcoFun-MAP databases. We manually crafted keyword-based query for each functional 

gene, and submitted it programmatically to the Entrez databases to search and retrieve 

both protein and nucleotide candidate sequences via Entrez Programming Utilities (E-

utilities) (Coordinators 2013). A typical such a query has been designed to consist of all 

aliases and variants names of the corresponding gene known to us, as well as other 

NCBI search constraints (e.g. organism), braces and logic operators (e.g. AND, OR and 

NOT). By carefully crafting the keyword-based query, relevance of research results can 

be improved as number of the results drop, therefore initial quality control can be 

achieved before the EcoFun-MAP database construction and computational cost can 

also be reduced for later processing. For example, a keyword based query for nifH gene 

(Figure S 8) has returned 34,077 nucleotide records and 31,522 protein records, which 
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were much less than 100,728 nucleotide records and 82,722 protein records in total 

returned by simply using “nifH” as the search query (retrieval test date: Jan. 23rd, 2017), 

and successfully excluded irrelevant records, such as Sinorhizobium sp. partial nodA 

gene (GenBank ID: Z95242.1) and Heliobacterium gestii partial anfH gene (GenBank 

ID: AB100834.1). Next, from records retrieved using keyword based query search, a 

minimum of 5 to a few hundred random seed sequences were selected manually on the 

basis of two criteria: 1) seed sequences must be experimentally confirmed in literature, 

and 2) seed sequences must be distinctive from each other. Finally, redundant records 

(i.e. records with identical GenBank ID and description) were removed. To this end, 

candidate sequences and seed sequences have been prepared for each selected EcoFun-

MAP gene and ready for EcoFun-MAP database construction. 

4.3.3 Construction of EcoFun-MAP databases 

 

Figure 4.1 The flowchart of construction of databases/datasets in development of the 

EcoFun-MAP. Cylinders represent starting (green), intermediate (blue) and ending 

(orange) databases. Grey rectangles represent processing steps in construction, which 

take content of databases or output of immediate upstream processing steps as input for 

processing.  

EcoFun-MAP databases were constructed using aforementioned candidate sequences 

and seed sequences. The construction workflow (Figure 4.1) has produced four ending 
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databases, including a seed sequence based DIAMOND index database (EFM-DI-DB-

S), a Hidden Markov Model (HMMs) based database (EFM-HMM-DB), a functional 

gene reference sequence based DIAMOND index database (EFM-DI-DB-R) and a 

functional gene reference sequence based NCBI-BLAST index database (EFM-BLAST-

DB). These four databases are differed in size and data structure, thus allow different 

processing speed and accuracy. To build the databases, first, the protein seed sequences 

for all covered functional gene families were pooled together and used for directly 

building the EFM-DI-DB-S. Meanwhile, the seed sequences of each functional gene 

family were aligned and the resulting alignment was used for building the EFM-HMM-

DB. Next, reference sequences of each functional gene family were selected from the 

protein candidate sequences by iteratively searching the candidate sequences against the 

EFM-HMM-DB. The iterative searching has following steps: 1) set up an initial e-value 

cutoff, 2) searching the candidate sequences against the EFM-HMM-DB using the e-

value cutoff, and 3) manually evaluate the resulting candidate sequences passed the 

searching, and adjust e-value cutoff for repeating the searching if needed. Due to the 

different set of sequences that each gene has, the best cutoff value for selecting 

reference sequences could differ among genes, therefore manual effort to make repeated 

adjustments is vital to ensure the quality of reference sequences. Finally, we clustered 

the reference sequences of each functional gene family into multiple Functional 

Clusters (fClusters) based on the sequence similarity, which were used for building both 

EFM-DI-DB-R and EFM-BLAST-DB.  
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4.3.4 Design of EcoFun-MAP workflows 

By taking advantage of disparate databases that have been constructed, a total of 5 

EcoFun-MAP workflows have been designed, which were labeled as ultra-fast, fast, 

moderate, sensitive and ultra-sensitive mode (Figure 4.2), respectively. All the 

workflows used the same procedure for preprocessing raw sequencing reads, in which 

quality trimming and gene prediction took place one after another. The preprocessing 

procedure should remove bases of low quality or ambiguity and reads of overly short 

length, and identify and extract gene fragments from input reads. Then route for further 

analyzing the preprocessed reads diverged to form the 5 modes. In the ultra-fast mode, 

the preprocessed reads were directly searched against the EFM-DI-DB-S database. The 

fast mode workflow extended the ultra-fast mode by further searching the EFM-DI-DB-

S annotated reads against the EFM-HMM-DB and then searching the resulting reads 

against the EFM-BLAST-DB. Similarly, in the moderate mode, the preprocessed reads 

were directly searched against the EFM-DI-DB-R. The sensitive mode workflow 

extended the moderate mode by further searching the EFM-DI-DB-R annotated reads 

against the EFM-HMM-DB and then searching the resulting reads against the EFM-

BLAST-DB. Finally, in the ultra-sensitive mode workflow, the preprocessed reads were 

first searched against the EFM-HMM-DB, and then searching the resulting reads 

against the EFM-BLAST-DB. In the end, all workflows provided an optional step to 

normalize counts of hits based on the average length of reference sequences from the 

gene families of the hits. The designed workflows relied on different databases and 

processing steps and should provide distinctive performance in terms of both speed, 
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accuracy, and precision, therefore allowed needed flexibility for data analysis in 

practice.  

 

Figure 4.2 The flowchart of five workflows in the EcoFun-MAP, which include mode 

of Ultra-fast (green background), Fast (purple background), Moderate (cyan 

background), Sensitive (green background), and Ultra-sensitive (red background). The 

preprocessing steps are on the grey ground. Cylinders represent starting (green), 

intermediate (blue) and ending (orange) databases. Grey rectangles represent processing 

steps in construction, which take content of databases or output of immediate upstream 

processing steps as input for processing. Shapes of yellow documents represent 

resulting matrix-like table. 

4.3.5 Experimental datasets 

Experimental datasets for showcasing and evaluating the EcoFun-MAP were sequenced 

from underground water samples from the Oak Ridge Integrated Field Research 

Challenge site (OR-IFRC; Oak Ridge, TN; http://www.esd.ornl.gov/orifrc/) (Chiachi 

Hwang et. al. 2009). The OR-IFRC site was established by the US Department of 

Energy for researching the long-term treatment of radionuclide wastes, which provides 

http://www.esd.ornl.gov/orifrc/)


84 

 

an ecosystem of extremity for studying microbiomes under gradients of salinity, pH and 

contaminants including Uranium, nitrate, sulfide, and other heavy metals (Chiachi 

Hwang et. al. 2009). In this study, we took a total of 12 water samples from 

underground wells that can be categorized into 4 contamination levels: no 

contamination (L0), low contamination (L1), intermediation contamination (L2), and 

high contamination (L3). Three samples were taken for each level.  Each sample was 

processed and microbial community DNA was extracted with the protocol described in 

previous studies. Metagenome of each sample represented by the extracted DNA was 

sequenced using the shotgun method with Illumina HiSeq 2000 sequencer. Upon the 

completion of HiSeq running, about 1,816.7 million of 150 bp raw reads were generated 

in total, which counted for about 272.5 Gbp data. Data size for each sample is ranged 

from about 79.6 Gbp (GW199) to about 266 Gbp (FW300). More information about 

HiSeq output for each sample can be found in supplementary table S2. 

4.4 Results 

4.4.1 Implementation and deployment of EcoFun-MAP  

A number of bioinformatics tools have been used for constructing the EcoFun-MAP 

databases, as well as developing the workflows. For constructing the databases, the key 

processing steps including the seed sequence alignment, HMM building, HMM 

searching, sequence clustering, DIAMOND index building and BLAST index building 

were implemented using ClustalW (Li 2003), hmmbuild (HMMER3 (Finn, Clements et 

al. 2011)), hmmsearch (HMMER3 (Finn, Clements et al. 2011)), CD-HIT (Li and 

Godzik 2006), DIAMOND (Buchfink, Xie et al. 2015) and MAKEBLASTDB 

(Altschul, Gish et al. 1990), respectively. All of the tools involved in the database 
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construction were used with default parameters, except the CD-HIT used for sequencing 

clustering, whose parameter regarding the within-cluster similarity of sequence was set 

to 95% explicitly. 

For developing the workflows, the key processing steps including quality trimming, 

gene predicting, HMM searching, DIAMOND index searching and BLAST index 

searching were implemented using Btrim, FragGeneScan+ (Rho, Tang et al. 2010), 

hmmsearch (HMMER3 (Finn, Clements et al. 2011)), DIAMOND (Buchfink, Xie et al. 

2015) and BLASTN (Altschul, Gish et al. 1990), respectively. The workflows have 

preset parameters for each processing step, and can also accept users’ changes on the 

parameters for meeting specific speed or accuracy needs. For example, the Btrim used 

in the quality trimming for all the workflows has two major parameters: moving 

window size and average quality cutoff within the window. The default moving window 

size was set to 5 and the default average quality cutoff was set to 20 by the EcoFun-

MAP, but users can lower the moving window size or set higher the average quality 

cutoff to increase the quality of trimmed reads.  

 

Figure 4.3 The scheme of implementation and deployment of the EcoFun-MAP. 

Submissions of the EcoFun-MAP jobs (green background) are handled by a standalone 

server. Further processing and execution of the jobs are performed on a HPC cluster. 
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The databases and workflows of EcoFun-MAP were deployed on an HPC cluster with a 

web-based Graphic User Interface (GUI) for access and job submission (Figure 4.3). A 

single EcoFun-MAP job submission requires at the beginning a data file and all 

parameters that will be used for the selected workflow. EcoFun-MAP provides an FTP 

application for data file transferring and an HTTP application (website) to accept 

parameter settings. After being submitted, a job will be scheduled in a job queue and 

sent to the HPC cluster in a “first in, first out” (FIFO) order for further EcoFun-MAP 

processing. When executing a job, the HPC cluster will 1) break down the job into 

small pieces, 2) map job pieces to available nodes, 3) run the selected workflow for the 

pieces in parallel, and 4) collect and reduce outputs of all pieces, and prepare final result 

for downloading by the job submitter. The implementation of EcoFun-MAP depends on 

both open source software and in-house scripts. The FTP application was provided on 

the basis of installation and configuration of vsftpd (version 3.0.3), the parameter 

submission website was built using Django, and the job queue was developed using 

Celery with Redis as the message broker. In-house Perl, Python, Shell and SLURM job 

scheduling scripts were also used throughout the EcoFun-MAP implementation. Their 

major functions or roles included the following: 1) job management, 2) calling or 

executing bioinformatics tools, 3) data file format conversion (e.g. convert FASTQ 

formatted file into a FASTA one), 4) breaking down, mapping and reducing dataset and 

5) data I/O and transferring. At last, the HPC cluster hosting the EcoFun-MAP currently 

has two types (type I and type II) of computing nodes and each type has 5 nodes, which 

consists of a total of 10 nodes for handling EcoFun-MAP tasks. The type I node has 24 

cores and 64GB RAM each, and the type II node has 24 cores and 128GB RAM each. 
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The HPC cluster also provides 128TB hard disk space for temporal storage of input, 

intermediate data and result from tasks of the EcoFun-MAP. 

4.4.2 Coverage of EcoFun-MAP 

Table 4.1 Overall summary of coverage of the EcoFun-MAP databases by major 

categories. 

Major categories 

No. of 

primary 

sub-

categories 

genes 
seed 

sequences 

HMM 

models 
fClusters 

reference 

sequences 

covered 

taxonomical 

IDs 

C Cycling 4 138 1,410 209 42,000 156,769 9,462 

N Cycling 9 25 639 51 23,530 116,201 7,837 

S Cycling 9 26 710 40 9,295 23,123 3,390 

P Cycling 4 7 129 12 5,212 18,442 4,620 

Organic Contaminant 

Degradation 
9 149 1,290 250 19,139 81,479 7,755 

Antibiotic resistance 3 19 234 48 24,450 105,376 6,708 

Stress 24 100 2,529 159 47,809 223,627 9,379 

Metal Homeostasis 25 120 658 161 5,529 247,826 7,217 

Microbial Defense 2 65 495 66 10,613 33,499 3,204 

Metabolic Pathways 2 4 54 8 2,110 8,338 2,210 

Plant Growth Promotion 3 21 916 21 2,597 17,426 6,344 

Pigments 6 26 128 29 1,755 4,398 1,024 

Electron transfer 1 12 303 12 1,326 5,468 291 

Virulence 42 608 3,467 613 10,415 63,605 4,463 

Virus 3 113 984 113 8,079 63,324 15,697 

GyrB 1 1 297 13 6,624 37,241 37,241 

Protist 13 57 257 57 2,718 11,221 3,076 

Total 160 1,491 14,500 1,862 280,247 1,217,363 49,018 

 

The EcoFun-MAP covered 17 major categories and a total of 150 primary subcategories 

(Table 4.1), should be able to provide a comprehensive survey of functional genes 

important to biogeochemistry, ecology, environmental science, agriculture and public 

health. The EcoFun-MAP had 1,491 functional gene families, for which 14,500 seed 

sequences in total were selected and 1,862 HMM models were built. Meanwhile, a total 

of 1,217,363 reference functional gene sequences were retrieved and confirmed using 

the iterative HMM searching, which are originated from about 50,000 taxonomical units 
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that were distinguishable based on their taxonomical IDs. Based on these sequences, 

more than 280,000 fClusters were generated and further incorporated in the EcoFun-

MAP.  

4.4.3 Evaluation of speed and accuracy 

Speed. Sample FW300, the one with the largest raw data size, was selected from 

underground water samples for evaluating the speed of the EcoFun-MAP. We randomly 

drew 5 subsamples in different number of reads (0.7M, 3.5M, 7M, 35M, 70M) from the 

FW300, which are counted for in different size of raw sequencing data (~100Mbp, 

~500Mbp, ~1Gbp, ~5Gbp and ~10Gbp), to evaluate the speed of EcoFun-MAP 

workflows. Each workflow was run on the subsamples with same hardware 

configuration (10 nodes and 4 cores on each) and same pipeline parameters. According 

to the size of each individual reference database and speed of each individual 

bioinformatics tool that were used in each workflow, we expected that ranks of speed of 

workflow should be the following: the ultra-fast mode > moderate mode > fast mode > 

sensitive mode > ultra-sensitive mode.  

Table 4.2 Summary of results for evaluating speed of five workflows in the EcoFun-

MAP. Subsamples with different number reads randomly drawn from the largest 

sample, the FW300, are used for the evaluation. Preparing time here refers to the time 

consumed outside the workflows, including file decompression, data transferring and 

partitioning and job scheduling. 

Mode 

Preparing/main processing/total time (s) Lowest/highest/

average speed 

(No. of reads in 

M/min.) 

0.7M reads 

(~100Mbp) 

3.5M reads 

(~500Mbp) 

7M reads  

(~1 Gbp) 

35M reads  

(~5 Gbp) 

70M reads  

(~10 Gbp) 

ultra-fast 125/60/185 183/121/304 185/180/365 549/540/1,089 978/1,027/2,005 ~0.7/4.1/2.5 

fast 124/180/304 241/241/482 188/360/548 608/841/1,449 915/1,506/2,421 ~0.2/2.8/1.5 

moderate 159/60/219 186/180/366 190/240/430 615/602/1,217 862/1,145/2,007 ~0.7/3.7/2.1 

sensitive 123/242/365 188/300/488 288/361/649 584/1,021/1,605 981/1,865/2,846 ~0.2/2.2/1.2 

ultra-

sensitive 
125/181/306 187/485/672 189/840/1,029 617/3,966/4,583 920/7,341/8,261 ~0.2/0.6/0.4 

 



89 

 

 In general, the result (Table 4.2) showed that our expectation was met, as the ultra-fast 

mode workflow had the fastest speed, which was finished running on the largest 

subsample (70M reads) in 1,027 seconds (s), and then was followed by fast (1,506 s), 

moderate (1,145 s), sensitive (1,865 s) and ultra-sensitive (7,341 s) mode in order of 

decreasing speed. The running of workflows on the largest subsample yielded the 

highest speed for all workflows (~0.6-4.1M reads/min.), and speed of workflows 

increased as the data size went up. The running on the smallest subsample yielded the 

lowest speed for all workflows (~0.2-0.7M reads/min.). In comparisons of individual 

workflows, the ultra-fast mode is more than 7 times faster than the ultra-sensitive mode 

for the largest subsample, but only 3 times faster for the smallest subsample in our test. 

The result for speed evaluation suggested that the EcoFun-MAP is fast (average speed 

from ~0.4 to ~2.5 M reads/min.) and highly scalable in high-throughput sequencing data 

analysis, in which time cost is expected to increase less than linearly as data size hikes, 

because of the increases in speed. 

Accuracy and precision. We also evaluated the EcoFun-MAP in terms of accuracy and 

precision. It is a non-trivial task to define accuracy in analysis of workflows at the first 

place, because in general, the true identity of each read is hardly accessible due to 

possible sequencing error rate, ambiguity hits and change of read alignment score 

thresholds. In our evaluation, we used the result from the ultra-sensitive workflow as a 

reference for the comparisons among all workflows, because the ultra-sensitive 

workflow 1) performs homolog based search for every read, which takes into account 

information about protein domain structure and thus is considered to be more accurate 

than read mapping based only on sequence identity, and 2) utilizes probabilistic models 
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built on multiple sequence alignments and is thus generally more capable of detecting 

remote homologs than relying on single read. Therefore, the accuracy rate of target 

workflow was defined as the ratio of number of reads annotated by both the target 

workflow and the ultra-sensitive workflow to number of reads annotated by the ultra-

sensitive workflow. Similarly, the precision rate was then defined as the ratio of number 

of reads annotated by both the target workflow and the ultra-sensitive workflow to the 

total number of reads annotated by the target workflow. We further defined four levels 

of accuracy and precision based on how reads were annotated by both the target 

workflow and the ultra-sensitive workflow. Level 1, 2, 3 and 4 are used for situations 

that reads were annotated by both the target workflow and the ultra-sensitive workflow 

with the same gene, secondary subcategory, primary subcategory, and category, 

respectively. 

Table 4.3 Overall summary of results for evaluating accuracy and precision of five 

workflows in the EcoFun-MAP. The results here are based on counts of hits from the 

running of five workflows on all samples. 

Mode 
Accuracy rate  Precision rate 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

ultra-fast 70.2% 73.8% 74.5% 77.6%  8.1% 8.5% 8.6% 8.9% 

fast 85.4% 88.3% 88.8% 91.9%  2.8% 2.9% 3.0% 3.1% 

moderate 69.3% 69.5% 69.5% 69.8%  87.0% 87.2% 87.2% 87.5% 

sensitive 84.7% 84.9% 84.9% 85.2%  85.9% 86.0% 86.0% 86.3% 

 

We ran all EcoFun-MAP workflows on the data from aforementioned 12 underground 

water samples and compared their annotation results for evaluating the accuracy and 

precision for each workflow. The running of all workflows on about 1816.7 million 

reads (~272.5 Gbp) in total were completed in less than a week. The result (Table S 4) 

showed that the number of hits produced by workflows was ranged from ~2.1 million 

(0.12%; moderate mode) to ~81.1 million (4.46%; Fast mode). In general, the fast mode 
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produced the most hits of all (3.35% - 6.58%) across all samples, the moderate mode 

produced the least (0.06% ~ 0.27%), and the sensitive mode had very similar yield 

(0.07% - 0.34%) as the ultra-sensitive mode (Table S 4). Upon the definitions of 

accuracy rate, the result (Table 4.3) showed that accuracy rates of other workflows 

were good in general (~70% above). The fast workflow had the highest accuracy rate of 

all levels (85.4%, 88.3%, 88.8% and 91.9%) except for the ultra-sensitive workflow, 

which was then followed by the Sensitive and Ultra-fast mode, and the moderate mode 

had the lowest (69.3%, 69.5%, 69.5% and 69.8%). Differences of accuracy rate among 

distinctive levels of accuracy were small (< 0.5%) in the moderate and sensitive mode, 

and higher in the ultra-fast (~7.4%) and fast mode (~6.5%). Apart from results of 

accuracy evaluation, the moderate mode had the highest precision rate of all levels 

(87.0%, 87.2%, 87.2% and 87.5%), which was then followed by the sensitive and ultra-

fast mode, and the Fast mode had the lowest (69.3%, 69.5%, 69.5% and 69.8%). 

Differences of precision rate among distinctive levels of accuracy were small (< 0.5%) 

in all the modes. The sensitive mode achieved relatively high in both accuracy (~85%) 

and precision (~86%) rate. The results suggested that performance of the EcoFun-MAP 

in terms of accuracy and precision depended on the selection of workflow. Detailed 

results of evaluation of accuracy and precision were provided based on each sample, 

which showed a similar trend and can be found in Table S 4. 

4.4.4 Real study application  

We analyzed metagenomes from 12 underground water samples based on the running 

results of the EcoFun-MAP workflows to demonstrate the usefulness of the EcoFun-

MAP. Meanwhile, analyses based on SEED Subsystem annotation workflow was 
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provided for purpose of contrast. Microbial community functional gene composition 

was compared among the samples as shown in the DCA ordination plots (Figure 4.4). 

The ordination results didn’t show drastic differences among all workflows. Samples 

from group L3 were observed to separate from other groups in all workflows with 

relatively high within-group distances. Clear separation of L2 samples from other 

groups were found in the moderate, sensitive and ultra-sensitive workflows. Clear 

separation of all four groups from each other was only observed in results based on the 

ultra-sensitive workflow (Figure 4.4).  

 

Figure 4.4 Detrended Correspondence Analysis (DCA) of functional gene composition 

of metagenomes from 12 underground water samples. Analyses of functional gene 

composition based on results from five workflows of the EcoFun-MAP are provided. 

Analysis based on result from annotation based on SEED subsystem (boxed by dashed 

line) is also provided for purpose of contrasting. Each sample is represented by a 

distinctive color. Cycles, squares, diamonds and triangles are used for showing samples 

from group of L0, L1, L2 and L3, which are also cycled with green, yellow, orange and 

red eclipses, respectively. 

The analyses of function gene richness in 4 sample groups had similar results for all 

workflows (Figure 4.5). The richness of functional genes was significantly lower (p 
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value < 0.05) in L3 samples than in L0 samples, which was shown in analyses based on 

all the EcoFun-MAP workflows and SEED Subsystem annotation. The analyses based 

on the fast mode and SEED Subsystem annotation also showed a significantly lower (p 

value < 0.05) richness of function genes in L3 samples than in L2 samples. However, 

results from different workflows showed different estimations of sizes of richness 

changes. Both the ultra-fast and fast workflows estimated that the richness of functional 

genes were ~12% lower in L3 samples than in L1 samples, the moderate, sensitive and 

ultra-sensitive workflows estimated that the richness of functional genes were ~24% to 

~25% lower, and the SEED Subsystem annotation estimated that it was only ~2.8% 

lower. Meanwhile, the fast workflow estimated that that richness of functional genes 

was ~8.4% lower in L3 samples than in L2 samples, and SEED Subsystem annotation 

estimated ~2.3% of lower richness.  

The above results on both composition and richness of functional genes indicated that 

the impacts of contaminants on groundwater metagenomes were detectable in the 

analyses based on all workflows, but was reflected in higher magnitude (DCA 

separation and sizes of richness changes) in the moderate, sensitive and ultra-sensitive 

workflows. These results met our expectation, which were likely due to two reasons. 

First, the databases of the EcoFun-MAP are more specific in terms of ecological 

functions (e.g. Metal Homeostasis) that are susceptible to impacts of the contaminants 

than the SEED Subsystem database. Second, the workflows where HMM model based 

annotation was involved were likely to have higher precision than the workflows (the 

ultra-fast, fast and SEED Subsystem workflows) based solely on sequence identity 

searching, and consequently, less noise was included. 
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Figure 4.5 Richness of functional genes in metagenomes from 12 underground water 

samples. A total of six boxplots show the richness of functional genes based on results 

from five workflows of the EcoFun-MAP, as well as result from annotation based on 

SEED subsystem (boxed by dashed line). Boxes in color of green, yellow, orange and 

red are used for showing richness of functional genes for samples from groups of L0, 

L1, L2 and L3, respectively. 

