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Abstract 

With the increasing population, human needs more food, fresh water, and other 

ecosystem services, which burdens the agricultural and natural ecosystems. Under the 

background of climate change, meeting these human needs becomes more challenging 

because of increasing temperature, climate extremes, etc. and their interaction with 

human activities. Thus, it is important to understand the impacts of climate change and 

human activities on ecosystem dynamics. The land-use and land-cover change, one of 

the most important human activities, greatly affects the function and dynamics of 

ecosystems. Drought is one of the most costly natural disasters and imposes wide-

ranging impacts on the economy, environment, and society. This dissertation aimed to 

strengthen the usage of remote sensing and eddy covariance techniques in paddy rice 

mapping, agricultural drought monitoring, land management effects assessment, and 

evaluating the impacts of drought on cattle production.  

Chapter 2 identified the different flooding/transplanting periods of paddy rice 

and natural wetlands. The natural wetlands foods earlier and have a shorter duration 

than paddy rice in the Panjin Plain, a temperate region in China. Using this 

asynchronous flooding stages, this chapter extracted the paddy rice planting area from 

the rice-wetland coexistent area using MODIS and Landsat 8 imagery. The comparison 

and validation tests indicated high accuracy of our paddy rice map.  

Chapter 3 quantified the agricultural drought of tallgrass prairie in the SGP 

using a remotely sensed water-related vegetation index derived from MODIS. The 

results are comparable to other widely used drought products. The spatial pattern of 

drought duration was highly correlated with the decreasing precipitation gradient from 



xx 

east to west. LSWI-based drought depictions are sensitive to both precipitation 

anomalies from the historical mean and abnormal seasonal precipitation distributions. A 

comparison with other widely used drought products is made.  

Chapter 4 examined the impacts of burning, baling, and grazing on canopy and 

carbon fluxes in a pasture through integrating PhenoCam images, satellite remote 

sensing, and eddy covariance data. Landsat images were used to assess the baling area 

and the trajectory of vegetation recovery. MODIS vegetation indices (VIs) were used in 

the Vegetation Photosynthesis Model (VPM) to estimate gross primary production 

(GPPVPM) at a MODIS pixel for the flux tower (baled) site. Multiple datasets allowed 

studying intra-annual variations caused by various management practices. The larger 

increase of GPP after large rain in baled grassland (photosynthetically more active 

vegetation) compensated the reduction in GPP caused by baling. This result indicated 

that the interaction of management practices with climate is important when studying 

their impacts on GPP.  

Chapter 5 evaluated the impacts of drought on cattle production in the SGP 

during 2000-2015 use meteorological, remote sensing, and statistical data. The results 

showed that the consecutive years of drought and high temperatures in 2011 and 2012 

dramatically decreased the cattle production in OK and TX. The decrease extent in KS 

was smaller probably because of the greater accessibility to the groundwater resource. 

2011 was a whole year drought in the SGP which decreased the hay production and thus 

cattle production, while 2012 was a summer drought year in the Corn Belt which 

increased the corn price and thus cattle production. The Random Forest method 

performed well and shows the potential in predicting the dynamics of cattle production.



1 

Chapter 1: Introduction 

1.1 Research background  

With the increasing population, human society needs more food and, fresh 

water, and other ecosystem services, which burdens the agricultural and natural 

ecosystems (Beddington et al. 2012; FAO 2013; Godfray et al. 2010). The modification 

of Earth’s terrestrial surface by human activities to meet these human needs is known as 

land-use and land-cover change (LULCC) (Ellis and Pontius 2007). LULCC greatly 

affects the function and dynamics of ecosystems at both regional and global scale 

because of increasing extent, intensity, and rate (Foley et al. 2005; Lambin et al. 2001). 

Under the background of climate change, meeting human needs becomes more 

challenging because of increasing temperature (IPCC 2013), more frequent climate 

extremes (Stocker et al. 2013), etc. and their interaction with human activities (Fig. 1.1). 

Figure 1.1. The research background of the dissertation. 

 

 Cropland ecosystems provide food for humans (FAO 2013). Meanwhile, it also 

dramatically alters the ecosystem structure and function, and is an important driver of 



2 

the ecosystem and environment changes (Ellis and Pontius 2007; Foley et al. 2005).  

Paddy rice provides the most important staple food for more than half the global 

population (FAO 2013; Matthews et al. 2001). With the rapid growth in world 

population, the demand for food (Godfray et al. 2010), especially rice, is increasing, 

which increases pressure on land, water, and biodiversity. Paddy rice, along with natural 

wetlands are the largest sources of CH4 emissions (Stocker et al. 2013; Zhuang et al. 

2009). Information on the spatial distribution and temporal dynamics of paddy rice 

fields is important for the studies of trace gas emissions, management of water 

resources, and food security (Döll 2002; Xiao et al. 2006; Xiao et al. 2005). An updated 

and accurate paddy rice map with fine spatial resolution (e.g. 30 m) is vital for policy 

makers and farmers to understand and balance environmental problems (greenhouse gas 

emissions and water deficit issues) with rice production. 

Since the late 1980s, remote sensing technology has been used for mapping rice 

areas in addition to paddy rice datasets from agricultural statistics and census 

approaches (Aselmann and Crutzen 1989; Huke and Huke 1997; Huke 1982; Matthews 

et al. 1991; Olson 1992). The image-based method (Bachelet 1995; Chen et al. 2011b; 

Fang 1998; Gilabert and Melia 1990; McCloy et al. 1987; Okamoto and Fukuhara 1996; 

Rao and Rao 1987; Tennakoon et al. 1992), using visualization and digitalization or 

pixel clustering, was first utilized to monitor paddy rice fields using optical remote 

sensing data. However, the image-based method depends highly on the producer’s 

knowledge and the image statistics feature. The pixel-based method, based on pixel 

statistics and signal detection in each pixel, targets specific feature detection using time 
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series data. With the increasing temporal and spatial resolutions of satellite data, the use 

of remote sensing in paddy rice mapping becomes more and more important.  

Grassland (both native prairie and planted/introduced pasture) is a major forage 

source for millions of beef cattle in the Southern Great Plains (SGP: Kansas, Oklahoma, 

and Texas) of the United States. Grassland is susceptible to frequent drought and under 

different management practices (Bajgain et al. 2016; Basara et al. 2013; Christian et al. 

2015; Gu et al. 2007; Gu et al. 2008; Hoerling et al. 2014; Schubert et al. 2004; Worster 

1979). The agricultural drought of 2011 in Texas caused more than $7.62 billion in losses, 

with about half of the loss attributed to the reduction in livestock production (Fannin 2012). 

Management practices in the pasture are diverse (e.g., burning, grazing, baling, 

fertilizing), complex (e.g., a mixture of management practices such as grazing and 

baling, different duration and timing), and can vary over space and time (Campioli et al. 

2015; Wilson et al. 2013).  

Satellite remote sensing is providing consistent observations of vegetation 

dynamics, which can be incorporated into drought monitoring over large areas at high 

spatial and temporal resolutions (AghaKouchak et al. 2015; Wardlow et al. 2012a). The 

Land Surface Water Index (LSWI) (Xiao et al. 2004), calculated as a normalized ratio 

between NIR and shortwave infrared (SWIR) bands, is sensitive to the leaf water content 

and water stress. Recent studies have shown the ability of LSWI to track drought-impacted 

vegetation or to monitor drought (Bajgain et al. 2016; Bajgain et al. 2015; Chandrasekar et 

al. 2010; Wagle et al. 2015; Wagle et al. 2014). 

Vegetation indices (VIs) derived from satellite images are also used in production 

efficiency models to estimate gross and net primary production of vegetation. Meanwhile, 

eddy covariance (EC) measurements can reflect effects of land use and management on the 
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exchange of carbon dioxide, water vapor, and energy fluxes. Combining the remote sensing 

and EC techniques help to detect the impacts of diverse management practices on 

ecosystem dynamics in grassland.  

1.2 Overall research objectives 

The goal of this dissertation is to facilitate the usage of remote sensing and eddy 

covariance technologies in characterizing cropland, agricultural drought and land 

managements and their impacts on ecosystem dynamics. Specifically, my dissertation 

focuses on three major topics: (1) mapping paddy rice in the Panjin Plain, China; (2) 

examining the impacts of diverse management practices on plant phenology and carbon 

fluxes of a pasture; and (3) mapping agricultural drought in grassland in the U.S. 

Southern Great Plains (SGP) and assessing its impacts on cattle production. 

1.3 Organization of the dissertation  

This dissertation consists of one introductory chapter, four main chapters, and 

one summary chapter. Chapters 2, 3 have been published in three peer-reviewed 

journals, chapter 4 is under the second review, and chapter 5 is in preparation and will 

be submitted to one peer-reviewed journal.  

Chapter 2 aims to develop a new phenology-based paddy rice mapping 

algorithm to map paddy rice planting area from the rice-wetland coexistent area. This 

chapter identifies the different flooding/transplanting periods of paddy rice and natural 

wetlands. The natural wetlands foods earlier and have a shorter duration than paddy rice 

in the Panjin Plain, a temperate region in China. Using this asynchronous flooding 

stages, this chapter extracts the paddy rice planting area from the rice-wetland 

coexistent area. The accuracy, comparison with other products, and uncertainties are 

discussed.  



5 

Chapter 3 examines the impacts of burning, baling, and grazing on canopy and 

carbon fluxes in a pasture through integrating PhenoCam images, satellite remote 

sensing, and eddy covariance data. Landsat images were used to assess the baling area 

and the trajectory of vegetation recovery. MODIS vegetation indices (VIs) were used in 

the Vegetation Photosynthesis Model (VPM) to estimate gross primary production 

(GPPVPM) at a MODIS pixel for the flux tower (baled) site. This chapter points out the 

necessity of combining different techniques to investigate the responses of pastures to 

different management practices under different climate regimes at multiple temporal 

and spatial scales. 

Chapter 4 focuses on quantifying agricultural drought in tallgrass region in the 

SGP using a remotely sensed water-related vegetation index (LSWI). The temporal and 

spatial pattern of drought is presented the compared with precipitation gradient. A 

comparison with other widely used drought products is made. The relationship between 

drought and precipitation at the annual and seasonal level are discussed. This chapter 

highlights the potential of LSWI in agricultural drought monitoring.  

Chapter 5 attempts to use meteorological, remote sensing, and statistical data 

evaluate the impacts of drought and heatwave on cattle production in the SGP during 

2000-2015. The random forest and multivariate linear regression are used to model the 

impacts of social and ecological factors on cattle production.  

1.4 List of Publications from the Dissertation 

Chapter 2  

Zhou, Y., Xiao, X., Qin, Y.W., Dong, J.W., Zhang, G.L., Kou, W.L., Jin, C, Wang, J., 

Li, X.P, 2016, Mapping paddy rice planting area in rice-wetland mixed areas through 
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analysis of Landsat 8 OLI and MODIS images, International Journal of Applied Earth 

Observation and Geoinformation, 46:1-12. 

Chapter 3 

Zhou, Y., Xiao, X., Wagle, P., Bajgain, R., Mahan, H., Basara, B.J., Dong, J., Qin, Y., 

Zhang, G., Luo, Y., Gowda, P.H., Neel, P.S.J., Steiner, L.J, 2017, Examining the short-

term impacts of diverse management practices on plant phenology and carbon fluxes of 

Old World bluestems pasture, Agricultural and Forest Meteorology, 237-238:60-70. 

Chapter 4  

Zhou, Y., Xiao, X., Zhang, G., Wagle, P., Bajgain, R., Dong, J., Jin, C., Basara, B.J., 

Anderson, C. M., Hain, R.C., Otkin, A. J., 2016, Quantifying agricultural drought in 

tallgrass prairie region in the U.S. Southern Great Plains 1 through analysis of a water-

related vegetation index from MODIS images, Agricultural and Forest Meteorology 

(under 2nd review). 

Chapter 5 

Zhou, Y., Xiao, X., Zhang, Y., Zou, Z., Osei, E., Bajgain, R., Basara, B.J., Steiner, L.J., 

Consecutive years of agricultural drought drove the large losses of cattle production in 

the U.S. Southern Great Plains (in preparation) 
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Chapter 2: Mapping paddy rice planting area in rice-wetland 

coexistent areas through analysis of Landsat 8 OLI and MODIS 

images 

Abstract  

Accurate and up-to-date information on the spatial distribution of paddy rice 

fields is necessary for the studies of trace gas emissions, water source management, and 

food security. The phenology-based paddy rice mapping algorithm, which identifies the 

unique flooding stage of paddy rice, has been widely used. However, identification and 

mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this 

study, we found that the flooding/transplanting periods of paddy rice and natural 

wetlands were different. The natural wetlands flood earlier and have a shorter duration 

than paddy rice in the Panjin Plain, a temperate region in China. We used this 

asynchronous flooding stage to extract the paddy rice planting area from the rice-

wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to 

derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used 

to detect the flooding signal and then paddy rice was extracted using the difference in 

flooding stages between paddy rice and natural wetlands. The resultant paddy rice map 

was evaluated with in-situ ground-truth data and Google Earth images. The estimated 

overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial 

pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the 

National Land Cover Dataset from 2010 (NLCD-2010). The differences between 

RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of 

this study demonstrate the potential of the phenology-based paddy rice mapping 
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algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields 

in complex landscapes of paddy rice and natural wetland in the temperate region.  

2.1 Introduction 

Paddy rice provides the most important staple food for more than half the global 

population (FAO 2013) even though it only accounts for around 11% of the world’s 

cropland area (Matthews et al. 2001). With the rapid growth in world population, the 

demand for food, especially rice, is increasing, which increases pressure on land, water, 

and biodiversity (Beddington et al. 2012; Godfray et al. 2010). Paddy rice fields 

consume a large amount of water (Bouman and Tuong 2001; Döll 2002) and emit 

methane (CH4) into the atmosphere, which plays an important role in atmospheric 

chemistry and climate change (Zhuang et al. 2009). The largest sources of CH4 

emissions are rice paddies (~ 33-40 Tg yr-1) (IPCC 2013) and natural wetlands (~177-

284 Tg yr-1) (Stocker et al. 2013). Information on the spatial distribution and temporal 

dynamics of paddy rice fields is important for the studies of trace gas emissions, 

management of water resources, and food security (Döll 2002; Xiao et al. 2006; Xiao et 

al. 2005). An updated and accurate paddy rice map with fine spatial resolution (e.g. 30 

m) is vital for policy makers and farmers to understand and balance environmental 

problems (greenhouse gas emissions and water deficit issues) with rice production.  

We developed a phenology-based algorithm to identify paddy rice fields based 

on the unique phenological feature that rice plants are first grown on flooded soils (Xiao 

et al. 2002a; Xiao et al. 2006; Xiao et al. 2005; Zhang et al. 2015). At the beginning of 

the growing season, the land surface is a mixture of plants and water and can be 

detected as flooding using spectral bands or vegetation indices that are sensitive to both 
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water thickness (Land Surface Water Index, LSWI) and vegetation canopy (Normalized 

Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI). Those areas 

where LSWI were greater than NDVI or EVI (LSWI ≥ NDVI or LSWI ≥ EVI) during 

the growing season were identified as paddy rice fields. This algorithm has been applied 

to map paddy rice fields in Eastern Jiangsu Province, China using VEGETATION data 

(Xiao et al. 2002a) and in Southern China, Northeast China, and Southeast Asia using 

MODIS data (Xiao et al. 2006; Xiao et al. 2005; Zhang et al. 2015).   

However, accurate mapping of paddy rice in rice-wetland coexistent areas is still 

challenging since both paddy rice and natural wetlands have a flooding stage in their 

growing season, which often leads to misclassification of natural wetlands as paddy rice 

(Brisco et al. 2012; Gong et al. 2010; Xiao et al. 2005). Previous studies has used the 

thematic map of wetland to deal with this problem and suggested the need to develop a 

MODIS- or Landsat-based natural wetland mask (Jin et al. 2015; Zhang et al. 2015). A 

more detailed analysis of the dynamics of paddy rice and natural wetland might give us 

more clues to solve this problem. Furthermore, the previous phenology-based algorithm 

has not been applied in the temperate region using Landsat 8 data that has a finer spatial 

resolution than MODIS although it has been tested in other paddy rice planting areas in 

China (Qin et al. 2015; Wang et al. 2015). The objective of this study was to develop 

and test an improved method to map paddy rice in the rice-wetland coexistent areas, 

using MODIS and Landsat 8 OLI images. As a case study, we selected the Panjin Plain 

in Liaoning Province, Northeastern China, as (1) extensive natural wetlands and paddy 

rice are distributed throughout the area and (2) field survey data, agricultural statistical 

data, and other fine-resolution cropland data are available for the evaluation of a 
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Landsat 8 OLI-derived paddy rice map. 

Using multi-temporal MODIS and Landsat 8 OLI images in 2013, we examined 

spectral characteristics of various land cover types and applied a phenology-based 

algorithm to map seasonally flooded/inundated areas. Then, paddy rice fields were 

distinguished from natural wetland based on the observation of the different timing in 

flooding stages. Our algorithm focused on the flooding feature of paddy rice and 

utilized the asynchrony of the flooding signal in paddy rice and reed wetland. It has the 

potential be applied to large area using program without substantial human inputs. 

Other conventional classification methods (e.g. Maximum Likelihood, ISODATA, 

SVM, etc.) either need the prior knowledge of the land cover samples or post 

classification interpretation which are time consuming and labor intensive. The 

algorithm has the potential to generate better paddy rice results than others without 

considering the asynchrony of the flooding signal in paddy rice and reed wetland. The 

algorithm developed in this study takes advantage of the high temporal resolution (8-

day) of MODIS images at 500 m spatial resolution and the high spatial resolution (30 

m) of Landsat 8 OLI images at 16-day temporal resolution and may be applied to other 

rice-producing areas to generate a paddy rice database at 30 m spatial resolution. Such a 

data product would be critical for studying estimation of trace gas emissions, water 

sources management, wild bird migration, and food security. 

2.2 Materials and methods 

2.2.1 Study area 

The Panjin Plain is located in the core area of the Liaohe Delta in Liaoning 

province, Northeast China (40.623-41.597°N, 121.376-122.813°E). Four counties are 
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included in the study area: Panshan County, Dawa County, Panjin urban area, and Taian 

County. The first three counties are part of Panjin City with Panjin urban area as the 

business and administration center and it has a smaller area than the other two. Two 

main streams of the Liaohe River, one of the largest rivers in Northeastern China, run 

through the area (Figure 2.1a). 

Figure 2.1. (a) Location of the field survey sites in the Panjin Plain, Liaoning 

Province, China. The total number of sites for paddy rice, reed wetland, and 

others (corn, soybean, water body etc.) were 86, 21, and 34. (b) Landsat tiles 

(path/row) for the study area and its location in Liaoning province. (P1), (P2), and 

(P3) are the photos that show the paddy rice, reed wetland and corn fields. 

 

The Panjin Plain belongs to the temperate zone and has a monsoon climate (Xu 

et al. 2009). Annual mean temperature is ~10.6 ºC. Annual precipitation is 444 mm, and 

most of the precipitation occurs between May and September. Forest and natural 

wetland are the major natural vegetation types. Paddy rice is the most important 

cropland in this area. Paddy rice, corn, and soybean accounted for 84%, 12%, and 4% of 
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the total crop area in Panjin City in 2012, respectively (Bureau 2014; Liaoning 

Statistical Bureau 2013).  

2.2.2 Data 

2.2.2.1 Landsat 8 (OLI) data and processing 

Landsat 8 provides a good source for paddy rice mapping with new features that 

build upon its predecessors. It gets rid of the gaps problems in Landsat 7 ETM+ and has 

the same spatial resolution (30 m) which makes it possible to generate finer resolution 

paddy rice map than MODIS (Salmon et al. 2015; Zhang et al. 2015). The additional 

quality assessment band includes information on cloud and cirrus; ETM+ and its 

predecessors do not have such quality information for each pixel which might bring 

error in previous studies (Beddington et al. 2012; Liu et al. 2005). 

Table 2.1. Landsat 8 images used in this study. Two tiles (Path120/Row31 and 

Path120/Row32) are combined to cover the study area. The cloud cover 

information of each image is given by the metadata. 

