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Abstract 

The Arbuckle Group is an important geologic unit in the state of Oklahoma 

because of its suitability as a saltwater disposal (SWD) zone. In 2014, the Arbuckle 

Group received about 68% of the total volumes of saltwater disposal in the state of 

Oklahoma. Numerous studies show that the rate of saltwater injection into the Arbuckle 

Group is related to the number and magnitude of earthquakes occurring in Oklahoma. 

Despite the importance of the Arbuckle Group as a SWD zone and its apparent 

relationship to induced seismicity, the hydraulic parameters of the Arbuckle Group have 

not been widely studied or were studied in association with the Simpson Group. 

Since the mid-20th century, water level fluctuations as a response to earth tides 

have been used for obtaining aquifer properties of confined and unconfined aquifers. In 

confined aquifers, earth tides act as a cyclic stress causing water level fluctuations. 

Time-series analyses of the fluctuations can be used for estimating elastic properties of 

an aquifer and aquifer hydraulic properties such as specific storage, storage coefficient, 

transmissivity, porosity, matrix compressibility, hydraulic conductivity, and hydraulic 

diffusivity. Solid earth tide analysis is a useful tool for calculating rock properties in 

aquifers or reservoirs where it is not practical to conduct a pumping or a slug test. 

Confined reservoirs such as the Arbuckle Group respond to small strains and act as 

volume strain meters. 

In 2016, a network of inactive Arbuckle SWD wells were instrumented so that 

pressure fluctuations could be monitored and analyzed. For this thesis research, fluid 

levels in six of the study wells were evaluated. Fluid levels responded to solid earth tide 

stresses so that 90-day time series could be analyzed and used to estimate hydraulic and 
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rock properties of the Arbuckle Group in the Anadarko Shelf and the Cherokee Platform 

geological provinces of Oklahoma. Hydraulic parameters derived from these analysis of 

these data include median values of  1.39 E-06 m-1 specific storage, 3.69 E-04 storage 

coefficient, 12.76 m2/d transmissivity, 24% porosity, 3.02 E-07 psi-1 matrix 

compressibility, 2.21 E-07 m/s hydraulic conductivity, 34.37 mD intrinsic permeability, 

and 0.69 m2/s hydraulic diffusivity. Values obtained for each of the properties computed 

in this study differ from the values used in previous studies that modeled the effects of 

saltwater disposal on subsurface fluid pressure and potential connections to seismicity. 

These improved values will allow for more realistic predictions of subsurface fluid 

behavior, pore pressure diffusion, and other geomechanical and seismological 

processes. 
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Chapter 1: Introduction 

Since the mid-20th century, water level fluctuations as a response to earth tides 

have been used for obtaining aquifer properties of confined and unconfined aquifers 

(Cutillo and Bredehoeft, 2011). In confined aquifers, earth tides act as a cyclic stress 

causing water level fluctuations. Time-series analysis of the fluctuations can be used for 

estimating elastic properties of an aquifer and aquifer hydraulic properties such as 

specific storage, storage coefficient, transmissivity, porosity, matrix compressibility, 

permeability, hydraulic conductivity, and hydraulic diffusivity (Bernard and Delay, 

2008; Cutillo and Bredehoeft, 2011; Mehnert et al., 1999).  

The Arbuckle Group is a confined reservoir that underlies a large part of the 

state of Oklahoma and is comprised mainly by carbonates (Ragland and Donovan, 

1991). Downhole pressure was monitored for several inactive wells in Alfalfa, Grant, 

Lincoln, Logan, and Pawnee Counties as early as August 2016. The open intervals of 

the wells are in the Arbuckle Group and, in most cases, have no observed effects or 

stresses from production or injection; therefore, water level fluctuations are largely due 

to solid earth tides.  

The objective of this study was to analyze the naturally-induced stress of earth 

tides that are present in the time series to obtain the elastic and hydraulic properties of 

the Arbuckle Group in areas of the Anadarko Shelf and the Cherokee Platform. Water 

level responses and theoretical solid earth tides are used to analyze the phase lag 

between the water level fluctuations and the theoretical tides for the aquifer parameters, 

and the barometric efficiency to estimate porosity (Cutillo and Bredehoeft, 2011; Rahi, 

2010). 
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1.1 Background and Previous Studies 

The Earth’s surface can be considered a “free surface” in the sense that the 

vertical direction is the principal direction for strain tensors. Natural stresses, such as 

tidal strain, atmospheric pressure load, and oceanic tides are able to move the surface of 

the earth up or down (Rahi, 2010). Earth and ocean tides are products of lunar and solar 

tidal forces (Rahi, 2010). Earth tides stress inland aquifers and reservoirs, generating 

measurable fluctuations in water levels (Cutillo and Bredehoeft, 2011; Rahi, 2010). 

Tidal strain occurs in the horizontal plain as a wave phenomenon twice a day, with 

amplitude of the horizontal component of 10-8 (Cutillo and Bredehoeft, 2011).  

The tidal gravitational potential can be described as a set of harmonic functions, 

with each tidal component having a distinct amplitude (A), frequency (f), and phase 

relation (Ф). There are five principal components of the tidal potential, which are the 

M2 and N2 semidiurnal lunar tides, the S2 semidiurnal solar tide, the O1 diurnal lunar 

tide, and the K1 diurnal lunar-solar tide (Cutillo and Bredehoeft, 2011). 

Water level fluctuations as a response to tidal strain have been reported in the 

literature since 1880. Melchior (1956) performed harmonic analysis on a data set from 

one deep well and one hot spring. In 1960, Melchior expanded the harmonic analysis to 

previous data sets, including a data set from Theis from Carlsbad, New Mexico. He 

assumed the aquifer was a finite cavity, developed a mathematical formulation that 

relates displacement in water caused by a change in volume, and was able to calculate 

dilatation. With the relationship developed by Melchior, it was estimated that the 

semidiurnal component of the tide produces a dilatation with an amplitude of 2 x 10-8, 

which corresponds to a water level fluctuation of about 0.4 cm (Bredehoeft, 1967). 
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Nonetheless, Melchior observed an amplitude of about 2 cm in his data set. Later on, 

the phase lag between the theoretical tides and the actual observations was used to 

develop a relationship to estimate aquifer properties. 

Bredehoeft (1967) compiled data for water level fluctuations from the literature 

and the theory explaining the fluctuations. Bredehoeft (1967) described the response of 

a well to tidal strain for confined and unconfined aquifers, as well as the tidal 

deformation and relationship between stress and strain and gives formulas to obtain 

specific storage and porosity from tidal components.  

Marsaud et al. (1993) used time series analysis to investigate the relationship 

between barometric efficiency, earth tides, and water level fluctuations in a confined 

aquifer to estimate porosity, storage coefficient, and aquifer thickness. In their study, 

they describe the influence of the atmospheric pressure load in changes in water levels 

and influence of earth tides. The authors analyze the validity of the theory in a karstic 

aquifer and how spectral analysis can be applied to obtain parameters. Marsaud et al. 

(1993) correlated the results obtained from the earth tides method with pumping test 

analysis and concluded that tidal strain analysis can improve aquifer parameter 

estimation.  

Mehnert et al. (1999) estimated transmissivity from water level fluctuations of a 

sinusoidal forced well. Fluctuations as a response to earth tides and changes in 

atmospheric pressure were analyzed, assuming that atmospheric pressure varied in a 

sinusoidal fashion. Using type curves and estimation of the ratio of amplitudes of the 

fluctuations, Mehnert et al. (1999) presented a simpler model for calculation of 

transmissivity that allows for the estimation of transmissivity for limited time series 
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data with satisfactory estimations of transmissivity from 116 observations recorded over 

3.5 minutes.  

