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Abstract 

A key recommendation of a 2009 report by the National Research Council (NRC) 

was for new mesoscale networks to be integrated with existing ones to form a nationwide 

“network of networks”.  This recommendation originated in response to noted 

deficiencies in the U.S. mesoscale observing network.  The report also recommended that 

research testbeds be established, such as the Center for Collaborative Adaptive Sensing 

of the Atmosphere (CASA) DFW Urban Demonstration Network, to ascertain the 

potential benefit of proposed observing systems.   

In this work, non-conventional surface observations from Global Science & 

Technology (GST) Mobile Platform Environmental Data (MoPED), WeatherBug, 

Citizen Weather Observer Program (CWOP), and Understory Weather in the DFW 

Testbed are considered.  Radar data include Terminal Doppler Weather Radars (TDWRs) 

and CASA X-band radars.  The Advanced Regional Prediction System (ARPS) model is 

used to perform observing system experiments (OSEs) that are designed to assess the 

impact of the aforementioned networks.  The three-dimensional variational (3DVAR) 

analysis system is used, along with the complex cloud analysis, to produce analysis 

increments every 10 minutes, which are then applied to the model forecast using 

incremental analysis updating (IAU).  Experiments are performed on a supercell 

thunderstorm that impacted the DFW metroplex on 11 April 2016 with large, damaging 

hail.  The analysis includes qualitative and quantitative comparisons of the forecast 

reflectivity fields, quantitative comparisons of model-derived hail with radar-observed 

hail, and surface-level verification of the temperature and dew point fields.  The CASA 

radial velocity data offer positive benefit to the forecasted storm structure as noted in the 
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simulated reflectivity, along with model-derived hail.  However, the data appear to be 

detrimental when considering quantitative comparisons of the simulated reflectivity with 

observations.  The inclusion of dew point temperature measurements from the non-

conventional CWOP and WeatherBug networks resulted in a degradation in the 

forecasted dew point field.  The analysis concludes with a brief comparison of the results 

for single-moment versus double-moment microphysics scheme sensitivity.  Future work 

should assess the impacts of the non-conventional observations on a wider array of cases. 
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Chapter 1 

1.1 A Brief History of Numerical Weather Prediction 

In 1904, Norwegian meteorologist Vilhelm Bjerknes described the problem of 

numerical weather prediction (NWP; Bjerknes 1904).  With an accurate initial depiction 

of the atmosphere (i.e., initial conditions), along with the corresponding boundary 

conditions, one should, in theory, be able to predict the future state of the atmosphere by 

integrating the equations of motion forward in time.   

Almost two decades later in 1922, Lewis Fry Richardson proposed numerical 

integration as a means of forecasting the future state of the atmosphere (Richardson 

1922).  Integrating the primitive equations of motion by hand, Richardson predicted an 

inordinately large 6-hour pressure tendency of 146 hPa, a value that is unobservable in 

the real atmosphere.  Despite the apparent failure, Richardson’s work provided the first 

evidence of the importance of accurately sampling the initial state of the atmosphere.  The 

wind and pressure were out of balance owing to a scarcity of upper-air observations at 

the time; as such, the meteorological signal was largely masked by gravity waves 

attempting to restore geostrophic balance (Lynch 2008). 

The combination of high-performance computing capabilities and increased 

surface and upper-air observations revived interest in NWP during the late 1940s (Kalnay 

2003).  Beginning in the 1950s, operational model forecasts have been produced by the 

National Center for Environmental Prediction (NCEP; formerly the National 

Meteorological Center, or NMC), with these forecasts becoming global in 1973.  As 

model resolution and computing capabilities have continued to improve, the simulation 

of mesoscale features such as thunderstorms has become an area of research focus (Lilly 
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1990).  However, it is widely recognized that, in order for these advances in numerical 

models and computing systems to be fully realized, there must be corresponding 

improvements in observations. 