 DOY Date Cloud cover (P120/R31) Cloud cover (P120/R32) 

2013111 4/21/2013 2.86% 17.06% 

2013127 5/7/2013 Only thermal bands Only thermal bands 

2013143 5/23/2013 0.14% 4.19% 

2013159 6/8/2013 0.24% 22.18% 

2013175 6/24/2013 75.77% 89.56% 

2013191 7/10/2013 No image available No image available 

2013207 7/26/2013 3.44% 2.68% 

2013223 8/11/2013 65.18% 22.06% 

2013239 8/27/2013 91.32% 58.90% 

2013255 9/12/2013 3.00% 23.16% 

2013271 9/28/2013 48.17% 30.25% 

2013287 10/14/2013 No image available No image available 

2013303 10/30/2013 1.00% 0.98% 

2013319 11/15/2013 0.89% 1.36% 

2013335 12/1/2013 5.59% 4.72% 

2013351 12/17/2013 45.93% 47.69% 
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We downloaded Landsat 8 data products from April to December 2013 in the 

Panjin Plain from the USGS EarthExplorer (http://earthexplorer.usgs.gov/). Two tiles 

are needed to cover the study area (Figure 2.1b). A total of 26 images were used for this 

study (Table 2.1). 

Each Landsat 8 OLI image was atmospherically corrected to generate surface 

reflectance, using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLASSH) (Adler-Golden et al. 1999; Matthew et al. 2000), a matured and easy to use 

atmospheric correction method imbedded in popular remote sensing software (e.g. 

ENVI). The OLI data product includes a 16-bit quality assessment (QA) file in 

GeoTIFF format, which contains information on clouds and cirrus. We used the 

Landsat-LDOPE Toolbelt to extract cloud and cirrus covered pixels from the QA file. 

The medium (34%-66%) confidence level was used for both cloud and cirrus 

information detection in the QA file. Other criteria were further applied to detect cloud: 

when a pixel has a blue band reflectance value ≥ 0.2 and a positive LSWI value, it was 

masked as a cloudy pixel. In order to exclude the effect of cloud and cirrus, we 

combined these three criteria to generate a cloud mask for each image; all cloud pixels 

were excluded from further analysis (Xiao et al. 2006).   

For each image, we calculated NDVI, EVI, and LSWI using surface reflectance 

from blue ( blue ), red ( red ), NIR ( nir ), and SWIR ( swir , 1.63-1.65 µm) bands: 
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NDVI is related to changes of leaf area index and the amount of green biomass 

within the canopy (Xiao et al. 2002b), but it has some limitations including saturation 

under dense canopy and vulnerability to atmospheric conditions and visible soil 

background (Huete et al. 2002). EVI uses the blue band in combination with the red 

band to reduce atmospheric contamination and also has a soil background adjustment 

factor L. The coefficients C1, C2, and L are 6.0, 7.5, and 1.0, respectively, and G is a 

gain factor set to 2.5 (Huete et al. 2002). LSWI is sensitive to equivalent water 

thickness (Xiao et al. 2002a).  

2.2.2.2 MODIS data and processing 

MODIS Land Surface Temperature (LST) products provide the estimation for 

daytime and nighttime land surface temperature at 1-km spatial resolution (Wan et al. 

2002). The 8-day LST products (MOD11A2) were used to investigate temperature 

dynamics at the regional level.  

MODIS land surface reflectance data (MOD09A1) was used to investigate the 

dynamics of different land cover types. NDVI, EVI, and LSWI were calculated using 

the same equations mentioned in the above section. Normalized Difference Snow Index 

(NDSI) was also calculated from the MOD09A1 data using green and SWIR bands, 

which is used in snow/ice identification latter (Hall et al. 2002) to minimize the 

potential impact of those observations with snow/ice cover in the spring and winter. 
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2.2.2.3 Crop calendar 

Paddy rice seeds are sown in a small, richly nourished seed bed in mid-April, 

and it takes about one month for the seeds to grow up and be ready to be transplanted 

into flooded fields. Flooding is an important feature of paddy rice that differentiates it 

from other plants, including soybean, corn, and deciduous forest (Table 2.2). Usually, 

farmers irrigate the paddy rice fields at the end of April and then transplant rice plants 

in late May. In June and July, the rice seedlings grow quickly and cover the whole area 

of the field. The rice plant is mature by the end of September and harvested in October.  

Table 2.2. Phenology stages of major plants in the Panjin Plain, Liaoning Province, 

China. The phenology data of paddy rice, soybean, and corn were provided by 

China Meteorological Data Sharing Service System 

(http://cdc.cma.gov.cn/home.do). The phenology stages of reed wetland and 

deciduous forest were extracted from (Li et al. 2006) and (Yu and Zhuang 2006), 

respectively.  

 

Month April May June July  August September October 

Ten-day E M L E M L E M L E M L E M L E M L E M L 

Paddy rice  

 

1 2 3 4 5 6 7 8 9 10 

Soybean 

   

1 2 3 4 5 6 7 

   Corn 

   

1 2 3 4 5 6 7 8 

   Reed wetland 

  

1 

 

2 3 4 

Deciduous 

Forest   

1 

 

2 3 4 

   Paddy rice: 1-Sowing, 2-Seeding/Flooding, 3-Transplanting/Flooding, 4-Reviving, 5-

Tillering, 6-Booting, 7-Heading, 8-Milky maturity, 9-Mature, 10-harvesting; 

Soybean: 1-Sowing, 2-Seeding, 3-The third true leaf, 4- Branches forming, 5-

Flowering, 6-Pod setting 7-Mature; 

Corn: 1-Sowing, 2-Seeding, 3-Three leaves, 4-Seven leaves, 5-Stem elongation, 6-

Heading, 7-Milk maturity, 8-Mature; 

Reed wetland: 1-Germinating, 2-Leafing, 3-Flowering, 4-Fade; 

Deciduous Forest: 1-Sprouting, 2-Leafing, 3-Growing, 4-Defoliating. 

http://cdc.cma.gov.cn/home.do
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Plants in natural (reed) wetland begin to germinate in late April or early May 

when temperatures rise up to 0 ºC. When reed wetland is in the leafing stage with a 

closed canopy in middle or late May, paddy rice fields are still in the flooding stage. 

The asynchrony of the paddy rice’s and reed wetland’ growing season phases makes it 

possible to distinguish them using multi-temporal satellite images. 

2.2.2.4 Field survey data 

We carried out a field survey in the study area during the period of May 31st to 

June 3rd, 2013, when most paddy rice fields were in the flooding/transplanting phase 

and reed wetland had a closed canopy. The sampling distance between two different 

sites was 3-5 km. The width and length of the field sites were larger than 100 m and of 

the same land cover type. The land cover types at the sites were classified as one of 

three: paddy rice, reed wetland or others. We considered corn, soybean, water body, or 

built-up to be “others” without listing all the specific land cover types because they 

were minor land cover types and also out of the major scope of this study. For the paddy 

rice sites, we went into the paddy rice field at least 60 m away from the border in each 

direction and took the geo-referenced photo. For the reed wetland sites, we stood on the 

road running through the large reed wetland area, instead of going into the center of the 

reed wetland by boat, limited by time and human resources.  The total numbers of sites 

for paddy rice, reed wetland and other land cover types were 86, 21, and 34, 

respectively (Figure 2.1a). All field survey sites were used in the validation process. 

2.2.2.5 Other land cover datasets for inter-comparison 

 The National Land Cover Dataset from 2010 (NLCD-2010) at a 1:100,000 scale 
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was generated by the Chinese Academy of Sciences through visual interpretation and 

digitalization of Landsat images (Liu et al. 2014; Zhang et al. 2014b). Its classification 

scheme has six classes and 25 subclasses of land use types and includes paddy rice as 

one of the subclasses in the dataset. The human-computer interactive interpretation 

method was used to interpret the Landsat TM/ETM+ images and HJ-1 satellite images 

and generate vector patches of different land cover types (1:100,000 scale). Extensive 

field survey data were used to evaluate the accuracy of the NLCD-2010 dataset. The 

resultant NLCD were aggregated and rasterized to have a spatial resolution of 1-km 

with cell values assigned as the percentage of different land use and land cover types. In 

this study, the 1-km resolution paddy rice thematic map of the NLCD-2010 dataset was 

used for comparison with the Landsat 8 OLI-derived paddy rice map.  

The Liaoning Statistical Yearbook from 2014 is a yearly summary public 

government report. The data is reported by the lower district level (city) to the 

provincial office. It contains the economic, societal, and environmental conditions of 

the year before the publication of the statistical yearbook (e.g. Liaoning Statistical 

Yearbook from 2013 reflects the conditions of 2012).  Considering the uncertainty of 

the statistical data, the comparison between the Landsat 8 OLI-derived paddy rice map 

and statistical data is coarse.  

2.2.3 Temperature-defined plant growing season 
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In the Panjin Plain, the daily minimum air temperature rises above 0 ºC in April 

(Figure 2.2). It remains above 10 ºC from the end of April to September. The daily 

minimum temperature drops below 0 ºC at the end of October or the beginning of 

November. The temperature-defined plant growing season (0 ºC threshold) runs from 

April to October based on the weather station data. The LSTnight data from MODIS 

corresponds well with the daily minimum air temperature for the same pixel where the 

weather station located. 

Figure 2.2. Daily mean and minimum temperature, precipitation and night time 

land surface temperature (LSTnight) in the Panjin Plain. Temperature and 

precipitation data is from the weather station located at Jin Zhou City (41.08 ºN, 

121.07 ºE) and collect collected from China Meteorological Data Sharing Service 

System (http://www.escience.gov.cn/metdata/page/index.html). LSTnight data is 

from MOD11A2 product for the pixel where the weather station is located in. The 

two dash lines denote the 0 ºC and 10 ºC. The weather station is not in the study 

area but is the closest one with data available. 

LSTnight from MODIS rises above 0 ºC usually around April 15 (Figure 2.3a) in 

the Panjin Plain. Then, natural plants such as reeds and trees begin to grow. The 

regional LSTnight map shows that the temperature rises up to 10 ºC around May 9 

(Figure 2.3b), and paddy rice fields are in the flooding stage. LSTnight remains above 10 

http://www.escience.gov.cn/metdata/page/index.html
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ºC from early May to early September (Figure 2.3d) and drops to less than 10 ºC at the 

beginning of September when paddy rice is mature and reeds enter the senescence 

phase. Paddy rice is harvested in October before the daily minimum temperature 

approaches 0 ºC (Figure 2.3c). The growing stages recorded by crop calendar (Table 

2.2) matched well with the temperature-defined plant growing season from both local 

climate data and the LSTnight data. 

Figure 2.3. Spatial distribution of temperature-defined plant growing season as 

delineated by LSTnight in the Panjin Plain derived from MOD11A2 in 2013. (a) The 

first date with LSTnight>=0 ºC; (b) the first date with LSTnight>=10 ºC; (c) the end 

date with LSTnight>=0 ºC; (d) the end date with LSTnight>=10 ºC. 
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2.2.4 Phenology-based algorithm to identify paddy rice  

2.2.4.1 Seasonal dynamics of vegetation indices of major land cover types from MODIS  

Figure 2.4 shows the seasonal dynamic of NDVI, EVI, and LSWI from 

MOD09A1 data for four typical land cover sites: paddy rice, reed wetland, corn, and 

forest. Vegetation indices of natural vegetation (Figure 2.4b and Figure 2.4d) increase 

quickly from early May. NDVI is > 0.30 and EVI is > 0.20 in reed wetland (Figure 

2.4b) in late May, indicating green-up of plants. At the same time NDVI and EVI in 

paddy rice (Figure 2.4a) are less than 0.3 and 0.2 respectively, which suggests that 

transplanting has not yet started or has finished but the canopy is still open. NDVI and 

EVI in crops (Figure 2.4a and Figure 2.4c) increase quickly starting in late June. The 

LSWI values are always lower than NDVI and EVI from April to October in corn and 

forest while LSWI values are greater than NDVI or EVI in May and/or June in paddy 

rice and reed wetland, and this signal (LSWI ≥ NDVI or LSWI ≥ EVI) occurs in several 

continuous 8-day periods.  
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Figure 2.4 The seasonal dynamics of NDVI, EVI, and LSWI of major land cover 

types from MOD09A1 product in 2013 (a) a paddy rice site (41.0437 ºN, 122.2137 

ºE), (b) a reed wetland site (41.2127 ºN, 121.7095.ºE), (c) a corn site (41.1159 ºN, 

121.6550 ºE), and (d) a forest site (41.5279 ºN, 121.6303 ºE). All sites were selected 

according to the field sampling sites and were representatives of major land cover 

types except forest site was selected based on Google Earth image. 

2.2.4.2 Identification of flooding/inundation signal  

For the major land cover types in the study area, only paddy rice and weeds 

present flooding/inundation events. Some previous works suggest that LSWI ≥ NDVI 

or LSWI ≥ EVI coincide with flooding events (Xiao et al. 2002a; Xiao et al. 2006; 

Xiao et al. 2005).This phenomena is also present in Figure 2.4 (a) and (b). Those pixels 

identified as flooded during the whole year may be pure water or mixtures of water and 

plants where water information is dominant in the pixel. The seasonally flooded pixels 

identified in some periods of the year include seasonal water bodies, reed wetland, and 
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paddy rice. Seasonal water bodies form during the flood season when precipitation 

provides a water source. This feature helps us to detect seasonal water bodies via 

identifying flooded pixels during plant canopies’ closed period, when reed wetland and 

paddy rice are not flooded. After excluding permanent and seasonal water bodies from 

the flooding/inundated pixels, the remaining pixels are reed wetland and paddy rice.  

2.2.4.3 The asynchronous flooding/inundation stages of paddy rice and reed wetland 

from MODIS and Landsat 8 OLI 

The flooding signal of paddy rice can be detected in DOY 143 (5/23/2013) and 

DOY 159 (6/8/2013), but reed wetland was only flooded in DOY 143 (Figure 2.5). The 

asynchronous flooding/inundation stages of paddy rice and reed wetland can be 

detected from both MODIS and Landsat 8 OLI data and is consistent in the points used 

for validation. Reed wetland is a form of natural vegetation and grows when the 

temperature is suitable. According to the LSTnight data in the Panjin Plain, the 

temperature-defined growing season begins around April 15 (DOY 105). In DOY 159, 

the reed wetland canopy is closed while the paddy rice canopy is still open with a  

mixture of rice plants and water because the temperature-defined plant growing season 

for reed wetland starts about one month before paddy rice. We assumed those pixels 

flooded in DOY 143 but not flooded in DOY 159 were reed wetlands since the flooding 

signal of reed wetland lasts to the end of May and disappears before the beginning of 

June. Flooding pixels in DOY 159 were identified as paddy rice fields (Figure 2.5).  
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Figure 2.5. The seasonal dynamics of NDVI, EVI, and LSWI from both MODIS 

and Landsat 8 OLI images at a paddy rice site and a reed wetland site, which were 

also used in Figure 4. MODIS vegetation indices were gap-filled values while 

Landsat 8 OLI vegetation indices only included good observations used in this 

study. Black rectangles indicated the flooding periods from Landsat vegetation 

indices.  

2.2.4.4 Implementation of phenology-based paddy rice mapping algorithm 

To implement the Landsat 8 OLI paddy rice detection algorithm at the image 

level, we developed a procedure (Figure 2.6) by generating various masks for cloud 

(using the QA file, reflectance in the blue band, and LSWI as mentioned before (Section 

2.2.2.1)), snow/ice cover, built-up and barren soil, evergreen vegetation, and permanent 

water bodies (Qin et al. 2015) in an effort to minimize their potential impacts.  

Cloud, snow/ice, built-up and barren soil, evergreen vegetation, and permanent 

water bodies were excluded from identification of the flooding period. Permanent water 

bodies were identified based on the frequency of flooding. We assumed a pixel to be 

permanent water body if it was identified as water with a frequency ≥ 0.80. After 

applying these masks, the remainder were seasonally flooded pixels that included reed 

wetland and paddy rice. Paddy rice and reed wetland were then mapped according to 

their asynchronous flooding/inundation stages.   
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Figure 2.6. A schematic diagram illustrating the implementation of the algorithm 

for mapping of paddy rice in the Panjin Plain from multi-temporal Landsat 8 OLI 

data and MODIS data.  

 

2.2.5 Accuracy assessment 

Our previous study has shown that integrating the field photo library and Google 

Earth is reliable for generating Regions of Interest (ROIs) for land cover classification 

(Dong et al. 2012a; Dong et al. 2012b). We combined the geo-referenced field photos 

collected in the field survey and high-resolution images from Google Earth to generate 

ROIs, following the procedure reported in a previous study (Dong et al. 2014). The 

image provider in the study area is Digital Globe. The images we used are mostly from 

April to July 2013. If there is no high resolution images during this period, we went 

back or forth for one year. Since our goal is to map paddy rice and the small number of 

other land cover type sites, we divided all the filed survey sites into two categories: 

paddy rice and others (including reed wetland, corn, soybean, water body etc.) to 
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generate ROIs. A total of 141 ROIs (11, 044 pixels) were generated for product 

validation. Using the Landsat 8 OLI-derived paddy rice map and ROI data, we 

calculated the confusion matrices for paddy rice and other land cover types in an effort 

to obtain ROI-based validation.  

2.2.6 Comparison with other paddy rice datasets 

The paddy rice area was summarized by county (city) from the Landsat 8 OLI-

derived paddy rice map and NLCD-2010 dataset (hereafter referred to as RiceLandsat and 

RiceNLCD). The comparison between RiceLandsat and RiceNLCD was conducted at the 

county level. The comparison between RiceLandsat and the statistical data was conducted 

for Panjin City as city is the smallest unit of the statistical data.  

The RiceLandsat map is a binary (0 or 1) map with a spatial resolution of 30 m×30 

m and an area of 900 m2 for each pixel. We counted the number of pixels with the value 

of 1 (indicating the existence of paddy rice) in the RiceLandsat map and then calculated 

the total area of rice by multiplying the total number of rice pixels with the area of a 

Landsat image pixel (900 m2) within the area of a 1-km grid cell. Note that the grid cell 

in the RiceNLCD product has a spatial resolution of 1km ×1km and an area of 1 km2, so 

the paddy rice area of an individual grid cell was calculated using the equation: 

percentage fraction×0.01 km2. The sum of paddy rice area in each 1-km grid cell is the 

total area of paddy rice in the RiceNLCD product.  

2.3 Results 

2.3.1 Spectral signature of major land cover types during and after paddy rice flooding 

stage 

Figure 2.7 b1 shows the distribution of NDVI and the difference between LSWI 
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and NDVI (LSWI-NDVI) from Landsat 8 OLI data in DOY 159, when paddy rice was 

still in its flooding stage but reed wetland was in its leaf stage. The LSWI-NDVI values 

for paddy rice and water are larger than 0, which means they are flooded. Other land 

cover types including reed wetland, forest, and shrub, don’t show this flooding feature. 

The distribution of EVI and LSWI-EVI (Figure 2.7 c1) shows a similar pattern with 

NDVI and LSWI-NDVI (Figure 2.7 b1). The distribution of LSWI and LSWI-NDVI or 

LSWI-EVI have similar patterns with a clear flooding signal for paddy rice (Figure 2.7 

d1, e1). However, the distribution of vegetation indices (NDVI, EVI, and LSWI) and 

the difference in vegetation indices (LSWI-NDVI, LSWI-EVI) in an image within the 

tillering stage (closed canopy) (DOY 207, 7/26/2013) don’t have a similar pattern to 

DOY 159; paddy rice, reed wetland are mixed together (Figure 2.7 below panels). It is  

 

Figure 2.7. The 2-D scatter plots of vegetation indices and the difference between 

two vegetation indices from the Landsat 8 OLI data during the paddy rice flooding 

period (upper panels)and the tillering period (below panels). The color density 

represents the number of pixels. (a) Landsat images are false composite displayed 

with red (SWIR), green (NIR) and blue (red), (b) NDVI versus LSWI-NDVI, (c) 

EVI versus LSWI-EVI, (d) LSWI versus LSWI-NDVI, and (e) LSWI versus 

LSWI-EVI. 

difficult to use images in DOY 207 to distinguish paddy rice and reed wetland since 
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both of them have high NDVI and EVI values and are without flooding signals on that 

date. 

 

2.3.2 Paddy rice map of the Panjin Plain from Landsat 8 OLI data 

Figure 2.8 shows the spatial distribution of paddy rice in the Panjin Plain from 

Landsat 8 OLI data. Paddy rice fields are mainly distributed in the three counties of 

Panjin City. No large paddy rice field appears outside of the four counties included in 

the study area except a relatively large one to the east of Dawa County. Paddy rice areas 

are mostly located along the two main streams of the Liaohe River. Some paddy rice 

fields are located around the Shuangtaizi River, which also runs through large reed 

wetland areas.  
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Figure 2.8. The resultant paddy rice map of the Panjin Plain derived from the 

Landsat 8 OLI data in 2013 at 30-m spatial resolution. Field survey sites were 

included for reference. 