Maréchal et al. (2002) analyzed cyclic fluctuations in an unconfined crystalline 

rock aquifer using short-interval water level measurements with an automatic water 

level recorder. The authors analyzed earth tides and precipitation to determine the forces 

influencing the fluctuations in water levels. Spectral analyses carried out by Maréchal et 

al. (2002) concluded that the fluctuations observed in the well were a response to earth 

tides rather than effects from pumping in nearby wells or precipitation patterns. Tesseral 

waves of daily period and sectorial waves of semi-daily period were identified in the 

dataset. The analysis indicated low porosity for the aquifer, as could be expected for a 

crystalline rock aquifer.  

Bernard and Delay (2008) used correlation and spectral analyses of time series 

to determine porosity and storage coefficient in a calcareous aquifer. In their study, 

time-series analysis was used to understand the relationship between barometric 

pressure changes, earth tides, and water level fluctuations. The relationships were used 

to estimate porosity, storage capacity, and barometric efficiency. Flow between fracture 

matrix drainage and karstic features was observed in thin confined layers of the aquifer. 

Despite the mixed conditions in the aquifer, the earth tides method was able to produce 

accurate estimates for the aquifer’s parameters, compared to results obtained from 

pumping tests. The authors concluded that time series analysis can be used even for 

complex flow environments.  

Rahi (2010) estimated aquifer parameters of the Arbuckle-Simpson Aquifer in 

south-central Oklahoma by analyzing water level fluctuations in nine wells. Applying 
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the methods of the previous studies, Rahi (2010) estimated specific storage values of 5.4 

x 10-8 and 2.1 x 10-7 cm-1 for wells tapping confined portions of the aquifer and wells 

tapping semi-confined portions, respectively. Porosity calculated for the Arbuckle-

Simpson aquifer by the barometric efficiency method ranged from 15% to 45% in 

confined and semi-confined portions, respectively. 

Cutillo and Bredehoeft (2011) analyzed another confined carbonate aquifer in 

California. The water level fluctuations used in their study were from a deep open well 

completed in a Paleozoic age confined aquifer. Using tidal strain analysis and a set of 

harmonic functions, the authors estimated amplitudes, frequency, and phase relation for 

the five principal components that comprise tidal potential. With the data set and the 

harmonic analysis, Cutillo and Bredehoeft (2011) estimated specific storage from the 

relationship between water level fluctuations and tidal dilatation and used barometric 

efficiency to estimate porosity. Finally, with areal tidal strain analysis they estimated 

specific storage and porosity to compare with the first series of results. Moreover, they 

could calculate Skempton’s coefficient, transmissivity, and matrix compressibility.  

 

1.2 Geologic and Hydrogeologic Setting 

The Arbuckle Group is a geological unit of Cambrian to Early Ordovician age 

composed mainly of carbonates (Johnson, 1991). In Oklahoma, the Arbuckle Group is 

comprised of six formations including the West Spring Creek Formation (top), 

Kindblade, Cool Creek, McKenzie Hill, Signal Mountain, and the Fort Sill Formation 

(base) (Ragland and Donovan, 1991). The group underlies nearly the entire state of 

Oklahoma and outcrops in southwestern Oklahoma in the Slick Hills, in the Wichita 
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Uplift geological province, and in south-central Oklahoma in the Arbuckle Uplift 

geological province (Morgan and Murray, 2015). 

The Arbuckle Group comprises the mid-southern part of what is known as the 

Great American Carbonate Bank (GACB) (Fritz et al., 2013). It is composed of cyclic 

carbonates dominated by intertidal and shallow subtidal facies (Fritz et al., 2013). The 

deposition of the Arbuckle Group began in the Late Cambrian, after the rifting and 

formation of the Oklahoma aulacogen (Christenson et al., 2011). During the Late 

Cambrian to Early Ordovician, shallow seas extended from what is known today as 

Northern Mexico to Canada, depositing carbonate sediments in an almost flat ramp 

(Figure 1) (Christenson et al., 2011; Johnson, 2008). The Arbuckle Group equivalent 

units in neighboring states include the El Paso Group in west Texas, the Ellenburger 

Group in central and north Texas, the Knox Group in the eastern United States, and the 

Beekmantown Group in the northeastern United States (Morgan and Murray, 2015). 



7 

 

  
Figure 1. Rock types of Late Cambrian to Early Ordovician age (Modified from 

Johnson (2008)). 

 

The thickness of the Arbuckle Group can range from approximately 1,000 ft to 

2,000 ft in the Anadarko Shelf and Cherokee Platform to 7,000 ft in the Anadarko 

Basin, Ardmore Basin, and in the Arbuckle Uplift (Johnson, 1991, 2008). The top of the 

Arbuckle can be more than 30,000 ft below land surface in the Anadarko Basin or 

outcropping in other regions (Morgan and Murray, 2015). 

The dolomites of the Arbuckle Group have been susceptible to dissolution 

during cycles of uplift and erosion, which created unconformities within the Arbuckle. 

Cycles of karstification and diagenetic alterations in the rocks, such as dolomitization, 

have also augmented the porosity and generated cavernous areas (Carr et al., 1986). 
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Hydraulic parameters of the Arbuckle Group have not been widely studied or 

were studied in association with the Simpson Group since both units comprise the 

Arbuckle-Simpson Aquifer in south-central Oklahoma (Christenson et al., 2009; 

Christenson et al., 2011). The Arbuckle Group can be characterized as a confined 

aquifer, underlying the Simpson Group. In the areas where the group is almost 

superficial or outcrops, the water contained within the unit is freshwater (Christenson et 

al., 2011). Freshwater from the group, in general, can be used for public supply, being 

suitable for all regulated uses (Christenson et al., 2009). In other parts of Oklahoma, the 

Arbuckle is deeper and more appropriately referred to as a reservoir, because it contains 

brine and petroleum rather than freshwater.  

The Arbuckle Group has been commonly used as a saltwater disposal (SWD) 

zone in the areas where it is deep below the land surface. In 2014, the Arbuckle Group 

received about 68% of the total volumes of saltwater injected into the subsurface in 

Oklahoma (Murray, 2015). The Arbuckle has shown a capacity for receiving vast 

amounts of saltwater and residues from the oil and gas industry, with little or no 

injection pressure (Carrell, 2014). Despite the common use of the Arbuckle Group as a 

SWD zone, the regional variations in hydraulic properties and the pressure regime of 

the Arbuckle are poorly understood.  
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1.3 Study Area 

The study area is located in northwestern and north central Oklahoma, in 

Alfalfa, Grant, Pawnee, Lincoln, and Logan Counties in the Anadarko Shelf and 

Cherokee Platform geological provinces of Oklahoma (Northcutt and Campbell, 1995). 

In the Anadarko Shelf, the rocks are lying in an almost flat configuration, with a very 

low inclination of the layers (Johnson, 2008) (Figure 2).  

 

 

Figure 2. Cross section from the Anadarko Shelf in northwestern Oklahoma 

(Modified from Johnson (2008)).  