Next, we further analyzed relative abundances of major functional categories, including 

the category of C, N, S and P cycling, Metal homeostasis, Stress, Organic contaminant 

degradation, Antibiotic resistance, Electron transfer, and Virulence, which are 

considered highly relevant to the study site, and compared them among different 

samples. The analysis was based on the Ultra-sensitive workflow. Overall, relative 

abundances of functional genes from the C cycling category were lower in two of L3 

samples (FW106 and FW021), which are two samples with highest level of 

contamination in many heavy metals (e.g. Cr, Eu and Ce) (Figure S 9), but those from 

the metal homeostasis category in the two samples were higher than other samples 

(Figure 4.6). Interestingly, sample FW104 from group L3, which had the highest level 
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of Sulfate (SO4) of all samples (Figure S 9), also has the highest relative abundance of 

S cycling genes (Figure 4.6).  

 

Figure 4.6 Relative abundances of selected major categories (based on result from 

Ultra-sensitive mode) in metagenomes from 12 underground water samples.  

Response ratios of relative abundances of functional genes were calculated and 

compared between sample group L0 and each of other groups (L1, L2, and L3, Figure 

4.7). We found significant positive response ratio of metal homeostasis genes in both 

L2 - L0 (arrA and arxA) and L3 - L0 (corC, pcoA, mgtA, and merP) comparisons, and 

significant negative response ratio of one C degradation gene (ara) in L3 - L0 

comparison. A denitrification gene (nirK) had significant positive response ratio in L3 - 

L0 comparison, which suggested a microbial response to higher nitrate concentrations 

in the L3 samples (Figure S 9). Several oxygen-limitation-response genes (narH and 

narJ) from Stress category were more abundant in L3 samples than L0 samples, which 



96 

 

suggested a microbial response to low dissolved oxygen in highly contaminated wells 

(data not shown). 

 

Figure 4.7 Response ratio of functional genes from comparisons between metagenomes 

from contaminated well samples and background well samples. Only significantly (p 

value < 0.05 in ANOVA followed by TukeyHSD) changed genes are included in the 

plot. 

4.5 Discussion 

We developed the EcoFun-MAP in this study, including database construction, 

workflow design and pipeline implementation and deployment. The EcoFun-MAP 

provides an efficient, flexible and accessible for analyzing high-throughput 

metagenomics sequencing data from an ecological function perspective. The EcoFun-

MAP is thus capable of addressing some of the computational barriers brought by rapid 

throughput increase in NGS technology and faced by many microbial ecologists. 

The databases of EcoFun-MAP have been constructed in this study and have several 

unique features and advantages. First, the databases have a selective coverage of 

functional genes that are important to microbial ecology studies. The databases are 

smaller and less in redundancy than databases that are more general, but still have the 
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comprehensive coverage for the defined scope that should enable effective functional 

analysis of metagenomics sequencing data. Also, the coverage matches up with the 

GeoChip, whose coverage has been demonstrated to be effective in numerous real 

world microbial ecology studies. Second, the quality of reference sequences was 

ensured using two separate procedures with manual corrections: the keyword query 

search and iterative confirmation using HMM of seeds, thus the reference sequences 

used for database construction should be accurate. Third, the reference sequences of 

each functional gene were clustered into fClusters, which provide resolution higher than 

gene and thus allow analysis that is more detailed. In addition, the databases of EcoFun-

MAP were offered in a variety of widely accepted data structures, including indexed 

protein sequences (EFM-DI-DB-S and EFM-DI-DB-R), HMM models (EFM-HMM-

DB), and indexed nucleotide sequences (EFM-BLAST-DB), which not only allows 

different levels of speed and sensitivity in analysis, but also provide multiple interfaces 

for potential future extension if there will be new tools having better annotating 

algorithms but relying on the same data structure. All of above features should make the 

databases in the EcoFun-MAP valid in analyzing metagenomics sequencing reads from 

the perspective of ecological functions. 

The EcoFun-MAP is open for public use in a form of website, so it is free of installation 

and configuration of software or databases, and can be accessed using plain web 

browsers easily with an Internet connection. While the EcoFun-MAP was implemented 

and deployed based on sophisticated hardware and bioinformatics tools, it requires little 

computational skills to use other than simple web-based user registration, uploading of 

datasets, and mode selection or parameter setting. Furthermore, the EcoFun-MAP has 
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multiple predefined workflows built on disparate databases and tools, so it provides a 

flexibility for addressing different needs for speed or sensitivity at little cost of ease of 

use. Finally, the EcoFun-MAP is supported by an HPC infrastructure, which provides 

access to advanced hardware resources (e.g. fast CPUs, large memory and hard disk 

space) required by data-intensive projects for public use. Therefore, the EcoFun-MAP 

should be easy for microbial ecologists to access and use. 

With a typical speed of analysis from ~0.6 to ~4.1M reads/min. (highest speed for 

workflows), the EcoFun-MAP is considered to have the desirable speed for 

metagenomics sequencing data analysis in microbial ecology, especially for handling 

large (>10Gbp) dataset. Due to a lack of availability and speed reports of functional 

analysis pipelines, and differences in the configuration of hardware and software, fair 

speed comparisons between the EcoFun-MAP with other pipelines were difficult to 

make. To our best knowledge, the EcoFun-MAP is the first web-based pipeline with 

speed of multi-million reads per minute. The EcoFun-MAP gained speed advantages 

through several features. First, smaller reference databases with a clear focus, cleaned 

and optimized for selectively annotating reads with information of functional genes are 

that important or highly relevant to ecological functions or geochemical process. With 

our curation effort, the EcoFun-MAP databases only have 1.5% of the size of NCBI 

RefSeq database (81,027,309 protein sequences; release 81, Mar 13th, 2017). Such 

reduction strategy has been shown as a practical solution for speeding up high-

throughput sequencing data analysis (Silva, Green et al. 2016). Second, fast and updated 

tools were selected for the EcoFun-MAP and contributed substantially to the fast speed 

of the EcoFun-MAP. For example, FragGeneScan+ used for gene prediction is 5-50 
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times faster than FragGeneScan at basically no cost of performance in terms of other 

aspects (e.g. accuracy) (Kim, Hahn et al. 2015). HMMER 3 is 100-1000 times faster 

than HMMER 2 (Eddy 2011). DIAMOND is 20,000 times faster than BLASTX 

(Buchfink, Xie et al. 2015). Third, the EcoFun-MAP was implemented with parallel 

processing feature and deployed on HPC clusters, which gains additional acceleration 

from a hardware perspective.  In addition to the speed itself, the EcoFun-MAP is also 

highly scalable, which is quite important because the volume of sequencing data is well 

expected to increase in the foreseeable future. The EcoFun-MAP will then still be able 

to contain the time cost of the analysis. 

Accuracy and precision of pipelines for analyzing metagenomics reads are important 

but difficult to evaluate. Both of the accuracy and precision will change if parameters 

for processing steps are adjusted. However, we found in several ways that the EcoFun-

MAP should have adequate performance for functional analysis of shotgun 

metagenomics sequencing data. First, the reference databases of the EcoFun-MAP were 

accurate as previously discussed, which provided foundations for quality of analysis. 

Second, the EcoFun-MAP was designed to rely on protein sequence based searches 

rather than the ones based on nucleotide sequence, which are considered to be more 

accurate. Furthermore, HMM searches are also used in three workflows of the EcoFun-

MAP, which are more time-consuming but more accurate than read identity based 

searches. In addition, the EcoFun-MAP provides 5 predefined workflows which are 

different in accuracy and precision. In general, the workflows provided accuracy rates 

more than ~70%, but differed in terms of precision rates, which are much lower in the 

ultra-fast and fast workflows. It is likely because that the ultra-fast and fast workflows 
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are dependent on the read identity based searches, which are more likely to introduce 

unreliable hits more capable of discovering novel fragments of target gene. The 

variations in accuracy and precision in the predefined workflows are helpful for 

addressing different needs in real studies. For example, the ultra-fast and fast workflows 

may be inappropriate for studies requiring strict control on false positives, but should be 

competent for studies with explorative emphasis. The sensitive workflow had both high 

accuracy (> ~85%) and precision rate (> ~85%), as well as speed (1.2M reads/min. in 

average) in our analysis, thus was set to default mode for the EcoFun-MAP. 

Furthermore, all EcoFun-MAP workflows were capable of generating similar results in 

analyses of composition and functional gene richness of the metagenomes from 

underground water samples in our analysis. Detailed analyses of the metagenomes 

based on the EcoFun-MAP demonstrated its usefulness in revealing differences in 

relative abundances of functional categories and functional genes among sampled 

microbial communities, and link the differences with different levels of contaminants in 

the samples.  

The EcoFun-MAP, at its first version, has several limitations. First, the coverage of the 

EcoFun-MAP is by no means complete, though it is comprehensive in the scope defined 

by this study. Some ecological functions were less understood and key genes involved 

these functions are not known, thus it is impossible to include them. Meanwhile, a vast 

majority of diversity in reference sequences for some genes was lacked in the data 

source of the EcoFun-MAP (NCBI databases), thus the coverage for these genes is also 

incomplete. The limited coverage may cause drops in sensitivity when analyzing the 

sequencing datasets. Second, the quantitative capability of the EcoFun-MAP is limited, 



101 

 

though as a pipeline handling unassembled reads, it preserves more critical frequency 

information than the methods dependent on assembly. This limitation is common in 

currently available pipelines, because revealing true information about which genome 

and what position each read is from is still challenging due to the confidence of 

imperfect matches between reads and reference sequences, biases of bioinformatics 

tools, and the limited coverage. When the information is absent, converting the read 

frequencies to gene abundances will be inevitably biased. Third, the EcoFun-MAP is 

not appropriate for obtaining accurate taxonomical/phylogenetic profiles from shotgun 

metagenomic sequencing datasets, because coding sequences are not good references 

for identifying taxonomical/phylogenetic units. It not rare at all that different microbial 

species can have highly similar or identical coding sequences for a same functional 

gene. To lift above limitations, it is important to keep updating the EcoFun-MAP by 

incorporating emerging reference sequences of genes of interest, upgrading or replacing 

bioinformatics tools, and building independent databases of phylogenetic markers. Our 

other future plans include adding modules for data visualization and downstream 

comparative analysis, and upgrading hardware for future hikes of data size.  

4.6 Conclusion and availability 

In this study, we developed the EcoFun-MAP for functional analysis of shotgun 

metagenomics sequencing data from microbial ecology. The EcoFun-MAP consists of 

references databases constructed with selective coverage of genes that are important to 

ecological functions, and multiple workflows for addressing disparate needs for speed 

and accuracy. Furthermore, the EcoFun-MAP was implemented on the basis of High-

Performance Computing (HPC) infrastructure with high accessible interfaces. In our 
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analysis, we found the EcoFun-MAP a fast and useful pipeline for functionally profiling 

metagenomes from underground water samples. The EcoFun-MAP is open for public 

use and can be found available at our website: http://zhoulab5.rccc.ou.edu:7999.  

 

  

http://zhoulab5.rccc.ou.edu/
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Chapter 5: A generalized Brody distribution based Random Matrix 

Theory approach for inferring microbial data association networks  

5.1 Abstract 

Microorganisms are not isolated from each other but rather receive and impose positive, 

negative or negligible real-time impact from and to each involved species. Therefore, 

identifying and investigating these interactions within microbial communities will not 

only help us to understand microbial responses to perturbation, but also ultimately 

improve the predictive capability of global models of ecosystem dynamics. Because of 

its straight-forward calculation procedure and high processing speed, data association 

network inference has become a widely-adopted approach for efficiently inferring 

networks from large and complex microbial community systems. Inference of data 

association networks relies on a crucial step where a critical threshold is chosen for 

removing links with association strength below the threshold. Most studies have 

selected thresholds empirically or arbitrarily, thus the inferred networks are inevitably 

susceptible to biases and lead to inaccurate inference and analysis of networks. We 

previously proposed a Random Matrix Theory (RMT)-based approach for detecting 

objective thresholds automatically, but it still had limitations in terms of capability of 

detection and interpretability of detected thresholds. Here we developed a new method 

based on the generalized Brody distribution (GBD) for determining the critical 

threshold in the framework of the RMT, and proposed an improved approach (GBD-

RMT approach) for inferring microbial data association networks. Results showed that 

the GBD-RMT approach is capable of quantitatively characterizing the dynamics of 

Nearest Neighboring Spacing Distribution (NNSD) of eigenvalues against candidate 
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thresholds, and detecting both the critical transitions and thresholds in NNSD dynamics 

using trend analysis. In our evaluation, the GBD-RMT approach successfully detected 

the critical thresholds in all of the numerically simulated and real datasets, including 

those for which the previous method failed. It also had higher detection resolution, and 

gained higher confidence and interpretability in detected critical thresholds. Meanwhile, 

the GBD-RMT approach integrated improvements for detecting more types of data 

association and reducing compositional data bias. In addition, the GBD-RMT approach 

uncovered a remarkable overlap between the critical transitions and the plateaus of 

scale-freeness from the inferred networks, and the overlap is showed to be statistically 

significant and universal in complex biological systems in our analysis. In conclusion, 

the GBD-RMT approach proposed in this study presented a powerful and state-of-art 

tool in inferring microbial data association networks. 
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5.2 Introduction 

The microbial communities are complex in organization and dynamics of interactions 

among microorganisms. Through the interactions, microbes as a community can 

orchestrate system level functions or exhibit influential properties which are impossible 

to study based on the disconnected populations. Therefore, the rudimentary taxonomical 

and functional profiling and comparative analysis is not sufficient for understanding and 

predicting microbial communities, and it now has become increasingly important to 

characterize microbial interactomes, especially for advancing our understanding of 

microbial diversity (Deng, Jiang et al. 2012), species co-evolution (Shi, Nuccio et al. 

2016), microbial responses to the perturbation effects, and in microorganisms into 

predictive models of ecosystem dynamics (Shi, Nuccio et al. 2016). Network analysis 

has been widely adopted in diverse studies of complex species interactions in macro 

systems. For example, the organization food webs (Dunne, Williams et al. 2002) and 

pollination networks (Kaiser‐Bunbury, Muff et al. 2010) have been demonstrated to 

be linked to system persistence and disturbance, or to species coexistence and diversity. 

Yet, the network analysis, especially the network inference, in microbial community 

studies is more challenging, due to the extreme diversity of microorganisms and a 

consequent lack of complete accurate maps of interactions on the basis of biological 

knowledge. Therefore, it became increasingly important to infer the community 

interactions directly from empirical profiling data without prior knowledge. 

Given quantitative abundance data for each component in a microbial community, we 

can apply a group of network inference methods to predict the interactions among the 

components without additional information or prior knowledge. The group of network 
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inference methods can be divided into two major types, multiple regression based 

inference and pairwise data association based inference (Faust and Raes 2012). The first 

type of methods models the abundance of one component as a function of all other 

components with corresponding optimized coefficients, and the second type estimates 

an association strength signaled by the correlation/dependence/co-occurrence pattern 

that can be detected between the abundances of two components. The network inference 

procedures developed based on the principles from two types of method can be very 

different and have distinctive strengths and disadvantages, and they were also 

demonstrated to be complementary to each other (Faust and Raes 2012, Faust, 

Sathirapongsasuti et al. 2012). Although the first type of method suits better for 

recovering more complex interactions (i.e. one component is co-affected by more than 

one components), its capability is usually limited in underdetermined systems where 

sample number 𝑛 is smaller than variable number 𝑝. Some assumptions were made to 

ease the problem, such as a positive linear relationship between the number of links and 

the number of components (aka. linear sparsity), but these assumptions are not always 

based on biological reasons, don’t necessarily hold for every complex system, and 

sometimes complicate the interpretation of regression results. The second type of 

methods is conceptually straightforward, computationally simple and parallelizable, and 

less constrained by the dimensionality problem, thus is most commonly used for 

inferring networks from high-throughput sequencing and microarray data (typically 

highly dimensional and significantly under-sampled) in soils (Shi, Nuccio et al. 2016), 

oceans (Steele, Countway et al. 2011, Lima-Mendez, Faust et al. 2015), lakes (Eiler, 
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Heinrich et al. 2012), and even in global genomic surveys (Lima-Mendez, Faust et al. 

2015).  

However, caution has to be used when inferring data association networks. First, 

spurious associations can be introduced due to the simplex nature of compositional data 

(Friedman and Alm 2012), since relative abundance data from high-throughput 

technologies was prevalently used in microbial ecology studies. The problem can be 

alleviated using several data preprocessing techniques previously reported, including 

Compositionally Corrected by REnormalization and PErmutation (CCREPE) (Faust and 

Raes 2012, Faust, Sathirapongsasuti et al. 2012) and Aitchison’s transformation based 

method (Friedman and Alm 2012, Kurtz, Müller et al. 2015). Second, popular data 

association methods for inferring networks were the Pearson Correlation Coefficient 

(PCC) and Spearman Rank Coefficient (SPM), which are limited in types of data 

association that are detectable. Both the methods are not appropriate for detecting many 

non-linear or non-functional data associations. Third, because inference of data 

association networks relies on a crucial step in which a critical threshold is selected for 

deleting links with association strength less than the threshold, using inappropriate 

critical thresholds can cause the inaccurate structure of inferred network or difficulty to 

interpret. Using arbitrary thresholds, or selecting thresholds based on empirical p-values 

or the optimization over designated topological properties (e.g. scale-freeness) tend to 

introduce bias in network inference or interpretability issue. To address this problem, 

we previously presented an approach (Luo, Zhong et al. 2006, Luo, Zhong et al. 2006, 

Zhou, Deng et al. 2010, Zhou, Deng et al. 2011) based on the Random Matrix Theory 
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(RMT) (Mehta 2004), which is able to automatically and objectively identify a critical 

threshold.  

The RMT-based threshold detection has several advantages. First, the method approach 

is developed based on the two universal laws of the RMT, and thus it is theoretically 

sound. Second, the threshold detection in the RMT-based approach is automatic and 

objective. Third, since RMT is powerful for removing noise from nonrandom, system-

specific features, the inferred network is reliable. Fourth, the applicability of the RMT 

in biological systems has been demonstrated for inferring metabolic, protein, functional 

gene and microbial ecological networks (Luo, Yang et al. 2007, Luo, Yang et al. 2007, 

Zhou, Deng et al. 2010). However, the current RMT approach, the MENAP, have 

several limitations. First, the MENAP is limited in detecting data associations other than 

linear correlation, as it relies on the PCC. Second, the MENAP doesn’t have any 

preprocessing step to remove compositional data bias. Third, the MENAP failed to 

detect critical thresholds occasionally. In addition, the MENAP calls critical threshold 

on each candidate cutoff without telling how good it is for the threshold, which is a lack 

of quantitative assessment of transition progress, and made the inferred networks less 

interpretable. 

Thus, in this study, we will provide a generalized Brody distribution (GBD) based 

Random Matrix Theory approach (GBD-RMT approach) for inferring microbial data 

association networks. The GBD-RMT approach acquires the GBD unifying Wigner-

Dyson and Poisson distribution with one single parameter, 𝛽, that can be used as a 

quantitative indicator of the transition progress of the NNSD. Maximum Likelihood 

Estimation (MLE) based method was used for obtaining a best estimation for the 𝛽. 
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Meanwhile, the critical transitions and thresholds were detected using trend analysis on 

the 𝛽 dynamics generated from the snapshots of a series of data association matrix 

reductions with cutoff values from low to high. In the evaluation of the GBD-RMT 

approach, both in silico and real datasets were used for demonstrating the effectiveness 

of the approach. Comparisons were also made between the GBD-RMT approach and 

the previous approach (Luo, Zhong et al. 2006, Luo, Yang et al. 2007) to show the 

advantages of the GBD-RMT approach. In addition, with the GBD-RMT approach, we 

uncovered a remarkable overlap between the critical transitions of the 𝛽 dynamics and 

the plateaus of scale-freeness from the inferred networks, and the overlap is showed to 

be statistically significant and universal in complex biological systems in our analysis. 

5.3 Materials and methods 

5.3.1 Preprocessing of compositional data 

Compositional data, in forms of fraction, proportion or relative abundance data, is 

commonly generated and used in microbial ecology studies, due to nature of high-

throughput technologies, sampling and resampling methods or data normalization and 

transformation. Compositional data bears only relative information about its 

components, which are usually non-negative real values and sum up to a constant. 

Given n components and m samples, a typical compositional data, C, then can be 

defined as the following, 

𝐶 = (
𝐶11 ⋯ 𝐶1𝑚

⋮ ⋱ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑚

)  

and 

∑ 𝐶𝑖𝑗
𝑛
𝑖=1 = 𝑘; 𝑗 = 1,2, … , 𝑚; 𝐶𝑖𝑗 ≥ 0 
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where 𝐶𝑖𝑗 is the relative information of component 𝑖 in sample 𝑗, and 𝑘 is a constant 

(e.g. 1). Compositional data like the 𝐶 share many common properties, and most 

importantly, it should not be directly used for further computation or analysis based on 

absolute abundances, such as correlation (i.e. the PCC) calculation. Therefore, 

preprocessing is always recommended to transform 𝐶 into the original or other 

appropriate sample space first before applying analysis required absolute information 

(Reimann and Filzmoser 2000, Filzmoser and Hron 2009). Aitchison first introduced 

several transformation techniques on the basis of log-ratio of compositional data, 

especially the centered log-ration transformation (clr), to transform compositional data 

to an unconstrained real space (Aitchison 1986). The clr transformation is defined as the 

following: 

𝑐𝑙𝑟(𝐶∗𝑗) = [ln
𝐶1𝑗

𝑔(𝐶∗𝑗)
, ln

𝐶2𝑗

𝑔(𝐶∗𝑗)
, … , ln

𝐶𝑖𝑗

𝑔(𝐶∗𝑗)
, … , ln

𝐶𝑛𝑗

𝑔(𝐶∗𝑗)
, ] =  ln

𝐶∗𝑗

𝑔(𝐶∗𝑗)
  

and 

𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑚; 

where 𝐶∗𝑗 is abundances of all components in sample 𝑗, and 𝑔(𝐶∗𝑗) is the geometric 

mean of the 𝐶∗𝑗, i.e. 

𝑔(𝐶∗𝑗) = √∏ 𝐶𝑖𝑗

𝑛

𝑖=1

𝑛

 

The clr transformed variables can be interpreted as the original variables, but 

correlations between them cannot be interpreted in the same way (Filzmoser and Hron 

2009). Still, in general, there is also no way to transform the correlations back to the 

original space (Filzmoser and Hron 2009). Approximately, the correlations between clr 
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transformed variables are shown to be equal to the basis correlations (i.e. correlations in 

original space), under an assumption that the 𝐶 has a large number of components 

which are only sparsely correlated (Friedman and Alm 2012). In fact, the assumption 

holds for most microbial ecological data, thus here we also use the clr transformation 

for preprocessing compositional data before applying correlation calculation. When 

being applied to compositional data, calculation of other data associations than 

correlation can also be biased, but likely in different ways. So, it will not be 

mathematically sound to recruit the same clr transformation for calculating other data 

associations, and specific transformation technique can be necessary for each of them. 

Unfortunately, such transformation techniques have not been established yet, therefore 

the compositional data preprocessing described here was only used for correlation 

calculation. Other data associations were calculated directly without the preprocessing. 

5.3.2 Calculation of data association matrix 

The term data association, equivalent to dependence, is defined as any interesting 

relationship between two random variables that not satisfy probabilistic independence. 

It includes correlation (i.e. linear dependence), non-linear or non-functional 

dependence. The data association strength between any two microbial taxonomical or 

functional units can be estimated from the changes in their abundances in various 

samples or biological replicates over time or space. Therefore, a matrix consisting of 

data association strengths from all possible pairs of taxonomical or functional units can 

be computed from typical microbial ecological dataset: 

𝑃 = (
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

) 
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and 

𝑃𝑖𝑗 = 𝐷(𝐶𝑖∗, 𝐶𝑗∗) = 𝑃𝑗𝑖 

where 𝑃𝑖𝑗 is the data association strength between component 𝑖 and 𝑗, 𝐶𝑖∗ is abundances 

of component 𝑖 in all samples, 𝐷 denote any given method for measuring data 

association strength between 𝐶𝑖∗ and 𝐶𝑗∗, and 𝑛 is the total number of components. 