 

2.3.3 Validation of the paddy rice map derived from Landsat 8 OLI data  

The classification map of paddy rice was compared with the ROIs generated 

based on the ground-truth data and high resolution images in Google Earth. The results 

indicate a very high agreement between the classification map and ground-based data 

for paddy rice. The overall accuracy and Kappa coefficient are, respectively, 95% and 

0.90 for the ROIs based validation (Table 2.3). The producer’s and user’s accuracy for 
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paddy rice are 93% and 91%, respectively. 91 reed wetland pixels and 221 others pixels 

were classified as paddy rice. Although the map of reed wetland is not good according 

to the field survey data, it is not mixed with paddy rice (Figure 2.8). The low accuracy 

of the reed wetland is because some reed wetlands were never flooded during the whole 

year or the flooding signal was not captured by the Landsat images due to the 16-day 

revisit period and cloud and cloud shadow effect. The commission error might be 

because the irrigation or the flooding event in other land cover types during the paddy 

rice flooding/transplanting period. The omission error might be because the bad 

observation affected by clouds and cloud shadows and the mixed pixels of rice paddy 

fields and non-rice paddy fields (roads, irrigation channels, etc.) 

Table 2.3. The confusion matrix between the RiceLandsat in the Panjin Plain and 

ROIs derived from geo-reference field photos in the field survey and high 

resolution images in Google Earth. 

  

Class 

Ground truth (GT) 

samples (pixels) 
      

  Paddy rice Others 
Total classified 

pixels 
User Acc. (%) 

Commission 

errors (%) 

Classification 

Paddy rice 3322 312 3634 91 9 

Others 263 7147 7410 96 4 

Total GT pixels 3585 7459 11044 
  

Pro.Acc. (%) 93 96 
   

Omission errors 

(%) 
7 5       

2.4 Discussion 

2.4.1 Advantages of the pixel- and phenology-based algorithm 

The pixel-and phenology-based algorithm focuses on the specific phenological 

features of paddy rice and reed wetland in individual pixels and therefore is not 

dependent on other pixels’ spectral features within the same image. The spectral 
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signature of images after the flooding stage of paddy rice shows no big difference 

between different land cover types (Figure 2.7 below panels). This indicates that the 

image-based clustering method might have some bias if images from canopy closed 

periods are used. The pixel-and phenology-based algorithm works well using MODIS 

data (Xiao et al. 2006; Xiao et al. 2005; Zhang et al. 2015; Zhang et al. 2009). The 

extended algorithm for Landsat 8 OLI used in this study, through analyzing the different 

timing of flooding stages of paddy rice and wetland works well for mapping paddy rice 

in rice-wetland coexistent areas in the Panjin Plain China  and probably in the same 

latitude with similar climate. The high producer’s and user’s accuracy indicate the high 

accuracy of the Landsat 8 OLI-derived paddy rice map at 30 m resolution. However, the 

phenology of paddy rice and wetland should be studied to identify the difference of 

flooding stages before utilizing this algorithm in other locations with different climate 

system.  

2.4.2 Comparison of Landsat 8 OLI-derived rice map with other products 

The spatial pattern of paddy rice from RiceLandsat (Figure 2.9a) is very similar to 

that of the NLCD-2010 reference dataset (Figure 2.9b), though the former shows more 

heterogeneity. There are some notable differences between the RiceLandat and RiceNLCD 

map. First, in the western part of the study area, RiceLandsat identifies some scattered 

paddy rice fields while the RiceNLCD product reports almost no rice fields in this region. 

Farmers converted reed wetlands into the paddy rice files seen in the western part of the 

RiceLandsat map to increase their income according to the observation of our field survey. 

Second, paddy rice fields in the Panjin urban area are smaller in the RiceLandsat map than 

in the RiceNLCD product. The reason is the rapid urbanization of the city area. We can 
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see that the size of Panjin urban area in the RiceLandsat map was larger than in the 

RiceNLCD map. According to the statistical yearbook in Liaoning province from 2010 to 

2013, the built-up area in Panjin City increased from 58.9 km2 to 69.6 km2. The spatial 

pattern of the differences between Landsat 8 RiceLandsat and RiceNLCD also shows that the 

paddy rice area in these two products is consistent with each other (Figure 2.9c). 

Figure 2.9. Paddy rice maps derived from (a) the RiceLandsat and (b) the RiceNLCD at 

the 1-km spatial resolution (c) the comparison between the RiceLandsat and the 

RiceNLCD. 

 

The total area of paddy rice fields in the RiceLandsat map and RiceNLCD product is 

2,517 km2 and 3,309 km2, respectively. We calculated the paddy rice area in the four 

counties of the study area from the RiceLandsat map and RiceNLCD product (Figure 2.10a). 

RiceNLCD has more paddy rice area than RiceLandsat in all counties with the largest 

difference in Dawa County. The frequency distribution of the differences between 

RiceLandsat and RiceNLCD shows that more than 50% of pixels have the same percentage 

fraction of paddy rice area in the 1 km × 1 km pixel (Figure 2.10b). 80% of pixels are 

located in the range of ±20%, which means the percentage fraction of paddy rice in 

most pixels from RiceLandsat and RiceNLCD agreed with each other. More negative than 
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positive difference percentage values also indicates that the estimated paddy rice area in 

RiceNLCD is greater than that of RiceLandsat.  The visualization and digitalization process 

may introduce some error since producers might have different criteria. 

Figure 2.10. The quantitative comparison between paddy rice maps derived from 

the RiceLandsat and the RiceNLCD at (a) county level and (b) pixel level.  

The paddy rice area in Panjin City in the RiceLandsat map was higher than the 

statistical data (1,373 km2 versus 1,076 km2). The uncertainty of statistical data 

(artificial error or omission) between the RiceLandsat map and the statistical data might 

contribute to the difference. Since the statistical yearbook in Liaoning province in 2014 

was the from the sample survey, it might not be able to represent the whole area 

condition.   

Another study showed that paddy rice area in Panjin City is 1,832 km2 in 2010 

using MODIS data (Zhang et al. 2015). It is higher than both the statistical data and our 

results. However, the different observation time might explain the difference. Another 

possible reason might be the natural wetlands used in this study was not very accurate 

and some of the natural wetlands were misclassified as paddy rice.  

We also compared the paddy rice map derived from the pixel- and phenology-
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based algorithm with paddy rice maps derived from other two conventional 

classification methods (the image-based clustering methods), ISODATA and Support 

Vector Machine (SVM), using the image in DOY 159 (paddy rice flooding period, 

Figure S2.1). The paddy rice map from the ISODATA showed more fragmented paddy 

rice area (Figure S2.2) than our results. The overall accuracy and Kappa coefficient are 

84%, and 0.64, respectively. Both the producer’s and user’s accuracy are 76% (Table 

S2.1). The overall accuracy and Kappa coefficient for SVM method are 94% and 0.87, 

very close to our results. However, a big area of water body in the northern part is 

misclassified as paddy rice (Figure S2.3).  The producer’s accuracy is even higher than 

ours (96% vs. 93%) (Table S2.2). That’s because no sample sites were located in the 

misclassified area. The pixel- and phenology-based paddy rice map showed higher 

accuracy than the ISODATA method and doesn’t need the training samples, yet the 

SVM needs extensive field samples to build the prior-knowledge.  

2.4.3 Sources of uncertainty and limitation 

Malfunctions of the satellite and operation of sensors may reduce the availability 

of data. In this study, we missed three images for the study area not scanned by the 

Landsat 8 OLI sensor. The data quality is also constrained by cloud and cloud shadow. 

If there is no available image during the flooding period of paddy rice because of the 

acquisition schedule or cloud, it is hard to map paddy rice using any algorithm based on 

optical remote sensing. The irrigation or flooding event in other land cover types during 

the paddy rice flooding/transplanting period might affect the classification results. The 

mixed pixels of rice paddy fields and non-rice paddy fields (roads, irrigation channel, 

etc.) might be missed if the flooding signal is not captured. The combination of the 
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Landsat 7 (ETM+) and Landsat 8 (OLI) imagery could potentially provide data at eight-

day intervals which may increase the data availability for phenology-based paddy rice 

mapping (Qin et al. 2015). However, the stripe present in Landsat 7 images could spoil 

the results even part of it is correctable. MODIS LST products were used to choose the 

images during the flooding period for identifying paddy rice areas. However, there is no 

LST product from the Landsat series. The temperature-defined plant growing season 

depicted well the growing stages of paddy rice in temperate zones. However, the 

relationship between LST dynamics and the paddy rice growing season at the pixel 

level might be different at the regional level. 

2.4.4 Future work and challenges   

MODIS data (MOD09A1) have the advantage of higher temporal resolution (8 

days) than Landsat 8 (16 days), which increases its ability to capture the flooding 

period. However, the lower spatial resolution of MODIS data (500 m versus Landsat 8’s 

30 m) presents the problem of mixed pixels in fragmented areas where paddy rice plots 

are smaller than 500 m. Combining of MODIS data and Landsat 8 data is a potential 

solution to improve the accuracy and spatial resolution of paddy rice mapping (Wang et 

al. 2015). The phenology-based paddy rice mapping algorithm, developed in the 

temperate region with complex landscapes of paddy rice and natural wetland, has the 

potential to be applied in areas with similar climate system and ecosystems, which can 

provide more accurate paddy rice map for food production, water resource 

management, and methane emission estimation. There is still a need to develop a more 

accurate Landsat and/or MODIS based natural wetland mask in the future to further 

improve the accuracy of the paddy rice mapping. 
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 Cloud and cloud shadow with the flooding feature of a high water-related index 

(LSWI) are identified as flooding pixels and may affect paddy rice mapping. Improved 

cloud and cloud shadow algorithms can be used to reduce their residual contamination. 

The combination of optical and radar sensors is a way to take advantage of both optical 

and radar remote sensing in order to map paddy rice (Yang et al. 2008; Zhang et al. 

2009).  

The selection of images in the flooding period was based on the crop calendar, 

local weather data, and LST data from MODIS. Local crop calendar and weather data 

are difficult to collect and might not be enough to reflect the regional conditions. LST 

data from satellites can be used to support image selection in large area paddy rice 

mapping. The relationship between LST dynamics and the paddy rice growing season 

needs to be investigated in different climate zones. Extreme weather events, including 

delays of temperature in spring and flooding events during the paddy rice 

flooding/transplanting period, raise several more challenges to paddy rice mapping.    

2.5 Conclusion 

This study aimed to use MODIS and Landsat 8 imagery to map paddy rice in the 

Panjin Plain, Northeastern China, which represents our continual efforts to provide 

more accurate and updated paddy rice maps by studying unique spectral features of the 

rice crop system. We generated the paddy rice map of the Panjin Plain at a 30 m spatial 

resolution based on the pixel- and phenology-based algorithm in a region with a 

coexistent paddy rice and wetland landscape. The validation tests indicated the high 

accuracy of our paddy rice map. Comparison of this map with other paddy rice products 

yielded high levels of consistency and revealed that this map provided more detailed 
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information about the distribution of paddy rice areas because of its higher spatial 

resolution. The resultant paddy rice map might be affected by the data availability and 

quality (cloud and cloud shadow) during the critical plant growing stage 

(flooding/inundation). With the improvement of cloud and cloud shadow detection and 

LST retrieval from Landsat 8, it has great potential to provide reliable, sustainable data 

for paddy rice mapping in the future. The combination of Landsat 7, 8, and MODIS 

imagery can open up many more possibilities for the mapping of paddy rice in complex 

landscapes. 

Supplementary materials 

1. The paddy rice mapping using ISODATA and Support Vector Machine (SVM) 

To compare our paddy rice map with the results from the conventional 

unsupervised and supervised classification methods, we included ISODATA (an 

unsupervised classification) and SVM (a supervised classification) to map paddy rice in 

the Panjin Plain (Chang and Lin 2001; Tou and Gonzalez 1974). ISODATA relies on 

the spectral signature of images and doesn’t need the prior-knowledge (Xie et al. 2008).  

The post-classification processes (e.g combine classes) are usually needed for 

producing reasonable results. SVM is derived from statistical learning theory and 

applied through machine learning (Burges 1998; Mountrakis et al. 2011). The training 

samples are needed to support the SVM classification. 

The Landsat OLI image in DOY 159 (6/8/2013) was used for ISODATA and 

SVM classification when paddy rice was still in flooding period and reed wetland was 

not. The image is clear with little could cover (Fig. S2.1). We set the number of classes 

as 15 for the ISODATA and then combined different classes into paddy rice, reed 
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wetland, and others in the pose-classification process (Fig. S2.2) based on the high-

resolution images from Google Earth and field photos. For the SVM classifier, we used 

the same ROIs generated in the accuracy assessment (section 2.2.5) to support the 

classification (Fig. S2.3). In order to validate the results and give quantitative 

comparison of the different classification methods, we computed the confusion matrix 

for the resultant paddy rice maps from ISODATA (Table S2.1) and SVM classification 

(Table S2.2) using the same ROIs data as in the validation of the pixel- and phenology 

based paddy rice map. 
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Figure S2.1 False composite displayed Landsat OLI image in DOY 159 (6/8/2013) 

with red (SWIR), green (NIR) and blue (red). 
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Figure S2.2 The resultant paddy rice map of the Panjin Plain derived from 

Landsat OLI data in DOY 159 (the paddy rice flooding period) using ISODATA.  
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Table S2.1. The confusion matrix between the paddy rice map derived using 

ISODATA classification and ROSs from geo-reference field photos in the field 

survey and high resolution images in Google Earth. 

  

Class 

Ground truth (GT) 

samples (pixels) 
      

  Paddy rice Others 
Total classified 

pixels 
User Acc. (%) 

Commission 

errors (%) 

Classification 

Paddy rice 2727 866 3593 76 24 

Others 858 6593 7451 88 12 

Total GT pixels 3585 7459 11044 
  

Pro.Acc. (%) 76 88 
   

Omission errors 

(%) 
24 12       

 

Overall accuracy 84% 

Kappa coefficient  0.64 
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Figure S2.3 The resultant paddy rice map of the Panjin Plain derived from 

Landsat OLI data in DOY 159 (the paddy rice flooding period) using Support 

Vector Machine (SVM).  
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Table S2.2. The confusion matrix between the paddy rice map derived using 

ISODATA classification and ROSs from geo-reference field photos in the field 

survey and high resolution images in Google Earth. 

 

  

Class 

Ground truth (GT) 

samples (pixels) 
      

  Paddy rice Others 
Total classified 

pixels 
User Acc. (%) 

Commission 

errors (%) 

Classification 

Paddy rice 3430 491 3921 87 13 

Others 155 6968 7123 98 2 

Total GT pixels 3585 7459 11044 
  

Pro.Acc. (%) 96 93 
   

Omission errors 

(%) 
4 7       

 

Overall accuracy 94% 

Kappa coefficient  0.87 

 

  



43 

Chapter 3: Examining the short-term impacts of diverse management 

practices on plant phenology and carbon fluxes of Old World 

bluestems pasture 

Abstract  

Burning, grazing, and baling (hay harvesting) are common management 

practices in grassland. To develop and adopt sustainable management practices, it is 

essential to better understand and quantify the impacts of management practices on 

plant phenology and carbon fluxes. In this study, we combined multiple data sources, 

including in-situ PhenoCam digital images, eddy covariance data, and satellite data 

(Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS)) to examine 

the impacts of burning, baling, and grazing on canopy dynamics, plant phenology, and 

carbon fluxes in a pasture in El Reno, Oklahoma in 2014. Landsat images were used to 

assess the baling area and the trajectory of vegetation recovery. MODIS vegetation 

indices (VIs) were used in the Vegetation Photosynthesis Model (VPM) to estimate 

gross primary production (GPPVPM) at a MODIS pixel for the flux tower (baled) site. 

For comparison between baled and unbaled conditions, we used MODIS VIs for a 

neighbor MODIS pixel (unbaled) and ran VPM. Daily PhenoCam images and green 

chromatic coordinate (GCC) tracked canopy dynamics and plant phenology well. The 

grassland greened up immediately after burning in April. GCC values showed two 

peaks with the similar magnitude because of quick recovery of grassland after baling. 

Satellite-derived VIs and GPPVPM showed that the pasture recovered in one month after 

baling. The GPPVPM matched well (R2 = 0.89) with the eddy covariance-derived GPP 

(GPPEC). Grazing in the late growing season did not influence plant phenology (VIs and 
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GCC) and carbon uptake (GPP) as plants were in the late growing stage. Neither did it 

affect GPP differently in those two conditions because of even grazing intensity. The 

reduction in GPP after baling was compensated by higher GPP after large rain events in 

late July and early September, causing little seasonal differences in GPP (-0.002 g C m-2 

day-1) between the baled and unbaled conditions. Interactions of different management 

practices with climate make it complicated to understand the impacts of different 

management practices on carbon dynamics and plant phenology. Thus, it is necessary to 

further investigate the responses of pastures to different management practices under 

different climate regimes at multiple temporal and spatial scales. 

3.1 Introduction 

Grassland (both native prairie and planted/introduced pasture) is a major forage 

feed for millions of beef cattle in the Great Plains of the United States. Management 

practices in pasture are diverse (e.g., burning, grazing, baling, fertilizing), complex 

(e.g., mixture of management practices such as grazing and baling, different duration 

and timing), and can vary over space and time. Prescribed burning is a recommended 

management practice to recycle plant nutrients, remove senesced vegetation, and to 

control weeds and inhibit woody species encroachment (Brockway et al. 2002; Reinhart 

et al. 2016; Twidwell et al. 2013; Valkó et al. 2014). Grazing and baling remove 

aboveground biomass and reduce canopy coverage and vegetation photosynthesis. The 

effects of grazing on carbon fluxes (e.g., gross primary production, GPP) vary under 

different ecological conditions and grazing intensity (Rogiers et al. 2005). Field 

experiments that mechanically clip vegetation to mimic hay or biofuel feedstock 

harvest, showed that grassland ecosystems may not be a sink of carbon depending on 
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the amount of biomass removal (Luo et al. 2009; Niu et al. 2013; Wagle and Kakani 

2014). These management practices can have multiple impacts on vegetation canopy, 

phenology, and carbon dynamics (Campioli et al. 2015; Wilson et al. 2013). Thus, it is a 

challenging task to track those management practices and assess their impacts on 

pasture as well as beef cattle production.  

A number of tools are available to study the impacts of management practices 

on vegetation phenology and carbon fluxes of grasslands, including in-situ digital 

cameras (PhenoCam), eddy covariance (EC) measurements, and satellite remote 

sensing. PhenoCam takes multiple digital photography in a day and provides “near 

surface” observations of plant phenology with high temporal resolution (Migliavacca et 

al. 2011; Richardson et al. 2009). Satellite remote sensing acquires consistent and 

periodic observations of the land surface to track vegetation phenology (Zhang et al., 

2003). Vegetation indices (VIs) derived from satellite images are also used in 

production efficiency models to estimate gross and net primary production of vegetation 

(Potter et al. 1993; Running et al. 2004; Sims et al. 2008; Wu et al. 2010; Xiao et al. 

2004b; Xiao et al. 2004c; Yuan et al. 2007). Because of the higher temporal resolution 

(8-day), the Moderate Resolution Imaging Spectroradiometer (MODIS) is used more 

often in GPP modeling than Landsat which has a higher spatial resolution (30 m) but 

lower temporal resolution (16-day). EC observations reflect effects of land use and 

management on the exchange of carbon dioxide, water vapor, and energy fluxes (Chi et 

al. 2016; Fischer et al. 2012; Owensby et al. 2006; Suyker et al. 2003). As the footprint 

of eddy flux tower is often comparable with the spatial resolution of the MODIS surface 

reflectance products, EC-derived GPP (GPPEC) are widely used to evaluate modeled 
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GPP using MODIS data (Dong et al. 2015; Jin et al. 2013a; Sims et al. 2008; Wagle et 

al. 2014; Wu et al. 2010; Yuan et al. 2007).  