In the study area, there are six inactive SWD wells that were instrumented with 

pressure transducers in August 2016. The wells have their open interval in the Arbuckle 

Group. Figure 3 presents the locations of the instrumented wells. Depth to water below 

the land surface ranged from 73 feet to 375 feet.  
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Figure 3. Monitoring wells in study area for tidal strain analysis.  
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1.4 Research Objectives 

Water level fluctuation as a result of tidal strain was analyzed to estimate rock 

properties and parameters for the Arbuckle Group in northwestern and north-central 

Oklahoma. Spectral analysis of time series and application of fast Fourier transforms 

was used to calculate specific storage, storage coefficient, transmissivity, porosity, 

matrix compressibility, hydraulic conductivity, intrinsic permeability, and hydraulic 

diffusivity of the Arbuckle Group. Some of the objectives of this study were to: 

 

• Analyze effects of solid earth tides and atmospheric pressure on water level 

fluctuations observed in inactive SWD wells. 

• Evaluate elastic properties of rocks from horizontal tidal strain and the tidal 

gravitational potential. 

• Compute reservoir parameters from horizontal tidal strain and the tidal 

gravitational potential. 
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Chapter 2: Methodology 

The motions of the moon and the sun create centrifugal forces or stresses that 

result in small latitudinal and longitudinal strains in the crust of the Earth (Cutillo and 

Bredehoeft, 2011). These stresses are known as solid earth tides, which have been long 

recognized to result in strain in the subsurface and produce corresponding fluctuations 

in water levels (Cutillo and Bredehoeft, 2011). Using automatic measuring devices, the 

fluctuations in water levels can be recorded in short-time intervals (Cutillo and 

Bredehoeft, 2011; Rahi, 2010). Time-series analysis of the fluctuations gives a series of 

harmonic functions in which tidal components can be identified according to their 

amplitude (A), frequency (f), and phase relation (Ф) (Cutillo and Bredehoeft, 2011). 

The methodology described below was used to evaluate reservoir and rock 

properties of the Arbuckle Group in northwestern and north-central Oklahoma. 

 

2.1 Pressure Monitoring Instrumentation 

Before the deployment of the pressure transducers, baseline monitoring was 

conducted. Fluid levels and downhole pressure/temperature measurements were taken 

using a Geotech interface probe and a Calscan Badger+ gauge, respectively. Pressure or 

fluid level was recorded in 30-second time intervals, since the pressure transducers were 

deployed. The density of fluid above the pressure transducer was measured during the 

baseline monitoring using a Calscan Badger+ gauge (Kroll et al., 2017). Pressures can 

be compensated for atmospheric pressure fluctuations using data from nearby Solinst 

Barologgers that measure barometric pressure. However, because the Arbuckle is 

confined by thousands of feet of sedimentary rock in the study area with low 
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permeability units that form pressure seals, it is a confined reservoir and is not affected 

by barometric pressure changes. 

2.2 Normalization of Data 

Inactive Arbuckle SWD wells were instrumented with Solinst Model 3001 LT 

Levelogger Edge M100:F300 pressure transducers. Using the land surface elevation at 

the well, well completion measurements, and density of fluid above the pressure 

transducer, pressure data were normalized to elevation above sea level (m).  

 

2.3 Baseline Trends 

An analysis of the uncompensated data was performed to begin the time-series 

interpretation and analysis. The objective of this step was to identify possible long-term 

trends that result from regional flow, injection, and seasonal changes. These trends were 

quantified and corrected for, when necessary, in time-series analyses.  

 

2.4 Tidal Signal 

The discrete Fourier transforms technique synthesizes data in sine and cosine 

functions. For the time series analyses, the software TSoft was used (Van-Camp and 

Vauterin, 2005). TSoft is an open-source software package for the analysis of time 

series and Earth tides. The system allows for interactive processing of data with a 

graphical interface. Each file is stored in a (.txt) text file format and stores information 

on the location, the instrument used to collect the data, the type of measurement, and the 

units. The software includes a location database, that allows for the calculation of 

theoretical tide components for any given latitude, longitude, and ground elevation. The 
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model for the calculation of the theoretical tide is based on an inelastic non-hydrostatic 

Earth model. Processing of data, filtering, and evaluation of the spectra using fast 

Fourier transforms was made with TSoft. With harmonic analysis, the time-series were 

represented by Fourier series as a regression model. Calculation of Fourier components 

were plotted against tidal period to produce a periodogram for each well and identify 

tidal components (Table 1). The frequencies of the tidal components are common to all 

earth tide data; however, the amplitudes and phase relations for each component are 

characteristic of each set of tide data (Merritt, 2004). Within this time series analysis, 

two different harmonic analyses were performed. The first was tidal signal 

identification, and the second was amplitude and phase angle determination. Both 

analyses complement each other, and are used to estimate rock and reservoir properties.  

 

Table 1. Five main harmonic components of tides with values compiled from 

Merritt (2004).  

 

Symbol 
Frequency (cycles 

per day) 
Period (hours) Explanation 

O1 0.93 25.82 Main lunar diurnal 

K1 1.00 23.93 Lunar-solar diurnal 

M2 1.93 12.42 
Main lunar 

semidiurnal 

S2 2.00 12.00 
Main solar 

semidiurnal 

N2 1.90 12.66 Lunar elliptic 
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2.5 Computation of properties 

Water level fluctuations produced by solid earth tide stresses are a function of 

some properties of the reservoir, such as specific storage, storage coefficient, 

transmissivity, porosity, matrix compressibility, and permeability. It is assumed that 

changes in water level in a well are equal to change in pressure head in the reservoir. 

The applied stress to the reservoir is absorbed by compression of the pore fluid. Hence, 

elastic properties and porosity of the reservoir will determine the amplitude of water 

level response when there is a change in volume.  

 

2.5.1 Specific Storage 

The estimation of specific storage (SS) is achieved from the response of water 

level fluctuations to earth tides. In Bredehoeft (1967), it was shown that the change in 

head is produced by the tidal dilatation of the reservoir, which is a function of SS. 

Specific storage can be computed if the changes in head can be measured and Poisson’s 

ratio (v) for the reservoir is known (Bredehoeft, 1967; Cutillo and Bredehoeft, 2011).  

The following expression relates SS (L-1) to tide generating potential (W2) and 

changes in head (h): 

 

(1) 𝑆𝑆 = − [(
1 − 2𝑣

1 − 𝑣
)(

2ℎ̅ − 6𝑙 ̅

𝑎𝑔
)]
𝑑𝑊2

𝑑ℎ
 

 

Where, 

v is the Poisson’s ratio for the reservoir material (dimensionless), 

ℎ̅ and 𝑙 ̅are Love’s numbers (constants) used in tidal analysis (dimensionless), 

𝑎 is the radius of the Earth (L); and 
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g is acceleration due to gravity (L/T2). 

 

The negative sign on Eq. 1 indicates that when the tide generating potential (W2) 

increases, head in the reservoir decreases (Merritt, 2004). The entire term in brackets in 

Eq. 1 is a constant.  

The tide generating potential (W2) for Eq. 1 must be predicted from equilibrium 

tide theory. Using Eq. 2, W2 can be computed: 

 

(2) 𝑊2(𝜃, 𝜑, 𝑡) = 𝑔𝐾𝑚𝑏𝑓(𝜃)𝑐𝑜𝑠[𝛽(𝜑, 𝑡)] 
 

 Where, 

 Km is the general lunar coefficient (L of 53.7 cm), which relates the masses of 

the earth, the moon, and the earth’s radius, and it is obtained from equilibrium 

tide theory, 

 b is an amplitude factor that has a distinct value for each tidal component with 

period (dimensionless). b is obtained from equilibrium tide theory for each 

harmonic component, 

 f(θ) is a latitude function (dimensionless) that will depend on the latitude of each 

well for each individual harmonic component; and 

 β(φ, t) is a phase term (time) that depends on the longitude φ and the Greenwich 

Mean Time (GMT).  