1.2 Research Motivation 

In 2003, the United States Weather Research Program (USWRP) organized a 

workshop to discuss ways of alleviating deficiencies in the current observational network 

(Dabberdt et al. 2005).  Although forecast skill has improved over time with improved 

model resolution, the full potential of advances in numerical modeling has not been 

realized.  High spatiotemporal resolution mesoscale observations, in concert with 

improved data assimilation techniques and parameterization schemes, have the ability to 

improve forecasts of wind and precipitation.  Mesoscale phenomena, such as frontal 

boundaries and mountain flows, along with planetary boundary layer (PBL) structures, 

are particularly difficult to analyze and predict with the current observational network. 

The primary recommendation of the workshop was to establish a nationwide 

network of mesoscale surface stations that collect observations at a higher spatiotemporal 

resolution.  These stations would complement the existing observational network by 

providing additional data in the lowest levels of the atmosphere where the greatest 

observational need exists.  The committee recommended that these mesoscale surface 

observations be collected at least every 5 minutes and have an average station separation 

distance of 25 km in flat terrain.  The average station separation distance should be 

reduced to roughly 10 km in areas of greater observational need, such as in coastal, 

mountainous, or urban areas.   
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The current Weather Surveillance Radar-1988 Doppler (WSR-88D; Crum and 

Alberty 1993) network of S-band (10-cm wavelength) radars is unable to observe roughly 

70% of the PBL, missing important low-level features such as convective outflows and 

mesoscale cyclones and anticyclones.  This deficiency could be remedied by integrating 

additional radars into the WSR-88D network, such as Terminal Doppler Weather Radars 

(TDWRs) and privately-owned radars operated by television stations.  Furthermore, low-

power, short-range radars could be strategically placed to fill in the gaps of the WSR-88D 

network and improve observational coverage (Dabberdt et al. 2005).  This concept has 

been demonstrated by the Collaborative Adaptive Sensing of the Atmosphere (CASA) 

consortium, which installed a testbed of four X-band (3-cm wavelength) radars in 

southwest Oklahoma in 2006 (McLaughlin et al. 2009). 

A 2009 report by the National Research Council entitled Observing Weather and 

Climate from the Ground up: A Nationwide Network of Networks expanded upon the 

findings of the 2003 workshop (National Research Council 2009).  The report noted that 

while the United States has a respectable synoptic-scale observing network, the quantity, 

quality, and accessibility of mesoscale observations varies considerably, with a rather 

poor network of three-dimensional observations.  The report proposed that existing and 

new mesoscale networks be integrated to form a nationwide “network of networks” in 

order to maximize the observational benefit of the disparate networks.  These networks 

should include comprehensive metadata in order to maximize the value of the 

observations; in fact, it is recommended that complete metadata be a requirement for 

membership in the network of networks.  The integration process should include 

collaboration from academic, public, and private partners, with the federal government 
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acting as the central authority and overseeing the resulting network.  Some examples of 

high-priority observations include tropospheric profiles of temperature and moisture and 

PBL structure.  An additional recommendation of the report is that the United States 

Department of Transportation should oversee the future deployment of high-density 

mobile observations, such as temperature and rain rate (from wiper speed) collected by 

fleets of commercial vehicles. 

Testbeds have been recommended as a means of collaboration between federal, 

private, and academic partners (Dabberdt et al. 2005 and National Research Council 

2009).  These testbeds should be established in regions that present operational 

challenges, such as urban areas and mountainous regions, with the goal being to 

objectively assess the future benefit of proposed observing systems (National Research 

Council 2009).  As detailed in Section 1.4, observing system experiments (OSEs) and 

observing system simulation experiments (OSSEs) can be used to objectively 

demonstrate whether a specific set of observations within the testbed helps improve 

forecast skill.   

1.3 DFW Urban Demonstration Network 

One such testbed has been established in the Dallas-Fort Worth (DFW) metroplex, 

known as the DFW Urban Demonstration Network (National Research Council 2012).  