Although field experiments help to examine the effects of management practices 

on carbon dynamics (Luo et al. 2009; Niu et al. 2013; Wagle and Kakani 2014), the 

influence of management practices on canopy scale carbon dynamics is not well 

understood, necessitating the integration of EC and remote sensing observations to 

study the effects of grazing, baling, or other management practices on canopy and 

carbon dynamics. Ideally, paired towers are needed in both the control and manipulated 

(e.g., unbaled and baled) area for the comparison. However, the high construction cost 

and logistical requirements of EC systems prohibit the utilization of paired towers in 

most cases (Chi et al. 2016; Fischer et al. 2012). Alternatively, modeling approaches 

can be used. Remote sensing-based production efficiency models estimate GPP as the 

product of the absorbed photosynthetically active radiation (APAR) and light use 

efficiency (LUE, Ɛg) (Potter et al. 1993; Running et al. 2004; Xiao et al. 2004a; Xiao et 

al. 2004b; Yuan et al. 2007). Most of these models use VIs and meteorological 

parameters as inputs. In the case of a single eddy flux tower site with disturbances or 

management practices, VIs of the nearby undisturbed area of similar vegetation cover, 

can be combined with the meteorological parameters of the flux tower site to simulate 

GPP for the undisturbed condition. By comparing the two scenarios (e.g., baled and 

unbaled), we can show the effects of management practices or disturbances on GPP. 

The objective of this study is to examine the impacts of burning, baling, and 

grazing on canopy and carbon fluxes in a pasture through integrating PhenoCam 

images, satellite remote sensing, and eddy covariance data. In addition, the impacts of 
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management practices (e.g., baling and grazing) on GPP were investigated using the 

satellite-based vegetation photosynthesis model (VPM) for disturbed and undisturbed 

conditions. This case study, using multiple observation techniques to detect the impacts 

of diverse management practices, can serve as an example of utilizing different data 

sources to better understand the impacts of management practices on vegetation 

phenology and carbon fluxes.  

3.2 Materials and methods 

3.2.1. Study site description   

The study site (Fig. 3.1) is located at the United States Department of 

Agriculture—Agricultural Research Service (USDA-ARS) Grazinglands Research 

Laboratory (GRL) in El Reno, Oklahoma (35.54679oN, 98.04529oW, 435 m above sea 

level). The field (red rectangle in Fig. 3.1) is an introduced warm-season, pasture which  

Figure 3.1. Location of flux tower site and overlapping with MODIS pixels. 

Location of the flux tower site is marked as red point and labeled. Red rectangle is 

the boundary of the study field. Green diamonds are boundaries of MODIS pixels.  

 

was planted with old world bluestem (Bothriochloa caucasica C. E. Hubb.) (Samuel 

and Forbes 1998). The pasture’s soil is classified as Norge silt loam (Fine-silty, mixed, 
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active, thermic Udic Paleustolls) (Staff 1999) with a depth greater than 1 m and high 

water holding capacity (Fischer et al. 2012). 

Several management activities (e.g., burning, fertilizer and herbicide 

applications, baling for hay, and cattle grazing) were implemented at the site in the 

same year (2014). The field was burned on April 9th (DOY 99) and sprayed on May 1st 

with herbicide (2.35 l/ha of GRAZON) and followed immediately by fertilizer (44.8 kg 

N/ha 46-0-0) application. In late July, part of the eastern half of the field close to eddy 

flux tower was cut for hay and baled on July 23rd (DOY 204, the first baling). The 

remaining part of the eastern half was cut for hay in early August and baled on August 

15th (DOY 227, the second baling). Twenty five cows with an average weight of 520 kg 

continuously grazed the entire field from September 25th (DOY 268) until end of the 

calendar year.  

3.2.2. Eddy flux tower site and EC data processing 

The EC system was deployed at the beginning of May 2014 to measure fluxes of 

CO2 and H2O using a LI-7500 A (LI-COR Biosciences Inc., NE, USA) and CSAT3 

sonic anemometer (Campbell Scientific Inc., UT, USA). PhenoCam (StarDot 

Technologies, CA, USA) images, and other meteorological variables such as surface 

energy balance components, air temperature, relative humidity, soil temperature, soil 

water content at 25 cm (SWC), and solar radiation were also included as part of an 

integrated Grassland Observation System in the west of GRL (iGOS W). The Oklahoma 

Mesonet El Reno site is 800 m to the east of iGOS W which provides quality-controlled 

measurements of meteorological and land-surface variables such as precipitation, 

temperature, and soil moisture at intervals spanning 5-30 minutes depending on the 
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variables (McPherson et al. 2007) (http://www.Mesonet.org/). Precipitation, 

photosynthetically active radiation (PAR), air temperature, and SWC at 25 cm are 

presented in Fig. 3.2. 

 

Figure 3.2. Seasonal dynamics of photosynthetically active radiation (PAR), 

precipitation (Precip), air temperature (Tair), and soil water content (SWC) at 25 

cm observed at the flux tower site/nearby Mesonet site. Each data point represents 

daily average.  

 

The raw 10 Hz EC data were processed using EddyPro software version 5.1.1 

(LI-COR Biosciences Inc., NE, USA) to produce 30-min fluxes of CO2, H2O, and 

energy. The EddyPro output results were further screened based on quality 

assurance/quality control (QA/QC) flags [i.e., fluxes with quality flags of ‘2 (bad 

quality)’ were rejected]. In addition, fluxes beyond the reliable range of fluxes [i.e., net 

ecosystem CO2 exchange, NEE: beyond ±50 µmol m-2 s-1 (Zeeman et al. 2010)] were 

also excluded. The EddyPro also provides flux footprint estimations which can show 
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the contribution of flux measurements from different directions and distances for 

different periods (before and after baling).  

Gaps in the flux data were filled using a moving lookup table approach which 

considers both the covariance of fluxes with meteorological variables and temporal 

auto-correlation of fluxes (Reichstein et al. 2005). The NEE was partitioned into GPP 

and ecosystem respiration (ER) based on the temperature sensitivity of ER (Lloyd and 

Taylor 1994). Both gap filling and partitioning were conducted using the online R 

package “REddyProc” (https://www.bgc-

jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage), developed at the Max 

Planck Institute for Biogeochemistry, Jena, Germany (Moffat et al. 2007; Reichstein et 

al. 2005). Daily sums of NEE, ER, and GPP were presented to show the carbon 

dynamics for the growing season in 2014 (May-October). 

3.2.3. PhenoCam images and greenness index 

Canopy images were collected with a StarDot NetCam SC camera installed in a 

weatherproof enclosure at a height of 3.0 m above the ground. The camera was pointed 

south and set at an angle of about 20o below horizontal. The camera provides regular 

RGB images for the same scene as the camera position was fixed. Various greenness 

indices can be derived from the PhenoCam images to detect the plant phenology 

(Richardson et al. 2007). For this study, the green chromatic coordinate (GCC) value 

was used to indicate the vegetation status for one specific “Region of Interest” (ROI) 

located in the baling affected area (black rectangle showed in Fig. 3.3e) using the 

following equation (Eq. 1): 

𝐺𝐶𝐶 =
𝐺𝐷𝑁

𝑅𝐷𝑁+𝐺𝐷𝑁+𝐵𝐷𝑁
      (1) 

https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage
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where RDN, GDN, BDN are RGB digital numbers (DN). The time series of GCC values 

were calculated using the PhenoCam toolkit from PhenoCam network 

(https://phenocam.sr.unh.edu/webcam/tools/). 

3.2.4. MODIS images and VIs  

The 8-day composite MODIS surface reflectance product (MOD09A1) 

(Vermote and Vermeulen 1999) was used to investigate the seasonal dynamics of the 

VIs for the flux tower located pixel (iGOS W) and for its neighbor pixel (iGOS WN) 

(Fig. 3.1). The majority of both iGOS W and iGOS WN MODIS pixels are old world 

bluestem pasture. Both pixels were burned and received applications of fertilizer and 

herbicide. The first baling only affected iGOS W and the second baling did not affect 

both pixels which was to the south of the iGOS W pixel. MOD09A1 has reflectance 

values of the seven spectral bands: blue (459-479 nm), green (545-565 nm), red (620-

670 nm), two near infrared (NIR1: 841-876 nm; NIR2: 1230-1250 nm), and two 

shortwave infrared (SWIR1: 1628-1652 nm, SWIR2: 2105-2155 nm) at a 500-m spatial 

resolution. It also includes quality control flags for consideration of various image 

artifacts (e.g., clouds and cloud shadow). All data that did not pass the quality control 

were excluded in further analysis based on the following criteria: cloud state flag 

indicates cloudy or mixed, or cloud shadow existence, or aerosol quantity flag shows 

high, or cirrus detected flag is average or high. 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), and Land Surface Water Index (LSWI) were calculated from MOD09A1 using 

surface reflectance (ρ) from blue ( blue ), red ( red ), NIR1 ( nir , 841-876 nm), and 

SWIR1 ( swir , 1628-1652 nm) bands (Eq. 2-4). The coefficients C1, C2, and L are 6.0, 

https://phenocam.sr.unh.edu/webcam/tools/
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7.5, and 1.0, respectively, and G is a gain factor set to 2.5 in EVI calculation (Huete 

2002). EVI and LSWI were also used in VPM to simulate GPP. Bad observations of 

EVI and LSWI values were linearly interpolated using good, nearby observations.  

 𝑁𝐷𝑉𝐼 =  
𝜌𝑛𝑖𝑟− 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+ 𝜌𝑟𝑒𝑑
                                                                       (2) 

𝐸𝑉𝐼 =  𝐺 ×
𝜌𝑛𝑖𝑟− 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + 𝐶1× 𝜌𝑟𝑒𝑑   − 𝐶2 × 𝜌𝑏𝑙𝑢𝑒 + 𝐿
                                      (3) 

𝐿𝑆𝑊𝐼 =  
𝜌𝑛𝑖𝑟− 𝜌𝑠𝑤𝑖𝑟

𝜌𝑛𝑖𝑟+ 𝜌𝑠𝑤𝑖𝑟
                                                                       (4) 

3.2.5. Landsat images and VIs   

Landsat has higher spatial resolution than MODIS (30 m vs. ~500 m). The baled 

area was smaller than one MODIS pixel which could introduce error if the baling areas 

are not examined using higher spatial resolution images. Landsat surface reflectance 

product (Landsat 7 ETM+ and Landsat 8) covering the study area were downloaded 

from the USGS EarthExplorer (http://earthexplorer.usgs.gov/) and the images for the 

study area were extracted. Landsat 8 does not have the same data gap problem as 

Landsat 7 ETM+ and keeps the same spatial resolution (30 m) (Roy et al. 2014). 

Fortunately, our study area is located in the center of the image tiles and was not 

affected by the gaps in Landsat 7 data. Thus, both Landsat 7 ETM+ and Landsat 8 

images were included in the analysis. The data quality control approach is similar to use 

of Landsat imagery in a previous study to exclude the effect of clouds and cirrus 

observations (Zhou et al. 2016). Shortwave infrared (SWIR-2), near infrared (NIR), and 

red bands were used to construct false color composite images for use in reducing 

atmospheric effects and highlight vegetation. EVI and LSWI values for iGOS W and 

http://earthexplorer.usgs.gov/
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iGOS WN were calculated using Landsat pixels in the corresponding MODIS pixels. 

The EVI and LSWI differences between iGOS W and iGOS WN derived from MODIS 

and Landsat for the same period were used to investigate the comparability of these two 

satellite observations.   

3.2.6. Vegetation Photosynthesis Model 

The Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004b; Xiao et al. 

2004c) estimates GPP as the product of light use efficiency (Ɛg) and absorbed 

photosynthetically active radiation (APAR) by chlorophyll, 

𝐺𝑃𝑃𝑉𝑃𝑀 = Ɛ𝑔 × 𝐴𝑃𝐴𝑅𝑐ℎ𝑙                   (5)    

𝐴𝑃𝐴𝑅𝑐ℎ𝑙 = 𝑓𝑃𝐴𝑅𝑐ℎ𝑙 × 𝑃𝐴𝑅  (6) 

where  𝑓𝑃𝐴𝑅𝑐ℎ𝑙 is the fraction of PAR absorbed by chlorophyll which is estimated as a 

linear function of EVI where the coefficient 𝑎 is set to be 1.0 (Xiao et al. 2004b). 

𝑓𝑃𝐴𝑅𝑐ℎ𝑙 = 𝑎 × 𝐸𝑉𝐼   (7) 

The Ɛg is derived by down-regulating the theoretical maximum light use 

efficiency (Ɛ0) with scalars of temperature (Tscalar) and water (Wscalar) stresses.  

Ɛ𝑔 = Ɛ0 ×  𝑇𝑠𝑐𝑎𝑙𝑎𝑟 ×  𝑊𝑠𝑐𝑎𝑙𝑎𝑟                                (8) 

More information about the Tscalar and Wscalar can be found in previous studies (Wagle et 

al. 2014; Xiao et al. 2004b; Xiao et al. 2004c). 

The site-specific Ɛ0 is usually determined using a rectangular hyperbola light-

response function (NEE-PAR relationship) at 30-minute intervals during peak growing 

season (Falge et al. 2001). For this study the Ɛ0 is set to be 0.062 mol CO2 mol-1 PPFD 

(PPFD represents photosynthetic photon flux density) which was used for nearby 

tallgrass prairie sites in a previous study (Wagle et al. 2014).  
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We first ran VPM for flux tower located MODIS pixel to determine GPP for 

iGOS W (GPPVPM_W). Then we used the same PAR, air temperature and VIs of the 

nearby MODIS pixel to simulate GPP for iGOS WN (GPPVPM_WN). This substitution 

should introduce minimal error as PAR and air temperature do not vary significantly at 

the scale of one MODIS pixel (~500 m) in flat terrain. GPPVPM_W  was compared with 

the EC derived GPP (GPPEC) to evaluate the performance of VPM. The dynamics of 

GPPVPM_W  and GPPVPM_WN were plotted to visually examine the course of grassland 

recovery after disturbance due to different management practices (e.g., baling). The 

differences in GPP sums between the two MODIS pixels indicate the cumulative 

impacts of disturbances/management practices. 

3.2.7. Statistical analysis 

A simple linear regression model was used to investigate the relationship 

between GPPEC and EVI (one of the major inputs in VPM). GPPEC and GPPVPM_W 

values were compared to assess the validity of the model. The coefficient of 

determination (r2) was used to evaluate the model agreement in both statistical analyses. 

To show the impacts of different management practices, we tabulated GPP for iGOS W 

and iGOS WN for different periods.  
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3.3 Results 

3.3.1. Canopy dynamics and plant phenology in response to management practices as 

observed by PhenoCam, Landsat, and MODIS images 

3.3.1.1 Canopy dynamics and GCC values in response to management practices as 

observed by PhenoCam images 

The real-time images from PhenoCam showed different management practices 

(burning, baling, and grazing) and phenology of the grassland (Fig. 3.3) occurred within 

its field of view. The quick recovery of grasses after baling was also observed in the 

time-series of PhenoCam images (Fig. 3.3d and f). The chronology of management 

practices (the time and period), climate events (rain), and plant phenology is shown in 

Fig. 3.4. The GCC values derived from PhenoCam images showed the daily growth 

dynamics of the vegetation (Fig. 3.5). The green-up, peak growing season, and 

senescence stages were clearly reflected by GCC values. While the range of GCC 

values was small (0.32-0.38), the GCC values showed two peaks at early May and mid-

August with the magnitude of 0.37-0.38, whereas GCC values during senescence were 

around 0.34. As expected, the GCC values decreased after baling. However, grazing in 

the late growing season (September 25th - end of the year) did not affect GCC values. 
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Figure 3.3. PhenoCam images showing management practices and phenology of 

grassland. The black rectangle in panel e shows the region of interest (ROI) used 

to calculated GCC values.  

 

 

Figure 3.4. Management practices, climate events, and plant phenology in the field. 

The plant phenology was delineated through interpreting individual time series 

PhenoCam images.  
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Figure 3.5. Daily GCC values from PhenoCam images.  

 

3.3.1.2. Canopy dynamics and plant phenology in response to management practices as 

observed by Landsat images 

The time-series images from Landsat 8 and Landsat 7 ETM+ clearly showed the 

areas affected by burning and the two baling events (Fig. 3.6b, d, and f). The Landsat 

images showed some heterogeneity within the corresponding MODIS pixels. For 

example, the first baling mostly affected the center of the MODIS pixel for iGOS W 

(around 67% of the pixel affected) (Fig. 3.6d). The second baling affected only the area 

to the south of the MODIS pixel for iGOS W (Fig. 3.6f). From these images, we can see 

that the vegetation phenology of the field was quite different than areas outside since 

the study site is covered by introduced pasture with better vegetation growth than the 

native pasture. The introduced pasture was much greener than the native pasture in July 

(Fig. 3.6c and d) before baling. The area affected by the first baling recovered quickly 
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after one month after cutting (Fig. 3.6d and f), which was also reflected by high GCC 

values in mid-August (Fig. 3.5). The second baling affected area also recovered after 

about one month (Fig. 3.6f and i). The introduced pasture (inside field) entered 

senescence stage much later than the native grassland (outside field) (Fig. 3.6h and i). 

 

Figure 3.6. Landsat images of the study area in different periods. Location of flux 

tower site and boundaries of MODIS pixels are also shown. 

 

3.3.1.3. Plant phenology in response to management practices at iGOS W and iGOS 

WN as observed by MODIS images 

Dynamics of NDVI, EVI, and LSWI derived from MODIS images for iGOS W 

and iGOS WN were synchronous from January to early June and from early October to 

December (Fig. 3.7). The grassland greened up immediately after burning in April and 

entered senescence stage at the end of October. LSWI had the most significant drop 
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among three VIs after burning because of SWIR band embedded (Eq. 4). The lower VIs 

in mid-June in iGOS WN occurred because of disturbance associated with more 

frequent sample collection during an intensive field research campaign (Steiner 2014) 

that was more focused in the western part of the field, where most of MODIS pixel for 

iGOS WN was located (Fig. 3.1). The intensive field research campaign investigated 

multiple aspects of the soil (soil water content and soil greenhouse gas emission) and 

plant systems (canopy reflectance, leaf area index, canopy height, and aboveground 

biomass) through sampling soil and plants. VIs values at both MODIS pixels became 

very similar again at around mid-July. VIs diverged after the first baling in iGOS W on 

July 23rd. After two big large rain events, VIs of both pixels increased, but VIs at iGOS 

W increased more. Grazing in the late growing season did not cause differences in VIs 

between iGOS W and iGOS WN, most likely due to the similar grazing intensity.  

 

Figure 3.7. MODIS vegetation indices (VIs) for the flux tower located pixel (iGOS 

W) and its neighbor pixel (iGOS WN).  
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3.3.1.4. Differences in VIs between iGOS WN and iGOS W derived from MODIS and 

Landsat images 

The EVI and LSWI differences between iGOS WN and iGOS W derived from 

MODIS images varied between -0.1 to 0.1 throughout the growing season (Fig. 3.8). 

The relatively larger differences in EVI and LSWI between two pixels derived from 

Landsat images were observed after the first baling (0.3) and during senescence (-0.1). 

The EVI differences derived from both MODIS and Landsat images showed that EVI in 

iGOS W was higher (by around 0.1) than iGOS WN at the beginning of October, which 

indicates re-growth of more photosynthetically active vegetation after baling. 

 

Figure 3.8. Differences in Enhanced Vegetation Index (EVI) and Land Surface 

Water Index (LSWI) at iGOS WN and iGOS W MODIS pixel derived from 

MODIS and Landsat images. 

 

3.3.2. Carbon fluxes in response to management practices as observed by eddy flux 

tower  

Diurnal patterns of NEE in the pasture across the growing season in 2014 are 

presented in Fig. 3.9. As expected, NEE increased with the increasing photosynthetic 

capacity and NEE rates decreased during the late growing season because of senescence 

of plants. The magnitude of daily NEE reached up to -11.51 g C m-2 day-1. The iGOS W 
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was a carbon sink (i.e., negative NEE values) for most of the growing season until late 

October when it turned to carbon neutral. Baling changed NEE values from negative to 

positive (from carbon sink to carbon source). The magnitudes of diurnal peak NEE 

(monthly average) reached up to -37.33 ± 1.46 µ mol m−2 s−1 in June (leaf area index: 

5.95 and aboveground biomass: 563.44 g/m2) and declined quickly in July (-22.02 ± 

2.68 µ mol m−2 s−1). The diurnal patterns of NEE in May and July were similar. It is 

noteworthy to mention that NEE in September was higher than in August, which 

showing that the pasture was a stronger carbon sink in September than in August. 