There are many methods available to be to be given as 𝐷, and we incorporated several 

types in this study to not fully compare their features or properties in characterizing 

microbial data association but to demonstrate that different data association methods 

can affect network inference and end networks. Each type was listed and briefly 

described below. 

a) PCC and CLR_PCC. Karl Pearson came up with the PCC to measure the linear 

association between two variables (i.e. 𝐶𝑖∗ and 𝐶𝑗∗ here) in the 1880s, which is popular 

and widely used in many disciplines. The term correlation is sometimes used to refer to 

the PCC, if specific indication was absent. The PCC is calculated by dividing the 

covariance of the two variables by the product of their standard deviations, i.e.  

𝑃𝐶𝐶𝑖𝑗 =
𝐸[(𝐶𝑖∗ − 𝜇𝐶𝑖∗

)(𝐶𝑗∗ − 𝜇𝐶𝑗∗
)]

𝜎𝐶𝑖∗
𝜎𝐶𝑗∗

 

and  

𝑖, 𝑗 = 1,2, … , 𝑛; 

where 𝐸 is the expectation, 𝜇 is the mean and 𝜎 is the standard deviation. The PCC have 

a value range from -1 to 1, where -1 and 1 mean perfect negative and positive linear 

association, and 0 means no linear association. The CLR_PCC is simply the PCC 

between clr transformed variables. 
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b) Spearman's Rank Correlation Coefficient (SPM). The SPM is another popular 

method, which was invented by Charles Spearman to measure the correlation between 

the rankings of two variables. The SPM can be calculated by substituting the variable 

values with variable value ranks in the PCC formula, i.e. 

SPM𝑖𝑗 =
𝐸[(𝑟𝑎𝑛𝑘(𝐶𝑖∗) − 𝜇𝑟𝑎𝑛𝑘(𝐶𝑖∗))(𝑟𝑎𝑛𝑘(𝐶𝑗∗) − 𝜇𝑟𝑎𝑛𝑘(𝐶𝑗∗))]

𝜎𝑟𝑎𝑛𝑘(𝐶𝑖∗)𝜎𝑟𝑎𝑛𝑘(𝐶𝑗∗)
 

Regardless of linearity of data association, the SPM assesses monotonicity. If values in 

𝐶𝑖∗ increase monotonically as values in 𝐶𝑗∗increase, the SRCC is 1; if values in 𝐶𝑖∗ 

increase monotonically as values in 𝐶𝑗∗ decrease, the SPM is -1; if values in 𝐶𝑖∗ changes 

independently from changes of values in 𝐶𝑗∗, the SPM is 0. 

c) Kendall rank correlation coefficient (KDL). The KDL also measures correlations of 

ranks like the SPM, but it does not use the PCC formula. The KDL can be calculated by 

dividing the difference between number of concordant pairs and number of discordant 

pairs in two joint random variables by total number of pair combinations, i.e. 

KDL𝑖𝑗 =
∑ ∑ 𝑐𝑜𝑛𝑐𝑜𝑟(𝐶𝑖𝑘, 𝐶𝑗𝑘 , 𝐶𝑖𝑙, 𝐶𝑗𝑙)𝑚

𝑙=𝑘+1
𝑚
𝑘=1 − ∑ ∑ 𝑑𝑖𝑠𝑐𝑜𝑟(𝐶𝑖𝑘, 𝐶𝑗𝑘, 𝐶𝑖𝑙, 𝐶𝑗𝑙)𝑚

𝑙=𝑘+1
𝑚
𝑘=1

𝑚(𝑚 − 1)/2
 

and  

𝑐𝑜𝑛𝑐𝑜𝑟(𝐶𝑖𝑘, 𝐶𝑗𝑘 , 𝐶𝑖𝑙, 𝐶𝑗𝑙) = {

1, 𝐶𝑖𝑘 > 𝐶𝑖𝑙 𝑎𝑛𝑑 𝐶𝑗𝑘 > 𝐶𝑗𝑙

1, 𝐶𝑖𝑘 < 𝐶𝑖𝑙 𝑎𝑛𝑑 𝐶𝑗𝑘 < 𝐶𝑗𝑙

0, 𝑒𝑙𝑠𝑒

; 

𝑑𝑖𝑠𝑐𝑜𝑟(𝐶𝑖𝑘, 𝐶𝑗𝑘, 𝐶𝑖𝑙 , 𝐶𝑗𝑙) = {

1, 𝐶𝑖𝑘 > 𝐶𝑖𝑙  𝑎𝑛𝑑 𝐶𝑗𝑘 < 𝐶𝑗𝑙

1, 𝐶𝑖𝑘 < 𝐶𝑖𝑙  𝑎𝑛𝑑 𝐶𝑗𝑘 > 𝐶𝑗𝑙

0, 𝑒𝑙𝑠𝑒

; 

where 𝑚 is the number of samples. 
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d) Distance Correlation (dCor). The dCor is another type of data association extending 

the PCC in detecting more complex associations between two variables other than linear 

dependence. The calculation of the dCor is based on the joint characteristic function and 

marginal characteristic functions in a weighted space, and the key advantage of the 

dCor is that it gives a value of 0 if and only if two random variables are independent, 

which is not guaranteed in the PCC. The details about the dCor can be found in 

(Székely, Rizzo et al. 2007). 

e) Local Similarity Score (LSS). The LSS was introduced in local similarity analysis 

(LSA)(Ruan, Dutta et al. 2006), which is another measure aiming at identifying more 

complex data associations than the PCC. The LSS is selected to be the maximal sum of 

the product of all possible subvectors of two random variables within some predefined 

time delay D, which is not applicable in our analysis. The local similarity score is 

computed by dynamic programming. The computing procedure of LSS is described in 

details elsewhere (Ruan, Dutta et al. 2006). 

f) Mutual Information (MI). The MI of two random variables is a measure of the mutual 

dependence between the two variables based on entropy. More specifically, the MI 

measures the similarity between the joint distribution of two random variables and the 

products of their marginal distributions, i.e. 

MI(𝐶𝑖∗, 𝐶𝑗∗) = ∑ ∑ 𝑝(𝐶𝑖𝑘 , 𝐶𝑗𝑙)
𝑚

𝑙=1

𝑚

𝑘=1
log (

𝑝(𝐶𝑖𝑘, 𝐶𝑗𝑙)

𝑝(𝐶𝑖𝑘)𝑝(𝐶𝑗𝑙)
) 

where 𝑝(𝐶𝑖𝑘, 𝐶𝑗𝑙) is joint probability distribution function, and 𝑝(𝐶𝑖𝑘) and 𝑝(𝐶𝑗𝑙) are 

marginal probability distribution functions.  

g) Maximum Information Coefficient (MIC). The MIC is an MI based measure of data 

association. Since real world MI calculation can depend on a binning scheme, choosing 
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different numbers of bins and layouts of binning grids might lead to different final MI 

values. The MIC is selected as a value of normalized MI between two random variables 

that is maximized by searching the optimum number of bins and layout of grids with a 

heuristic algorithm. As a result, the MIC was claimed to preserve a property called 

equitability when measuring data association between any given two random variables, 

regardless of linearity and functionality of the data association. Being normalized MI 

values, thus the MIC values will always fall between 0 and 1. The calculation of the 

MIC is documented elsewhere in details in (Reshef, Reshef et al. 2011) 

Among all the methods, the values of entries in the 𝑃 of the CLR_PCC, LSS and MI 

were normalized by dividing the absolute value of the maximum 𝑃𝑖𝑗. 

5.3.3 The RMT approach framework  

The aforementioned data association matrix, 𝑃, are influenced by “noise”, so the crucial 

process here is to separate noisy or random constitutes of the 𝑃 from the true ones. 

Here, an RMT-based framework is used for cleaning the 𝑃. The central assumption of 

RMT-based framework is that any given data association matrix like the 𝑃 should 

consist of both random noise and system specific properties, and they can be 

distinguished because the noise should have weaker strength than non-random co-

occurrences. Based on the assumption, the network inference can be transformed into a 

problem finding a critical threshold which is higher than most if not all noise and lower 

than the true co-occurrence associations. Therefore, if we define a function, 

𝐹(𝑃, 𝑠): 𝑃
𝑠

→  𝑅, 𝑇, ∀ 0 ≤ 𝑠 ≤ 1, 

to capture a process dividing  𝑃 into 𝑅 and 𝑇 with 𝑠 in a way such that, 
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{
𝑅𝑖𝑗 = 𝑃𝑖𝑗 , 𝑖𝑓 |𝑃𝑖𝑗| < 𝑠

𝑅𝑖𝑗 = 0   , 𝑖𝑓 𝑒𝑙𝑠𝑒
, 

and 

{
𝑇𝑖𝑗 = 𝑃𝑖𝑗 , 𝑖𝑓 |𝑃𝑖𝑗| ≥ 𝑠

𝑇𝑖𝑗 = 0   , 𝑖𝑓 𝑒𝑙𝑠𝑒
, 

for  

∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 

where 𝑠 is the critical threshold, 𝑅 is the matrix consisting of weaker co-occurrence 

associations, 𝑇 is the matrix consisting of stronger ones, and both 𝑅 and 𝑇 have the 

same dimensions as 𝑃,  then we can formulate the problem into searching for a single s 

resulting in an R and T from 𝐹(𝑃, 𝑠) such that, 

{
𝑅 ≅ 𝑅0 
𝑇 ≅ 𝑇0

, 

where 𝑅0 is the presumptive matrix consisting of only noise or random co-occurrence 

associations, and 𝑇0 is the presumptive matrix consisting of only true co-occurrence 

associations. Given any complex system P, there exists only one 𝑅0 and 𝑇0, and any one 

of 𝑅0 and 𝑇0 is calculable if the other is known. Therefore, the key in this framework 

for searching the best critical threshold is a mathematically solid reference for either 𝑅0 

or 𝑇0, which is, however, elusive in most of the biological systems. Fortunately, such a 

reference point for 𝑇0 has been shown to be approachable from eigen-spectra analysis in 

the RMT. The real symmetric matrix systems obey two universal laws in RMT, 

therefore if a 𝑇 produced from 𝐹(𝑃, 𝑠) with some 𝑠 has an NNSD of unfolded 

eigenvalues following Poisson statistics, its properties were indeed system specific and 

non-random. Previous studies showed that when 𝑠 is low enough, resulted 𝑇 is inflated 
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with weak randomness and noise, thus has an NNSD following Wigner-Dyson 

distribution:  

𝑃𝑅𝑊𝑖𝑔𝑛𝑒𝑟−𝐷𝑦𝑠𝑜𝑛 ≈
𝜋

2
∙ 𝑑 ∙ 𝑒(−𝜋∙𝑑2/4), 

where 𝑑 is the random variable referring to Nearest Neighboring Spacings (NNS) of 

unfolded eigenvalues; when 𝑠 is high enough, the NNSD of 𝑇 follows Poisson statistics: 

𝑃𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛 ≈ 𝑒−𝑑; 

when 𝑠 was increasing from the lower to the higher, a transition of NNSD of 𝑇 from 

following Wigner-Dyson to Poisson distribution was expected, and the corresponding 𝑇 

served as an approximation of 𝑇0. This reference point was mathematically defined and 

could be automatically obtained, thus was considered to be objective.  

 

5.3.4 The GBD-RMT approach 

Apart from the previous approach, which testing whether the NNSD following Poisson 

or Wigner-Dyson distribution with 𝜒2 test (Luo, Yang et al. 2007, Zhou, Deng et al. 

2010, Zhou, Wu et al. 2011, Deng, Jiang et al. 2012), our new proposed approach is to 

find the relationship between cut-off point (threshold value) and the parameter 𝛽 of 

GBD (Sakhr and Nieminen 2006, Bandyopadhyay and Jalan 2007) which is used to 

describe the NNSD. The GBD used for describing the NNSD given by  

𝑃𝑅𝐵𝑟𝑜𝑑𝑦(𝑑) = (𝛽 + 1) ∙ 𝛼 ∙ 𝑑𝛽 ∙ 𝑒(−𝛼∙𝑑𝛽+1)  

Where 𝛼 = [𝛤(
𝛽+2

𝛽+1
)]

𝛽+1

 and the parameter 0 ≤ 𝛽 ≤ 1. As 𝛽 = 0, this distribution 

reduces to Poisson statistics, 𝑃𝑅𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝑑) ≈ 𝑒−𝑑 where d is the spacing variable. As 

𝛽 = 1, this distribution goes to Wigner-Dyson statistics, 𝑃𝑅𝑊𝑖𝑔𝑛𝑒𝑟−𝐷𝑦𝑠𝑜𝑛(𝑑) ≈
𝜋

2
∙ 𝑑 ∙

𝑒(−𝜋∙𝑑2/4). Hence, the identification of transition of NNSD between Wigner-Dyson and 
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Poisson distributions in the original RMT based approach was converted into the 

estimation of the 𝛽 parameter of GBD with NNS data. Therefore, we proposed the 

following general algorithm for identifying the transition of NNSD from empirical data, 

1. Started from any given co-occurrence matrix, 𝑃, which is a 𝑛×𝑛 symmetric matrix, 

and every quantity 𝑝𝑖𝑗 from 𝑃 is the co-occurrence strength (e.g. Pearson correlation) 

between the entity 𝑖 and 𝑗 from a total of 𝑛 entities. The entity here may be equivalent 

to microbial species or taxonomic unit of other levels. 

2. Set an initial threshold value, 𝑠0, and generate a series of threshold values ranged from 

𝑠0 to maximum threshold value by small paces. The 𝑠0 may have value ranged from 

0 to 1, the maximum threshold value, 𝑠𝑚𝑎𝑥, is usually 1, and all paces have equal 

length 𝑙, which is usually less than 0.01. At the end of this step, a threshold series, 

𝑠 = [𝑠0, 𝑠1, … , 𝑠𝑘, … , 𝑠𝑚𝑎𝑥], was generated, where 𝑠𝑘 − 𝑠𝑘−1 = 𝑙. 

3. For each 𝑠𝑘 in every 𝑠, the following sub-procedure was performed for obtaining the 

parameter 𝛽𝑠𝑘
 of generalized Brody distribution 

i. Reduce the 𝑃 was to 𝑃𝑠𝑘
 in such a way that any 𝑝𝑖𝑗 ∈ [−𝑠𝑘, 𝑠𝑘] was set to 0.  

ii. Calculate eigenvalues 𝜆 of the 𝑃𝑠𝑘
 from this equation (𝑃𝑠𝑘

− 𝜆𝐼)𝑣 = 0, where λ is 

the eigenvalues, 𝑣 is the corresponding eigenvectors, and 𝐼 is the identity matrix. 

Because 𝑃𝑠𝑘
 is symmetric, all 𝜆𝑖 ∈  𝜆 are real and 𝜆 can be sorted in an order that 

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 . 

iii. Calculate unfolded eigenvalues 𝑒  from 𝜆  with 𝑒𝑖 = 𝑁𝑎𝑣(𝜆𝑖) , where 𝑁𝑎𝑣  is the 

unfolding function of eigenvalues, which was obtained using the cubic spline 

interpolation on the original integrated density of eigenvalues. The unfolding step 

here is to remove the spurious effects due to the variations of spectral density. 
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iv. Calculate the NNS of unfolded eigenvalues, 𝑑, where 𝑑𝑖 = |𝑒𝑖+1 − 𝑒𝑖| for every 

𝑖 = 1, 2, … , 𝑛 − 1 .   

v. Estimate the parameter 𝛽𝑠𝑘
of generalized Brody distribution from 𝑑  using 

maximum likelihood method. The method details can be found in the next section 

of Materials and Methods. 

At the end of this step, a generalized Brody distribution 𝛽 parameter series, 𝛽 =

[𝛽𝑠0
, 𝛽𝑠1

, … , 𝛽𝑠𝑘
, … , 𝛽𝑠𝑚𝑎𝑥

], was obtained. 

4. Identify the critical transitioning point from 𝑠𝑐 from the 𝑠 based on the trend of the 𝛽 

series, and the 𝑠𝑐 will be chosen as the final critical threshold.  

5.3.5 Maximum likelihood based 𝛽 estimation 

Maximum likelihood based method can be used for estimating the parameter 𝛽 of 

generalized Brody distribution from the observed NNS of unfolded eigenvalues 𝑑, 

which was mention above. The ML-based method imposes more regular dynamics and 

less uncertainties in the estimated values than other methods (Jafarizadeh, Fouladi et al. 

2012), particularly the Least Square Fit-based method, which is a well-known and 

widely used method, thus it was considered to be a more reliable tool for analyzing the 

fluctuation properties of the spectra of RMT systems (Jafarizadeh, Fouladi et al. 2012). 

The mechanism and properties of ML-based methods has been described extensively 

elsewhere (Scholz 1985), here we briefly describe how it was applied to the 𝛽 

parameter estimation in this study. The probability density function of generalized 

Brody distribution, 𝑃𝐵𝑟𝑜𝑑𝑦(𝑠|𝛽), was described above. Suppose there was a set of 

observed NNS data points 𝑑 = [𝑑1, 𝑑2, … , 𝑑𝑛  ] that are independent and identically 
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distributed, then the likelihood function for the 𝛽 parameter based on the observed 𝑑 

was defined as the following, 

ℒ(𝛽 ;  𝑑1, 𝑑2, …, 𝑑𝑛 ) = 𝑓𝐵𝑟𝑜𝑑𝑦(𝑑1, 𝑑2, …, 𝑑𝑛 | 𝛽) = ∏ 𝑓𝐵𝑟𝑜𝑑𝑦(𝑑𝑖 | 𝛽)𝑛
𝑖=1  

If a maximum exists for the defined likelihood function, it is mathematically the same 

regardless of whether we maximize the likelihood or the log-likelihood function, 

because the log function increases monotonically. Therefore, we defined the 

corresponding log-likelihood function as the following for computational convenience, 

ln ℒ(𝛽 ;  𝑑1, 𝑑2, …, 𝑑𝑛 ) = ∑ ln 𝑓(𝑑𝑖 | 𝛽).

𝑛

𝑖=1

 

Further, we have maximum-likelihood estimator �̂�𝑚𝑙𝑒 defined as, 

�̂�𝑚𝑙𝑒 = arg max
0≤𝛽≤1

ln ℒ(𝛽 ;  𝑑1, 𝑑2, …, 𝑑𝑛 ) 

i.e., the set of 𝛽 parameters that were box constrained between 0 and 1 and maximize 

the log-likelihood function, ln ℒ(𝛽 ;  𝑑1, 𝑑2, …, 𝑑𝑛 ).  

Note that the �̂�𝑚𝑙𝑒 should be a value chosen from 0 to 1, so a limited-memory 

modification of the BFGS quasi-Newton method allowing both lower and upper bounds 

[Byrd et. al. (1995)] was used for the maximization of the log-likelihood function.  

5.3.6 Identification of critical transition and selection of final threshold  

Note that the generalized Brody distribution based approach estimates a series of 𝛽 

parameters, [𝛽𝑠0
, 𝛽𝑠1

, … , 𝛽𝑠𝑘
, … , 𝛽𝑠𝑚𝑎𝑥

], for the threshold series, 𝑠 =

[𝑠0, 𝑠1, … , 𝑠𝑘, … , 𝑠𝑚𝑎𝑥]. The subsequent step is to identify the critical transitioning point 

in the 𝑠 as signaled by the trend and fluctuation in the 𝛽 series. It is important in this 

step to employ an algorithm that is capable of not only automatically recognizing the 

transitioning phase of the 𝛽 dynamics in different systems, where the estimated 𝛽’s 
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quickly drop from values near 1 to 0, but also objectively selecting critical points from 

such transitions to ensure that the further constructed networks can be compared with 

each other on a similar basis. Here we adopted the smoothing and detrending techniques 

from trend analysis, accompanied by several critical transitioning indicators in complex 

systems, including trend slope, lag-1 autocorrelation, variance, and skewness, for jointly 

determining the critical transitioning point in this study. Thus, the detailed algorithm is 

described as the following, 

1. Smooth the 𝛽 using a Gaussian kernel smoothing function with bandwidths chosen 

separately for each specific case, so that the major trend of the 𝛽 was kept without 

overfitting. For most of the analysis in this study, the bandwidth was set to a tenth of 

the span of the 𝛽. 

2. Subtract the smoothed values from the 𝛽 and obtain the remaining residuals. This 

technique is also called detrending, which removes the long-term trend from the 

original 𝛽 and achieves stationarity. 

3. Evaluate the series of detrended 𝛽 residuals from its tail, and identify a critical point 

if a sharp transition exists in the original 𝛽 . Since the smoothing bandwidth was 

usually larger than the span of the sharp transition, a lagging effect will be shown on 

the tail of smoothing line, i.e. the smoothing line drops slower than the original 

signals. So, the bifurcating point of the smoothing line and original 𝛽 dynamics was 

used as a presumptive transitioning point, which is usually at the point with the largest 

slope on the trend line, and the slope 𝑚 at 𝑠𝑘 for any possible 𝑘 was calculated as 

following, 

𝑚𝑠𝑘
=

∆𝛽

∆𝑠
, 
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where ∆𝑠=𝑠𝑘+𝑐 − 𝑠𝑘 and ∆𝛽=𝛽𝑠𝑘+𝑐
− 𝛽𝑠𝑘

, all 𝑐 in this study used a small value of 4. 

The critical transition was estimated to be the longest consecutive region of points 

with slope values larger than 0.13, and the critical threshold was select at the point 

in the critical transition where the slope is maximum. 

4. Confirm the presumptive critical point produced in the above steps, using lag-1 

autocorrelation, variance, and skewness. To compute three indicators, a sliding 

window of fixed size up to the transition point was applied the detrended 𝛽 residuals. 

Here, a sliding window of half the size of the time series. The detailed calculation was 

described as following, 

i. Lag-1 autocorrelation root-sum-of-squares (RSSQ). An autoregressive model of 

order 1 (AR1) was defined as following, 

𝛽𝑠𝑘+1
= 𝑎1𝛽𝑠𝑘

+ 𝜀𝑠𝑘
. 

AR1 was fitted with windowed data points (assuming M points per window) by 

an ordinary least-squares (OLS) fitting method, and the RSSQ of AR1 was 

estimated as following, 

𝑅𝑆𝑆𝑄𝑠𝑘
= ∑ 𝜀𝑠𝑘

𝑖𝑀
𝑖 . 

ii. Variance. The variance of windowed data points, 𝛿𝑠𝑘
, was estimated using the 

standard deviation. 

iii. Skewness. The skewness of windowed data points was estimated using the 

Pearson’s moment coefficient of skewness, which was defined as following, 

𝛾𝑠𝑘
=

1

𝑀
∑ (𝛽𝑠𝑘

𝑖 −�̅�𝑠𝑘
)3𝑀

𝑖

[
1

𝑀−1
∑ (𝛽𝑠𝑘

𝑖 −�̅�𝑠𝑘
)

2
𝑀
𝑖 ]

3 2⁄ , 

where �̅�𝑠𝑘
 is the mean of the data points fallen within the window. 
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With 𝑚𝑠𝑘
, 𝑅𝑆𝑆𝑄𝑠𝑘

, 𝛿𝑠𝑘
 and 𝛾𝑠𝑘

 for any possible 𝑠𝑘, we normalized the value ranges 

of four indicators to [0, 1]. For 𝑚, 𝑅𝑆𝑆𝑄 and 𝛿, min-max normalization was done 

separately, so each point of each indicator have a value close to 1 if its original 

value is close to the maximum one among all values of the indicator, and a value 

close to 0 if that is close to the minimum one; for 𝛾, min-max normalization was 

done based on the distance of original absolute value to 1, so each point of 𝛾 should 

have a value close to 1 if its original absolute value is close to 1, and a value close to 

0 if that is close to the most distant one from 1.  

5.3.7 in silico datasets 

Simulation procedure and rules. The goal of the simulation here was to obtain the 

artificial co-occurrence matrices whose individual strength values were distributed in 

designated patterns. Since any co-occurrence matrix produced by popular correlation 

calculation methods is symmetric, and has absolute values ranged from 0 to 1, the 

general procedure used in this study to simulate a 𝑛×𝑛 co-occurrence matrix has the 

following steps to ensure the rules to be meet, 

1. Draw 𝑛×(𝑛 − 1) 2⁄  random deviates from given probability density function to form 

an 𝑛×𝑛 upper triangular matrix 𝑈. 

2. Normalize 𝑈 by dividing each random deviate with the maximum absolute value of 

all, to ensure each has the value ranged from -1 to 1. 

3. Get the lower triangular matrix 𝐿 by transposing 𝑈, and obtain the simulated co-

occurrence matrix 𝐴 =  𝑈 + 𝐼 + 𝐿, where 𝐼 is a 𝑛×𝑛 identity matrix, to ensure the 

symmetry. 