The dimensionless terms b, f(θ), β(φ, t) can be obtained for individual harmonic 

components of the tide, presented on Table 2.  
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Table 2. Parameters for diurnal and semidiurnal equilibrium tides, from Munk 

and MacDonald (1960) and Doodson and Warburg (1941) 
 

Tidal 

component 
b f(θ) β(θ, t) 

O1 0.377 sinθcosθ qt + φs(t) - 2φm(t) -169.8 degrees + φ 

K1 0.531 sinθcosθ qt + φs(t) -10.2 degrees + φ 

M2 0.174 0.5cos2θ 2(qt + φs(t) – φm(t) -79.8 degrees + φ) 

N2 0.908 0.5cos2θ 
2(qt + φs(t) – 1.5φm(t) + 0.5φp(t) -79.8 

degrees + φ) 

S2 0.423 0.5cos2θ 2(qt + φ) 

 

Eq. 1 is written as a derivative, but can be approximated by a finite differential 

of the change in W2 when head (h) changes by an amount Δh. For the analysis of the 

tide data set, the ratio of small finite changes (ΔW2 and Δh) in a small-time period (30 

seconds intervals) (Δt) are considered proportional to the ratio of corresponding 

amplitudes of the theoretical and observed tides. Because some of the components are 

influenced by both atmospheric and earth tide stresses, using the five main tidal 

components in Eq. 1 could lead to inaccurate results. For this reason, it is more reliable 

to use only components O1 and M2, which are solely due to solid earth tide stresses with 

no interaction of atmospheric pressure (Merritt, 2004).  

Using the function A2(T, θ), which is a function of latitude (θ), but not longitude 

(φ), the amplitude of the harmonic component can be calculated. The amplitude of the 

harmonic component of W2 will be defined as A2(T, θ) and will be replaced in Eq. 1, as 

follows: 
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(3) 𝑆𝑆 = −[(
1 − 2𝑣

1 − 𝑣
)(

2ℎ̅ − 6𝑙 ̅

𝑎𝑔
)]
𝐴2(𝑇, 𝜃)

𝐴ℎ(𝑇)
 

 

Where,  

T is the period of the harmonic component; and 

Ah(t) is the amplitude of a component of the head change of period T 

 

To compute A2(T, θ), Eq. 4 will be used. 

 

(4) 𝐴2(𝑇, 𝜃) = 𝑔𝐾𝑚𝑏𝑓(𝜃) 
 

2.5.2 Storage Coefficient 

Storage coefficient is defined as the product of the specific storage and the 

thickness of the reservoir (Freeze and Cherry, 1979). However, the thickness of the 

Arbuckle Group at each well is unknown because the top and bottom of the Arbuckle 

Group have not been well mapped from core or geophysical logs that identify these 

zones. The thickness of the open interval of each well was used to compute storage 

coefficient and multiplied by the values of specific storage calculated previously (Eq. 

5).  

 

(5) 𝑆 = 𝑆𝑆 ∗ 𝑏𝑎 

 

Where, 

ba is the thickness of the reservoir (L). 
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2.5.3 Transmissivity 

Oscillations of water levels in a well, as a response of pressure-head disturbance 

in the reservoir, are a function of periodicity of disturbances, reservoir parameters such 

as transmissivity and storativity, and inertial and storage effects. The time lag between 

earth tide dilatation of the reservoir and the water level response in the well was used to 

estimate aquifer transmissivity. Hsieh et al. (1987) derived an expression to estimate 

transmissivity of the reservoir. The phase shift (time lag) η will be a function of the 

transmissivity (T), storage coefficient (S), well radius (r), and periodicity () of the 

pressure head disturbance (Cutillo and Bredehoeft, 2011).  

The dimensionless parameters derived from Hsieh et al. (1987) are: 

 

(6) 𝑇′ =
𝑇𝑡

𝑟𝑐2
 

  

(7) 𝑆′ =
𝑆𝑟𝑤

2

𝑟𝑐2
 

 

Where, 

T’ is the redefined transmissivity (dimensionless), 

S’ is the redefined storage coefficient (dimensionless), 

t is the period of the fluctuation of the solid earth tide component (1/f), 

rc is the radius of the well casing; and 

rw is the radius of the screened portion of the well. 
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Using Eq. 6 and Eq. 7, transmissivity can be determined from Figure 4 and 

Figure 5 and converted into standard units of L2/T if the phase shift and an order of 

magnitude of S are known. 

 

Figure 4. Ratio of amplitudes of the well water level and reservoir pressure head 

oscillations as a function of dimensionless transmissivity, from Merritt (2004).  
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Figure 5. Phase lag between the well water-level and reservoir pressure head 

oscillations as a function of dimensionless transmissivity, from Merritt (2004).  

 

2.5.4 Matrix Compressibility 

Acworth et al. (2015) showed that if we assume undrained conditions for the 

reservoir apply for the frequencies involved, we can define barometric efficiency (BE) 

as: 

(8) 𝐵𝐸 = 1 − 𝛾 

Where, 

γ is the loading efficiency.  
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We can express the loading efficiency of the reservoir as a relationship between 

fluids compressibility, porosity calculated from BE, and compressibility of the material 

(β) (Eq. 9).  

(9) 𝛾 =
𝛼

𝜙𝛽𝑤 + 𝛼
 

 

Where,  

α is the matrix compressibility,  

βw is the fluid compressibility, 

and 𝜙 is porosity. 

 

Rearranging Eq. 9, we can obtain values of matrix compressibility for the 

reservoir, having already calculated barometric efficiency and porosity (Acworth et al., 

2015). 

2.5.5 Hydraulic Conductivity 

Hydraulic conductivity (K) is a function of the porous medium and the fluid 

(Freeze and Cherry, 1979). Being a function of both properties, the hydraulic 

conductivity refers to the rate at which water will move through a porous medium. A 

relatively higher viscosity water (e.g., brine) will be transmitted through a porous 

medium at a slower rate than a relatively lower viscosity water (e.g., freshwater). 

Hydraulic conductivity was computed from the transmissivity (L2/T) divided by the 

aquifer thickness to obtain a value in terms of L/T. 
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2.5.6 Intrinsic Permeability  

Intrinsic permeability (ki) is a function of the porous medium alone and it refers 

to the material to transmit fluid (Fetter, 2013). Intrinsic permeability was computed 

from the values obtained of hydraulic conductivity using Eq. (10). 

(10) 𝑘𝑖 =
𝐾𝜇

𝜌𝑤𝑔
 

 

Where,  

µ is the dynamic viscosity of brine, 

ρw is the density of brine, and  

g is acceleration due to gravity. 

 

2.5.7 Hydraulic Diffusivity 

Hydraulic diffusivity is a measure of the rate at which fluid can spread through a 

material, and is represented as the ratio of transmissivity to storage coefficient (Freeze 

and Cherry, 1979), so was computed from the properties obtained in previous steps. 

Higher permeability allows for higher fluid velocities and, therefore, faster spreading or 

migration of fluid pressure. Higher storage coefficient allows more fluid to be stored in 

the porous medium per unit change in head; therefore, higher storage coefficients result 

in slower spreading or migration of fluid pressure (Keranen et al., 2014). 

 

2.6 Barometric Efficiency 

The Leveloggers are not vented, hence barometric efficiency was calculated to 

determine if uncompensated or compensated data should be used for time-series 
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analysis. The objective of this calculation was to evaluate whether the data needs to be 

compensated in a 30 second time interval or if the data needs to be changed to terms of 

absolute pressure from gauge pressure using the average of the barometric pressure. 