The testbed is being managed by the Center for Collaborative Adaptive Sensing of the 

Atmosphere (CASA) and represents a joint endeavor among academic institutions, 

private companies, local governments, and the National Weather Service (NWS) forecast 

office in Fort Worth.  The Dallas-Fort Worth metroplex was chosen as a suitable location 

for the demonstration testbed as it is a large urban area with a population in excess of 6 
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million people that has two major airports and several highly-traveled interstate 

highways.  Most importantly, the region experiences a wide array of significant weather 

impacts, such as tornadoes, severe wind, and localized flash flooding. 

A network of eight closely-spaced X-band radars is proposed to supplement the 

existing WSR-88D radar (KFWS) in Fort Worth by providing increased low-level 

coverage in regions that are poorly observed by the existing KFWS radar (McLaughlin et 

al. 2009).  Currently, seven out of the eight planned radars have been deployed.  The radar 

coverage in the testbed will be further supplemented by the inclusion of the TDWRs at 

the aforementioned passenger airports.  Other data sources include satellites, radiosondes, 

aircraft data (e.g., take-off and landing soundings), SODARs, and various conventional 

and non-conventional surface observation networks.  More details on the individual data 

sources can be found in the following chapter. 

1.3.1 CASA X-band Radars 

CASA, an NSF Engineering Research Center (ERC), developed and deployed a 

testbed of four densely-spaced X-band radars in southwest Oklahoma in 2006, known as 

Integrated Project One (IP1; McLaughlin et al. 2009).  This region was chosen as it 

experiences numerous severe thunderstorms and tornadoes annually and is located 

roughly halfway between the existing Oklahoma City (KTLX) and Frederick (KFDR) S-

band radars, resulting in poor coverage in the lowest levels of the atmosphere (Brewster 

et al. 2005b).  Research studies that have incorporated the CASA radar data from the IP1 

deployment into storm-resolving numerical models have shown positive forecast impact 

(Brewster et al. 2007; Schenkman et al. 2011a, b; and Snook et al. 2012).  Given these 

promising results, a network of eight similar radars is being deployed within the DFW 
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Urban Demonstration Network.  With continued promising results, further expansions of 

the X-band radar technology are certainly within the realm of possibility.  These radars 

could either be deployed nationwide or in specified regions where there are increased 

observational needs, such as mountainous regions or urban areas.  Roughly 10,000 radars 

would be required to maintain the current 30-km average separation distance in a 

nationwide deployment.  More details on the CASA X-band radars can be found in 

section 2.3. 

1.4 Observing System Experiments 

According to Dabberdt et al. (2005), the decision-making process related to the 

nationwide “network of networks” should include atmospheric models, as models have 

the ability to quantify the greatest observational needs for analysis and prediction 

applications.  Moreover, models are able to determine the minimum spacing and 

resolution requirements for NWP applications, which is important in maintaining 

economic viability of future nationwide observing systems.  Historically, these goals have 

been accomplished using either observing system experiments (OSEs) or observing 

system simulation experiments (OSSEs).  In an OSSE, the impact of proposed observing 

systems can be ascertained by using simulated observations.  First, a high-resolution 

NWP model is used to generate a “nature run,” which acts as the assumed atmospheric 

“truth” (Atlas 1997).  Simulated observations are then created from this “nature run” by, 

for instance, interpolating the nature run values to the observation locations.  Numerical 

simulations using these synthetic observations are then compared to the nature run to 

determine the impact the proposed observations would have on numerical simulations if 

the system were implemented (e.g., Arnold and Dey 1986; Lord et al. 1997; Atlas 1997). 
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On the other hand, in an OSE, the impact of currently-deployed observing systems 

can be determined.  Traditionally, in an OSE, an analysis and resulting forecast are 

computed for a control experiment in which all available real-data are assimilated.  The 

control forecast can then be compared to data denial experiments, in which observations 

from a particular class of observations are denied (e.g., all aircraft observations or 

observations from a particular sensor type), to determine the magnitude of resulting 

improvements (or degradations) in the analyses and forecasts attributable to the denied 

dataset.  It is important to note that OSEs may reveal negligible or negative value of 

particular observational datasets.  For example, McNally et al. (2014) evaluated the 

impact of geostationary and polar-orbiting satellite data in the forecasted track of 