124 

 

The sizes of all simulated matrices in this study were set to 500×500 to facilitate the 

computation, unless else was specified. 

Simulated co-occurrence matrices from common continuous distributions. To explore 

the generality of the GBD-RMT method, we analyzed datasets simulated from a number 

of common continuous distributions, including uniform, normal, log-normal, 

exponential, logistic, beta, gamma, and Weibull distribution. The parameter setting for 

each distribution was selected to have distinguished shapes of density function. The 

simulated dataset based on the normal distribution was chosen as the model system to 

represent in silico datasets for the purpose of demonstration in the results 

5.3.8 Real project dataset 

The real datasets were ideal than the ones numerically simulated, as they were found to 

have mixed, complex or irregular distributing patterns (Figure S 10). Therefore, real 

datasets below were used in this study. 

a) The MENAP datasets. MENAP is an open-accessible pipeline at Institute for 

Environmental Genomics, which provides an implementation of current RMT-based 

approach to construct ecological association networks. It hosts more than 6,000 co-

occurrence matrices (mainly based on Pearson Correlation Coefficient) that were 

calculated from the real 16S sequencing and gene expression datasets. In this study, a 

total of 500 co-occurrence matrices were extracted from MENAP database. Each 

dataset was selected randomly, with criteria having at least 500 qualified components 

that with valid values in more than two thirds of the samples. Selected co-occurrence 

matrices can be used as direct input for threshold detection using the GBD-RMT 

approach. 
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b) Biogeographic survey. The biogeographic survey datasets consist of 16S sequencing 

profiles of 126 metagenomes from soil core samples that were taken from the following 

six forests (21 for each): Niwot (NWT), Andrews (AND), Harvard (HFR), Coweeta 

(CWT), Luquillo (LUQ) and Barro Colorado Island (BCI). The selected sites provide 

variation in ecosystem type from boreal to tropical forest. More details about the 

datasets can be found in (Zhou, Deng et al. 2016) and Table S 5. The BCI dataset was 

chosen as the model system to represent real datasets for demonstration in the results 

c) Plant succession. The plant succession datasets consist of 16S sequencing profiles of 

288 metagenomes from rhizosphere and bulk soil samples from a greenhouse 

experiment (Shi, Nuccio et al. 2015). The samples were taken from 18 harvests at 10 

time points (2 seasons and 5 time points for each season) during the succession of 

Avena fatua, in which 8 harvests were from rhizosphere soil (except for the first time 

point of each season) and 10 harvests were from bulk soil. More details about the 

datasets can be found in (Shi, Nuccio et al. 2016) and Table S 6. 

5.3.9 Topological indices 

a. Scale-freeness 

A network is scale-free if its degree distribution fits a power law, which means most of 

nodes have low degree and only a few nodes have high degree. Mathematically, the 

fraction of nodes in a scale-free network that has degree of 𝑘, is denoted as 𝑝(𝑘), then 

𝑝(𝑘)~𝑘−𝑐, 

or  

log(𝑝(𝑘)) ~ − 𝑐𝑙𝑜𝑔(𝑘), 
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where c is a constant. Upon the definition of the scale-free network, scale-freeness is 

defined as the goodness of fit of degree distribution to a power law. Given a vector of 

node degrees, the degree distribution can be approximated by binning the node degrees. 

Considering that the number of bins may affect the distribution approximation and the 

scale-freeness estimation, we make multiple attempts in calculating scale-freeness for a 

network with different numbers of bins ranged from 5 to 1/5 of node number, and only 

the maximum scale-freeness was selected. Assume 𝑘 = [𝑘1, 𝑘2, … , 𝑘𝑖 , … , 𝑘𝑛] is a vector 

of node degrees for a network of n nodes, in which 𝑘𝑖 is the degree of node 𝑖, the 

calculation of scale-freeness of a network has the following steps: 

1. Select a bin number 𝑏 from 5 to n/5 

2. Bin 𝑘 with 𝑏, and obtain the degree distribution 𝑝𝑏(𝑘) 

3. Get log (𝑝𝑏(𝑘) + 1) and log (𝑘 + 1) 

4. Fit linear model with log (𝑝𝑏(𝑘) + 1) and log (𝑘 + 1), and record the 𝑅2 

5. Increase value of 𝑏 by 1, and repeat step 2 to 4. 

6. The highest 𝑅2 of all is selected as the scale-freeness. 

b. Other indices 

Other topological properties of network included in this study are connected node 

number, edge number, average connectivity (average degree), average shortest path, 

average clustering coefficient, and modularity. Most calculations will be accomplished 

through the igraph (Csardi and Nepusz 2006) packages in the R project.  



127 

 

5.4 Results 

5.4.1 Overview of the GBD-RMT approach 

A microbial data association network is an implicative map of various biological 

interactions (e.g. predation, competition, and mutualism) between microbial species in 

complex microbiomes. In such a network, nodes are the microbial species or OTUs, and 

links are associations between microbial species abundances. To construct microbial 

data association networks, finding appropriate thresholds of data association strength 

for reducing the numbers of links is the key. The GBD-RMT approach developed in this 

study can overcome limitations of the current method (e.g. MENAP), providing a 

generalized and objective way to finding the thresholds based on the context of the 

RMT.  

 

Figure 5.1 The schematic workflow of the GBD-RMT approach for determining critical 

threshold in datasets of species abundances. 

The GBD-RMT approach here consists of 3 major steps (Figure 5.1). The first step is to 

calculate the data association matrices from abundance matrices. In this step, multiple 

(8) distinctive methods for estimating data association strength are included, which have 
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unique advantages and disadvantages for the calculation of data association matrix. 

When calculating correlation matrices (data association based on PCC) from 

compositional abundance data, the clr transformation was effective for reducing the 

biases imposed by the compositional nature. However, the clr transformation has not 

been shown to work for other data association estimation methods, and no other specific 

transformations were proved to be effective neither, thus the calculation of data 

association matrix from compositional data using the methods other than the PCC was 

enforced without corrections, and should be considered to have biases. The second step 

is to obtain β series for the data association matrix from the first step, and detect the 

critical transition and select a final threshold in the β series. With the finalized 

threshold, the data association matrix can be easily reduced to an adjacency matrix, 

which is a data structure for representing undirected networks. To this end, the network 

structure was fixed and the network was constructed. Third, network analysis is to be 

performed on the constructed network to investigate topological characteristics or 

properties of interest (e.g. scale-freeness), detect modules, identify keystone nodes, and 

link network properties to external factors (e.g. geochemical variables).  

5.4.2 Generalized Brody Distribution 

First of all, we verified the capability of the GBD in capturing the progressive shift from 

the Wigner-Dyson distribution to the Poisson distribution. The numerical simulation 

result (Figure 5.2) showed that when the value of parameter of 𝛽 was equal to 1 

(Figure 5.2a), the GBD had a probability density function (pdf) curve as the same as 

what the Wigner-Dyson distribution had (Figure 5.2b); when the 𝛽 parameter was 

equal to 0 (Figure 5.2a), the GBD had a pdf curve that was the same as what the 
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Poisson distribution had (Figure 5.2c). When the value of the 𝛽 parameter was 

deceased from 1 to 0 (1, 0.75, 0.5, 0.25 and 0) (Figure 5.2a), the GBD had transitioned 

from the Wigner-Dyson distribution to the Poisson distribution. When the value of the 

𝛽 parameter is closer to 1, the GBD is more like the Wigner-Dyson distribution; when 

the value of 𝛽 parameter is closer to 1, the GBD is more like the Poisson distribution. 

The result suggested the GBD was indeed capable of capturing the transition between 

the Wigner-Dyson distribution and the Poisson distribution, if it existed. 

 

Figure 5.2 (a) The probability density function (pdf) of the Generalized Brody 

Distribution (GBD) with 𝛽 values equal to 0, 0.25, 0.5, 0.75 and 1. (b) The pdf of 

Wigner-Dyson distribution. (c) The pdf of Poisson distribution.  

5.4.3 Threshold detection in in silico datasets 

The result in Figure 5.3 showed an example of threshold detection with the GBD-RMT 

approach in a data association matrix (500 × 500) numerically simulated by randomly 

drawing strength values from a normal distribution (𝜇 = 0; 𝜎 = 1). The results showed 

that the critical transition of the NNSD in the simulated system existed and was 

successfully detected. The critical transition had a beginning point at ~0.81 and ending 
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point at ~0.91 and a critical threshold was selected at 0.867, which was the single point 

in the 𝛽 series where the NNSD shifted in the fastest pace from the state that fit Wigner-

Dyson distribution (β =1) to the other that fit Poisson distribution (β =0). The critical 

transition was also further evidenced by containing the peaks of AR (1) residuals, 

standard deviations, and skewness. The NNSD of the system was characterized by the 

GBD with a 𝛽 value of ~ 0.5 at the selected final threshold, which suggested that it is 

close to a middle state that was well distinguished from both Wigner-Dyson and 

Poisson distribution. Similar results were also observed for the systems simulated by 

drawing from other continuous distributions, including exponential, log-normal, 

logistic, uniform, gamma, beta and Weibull distribution (Figure S 11). The critical 

transitions were found to exist in all the simulated systems, but had the different 

beginning (~0.4-0.9999) and ending points (0.49-0.99999), and the selected final 

thresholds were also ranged from ~0.44 to 0.99998. Interestingly, the critical transitions 

detected for the simulated systems can have very different spans, which were ranged 

from ~0.0001 (beta distribution) to ~0.1 (logistic distribution). These results indicated 

that the critical transitions and final thresholds existed in all the analyzed in silico 

datasets and were detectable to the GBD-RMT approach, but their value ranges can be 

distinctive from each other. 
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Figure 5.3 An example of critical transition detection and threshold selection using 

trend analysis on the 𝛽 dynamics in a numerically simulated system (normal 

distribution). 

5.4.4 Threshold detection comparison with the MENAP 

A total of 500 MENAP data association (the PCC) matrix datasets were used for the 

threshold detection comparison between the GBD-RMT approach and the MENAP. We 

ran both methods on all of the datasets using the default settings of each, and based on 

yields from both methods, we evaluated the capability of each method to detect 

thresholds and compared values of thresholds detected by both methods. As shown in 

Figure 5.4a, both methods have been able to detect the thresholds for a vast majority of 

the datasets. However, the GBD-RMT approach was able to detect the thresholds in all 

the datasets successfully, while the MENAP failed to detect the thresholds in a total of 

20 (4%) datasets. The thresholds detected by both methods have the similar range of 
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value, as all of them fell between ~0.5 and 1 (Figure 5.4b). Also, the values of 

thresholds are also similar as indicated by the strong linear correlation (Pearson’s r 

=0.85) with a slope close to 1 (Figure 5.4b). About 75% of thresholds have differences 

of value less than 0.025. This result showed that the critical thresholds existed and were 

detectable to both the RMT approaches for microbial data association networks, and 

values of detected critical thresholds by both approaches are similar. Second, the GBD-

RMT approach has a broader range of detection than the MENAP, because it was able 

to detect the critical transitions and identify the critical thresholds in the systems where 

the MENAP failed. Third, the final thresholds selected by the GBD-RMT approach has 

the most values similar to the ones selected by the MENAP, which suggested that the 

two different approaches that relied on the same basis of the RMT are consistent in 

threshold identification. 
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Figure 5.4 (a) Detection of critical threshold for 500 datasets using the GBD-RMT 

approach and the MENAP. Detection failures were at blue dashed line with zero 

threshold value. (b) Comparison between values of critical thresholds detected by the 

GBD-RMT approach and the MENAP. The inner figure shows cumulative percentage 

of differences between thresholds detected by the GBD-RMT approach and the ones 

detected by the MENAP. (c) Comparison of the resolution of detection between the 

GBD-RMT approach and the MENAP in matrices with decreasing dimensions. 

The detection of the critical thresholds based on the RMT is dependent on the spectral 

analyses of the data association matrices, which usually required sufficient non-zero 

eigenvalues. When the data association matrices have low dimensions, the 

corresponding non-zero eigenvalues will be less in number, and thus can cause 

uncertainties in spectral analysis and lead to failure in the detection of the critical 
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transitions. We ran both the GBD-RMT approach and the MENAP on the data 

association matrices with different numbers of nodes, to compare the detection limit of 

the two approaches in terms of the dimension of input matrix. We used the data 

association (CLR_PCC) matrix (n=2099) calculated based on 16S profiling data from 

BCI site (the project of biogeographic survey) as a model system. We then generated a 

total of 60 matrices with 6 lower dimensions (n=500, 250, 100, 50, 25 and 10), that is 

10 matrices for each dimension. Each single matrix was generated by randomly drawing 

the corresponding number of rows and columns from the model system, and thus was 

different from each other. The results showed that both GBD-RMT approach and the 

MENAP could detect the critical thresholds in all replicates of 500×500, 250×250 and 

100×100 matrices. As the dimension continued to decrease, the GBD-RMT approach 

and the MENAP started to differ in the resolution and capability of detection. In 50×50 

matrices, the MENAP is only capable of detecting the critical thresholds in one matrix, 

which suggested a loss of resolution of detection of the MENAP. In 10×10 and 25×25 

matrices, the MENAP was not capable of yielding any critical thresholds, while the 

GBD-RMT approach detected thresholds in all matrices in spite of the extremely low 

dimensions of the matrices. These results suggested that the GBD-RMT approach was 

less limited in detection of the critical thresholds and higher in resolution of detection in 

matrices with low dimensions than the MENAP.  

5.4.5 Threshold detection comparisons among data association methods 

The calculation of data association matrix is an important step in general data 

association network inference, we also expected that distinctive methods for estimating 

data association will produce different data association matrices, and consequently 
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affect the detection of critical thresholds and structures of inferred networks. First, the 

results (Figure S 12) showed that the methods differed in detected association strengths 

using the abundance data of the model system (BCI). Three methods (dCor, MI, and 

MIC) don’t distinguish the negative associations from the positive ones, and thus had a 

range of association strength from 0 to 1. The method of LSS detected few values of 

data association close to 0, due to the nature of this method to select the maximal sum 

of the product of all possible subsequences. Two methods (MI and MIC) were capable 

of yielding high strengths (>0.5) of the data associations where other method scoring 

low (close to 0). The two rank correlation methods, SPM and KDL, detected data 

association strengths that are highly correlated with each other (Pearson’s r =0.99). The 

CLR_PCC, though derived from the PCC, detected association strengths that were 

visually different from the PCC, rather more similar to the SPM and KDL. Then we run 

the GBD-RMT approach on the data association matrices of the same model system 

calculated using the methods. The results showed that the detected critical thresholds 

are quite different among the data association methods. The highest critical threshold 

(0.868) was detected in the MIC dataset, and the lowest one (0.68) in the KDL dataset 

(Table 5.1). Similar conclusions were found statistically significant by comparing 

critical thresholds detected in all datasets from the project of biogeographic survey and 

plant succession (Figure S 13). More details can be found in Table S 6. Next, we 

constructed the data association networks for each method using the corresponding 

critical thresholds, and compared the methods by analyzing edge overlap ratio among 

these networks. The edge overlap ratio here was calculated by dividing the number of 

edges two methods agreed on both existence and non-existence with the total number of 
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possible edges. The results of the analysis of the model system indicated that the SPM 

and KDL networks had the highest edge overlap ratios (>94%) among all pairs, and 

they are also the two networks that were most similar to the CLR_PCC network (>71%) 

in terms of common edges. The PCC and dCor networks had edge overlap ratio about 

70%, but they are quite different from all other networks (<40% and <35%) in general. 

It also confirmed that the CLR_PCC network is slight more similar to the SPM and 

KDL (both >71%) networks than to the PCC network (~40%, Figure 5.5). The LSS, MI 

and MIC networks were highly similar to each other with the edge overlap ratios more 

than 90% between any pair of the three networks (Figure 5.5). We extended the similar 

analysis to all the datasets from the project of biogeographic survey and plant 

succession, and found the similar results (Figure S 14) in general. Furthermore, we 

analyzed the differences of the network topological properties of network inferred using 

different methods for the model system, including the total number of connected nodes, 

total number of edges, average connectivity, average shortest path, diameter, average 

clustering coefficient and modularity, and evaluated how these properties differ by 

methods. The results showed that the networks of different data association methods 

had also disparate topological properties. The MI network of the model system is the 

simplest of all, with the lowest number of connected nodes and edges, average 

connectivity, diameter, and average clustering coefficient. The dCor network of the 

model system had the highest number of connected nodes and edges, and average 

connectivity of all, but its modularity is the lowest. Then the similar calculation of the 

topological properties was made for the networks of all datasets from the project of 

biogeographic survey and plant succession to statistically examine the differences of 
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topological properties among all methods. The MI networks had significantly (p < 0.05) 

lower values in five topological properties than almost all of the other methods, except 

than the LSS in average shortest path and diameter, which is similarly low as the MI. 

The MIC, MI and LSS had significantly (p < 0.01) lower number of connected nodes 

than the rest of the methods, meanwhile the rest of the methods are not really different 

from each other. The MIC is significantly (p < 0.05) lower than the other methods 

(except the MI) in the number of edges and average connectivity, but higher than the 

other methods in modularity (Figure S 13). 

 

Figure 5.5 Edge overlap ratio among the networks of a model system (BCI) inferred 

based on different data association detection methods. 
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Table 5.1 Comparison of detected critical transitions and thresholds, and topological 

properties among the networks of a model system (BCI) inferred based on the 

CLR_PCC. 

Property 
Data association detection method 

CLR_PCC PCC SPM KDL dCor LSS MI MIC 

Critical transition start 0.672 0.676 0.682 0.569 0.68 0.662 0.732 0.682 

Critical transition end 0.866 0.882 0.847 0.714 0.855 0.876 0.816 0.917 

Critical threshold 0.796 0.788 0.813 0.68 0.761 0.86 0.801 0.868 

No. of connected node 1080 1139 725 783 1302 388 363 631 

No. of edge 5799 9264 1953 1883 11321 859 442 883 

Avg. connectivity 5.58 8.92 1.88 1.81 10.90 0.83 0.43 0.85 

Avg. shortest path 4.50 6.01 5.10 5.72 4.84 5.62 5.81 11.27 

Diameter 13 22 14 19 16 16 13 34 

Avg. clustering coeff. 0.34 0.46 0.32 0.27 0.43 0.34 0.08 0.33 

Modularity 0.50 0.51 0.64 0.62 0.47 0.66 0.77 0.80 

 

5.4.6 Scale-freeness 

The scale-freeness is an important topological property widely observed in many 

complex networks including those from biology. We analyzed the scale-freeness of data 

association networks generated with varying cutoff values, and the results showed a 

stunning overlap between the range of cutoff values in the critical transition detected 

using the GBD-RMT approach and the range of those in which the scale-freeness were 

high and had low variance (the scale-freeness plateau). The Figure 5.6a showed an 

example of such an observation in our model system (the BCI network based on 

CLR_PCC). Using different cutoff values were found to greatly affect the scale-freeness 

(from 0 to 1) of the inferred network (Figure 5.6a) The changes of the scale-freeness 

based on single cutoffs didn’t show a clear trend in cutoff values ranged from 0.2 to 0.4, 

but did show an increasing trend from cutoff of 0.4 to cutoff of 1. Within the critical 

transition (0.672 to 0.866), the scale-freeness reached high in values (~1) and its curve 

became visually flat (Figure 5.6a). Next, we used a window with a size the same as the 

spanning of the critical transition to slide on the scale-freeness curve, and then 
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calculated the mean and variance of the scale-freeness in the window. The results 

showed an increasing trend of the mean of the scale-freeness (from ~0.3 to ~0.94) and a 

decreasing trend of the variance (from ~0.18 to 0.02), as the window slid from the 

beginning of the cutoff values to completely matching the critical transition (Figure 

5.6b). To confirm the critical transition had significantly higher scale-freeness and 

lower variance of that, we performed a statistic test in which the entire scale-freeness 

series were permutated 9999 times, and each time, the mean and variance of the 

permutated scale-freeness in the critical transition were calculated and compared with 

the real ones. As results, the permutation test showed that the scale-freeness in the 

critical transition had significantly higher mean value (p < 0.0001) and lower variance 

(p < 0.0001) (Figure 5.6c and d). The above analyses have been performed on all 

datasets from the project of biogeographic survey and the project of plant succession, 

and similar result were observed for each individual dataset (Table 5.2), which implied 

that the overlap between critical transitions and the range of those in the scale-freeness 

plateau existed pervasively in the analyzed biological networks despite different 

microbial communities and data association detection methods. 
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Figure 5.6 An example of the overlap between the critical transition and the scale-

freeness plateau in a model system (BCI) based on the CLR_PCC method. (a) Changes 

of scale-freeness with increasing cutoff values. The critical transition region is in yellow 

which is in between two red dashed lines. The critical threshold is indicated by the blue 

dashed line. (b) Mean and variance of scale-freeness in a window with the same 

spanning as the critical transition, whose left side slides from beginning cutoff (0.2) to 

the beginning of the critical transition (0.672). The blue dashed line indicates those in 

the critical transition. (c) Permutation (n=9999) test to verify mean of scale-freeness in 

the critical transition is significantly higher than what from other regions. Means of 

scale-freeness from permutations are distributed in light blue shape, the original mean 

of scale-freeness is indicated by the blue dashed line. (b) Permutation (n=9999) test to 

verify variance of scale-freeness in the critical transition is significantly lower than what 

from other regions. Variances of scale-freeness from permutations are distributed in 

light red shape, the original variance of scale-freeness is indicated by the red dashed 

line. (e) Changes of 𝛽 value of the model system at the critical threshold in response to 

the fractions of rewired edges with two different rewiring procedures. Both the 

procedures randomly change the organization of and preserves the number of edges. 
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Furthermore, we analyzed how the 𝛽 value obtained with the critical threshold 

responded to the changes of the scale-freeness. In the analysis, we used two different 

procedures, the Maslov-Sneppen rewiring procedure [56] and the random rewiring 

procedure, to rewire a gradient of percentage (5%, 10%, 15%, 20%, 25%, 30%, 35%, 

40% and 50%) of edges in the data association network constructed using the critical 

threshold. In the Maslov-Sneppen procedure, two edges without shared nodes were 

selected and rewired at the same time, and the rewiring will only change one each time. 

Both of the procedures preserve the number of edges, but the Maslov-Sneppen 

procedure keeps the degree distribution of the network unchanged and the random 

rewiring does not. So the scale-freeness of a network will only change when the random 

rewiring is applied, and it will not when using the Maslov-Sneppen procedure. For each 

rewired network, we reversely obtained the corresponding data association matrix, and 

then estimated the corresponding 𝛽 value using the GBD-RMT approach to see how it 

changes in comparison with the original 𝛽 value (~0.44) obtained with the critical 

threshold (0.796). The results first showed a trend that values of 𝛽 parameter increased 

as more edges were rewired in both the Maslov-Sneppen procedure and the random 

rewiring procedure, which suggested that both the rewiring procedures caused the 

NNSD of the system to shift towards the Wigner-Dyson distribution and thus an 

increase of randomness in the system. Interestingly, the result of two procedures 

differed in how much values of 𝛽 parameter were changed when edges were rewired. 

The value of 𝛽, in the random rewiring procedure, was increased to ~0.7 (57% increase) 

when a small fraction (15%) of edges were rewired, and increased to ~0.9 (103% 

increase) for 35% rewired edges. In the Maslov-Sneppen procedure, the value of 𝛽 
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increased to 0.67 (52% increase) where the highest fraction of edges was rewired in our 

test, which was less than the increase by rewiring 15% of edges in the random rewiring 

procedure. These results suggested that the 𝛽 value obtained with the critical threshold 

is sensitive to the changes of the scale-freeness. 

5.5 Discussion 

5.5.1 Importance of network analysis 

Characterizing complex microbial interactomes is critical to understanding microbial 

diversity and function (Zhou, Wu et al. 2011, Deng, Jiang et al. 2012, Shi, Nuccio et al. 

2016), but most previous microbial ecology studies only focused on simple microbial 

richness and composition. Ignoring the organization and dynamics of microbial 

interactions makes it hardly possible to fully understand diversity and species co-

evolution in microbial communities. In recent years, network based analysis has 

become an emerging tool for exploring microbial interactions in complex microbial 

communities. Previously, we systematically described a data association network 

approach based on the mathematical framework of the RMT, demonstrated its 

applicability in characterizing interactomes in different biological systems (e.g. protein 

interaction network (Luo, Yang et al. 2007), functional gene network (Zhou, Deng et al. 