Barometric efficiency (BE) is a useful tool to compute porosity of a confined 

aquifer after having calculated specific storage from tidal strain. It is defined as the ratio 

of the aquifer pressure head change to the atmospheric pressure change (Rahi, 2010). 

Barometric efficiency was computed from the approach found in Acworth et al. (2015) 

and computes BE from theoretical tide strain and the tide components in the continuous 

data.  

Using the amplitude of the components O1, M2, and S2 of the earth tide strain in 

the water level record and the theoretical tide, a first estimate of barometric efficiency 

was computed. It was demonstrated that barometric efficiency of an aquifer can be 

calculated from the ratio of the aquifer response to the atmospheric pressure change that 

drives the corresponding response. The S2 component of solid earth tides has part of the 

solid earth tide and atmospheric pressure. Therefore, the hydraulic head response to S2 

component has two parts (Eq. 11). 

(11) 𝑆2ℎ = 𝑆2ℎ−𝑎 + 𝑆2ℎ−𝑒𝑎𝑟𝑡ℎ 
 

Where,  

S2h-a is the input from the atmospheric tide and, 

S2h-earth is the input from the solid earth tide. 

 

The barometric efficiency is computed from the ratio of S2h-a to S2h. The value 

for S2h was obtained by first finding the value of S2h-earth using amplitudes of the 
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components S2 and M2 in the theoretical tide strain calculated in TSoft (Figure 6) (Van-

Camp and Vauterin, 2005). Then, multiplying the ratio of S2 to M2 by the amplitude of 

the M2 component in the water level record we can obtain a value for S2h-earth (Eq. 11 

and Eq. 12). 

 

(12) 𝑆2ℎ−𝑒𝑎𝑟𝑡ℎ =
𝑆2
𝑀2

𝑀2ℎ 

 

Where,  

S2 and M2 are the amplitudes of the tidal components in the theoretical tidal 

strain and, 

M2h is the amplitude of component M2 in the water level record. 

 

Figure 6. Amplitudes of M2 and S2 components in the theoretical tidal strain for 

well Alfalfa 03 to calculate S2:M2 ratio. 

 

Having S2h-earth and the amplitude of S2h from the water level record, S2h-a was 

computed from Eq. 11. With Eq. 13, the barometric efficiency was calculated. 
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(13) 𝐵𝐸 =
𝑆2ℎ−𝑎
𝑆2ℎ

 

 

 

2.7 Reservoir Porosity 

The porosity can be computed using the barometric efficiency estimated from 

the methods explained above. Eq. 14 relates porosity and specific storage as follows: 

 

(14) 𝜂 =
𝐵𝑒𝑆𝑆

𝛽𝑤𝑔𝜌𝑤
  

 

Where,  

η is porosity (dimensionless),  

Be is barometric efficiency (dimensionless) 

SS is specific storage (m-1) 

βw is compressibility of water (ms2/kg); and 

ρw is density of water (kg/m3) 

g is acceleration due to gravity (m/s2) 

 

The compressibility of water and weight density of water were obtained for 

values of brine with approximately 150,000 ppm, which is a value typical for saltwater 

(Murray and Holland, 2014). 
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Chapter 3: Present Study 

3.1 Introduction 

Solid earth tides stress inland confined aquifers causing water level fluctuations. 

Since the mid-20th century, hydrologists have been refining techniques to obtain aquifer 

and rock properties from water level fluctuations as a response to earth tides 

(Bredehoeft, 1967; Cutillo and Bredehoeft, 2011; Hsieh et al., 1987). Evaluation of the 

water level fluctuations due to solid earth tides as time series is used to estimate aquifer 

properties such as specific storage, storage coefficient, transmissivity, porosity, matrix 

compressibility, and permeability (Bernard and Delay, 2008; Bredehoeft, 1967; Cutillo 

and Bredehoeft, 2011; Mehnert et al., 1999). Water level fluctuations as a response to 

solid earth tides constitute a very useful tool to obtain aquifer properties in aquifers 

where it is not practical to do an aquifer or slug test (Cutillo and Bredehoeft, 2011).  

The Arbuckle Group is an important geologic unit of Cambrian to Early 

Ordivician age composed mainly of carbonates (Johnson, 1991; Ragland and Donovan, 

1991). The Arbuckle Group has been used as a saltwater disposal (SWD) zone by the 

oil and gas industry in Oklahoma. In 2014, the Arbuckle Group received about 68% of 

the total volumes of saltwater disposed in the state of Oklahoma (Murray, 2015). In the 

last years, induced seismicity has brought attention to the Arbuckle Group, since some 

studies suggest that increases in saltwater injection into the Arbuckle Group is linked to 

increase in the number and magnitude of earthquakes occurring in Oklahoma (Keranen 

et al., 2013; Keranen et al., 2014; Weingarten, 2015; Weingarten et al., 2015; Witze, 

2015). Despite the importance of the Arbuckle Group as a SWD zone and induced 

seismicity, the hydraulic parameters of the Arbuckle Group have not been widely 
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studied or were studied in association with the Simpson Group, since both units 

comprise the Arbuckle-Simpson Aquifer in south-central Oklahoma (Christenson et al., 

2009; Christenson et al., 2011).  

In this study, water level and barometric pressure records have been measured at 

six deep, inactive, Arbuckle SWD wells located in the Anadarko Shelf and Cherokee 

Platform in Alfalfa, Grant, Lincoln, Logan, and Pawnee Counties in Oklahoma. 

Downhole pressure was monitored in the wells beginning in August 2016. The open 

intervals of the wells are in the Arbuckle Group and, in most cases, have no observed 

effects or stresses from production or injection; therefore, water level fluctuations are 

largely due to earth tides.  

 

3.2 Objectives 

Analysis of water level fluctuations as a result of tidal strain was used to 

estimate reservoir properties for the Arbuckle Group in northwestern and north-central 

Oklahoma. The main purpose of this study was to calculate specific storage, storage 

coefficient, transmissivity, porosity, matrix compressibility, and permeability of the 

Arbuckle Group using spectral analysis of time series and application of fast Fourier 

transforms. The objective was achieved by analyzing effects of solid earth tides and 

atmospheric pressure on water level fluctuations in inactive SWD wells; evaluating 

elastic properties and reservoir properties from horizontal tidal strain and tidal 

gravitational potential.  
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3.3 Materials and Methods 

Continuous measurements, with pressure transducers, of water levels was 

necessary to observe short time-frequency fluctuations and then compute the reservoir 

and rock properties of the Arbuckle Group. Prior to the deployment of the pressure 

transducers, baseline monitoring of fluid levels, downhole pressure, and temperature 

were measured using a Geotech interface probe and a Calscan Badger+ gauge. After 

deployment, pressure or fluid level was recorded in 30-second time intervals using 

Solinst Model 3001 LT Levelogger Edge M100:F300 pressure transducers. Data from 

the pressure transducers was normalized to meters above sea level using land surface 

elevation at the well, well completion measurements, and density of fluid above the 

pressure transducer. Atmospheric pressure was observed on 30-second time intervals 

with Solinst Barologgers so that it could later be used for calculating barometric 

efficiency. 

With the measurement, computations of properties were achieved using time 

series analysis and fast Fourier transforms. Data for fluid elevation in meters above sea 

level (msl) was filtered using a FFT bandpass filter with cutoff frequency of 1.5 cycles 

per day (cpd) and a band width of 1 cpd to contain the signals of the tidal components at 

1 and 2 cpd (Table 1). The filter eliminated possible baseline trends and retrieved the 

water level fluctuation measurements as a series of signals with the form of the 

expected signal for solid earth tides (Figure 7). The fluid elevation, filtered data, and 

theoretical tidal strain for each well is presented in Appendix A.  