 

Figure 3.9. Half-hourly binned diurnal courses of net ecosystem CO2 exchange 

(NEE) from May to October 2014 at the iGOS W site. Negative values of NEE 

indicate net carbon uptake and positive values indicate carbon release by the 

ecosystem. Each data point is a mean value for the specific time step for the entire 

month and bars represent standard errors of the means.  

 

The seasonal pattern of GPP was similar to NEE but with the opposite sign (Fig. 

3.10). The magnitude of daily GPP reached up to 21.47 g C m-2 day-1. ER had small 
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variation during the growing season (approximately 5 g C m-2 day-1) except for June and 

early July when it reached about 12 g C m-2 day-1. A decreasing trend of GPP was 

observed after early June and dropped abruptly in mid-July because of cloudy (also 

indicated by very low PAR in Fig. 3.2) and windy weather (identified from PhenoCam 

images during this period). As expected, GPP decreased more than ER after baling, 

turning the grassland into a net carbon source for approximately 10 days. After that 

period, both GPP and NEE increased rapidly again which might have been triggered by 

re-growth of vegetation and two large rain events (~50 mm/day) at the end of July and 

early September (Fig. 3.2). These two peaks for GPP after baling had similar 

magnitudes (~10 g C m-2 day-1). Grazing in the late growing season did not affect 

carbon dynamics substantially.  

 

Figure 3.10. Daily sums of gross primary production (GPP), ecosystem respiration 

(ER), and net ecosystem CO2 exchange (NEE) from flux tower in the 2014 growing 

season.  
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3.3.3. GPP in response to management practices and disturbance as estimated by VPM 

3.3.3.1. GPP simulation from VPM 

GPPEC was highly correlated with EVI (Fig. 3.11a), showing the capability of 

EVI to track GPP. GPPVPM_W captured the trends of GPPEC very well (r2 = 0.89) 

throughout the growing season (Fig. 3.11b). Three peaks of GPPEC were also tracked by 

GPPVPM_W. GPPEC decreased sharply immediately after baling and it began to increase 

again with increasing greenness in the baled area, which as well captured by GPPVPM. 

This result strengthens the comparison of GPPVPM for baled and unbaled conditions. 

The VPM tended to underestimate GPP in the early stages of flowering (head 

emergence) which was detected from PhenoCam images (Fig. 3.3c and h). For example, 

GPPVPM were smaller than GPPEC values for mid-June and mid-September.  

 

Figure 3.11. (a) Relationship between enhanced vegetation index (EVI) and gross 

primary production (GPPEC). (b) Comparison between gross primary production 

(GPP) from VPM simulation and EC measurement (GPPVPM_W and GPPEC).  
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3.3.3.2 GPP in response to intensive field campaign, baling, and grazing as estimated by 

VPM 

GPPVPM_W and GPPVPM_WN were very similar in May, August, and October (Fig. 

3.12) because of little differences in VIs and the identical meteorological data input into 

the VPM. Event-based GPP statistics are presented in Table 3.1 to reflect impacts of 

intensive field research campaign, baling, and grazing. Before the intensive field 

research campaign in mid-June, GPPVPM_W and GPPVPM_WN were almost identical. The 

intensive field research campaign in iGOS WN caused the lower GPP values than in 

iGOS W (12.633 g C m-2 day-1 vs. 15.962g C m-2 day-1). The GPP difference caused by 

the intensive field research campaign disappeared around mid-July as GPPVPM_W and 

GPPVPM_WN became similar (Fig. 3.12). Baling (July 23rd) decreased GPPVPM_W by 

around 2 g C m-2 day-1 for the following two 8-day periods. GPPVPM_W and GPPVPM_WN 

converged again in early August and remained similar for the rest of the month. 

Following the large rain events in late July and early September (Fig. 3.2) both 

GPPVPM_W and GPPVPM_WN increased, with GPPVPM_W having a higher magnitude 

because of more photosynthetically active vegetation in iGOS W after baling. This 

compensated for the decreased GPP due to baling and resulted in negligible difference 

between GPPVPM_W and GPPVPM_WN (-0.002 g C m-2 day-1) for the period after baling to 

before grazing (July 20th - September 22th). The late growing-season grazing in the 

whole field did not exert different impacts at iGOS W and iGOS WN. With different 

management practices, the growing season average GPP was similar (7.528 g C m-2 

day-1 in iGOS W and 7.286 g C m-2 day-1 in iGOS WN).  
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Figure 3.12. Differences in gross primary production (GPP) difference of the flux 

tower located pixel (iGOS W) and its neighbor pixel (iGOS WN). 

 

Table 3.1. Event based GPP statistics for iGOS W and iGOS WN  

 

Event 

Time point or period 

in 8-days 

GPPVPM_W (g 

C m-2 day-1) 

GPPVPM_WN (g 

C m-2 day-1) 

1. Before field campaign  May 1st - June 2nd 7.799 7.790 

2. Field campaign Mid-June     

    a. 2 weeks after field 

campaign June 10th - July 18th  15.962 12.633 

    b. 3-5 weeks after field 

campaign June 26th - July 12nd 13.278 13.629 

    Average  June 10th - July 12nd  14.352 13.230 

3. The first baling July 23rd     

    a. 2 weeks after baling July 20th  - July 28th 6.143 8.157 

    b. 3-7 weeks after 

baling Aug. 5th - Sept. 6th 6.004 5.758 

    c. 8-9 weeks after 

baling Sept. 14th - Sept. 22nd 5.484 4.098 

    Average  July 20th - Sept. 22nd 5.920 5.922 

4. Grazing Sept. 30th – Oct. 24th 2.277 2.294 

Whole growing season May 1st – Oct. 24th 7.528 7.286 
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3.4 Discussion  

3.4.1. Necessity of utilizing multiple observations to study the impacts of management 

practices on plant phenology and carbon fluxes 

This study incorporated PhenoCam images, satellite remote sensing products, 

and eddy covariance data to investigate the impacts of burning, baling, and grazing on 

vegetation phenology and GPP of an Old World bluestems pasture. Because of different 

spatial and temporal resolutions of data sources, their applications on detecting the 

impacts of management practices are different. Since PhenoCam provide high temporal 

frequency in situ images, it is suitable for detecting plant phenology. Satellite remote 

sensing has larger spatial coverage than PhenoCam which makes it suitable for 

investigating larger scale events (e.g. characterizing the baling affected area). The EC 

data quantifies the impacts of management practices on carbon fluxes and provides data 

to evaluate GPP models. Combination of remote sensing and EC data in VPM for 

disturbed and undisturbed scenarios allowed assessment of the impacts of intensive 

field research campaign and baling on GPP. Multiple datasets allowed an investigation 

of intra-annual variations caused by different management practices.  

PhenoCam has been a popular tool to study plant phenology (Migliavacca et al. 

2011; Richardson et al. 2007; Richardson et al. 2013). PhenoCam images vividly 

showed the management practices (burning, baling, and grazing) and the quick recovery 

of grassland after baling (Fig. 3.3). The underestimation of GPP from VPM (Fig. 3.11b) 

was attributed to the underestimation of VIs for the early stages of flowering (seed 

heads tend to have lower VIs values than leaves because of lower chlorophyll content.), 

which was identified from PhenoCam images (Fig. 3.3c and h and Fig. 3.5). The in situ 
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observation from PhenoCam indicated its potential applications in ecosystem 

management studies as an aided tool.  

Satellite remote sensing provides observations at larger spatial scale than does 

PhenoCam but at lower temporal resolution. Free satellite remote sensing data, namely 

MODIS and Landsat, are suitable for different purposes depending on the temporal and 

spatial scales and objectives of the study. The 8-day temporal resolution of MODIS 

makes it well suited to quantify GPP dynamics, while the higher spatial resolution of 

Landsat (30 m) allows quantification of areas affected by various small-scale 

management practices (Fig. 3.6). Although the higher spatial resolution of Landsat 

image provides more detail at the land surface, the lower temporal resolution (16-day) 

limits its application in remote sensing based GPP models. Sixteen days between 

observations are long periods of time for characterizing vegetation, especially 

grasslands and crops. In addition, some observations are affected by cloud covers. Thus, 

Landsat may not be suitable to track the recovery trajectory of vegetation. For example, 

Landsat images were not available during the intensive field research campaign, while 

MODIS images captured this event well (Fig. 3.7). Thus, combining observations from 

Landsat and other high spatial resolution sensors (e.g., SPOT HRB/HRVIS and 

Sentinel-2A/B) can help to alleviate this issue.  

With a single flux tower site, we simulated GPP using VPM for both disturbed 

and undisturbed scenarios. This approach of combining remote sensing and EC data to 

study the impacts of management practices on GPP helps to extend the use of EC data 

collected within flux networks (e.g., AmeriFlux and FLUXNET) to study the impacts of 
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management practices (Campioli et al. 2015) in cases where paired-tower data are not 

available.  

3.4.2. Complexity of assessing the impacts of management practices  

There are a multitude of management practices that can occur in different 

durations and intensities. Most pastures in the Great Plains are used to support livestock 

grazing. The management practices evaluated in this study (burning, baling, and 

grazing) are quite common in the tallgrass pasture region (Fischer et al. 2012; Luo et al. 

2009; Owensby et al. 2006; Suyker et al. 2003). The grassland greened up immediately 

after burning in April. Our results showed quick recovery (about one month) of 

grassland after baling. The pasture was a stronger carbon sink in September than in 

August mostly because of more precipitation in September. The net overall effect of 

baling on GPP was negligible because of the fact that baling enhanced the production in 

the post-baling period and resulted in higher GPP than the unbaled condition. The effect 

of baling may have been confounded by climatic conditions as well. For example, large 

rain events in late July and early September increased GPP, possibly offsetting the 

reduction in GPP caused by baling. Because of the large variability in climate from year 

to year, this may not be the case for baling in other years or locations. Beside climatic 

conditions, timing and intensity (e.g., stubble height) of baling could also play 

important roles in determining the response/recovery of ecosystem from the 

disturbances. To better understand the impacts of baling and other management 

activities, multiple years of data and consideration of interaction between management 

practices and climatic conditions (Fischer et al. 2012; Luo et al. 2012; Wagle et al. 

2015) are needed. Grazing in the late growing season had similar impacts on VIs and 
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GPP in both iGOS W and iGOS WN, indicating similar grazing intensity over the entire 

field. To investigate the impacts of grazing, comparison between grazed and un-grazed 

fields is needed.  

3.4.3. Importance of the examination of EC footprint 

As GPPEC was used to evaluate the performance of VPM, we assume that the 

EC system and MODIS observed the same area. To test this assumption, we overlapped 

the EC footprint with the affected area characterized by Landsat images during different 

periods (Fig. 3.13). Contribution of flux measurements outside the iGOS W MODIS 

pixel boundaries can be detected by flux tower, while it cannot be detected using VIs 

derived from MODIS. The peak contribution of flux measurement from the upwind 

distance increased from 50-60 m before the first baling (Fig. 3.13a) to 80-90 m after the 

first baling (Fig. 3.13b and c). This discrepancy may be a function of decreased 

roughness due to reduced canopy height after baling (Chen et al. 2011a; Chen et al. 

2012; Schmid 1994). Since the flux tower is 100 m away from the southern boundary of 

the iGOS W pixel, the second baling in the southeastern part of the field had little effect 

on the flux measurement (Fig. 3.13c). This observation suggests that we need to bring 

the EC footprint dynamics (size, shape, and direction) into consideration because the 

affected areas in second baling might be in the fetch area and observed by the flux 

tower, while the iGOS W pixel cannot reflect this effect. If this scenario is the case then 

the pixel-to-pixel comparison in GPP model evaluation using EC measurements might 

be biased. Thus, investigating the dynamics of the footprint and its relative location to 

managed area is important to reflect the true impacts of management practices. 
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Figure 3.13. Footprint before and after hay baling. (a) Prior to first baling, (b) 

after first but before second baling, (c) after second baling. The background 

images are from Landsat which showed conditions prior to baling, after the first 

baling, and after the second baling. The circular dots are contribution of flux 

measurements from different direction and distance. Colors indicate the frequency 

of contribution of flux measurements.  

 

3.4.4. Implication and future steps 

This comprehensive case study used different data sources to investigate the 

impacts of different management practices on grassland phenology and carbon 

dynamics. We quantified the impacts of disturbance from an intensive field research 

campaign and baling on GPP using a single flux tower data, satellite remote sensing 
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data, and modeling. This approach could be used in other similar conditions for better 

utilization of carbon fluxes data to quantify the impacts of management practices. The 

study only includes one year of data. Thus, to better understand the interactive effects of 

management practices and climatic conditions, additional study years and sites are 

needed. There is a potential to use data from different networks (e.g., EC data from 

FLUXNET and PhenoCam images from PhenoCam Network) (Baldocchi et al. 2001; 

Richardson et al. 2009) to better understand impacts of various land management 

practices on plant phenology and carbon fluxes in different years. 

The difference between GPPVPM_W and GPPVPM_WN was highly dependent on the 

differences in VIs for the two neighbor MODIS pixels. However, MODIS obscured this 

difference because of its spatial resolution. We showed large differences in the VIs 

derived from MODIS and Landsat images (Fig. 3.8), which needs further research. The 

low temporal resolution of Landsat also limited the ability to detect GPP dynamics over 

short periods of time. 

Although we proposed a way to simulate the impacts of management practices 

and disturbances on GPP in a complex agricultural production field, additional research 

is needed to better estimate the individual and confounding effects of different 

management practices. Ensuring the fetch area of the flux tower can reduce the effects 

of changed footprint on GPP model and management evaluation (Chen et al. 2011a; 

Chen et al. 2012). Locating the flux tower in the center of the MODIS pixel can 

facilitate the linkage between EC and satellite observations (Zhang et al. 2014a). Each 

management regime needs better understanding before we blend different management 

practices. The compounding effects of interactive management practices need further 
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examination with multiyear data. For example, burning in the early growing season 

might increase nutrient availability and affect the response of the field to baling.  

3.5 Conclusion  

This case study used digital repeat photography (PhenoCam), satellite remote 

sensing, and the eddy covariance technique to investigate the impacts of burning, 

baling, and grazing on plant phenology and carbon fluxes in an Old World bluestems 

pasture. Multiple datasets allowed studying intra-annual variations caused by various 

management practices. PhenoCam images provided valuable information for both 

management practices and plant phenology. MODIS and Landsat images reflected 

different aspects of management practices. Higher temporal resolution of MODIS 

helped in understanding the GPP dynamics, whereas Landsat detected the burning and 

baling affected area because of its higher spatial resolution. VIs from MODIS showed 

impacts of burning and baling on plant phenology. Responses of GPP in baled and 

unbaled grasslands to large rain events were different because of different stages of 

vegetation. The larger increase of GPP after large rain in baled grassland 

(photosynthetically more active vegetation) compensated the reduction in GPP caused 

by baling. This result indicated that the interaction of management practices with 

climate is important when studying their impacts on GPP. Since management practices 

are often complex (e.g, grazing and baling in pasture), we need multiyear data from 

different sources for better understanding of individual and confounding impacts of 

those management practices. Investigation of the dynamics of EC footprint and its 

relative geolocation to affected area is important when evaluating the impacts of 

management practices. The approach of integrating EC data with remote sensing to 
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study the impacts of management practices on plant phenology and carbon fluxes can 

be helpful to extend the usage of EC data collected within the flux networks (e.g., 

AmeriFlux and FLUXNET) to study the impacts of different management practices. 
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Chapter 4: Quantifying agricultural drought in tallgrass prairie region 

in the U.S. Southern Great Plains through analysis of a water-related 

vegetation index from MODIS images 

Abstract  

Severe droughts in the Southern Great Plains (SGP: Kansas, Oklahoma, and 

Texas) in recent years have reduced the productivity of tallgrass prairie and resulted in 

substantial economic losses to the beef cattle industry in this region. Understanding 

spatial and temporal patterns of agricultural drought in the SGP can help ranchers to 

develop and implement drought mitigation strategies. In this study, the Land Surface 

Water Index (LSWI), calculated from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) near infrared and shortwave infrared bands, was used to 

assess agricultural drought in the tallgrass prairie region of the SGP during 2000-2013. 

The number of consecutive days with LSWI < 0 (DNLSWI) during the growing season 

was defined as the drought duration, which, was then used to identify and analyze 

frequency of summer drought and whole growing season drought (WGSD). The spatial 

pattern of DNLSWI was consistent with the east-to-west decreasing precipitation 

gradient across the SGP region. Summer drought duration as depicted by the DNLSWI 

in the western portion of the study area was around one and a half month. The 

occurrence of WGSD increased from one year in the east to up to six years in the west, 

demonstrating the susceptibility of the tallgrass prairie region to drought. In addition to 

the total amount of precipitation, its intra-annual distribution also played an important 

role in drought development. A comparison with other widely used national drought 

products, namely the Evaporative Stress Index (ESI), the Vegetation Drought Response 
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Index (VegDRI), and the United States Drought Monitor (USDM), shows that LSWI-

based drought has good agreement with ESI and USDM. Quantitative analyses indicate 

that LSWI-based drought agreed better with ESI in severe drought conditions than in 

moderate or pre-drought conditions. Severe drought periods characterized by the 

USDM also had low LSWI values. The areas affected by drought derived from the 

LSWI-based drought index were significantly correlated with hay production. As an 

indicator of vegetation water stress at moderate spatial resolution (~500 m), the LSWI 

has the potential to show drought conditions for an individual ranch and offer guidance 

for drought mitigation activities and livestock production.  

4.1 Introduction 

Drought is a complex natural hazard caused by a deficit in precipitation over 

different time periods (McKee et al. 1993). It is one of the most costly natural disasters 

and imposes wide-ranging impacts on the economy, environment, and society (Hayes et 

al. 2012; Mishra and Singh 2010). Tallgrass prairie, an important native grassland type 

in the Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) of the United States 

(U.S.), is susceptible to frequent droughts (Basara et al. 2013; Christian et al. 2015; Gu 

et al. 2007; Gu et al. 2008; Hoerling et al. 2014; Schubert et al. 2004). Poor vegetation 

growth during agricultural drought reduces crop and forage production which, in turn, 

threatens the survival of animals and the viability of the livestock business in the SGP 

(Garbrecht 2015). The agricultural drought of 2011 in Texas caused more than $7.62 

billion in losses, with about half of the loss attributed to reduction in livestock 

production (AgriLifeToday 2011; Fannin 2012; Ziolkowska 2016). Thus, it is crucial to 

provide information about drought characteristics (e.g., spatial distribution of different 
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drought durations in each year) and regional drought assessment (e.g., drought severity 

and regional susceptibility to drought) for agricultural end users and policy-makers in 

the SGP to facilitate drought mitigation and adaptation decisions (Otkin et al. 2015). 

Drought can be characterized from different perspectives reflecting the 

reduction of precipitation and/or its impacts on other factors, including runoff, 

streamflow, soil moisture, evapotranspiration (ET), and vegetation water stress (Fig. 

4.1). Meteorological drought mainly focuses on deficits in precipitation. Hydrological 

drought depicts inadequate streamflow and/or surface and ground water levels. 

Agricultural drought occurs when vegetation experiences stress due to inadequate soil 

moisture availability, reflecting a more ecosystem point of view on the impacts of 

drought. As agricultural drought develops, the plant canopy experiences a loss of 

vegetation water content and pigments such as chlorophyll, and eventually a loss of 

green leaves. 

 

Figure 4.1. Different timescales of drought, highlighting observables of vegetation 

water stress expressed as remote sensing proxies. Only the primary factors 

affecting the remotely sensed vegetation indices are listed.  

 

Many drought indices, based on anomalies or percentiles in relevant hydrologic 

variables (e.g., precipitation, soil moisture or ET), have been developed to monitor 
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various classes of drought (Hayes 2006; Zargar et al. 2011). Among these, two 

meteorological drought indices, namely the Palmer Drought Severity Index (PDSI) 

(Palmer 1965) and the Standardized Precipitation Index (SPI) (McKee et al. 1993, 

1995), are currently most widely used. These early standard meteorological drought 

indices (e.g., PDSI and SPI) tend to focus on precipitation deficiencies at coarse spatial 

resolution (i.e., the climate division level). They provide valuable information for policy 

makers to implement drought mitigation actions; however, these indices are usually 

based on sparsely located long-term meteorological stations. Hydrological drought 

indices often use basin-specific parameter values, making it difficult to compare among 

basins (Dai 2011; Mu et al. 2013). Agricultural drought indices have been developed to 

monitor soil water deficits and the subsequent crop failure in the drought. The Crop 

Moisture Index (CMI), which is related to PDSI, is able to track the agricultural drought 

by considering soil moisture deficit in the top 1.5 meters of soil column (Palmer 1968). 