2010) and phylogenetic network (Zhou, Wu et al. 2011)), and also presented a 

bioinformatics tool, the MENAP (Deng, Jiang et al. 2012). While the MENAP has been 

powerful in objectively selecting critical thresholds for inferring correlation networks in 

microbial communities, it still has limitations in dealing with compositional data, 

detecting non-PCC associations, and identifying and interpreting of critical thresholds. 

In this study, we presented the GBD-RMT approach, which was based on the same 
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RMT framework but with new methods and improvements for better inferring data 

association networks. 

5.5.2 Advantages of this approach 

As an approach based on the RMT framework, the GBD-RMT approach detected 

threshold values that are similar to the ones selected by the MENAP, which suggested 

that the two approaches that relied on the same framework are consistent with each 

other. Both the approaches share the advantages of objective detection of critical 

thresholds for inferring data association networks. Comparing with the MENAP, the 

GBD-RMT approach had several advantages. 

First, the GBD-RMT approach is better than the MENAP in the capability and 

resolution of critical threshold detection. The MENAP has been able to detect critical 

thresholds in the most datasets, but it still failed a few. While the failure rate is not high, 

it is likely to preclude comparative analysis on multiple networks, especially when there 

were many networks to compare at the same time. In such cases, one single detection 

failure causes imbalanced comparisons, and thus affects further analysis and conclusion. 

The detection failure is likely caused by two reasons. The MENAP approximated the 

NNSD by binning discrete spacing data points, whose performance was likely affected 

by the number of bins, thus it can cause inaccurate approximation when the sub-optimal 

bin number was used and further affect the characterization of NNSD. Meanwhile, the 

MENAP makes threshold calling based on the p value of fitting the NNSD to Wigner-

Dyson and Poisson distribution in 𝜒2 test, which is highly sensitive to the number of 

data points and small frequencies (Fornell and Larcker 1981) in the NNSD. When 

candidate cutoff value is high, the non-zero eigenvalues of the reduced data association 
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matrix will be less, and thus the NNSD will have fewer data points and be more likely 

to have small frequencies, which lead to erroneous conclusions in threshold calling. The 

presented GBD-RMT approach overcomes these limitations by use MLE based 

estimation parameter on the NNSD, which avoids both the NNSD binning and 𝜒2 test 

and have additional advantages in consistency, efficiency, and invariant (Myung 2003). 

Consequently, it succeeded in detecting critical thresholds in all simulated and real 

datasets throughout this study, including those where the MENAP failed, and also had 

higher detection resolution than the MENAP. The perfect detection by the GBD-RMT 

approach not only once again confirmed the applicability of the RMT based approach in 

biological systems, but also provided an important basis for a large scale comparative 

network analysis, which is anticipated in metagenomics enabled studies as cost of 

microbial community profiling keeps on being brought down by advances in the 

metagenomics technology. In the meantime, the advantage of higher detection 

resolution makes the GBD-RMT approach more appropriate for inferring network from 

biological systems (e.g. less diverse microbial communities) that are less complex in 

terms of having fewer nodes.  

Second, detection of critical threshold in the GBD-RMT approach has higher 

confidence and interpretability than what in the MENAP. Apart from the MENAP, 

which calls threshold on each candidate cutoff in isolation from all other cutoffs, the 

GBD-RMT approach recovers entire 𝛽 dynamics first, and then analyze the trend of the 

𝛽 dynamics for detecting critical transitions and selecting critical threshold. Since each 

value in the 𝛽 dynamics is estimated from the GBD, which quantitatively measures 

where the NNSD stands in between the Wigner-Dyson distribution and the Poisson 
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distribution, the GBD-RMT approach can detect critical transition based on transition 

progress, where the trend of 𝛽 dynamics starts to decrease from 1 but before dropping 

to 0. In the RMT context, systems experiencing critical transition have the randomness 

that is no longer separable from the system specific properties, so all cutoffs fallen in 

the critical transition have the potential to be the critical threshold. In this study, the 

cutoff value at which the slope of 𝛽 dynamics trends was the highest was empirically 

selected as the critical threshold, which means critical transition occurs at the fastest 

pace at the critical threshold. In practice, selections for the critical threshold with good 

interpretability includes beginning and ending cutoff of critical transition, and cutoff at 

the middle of overlap of critical transitions. The principle is that all thresholds should be 

selected in the same way in terms of interpretation, otherwise multiple networks might 

be compared on different basis and thus the conclusion of the analysis can be affected. 

In contrast, the MENAP calls thresholds when target NNSDs fit the Poisson distribution 

without giving any information about the progress of transitions of NNSDs and without 

knowing states of NNSDs before the thresholds to call and thereafter. In this manner, 

even though the critical thresholds identified by the MENAP are most likely from the 

critical transitions, it is uncertain or less confident than the GBD-RMT approach 

because the exact states of system NNSDs are not known. We showed the critical 

transitions can have long spans, so when comparing multiple networks, ignoring what 

states of NNSDs for which the detected thresholds stand is likely to lead networks to 

compare to be inferred with criteria that are not unified, and thus cause not only 

uncertainty and but also interpretability issue in comparisons. 
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In addition, the GBD-RMT approach integrated the state-of-art techniques for tackling 

several challenges faced with the inference of data association networks, which were 

lacked in the MENAP. The GBD-RMT approach implemented with the clr, which 

alleviate the compositional data bias for inferring correlation networks, while the 

MENAP doesn’t. This is important, especially to the network analysis in microbial 

ecology studies, because absolute abundance data is difficult to access and 

compositional data (e.g. microbial profiling data based on high-throughput sequencing) 

is prevalent in the field. Therefore, incorporating the clr should improve the accuracy of 

the correlation network inference, and make the GBD-RMT approach more prepared 

than the MENAP for in those studies. Meanwhile, the GBD-RMT approach integrated 

multiple methods for detecting the data association between two random variables, 

while the MENAP is solely based on the PCC. Each method has distinctive features, 

and thus produces data association matrices with different critical thresholds and infers 

networks with different structures and topological properties in our results. The 

distinctiveness of the SPM (Barberán, Bates et al. 2012, Szklarczyk, Franceschini et al. 

2014), KDL (Das, Meher et al. 2017), dCor (Guo, Zhang et al. 2014), LSS (Steele, 

Countway et al. 2011), MI (Song, Langfelder et al. 2012) and MIC (Reshef, Reshef et 

al. 2011) demonstratively makes each of them work well or perform better than others 

in inferring networks from specific complex biological systems. The variety of data 

association methods gains a practical advantage for the GBD-RMT approach in 

inferring networks from a broad range of datasets. For the systems where only linear 

data associations are important, that is other types of association are considered as 

noise, methods like the PCC should be chosen over the LSS, MI and MIC, which is 
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highly and only sensitive to linear dependences (Speed 2011); on the contrary, if as 

many types of associations as possible are interested, the MI and MIC should be first 

considered, which reportedly outperformed others in detect non-linear or non-functional 

associations (Reshef, Reshef et al. 2011, Kinney and Atwal 2014). Meanwhile, if both 

negative and positive data associations are interested, the dCor, MI and MIC may be 

inappropriate as they don’t assign signs to the detected data association edges as shown 

in our results.  

5.5.3 Scale-freeness 

The scale-freeness is an important topological property, which differentiates many 

complex networks from randomly generated networks (Barabási and Albert 1999). The 

scale-freeness has received a lot of attention because many notable characteristics (e.g. 

robustness to failure) are commonly shared by the networks that are scale-free. Whether 

a network is scale-free or not alone help us better understand the formation of the 

network and the factors that shape network structure, and predict influences of network 

on how system functions respond to disturbances (Albert, Jeong et al. 2000, Pastor-

Satorras and Vespignani 2001, Eguiluz, Chialvo et al. 2005). In biological systems, the 

scale-free networks also widely exist in interactomes of microbial species, metabolites, 

functional genes, and proteins (Jeong, Mason et al. 2001, Ravasz, Somera et al. 2002, 

Barabási and Oltvai 2004, Albert 2005, Chaffron, Rehrauer et al. 2010, Zhou, Deng et 

al. 2010). With the GBD-RMT approach, we found, for the first time, a remarkable 

linkage between the critical transition of 𝛽 series and the plateau of scale-freeness, 

which pervasively existed in the biological systems included in this study. The overlap 

found in this study has several important implications. First, the scale-freeness depends 
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on the selection of the critical threshold. Therefore, selecting a critical threshold 

arbitrarily can lead to very different conclusion about the scale-freeness of the same 

network, which also emphasized the importance of the methods detecting critical 

thresholds objectively. Second, the high scale-freeness uncovered by the GBD-RMT 

approach for all the datasets is consistent with the prevalence of scale-free networks in 

biological systems. This scale-free nature of complex biological networks can be 

explained by the preferential attachment hypothesis, which generalizes mechanisms that 

drive new nodes to preferentially connect to the existed nodes with high degree during 

network formation or growth. Here, the mechanism we think explains the scale-freeness 

of microbial networks is functional redundancies. In a microbial community, multiple 

species can contribute equivalently to an ecological function, so these species that have 

duplicate functions are likely to interact with the same partners. Intuitively, labile 

Carbon (C) decomposers of difference species, for example, are likely to interact with 

upstream recalcitrant C decomposers, so each recalcitrant C decomposer gains a new 

link to all species that decomposes labile C. In this way, the scale-free network is like to 

form if there exist important but less redundant functions in the microbial community. 

Third, the linkage itself is consistent enough in our analysis to drive us to hypothesize 

its universality among all biological or non-biological data association networks. To 

further test the hypothesis, it requires a larger scale analysis on microbial data 

association networks or rigorous mathematic proof. If the hypothesis holds, the linkage 

should be a very interesting connection between the RMT and Network Science. 
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5.5.4 Limitations and future work 

The GBD-RMT approach is free of limitations. First, as an approach for inferring the 

networks based on data association, the GBD-RMT approach inherently has the 

common limitations. The edges among the nodes in the inferred networks should be 

only considered as the hypothetical microbial interactions, which by no means 

automatically extends to any empirical validation on the microbial interactome, nor 

implicates any causality or direction information. Second, the GBD-RMT approach is 

not able to solve compositional data bias for data association methods other than the 

PCC. So, the networks inferred with those methods will be inevitably biased, and future 

effort is still needed for determining how the compositional data bias affects each 

individual data association method and developing corresponding bias reduction 

methods. Third, the GBD-RMT approach is not capable of decisively determining 

which particular data association method should be preferred over others to a task of 

network inference, without additional information about what types of data association 

are of importance and interest in the particular system may be highly necessary to 

determine so. To further lift the limitation, it requires experimental verifications to 

establish linkages between features of abundance data and selection of data association 

method. Finally, the GBD-RMT approach is limited in speed comparing with the 

MENAP. Both the spectral analysis and MLE based estimation for an entire 𝛽 dynamics 

in the GBD-RMT approach are computationally intensive. The time cost of both 

procedures was easy to see to depend on the scale of cutoff ranges. The speed of the 

spectral analysis was also further limited by the dimension of th4e data association 

matrix, because the computational complexity of solving an n-dimension matrix with 
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low sparsity for eigenvalues is O (𝑛3). To get more favorable speed, the approach was 

implemented in parallel computing scheme, which allows performing the procedures for 

multiple cutoffs concurrently and brings down the time cost no more than the MENAP. 

But it still needs further speed-up for processing large data association matrices (n > 

10,000). Possible solutions may include predicting a narrower range of candidate 

cutoffs before detecting the critical transition based on training datasets, which will be 

explored in our future work. Despite all these limitations, the GBD-RMT approach is 

still powerful in providing insights into the microbial interactomes, generating 

hypotheses for further testing, and adding a substantial dimension to microbial ecology 

studies beyond those of simple analysis of richness and composition. 
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Chapter 6: Summary and Output 

This work included the development of two high-throughput FGAs for the specific and 

general purpose, respectively, a bioinformatics pipeline for function-oriented analysis of 

shotgun metagenome sequencing data, and a computational approach for inferring data 

association networks. Each developed technology or method was demonstrated to be 

powerful in application studies. Overall, the work in this dissertation offered new and 

up-to-date technological and computational resources for improving our understanding 

of complex microbial communities. 

First of all, we developed the PABMC, since detecting and profiling soil microbial 

functional genes beneficial to plants is critical to understand interactions between 

PGPMs and plants in agricultural and natural ecosystems, which is of great economic 

and ecological importance. To our knowledge, the PABMC is the first high-throughput 

functional gene array to characterize plant beneficial genes with comprehensive 

coverage in terms of plant beneficial genes and PGPM species. The specificity of the 

probes included in the PABMC was verified to be highly specific in the computational 

evaluation. In the showcase study to investigate PGPM communities in natural sites 

where have been invaded by A. adenophora, The PABMC uncovered the impacts of 

plant invasion on microbial communities from a perspective of plant beneficial genes, 

and offered evidence for explaining how invasive plant interacted with and receive 

benefits from PGPMs and eventually established successional success. The evidence 

includes the increased alpha diversity and the shifted composition of communities in the 

invaded site, as well as the increased abundance of a drought tolerance gene and the 

decreased abundance of pathogen resistance genes. Interestingly, different directions of 
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significant changes were observed in response to the A. adenophora invasion, for 

antibiotic biosynthesis, in which abundances increased in two genes and decreased in 

three. We speculated that A. adenophora might actively overturn belowground 

antibiotic regulatory landscape by suppressing original antibiotic synthesizers 

established in the native site in favor of substitute synthesizers. While further studies are 

required to examine A. adenophora root exudates, soil properties and the surrounding 

microbiota in order to confirm these hypotheses, the PABMC was demonstrated to be a 

powerful tool for efficient characterization of PGPM. 

Second, to further address various experimental and computational challenges still 

existed in analyzing microbial communities in the environment, we have developed a 

new generation of functional gene arrays (GeoChip 5.0). The GeoChip 5.0 contains 

161,961 probes covering functional groups involved in microbial carbon (C), nitrogen 

(N), sulfur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, 

metal resistance/reduction, organic contaminant remediation, stress responses, 

pathogenesis and virulence as well as markers specific for viruses, protists, and fungi. 

To the best of our knowledge, this is the most comprehensive functional gene arrays 

currently available for studying microbial communities important to biogeochemistry, 

ecology, environmental sciences as well as human health. Compared with previous 

generations of GeoChip, GeoChip 5.0 has several improved features, such as covering 

novel functional categories (e.g. microbial defense, protist, plant growth promotion, 

pigments and metabolic pathways), targeting more functional gene families and genes, 

and having smaller spots with higher density. Meanwhile, both computational and 

experimental evaluations demonstrated that the developed Agilent-based GeoChip 5.0 is 
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highly specific, sensitive, and quantitative for characterizing microbial community 

functional composition and structure. Furthermore, in our application study, GeoChip 

5.0 was used to examine the impacts of heavy metal contamination on groundwater 

microbial communities. The result uncovered decreased functional gene richness and 

Shannon-Wiener diversity, shifted microbial community composition, and changes in 

abundance of metal homeostasis genes in the contaminated samples. The application 

also revealed that environmental variables including U and DOC played critical roles in 

shaping microbial community structure. All these results demonstrated the capability of 

GeoChip 5.0 for linking microbial communities to various ecosystem functional 

processes. 

Third, we developed the EcoFun-MAP, with database construction, workflow design 

and pipeline implementation and deployment. The developed EcoFun-MAP has several 

unique features and advantages, and thus is capable of addressing some of the 

computational barriers brought by rapid throughput increase in NGS technology and 

faced by many microbial ecologists. The databases of EcoFun-MAP are smaller and 

less in redundancy than general public databases, with a selective coverage and 

specialized organization of functional genes that are important to microbial ecology 

studies, and offered in a variety of widely accepted data structures. The quality of 

reference sequences was ensured using two separate procedures with manual 

corrections, thus the reference sequences used for database construction should be 

accurate. Meanwhile, the workflows of the EcoFun-MAP offered exceptional speed, 

which is, to our best knowledge, the first web-based pipeline with speed of multi-

million reads per minute. The EcoFun-MAP gained speed advantages through smaller 
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reference databases, fast and updated tools and HPC implementation. In addition, all 

EcoFun-MAP workflows were capable of generating similar results in analyses of 

composition and functional gene richness of the metagenomes from underground water 

samples in our analysis. Detailed analyses of the metagenomes based on the EcoFun-

MAP demonstrated its usefulness in revealing differences in relative abundances of 

functional categories and functional genes among sampled microbial communities, and 

link the differences with different levels of contaminants in the samples. 

Fourth, we developed the GBD-RMT approach, which was based on a previous RMT 

framework but with new methods and improvements for better inferring data 

association networks. The GBD-RMT approach detected threshold values that are 

similar to the ones selected by the previous RMT-based approach, the MENAP, which 

suggested that the two approaches that relied on the same framework are consistent with 

each other. However, comparing with the MENAP, the GBD-RMT approach had 

several advantages. The GBD-RMT approach is better than the MENAP in the 

capability and resolution of critical threshold detection, because it used MLE based 

estimation parameter on the NNSD, which avoids both the NNSD binning and 𝜒2 test 

and have additional advantages in consistency, efficiency, and invariant. Meanwhile, 

detection of critical threshold in the GBD-RMT approach has higher confidence and 

interpretability than what in the MENAP. Apart from the MENAP, which calls 

threshold on each candidate cutoff in isolation from all other cutoffs, the GBD-RMT 

approach recovers entire 𝛽 dynamics first, and then analyze the trend of the 𝛽 dynamics 

for detecting critical transitions and selecting critical threshold. In addition, the GBD-

RMT approach integrated the state-of-art techniques for tackling several challenges 
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faced with the inference of data association networks, which were lacked in the 

MENAP, including compositional data bias and complex data association types. With 

the GBD-RMT approach, we found, for the first time, a remarkable linkage between the 

critical transition of 𝛽 series and the plateau of scale-freeness, which pervasively 

existed in the biological systems included in this study. Despite the limitations, such as 

inferring no directions and causality, the GBD-RMT approach is still powerful in 

providing insights into the microbial interactomes, generating hypotheses for further 

testing, and adding a substantial dimension to microbial ecology studies beyond those 

of simple analysis of richness and composition. 

In conclusion, this work provided powerful, novel and update-to-date high-throughput 

metagenomics technologies, bioinformatics tools and computational methods for 

analyzing complex microbial communities and interactomes, which adds important 

parts into the integrated omics toolbox for microbial community analyses 
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Appendix A: Supplementary Figures 

Figure S 1 for Chapter 2: Development of a Functional Gene Array to Characterize 

Plant Growth Promoting Microorganisms Beneficial to Plants 

 

Figure S 2  to Figure S 6 for Chapter 3: Ultra-sensitive and -quantitative Detection of 

Microbial Populations in complex communities with New Functional Gene Arrays 

 

Figure S 7 to Figure S 9 for Chapter 4: The EcoFun-MAP: An Ecological Function 

Oriented Metagenomic Analysis Pipeline 

 

Figure S 10 to Figure S 14 for Chapter 5: A generalized Brody distribution based 

Random Matrix Theory approach for inferring microbial data association networks 
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Figure S 1 Schematic diagram for the sampling site. Three samples (A1 -A3, yellow 

points) were collected from center of a patch (light yellow region) dominated by A. 

adenophora; three samples (AX1 -AX3, green points) were collected from a mix region 

(black border of the patch) around edge of the patch where A. adenophora and native 

plants co-existed; and three samples (N1 - N3, blue points) were collected from 

surrounding region of the patch where A. adenophora was absent. Each soil sample was 

collected from the remaining soil in the hole generated by removing randomly chosen 

plant and rhizosphere soil (30 cm radius around the plant). Samples were homogenized 

and sieved (2 mm) to remove stones, roots and soil animals.  
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Figure S 2 The workflow of GeoChip 5.0 development started with the formulation and 

submission of keyword query for every functional gene family, then the retrieval of 

candidate sequences, which was followed candidate sequence confirmation, target 

screening and legacy probe validation, and probe design and selection.  

  



162 

 

 

Figure S 3 Effects of DNA concentrations on hybridization. Different amounts of 

community DNAs from a grassland soil, ranging 1 ng to 1,000 ng was labeled with Cy5 

(red spots) and hybridized to GeoChip 5.0S at 67 C, plus 10% formamide. Small 

amount of Cy3 labeled CORS was also added to the hybridization solution as control 

(green spots). 
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Figure S 4 Relationships between spots detected and the concentrations of community 

DNAs. (a) Hybridization of community DNAs from a grassland soils with GeoChip 

5.0S (see the images in Fig S2). (b) Hybridization of community DNAs from a 

wastewater treatment plant with GeoChip 5.0M. Different amount of community DNAs 

were directly labeled with fluorescent dyes without any amplifications in triplicates and 

hybridizations were carried out at 67C plus 10% formamide for 24 hours. Red dashed 

lines show the DNA amounts for detecting more than 30% of spots in GeoChip 5.0S 

and 5.0M. Any spots with SNR > 2 were considered as positive spots. 

  



164 

 

 

Figure S 5 Outer DCA showing on the difference of environmental factor values from 4 

contamination levels (L0, L1, L2 and L3). Two axis (DCA1 and DCA2) were included 

the plot, which conveyed 37.6% and 20% explanatory power for the environmental 

factor difference. Inner heatmap showing the differences of 41 measured environmental 

factors across different samples from 4 contamination levels. The rows are the samples 

ordered in a top-down manner by the contamination levels from the lower to the higher. 

The columns are the measured environmental factors ordered as a form of dendrogram. 

The environmental factors are subjectively divided into five categories, including 

general environmental parameters (Env; details in Table S 2), gas TCD (Gas), organic 

matter (Carbon), anions (Anion) and metal ions (Metal), and marked with different 

color bars (purple, blue, cyan, green and yellow, respectively). Z-scores were calculated 
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based on original or log transformed values of each column, and rendered with a blue to 

red color gradient as Z-score value increased. The original values of conductivity, Cl, 

NO,3 SO4, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, 

Ni, Pb, Se, Sr, U and Zn were log transformed due to the nature of the measurements. 
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Figure S 6 DCA on the impacts of contaminants of different levels on the groundwater 

microbial community structure. Two axis (DCA1 and DCA2) were included the plot, 

which conveyed 35.4% and 17.4% explanatory power for the community structural 

difference.  
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Figure S 7 An example of organization of functional genes in the EcoFun-MAP 

databases. 
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Figure S 8 An example showing components that constitute a typical keyword query. 
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Figure S 9 Heatmap showing the levels of measurements of environmental factors 

among 12 underground water samples. 
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Figure S 10 Examples of irregular distributions of co-occurrence strengths from real 

datasets. 
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Figure S 11 Critical transitions in systems that are simulated based on different 

distributions. 
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Figure S 12 Comparison of data association detection among different methods. 

  



173 

 

 

Figure S 13 Pairwise comparisons of detected thresholds and topological properties 

among the networks inferred using different data association detection methods for all 

datasets. The color and color depth of the heatmaps represent the signs and values of the 

Cohen’s d. The levels of significance were determined by the paired t-test. The 

comparisons in the heatmaps were organized in a way that the methods of rows were 

compared to the methods of columns. For example, in the heatmap of critical threshold, 

the cell in MIC row and KDL column has deep red and three asteroids, it means critical 

threshold of network inferred using the MIC is significantly (p < 0.001) higher than the 

same using the KDL. 
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Figure S 14 Clustering different data association detection methods based on similarity 

of edges in the inferred networks for all datasets. 
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Appendix B: Supplementary Tables 

Table S 1 and Table S 2 for Chapter 3: Ultra-sensitive and -quantitative Detection of 

Microbial Populations in complex communities with New Functional Gene Arrays 

 

Table S 3 and Table Table S 4 for Chapter 4: The EcoFun-MAP: An Ecological 

Function Oriented Metagenomic Analysis Pipeline 

 

Table S 5 and Table S 6Figure S 14 for Chapter 5: A generalized Brody distribution 

based Random Matrix Theory approach for inferring microbial data association 

networks 
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Table S 1 Summary of probes in GeoChip 5.0M based on on phylogenetic distribution 

of the functional genes. B, bacteria; A, archaea; E, eukaryota; F, fungi; P, protist; V, 

virus; M, metazoan; U, unclassified. GS-probe, group-specific probe; SS-probe, 

sequence-specific group. 