After applying a bandpass FFT filter in the fluid elevation data, an evaluation of 

the spectrum was performed to obtain the amplitudes of each tidal component in the 
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water level measurement (Figure 8). Amplitudes for O1 tidal component were obtained 

using a bandpass FFT filter with the frequency of the component as the cut-off 

frequency and a band width of 0.01 cpd to avoid computing the signal from component 

K1 and possible biased results. The frequency spectrum for the observed and theoretical 

solid earth tide of each well is presented in Appendix B. 

 

Figure 7. Time series for the well Alfalfa 03. Fig 7a. shows the water level 

fluctuations measurement. Fig 7b. shows the filtered data (FFT band pass filter 

cutoff frequency 1.5 cpd and band width 1 cpd). Fig 7c. shows the theoretical tide 

generating potential.  

 

A 

B 

C 



31 

 

Figure 8. Spectrum of tidal components in filtered data from well Alfalfa 03. Each 

tidal component is identified. 

 

3.3.1 Estimation of Specific Storage 

Bredehoeft (1967) showed that the change of head is a response of the dilatation 

of the reservoir product of tidal strain, and that change of head is a function of specific 

storage (SS). Using the changes in head in the well and knowing Poisson’s ratio (v), SS 

was computed (Bredehoeft, 1967; Cutillo and Bredehoeft, 2011; Merritt, 2004). 

Eq. 15 relates SS to tide generating potential (W2) and changes in head (h): 

(15) 𝑆𝑆 = − [(
1 − 2𝑣

1 − 𝑣
)(

2ℎ̅ − 6𝑙 ̅

𝑎𝑔
)]
𝑑𝑊2

𝑑ℎ
 

 

Typical values used for Poisson’s ratio (v) for confined aquifers is 0.25 and 

Love’s numbers (ℎ̅) and (𝑙)̅ are 0.6 and 0.07, respectively. The term a is the radius of 

the earth (6.371 E08 cm) and g is the acceleration due to gravity (979 cm/s2). Therefore, 

the term in the brackets in Eq. 15 is a constant. The tide generating potential was 

predicted with equilibrium tide theory using Eq. 16. 

(16) 𝑊2(𝜃, 𝜑, 𝑡) = 𝑔𝐾𝑚𝑏𝑓(𝜃)𝑐𝑜𝑠[𝛽(𝜑, 𝑡)] 
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Eq. 16 is a constant where g is acceleration due to gravity (979 cm/s2), Km is the 

general lunar coefficient (53.7 cm), b is a constant value defined for each component, 

f(θ) is a function of the latitude of each well, and cos[β(φ,t)] is a function of latitude, 

longitude, and time (Table 2). Eq. 15 is written as a derivative; however, it can be 

approximated by a finite differential. For the analysis of the data sets, the ratio of small 

infinite changes in tide generating potential (ΔW2) and head (Δh) are proportional to the 

ratio of corresponding amplitudes of the theoretical and observed tides. In groundwater 

studies, it is most common to use the tidal components O1 and M2, since they do not 

have interactions with atmospheric pressure and are completely caused by solid earth 

tides stresses (Cutillo and Bredehoeft, 2011; Merritt, 2004). Therefore Eq. 14 becomes 

Eq. 17.  

(17) 𝑆𝑆 = −[(
1 − 2𝑣

1 − 𝑣
)(

2ℎ̅ − 6𝑙 ̅

𝑎𝑔
)]
𝐴2(𝑇, 𝜃)

𝐴ℎ(𝑇)
 

 

To calculate the amplitude of the theoretical tide components, Eq. 18 was used. 

(18) 𝐴2(𝑇, 𝜃) = 𝑔𝐾𝑚𝑏𝑓(𝜃) 
 

The amplitude of each tidal component was computed from Eq. 18, which is an 

equation dependent on the latitude of the well. Amplitude of each tidal component in 

the observed tide was estimated using TSoft (Van-Camp and Vauterin, 2005) and fitting 

a tidal model to the water level fluctuations observed.  
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3.3.2 Estimation of Storage Coefficient 

With specific storage determined from the amplitudes of theoretical and 

observed tides, the storage coefficient (S) was computed by multiplying the thickness of 

the open interval portion of each well (ba) by SS (Eq. 19). Since the top and bottom of 

the Arbuckle Group are not well mapped in Oklahoma, the open interval of each well 

gave an estimate of the thickness of the reservoir.  

(19) 𝑆 = 𝑆𝑆 ∗ 𝑏𝑎 

 

3.3.3 Estimation of Transmissivity 

The time lag between earth tide dilatation of the reservoir and the water level 

response in the well was used to estimate transmissivity (T). Hsieh et al. (1987) derived 

an expression to estimate transmissivity of a reservoir. Using the storage coefficient (S), 

the radius of the well rw, and the radius of the casing rc, a value of redefined storage 

coefficient (S’) was computed (Eq. 20). 

(20) 𝑆′ =
𝑆𝑟𝑤

2

𝑟𝑐2
 

 

Where, 

S’ is redefined storage coefficient (dimensionless), 

r2
w is radius of the well (L2), 

r2
c is radius of the casing (L2) 

The redefined storage coefficient (S’) was plotted in a series of graphs using the 

amplitude ratio or the phase lag between the water level and reservoir pressure head 

oscillations (Figure 4 and Figure 5). The value obtained had units of dimensionless 
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transmissivity (T’). Using Eq. 21, a value for transmissivity (L2/T) was calculated for 

the reservoir.  

(21) 𝑇′ =
𝑇𝑡

𝑟𝑐2
 

 

Where,  

T’ is dimensionless transmissivity, 

T is transmissivity (L2/T), and 

t is period of the tidal component (T) 

 

3.3.4 Estimation of Matrix Compressibility 

Matrix compressibility (β) was computed assuming undrained conditions for the 

reservoir that apply the frequencies involved in the observed solid earth tides. 

Barometric efficiency (BE) can also be expressed BE=1-γ, where γ is the loading 

efficiency. Eq. 22 relates the loading efficiency with fluids compressibility, porosity, 

and matrix compressibility.  

(22) 𝛾 =
𝛼

𝜙𝛽𝑤 + 𝛼
 

 

Rearranging the terms in Eq. 22, matrix compressibility was computed for the 

Arbuckle Group.  

 

3.3.5 Estimation of Barometric Efficiency 

Barometric efficiency (BE) is a useful tool to compute porosity of a confined 

aquifer after having calculated specific storage from tidal strain. It is defined as the ratio 
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of the aquifer pressure head change to the atmospheric pressure change (Rahi, 2010). 

Two different methods were used to compute barometric efficiency from the barometric 

pressure and the water level measurements. 

Using the amplitude of the components O1, M2, and S2 of the earth tide strain in 

the water level record and the theoretical tide, a first estimate of barometric efficiency 

was computed. The S2 component of solid earth tides has part of the solid earth tide 

(S2h-earth) and atmospheric pressure (S2h-a). Therefore, the hydraulic head response to S2 

component has two parts (Eq. 23). 