The role of vegetation was not reflected in the early stages of the development of 

agriculture drought indices because of the complexity of different plant physiological 

processes and lack of data (Palmer 1965). Most agricultural drought indices use soil 

moisture to indicate drought and do not explicitly consider vegetation water stress 

(Narasimhan and Srinivasan 2005; Palmer 1965, 1968).  

Satellite remote sensing is providing consistent observations of vegetation 

dynamics, which can be incorporated into drought monitoring over large areas at high 

spatial and temporal resolutions (AghaKouchak et al. 2015; Wardlow et al. 2012a). 

Remote sensing products such as vegetation greenness indices, vegetation water indices, 

and land surface temperature have been widely used to monitor and assess drought 
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conditions since the 1980s (Gao 1996; Hayes et al. 2012; Peters et al. 2002; Rouse Jr et 

al. 1974; Wan et al. 2004). At the late stage of a severe drought, plant leaves often 

wither and abscise, resulting in a change in leaf area index (LAI) that can be tracked by 

the Normalized Difference Vegetation Index (NDVI) (Fig. 4. 1) (Cheng et al. 2006). 

NDVI, calculated as a normalized ratio between red and near-infrared (NIR) bands 

(Tucker 1979), has been incorporated into different drought products such as the 

Vegetation Condition Index (VCI) (Kogan 1995), Vegetation Drought Response Index 

(VegDRI) (Brown et al. 2008), and Vegetation Temperature Condition Index (VTCI) 

(Wan et al. 2004). The Enhanced Vegetation Index (EVI) is another vegetation 

greenness index with improved sensitivity to soil background and atmospheric 

condition (Huete et al. 2002). At the middle stage of agricultural drought, plant 

photosynthetic capacity is harmed by reduction of leaf chlorophyll content, which can 

be approximated by EVI as a proxy (Lawlor 2002; Medrano et al. 2002). At the early 

stage of agriculture drought, vegetation water stress is often characterized by the 

decrease of leaf water content. Water-related vegetation indices such as the Normalized 

Difference Water Index (NDWI) (Gao 1996) and the Land Surface Water Index (LSWI) 

(Xiao et al. 2004a), calculated as a normalized ratio between NIR and shortwave 

infrared (SWIR) bands, are more sensitive to the leaf water content and water stress 

than are vegetation greenness indices such as NDVI and EVI (Gu et al. 2007; Gu et al. 

2008; Jackson et al. 2004; Maki et al. 2004; Wagle et al. 2014). Consequently, recent 

studies have shown the ability of LSWI to track drought-impacted vegetation or to 

monitor drought (Bajgain et al. 2016; Bajgain et al. 2015; Chandrasekar et al. 2010; 

Wagle et al. 2015; Wagle et al. 2014). 
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Wagle et al. (2014) examined the seasonal dynamics of LSWI derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) and the CO2 flux data at 

two tallgrass prairie eddy flux tower sites during 2005-2006 in Oklahoma, and reported 

that LSWI < 0 during the growing season indicates drought-impacted vegetation. 

Another study (Bajgain et al. 2015) used LSWI to assess and track drought conditions at 

two tallgrass prairie sites in Oklahoma during 2000-2013 and showed that LSWI < 0 

was corresponded well with moderate or severe drought categories indicated by the 

United States Drought Monitor (USDM) (Svoboda et al. 2002). Another follow up 

paper validated the LSWI-based drought algorithm for 113 Mesonet stations across 

Oklahoma and showed that LSWI is sensitive to rainfall variations and can be used as 

an indicator of drought occurrence (Bajgain et al. 2016). Based on these previous site-

level findings (Bajgain et al. 2016; Bajgain et al. 2015; Wagle et al. 2014), we 

hypothesize that the LSWI-based drought algorithm can be applied to assess the drought 

dynamics of tallgrass prairie at the regional scale such as in the SGP.  

The specific objectives of this study are (1) to apply the LSWI-based drought 

algorithm in the tallgrass prairie of the SGP during 2000-2013;  (2) to analyze the 

impacts of precipitation distribution on different drought patterns; and (3) to compare 

the LSWI-based drought map with other U.S. national drought products such as the 

Evaporative Stress Index (ESI) (Anderson et al. 2011; Anderson et al. 2007; Otkin et al. 

2013), VegDRI (Brown et al. 2008), and USDM (Svoboda et al. 2002), during normal, 

summer drought, and growing season drought years.  
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4.2 Materials and methods 

4.2.1 Study area 

This study focuses on the SGP region in the U.S., specifically including Kansas 

(KS), Oklahoma (OK), and Texas (TX) (Fig. 4.2). These three states are known for 

extensive ranching and farming. The mean annual precipitation (MAP) shows a 

decreasing gradient from east (1400 mm) to west (200-400 mm) across the region 

(http://www.prism.oregonstate.edu/normals/). Precipitation is highly variable both inter- 

and intra-annually (Christian et al. 2015; Flanagan et al. 2017; Weaver et al. 2016). 

Maximum temperatures in summer are usually associated with low atmospheric 

humidity and strong winds, which in turn produce high rates of soil moisture depletion  

Figure 4.2. Location of the Southern Great Plains (SGP) study area and the 

coverage of the tallgrass prairie (in the inset). MODIS tile boundaries are 

indicated as dark lines. The base map shows the 30 year (1981-2010) mean annual 

precipitation over the region.  

 

through ET, the main reason for summer drought (Dong et al. 2011). Soil types are 

mainly sandy and clay with small surface slopes (Carter 1994). Shortgrass prairies are 

http://www.prism.oregonstate.edu/normals/
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distributed in the arid and semiarid western part of the SGP, while tallgrasses prairies 

are primarily located in the sub-humid eastern part of the region (Carter 1994). 

4.2.2 Data 

4.2.2.1 MODIS-based LSWI and NDVI 

The SGP is covered by six MODIS tiles (Fig. 4.2). The 8-day composite 

MODIS Surface Reflectance product at a 500-m spatial resolution (MOD09A1) 

(Vermote and Vermeulen 1999) was used to calculate LSWI and NDVI at 500 m. 

MOD09A1 includes seven-bands: blue (459-479 nm), green (545-565 nm), red (620-

670 nm), two near infrared (NIR1: 841-876 nm; NIR2: 1230-1250 nm), and two 

shortwave infrared (SWIR1: 1628-1652 nm, SWIR2: 2105-2155 nm) bands at a 500-m 

spatial resolution. MOD09A1 also includes quality control flags for consideration of 

various image artifacts (e.g., clouds and cloud shadow). For each 8-day composite 

image, LSWI (Xiao et al. 2002b, c) and NDVI (Tucker 1979) were calculated using 

surface reflectance (ρ) from MODIS red, near infrared (NIR1) and shortwave infrared 

bands (SWIR1) as: 

𝐿𝑆𝑊𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑠𝑤𝑖𝑟

𝜌𝑛𝑖𝑟+𝜌𝑠𝑤𝑖𝑟
                                              (1) 

𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
                                                (2) 

4.2.2.2 MODIS Land Surface Temperature (LST) data 

The MODIS 8-day Land Surface Temperature (LST) product (MOD11A2) at a 

1-km spatial resolution from 2000 to 2013 was used to depict the nighttime LST 

(LSTnight) (Wan and Dozier 1996) and define the thermal growing season. Detailed 
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descriptions of MOD11A2 can be found at 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2. The 

LST data were resampled from 1-km to 500-m spatial resolution using nearest neighbor 

interpolation.  

4.2.2.3 MODIS Land Cover Type data 

The MODIS Land Cover Type product (MCD12Q1) was used to generate the 

grassland mask (Friedl et al. 2002) and then to define the tallgrass prairie layer. The 

IGBP (International Geosphere-Biosphere Program) classification scheme was used, 

which includes a grassland class 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1).  

4.2.2.4 Precipitation data 

Precipitation data were downloaded from PRISM Climate Group, Oregon State 

University (http://prism.oregonstate.edu). The time series of precipitation datasets are 

modeled using climatologically-aided interpolation, which uses the long-term average 

pattern (i.e., the 30-year normals) as first-guess of the spatial pattern of climatic 

conditions for a given month or day. Monthly precipitation data for 2000-2013 were 

used to generate summer precipitation (June-August, JJA) and annual precipitation.  

Precipitation data measured by automated weather stations covering Oklahoma 

were also included to evaluate the LSWI-based drought at site level. The dataset was 

acquired from a previous LSWI-based drought related study in Oklahoma (Bajgain et 

al. 2016). The precipitation anomalies were compared against LSWI anomalies at 113 

Mesonet stations across Oklahoma for the drought years.  

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
http://prism.oregonstate.edu/
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4.2.2.5 Forage production data 

Forage production, especially for hay, is affected by drought as most of the hay 

producing fields rely on rainfall. Hay production data from the United States 

Department of Agriculture - National Agricultural Statistics Service 

(https://www.nass.usda.gov/Quick_Stats/) were used to evaluate the LSWI-based 

drought depictions in each state included in the study. A simple linear regression model 

was used to examine the relationships between drought affected area and hay 

production for each state.  

4.2.3 Algorithms for mapping agricultural drought 

Based on findings from our previous studies (Bajgain et al. 2016; Bajgain et al. 

2015; Wagle et al. 2014) that the LSWI can assess the impact of drought on tallgrass 

prairie vegetation at individual sites, this study aims to expand its use to identify both 

summer drought and whole growing season drought (WGSD) conditions at the regional 

scale (SGP). Fig. 4.3 illustrates the steps in the drought identification algorithm as 

applied to MODIS time series data for a given year. Nighttime LST data from the entire 

year were first used to determine the temperature-defined growing season, which is the 

time between the start and end dates for consecutive three 8-day periods with nighttime 

LST > 5oC (Morison and Morecroft 2008; Zhang et al. 2015; Zhou et al. 2016). Second, 

the drop of LSWI below zero during summer (JJA) was used to indicate severe 

agricultural drought in summer (Bajgain et al. 2015). Third, the summer drought 

duration maps were generated by counting the number of days with LSWI < 0 (these 

days do not need to be consecutive) in JJA (DNLSWI). Years with all LSWI values less 

https://www.nass.usda.gov/Quick_Stats/
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than zero during the LST-defined plant growing season were defined as WGSD years 

(Fig. 4.3). 

 

Figure 4.3. A schematic diagraph of the seasonal dynamics of LST, LSWI, and 

NDVI during drought and non-drought years for a sample data point is located at 

36.556481oN, -98.317713oW. The LST-defined growing season is depicted for the 

duration of nighttime LST > 5 °C.  

 

As the LSWI-based drought algorithm was originally developed for the tallgrass 

prairie, we focused on tallgrass prairie area in this study. The tallgrass prairie map was 

generated as the study area mask based on the MODIS land cover maps (MCD12Q1) 

for 2001-2013 and LSWI data. The grassland layer from MCD12Q1 for 2001 was used 

as a close approximation of 2000 since the MCD12Q1 dataset starts from 2001. Using 

these time series, the number of years that each pixel classified as grassland was 

computed, as well as the annual maximum value of LSWI (LSWImax) during the LST-

based growing season. To exclude sparse vegetation areas, the tallgrass mask was 

generated by selecting those pixels that meet two criteria over 14 years: (1) the number 
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of years as grassland is 7 or more (50% or higher) and (2) the number of years with 

LSWImax > 0 is 7 or more (50% or higher) (Fig. 4.2 inset). This tallgrass prairie mask 

was then used to conduct the analyses of drought duration described later in the 

manuscript (Fig. S4.1). 

Fig. S4.1. Data processing workflow for LSWI-based drought assessment algorithm. 

4.2.4 Agricultural drought dynamics and comparison with other drought products 

Annual agricultural drought maps were created to show the evolution of 

agricultural drought over the study period. Each drought map includes both summer and 

WGSD conditions. The drought maps for three consecutive years (2010, 2011, and 

2012) were selected to represent three different drought conditions (normal, WGSD, 

and summer drought). WGSD and summer drought years were identified from annual 

and summer precipitation anomalies (Fig. S4.2), respectively, based on the fourteen-

year mean (2000-2013). A mean summer drought duration map was generated showing 

the average drought duration for 2000-2013. The occurrence of WGSD map shows the 

frequency of WGSD during the study area from 2000 to 2013. These two summary 

maps indicate the spatial pattern of agricultural drought in the tallgrass region in the 

SGP.  

Fig. S4.2. Annual, early spring, and summer precipitation deviation from the mean.  

Three U.S. national drought products, namely ESI, VegDRI, and USDM, were 

also compared with the LSWI-based drought product to characterize different drought 

conditions. The ESI (Anderson et al. 2013; Anderson et al. 2011; Anderson et al. 2007) 

quantifies temporal anomalies in the ratio of actual to potential ET using thermal 

infrared remote sensing observations and the Atmosphere-Land Exchange Inverse 
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(ALEXI) surface energy balance model. It has been used to estimate the moisture stress 

of plants, as well as associated yield impacts (Anderson et al. 2016a; Anderson et al. 

2015; Anderson et al. 2016b). VegDRI is a new ‘hybrid’ index that integrates satellite-

based observations of vegetation conditions, climate-based drought index data, and 

biophysical characteristics of the environment, including PDSI, SPI, and NDVI, to 

depict drought-related vegetation stress (Brown et al. 2008; Tadesse et al. 2015; 

Wardlow et al. 2012b). The USDM is a composite drought index which incorporates 

climatic, hydrologic, and soil data along with professional inputs in order to provide 

weekly maps of drought conditions (Svoboda et al. 2002).  

A direct comparison between the LSWI-based drought with ESI, VegDRI, and 

USDM is difficult due to their differences in temporal scales and spatial resolutions. 

ESI data are provided at weekly time steps composited over a period of 1-3 months. The 

VegDRI and USDM are also created weekly. In this study, we used 3-month ESI 

composites ending on the last week of August to compare with LSWI-based drought 

duration. The VegDRI and USDM for the last week of August were used in the 

comparison. The comparison was done for the period 2010-2012, which represent three 

different drought conditions (normal, WGSD, and summer drought).   

4.2.5 The relationship between precipitation and LSWI-based drought duration 

Because agricultural drought is triggered in part by a precipitation deficit, it is 

worthwhile to investigate the relationship between precipitation and LSWI-based 

drought duration. Summer drought duration from LSWI-based drought maps and 

cumulative summer rainfall (JJA) from PRISM data for 2010-2012 were extracted and 

analyzed. The relationships between summer drought duration and summer rainfall 
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were analyzed and the pattern of cumulative summer rainfall in different drought 

condition years are also presented. The site-level precipitation data from the Oklahoma 

Mesonet were also used to evaluate the LSWI-based drought. The spatial patterns of 

WGSD and annual precipitation deviation from the mean in 2011 (WGSD year) 

demonstrate the effects of annual precipitation on the WGSD.  The relationship between 

WGSD affected area and the annual precipitation anomaly was also investigated. 

4.3. Results 

4.3.1 LSWI-based drought maps and comparison with ESI, VegDRI, and USDM 

The tallgrass prairie in the SGP was affected by frequent droughts during the 

study period (Fig. S4.3) and the drought duration was consistent with the decreasing 

precipitation gradient from east to west in most years (Fig. 4.2). Some areas 

experienced a short duration of summer drought even in a normal rainfall year (e.g., 

2010, Fig. 4.4a). Central SGP experienced a long period of summer drought in 2012 

(indicated by dark red color) (Fig. 4.4i). 2011 was the most severe WGSD year in OK 

and TX (indicated by black color), with more than half of the tallgrass prairie areas 

affected (Fig. 4.4e). For KS, 2002 was the most severe WGSD year (Fig. S4.3c).  

Fig. S4.3. Drought dynamics in the SGP for 2000-2013. 
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Figure 4.4. Comparison of LSWI-based drought duration with ESI, VegDRI, and 

USDM in normal, WGSD, and summer drought years. (a) Summer drought 

duration and WGSD in 2010, (b) Summer ESI in 2010, (c) Summer VegDRI in 

2010, (d) USDM 20100831, (e) Summer drought duration and WGSD in 2011, (f) 

Summer ESI in 2011, (g) Summer VegDRI in 2011, (h) USDM 20110830, (i) 

Summer drought duration and WGSD in 2012, (j) Summer ESI in 2012, (k) 

Summer VegDRI in 2012, (l) USDM 20120828.  

 

Fig. 4.4 shows ESI, VegDRI, and USDM summer drought depictions for 2010-

2012, and compares with spatial patterns in the LSWI-based drought duration. The 

LSWI-based drought map, ESI, and VegDRI provided more detailed drought 

information than did USDM because of their higher spatial resolution and number of 

drought categories. The LSWI-based drought map showed a short period of drought 
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occurrence in the western SGP even in a normal year (2010) (Fig. 4.4a), while summer 

ESI indicated wet or near normal conditions for most of the areas (Fig. 4.4b) and 

VegDRI showed scattered pre-drought and unusually moist with big non-

photosynthetically-active vegetation area (out of season category in the figure) (Fig. 

4.4c). In 2011, all drought products identified extended/severe drought conditions in the 

central SGP (Fig. 4.4e-h). The four indices were different in their depictions of the 2012 

drought conditions (Fig. 4.4i-l), with LSWI-based drought, ESI, and USDM showing 

extensive and severe drought for KS and OK, while VegDRI mostly indicating pre-

drought to moderate drought. The increasing drought gradient from east to west in the 

LSWI-based drought map was not apparent in other drought indices except for VegDRI 

in 2011 (Fig. 4.4g). 

In general, the patterns of LSWI-based summer drought maps are similar with 

those in the ESI and USDM for most of the areas (Fig. 4.4). However, the VegDRI 

tends to show less intense drought conditions than other drought products for the same 

year. One possible reason is that VegDRI uses long-term climate variables such as 36-

week SPI which responds more slowly than LSWI and ESI. Similar findings were 

identified in a study by Otkin et al (Otkin et al. 2016).   

LSWI, ESI, and VegDRI over the SGP tallgrass prairie regions were also 

compared quantitatively. Fig. 4.5 compares ESI values from the 3-month composite 

ending at the last week of August with LSWI-based drought duration for 2012, which is 

the period with severe summer drought. A clear trend of increasing ESI stress severity 

is identified with increasing length of drought conditions as identified by the LSWI. The 

dynamic range of ESI decreased along with the increasing summer drought duration 
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(Fig. 4.5), indicating that LSWI-based drought and ESI agree better for severe drought 

than moderate or pre-drought conditions. The relationship between LSWI and VegDRI 

showed a stronger trend than did the relationship between NDVI and VegDRI (Fig. 

S4.4). 

 

Figure 4.5. LSWI-based summer drought duration vs. 3-month composite ESI 

(JJA) in 2012.  

 

Fig. S4.4. LSWI and NDVI vs. VegDRI for the last week of August in 2012. Only 

pixels classified as tallgrass prairie were plotted.  

LSWI values are compared to the USDM drought severity classifications from 

the last week of August in 2012 in Fig. 4.6. Most areas depicted as experiencing severe 

drought according to the USDM (D3 and D4) also have very low LSWI values (Fig. 

4.6b inset) such as western KS and southern TX (Fig. 4.6a). As two key indicators in 

the USDM are usually available only at the climate division scale, the USDM does not 

show much variability in drought severity within a climate division. In contrast, LSWI 
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shows large heterogeneity at the sub-climate division scale due to the relative high 

spatial resolution of the remotely sensed inputs.  

 

Figure 4.6. LSWI vs. USDM for the last week of August in 2012. The climate 

division boundaries are indicated by black polygons. Only pixels classified as 

tallgrass prairie were plotted. The inset in (b) showed the mean LSWI values in 

each category (D0, D1, D2, D3, and D4).  

 

4.3.2 LSWI-based drought duration patterns in the SGP 

Fig. 4.7 shows the dynamics of summer drought duration diagnosed by LSWI in 

three states (KS, OK, and TX) for 2000-2013. The summer drought pattern was highly 

variable among years in all three states. TX was affected by summer drought more often 

than KS and OK. 2012 was the most severe summer drought year in OK, with relatively 

small area affected by short periods of drought and large areas affected by longer 

periods of drought (Fig. 4.7b). The frequent occurrence of summer drought indicates the 

susceptibility of the SGP to agricultural drought. Fig. 4.8 shows the areas affected by 

WGSD across the region for 2000-2013. The pattern of WGSD in OK and TX were 
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similar with 2011 as the most severe WGSD year, while it was 2002 in the case of KS. 