Hurricane Sandy, which made a sharp left turn into the coast of New Jersey in October 

2012.  This left hook was correctly predicted by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) well before it was forecasted by other operational centers.  

The authors found that the denial of geostationary satellite data did not significantly 

degrade the forecasted turn; however, polar-orbiting satellite data was shown to have a 

more significant role in capturing the left turn in this event. 

Coincident with improvements in numerical models, computational power, and 

data assimilation systems, increased research has been focused on determining 

observation impact using OSEs.  These studies have considered the impact of sounding 

and profiler data (e.g., Graham et al. 2000; Benjamin et al. 2010; Agustí-Panareda et al. 

2010), GPS-derived precipitable water (e.g., Smith et al. 2007; Benjamin et al. 2010), 

aircraft data (e.g., Benjamin et al. 2010), satellite radiances and satellite derived winds 
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(Bouttier and Kelly 2001; Zapotocny et al. 2002, 2005, 2007; Kazumori et al. 2008; Bi et 

al. 2011), and radar radial winds and reflectivity (Schenkman et al. 2011a,b). 

Despite this upturn in OSE-related research, determining observation impact 

using OSEs can prove to be both time-consuming and computationally expensive, due to 

a large number of experiments that must be run in order to test the denial of numerous 

combinations of observations.  In recent years, a new diagnostic tool has emerged to 

overcome these issues, known as Forecast Sensitivity to Observation (FSO; Cardinali 

2009).  In this adjoint approach, the observation impact is determined using a single 

experiment in which all observational data are assimilated using a four-dimensional 

variational (4DVAR) analysis system.  

1.4.1 OSEs using Radar Data 

Early efforts to determine the impact of radar data on high-resolution analyses and 

forecasts of convection began at the University of Oklahoma during the late 1980s and 

early 1990s with the inception of the Center for Analysis and Prediction of Storms 

(CAPS; Lilly 1990).  These efforts coincided in large part with the nationwide 

deployment of the WSR-88D network (Crum and Alberty 1993).  Assimilation of 

Doppler radar data is crucial for modeling ongoing thunderstorms, as Doppler radar is the 

only system capable of observing convective storms with the requisite spatiotemporal 

resolution. 

It is theorized that the dense network of X-band CASA radars in the DFW Urban 

Demonstration Network will better observe the lowest levels of the atmosphere, filling in 

observation gaps in the widely-spaced WSR-88D radar network.  Several studies have 

looked at the impact of CASA radar data from the IP1 deployment in southwest 
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Oklahoma during the spring of 2007.  In Schenkman et al. (2011a), a tornadic mesoscale 

convective system (MCS) and associated line-end vortex (LEV) are simulated using the 

Advanced Regional Prediction System (ARPS) model.  Reflectivity and radial velocity 

data from the WSR-88D and CASA IP1 networks are assimilated, with the ARPS 

3DVAR and complex cloud analysis (Brewster et al. 2005c; Hu et al. 2006a) using these 

data to adjust the cloud and hydrometeor fields, along with in-cloud temperature to 

account for latent heating.  When CASA radar data were assimilated alongside WSR-88D 

data, the squall line structure is improved at the end of the data assimilation window, 

resulting in an improved simulation.  The radial velocity data from CASA were 

particularly important in accurately analyzing the gust front.  In a closely-related study, 