(23) 𝑆2ℎ = 𝑆2ℎ−𝑎 + 𝑆2ℎ−𝑒𝑎𝑟𝑡ℎ 
 

The barometric efficiency is computed from the ratio of S2h-a to S2h. To obtain 

the value for S2h, the value of S2h-earth must be found first. This value can be obtained 

from the amplitudes of the components S2 and M2 in the theoretical tide strain. Then, 

multiplying the ratio of S2 to M2 by the amplitude of the M2 component in the water 

level record we can obtain a value for S2h-earth. Having S2h-earth and the amplitude of S2h 

from the water level record, S2h-a was computed from Eq. 22. With Eq. 24, the 

barometric efficiency was calculated. 

 

(24) 𝐵𝐸 =
𝑆2ℎ−𝑎
𝑆2ℎ

 

 

3.3.6 Estimation of Porosity 

With barometric efficiency estimated, the porosity can be computed. Eq. 25 

relates porosity (η), specific storage (SS), compressibility of water (βw), and density of 

water (ρw). Values for βw and ρw were obtained for brine with TDS of approximately 



36 

150,000 ppm, which is a value typical for brine in Oklahoma reservoirs (Murray and 

Holland, 2014).  

(25) 𝜂 =
𝐵𝑒𝑆𝑆

𝛽𝑤𝜌𝑤
  

 

3.3.7 Hydraulic Conductivity 

Hydraulic conductivity (K) is a function of the porous medium and the fluid 

(Freeze and Cherry, 1979). Hydraulic conductivity was computed from the 

transmissivity (L2/T) divided by the aquifer thickness (L) to obtain a value in terms of 

L/T. 

3.3.8 Intrinsic Permeability 

Intrinsic permeability (ki) is a function of the porous medium alone (Fetter, 

2013). Intrinsic permeability was computed from the values obtained for hydraulic 

conductivity using Eq. (26). 

(26) 𝑘𝑖 =
𝐾𝜇

𝜌𝑤𝑔
 

 

Where,  

µ is the dynamic viscosity of brine, 

ρw is the density of brine, and  

g is acceleration due to gravity. 

 

3.3.9 Hydraulic Diffusivity 

Hydraulic diffusivity is a measure of the rate at which fluid can spread through a 

material, and is represented as the ratio of transmissivity to storage coefficient (Freeze 
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and Cherry, 1979), so was computed from the properties obtained in previous steps. 

Higher permeability allows for higher fluid velocities and, therefore, faster spreading or 

migration of fluid pressure. Higher storage coefficient allows more fluid to be stored in 

the porous medium per unit change in head; therefore, higher storage coefficients result 

in slower spreading or migration of fluid pressure (Keranen et al., 2014). 

 

3.4 Results and Discussion 

Time series analyses of the water level fluctuations showed that all the studied 

wells respond to solid earth tide stresses. Therefore, it was possible to estimate rock 

properties for the Arbuckle Group from the fluid level response. The amplitudes of the 

fluctuations obtained for O1 and M2 components and the lag in time (phase shift) are a 

function of the reservoir material and hydrologic properties of Arbuckle Group. Table 3 

presents the measured amplitudes and phase shifts for O1 and M2 tidal components in 

the observed solid earth tides for the wells.  

Wells Alfalfa 04 and Grant 06 present noise in the data, which can be a product 

of other processes interfering with the water level fluctuations. The interference can be 

observed in the anomalous phase shifts obtained for the tidal components. To avoid said 

interferences that bias the data, a bandpass FFT filter with a band width of 0.01 cpd was 

applied to the specific frequencies of O1 and K1 components to retrieve the amplitude 

for O1 without interference from K1.  
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Table 3. Amplitudes and lags in time for the tidal components O1 and M2 in the 

water level record for the studied wells. 

Well ID 
Tidal 

component 

Amplitude 

(m) 

Phase shift 

(degrees) 

Alfalfa 03 
O1 0.0054 91.42 

M2 0.0130 169.95 

Alfalfa 04 
O1 0.0030 75.50 

M2 0.0037 156.73 

Grant 06 
O1 0.0030 46.38 

M2 0.0037 135.66 

Lincoln 10 
O1 0.0032 88.75 

M2 0.0053 160.08 

Pawnee 11 
O1 0.0055 85.08 

M2 0.0140 178.92 

Logan 12 
O1 0.0039 88.46 

M2 0.0110 -179.71 

 

3.4.1 Specific Storage 

Specific storage (SS) is defined as the volume of water that an aquifer expels or 

absorbs when the pressure head decreases or increases by a unit amount from a unit 

volume (Fetter, 2013). Computed specific storage values ranged from 3.38 E-07 m-1 to 

2.66 E-06 m-1 with a median of 1.39 E-06 m-1. These values are one order of magnitude 

lower than previous values reported in studies of the Arbuckle-Simpson Aquifer. 

However, the portion of the Arbuckle Group in the study area is confined and only 

evaluates the Arbuckle Group, and not the mixed zone of the Arbuckle Simpson 

Aquifer. The estimates based on the O1 and M2 tidal components appear to be consistent 

in each monitoring zone for the Arbuckle Group. As well, textbook values for confined 

aquifers are consistent with specific storage values obtained for the Arbuckle Group in 

the study area. Figure 9 presents the range of values for SS including a comparison to 
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previous values estimated for the Arbuckle-Simpson Aquifer and textbook values for 

confined calcareous aquifers.  

 

Figure 9. Range of SS computed values from solid earth tide analyses (present 

study) and comparison from previous studies. 

 

3.4.2 Storage Coefficient 

The storage coefficient (S), also known as storativity, refers to the volume of 

water an aquifer releases from or takes into storage from a decrease or increase of one 

unit in head from a unit surface area (Fetter, 2013). Storage coefficient values computed 

from the estimates of SS ranged from 5.67 E-05 to 2.57 E-03, with a median of 3.69 E-

04 (dimensionless parameter). Typical values for a confined reservoir range from E-03 

to E-05 (Todd, 1980). The values of storage coefficient are one to two orders of 

magnitude lower than previously reported values for the Arbuckle Group or the 

Arbuckle-Simpson Aquifer (Figure 10). The difference in the values are a function of 

the thickness of the unit for the computation of the property and the unconfined, semi-

confined, or confined nature of the unit in the study area. Previous studies for the 

Arbuckle-Simpson Aquifer were conducted in semi-confined portions of the aquifer 



40 

where the Arbuckle Group has a larger thickness and the thickness of the Simpson 

Group was considered as well.   

 

 

Figure 10. Range of S computed values from solid earth tide analyses (present 

study) and comparison from previous studies. 

 

3.4.3 Transmissivity 

The transmissivity (T) is defined as the rate at which water is transmitted 

through a unit width of porous medium under a unit hydraulic gradient. It is a function 

of the liquid (viscosity and density), the porous media, and the thickness of the porous 

media (Fetter, 2013). From the method developed by Hsieh et al. (1987), the redefined 

storage coefficient (S’) was computed using the radius of production and radius of the 

wells. Redefined storage coefficient ranged from 4.12 E-05 to 1.85 E-03 with a median 

value of 4.68 E-04. Using the graphs from the approach made by Hsieh et al. (1987) and 

the amplitude ratios of the components O1 and M2 in the water level records it was 

possible to calculate dimensionless transmissivity and then convert it to transmissivity 

in units of L2/T. The values of transmissivity range from 2.09 m2/d to 375.48 m2/d. 
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Figure 12 presents the range of computed transmissivity and comparison to previous 

values reported for the Arbuckle Simpson Aquifer. Values of transmissivity were 

computed from the storage coefficient using the redefined storage coefficient, therefore 

they are a function of the thickness of the reservoir. Thickness of the Arbuckle Simpson 

Aquifer is greater than the thickness of the Arbuckle Group in the study area.  