Domain-Kingdom-Phylum 

/order for virus 

No. of 

class order family genus species strain gene 
covered 

CDS 
probe 

GS- 

probe 

SS- 

probe 

A-A-Crenarchaeota 2 6 9 22 43 57 142 13921 1312 1133 179 

A-A-Euryarchaeota 10 12 23 69 133 187 229 33323 3992 3625 367 

A-A-Korarchaeota 1 1 1 1 1 1 33 3718 35 33 2 

A-A-Nanoarchaeota 1 1 1 1 1 1 6 12 6 6 0 

A-A-Thaumarchaeota 1 4 5 7 9 14 46 5218 95 73 22 

A-A-U 1 1 1 1 1 25 46 1885 288 115 173 

B-B-Acidobacteria 5 4 4 8 13 18 155 20180 745 715 30 

B-B-Actinobacteria 1 8 48 120 351 753 381 80060 15394 13618 1776 

B-B-Aquificae 1 2 4 12 17 22 127 19379 533 498 35 

B-B-Bacteroidetes 7 10 23 107 239 394 267 58970 9661 8790 871 

B-B-Caldiserica 1 1 1 1 1 1 13 38 19 19 0 

B-B-Candidatus 

poribacteria 
1 1 1 1 1 1 2 5 4 1 3 

B-B-Candidatus 

saccharibacteria 
1 1 1 1 1 3 9 22 17 4 13 

B-B-Chlamydiae 2 1 4 7 15 23 74 12652 241 230 11 

B-B-Chlorobi 1 1 1 6 15 20 138 21932 995 944 51 

B-B-Chloroflexi 8 11 12 14 19 28 209 32839 1353 1289 64 

B-B-Chrysiogenetes 1 1 1 2 2 2 33 81 41 40 1 

B-B-Cyanobacteria 2 8 12 57 97 203 237 46219 4727 4209 518 

B-B-Deferribacteres 1 1 1 4 4 4 81 2583 165 154 11 

B-B- 

Deinococcus-thermus 
2 3 4 7 18 27 172 21352 1026 978 48 

B-B-Dictyoglomi 1 1 1 1 2 2 51 9447 99 98 1 

B-B-Elusimicrobia 2 2 2 2 2 2 34 5713 50 49 1 

B-B-Fibrobacteres 2 1 1 1 1 2 50 6671 69 64 5 

B-B-Firmicutes 6 10 42 176 593 1556 429 107993 25601 21921 3680 

B-B-Fusobacteria 2 1 2 5 15 38 111 17980 541 493 48 

B-B-Gemmatimonadetes 1 1 1 1 1 1 51 8772 71 69 2 

B-B-Ignavibacteriae 1 1 2 2 2 2 27 85 43 42 1 

B-B-Lentisphaerae 2 3 2 2 2 2 56 4823 93 91 2 

B-B-Nitrospirae 2 2 2 4 5 10 114 8777 237 197 40 

B-B-Planctomycetes 3 3 4 15 23 32 183 26590 994 765 229 
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B-B-Poribacteria 1 1 1 1 1 1 13 25 13 12 1 

B-B-Proteobacteria 7 47 115 508 1132 2855 823 187705 68319 59749 8570 

B-B-Spirochaetes 2 1 3 8 48 80 172 11471 1007 829 178 

B-B-Synergistetes 2 2 2 11 13 14 109 11410 472 392 80 

B-B-Tenericutes 1 3 4 7 39 82 56 11489 266 218 48 

B-B-

Thermodesulfobacteria 
1 1 1 2 5 6 50 162 85 77 8 

B-B-Thermotogae 1 1 2 8 19 26 93 16870 588 553 35 

B-B-Verrucomicrobia 4 6 8 14 17 30 172 29149 947 824 123 

B-B-U 1 2 2 7 8 239 233 33937 6737 2583 4154 

E-F-Ascomycota 10 25 70 164 245 402 201 19120 6995 2471 4524 

E-F-Basidiomycota 7 24 61 104 122 175 119 8732 1549 530 1019 

E-F-Chytridiomycota 1 2 2 1 2 2 7 10 10 0 10 

E-F-Glomeromycota 1 2 2 3 3 3 9 71 12 7 5 

E-F-Microsporidia 1 1 7 9 14 16 25 1900 82 47 35 

E-F-

Neocallimastigomycota 
1 1 1 3 3 8 7 136 28 4 24 

E-F-U 1 4 10 13 15 20 19 725 180 90 90 

E-P-Apicomplexa 2 3 6 7 19 47 44 1875 374 123 251 

E-P-Bacillariophyta 5 10 14 16 19 31 37 1269 218 96 122 

E-P-Chromerida 1 1 1 2 2 2 3 6 5 1 4 

E-P-Euglenida 1 4 6 6 6 7 3 17 12 4 8 

E-P-Eustigmatophyceae 1 1 1 1 1 1 1 1 1 0 1 

E-P-Haplosporidia 1 1 2 4 4 5 1 12 6 3 3 

E-P-Phaeophyceae 1 2 2 2 2 2 19 1129 28 6 22 

E-P-Pinguiophyceae 1 1 1 1 1 1 1 1 1 0 1 

E-P-Xanthophyceae 1 2 2 2 2 2 4 7 5 2 3 

E-M-Arthropoda 2 5 5 7 7 7 4 19 13 5 8 

E-M-Chordata 2 3 3 3 3 3 3 9 7 2 5 

E-M-Echinodermata 1 1 1 1 1 1 1 2 3 1 2 

E-M-Nematoda 1 2 3 3 3 4 6 9 8 2 6 

E-M-Platyhelminthes 1 1 1 1 1 1 1 5 3 2 1 

E-Viridiplantae-

Chlorophyta 
7 15 23 37 39 57 39 694 444 221 223 

E-Viridiplantae-

Streptophyta 
7 11 12 12 12 13 15 432 31 12 19 

E-U-U 24 74 116 178 195 264 165 3148 1401 569 832 

V-V-Nidovirales - - 1 7 18 75 2 259 143 60 83 

V-V-Picornavirales - - 6 24 47 275 7 707 518 144 374 

V-V-Tymovirales - - 1 6 8 46 2 236 111 79 32 

V-V-Caudovirales - - 4 26 30 156 40 1506 347 279 68 

V-V-U - - 28 104 208 814 78 3320 1729 768 961 

U-- - - - - - 33 125 2561 816 293 523 
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Table S 2 Measurements of environmental variables from the underground water 

samples used in the application study. A total of 12 samples were collected from 

different wells that were contaminated at 4 different levels (L0, L1, L2 and L3). 

Measurements included 5 major categories: general environmental parameters (Env. 

Parameters), gas TCD, dissolved Carbon (C), anion and metal ion. 

 

L0 L1 L2 L3 

G
W

-6
5
4
 

G
W

-1
9
9
 

G
W

-3
5
0
 

F
W

-3
0

0
 

F
W

-3
0

1
 

F
W

-3
0

3
 

F
W

-2
1

5
 

D
P

1
6

D
 

G
W

-1
0
1
 

F
W

-1
0

6
 

F
W

-1
2

6
 

F
W

-0
2

1
 

G
en

er
al

 E
n

v
. 

P
ar

am
et

er
s 

Temp. (°C) 13.0 14.3 18.0 15.5 15.8 15.8 17.9 17.1 18.1 14.8 12.2 16.4 

D.O. (mg/L) 2.4 0.5 0.02 0.3 0.8 0.7 0.2 0.3 1.0 0.2 0.2 0.3 

Cdt. (μS/cm) 269 582 545 379 334 316 637 661 1721 7864 18770 7967 

Redox (mV) 175 305 137 -129 39 147 43 -50 -72 426 168 387 

pH 7.19 6.53 6.67 6.59 6.68 7.16 6.6 6.67 6.81 3.55 3.04 3.43 

S2- (mg/L) 0.003 0.003 0 0.026 0.188 0.041 0 0 0 0.004 0.044 0.004 

F.I. (mg/L) 0.1 0.13 0.38 0.5 0.98 0 0.21 1.46 2.7 1.02 0.13 0.03 

G
as

 T
C

D
 

 (
µ

m
o

l/
m

L
) 

N2 59 104 126 57* 46 69 32 31 43 28 14 30 

O2 12 23 25 11* 10 13 6 6 8 8 4 6 

CO2 37 172 128 54* 60 48 173 202 283 631 718 289 

N2O 0 0 0 0 0 0 0 0 2.7 22.6 17.0 30.1 

C
 

(m
g/

L
) 

D.I.C 30.98 85.05 67.46 48.13 55.44 40.82 85.25 87.91 115.9 43.18 36.65 22.27 

D.O.C. 0.345 1.335 0.717 44.54 48.65 39.59 1.928 2.326 4.065 47.87 128.2 7.298 

A
n

io
n
 

(m
g

/L
) Cl 1.3 5.5 13.5 2.2 3.5 3.3 15.6 23.7 42.2 318.2 373.7 152.3 

NO3
+ 0.5 0.2 0.3* 3.7 36.4 4.0 5.5 141.0 1470.9 2692 11648 4507 

SO4
+ 16 21 13 6 9 7 76 65 8 2063 1460 42 

M
et

al
 

 (
m

g
/L

) 

Ag 0.007 0.010 0.021 0.014 0.008 0.008 0.011 0.011 0.022 0.022 0.023 0.011 

Al 0.015 0.013 0.038 0.03 0.418 0.017 0.013 3.444 1.129 108 559 115 

As 0.003 0.002 0.005 0.021 0.003 0.003 0.011 0.011 0.005 0.008 0.006 0.011 

Ba 0.04 0.242 0.055 0.093 0.077 0.072 0.104 0.269 2.820 0.077 0.131 2.073 

Be 0.04 0.019 0.038 0.082 0.04 0.04 0.041 0.041 0.039 0.059 0.149 0.079 

Bi 0.038 0.001 0.005 0.018 0.038 0.038 0.009 0.009 0.005 0.005 0.005 0.009 

Ca 17 89 92 67 79 53 120 140 420 273 9838 3970 

Cd 0.003 0.002 0.004 0.006 0.006 0.003 0.003 0.01 0.007 0.132 0.866 0.173 

Co 0.004 0.000 0.002 0.006 0.011 0.004 0.003 0.056 0.009 0.509 1.364 1.225 

Cr 0.004 0.004 0.007 0.010 0.004 0.004 0.005 0.005 0.007 0.384 0.798 0.005 

Cs 0.029 0.008 0.016 0.064 0.029 0.029 0.032 0.032 0.016 0.017 0.016 0.032 

Cu 0.009 0.013 0.025 0.008 0.009 0.009 0.004 0.004 0.222 0.810 1.587 0.118 

Fe 0.011 0.851 0.338 0.067 0.030 0.011 0.016 1.933 4.585 0.038 0.167 0.016 

Ga 0.011 0.010 0.007 0.014 0.011 0.011 0.007 0.011 0.089 0.007 0.009 0.06 

K 1.0 3.3 3.4 1.5 2.4 1.5 5.2 6.0 4.9 216.4 102.5 28.8 

Li 0.038 0.022 0.042 0.096 0.038 0.038 0.048 0.048 0.069 1.946 5.190 0.227 

Mg 16.2 22.3 80.9 16.2 16.2 16.2 32.3 32.3 80.9 80.9 216.2 117.9 

Mn 0.0 4.3 0.3 0.2 2.2 0.0 0.5 9.4 8.3 32.5 134.1 128.5 

Na 39.9 20.8 52.0 10.4 10.4 10.4 20.8 29.3 52.0 865.3 826.3 269.2 

Ni 0.006 0 0.011 0.043 0.048 0.006 0.021 0.242 0.026 7.184 15.352 5.339 

Pb 0.003 0.002 0.003 0.006 0.003 0.003 0.003 0.003 0.003 0.032 0.060 0.004 

Se 0.009 0 0.004 0.018 0.009 0.009 0.009 0.009 0.004 0.024 0.005 0.013 

Sr 0.096 0.212 0.119 0.115 0.12 0.168 0.399 0.372 2.219 0.369 2.43 1.373 

U 0.051 0.003 0.006 0.216 0.16 0.081 1.452 0.744 0.417 16.625 55.286 3.751 

Zn 0.02 0.059 0.084 0.051 0.058 0.041 0.040 0.078 0.093 1.099 2.189 0.897 

* missing values were imputed using the mean of values from other two replicates in the same group.  
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Table S 3 General information about 12 underground water samples, and results of 

HiSeq shotgun metagenomics sequencing and the EcoFun-MAP analyses 

Sample 

ID 

Group 

label 

Contamination 

level 

No. of HiSeq 

reads (M)/ 

data amount 

(Gbp) 

No. of hits (M)/percentage (%) 

Ultra-fast Fast Moderate Sensitive 
Ultra-

sensitive 

FW300 L0 Background ~266/39.9 ~2.6/0.99 ~8.9/3.35 ~0.2/0.06 ~0.2/0.07 ~0.2/0.08 

FW301 L0 Background ~164.5/25.7 ~1.8/1.08 ~5.9/3.62 ~0.1/0.08 ~0.2/0.09 ~0.2/0.09 

FW305 L0 Background ~97.2/14.6 ~1.3/1.30 ~4.5/4.63 ~0.1/0.14 ~0.2/0.18 ~0.2/0.18 

GW199 L1 Low ~79.6/11.9 ~1.1/1.35 ~3.5/4.41 ~0.1/0.16 ~0.2/0.19 ~0.1/0.18 

GW928 L1 Low ~92.5/13.9 ~1.3/1.36 ~4.3/4.61 ~0.1/0.13 ~0.1/0.16 ~0.1/0.16 

GW715 L1 Low ~202.3/30.3 ~2.7/1.34 ~9.6/4.76 ~0.2/0.12 ~0.3/0.16 ~0.3/0.16 

DP16D L2 Medium ~195.9/29.4 ~2.4/1.23 ~7.7/3.92 ~0.1/0.07 ~0.2/0.08 ~0.2/0.08 

FW215 L2 Medium ~171.3/25.7 ~1.9/1.09 ~6.0/3.52 ~0.1/0.06 ~0.1/0.07 ~0.1/0.07 

FW602 L2 Medium ~154.1/23.1 ~2.0/1.29 ~6.9/4.45 ~0.2/0.12 ~0.2/0.15 ~0.2/0.15 

FW104 L3 High ~94.5/14.2 ~1.3/1.41 ~4.8/5.05 ~0.2/0.18 ~0.2/0.21 ~0.2/0.22 

FW106 L3 High ~119.6/17.9 ~2.1/1.74 ~7.9/6.58 ~0.3/0.27 ~0.4/0.34 ~0.4/0.35 

FW021 L3 High ~178.9/26.8 ~3.0/1.69 ~11.1/6.20 ~0.3/0.18 ~0.4/0.22 ~0.4/0.23 

Total - - ~1816.7/272.5 ~23.4/1.29 ~81.1/4.46 ~2.1/0.12 ~2.7/0.15 ~2.7/0.15 
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Table S 4 Summary of results for evaluating accuracy and precision of five workflows 

in the EcoFun-MAP. The results here are based on counts of hits from the running of 

five workflows on each sample. 

Mode Sample ID 
Accuracy rate (%)  Precision rate (%) 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 

u
lt

ra
-f

as
t 

FW300 

FW301 

FW305 

GW199 

GW928 

GW715 

DP16D 

FW215 

FW602 

FW104 

FW106 

FW021 

71.5 74.0 74.9 78.2  5.5 5.7 5.8 6.0 

72.5 74.7 75.6 78.8  6.2 6.4 6.4 6.7 

68.8 70.8 71.7 74.7  9.5 9.8 9.9 10.4 

72.9 74.7 75.2 77.8  9.6 9.8 9.9 10.2 

70.1 72.1 72.9 76.0  8.2 8.5 8.6 8.9 

67.1 69.3 70.2 73.9  8.2 8.4 8.5 9.0 

70.9 73.3 73.8 76.3  4.8 5.0 5.0 5.2 

73.5 76.1 76.7 79.7  4.9 5.0 5.1 5.3 

70.9 73.5 74.3 77.8  8.4 8.7 8.8 9.2 

73.4 77.7 78.0 80.6  11.3 12.0 12.0 12.4 

68.3 74.4 74.7 77.6  13.8 15.0 15.0 15.6 

69.6 75.5 76.3 79.9  9.4 10.1 10.3 10.7 

fa
st

 

FW300 85.1 87.4 87.8 91.2  1.9 2.0 2.0 2.1 

FW301 86.4 88.4 88.9 92.0  2.2 2.2 2.3 2.3 

FW305 86.8 88.8 89.3 92.4  3.4 3.5 3.5 3.6 

GW199 87.3 88.6 88.9 91.1  3.5 3.6 3.6 3.7 

GW928 86.6 88.3 88.7 91.8  3.0 3.1 3.1 3.2 

GW715 85.8 87.9 88.4 92.1  2.9 3.0 3.0 3.2 

DP16D 85.0 86.7 86.8 89.4  1.8 1.8 1.8 1.9 

FW215 86.0 88.1 88.4 91.6  1.8 1.8 1.8 1.9 

FW602 84.9 86.9 87.4 91.0  2.9 3.0 3.0 3.1 

FW104 86.7 88.4 88.8 91.6  3.7 3.8 3.8 3.9 

FW106 83.9 88.9 89.6 92.8  4.5 4.7 4.8 4.9 

FW021 84.3 89.4 90.2 93.2  3.1 3.3 3.3 3.4 

m
o

d
er

at
e 

FW300 69.0 69.2 69.2 69.5  86.1 86.3 86.3 86.7 

FW301 70.1 70.2 70.2 70.5  84.1 84.3 84.3 84.6 

FW305 66.5 66.7 66.7 67.0  86.2 86.5 86.5 86.9 

GW199 71.1 71.2 71.2 71.5  78.3 78.5 78.5 78.8 

GW928 68.0 68.1 68.1 68.5  84.7 84.8 84.8 85.3 

GW715 65.3 65.4 65.5 65.8  88.0 88.2 88.2 88.7 

DP16D 69.0 69.1 69.1 69.3  82.4 82.6 82.6 82.8 

FW215 71.5 71.7 71.7 72.0  82.9 83.1 83.1 83.4 

FW602 69.6 69.7 69.8 70.1  88.7 88.9 88.9 89.3 

FW104 73.2 73.3 73.3 73.5  87.1 87.2 87.2 87.4 

FW106 69.4 69.6 69.6 69.8  91.1 91.4 91.4 91.7 

FW021 70.8 71.0 71.0 71.3  90.5 90.7 90.8 91.1 

se
n

si
ti

v
e 

FW300 82.9 83.1 83.1 83.4  85.2 85.3 85.3 85.7 

FW301 84.4 84.5 84.5 84.8  84.1 84.2 84.2 84.5 

FW305 84.2 84.4 84.4 84.7  84.7 84.9 85.0 85.3 

GW199 84.2 84.3 84.3 84.5  79.0 79.1 79.1 79.4 

GW928 83.8 83.9 83.9 84.3  84.0 84.1 84.1 84.4 

GW715 83.6 83.8 83.8 84.2  85.6 85.8 85.8 86.2 

DP16D 82.5 82.6 82.6 82.8  83.1 83.2 83.2 83.5 

FW215 84.0 84.2 84.2 84.5  83.3 83.5 83.5 83.7 

FW602 84.4 84.5 84.5 84.9  87.2 87.4 87.4 87.7 

FW104 85.6 85.7 85.7 85.9  86.7 86.8 86.8 87.0 

FW106 86.8 86.9 87.0 87.2  88.7 88.9 88.9 89.1 

FW021 86.3 86.4 86.4 86.7  88.7 88.9 88.9 89.2 
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Table S 5 Basic information about 16S profiling datasets from two real projects. 

Sample ID Project Data type 
No. of  all 

replicates 

No. of min. presences 

in replicates (> 60%) 

No. of 

OTUs 

AND Biogeographic survey 16S 21 13 1,880 

BCI Biogeographic survey 16S 21 13 2,077 

CWT Biogeographic survey 16S 21 13 1,804 

HFR Biogeographic survey 16S 21 13 1,479 

LUQ Biogeographic survey 16S 21 13 1,713 

NWT Biogeographic survey 16S 21 13 1,542 

S1W0 Plant succession 16S 16 10 1,870 

S1W3B Plant succession 16S 16 10 1,925 

S1W6B Plant succession 16S 16 10 1,952 

S1W9B Plant succession 16S 16 10 1,939 

S1W12B Plant succession 16S 16 10 1,906 

S1W3R Plant succession 16S 16 10 1,773 

S1W6R Plant succession 16S 16 10 1,676 

S1W9R Plant succession 16S 16 10 1,655 

S1W12R Plant succession 16S 16 10 1,466 

S2W0 Plant succession 16S 16 10 2,039 

S2W3B Plant succession 16S 16 10 2,074 

S2W6B Plant succession 16S 16 10 2,108 

S2W9B Plant succession 16S 16 10 2,113 

S2W12B Plant succession 16S 16 10 2,132 

S2W3R Plant succession 16S 16 10 1,933 

S2W6R Plant succession 16S 16 10 1,805 

S2W9R Plant succession 16S 16 10 1,746 

S2W12R Plant succession 16S 16 10 1,634 

 

  



182 

 

 

  

T
a
b

le
 S

 6
 D

et
ai

le
d

 i
n
fo

rm
at

io
n
 a

b
o
u
t 

th
e 

d
et

ec
te

d
 c

ri
ti

ca
l 

tr
an

si
ti

o
n
s 

an
d
 t

h
re

sh
o
ld

s 
in

 a
ll

 d
at

as
et

s 
b
as

ed
 o

n
 d

if
fe

re
n
t 

d
at

a 

as
so

ci
at

io
n
 m

et
h
o
d
s.

 



183 

 

 

Reference 

Ahn, S. J., J. Costa and J. R. Emanuel (1996). "PicoGreen quantitation of DNA: 

Effective evaluation of samples pre-or psost-PCR." Nucleic Acids Research 24(13): 

2623-2625. 

Aitchison, J. (1986). "The statistical analysis of compositional data." 

Albert, R. (2005). "Scale-free networks in cell biology." Journal of cell science 118(21): 

4947-4957. 

Albert, R., H. Jeong and A.-L. Barabási (2000). "Error and attack tolerance of complex 

networks." Nature 406(6794): 378-382. 

Algora, C., S. Vasileiadis, K. Wasmund, M. Trevisan, M. Krüger, E. Puglisi and L. 

Adrian (2015). "Manganese and iron as structuring parameters of microbial 

communities in Arctic marine sediments from the Baffin Bay." FEMS Microbiology 

Ecology 91(6). 

Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). "Basic local 

alignment search tool." Journal of molecular biology 215(3): 403-410. 

Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D. J. 

Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein 

database search programs." Nucleic Acids Research 25(17): 3389-3402. 

Anderson, M. J. (2001). "A new method for non‐ parametric multivariate analysis of 

variance." Austral Ecology 26(1): 32-46. 

Anderson, M. J. (2006). "Distance-based tests for homogeneity of multivariate 

dispersions." Biometrics 62(1): 245-253. 



184 

 

Andrews, S. (2010). "FastQC: A quality control tool for high throughput sequence 

data." Reference Source. 

Atlas, R. M. and R. Bartha (1986). "Microbial ecology: fundamentals and applications." 

Bandyopadhyay, J. N. and S. Jalan (2007). "Universality in complex networks: Random 

matrix analysis." Physical Review E 76(2): 026109. 

Barabási, A.-L. and R. Albert (1999). "Emergence of scaling in random networks." 

Science 286(5439): 509-512. 

Barabási, A.-L. and Z. N. Oltvai (2004). "Network biology: understanding the cell's 

functional organization." Nature Reviews Genetics 5(2): 101-113. 

Barberán, A., S. T. Bates, E. O. Casamayor and N. Fierer (2012). "Using network 

analysis to explore co-occurrence patterns in soil microbial communities." The ISME 

journal 6(2): 343-351. 

Barka, E. A. and C. Clément (2008). Plant-microbe interactions, Research Signpost. 

Barrett, M. T., A. Scheffer, A. Ben-Dor, N. Sampas, D. Lipson, R. Kincaid, P. Tsang, 

B. Curry, K. Baird and P. S. Meltzer (2004). "Comparative genomic hybridization using 

oligonucleotide microarrays and total genomic DNA." Proceedings of the National 

Academy of Sciences 101(51): 17765-17770. 

Batten, K. M., K. M. Scow, K. F. Davies and S. P. Harrison (2006). "Two invasive 

plants alter soil microbial community composition in serpentine grasslands." Biological 

Invasions 8(2): 217-230. 