Schenkman et al. (2011b) examined the influence of CASA radial velocity data on the 

prediction of tornadic mesovortices.  Experiments in which low-level radial velocity data 

were assimilated yielded the most accurate forecast evolution, owing to improved 

depictions of the low-level shear profile and cold pool development.  Snook et al. (2012) 

found that assimilating CASA and WSR-88D radar data into a forecast ensemble resulted 

in improved probabilistic forecasts of mesovortices, which serve as a proxy of tornado 

potential.  Stratman and Brewster (2015) examined the influence of assimilating CASA 

radar data for a cluster of supercell thunderstorms on 24 May 2011 using diverse 

microphysics parameterization schemes.  It was found that the CASA data afforded little, 

if any, value for a storm located outside the radar coverage area.  The value added for 

storms inside the radar coverage area was less clear, perhaps due to the complex 

interactions with neighboring supercells. 
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Dawson and Xue (2006) demonstrated that forecasts of a strong, bow-shaped 

MCS most closely matched the observed system when the complex cloud analysis 

package was used, thus resulting in the elimination of the 2 to 3 hour model “spin-up” 

time.  The authors also found that the use of intermittent assimilation cycles was 

beneficial.  Hu et al. (2006a) were able to successfully reproduce a tornadic thunderstorm 

in the Fort Worth area, including reductions in timing and location errors, when the 

complex cloud analysis procedure was used in conjunction with radar reflectivity data.  

In addition, the model “spin-up” time was reduced with the usage of the cloud analysis 

package.  Hu et al. (2006b) found additional forecast improvements with the assimilation 

of radial velocity data using the ARPS three-dimensional variational (3DVAR) data 

assimilation system, although a larger improvement was found with the addition of clouds 

and latent heat.  Zhao and Xue (2009) also used the ARPS cloud analysis package to 

examine the impacts of reflectivity and radial velocity data from coastal WSR-88D radars 

on the forecasted track and intensity of landfalling Hurricane Ike in 2008.  The 

assimilation of radial velocity data was found to be most impactful for improving the 

track forecast, while reflectivity data was most useful for improving the intensity forecast.  

Xiao and Sun (2007) found that assimilation of multiple-Doppler data resulted in 

improved simulations of a squall line, owing to a better initial depiction of a cold pool.  

Moreover, radial velocity data afforded the most benefit to wind and vertical velocity 

analyses, whereas radar reflectivity was most beneficial in improving hydrometeor 

analyses.  The authors also note that cycling of the Doppler radar data results in a better 

analysis than when radar data is assimilated just once.  Xue et al. (2013) found that 

assimilating radial velocity and reflectivity data from the WSR-88D network yielded a 



11 

positive impact on forecasts of convection throughout a domain covering a majority of 

the continental United States for a period of at least 24 hours. 

It is also worth noting that improved numerical simulations of convective storms 

are a cornerstone of the proposed “warn-on-forecast” paradigm (Stensrud et al. 2009; 

Stensrud et al. 2013).  In the “warn-on-forecast” paradigm, observations of convective 

storms and their ambient environment are assimilated into an ensemble of convection-

allowing models, providing NWS forecasters and end-users with probabilistic forecast 

information concerning storm evolution.  This information could then result in increased 

lead times for severe thunderstorm, tornado, and flash flood warnings, furthering the 

NWS mission of protecting life and property.  In order for “warn-on-forecasting” to 

become a reality, the forecast model must accurately depict and support ongoing 

precipitation in the short-term forecasts.  As such, continued improvements in the 

assimilation of radar data and other mesoscale data are necessary.  To that end, this 

research will examine the impacts of auxiliary CASA and TDWR radar data for a case 

study in the DFW Urban Demonstration Network to determine if the additional data 

affords improved analyses and forecasts. 