In the most severe WGSD years, the area affected by WGSD was more than double of 

the mean value.  

 

Figure 4.7. Annual summer drought dynamics in three states (KS, OK, and TX) of 

the SGP for 2000-2013.  

 

 

Figure 4.8. Areal percentage of the total tallgrass prairie area affected by the 

whole growing season drought (WGSD) in three states (KS, OK, and TX) of the 

SGP for 2000-2013.  
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Fig. 4.9 shows the mean of summer drought duration, standard deviation of 

summer drought duration, and frequency of the occurrence of WGSD for 2000-2013. 

As expected, both summer drought duration and occurrence of WGSD increased from 

east to west, along the gradient of decreasing precipitation. Mean summer drought 

duration can be as long as one and a half months (six 8-day periods) (Fig. 4.9a) and 

WGSD occurred in six years (Fig. 4.9c) in the west of the study area. The variability in 

summer drought duration was largest in the central part (Fig. 4.9b). 

 

Figure 4.9. Summer drought and WGSD patterns in the SGP for 2000-2013. (a) 

Mean of summer drought duration for 2000-2013, (b) Standard deviation of 

summer drought duration, (c) Occurrence of WGSD for 2000-2013. The insert 

panel shows the frequency distribution of values.  

 

4.3.3 Relationship between LSWI-based drought duration and precipitation  

To quantify the contribution of precipitation deficits to drought development, we 

examined the relationship between precipitation and drought duration during the 

summer period and the entire year. The variation of the summer drought duration 

(indicated by error bar) was equally large for all precipitation ranges (Fig. 4.10), 

suggesting that summer precipitation is not the only factor determining summer drought 

duration. The cumulative summer precipitation (indicated by the relative frequency of 
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precipitation) in 2010 (Fig. 4.10a) was slightly higher than in 2012 (Fig. 4.10c), 

whereas the summer drought duration was quite different, with much longer summer 

drought duration in 2012. More than 60% percent of the pixels had less than 100 mm of 

cumulative summer precipitation in 2011 and long periods of summer drought. (Fig. 

4.10b).  

 

Figure 4.10. LSWI-based summer drought duration vs. summer precipitation in 

(a) 2010, (b) 2011, and (c) 2012. Relative frequency in the legend indicates the ratio 

of pixels with certain summer precipitation to the total pixels.  

 

The LSWI anomalies were strongly correlated with summer precipitation 

anomalies (r2 = 0.64) for the drought years (2006, 2011, and 2012) over 113 Mesonet 

stations across Oklahoma (Fig. 4.11). The increasing summer precipitation anomalies 

resulted in bigger magnitude of anomalies in LSWI at most Mesonet stations.   

 

Figure 4.11. Comparison of summer precipitation anomalies and LSWI anomalies 

in drought years (2006, 2011, and 2012) at 113 Mesonet stations across OK.  



95 

Areas affected by WGSD increased from north to south in the SGP in 2011 (Fig. 

4.12a). This trend correlates well with the annual precipitation deviation to the mean in 

2011 (Fig. 4.12b). The mean value of the annual precipitation deficit in 2011 was 300 

mm (Fig. 4.12b inset and Fig. S4.5) which is about one third of the long term mean 

annual precipitation (Fig. 4.2). Precipitation deviation from the mean (annual anomaly 

in 2011) in central and southern TX was as high as 400 mm or more. The increasing 

temperature gradient from north to south might also have exacerbated drought in the 

southern region.  

 

Figure 4.12. WGSD vs. annual precipitation in 2011. (a) Distribution of WGSD in 

2011, (b) Annual precipitation deviation from the mean (annual anomaly in 2011). 

The inset in (b) shows the frequency distribution of precipitation deviation.  

 

Fig. S4.5. Frequency distribution of the annual precipitation deviation from the mean in 

2011. 

To investigate the relationship between the WGSD affected area and annual 

precipitation anomalies, we plotted the ratio of WGSD affected areas to total state area 
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against annual precipitation anomalies for all three states during 2000-2013 (Fig. 4.13). 

Overall, larger anomalies in annual precipitation resulted in larger areas affected by 

WGSD. The point in the upper right corner is associated with large annual precipitation 

anomaly in 2011, demonstrating the severity of 2011 Texas drought. 

 

Figure 4.13. Relationship between the WGSD affected area and annual 

precipitation anomaly.  

 

4.3.4 Validation of LSWI-based drought against forage production 

Fig. 4.14 show the relationships between areas affected by drought (summer 

drought and WGSD) and hay production in each state during 2000-2013. The hay 

production showed a significant negative relationship with areas affected by drought. 

The lowest hay production year was 2011 in KS and TX and 2012 in OK. This is 

consistent with our results that 2011 and 2012 were the most severe drought years.  

 
Figure 4.14. Relationship between areas affected by drought and hay production in 

each state.  
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4.4. Discussion 

4.4.1 Comparison of the LSWI-based drought algorithm with other drought products 

The LSWI-based drought algorithm uses LSWI values less than zero during the 

growing season to identify agricultural drought conditions based on the findings of 

previous studies at individual sites (Bajgain et al. 2015; Wagle et al. 2014). The SWIR 

band in LSWI is more sensitive to the canopy water content (high absorption by liquid 

water) than the red band used in NDVI (Gu et al. 2007; Gu et al. 2008; Jackson et al. 

2004). Thus, the LSWI-based algorithm complements well with other NDVI-based 

drought products, as they together assess the impacts of drought on vegetation canopy 

from a loss of water to a loss of green leaves (Fig. 4.1). This study expanded the LSWI-

based drought algorithm to include three conditions: no drought, summer drought, and 

WGSD, and then applied the algorithm at the regional scale (tallgrass prairie region in 

the SGP) to report agricultural drought conditions.  

Similar spatial patterns of LSWI-based summer drought maps with ESI and 

USDM (Fig. 4.4), and strong relationships of low LSWI values with ESI (Fig. 4.5) and 

USDM categories (Fig. 4.6) during the severe drought indicate that LSWI can be used 

as a complementary drought index. The significant negative relationship between 

drought affected areas and hay yield further validated the reliability of the LSWI-based 

drought mapping. Using LSWI along with other commonly used vegetation indices 

such as NDVI and EVI can help improve the performance of current drought products. 

The LSWI-based drought algorithm completely depends on MODIS data and is easy to 

apply. It could be a complementary method for assessing agricultural drought in the 

tallgrass prairie at the regional scale with a spatial resolution of 500 m. 
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4.4.2 Importance of precipitation amount and distribution in the year 

As expected, our results show that precipitation is a major factor for the 

occurrence of severe agricultural drought in tallgrass prairie since the regional 

agricultural drought pattern (Fig. 4.9a and c) was highly correlated with the decreasing 

precipitation gradient from east to west. Central SGP had long summer drought 

durations and large standard deviations (Fig. 4.9a and b) because of large summer 

precipitation variations (Fig. S4.6). The orthogonal nature of the temperature and 

precipitation gradients (east-west oriented precipitation gradient and north-south 

oriented temperature gradient) (Basara et al. 2013) could also generate this pattern in 

the central part of the SGP where the relative importance of temperature and 

precipitation varies in different years.  

Fig. S4.6. Standard deviation of summer precipitation. 

The total amount of precipitation in a year is important for vegetation. Large 

annual precipitation deficits in 2011 (Fig. 4.12) caused the occurrence of extensive 

WGSD in the SGP (Fig. 4.4e). The temporal distribution of precipitation is also equally 

important. The cumulative summer precipitation in 2012 was only a little bit lower than 

2010 (Fig. 4.10), however, the drought condition in 2012 was much more severe (Fig. 

4.4). The precipitation in early spring (March) was well distributed in 2012 (Fig. 4.15a). 

The ample precipitation in March 2012 (Fig. S4.2f and Fig. 4.15a) increased soil 

moisture and facilitated vegetation growth in spring (the anomaly of high NDVI is 

presented in Fig. S4.7). Summer rainfall was much less than the enhanced ET demand 

from abundant green vegetation, resulted in rapid depletion of soil moisture and severe 

summer drought in 2012. This result indicated that it was the joint control of 
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precipitation and vegetation that generated the severe summer drought in 2012. It 

suggests the important role of vegetation itself for the occurrence of agricultural drought 

in addition to total amount of precipitation. This phenomenon has been reported by 

other studies (Otkin et al. 2013; Otkin et al. 2014; Otkin et al. 2016) and referred as 

“flash drought” in which vegetation health rapidly deteriorates because the plants 

quickly exhaust soil moisture. Thus, LSWI-based drought does not only reflect 

precipitation anomalies to the historical mean as SPI does but is also sensitive to 

abnormal precipitation distribution in the year.  

 

Figure 4.15. Precipitation distribution in early (March) and peak growing season 

(June-August) according to rainfall events (%) with different rainfall sizes (25 mm 

rainfall bin size in the graph).  
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Fig. S4.7. NDVI anomaly in early growing season of 2012 (March-May) relative to the 

baseline of 2000 - 2011. The inset shows the distribution of area percent of NDVI 

anomalies. 

4.4.3 Future work and challenges  

The LSWI-based drought algorithm, which only uses MODIS data as input, is 

easy to apply and has a higher spatial resolution (~500 m) than current operational 

versions of ESI, VegDRI, and USDM. Like most visible and thermal remote sensing 

algorithms, the LSWI-based drought algorithm has limitations during cloudy days when 

the land surface is not visible to the satellite sensor (Jensen 2009). Combinations of 

multiple satellite sensors and development of an appropriate gap-filling algorithm are 

needed to create a continuous dataset (Jin et al. 2013b), thereby reducing the effect of 

bad observations (e.g., cloud cover). Another concern is the threshold values used in the 

algorithm. We used LSWI < 0 during the growing season as the indicator of severe 

agricultural drought in tallgrass prairie based on the findings of site level studies 

(Bajgain et al. 2015; Wagle et al. 2014). The LSWI threshold for other land cover types 

and regions might be different, which needs to be further explored. The identification of 

agricultural drought in sparse vegetation area (e.g. arid region) using LSWI is 

challenging as soil background can contribute more to the satellite observations and 

reduce LSWI values. In these cases, the lower threshold of relative change of LSWI 

values might be better. Also LSWI is related to vegetation water content, it is not able to 

depict drought during the non-growing season. Additional studies are needed to develop 

a LSWI-based drought severity scheme based on plant phenology and anomalies. In this 

study, we evaluated and reported agricultural drought in terms of severe drought 
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duration in the summer and entire growing season, and drought severity at specific 

times was not included. Future studies need to compare the LSWI-based drought 

severity scheme at specific times (Bajgain et al. 2016; Bajgain et al. 2015) with ESI, 

USDM, and other drought products. Human and natural disturbances (grazing, mowing, 

and burning etc.) could also affect LSWI, which needs to be incorporated using land use 

and land management data.  

The relationship between precipitation and drought needs to be further 

investigated as other studies indicated that high temperature can also contribute to the 

quick onset of drought in the SGP (Basara et al. 2013; Hoerling et al. 2014; Otkin et al. 

2013; Otkin et al. 2016). The importance of vegetation in agricultural drought 

assessment needs to be emphasized in the future as precipitation does not always 

provide accurate drought assessment without considering the high ET demand by 

vegetation and available soil moisture in summer. Plant health can deteriorate rapidly 

during the summer through rapid loss of water because of their high ET. The ESI, an 

indicator of ET anomaly, is a good indicator to reflect the role of vegetation in 

agricultural drought development (Anderson et al. 2011; Anderson et al. 2007; Otkin et 

al. 2016). The importance of vegetation in drought development also emphasizes the 

necessity of investigating drought from the ecosystem perspective (AghaKouchak et al. 

2015).  

The duration of summer drought, summer drought variation, and number of 

years with WGSD present the pattern of agricultural drought in tallgrass prairie in the 

SGP (Fig. 4.9). The LSWI-based drought algorithm can be used to assess the 

vulnerability to agricultural drought, and it has the potential to use for several 
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applications such as vegetation production assessment, water demand/supply analysis, 

and bird migration and breeding (Brown and Brown 2014; Goddard et al. 2003; Wilhite 

2005). The agricultural drought of tallgrass prairie in the SGP reduces hay production 

(Fig. 4.14), an important feed source for beef cattle production, especially in winter and 

early spring, which can threaten the beef cattle industry. A follow-up study will use the 

LSWI-based drought product to investigate the impacts of different drought types (e.g., 

summer drought and WGSD) and spatial patterns on hay and beef cattle production in 

the SGP.   

4.5. Conclusion 

Based on the findings of previous studies about the ability of LSWI to track 

drought-impacted vegetation in tallgrass prairie, this study expanded and applied a 

LSWI-based drought algorithm to map agricultural drought of tallgrass prairie in the 

SGP. The results are comparable to other widely used drought products (ESI, VegDRI, 

and USDM) in normal, WGSD, and summer drought years. The frequent occurrence of 

summer drought and WGSD indicates the susceptibility of the SGP to agricultural 

drought. The spatial pattern of drought duration was highly correlated with the 

decreasing precipitation gradient from east to west. TX was affected by summer 

drought more often than KS and OK. In the most severe WGSD years, the area affected 

by WGSD was more than double of the mean value. LSWI-based drought depictions are 

sensitive to both precipitation anomalies from the historical mean and abnormal 

seasonal precipitation distributions. The importance of vegetation in drought assessment 

needs to be emphasized in future drought studies. Incorporating LSWI other than NDVI 

into other drought products can help improve their performance. The LSWI-based 
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drought algorithm, completely depending on MODIS data and with a spatial resolution 

of 500 m, can be a complement for other drought products for assessment of 

agricultural drought in the tallgrass prairie region. Future studies need to explore LSWI 

thresholds to identify agricultural drought and develop LSWI-based drought severity 

schemes for other land cover types. 

Supplementary materials 

 

Figure S4.1 Data processing workflow for LSWI-based drought assessment 

algorithm.  
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Figure S4.2 Annual, early spring, and summer precipitation deviation to the mean.  
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Figure S4.3 Drought dynamics in the SGP for 2000-2013 mean.  
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Figure S4.4 LSWI and NDVI vs. VegDRI for the last week of August in 2012.  

 

 

 

Figure S4.5 Distribution of the annual precipitation deviation from the mean in 

2011.  
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Figure S4.6 Standard deviation of summer precipitation during 2000-2013. 
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Figure S4.7 NDVI anomaly in early growing season of 2012 (March-May) relative 

to the baseline of 2000 - 2011. The inset shows the distribution of area percent of 

NDVI anomalies.  
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Chapter 5: Consecutive years of agricultural drought and heatwave 

drove the large losses of cattle production in the U.S. Southern Great 

Plains 

Abstract  

Cattle ranching is an important agricultural and economic activity in the 

Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) of the United States (U.S.) 

and provides nutritional quality beef for the U.S. and the world. Agricultural drought 

can harm the cattle production through reducing the feed (forage and grain) production, 

availability, accessibility, and affordability. In this study, we combine meteorological, 

remote sensing, and agricultural statistics data to investigate the impacts of drought and 

heatwave on cattle production in the SGP during 2000-2015. Both 2011 and 2012 were 

severe drought years in the SGP. Precipitation in 2011 was low for the whole year, 

which triggered a drought for the entire growing season. High precipitation occurred in 

the early growing season in 2012, but a lack of precipitation in the summer generated a 

severe summer drought. Grasslands were mostly affected in 2011 because most 

ranchers do not have irrigation systems. The decrease in grassland and hay production 

harmed the cow-calf operators who highly depend on the grasslands in ranches. 

Cropland (e.g., corn) production was reduced and crop prices increased because of 

severe summer drought in 2012. Limited availability and the high price of grain (mainly 

corn) and grain by-products burdened the feedlot operators who depend on grain to 

quickly finish cattle for slaughter. The high temperature could have slowed cattle’s 

growth and reduced reproductive rates, which increased costs for cattle producers and 

consumers. We concluded that the consecutive years of agricultural drought and high 
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temperatues in 2011 and 2012 drove the large losses of cattle production in the SGP 

because of reduced feed availability, suppressed cattle growth, and low rates of cattle 

reproduction.  

5.1 Introduction 

Cattle ranching is of great importance in the Southern Great Plains (SGP: 

Kansas, Oklahoma, and Texas) of the United States (U.S.). Kansas, Oklahoma, and 

Texas rank in the top five, according to the all cattle and calves inventory in 2015 

(source: United States Department of Agriculture National Agricultural Statistics 

Service, USDA-NASS). It provides nutritional quality beef for the U.S. and the world. 

However, frequent agricultural droughts in the area (Andreadis et al. 2005; Bajgain et 

al. 2016; Basara et al. 2013; Christian et al. 2015; Gu et al. 2007; Gu et al. 2008; 

Hoerling et al. 2014; Schubert et al. 2004; Worster 1979) affect the crop and forage 

production which, in turn, threaten the viability of the cattle industry in the SGP 

(Garbrecht 2015; Osei et al. 2015). Cattle production systems are complex including 

beef and dairy cattle production systems and with different phases (Fig. 5.1). For 

example, the beef cattle production systems could include cow-calf phase, 

backgrounding phase, and finishing/feedlot phase. Cattle production systems are 

affected by many factors, including the supply and demand of the beef and milk, cattle 

diseases, vegetation, climate, and government intervention, etc. (Damron 2013). The 

impacts of these factors on different phases of beef and dairy cattle production systems 

are various because of their demand on and availability of water and food resources. 

Thus, it is challenging to isolate the impacts of a single factor such as agricultural 

drought on cattle production because of the complexity of the problem.  
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Figure 5.1. A list of major factors affecting cattle production systems  

 

During a short period with little changes in technologies and government 

intervention for cattle production and no outbreaks of cattle diseases, the major 

affecting factors are market, animal feed production, and climate. Thus, it is possible to 

capture the impacts of these factors on cattle production during a short period in which 

the dynamics of technologies, governmental intervention, and cattle disease are 

relatively small. The market, in terms of beef and dairy supply and demand, plays an 

important role in determining cattle production (Delgado 2005; Preston and Willis 

2013) as either beef or dairy is a merchandise and is manipulated by the law of value. 

Animal feed production, especially hay and corn production, is one of the important 

factors affecting cattle production (Damron 2013; Preston and Willis 2013). Severe 

agricultural drought can reduce the forage and crop production, thus the feeding for 
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cattle in the SGP. In addition, evaporative cooling, in the form of sweating and panting, 

is the principle mechanism for cattle to dissipate heat (Blackshaw and Blackshaw 

1994). Following exposure to heat, cattle may increase respiration rate and body 

temperature, and reduce feed intake (Hahn 1999). The failure of homeostasis caused by 

heat stress during the severe drought period may lead to reduced productivity or even 

cattle mortality (Blackshaw and Blackshaw 1994; Vitali et al. 2015).  

The objective of this study is twofold: (1) to assess the impacts of agricultural 

drought and heatwave on cattle production in the SGP; and (2) to build a model to 

characterize the dynamics of cattle production in the SGP using market, vegetation, and 

climate factors during 2000-2015. Agricultural statistics data from the USDA-NASS 

including beef price, beef consumption, hay production, and grain price were used to 

represent the market and vegetation factors on cattle production. Meteorological data 

were included to indicate the temperature and water resources stress on cattle. Two 

drought indices, namely the Standardized Precipitation Index (SPI) (McKee et al. 1993, 

1995) and the Evaporative Stress Index (ESI) (Anderson et al. 2013; Anderson et al. 

2011; Anderson et al. 2007), were also included to represent drought stress. The 

multiple linear regression and Random Forests were used to build the model and 

analyze the importance of those affecting factors. 

5.2 Materials and methods 

5.2.1 Study area 

This study focuses on the Southern Great Plains in the U.S., specifically 

including Kansas (KS), Oklahoma (OK), and Texas (TX). The mean annual 

precipitation decrease from the east (1400 mm) to the west (200-400 mm) across the 
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region. Both inter- and intra-annual precipitation are highly variable (Christian et al. 

2015; Flanagan et al. 2017; Weaver et al. 2016). Maximum temperatures in summer are 

usually coincident with low humidity and strong winds, which in turn generate high 

rates of soil moisture depletion through ET. Most of the area is covered by sub-humid 

grassland and semiarid grazing land. Wheat (spring wheat in the north and winter wheat 

in the south) and corn are the major crop types (Tyler et al. 2015). Soil types are mainly 

sandy and clay with small surface slopes (Carter 1994). 