Berendsen, R. L., C. M. J. Pieterse and P. A. H. M. Bakker (2012). "The rhizosphere 

microbiome and plant health." Trends in plant science 17(8): 478-486. 



185 

 

Bossier, P., M. Hofte and W. Verstraete (1988). Ecological significance of siderophores 

in soil. Advances in microbial ecology, Springer: 385-414. 

Brodie, E. L., T. Z. DeSantis, J. P. M. Parker, I. X. Zubietta, Y. M. Piceno and G. L. 

Andersen (2007). "Urban aerosols harbor diverse and dynamic bacterial populations." 

Proceedings of the National Academy of Sciences 104(1): 299-304. 

Broz, A. K., D. K. Manter and J. M. Vivanco (2007). "Soil fungal abundance and 

diversity: another victim of the invasive plant Centaurea maculosa." The ISME journal 

1(8): 763-765. 

Buchfink, B., C. Xie and D. H. Huson (2015). "Fast and sensitive protein alignment 

using DIAMOND." Nature methods 12(1): 59-60. 

Callaway, R. M. and E. T. Aschehoug (2000). "Invasive plants versus their new and old 

neighbors: a mechanism for exotic invasion." Science 290(5491): 521-523. 

Callaway, R. M., D. Cipollini, K. Barto, G. C. Thelen, S. G. Hallett, D. Prati, K. Stinson 

and J. Klironomos (2008). "Novel weapons: invasive plant suppresses fungal mutualists 

in America but not in its native Europe." Ecology 89(4): 1043-1055. 

Callaway, R. M., G. C. Thelen, A. Rodriguez and W. E. Holben (2004). "Soil biota and 

exotic plant invasion." Nature 427(6976): 731-733. 

Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. 

M. Owens, J. Betley, L. Fraser and M. Bauer (2012). "Ultra-high-throughput microbial 

community analysis on the Illumina HiSeq and MiSeq platforms." The ISME journal 

6(8): 1621-1624. 

Carey, C. J., J. M. Beman, V. T. Eviner, C. M. Malmstrom and S. C. Hart (2015). "Soil 

microbial community structure is unaltered by plant invasion, vegetation clipping, and 



186 

 

nitrogen fertilization in experimental semi-arid grasslands." Frontiers in Microbiology 

6. 

Chaffron, S., H. Rehrauer, J. Pernthaler and C. von Mering (2010). "A global network 

of coexisting microbes from environmental and whole-genome sequence data." Genome 

research 20(7): 947-959. 

Chaparro, J. M., D. V. Badri and J. M. Vivanco (2014). "Rhizosphere microbiome 

assemblage is affected by plant development." The ISME journal 8(4): 790-803. 

Cipollini, D., C. M. Rigsby and E. K. Barto (2012). "Microbes as targets and mediators 

of allelopathy in plants." Journal of Chemical Ecology 38(6): 714-727. 

Clark, K., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell and E. W. Sayers (2016). 

"GenBank." Nucleic Acids Research 44(Database issue): D67-D72. 

Clarke, K. and M. Ainsworth (1993). "A method of linking multivariate community 

structure to environmental variables." Marine Ecology-Progress Series 92: 205-205. 

Clooney, A. G., F. Fouhy, R. D. Sleator, A. O. Driscoll, C. Stanton, P. D. Cotter and M. 

J. Claesson (2016). "Comparing apples and oranges?: Next generation sequencing and 

its impact on microbiome analysis." PLoS ONE 11(2). 

Coats, V. C. and M. E. Rumpho (2014). "The rhizosphere microbiota of plant invaders: 

an overview of recent advances in the microbiomics of invasive plants." Frontiers in 

microbiology 5: 368. 

Coordinators, N. R. (2013). "Database resources of the national center for 

biotechnology information." Nucleic Acids Research 41(Database issue): D8-D20. 

Csardi, G. and T. Nepusz (2006). "The igraph software package for complex network 

research." InterJournal, Complex Systems 1695(5). 



187 

 

Cui, Q., I. A. Lewis, A. D. Hegeman, M. E. Anderson, J. Li, C. F. Schulte, W. M. 

Westler, H. R. Eghbalnia, M. R. Sussman and J. L. Markley (2008). "Metabolite 

identification via the madison metabolomics consortium database." Nature 

Biotechnology 26(2): 162-164. 

Curtis, T. P., I. M. Head and D. W. Graham (2003). "Peer reviewed: theoretical ecology 

for engineering biology." Environmental science & technology 37(3): 64A-70A. 

Das, S., P. K. Meher, U. K. Pradhan and A. K. Paul (2017). "Inferring gene regulatory 

networks using Kendall’s tau correlation coefficient and identification of salinity stress 

responsive genes in rice." Current Science 112(6): 1257. 

Davison, J. (1988). "Plant beneficial bacteria." Nature Biotechnology 6(3): 282-286. 

Defays, D. (1977). "An efficient algorithm for a complete link method." The Computer 

Journal 20(4): 364-366. 

Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, T. C. Jeffries, J. J. Gaitan, D. 

Encinar, M. Berdugo, C. D. Campbell and B. K. Singh (2016). "Microbial diversity 

drives multifunctionality in terrestrial ecosystems." Nature Communications 7: 10541. 

Deng, Y., Z. He, J. D. Van Nostrand and J. Zhou (2008). "Design and analysis of 

mismatch probes for long oligonucleotide microarrays." BMC Genomics 9(1): 1. 

Deng, Y., Y.-H. Jiang, Y. Yang, Z. He, F. Luo and J. Zhou (2012). "Molecular 

ecological network analyses." BMC Bioinformatics 13(1): 113. 

Dunne, J. A., R. J. Williams and N. D. Martinez (2002). "Food-web structure and 

network theory: the role of connectance and size." Proceedings of the National 

Academy of Sciences 99(20): 12917-12922. 

Eddy, S. R. (1998). "Profile hidden Markov models." Bioinformatics 14(9): 755-763. 



188 

 

Eddy, S. R. (2011). "Accelerated profile HMM searches." PLoS Computational Biology 

7(10): e1002195. 

Eguiluz, V. M., D. R. Chialvo, G. A. Cecchi, M. Baliki and A. V. Apkarian (2005). 

"Scale-free brain functional networks." Physical review letters 94(1): 018102. 

Ehrenfeld, J. G. (2003). "Effects of exotic plant invasions on soil nutrient cycling 

processes." Ecosystems 6(6): 503-523. 

Eiler, A., F. Heinrich and S. Bertilsson (2012). "Coherent dynamics and association 

networks among lake bacterioplankton taxa." The ISME journal 6(2): 330-342. 

el Zahar Haichar, F., C. Marol, O. Berge, J. I. Rangel-Castro, J. I. Prosser, J. m. 

Balesdent, T. Heulin and W. Achouak (2008). "Plant host habitat and root exudates 

shape soil bacterial community structure." The ISME journal 2(12): 1221-1230. 

Eppinga, M. B., M. Rietkerk, S. C. Dekker, P. C. De Ruiter and W. H. Van der Putten 

(2006). "Accumulation of local pathogens: a new hypothesis to explain exotic plant 

invasions." Oikos 114(1): 168-176. 

Faust, K. and J. Raes (2012). "Microbial interactions: from networks to models." Nature 

Reviews Microbiology 10(8): 538-550. 

Faust, K., J. F. Sathirapongsasuti, J. Izard, N. Segata, D. Gevers, J. Raes and C. 

Huttenhower (2012). "Microbial co-occurrence relationships in the human 

microbiome." PLoS Computational Biology 8(7): e1002606. 

Filzmoser, P. and K. Hron (2009). "Correlation analysis for compositional data." 

Mathematical Geosciences 41(8): 905-919. 



189 

 

Finn, R. D., A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt, S. R. Eddy, A. 

Heger, K. Hetherington, L. Holm and J. Mistry (2013). "Pfam: the protein families 

database." Nucleic Acids Research: gkt1223. 

Finn, R. D., J. Clements and S. R. Eddy (2011). "HMMER web server: interactive 

sequence similarity searching." Nucleic Acids Research. 

Fitter, A. H., C. A. Gilligan, K. Hollingworth, A. Kleczkowski, R. M. Twyman and J. 

W. Pitchford (2005). "Biodiversity and ecosystem function in soil." Functional Ecology 

19(3): 369-377. 

Fornell, C. and D. F. Larcker (1981). "Evaluating structural equation models with 

unobservable variables and measurement error." Journal of marketing research: 39-50. 

Frankenberger Jr, W. T. and M. Arshad (1995). Phytohormones in soils: microbial 

production and function, Marcel Dekker Inc. 

Franzosa, E. A., T. Hsu, A. Sirota-Madi, A. Shafquat, G. Abu-Ali, X. C. Morgan and C. 

Huttenhower (2015). "Sequencing and beyond: integrating molecular 'omics' for 

microbial community profiling." Nature Reviews Microbiology 13(6): 360-372. 

Friedman, J. and E. J. Alm (2012). "Inferring correlation networks from genomic survey 

data." PLoS Computational Biology 8(9): e1002687. 

Frostegård, Å., A. Tunlid and E. Bååth (2011). "Use and misuse of PLFA measurements 

in soils." Soil Biology and Biochemistry 43(8): 1621-1625. 

Fuhrman, J. A. (2009). "Microbial community structure and its functional implications." 

Nature 459(7244): 193-199. 

Gans, J., M. Wolinsky and J. Dunbar (2005). "Computational improvements reveal 

great bacterial diversity and high metal toxicity in soil." Science 309(5739): 1387-1390. 



190 

 

Gao, H., Z. K. Yang, T. J. Gentry, L. Wu, C. W. Schadt and J. Zhou (2007). 

"Microarray-based analysis of microbial community RNAs by whole-community RNA 

amplification." Applied and Environmental Microbiology 73(2): 563-571. 

Garbeva, P., J. A. Van Veen and J. D. Van Elsas (2004). "Microbial diversity in soil: 

selection of microbial populations by plant and soil type and implications for disease 

suppressiveness." Annu. Rev. Phytopathol. 42: 243-270. 

Gianfreda, L. (2015). "Enzymes of importance to rhizosphere processes." Journal of soil 

science and plant nutrition 15: 283-306. 

Glass, E. M., J. Wilkening, A. Wilke, D. Antonopoulos and F. Meyer (2010). "Using 

the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes." 

Cold Spring Harbor Protocols 2010(1): pdb. prot5368. 

Glick, B. R. (1995). "The enhancement of plant growth by free-living bacteria." 

Canadian Journal of Microbiology 41(2): 109-117. 

Gonzalez, A. and R. Knight (2012). "Advancing analytical algorithms and pipelines for 

billions of microbial sequences." Current Opinion in Biotechnology 23(1): 64-71. 

Gornish, E. S., N. Fierer and A. Barberán (2016). "Associations between an invasive 

plant (Taeniatherum caput-medusae, Medusahead) and soil microbial communities." 

PLoS ONE 11(9): e0163930. 

Grayston, S. J., S. Wang, C. D. Campbell and A. C. Edwards (1998). "Selective 

influence of plant species on microbial diversity in the rhizosphere." Soil Biology and 

Biochemistry 30(3): 369-378. 



191 

 

Guo, X., Y. Zhang, W. Hu, H. Tan and X. Wang (2014). "Inferring nonlinear gene 

regulatory networks from gene expression data based on distance correlation." PLoS 

ONE 9(2): e87446. 

Hadwin, A. K. M., L. F. Del Rio, L. J. Pinto, M. Painter, R. Routledge and M. M. 

Moore (2006). "Microbial communities in wetlands of the Athabasca oil sands: genetic 

and metabolic characterization." FEMS Microbiology Ecology 55(1): 68-78. 

Hazen, T. C., E. A. Dubinsky, T. Z. DeSantis, G. L. Andersen, Y. M. Piceno, N. Singh, 

J. K. Jansson, A. Probst, S. E. Borglin and J. L. Fortney (2010). "Deep-sea oil plume 

enriches indigenous oil-degrading bacteria." Science 330(6001): 204-208. 

He, Z., Y. Deng, J. D. Van Nostrand, Q. Tu, M. Xu, C. L. Hemme, X. Li, L. Wu, T. J. 

Gentry and Y. Yin (2010). "GeoChip 3.0 as a high-throughput tool for analyzing 

microbial community composition, structure and functional activity." The ISME journal 

4(9): 1167-1179. 

He, Z., T. J. Gentry, C. W. Schadt, L. Wu, J. Liebich, S. C. Chong, Z. Huang, W. Wu, 

B. Gu and P. Jardine (2007). "GeoChip: a comprehensive microarray for investigating 

biogeochemical, ecological and environmental processes." The ISME journal 1(1): 67-

77. 

He, Z., L. Wu, X. Li, M. W. Fields and J. Zhou (2005). "Empirical establishment of 

oligonucleotide probe design criteria." Applied and Environmental Microbiology 71(7): 

3753-3760. 

He, Z., M. Xu, Y. Deng, S. Kang, L. Kellogg, L. Wu, J. D. Van Nostrand, S. E. Hobbie, 

P. B. Reich and J. Zhou (2010). "Metagenomic analysis reveals a marked divergence in 



192 

 

the structure of belowground microbial communities at elevated CO2." Ecology Letters 

13(5): 564-575. 

Hong, S., J. Bunge, C. Leslin, S. Jeon and S. S. Epstein (2009). "Polymerase chain 

reaction primers miss half of rRNA microbial diversity." The ISME journal 3(12): 

1365-1373. 

Hyatt, D., G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer and L. J. Hauser 

(2010). "Prodigal: prokaryotic gene recognition and translation initiation site 

identification." BMC Bioinformatics 11(1): 1. 

Jafarizadeh, M. A., N. Fouladi, H. Sabri and B. R. Maleki (2012). "Investigation of 

spectral statistics of nuclear systems by maximum likelihood estimation method." 

Nuclear Physics A 890: 29-49. 

Jeong, H., S. P. Mason, A.-L. Barabási and Z. N. Oltvai (2001). "Lethality and 

centrality in protein networks." Nature 411(6833): 41-42. 

Kaiser‐ Bunbury, C. N., S. Muff, J. Memmott, C. B. Müller and A. Caflisch (2010). 

"The robustness of pollination networks to the loss of species and interactions: a 

quantitative approach incorporating pollinator behaviour." Ecology Letters 13(4): 442-

452. 

Kallmeyer, J., R. Pockalny, R. R. Adhikari, D. C. Smith and S. D’Hondt (2012). 

"Global distribution of microbial abundance and biomass in subseafloor sediment." 

Proceedings of the National Academy of Sciences 109(40): 16213-16216. 

Kanehisa, M., M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. 

Kawashima, S. Okuda and T. Tokimatsu (2008). "KEGG for linking genomes to life 

and the environment." Nucleic Acids Research 36(suppl 1): D480-D484. 



193 

 

Keane, R. M. and M. J. Crawley (2002). "Exotic plant invasions and the enemy release 

hypothesis." Trends in Ecology & Evolution 17(4): 164-170. 

Kent, W. J. (2002). "BLAT—the BLAST-like alignment tool." Genome research 12(4): 

656-664. 

Kerepesi, C. and V. Grolmusz (2016). "Evaluating the quantitative capabilities of 

metagenomic analysis software." Current Microbiology 72(5): 612-616. 

Kim, D., A. S. Hahn, S. J. Wu, N. W. Hanson, K. M. Konwar and S. J. Hallam (2015). 

FragGeneScan-plus for scalable high-throughput short-read open reading frame 

prediction. 2015 IEEE Conference on Computational Intelligence in Bioinformatics and 

Computational Biology (CIBCB). 

Kinney, J. B. and G. S. Atwal (2014). "Equitability, mutual information, and the 

maximal information coefficient." Proceedings of the National Academy of Sciences 

111(9): 3354-3359. 

Klironomos, J. N. (2002). "Feedback with soil biota contributes to plant rarity and 

invasiveness in communities." Nature 417(6884): 67-70. 

Kloepper, J. W., J. Leong, M. Teintze and M. N. Schroth (1980). "Enhanced plant 

growth by siderophores produced by plant growth-promoting rhizobacteria." Nature 

286(5776): 885-886. 

Kong, Y. (2011). "Btrim: a fast, lightweight adapter and quality trimming program for 

next-generation sequencing technologies." Genomics 98(2): 152-153. 

Kowalski, K. P., C. Bacon, W. Bickford, H. Braun, K. Clay, M. Leduc-Lapierre, E. 

Lillard, M. K. McCormick, E. Nelson and M. Torres (2015). "Advancing the science of 



194 

 

microbial symbiosis to support invasive species management: a case study on 

Phragmites in the Great Lakes." Frontiers in Microbiology 6: 95. 

Kurtz, Z. D., C. L. Müller, E. R. Miraldi, D. R. Littman, M. J. Blaser and R. A. 

Bonneau (2015). "Sparse and compositionally robust inference of microbial ecological 

networks." PLoS Computational Biology 11(5): e1004226. 

Langille, M. G. I., J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, 

J. C. Clemente, D. E. Burkepile, R. L. Vega Thurber, R. Knight, R. G. Beiko and C. 

Huttenhower (2013). "Predictive functional profiling of microbial communities using 

16S rRNA marker gene sequences." Nature Biotechnology 31(9): 814-821. 

Langmead, B. and S. L. Salzberg (2012). "Fast gapped-read alignment with Bowtie 2." 

Nature methods 9(4): 357-359. 

Langmead, B., C. Trapnell, M. Pop and S. L. Salzberg (2009). "Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome." Genome biology 

10(3): 1. 

Lee, Y.-J., J. D. Van Nostrand, Q. Tu, Z. Lu, L. Cheng, T. Yuan, Y. Deng, M. Q. 

Carter, Z. He and L. Wu (2013). "The PathoChip, a functional gene array for assessing 

pathogenic properties of diverse microbial communities." The ISME journal 7(10): 

1974-1984. 

Levin, S. A. (2006). "Fundamental questions in biology." PLoS Biology 4(9): e300. 

Li, K.-B. (2003). "ClustalW-MPI: ClustalW analysis using distributed and parallel 

computing." Bioinformatics 19(12): 1585-1586. 

Li, S. and H.-H. Chou (2004). "LUCY2: an interactive DNA sequence quality trimming 

and vector removal tool." Bioinformatics 20(16): 2865-2866. 



195 

 

Li, W. and A. Godzik (2006). "Cd-hit: a fast program for clustering and comparing 

large sets of protein or nucleotide sequences." Bioinformatics 22(13): 1658-1659. 

Li, X., Z. He and J. Zhou (2005). "Selection of optimal oligonucleotide probes for 

microarrays using multiple criteria, global alignment and parameter estimation." 

Nucleic Acids Research 33(19): 6114-6123. 

Liang, Y., Z. He, L. Wu, Y. Deng, G. Li and J. Zhou (2010). "Development of a 

common oligonucleotide reference standard for microarray data normalization and 

comparison across different microbial communities." Applied and Environmental 

Microbiology 76(4): 1088-1094. 

Liebich, J., C. W. Schadt, S. C. Chong, Z. He, S.-K. Rhee and J. Zhou (2006). 

"Improvement of oligonucleotide probe design criteria for functional gene microarrays 

in environmental applications." Applied and Environmental Microbiology 72(2): 1688-

1691. 

Lima-Mendez, G., K. Faust, N. Henry, J. Decelle, S. Colin, F. Carcillo, S. Chaffron, J. 

C. Ignacio-Espinosa, S. Roux and F. Vincent (2015). "Determinants of community 

structure in the global plankton interactome." Science 348(6237): 1262073. 

Liu, W.-T., T. L. Marsh, H. Cheng and L. J. Forney (1997). "Characterization of 

microbial diversity by determining terminal restriction fragment length polymorphisms 

of genes encoding 16S rRNA." Applied and Environmental Microbiology 63(11): 4516-

4522. 

Logares, R., S. Sunagawa, G. Salazar, F. M. Cornejo-Castillo, I. Ferrera, H. Sarmento, 

P. Hingamp, H. Ogata, C. de Vargas, G. Lima-Mendez, J. Raes, J. Poulain, O. Jaillon, 

P. Wincker, S. Kandels-Lewis, E. Karsenti, P. Bork and S. G. Acinas (2014). 



196 

 

"Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon 

sequencing to explore diversity and structure of microbial communities." Environmental 

Microbiology 16(9): 2659-2671. 

Loman, N. J., R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia, J. Wain and 

M. J. Pallen (2012). "Performance comparison of benchtop high-throughput sequencing 

platforms." Nature Biotechnology 30(5): 434-439. 

Lorenzo, P., C. S. Pereira and S. Rodríguez-Echeverría (2013). "Differential impact on 

soil microbes of allelopathic compounds released by the invasive Acacia dealbata 

Link." Soil Biology and Biochemistry 57: 156-163. 

Lu, Z., Z. He, V. A. Parisi, S. Kang, Y. Deng, J. D. Van Nostrand, J. R. Masoner, I. M. 

Cozzarelli, J. M. Suflita and J. Zhou (2012). "GeoChip-based analysis of microbial 

functional gene diversity in a landfill leachate-contaminated aquifer." Environmental 

science & technology 46(11): 5824-5833. 

Lugtenberg, B. and F. Kamilova (2009). "Plant-growth-promoting rhizobacteria." 

Annual Review of Microbiology 63: 541-556. 

Luo, F., Y. Yang, C.-F. Chen, R. Chang, J. Zhou and R. H. Scheuermann (2007). 

"Modular organization of protein interaction networks." Bioinformatics 23(2): 207-214. 

Luo, F., Y. Yang, J. Zhong, H. Gao, L. Khan, D. K. Thompson and J. Zhou (2007). 

"Constructing gene co-expression networks and predicting functions of unknown genes 

by random matrix theory." BMC Bioinformatics 8: 299. 

Luo, F., J. Zhong, Y. Yang, R. H. Scheuermann and J. Zhou (2006). "Application of 

random matrix theory to biological networks." Physics Letters A 357(6): 420-423. 



197 

 

Luo, F., J. Zhong, Y. Yang and J. Zhou (2006). "Application of random matrix theory to 

microarray data for discovering functional gene modules." Physical Review E 73(3): 

031924. 

Luyckx, J. and C. Baudouin (2011). "Trehalose: an intriguing disaccharide with 

potential for medical application in ophthalmology." Clinical Ophthalmology 5: 577-

581. 

Mangla, S. and R. M. Callaway (2008). "Exotic invasive plant accumulates native soil 

pathogens which inhibit native plants." Journal of Ecology 96(1): 58-67. 

Markowitz, V. M., I. M. A. Chen, K. Chu, E. Szeto, K. Palaniappan, M. Pillay, A. 

Ratner, J. Huang, I. Pagani, S. Tringe, M. Huntemann, K. Billis, N. Varghese, K. 

Tennessen, K. Mavromatis, A. Pati, N. N. Ivanova and N. C. Kyrpides (2014). "IMG/M 

4 version of the integrated metagenome comparative analysis system." Nucleic Acids 

Research 42(Database issue): D568-D573. 

Maron, J. L., J. Klironomos, L. Waller and R. M. Callaway (2014). "Invasive plants 

escape from suppressive soil biota at regional scales." Journal of Ecology 102(1): 19-27. 

Massol-Deya, A., R. Weller, L. Rios-Hernandez, J. Zhou, R. F. Hickey and J. M. Tiedje 

(1997). "Succession and convergence of biofilm communities in fixed-film reactors 

treating aromatic hydrocarbons in groundwater." Applied and Environmental 

Microbiology 63(1): 270-276. 

Mates, J. (2000). "Effects of antioxidant enzymes in the molecular control of reactive 

oxygen species toxicology." Toxicology 153(1): 83-104. 

Maurel, C. (1997). "Aquaporins and water permeability of plant membranes." Annual 

Review Of Plant Biology 48(1): 399-429. 



198 

 

McCune, B., J. B. Grace and D. L. Urban (2002). Analysis of ecological communities, 

MjM software design Gleneden Beach, Oregon. 

McLeod, M. L., C. C. Cleveland, Y. Lekberg, J. L. Maron, L. Philippot, D. Bru and R. 

M. Callaway (2016). "Exotic invasive plants increase productivity, abundance of 

ammonia‐ oxidizing bacteria and nitrogen availability in intermountain grasslands." 

Journal of Ecology 104(4): 994-1002. 

Mehta, M. L. (2004). Random matrices, Academic press. 