1.4.2 OSEs using Surface Data 

As described in the previous section, numerous studies have demonstrated the 

value of radar data in generating useful forecasts of ongoing convection.  Despite this, 

the use of radar data in forecasting convective initiation is fundamentally limited in that 

radar data only provides precipitation information and radial velocity data (i.e., no 

thermodynamic information is directly provided by the radar).  Moreover, operationally 

available radar data are unable to fully observe the lowest levels of the atmosphere due 
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to their spacing and the Earth’s curvature.  In response to this limitation, increased 

research focus has been placed on understanding the benefit of surface observations in 

relation to NWP analyses and forecasts. 

Mukhopadhyay et al. (2005) utilized the Regional Atmospheric Modeling System 

(RAMS) to study the effect of surface observations on model forecasts of three monsoon 

low-pressure systems in the vicinity of India.  Surface data inclusion resulted in an 

improved forecast of heavy rainfall throughout the region, when equitable threat score 

(ETS) and bias are used as forecast verification metrics.  Additionally, the authors noted 

that the surface data appear to be particularly beneficial due to the highly-varied terrain 

in the region, with surface observations identifying differential heating effects.  More 

specifically, regions of enhanced surface heating experienced a corresponding mass 

response of convergence and upward motion, which resulted in improved precipitation 

forecasts.  This study underscores the need for increased density of observations in 

regions of complex terrain. 

Alapaty et al. (2001) developed a continuous surface data assimilation technique 

and found that this new technique consistently improved boundary layer structure.  

Interestingly, the authors noted that surface data yielded the most benefit when 

assimilated alongside upper-level radiosonde data.  In essence, the full potential of the 

surface data would not be realized without the additional upper-air data.  One goal of this 

research is to identify similar relationships among observational datasets in the DFW 

Urban Demonstration Network in order to maximize observation benefit.  In a similar 

study, Ha and Snyder (2014) assimilated surface observations using the Ensemble 

Kalman Filter (EnKF) and found improvements in subsequent Weather Research and 
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Forecasting (WRF) model forecasts of a squall line.  Not only did the surface observations 

result in a better representation of the boundary layer structure, they improved horizontal 

gradients of both temperature and moisture that would prove crucial in properly 

forecasting thunderstorm development. 

Knopfmeier and Stensrud (2013) compared surface analyses generated using 

EnKF to those produced by the NCEP’s Real-Time Mesoscale Analysis (RTMA).  

Surface mesonet data were assimilated in the EnKF analyses, which overall were fairly 

similar to the RTMA analyses, albeit with a somewhat smoother appearance.  Most 

notably, denying up to 75% of the mesonet data resulted in only minor differences in the 

analyses.  The authors speculate that this result is attributable to background error 

covariance scales that are significantly larger than the average station separation distance, 

thus allowing for enhanced observational increment spreading throughout the domain.  

This research demonstrates the value in determining optimal observational density, as 

suggested by Dabberdt et al. (2005).   

Until recently, most studies focused on the impact of observational data have been 

centered on conventional observations, with only limited research focused on non-

conventional datasets.  Tyndall and Horel (2013) considered the impact of nearly 20,000 

surface observations and found that observation impact was largely dependent on the 

observation location.  For instance, observations located in metropolitan areas with 

widespread observations tended to have lower observational impact than observations in 

more remote locations with fewer overall observations.  In addition, high-impact 

observations tended to be found in regions with more local variability, such as coastal 

regions.  It is important to note that this study did not consider the impacts of observing 
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systems individually.  Perhaps the first study to do so was Hilliker et al. (2010), which 

considered the impact of surface observations from Automated Weather Services, Inc. 

(AWS).  These observations, more commonly known as “WeatherBug,” are commonly 

taken from the tops of buildings such as schools.  The authors found improvements to 

National Digital Forecast Database (NDFD) forecasts of temperature and dew point.  

However, the observations offered limited improvements for wind speed forecasts, 

perhaps as a result of biases in wind speed measurements due to siting concerns 

(sheltering by nearby buildings and trees).  NDFD forecasts use numerical model output 

as the starting point, but are modified by forecasters at the NWS Weather Forecast Offices 

(WFOs) to generate the final forecast. 