5.2.2. Data  

5.2.2.1. Meteorological data  

Annual maximum temperature (Tmax), minimum temperature (Tmin), and 

precipitation (Precip) data were collected from the National Oceanic and Atmospheric 

Administration (NOAA) National Centers for Environmental Information (NCEI) for 

KS, OK, and TX during 2000-2015. Cattle consume significantly more water during 

warmer temperatures and the periods of high temperature can increase the temperature 

stress and lead to a loss of productivity. Extremely high temperature could result in an 

increase of cattle mortality (Vitali et al. 2015). Cattle exposed to cold weather require 

more energy to maintain their body reserves and body temperatures (Belasco et al. 

2016). Precipitation is the water source for vegetation growth and surface water bodies, 

which is the important water supply for cattle in ranches.  

5.2.2.2. Standardized Precipitation Index and Evaporative Stress Index 

Two widely used drought indices, namely SPI and ESI, were used to 

characterize drought during 2000-2015. SPI characterizes drought and anomalous wet 
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periods through depicting the anomaly of precipitation to the historical mean at different 

time scales(Hayes et al. 1999). Common time scales are 3, 6, and 12 months. The 12 

month SPI (SPI-12) reflects long-term precipitation patterns and is used to indicate year 

long drought. ESI characterizes drought at different time scales (1, 2, and 3 months) 

through describing temporal anomalies in evapotranspiration (ET) based on surface 

energy balance model and satellite remote sensing data. The 3-month composite ESI 

(ESI-3) ending at the last week of August is used to reflect summer drought.  

5.2.2.3. Agricultural statistics data from USDA National Agricultural Statistics Service  

Cattle production (for each state of the SGP), beef price (for the US), and beef 

consumption (for the US) data from the USDA-NASS 

(https://www.nass.usda.gov/Quick_Stats/) were used to reflect the dynamics of cattle 

industry during 2000-2015. The county level cattle production data were also included 

to show the spatial distribution of cattle production anomalies in representative years 

(2010, 2011, and 2012). There are many different categories for cattle statistics such as 

cattle on feed, beef cows, milk cows, etc. To simplify the problem, only cattle include 

calves (total cattle number) is used in this study. 

Animal feed (forage and grain) production, is affected by drought as most of 

crop and grass producing fields rely on rainfall. Hay production data for each state 

during 2000-2015 were collected from the USDA-NASS. As the vast majority of the 

slaughter cattle in the US are fed on corn-based grain to quickly gain weight in feedlots 

before they are sent to slaughter houses, the corn price plays an important role in 

determining the cattle production. We included the dynamics of corn prices in our 

analysis. 

https://www.nass.usda.gov/Quick_Stats/


115 

5.2.3. Statistical analysis 

To quantitatively describe the impacts of socioeconomic and environmental 

factors on cattle production, we used the multiple linear regression to build statistical 

models of cattle production using Tmax, Tmin, Precip, SPI-12, ESI-3, hay production, 

corn production, beef price  and beef consumption as independent variables. R-square 

(R2) and residual standard error (RSE) were used to evaluate the performance of the 

model. As some of these variables might be correlated, for example, beef price and beef 

consumption, we used stepwise linear regression. Another ensemble machine learning 

method, the Random Forests (Breiman 2001; Liaw and Wiener 2002), is also used in 

regression models. In addition to the performance evaluation matrix (R2 and mean 

squared error (MSE)), the importance of variables was ranked by the Random Forests 

regression method. 

5.3 Results 

5.3.1 Spatial distribution and annual dynamics of cattle production in the SGP 

Western counties in the SGP had the most of total cattle number (all cattle and 

calves category from USDA-NASS) which is overlapped with the Ogallala Aquifer. 

Central OK and eastern TX are another two areas with high density of total cattle 

number (Fig. 5.2a). The areas with larger total cattle number usually have bigger 

standard deviation during 2000-2015 (Fig. 5.2b). The anomalies of the total cattle 

number in 2010 were mostly near zero with TX pan handle seeing a relatively large 

increase (Fig. 5.3a). In 2011, most of the counties lose a big amount of cattle and calves 

(more than 6000 head), especially in middle OK and east TX with more than 14000 

head decrease. The extent of decrease in western counties in the SGP was less than 
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central OK and eastern TX (Fig. 5.3b). In 2012, the decrease in the total cattle number 

continued but with a larger spatial extent (Fig. 5.3c). It is also noteworthy that several 

counties in KS and western TX even increased the amount of cattle and calves in 2011 

and 2012. 

 

Figure 5.2. Mean and standard deviation of all cattle and calves for 2000-2015  

 

 

Figure 5.3. Anomalies of all cattle and calves in 2010-2012  
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For the period between 2000 and 2010, the total cattle number were stable for all 

three states (Fig. 5.4). However, there was a sharp drop in the total cattle number in 

2011 and 2012 for both OK and TX. The total cattle number bounced back after 2012 in 

OK while it continued to decrease until 2013 in TX. KS also experienced decreasing in 

the total cattle number in 2011 and 2012. However, the extent was much smaller than 

the other two states. 

 

Figure 5.4. Dynamics of cattle production during 2000-2015 

 

5.3.2. Drought and heatwave conditions during 2000-2015 

5.3.2.1. Spatial distribution of drought-affected regions in the US in 2010-2012 

The SPI-12 values were close to zero for the SGP in 2010 while it ranged from 1 

to 2 for the Corn Belt indicating a wet condition for that area (Fig. 5.5a). The ESI-3 

values were around zero in summer 2010 for both the SGP and Corn Belt showing no 

summer drought for both regions (Fig. 5.5b). In 2011, the SPI-12 values were below -2 

for most of the SGP indicating severely dry conditions and some of the western region 

even had SPI-12 values less than -3 indicating extremely dry conditions (Fig. 5.5c). The 
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ESI-3 values were very low in 2011 in the SGP indicating severe summer drought (Fig. 

5.5d), which was caused by abnormally low rainfall for the whole year indicated by the 

SPI-12 in 2011. In 2012, the SPI-12 values ranged from -1 to 1 in the SGP indicating 

near normal conditions (Fig. 5.5e). However, the Corn Belt were affected by drought 

with the SPI-12 values less than -1 (Fig. 5.5e). The ESI-3 indicated summer drought for 

KS and OK in 2012 while it was near normal in most of the TX (Fig. 5.5f). However, 

the Corn Belt was affected by extreme drought with ESI-3 less than -2 (Fig. 5.5f). Thus, 

it is clear that 2011 was a whole growing season drought year for the SGP while 2012 

was a summer drought year for the Corn Belt.  
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Figure 5.5. SPI-12 and ESI-3 in 2010, 2011, and 2012 (Showing US with SGP 

outlined)  

5.3.2.2. Severe drought and heatwave years from meteorological data at state level  

The variation of annual Precip was large for the states in the SGP (Fig. 5.6a). 

2012 was the lowest Precip year for KS (30% lower than the mean) and OK (47%) 

while 2011 had least Precip in TX (47%). Tmax in 2006 was more than 1°C higher than 

the mean in each of the three states. 2011 and 2012 were two continuously hot years for 

both OK and TX. Tmax in 2011 was more than 2°C higher than the mean in KS. Tmax 

values were relatively stable for other years (Fig. 5.6b). The dynamics of Tmin were 

small with a clear high peak in 2012 for all three states (Fig. 5.6c).  

 

Figure 5.6. Dynamics of annual precipitation (Precip), maximum temperature 

(Tmax), and minimum temperature (Tmin) during 2000-2013  

 

5.3.3. Dynamics of animal feed production for cattle  

The hay production was greatly reduced in 2011 (>50% reduction in OK and TX 

and 35% reduction in KS) for all three states (Fig. 5.7a). The hay production returned to 

normal in 2012 in TX while it was still low in OK and KS. The prices of the major grain 

(corn, wheat, barley, and sorghum) were mostly synchronous with an increasing trend 

throughout the study years (Fig. 5.7b). Thus, the corn price, major animal feed supply 
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for feedlot cattle, was used in later analysis. There were two high peaks in the grain 

prices centered in 2008 and 2012.  

 

Figure 5.7. Dynamics of hay production and grain prices during 2000-2015  

 

5.3.4. Dynamics of the cattle market 

The beef price was continuously increasing during the whole study period (Fig. 

5.8a). However, the increasing trend could be divided into two segments: 2000-2010 

and 2011-2015. The increasing rate after 2010 was evidently larger than before. With 

the increasing beef price, the beef consumption decreased dramatically, especially after 

2007 (Fig. 5.8b).  

 

Figure 5.8. Dynamics of the market during 2000-2015. (a) Beef price and (b) beef 

consumption  
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5.3.5. Statistical models between cattle production and driving factors over years 

The stepwise multiple linear regression models picked up different independent 

variables for each state (Table. 5.1). Among them, beef consumption and Tmin were 

always included in the models. Tmax, Precip, beef price, and corn price were included in 

two models. The remaining variables, namely hay production, SPI12, and ESI3 were 

only included in one model. Along the increasing temperature gradient, the models 

performed better with increasing R2 values and significant levels (decreasing P values). 

MSE was smallest for TX considering the total size of the cattle number.  

Table 5.1. Results from stepwise linear regression models for each state  

 

 

The performances of the Random Forests models (R2) also increased along the 

increasing temperature gradient (Fig. 5.9). The values of R2 were smaller than those 

from the corresponding stepwise multiple linear regression models. All the Random 

Forests models ranked beef price, corn price, and beef consumption as the three most 

important factors. Moreover, we can identify the increased importance of the drought 

indicators along the increasing temperature gradient. Specifically, ESI3 and SPI12 were 

ranked closer to the three most important variables in OK and TX than in KS (Fig. 5.9 

left panels). Since the Random Forests model is supposed to perform better with larger 
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datasets, we also run the Random Forests model using all the state-years data. Overall, 

the new model performed very well with an R2 equal to 0.96 (Fig. 5.10). However, the 

importance of variables changed with Tmin, Tmax, and hay production ranked as the three 

most important variables.  

 
Figure 5.9. Results from the Random Forests for KS (a), OK (b), and TX (c). The 

graphs show the importance of variables calculated by the Random Forests. 

Figures in left panels and right panels show the importance of variables from 

different perspectives. Larger values indicate higher importance. The percent of 

variance explained (R2) and mean squared error (MSE) were inserted in the 

corresponding panels. 
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Figure 5.10. Results from the Random Forests using all the state-years data.  

 

5.4 Discussion 

5.4.1. Impacts of drought and heatwave on the cattle production 

Our results showed that the two consecutive drought years, 2011 and 2012, 

dramatically decreased the cattle production in the SGP, especially in OK and TX (Fig. 

5.4). In 2011, the whole year drought (Fig. 5.5c) reduced the hay production (Fig. 5.7a), 

the important food supply for cattle ranching, thus leading to the big decrease in the 

cattle production. In contrast, 2012 was not a very severe drought year in the SGP but 

the cattle production was still decreased. The reason lies on that severe summer drought 

happened in the Corn Belt (Fig. 5.5f) increased the corn price (Boyer et al. 2013; Lobell 

et al. 2014) which is the major food for feedlot cattle. This result demonstrates that 

droughts can impact the cattle production through different mechanisms because of 

different spatial and temporal extent. It also indicates the importance of telecoupling 

(socioeconomic and environmental interactions between coupled human-natural 

systems over distances) in studying system dynamics (Liu et al. 2007; Liu et al. 2013; 

Liu et al. 2015).  
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The cattle production is supposed to be relatively resistant to slight drought 

conditions. For example, 2006 was a dry year in OK and TX with above normal Tmax 

(Fig. 5.6a) and decreased hay production (Fig. 5.7a). However, the cattle production 

was not clearly different than other years within the 2000-2010 period. When a severe 

drought happened, like in 2011 and 2012, we see the comprehensive impacts of drought 

including high maximum temperature, low hay production, and high corn price (Wilhite 

et al. 2007). Combined together, these factors greatly increased the cost of cattle raising 

and reduced the profit margin (Belasco et al. 2016; Vitali et al. 2015) which, in turn, 

dramatically decreased the cattle production. In consecutive years of drought, the 

impacts are more severe and persistent as it takes time for the cattle industry to recover 

(Osei et al. 2015). The calf is usually born within a 12-month interval and it takes 

another year to produce milk or be mature enough for beef production. Our results 

indicate that drought and the accompanying heatwave caused the large losses of cattle 

production in the SGP (Belasco et al. 2016; Blackshaw and Blackshaw 1994; 

Bohmanova et al. 2007; Hahn 1999; Vitali et al. 2015; West 2003). 

5.4.2. Model the dynamics of the cattle production 

We modeled the dynamics of the cattle production during 2000-2015 using the 

multiple linear regression and the Random Forests approaches (Table 5.1, Fig. 5.9 and 

10). Both methods performed well in terms of the coefficient of determination (high R2 

values). The performances of the Random Forests models were not better than the 

multiple linear regression models in corresponding states. However, the performance of 

the Random Forests (R2 =0.96) was very good when combining all the state-years data 

(Fig. 5.10). This might be due to the better performance of the Random Forests in 
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bigger datasets which needs big data samples to build the regression trees. Although the 

Random Forests did not show the structure of the model, it did give the importance of 

variables (Breiman 2001; Liaw and Wiener 2002). The beef price, corn price, and beef 

consumption were ranked as the three most important factors in each state (Fig. 5.9) 

while Tmax, Tmin, and hay production were the most important parameters in determining 

the cattle production when combining all the state-years (Fig. 5.10). The increasing 

temperature gradient from KS to OK and TX might cause this difference as the 

variation of temperatures were relatively small when running the model by state. 

Although corn is the major food supply for feedlot cattle, the corn price was not 

included in all of the stepwise multiple linear regression (Table 5.1) and it was also not 

an important parameter in the all state-year Random Forests model (Fig. 5.10). The 

reason is that the corn price was jointly driven by both the market and climate. Fox 

example, the high prices in 2008 was because of global food crisis (Headey and Fan 

2008; Mueller et al. 2011). The high prices in 2011 and 2012 were mostly attributed to 

drought (Wan et al. 2015). It is apparent that the corn price is important for the cattle 

production, but we need to find a better way to incorporate it into the model. 

5.4.3. Other factors affecting the cattle production beside of droughts 

The cattle production systems are complex and affected by many factors 

(Damron 2013). We demonstrated that the consecutive years of drought drove the big 

loss of the cattle production in the SGP and modeled the dynamics of the cattle 

production using climate, animal feed production, and market parameters. This analysis 

was under the assumption that the dynamics of technologies and governmental 

intervention for cattle production were small and no outbreak of cattle diseases. 
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However, this assumption might not hold in some instances. For example, introduce of 

feedlot significantly boosted the cattle production in 1970 (Damron 2013; Menkhaus et 

al. 1981).  

The sensitivity to drought could be different among regions depending on the 

availability of the groundwater resources (Hornbeck and Keskin 2014; Peters 2003). KS 

was mostly depended on groundwater for livestock usage and the ratio of groundwater 

to surface water increased from 2005 to 2010 (Table 5.2). That might be a good 

explanation of the much smaller decrease extent for the cattle production in KS than in 

OK and TX, even under two consecutive years of severe drought. As mentioned before, 

the cattle production in several counties in KS and western TX even significantly 

increased during drought (Fig. 5.3b and c) Those counties with increasing cattle 

numbers were overlapped with the Ogallala Aquifer, one of the world’s largest aquifers 

(Torell et al. 1990). Cattle ranchers with easy access to the groundwater resources 

(Long et al. 2013; Rosenberg et al. 1999) might increase the cattle stock to utilize the 

increasing beef price in drought to gain more profit. However, this phenomenon needs 

to be further explored at the county level.  

Table 5.2. Livestock water withdrawals in 2005 and 2010. Values may not sum to 

totals because of independent rounding. 

 

 

Ground

water-

2005

Surface 

water-2005 Total-2005 Ratio-2005

Ground

water-

2010

Surface 

water-2010 Total-2010 Ratio-2010

KS 84.3 23.8 108 3.5420168 91 23 114 3.9565217

OK 54.7 107 162 0.511215 32.5 56.3 88.8 0.5772647

TX 162 95.9 258 1.6892596 131 127 259 1.0314961
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5.5 Conclusion 

This study investigated the impacts of drought and heatwave on the cattle 

production in the SGP during 2000-2015 using meteorological, remote sensing, and 

agricultural statistical data. The consecutive years of drought and heatwave in 2011 and 

2012 dramatically decreased the cattle production in OK and TX. The decrease extent in 

KS was smaller probably because of its greater accessibility to the groundwater 

resource than OK and TX. 2011 was a whole growing season drought year in the SGP 

which decreased the hay production and thus cattle production, while 2012 was a 

summer drought year in the Corn Belt which dramatically increased the corn price and 

thus decreased cattle production. It implicates that when studying a local phenomenon, 

it is necessary to consider the interaction between relevant systems. Using market, 

animal feed production, and climate factors, we modeled the dynamics of the cattle 

production using two different statistical models. The factors included in the stepwise 

multiple linear regression were different for the three states. Along the increasing 

temperature gradient, the performances of models increased. The Random Forests 

method performed well for the all state-years data and shows the potential in predicting 

the dynamics of cattle production. Longer periods of estimation of the cattle production 

needs to consider other factors including technologies, governmental intervention, and 

cattle disease. 
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Chapter 6: Conclusions and perspectives 

Remote sensing has been widely used in LULCC and drought monitoring 

because of its high spatial and temporal resolutions. Eddy covariance technique has 

been popular in studying ecosystem carbon, water vapor, and energy dynamics. It is 

important to facilitate the usage of remote sensing and eddy covariance technologies in 

characterizing cropland, drought and land management. My dissertation aims to 

strengthen the usage of remote sensing and eddy covariance technologies to 

characterize cropland, drought and management and their impacts on ecosystem 

dynamics through four case studies including paddy rice mapping, agricultural drought 

monitoring, land management effects assessment, and evaluating the impacts of drought 

on cattle production. 

Chapter 2 develop a new phenology-based paddy rice mapping algorithm to map 

paddy rice planting area from the rice-wetland coexistent area using MODIS and 

Landsat 8 imagery. The comparison and validation tests indicated the high accuracy of 

our paddy rice map. There is a need to develop a more accurate Landsat- and/or 

MODIS-based natural wetland mask in the future to further improve the accuracy of the 

paddy rice mapping. The combination of Landsat 7, 8, and MODIS imagery can open 

up many more possibilities for the mapping of paddy rice in complex landscapes. 

Chapter 3 used digital repeat photography (PhenoCam), satellite remote sensing, 

and the eddy covariance technique to investigate the impacts of burning, baling, and 

grazing on plant phenology and carbon fluxes in an Old World bluestems pasture. 

Multiple datasets allowed studying intra-annual variations caused by various 

management practices. The larger increase of GPP after large rain in baled grassland 
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(photosynthetically more active vegetation) compensated the reduction in GPP caused 

by baling. This result indicated that the interaction of management practices with 

climate is important when studying their impacts on GPP. Since management practices 

are often complex (e.g, grazing and baling in the pasture), we need multiyear data from 

different sources for a better understanding of individual and confounding impacts of 

those management practices. Investigation of the dynamics of EC footprint and its 

relative geolocation to affected area is important when evaluating the impacts of 

management practices. 

Chapter 4 expanded and applied an LSWI-based drought algorithm to map 

agricultural drought of tallgrass prairie in the SGP. The results are comparable to other 

widely used drought products. The spatial pattern of drought duration was highly 

correlated with the decreasing precipitation gradient from east to west. In the most 

severe WGSD years, the area affected by WGSD was more than double of the mean 

value. LSWI-based drought depictions are sensitive to both precipitation anomalies 

from the historical mean and abnormal seasonal precipitation distributions. Future 

studies should incorporate LSWI into other drought products to improve their 

performance and further explore LSWI thresholds to identify agricultural drought and 

develop LSWI-based drought severity schemes for other land cover types. 

Chapter 5 found that the consecutive years of drought and heatwave in 2011 and 

2012 dramatically decreased the cattle production in OK and TX. The decrease extent in 

KS was smaller probably because of the greater accessibility to the groundwater 

resource. 2011 was a whole year drought in the SGP which decreased the hay 

production and thus cattle production, while 2012 was a summer drought year in the 



130 

Corn Belt which increased the corn price and thus cattle production. It implicates that 

when studying a local phenomenon, it is necessary to consider the interaction between 

relevant systems. Longer periods of estimation of the cattle production needs to 

consider other factors including technologies, governmental intervention, and cattle 

disease. 
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