 

 

Figure 11. Range of T computed values from solid earth tide analyses (present 

study) and comparison to previous studies. 

 

3.4.4 Matrix Compressibility 

Values of matrix compressibility were computed using the values of barometric 

efficiency and porosity. The values of matrix compressibility range from 9.26 E-08 psi-1 

to 6.18 E-07 psi-1, with a median value of 3.02 E-07 psi-1. Figure 12 presents the range 

of values for matrix compressibility computed for this study and compares them to 

reservoir engineering textbook compressibility ranges. The value used for fluid 

compressibility was calculated for brine with approximately 150,000 ppm of TDS, a 

typical value for saltwater of the Arbuckle Group (2.67 E-07 psi-1). There were not 
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estimates of matrix compressibility for the Arbuckle Group in previous studies. 

However, the values obtained in this study are consistent with values of matrix 

compressibility for confined calcareous reservoirs like the Arbuckle Group. 

 

 

Figure 12. Range of α computed values from solid earth tide analyses (present 

study) and comparison to textbook value. 

 

 

3.4.5 Barometric Efficiency 

Barometric efficiency for the wells was computed by the methods described in 

Acworth et al. (2015) (Section 3.3.5). Calculated barometric efficiency ranges from 

0.42 to 0.87. For confined aquifers, the values of barometric efficiency must be close to 

1 or 1 (Acworth et al., 2015; Rahi, 2010). The values of barometric efficiency computed 

are consistent with expected values for a confined aquifer, as they are close to 1. Figure 

13 presents the range of values for barometric efficiency for this study. Only one other 

previous study for the Arbuckle Simpson Aquifer in south-central Oklahoma computed 
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values of barometric efficiency. The median of the values reported for Rahi (2010) is 

lower than the present study. In Rahi (2010), portions of the Arbuckle Simpson Aquifer 

studied were semi-confined to confined. Lower values of barometric efficiency 

correspond to semi-confined portions of the aquifer.  

 

 

Figure 13. Range of BE computed values from solid earth tide analyses (present 

study) and comparison from previous studies. 

 

 

3.4.6 Reservoir Porosity 

The porosity values computed for the Arbuckle Group in the monitoring wells 

ranged from 5% to 54%, with an median value of 24%. Freeze and Cherry (1979) 

estimate values of porosity ranging from 2% to 50% for karst and cavernous limestone. 

Previous diagenetic studies of the Arbuckle Group have shown that there is 

karstification and vuggy porosity in the dolomites of the unit, which can account for the 

values of porosity of 54% computed in the present study. Figure 14 presents the 

porosity values computed for the studied wells and comparison to textbook values and 

textbook values. 
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Figure 14. Range of η computed values from solid earth tide analyses (present 

study) and comparison from previous studies. 

 

 

3.4.7 Hydraulic Conductivity 

Hydraulic conductivity was computed from the transmissivity divided by the 

thickness of the open interval of the wells. Hydraulic conductivity refers to rate at which 

water will move through a porous medium. For confined reservoirs made of dolomite 

and limestone, hydraulic conductivity can range from E-05 to E-08 m/s (Freeze and 

Cherry, 1979). Values of hydraulic conductivity computed for the wells ranged from 

7.90 E-08 m/s to 9.78 E-06 m/s, with a median value of 2.21 E-07 m/s. Figure 15 

presents the ranges of hydraulic conductivity values for the present study and 

comparison to textbook values and previous Arbuckle Simpson Aquifer studies. The 

values from Christenson et al. (2011) from south-central Oklahoma are widely used in 

hydrogeological models for saltwater injection and induced seismicity in north-central 

Oklahoma, for example, a study by Keranen et al. (2014).  
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Figure 15. Range of K computed values from solid earth tide analyses (present 

study) and comparison to previous studies. 

 

3.4.8 Intrinsic Permeability 

Intrinsic permeability was computed from the hydraulic conductivity and 

dynamic viscosity and density of brine with total dissolved solids of 150,000 ppm, 

common value for brines. Values of intrinsic permeability ranged from 12.29 mD 

(millidarcy) to 1.5 D (Darcy). According to Freeze and Cherry (1979), values for 

intrinsic permeability for limestones and dolomites range from 0.001 o 1 D. Figure 16 

presents ranges for intrinsic permeability for this study and a comparison to values of 

intrinsic permeability from previous studies.  

 

Figure 16. Range of ki computed values from solid earth tide analyses (present 

study) and comparison from previous studies. 
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3.4.9 Hydraulic Diffusivity 

Hydraulic diffusivity is represented as the ratio of transmissivity to storage 

coefficient. It is a measure of the rate at which fluid can spread through a material and is 

represented as the ratio of transmissivity to storage coefficient. Values of hydraulic 

diffusivity computed from the solid earth tide time series analyses ranged from 0.04 

m2/s to 4.91 m2/s, with a median value of 0.69 m2/s. Figure 17 presents values of 

hydraulic diffusivity from the present study and comparison to two other studies on the 

Arbuckle Group. In the Keranen et al. (2014) hydrogeologic model, they use a hydraulic 

diffusivity of 2 m2/s and test different hydraulic diffusivities for the injection scenarios. 

Their median value is one order of magnitude higher than the value obtained in this 

study. Haffener (2017) uses a median value of 0.5 m2/s for simulations of induced 

seismicity in Oklahoma.  

 

Figure 17. Range of D computed values from solid earth tide analyses (present 

study) and comparison from previous studies. 
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Chapter 4: Conclusions 

This study shows that fluid levels in the Arbuckle Group in northwestern and 

north-central Oklahoma respond to solid earth tides (in the six study wells), which is a 

surrogate of pore pressure in the host rock.  Property values of the Arbuckle Simpson 

Aquifer or the Arbuckle Group, published in the literature or used in modeling studies 

as input parameters, differ from the values obtained in this study. Most previous studies 

are representing the Arbuckle Group in combination with the Simpson Group in places 

where the unit outcrops or in semi-confined portions of the aquifer. Rock properties 

from the Arbuckle Simpson Aquifer were used as input for hydrogeologic and 

geomechanical models (Walsh and Zoback, 2015) and simulation of injection scenarios. 

Using such values for hydrogeologic and geomechanical models results in estimates of 

extreme and unrealistic pore pressure increases in the Arbuckle Group. 

Time-series analyses of the temporal and cyclic patterns of water levels in the 

wells allowed for estimation of hydraulic and rock properties of the Arbuckle Group in 

the Anadarko Shelf and the Cherokee Platform geological provinces of Oklahoma. 

Values obtained for each of the properties computed in this study are consistent with 

what would be expected for a confined reservoir for the carbonate dominated Arbuckle 

Group. Table 4 presents the summary of values obtained for elastic and hydraulic 

properties of the Arbuckle Group from solid earth tides. Using the permeability, 

porosity, and storage coefficient values obtained in the present study, simulated 

increases in pore pressure in the Arbuckle Group would be much lower than 

hypothesized in previous studies.  
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Table 4. Summary of values obtained for each property computed from solid earth 

tides time series analyses.  
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Appendix A: Monitoring Wells Observed Solid Earth Tides  
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A-1 Well Alfalfa 03 
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A-2 Well Alfalfa 04 
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A-3 Well Grant 06 
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A-4 Well Lincoln 10 
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A-5 Well Pawnee 11 

 



58 

A-6 Well Logan 12 

 



59 

Appendix B: Frequency Spectrum For Monitoring Wells And 

Theoretical Solid Earth Tides 
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B-3 Well Grant 06 
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B-4 Well Lincoln 10 
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B-6 Well Logan 12 

 
 

 