Mendes, R., M. Kruijt, I. de Bruijn, E. Dekkers, M. van der Voort, J. H. Schneider, Y. 

M. Piceno, T. Z. DeSantis, G. L. Andersen and P. A. Bakker (2011). "Deciphering the 

rhizosphere microbiome for disease-suppressive bacteria." Science 332(6033): 1097-

1100. 

Metzker, M. L. (2010). "Sequencing technologies—the next generation." Nature 

Reviews Genetics 11(1): 31-46. 

Mielke, P. W. and K. J. Berry (2007). Permutation methods: a distance function 

approach, Springer Science & Business Media. 

Miethke, M. and M. A. Marahiel (2007). "Siderophore-based iron acquisition and 

pathogen control." Microbiology and Molecular Biology Reviews : MMBR 71(3): 413-

451. 

Muyzer, G., E. C. De Waal and A. G. Uitterlinden (1993). "Profiling of complex 

microbial populations by denaturing gradient gel electrophoresis analysis of polymerase 

chain reaction-amplified genes coding for 16S rRNA." Applied and Environmental 

Microbiology 59(3): 695-700. 



199 

 

Myung, I. J. (2003). "Tutorial on maximum likelihood estimation." Journal of 

mathematical Psychology 47(1): 90-100. 

Namiki, T., T. Hachiya, H. Tanaka and Y. Sakakibara (2012). "MetaVelvet: an 

extension of Velvet assembler to de novo metagenome assembly from short sequence 

reads." Nucleic Acids Research 40(20): e155-e155. 

Nayfach, S. and K. S. Pollard (2016). "Toward accurate and quantitative comparative 

metagenomics." Cell 166(5): 1103-1116. 

Neilands, J. B. (1995). "Siderophores: structure and function of microbial iron transport 

compounds." Journal of Biological Chemistry 270(45): 26723-26726. 

Osborne, D. J. and M. T. McManus (2005). Hormones, signals and target cells in plant 

development, Cambridge University Press. 

Oulas, A., C. Pavloudi, P. Polymenakou, G. A. Pavlopoulos, N. Papanikolaou, G. 

Kotoulas, C. Arvanitidis and I. Iliopoulos (2015). "Metagenomics: Tools and insights 

for analyzing next-generation sequencing data derived from biodiversity studies." 

Bioinformatics and Biology Insights 9: 75-88. 

Overbeek, R., R. Olson, G. D. Pusch, G. J. Olsen, J. J. Davis, T. Disz, R. A. Edwards, S. 

Gerdes, B. Parrello and M. Shukla (2014). "The SEED and the Rapid Annotation of 

microbial genomes using Subsystems Technology (RAST)." Nucleic Acids Research 

42(D1): D206-D214. 

Pastor-Satorras, R. and A. Vespignani (2001). "Epidemic spreading in scale-free 

networks." Physical review letters 86(14): 3200. 



200 

 

Pearson, K. (1901). "LIII. On lines and planes of closest fit to systems of points in 

space." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 

Science 2(11): 559-572. 

Peng, Y., H. C. Leung, S.-M. Yiu and F. Y. Chin (2012). "IDBA-UD: a de novo 

assembler for single-cell and metagenomic sequencing data with highly uneven depth." 

Bioinformatics 28(11): 1420-1428. 

Peng, Y., H. C. M. Leung, S.-M. Yiu and F. Y. L. Chin (2011). "Meta-IDBA: a de 

Novo assembler for metagenomic data." Bioinformatics 27(13): i94-i101. 

Pinto, A. J. and L. Raskin (2012). "PCR biases distort bacterial and archaeal community 

structure in pyrosequencing datasets." PLoS ONE 7(8). 

Powell, S., K. Forslund, D. Szklarczyk, K. Trachana, A. Roth, J. Huerta-Cepas, T. 

Gabaldón, T. Rattei, C. Creevey and M. Kuhn (2013). "eggNOG v4. 0: nested orthology 

inference across 3686 organisms." Nucleic Acids Research: gkt1253. 

Pruitt, K. D., T. Tatusova and D. R. Maglott (2005). "NCBI Reference Sequence 

(RefSeq): a curated non-redundant sequence database of genomes, transcripts and 

proteins." Nucleic Acids Research 33(Database Issue): D501-D504. 

Qiu, X., L. Wu, H. S. Huang, P. E. McDonel, A. V. Palumbo, J. M. Tiedje and J. Zhou 

(2001). "Evaluation of PCR-generated chimeras: Mutations, and heteroduplexes with 

16S rRNA gene-based cloning." Applied and Environmental Microbiology 67(2): 880-

887. 

Raaijmakers, J. M. and M. Mazzola (2012). "Diversity and natural functions of 

antibiotics produced by beneficial and plant pathogenic bacteria." Annual Review of 

Phytopathology 50(1): 403-424. 



201 

 

Ram, R. J., N. C. VerBerkmoes, M. P. Thelen, G. W. Tyson, B. J. Baker, R. C. Blake, 

M. Shah, R. L. Hettich and J. F. Banfield (2005). "Community proteomics of a natural 

microbial biofilm." Science 308(5730): 1915-1920. 

Rappe, M. S. and S. J. Giovannoni (2003). "The uncultured microbial majority." Annual 

Reviews in Microbiology 57(1): 369-394. 

Rasuk, M. C., A. B. Fernández, D. Kurth, M. Contreras, F. Novoa, D. Poiré and M. E. 

Farías (2016). "Bacterial diversity in microbial mats and sediments from the Atacama 

desert." Microbial Ecology 71(1): 44-56. 

Ravasz, E., A. L. Somera, D. A. Mongru, Z. N. Oltvai and A.-L. Barabási (2002). 

"Hierarchical organization of modularity in metabolic networks." Science 297(5586): 

1551-1555. 

Reimann, C. and P. Filzmoser (2000). "Normal and lognormal data distribution in 

geochemistry: death of a myth. Consequences for the statistical treatment of 

geochemical and environmental data." Environmental Geology 39(9): 1001-1014. 

Reinhart, K. O. and R. M. Callaway (2004). "Soil biota facilitate exotic Acer invasions 

in Europe and North America." Ecological Applications 14(6): 1737-1745. 

Reshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. 

Turnbaugh, E. S. Lander, M. Mitzenmacher and P. C. Sabeti (2011). "Detecting novel 

associations in large data sets." Science 334(6062): 1518-1524. 

Reynolds, H. L., A. Packer, J. D. Bever and K. Clay (2003). "Grassroots ecology: 

plant–microbe–soil interactions as drivers of plant community structure and dynamics." 

Ecology 84(9): 2281-2291. 



202 

 

Rhee, S. K., X. Liu, L. Wu, S. C. Chong, X. Wan and J. Zhou (2004). "Detection of 

genes involved in biodegradation and biotransformation in microbial communities by 

using 50-mer oligonucleotide microarrays." Applied and Environmental Microbiology 

70(7): 4303-4317. 

Rho, M., H. Tang and Y. Ye (2010). "FragGeneScan: predicting genes in short and 

error-prone reads." Nucleic Acids Research 38(20): e191-e191. 

Rodrı́guez, H. and R. Fraga (1999). "Phosphate solubilizing bacteria and their role in 

plant growth promotion." Biotechnology advances 17(4): 319-339. 

Roesch, L. F. W., R. R. Fulthorpe, A. Riva, G. Casella, A. K. M. Hadwin, A. D. Kent, 

S. H. Daroub, F. A. O. Camargo, W. G. Farmerie and E. W. Triplett (2007). 

"Pyrosequencing enumerates and contrasts soil microbial diversity." The ISME journal 

1(4): 283-290. 

Roh, S. W., G. C. J. Abell, K.-H. Kim, Y.-D. Nam and J.-W. Bae (2010). "Comparing 

microarrays and next-generation sequencing technologies for microbial ecology 

research." Trends in biotechnology 28(6): 291-299. 

Rout, M. E. and R. M. Callaway (2009). "An invasive plant paradox." Science 

324(5928): 734-735. 

Ruan, Q., D. Dutta, M. S. Schwalbach, J. A. Steele, J. A. Fuhrman and F. Sun (2006). 

"Local similarity analysis reveals unique associations among marine bacterioplankton 

species and environmental factors." Bioinformatics 22(20): 2532-2538. 

Sakhr, J. and J. M. Nieminen (2006). "Wigner surmises and the two-dimensional 

homogeneous Poisson point process." Physical Review E 73(4): 047202. 



203 

 

Santos, R., D. Hérouart, A. Puppo and D. Touati (2000). "Critical protective role of 

bacterial superoxide dismutase in Rhizobium–legume symbiosis." Molecular 

Microbiology 38(4): 750-759. 

Schimel, J. (2016). "Microbial ecology: Linking omics to biogeochemistry." Nature 

Microbiology 1: 15028. 

Schloss, P. D. and J. Handelsman (2006). "Toward a census of bacteria in soil." PLoS 

Computational Biology 2(7): e92. 

Schmidt, T. M., E. F. DeLong and N. R. Pace (1991). "Analysis of a marine 

picoplankton community by 16S rRNA gene cloning and sequencing." Journal of 

bacteriology 173(14): 4371-4378. 

Scholz, F. W. (1985). "Maximum likelihood estimation." Encyclopedia of Statistical 

Sciences. 

Scholz, M. B., C.-C. Lo and P. S. G. Chain (2012). "Next generation sequencing and 

bioinformatic bottlenecks: the current state of metagenomic data analysis." Current 

Opinion in Biotechnology 23(1): 9-15. 

Seshadri, R., S. A. Kravitz, L. Smarr, P. Gilna and M. Frazier (2007). "CAMERA: A 

community resource for metagenomics." PLoS Biology 5(3): e75. 

Sharpton, T. J., S. J. Riesenfeld, S. W. Kembel, J. Ladau, J. P. O'Dwyer, J. L. Green, J. 

A. Eisen and K. S. Pollard (2011). "PhylOTU: A high-throughput procedure quantifies 

microbial community diversity and resolves novel taxa from metagenomic data." PLoS 

Computational Biology 7(1): e1001061. 



204 

 

Shi, S., E. Nuccio, D. J. Herman, R. Rijkers, K. Estera, J. Li, U. N. da Rocha, Z. He, J. 

Pett-Ridge and E. L. Brodie (2015). "Successional trajectories of rhizosphere bacterial 

communities over consecutive seasons." mbio 6(4): e00746-00715. 

Shi, S., E. E. Nuccio, Z. J. Shi, Z. He, J. Zhou and M. K. Firestone (2016). "The 

interconnected rhizosphere: High network complexity dominates rhizosphere 

assemblages." Ecology Letters 19(8): 926-936. 

Shokralla, S., J. L. Spall, J. F. Gibson and M. Hajibabaei (2012). "Next‐ generation 

sequencing technologies for environmental DNA research." Molecular ecology 21(8): 

1794-1805. 

Silva, G. G. Z., K. T. Green, B. E. Dutilh and R. A. Edwards (2016). "SUPER-FOCUS: 

a tool for agile functional analysis of shotgun metagenomic data." Bioinformatics 32(3): 

354-361. 

Simpson, J. T., K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones and I. Birol 

(2009). "ABySS: a parallel assembler for short read sequence data." Genome research 

19(6): 1117-1123. 

Sogin, M. L., H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. 

Arrieta and G. J. Herndl (2006). "Microbial diversity in the deep sea and the 

underexplored “rare biosphere”." Proceedings of the National Academy of Sciences 

103(32): 12115-12120. 

Song, L., P. Langfelder and S. Horvath (2012). "Comparison of co-expression 

measures: mutual information, correlation, and model based indices." BMC 

Bioinformatics 13(1): 328. 

Speed, T. (2011). "A correlation for the 21st century." Science 334(6062): 1502-1503. 



205 

 

Srivastava, L. M. (2002). Plant growth and development: hormones and environment, 

Academic Press. 

Stacey, G. and N. T. Keen (1995). Plant-microbe interactions, Springer Science & 

Business Media. 

Steele, J. A., P. D. Countway, L. Xia, P. D. Vigil, J. M. Beman, D. Y. Kim, C.-E. T. 

Chow, R. Sachdeva, A. C. Jones and M. S. Schwalbach (2011). "Marine bacterial, 

archaeal and protistan association networks reveal ecological linkages." The ISME 

journal 5(9): 1414-1425. 

Stinson, K. A., S. A. Campbell, J. R. Powell, B. E. Wolfe, R. M. Callaway, G. C. 

Thelen, S. G. Hallett, D. Prati and J. N. Klironomos (2006). "Invasive plant suppresses 

the growth of native tree seedlings by disrupting belowground mutualisms." PLoS 

Biology 4(5): e140. 

Su, X., W. Pan, B. Song, J. Xu and K. Ning (2014). "Parallel-META 2.0: Enhanced 

metagenomic data analysis with functional annotation, high performance computing and 

advanced visualization." PLoS ONE 9(3): e89323. 

Suzuki, M. T. and S. J. Giovannoni (1996). "Bias caused by template annealing in the 

amplification of mixtures of 16S rRNA genes by PCR." Applied and Environmental 

Microbiology 62(2): 625-630. 

Székely, G. J., M. L. Rizzo and N. K. Bakirov (2007). "Measuring and testing 

dependence by correlation of distances." The Annals of Statistics 35(6): 2769-2794. 

Szklarczyk, D., A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. 

Simonovic, A. Roth, A. Santos and K. P. Tsafou (2014). "STRING v10: protein–protein 

interaction networks, integrated over the tree of life." Nucleic Acids Research: gku1003. 



206 

 

Team, R. C. (2012). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN 3-900051-07-0. 

Tiedje, J. M., S. Asuming-Brempong, K. Nüsslein, T. L. Marsh and S. J. Flynn (1999). 

"Opening the black box of soil microbial diversity." Applied Soil Ecology 13(2): 109-

122. 

Tiquia, S. M., L. Wu, S. C. Chong, S. Passovets, D. Xu, Y. Xu and J. Zhou (2004). 

"Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in 

environmental samples." Biotechniques 36(4): 664-675. 

Topçuoğlu, B. D., L. C. Stewart, H. G. Morrison, D. A. Butterfield, J. A. Huber and J. 

F. Holden (2016). "Hydrogen limitation and syntrophic growth among natural 

assemblages of thermophilic methanogens at deep-sea hydrothermal vents." Frontiers in 

Microbiology 7: 1240. 

Tremblay, J., K. Singh, A. Fern, E. S. Kirton, S. M. He, T. Woyke, J. Lee, F. Chen, J. L. 

Dangl and S. G. Tringe (2015). "Primer and platform effects on 16S rRNA tag 

sequencing." Frontiers in Microbiology 6. 

Trivedi, P., Z. He, J. D. Van Nostrand, G. Albrigo, J. Zhou and N. Wang (2012). 

"Huanglongbing alters the structure and functional diversity of microbial communities 

associated with citrus rhizosphere." The ISME journal 6(2): 363-383. 

Tu, Q., H. Yu, Z. He, Y. Deng, L. Wu, J. D. Van Nostrand, A. Zhou, J. Voordeckers, 

Y.-J. Lee, Y. Qin, C. L. Hemme, Z. Shi, K. Xue, T. Yuan, A. Wang and J. Zhou (2014). 

"GeoChip 4: a functional gene-array-based high-throughput environmental technology 

for microbial community analysis." Molecular Ecology Resources 14(5): 914-928. 



207 

 

Tu, Q., H. Yu, Z. He, Y. Deng, L. Wu, J. D. Van Nostrand, A. Zhou, J. Voordeckers, Y. 

J. Lee and Y. Qin (2014). "GeoChip 4: a functional gene‐ array‐ based high‐

throughput environmental technology for microbial community analysis." Molecular 

ecology resources 14(5): 914-928. 

Turner, T. R., K. Ramakrishnan, J. Walshaw, D. Heavens, M. Alston, D. Swarbreck, A. 

Osbourn, A. Grant and P. S. Poole (2013). "Comparative metatranscriptomics reveals 

kingdom level changes in the rhizosphere microbiome of plants." The ISME journal 

7(12): 2248-2258. 

Van Der Heijden, M. G., R. D. Bardgett and N. M. Van Straalen (2008). "The unseen 

majority: soil microbes as drivers of plant diversity and productivity in terrestrial 

ecosystems." Ecology Letters 11(3): 296-310. 

Van Grunsven, R. H. A., W. H. Van Der Putten, T. Bezemer, W. L. M. Tamis, F. 

Berendse and E. M. Veenendaal (2007). "Reduced plant–soil feedback of plant species 

expanding their range as compared to natives." Journal of Ecology 95(5): 1050-1057. 

Van Nostrand, J. D., W.-M. Wu, L. Wu, Y. Deng, J. Carley, S. Carroll, Z. He, B. Gu, J. 

Luo, C. S. Criddle, D. B. Watson, P. M. Jardine, T. L. Marsh, J. M. Tiedje, T. C. Hazen 

and J. Zhou (2009). "GeoChip-based analysis of functional microbial communities 

during the reoxidation of a bioreduced uranium-contaminated aquifer." Environmental 

Microbiology 11(10): 2611-2626. 

Van Nostrand, J. D., A. Zhou and J. Zhou (2016). "StressChip for monitoring microbial 

stress response in the environment." Stress and Environmental Regulation of Gene 

Expression and Adaptation in Bacteria, 2 Volume Set. 



208 

 

Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. 

Wu, I. Paulsen, K. E. Nelson and W. Nelson (2004). "Environmental genome shotgun 

sequencing of the Sargasso Sea." Science 304(5667): 66-74. 

Vieites, J. M., M. E. Guazzaroni, A. Beloqui, P. N. Golyshin and M. Ferrer (2009). 

"Metagenomics approaches in systems microbiology." FEMS Microbiology Reviews 

33(1): 236-255. 

Wagg, C., S. F. Bender, F. Widmer and M. G. A. van der Heijden (2014). "Soil 

biodiversity and soil community composition determine ecosystem multifunctionality." 

Proceedings of the National Academy of Sciences 111(14): 5266-5270. 

Waldron, P. J., L. Wu, J. D. V. Nostrand, C. W. Schadt, Z. He, D. B. Watson, P. M. 

Jardine, A. V. Palumbo, T. C. Hazen and J. Zhou (2009). "Functional gene array-based 

analysis of microbial community structure in groundwaters with a gradient of 

contaminant levels." Environmental science & technology 43(10): 3529-3534. 

Wang, F., H. Zhou, J. Meng, X. Peng, L. Jiang, P. Sun, C. Zhang, J. D. Van Nostrand, 

Y. Deng and Z. He (2009). "GeoChip-based analysis of metabolic diversity of microbial 

communities at the Juan de Fuca Ridge hydrothermal vent." Proceedings of the National 

Academy of Sciences 106(12): 4840-4845. 

Weinstock, G. M. (2012). "Genomic approaches to studying the human microbiota." 

Nature 489(7415): 250-256. 

Whipps, J. M. (2001). "Microbial interactions and biocontrol in the rhizosphere." 

Journal of experimental Botany 52(suppl 1): 487-511. 

Whitman, W. B., D. C. Coleman and W. J. Wiebe (1998). "Prokaryotes: the unseen 

majority." Proceedings of the National Academy of Sciences 95(12): 6578-6583. 



209 

 

Whittaker, R. H. (1960). "Vegetation of the Siskiyou Mountains, Oregon and 

California." Ecological Monographs 30(3): 279-338. 

Widder, S., K. Besemer, G. A. Singer, S. Ceola, E. Bertuzzo, C. Quince, W. T. Sloan, 

A. Rinaldo and T. J. Battin (2014). "Fluvial network organization imprints on microbial 

co-occurrence networks." Proceedings of the National Academy of Sciences 111(35): 

12799-12804. 

Wu, L., X. Liu, C. W. Schadt and J. Zhou (2006). "Microarray-based analysis of 

subnanogram quantities of microbial community DNAs by using whole-community 

genome amplification." Applied and Environmental Microbiology 72(7): 4931-4941. 

Wu, L., D. K. Thompson, G. Li, R. A. Hurt, J. M. Tiedje and J. Zhou (2001). 

"Development and evaluation of functional gene arrays for detection of selected genes 

in the environment." Applied and environmental microbiology 67(12): 5780-5790. 

Wylie, K. M., R. M. Truty, T. J. Sharpton, K. A. Mihindukulasuriya, Y. Zhou, H. Gao, 

E. Sodergren, G. M. Weinstock and K. S. Pollard (2012). "Novel bacterial taxa in the 

human microbiome." PLoS ONE 7(6): e35294. 

Xue, K., M. M. Yuan, Z. J. Shi, Y. Qin, Y. Deng, L. Cheng, L. Wu, Z. He, J. D. Van 

Nostrand, R. Bracho, S. Natali, E. A. G. Schuur, C. Luo, K. T. Konstantinidis, Q. 

Wang, J. R. Cole, J. M. Tiedje, Y. Luo and J. Zhou (2016). "Tundra soil carbon is 

vulnerable to rapid microbial decomposition under climate warming." Nature Climate 

Change 6(6): 595-600. 

Yang, G. Q., W. R. Qiu, Y. N. Jin and F. H. Wan (2013). "Potential allelochemicals 

from root exudates of invasive Ageratina adenophora." Allelopathy Journal 32(2): 233. 



210 

 

Yang, J., D. Gong, W. Wang, M. Hu and R. Mao (2012). "Extreme drought event of 

2009/2010 over southwestern China." Meteorology and Atmospheric Physics 115(3): 

173-184. 

Zhou, A., Z. He, Y. Qin, Z. Lu, Y. Deng, Q. Tu, C. L. Hemme, J. D. Van Nostrand, L. 

Wu and T. C. Hazen (2013). "StressChip as a high-throughput tool for assessing 

microbial community responses to environmental stresses." Environmental science & 

technology 47(17): 9841-9849. 

Zhou, J. (2009). "Predictive microbial ecology." Microbial Biotechnology 2(2): 154-

156. 

Zhou, J., M. A. Bruns and J. M. Tiedje (1996). "DNA recovery from soils of diverse 

composition." Applied and Environmental Microbiology 62(2): 316-322. 

Zhou, J., Y. Deng, F. Luo, Z. He, Q. Tu and X. Zhi (2010). "Functional molecular 

ecological networks." mBio 1(4): e00169-00110. 

Zhou, J., Y. Deng, F. Luo, Z. He and Y. Yang (2011). "Phylogenetic molecular 

ecological network of soil microbial communities in response to elevated CO2." mBio 

2(4): e00122-00111. 

Zhou, J., Y. Deng, L. Shen, C. Wen, Q. Yan, D. Ning, Y. Qin, K. Xue, L. Wu and Z. He 

(2016). "Temperature mediates continental-scale diversity of microbes in forest soils." 

Nature Communications 7. 

Zhou, J., Y. Deng, P. Zhang, K. Xue, Y. Liang, J. D. Van Nostrand, Y. Yang, Z. He, L. 

Wu and D. A. Stahl (2014). "Stochasticity, succession, and environmental perturbations 

in a fluidic ecosystem." Proceedings of the National Academy of Sciences 111(9): 

E836-E845. 



211 

 

Zhou, J., Z. He, Y. Yang, Y. Deng, S. G. Tringe and L. Alvarez-Cohen (2015). "High-

throughput metagenomic technologies for complex microbial community analysis: open 

and closed formats." mBio 6(1): e02288-02214. 

Zhou, J., S. Kang, C. W. Schadt and C. T. Garten (2008). "Spatial scaling of functional 

gene diversity across various microbial taxa." Proceedings of the National Academy of 

Sciences 105(22): 7768-7773. 

Zhou, J., W. Liu, Y. Deng, Y.-H. Jiang, K. Xue, Z. He, J. D. Van Nostrand, L. Wu, Y. 

Yang and A. Wang (2013). "Stochastic assembly leads to alternative communities with 

distinct functions in a bioreactor microbial community." mBio 4(2): e00584-00512. 

Zhou, J., L. Wu, Y. Deng, X. Zhi, Y.-H. Jiang, Q. Tu, J. Xie, J. D. Van Nostrand, Z. He 

and Y. Yang (2011). "Reproducibility and quantitation of amplicon sequencing-based 

detection." The ISME journal 5(8): 1303-1313. 

Zhou, J., K. Xue, J. Xie, Y. Deng, L. Wu, X. Cheng, S. Fei, S. Deng, Z. He and J. D. 

Van Nostrand (2012). "Microbial mediation of carbon-cycle feedbacks to climate 

warming." Nature Climate Change 2(2): 106-110. 

 