More recently, Carlaw et al. (2015) examined the impact of several non-

conventional data sources on ARPS forecasts of a tornadic supercell that impacted 

Cleburne, TX on 15 May 2013.  The non-conventional surface data sources used included 

AWS WeatherBug, Citizen Weather Observer Program (CWOP), and Global Science and 

Technology (GST) Mobile Platform Environmental Data (MoPED).  Given Cleburne’s 

location in the southwestern fringe of the DFW metroplex, it is poorly observed by 

conventional surface observing systems.  Thermodynamic measurements from the 

WeatherBug stations were able to capture increased levels of moisture in the lowest 

levels, as compared to the model background field.  Enhanced instability due to the 

increased humidity resulted in increases in both updraft velocity and vertical vorticity in 

the resultant storm, and thus produced simulated storms more closely matching 

observations.  Carlaw (2014) examined the impacts of the aforementioned non-

conventional observations on hourly analyses for a month-long period in March 2014.  
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Dew point errors were reduced owing to the non-conventional observations, when 

averaged over the entire month.  Additionally, separate cases of a dryline and cold front 

were examined, with improvements to the analyzed boundaries in both cases.  The non-

conventional observations degraded the wind speed analysis, likely due to the siting 

issues noted in Hilliker et al. (2010). 

In the framework of the nationwide “network of networks,” it is important to 

understand the advantages and disadvantages of various data sources in a research testbed 

prior to a potential nationwide deployment.  The purpose of this research is to perform 

OSEs to determine the value of several new observing systems within the DFW Urban 

Demonstration Network, including non-conventional surface data and CASA radar data.  

Chapter 2 will describe the observational datasets used in this study, including both 

conventional and non-conventional observations, along with pre-processing and quality 

control procedures applied to these datasets.  Chapter 3 will detail the ARPS model and 

its associated 3DVAR analysis system that are used for simulations presented in this 

work.  Chapter 4 will present the results of OSEs performed for a high-impact hail case 

in the Dallas-Fort Worth metroplex on 11 April 2016.  Finally, concluding remarks will 

be presented in Chapter 5, including implications of this work to the “network of 

networks” vision and suggestions for future research avenues. 
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Chapter 2 

2.1 Conventional Observations 

In this work, conventional surface data sources refer to those that are available in 

the federal observing network and assimilated into operational forecast models.  The 

Automated Surface Observing System (ASOS) is one of these conventional networks, 

and serves as the main surface observing network in the United States (NWS 1999).  The 

ASOS network represents a joint venture between the Federal Aviation Administration 

(FAA), National Weather Service (NWS), and Department of Defense (DoD), and 

provides valuable information for forecasting and aviation applications.  The ASOS 

network was developed in the 1980s and deployed in the 1990s.  The Automated Weather 

Observing System (AWOS) is a closely-related automated network that is operated by 

the FAA and reports data every 20 minutes at secondary airports.  Sensors for both 

automated networks are positioned in a region that provides a representative observation 

for the entire airport complex (i.e., within 2 to 3 miles of the sensor location); for most 

airports, this location is near the touchdown zone of the main runway (NWS 1999).  

ASOS stations are monitored by the ASOS Operations and Monitoring Center (AOMC), 

with site maintenance performed by NWS technicians, as needed.  Mesoscale networks 

(or “mesonets”) provide additional surface observations throughout the domain, and 

include the Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007) and the West 

Texas Mesonet (Schroeder et al. 2005).  In the case of the Oklahoma Mesonet, stations 

are sited so as ensure that the physical characteristics of a site are representative of the 

surrounding area (e.g., minimal terrain slope, minimal obstructions that preclude proper 

ventilation, and minimal influences from urban areas, forests, and bodies of water).  
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Sensors are calibrated prior to deployment and replaced at regular intervals, while 

observations are subject to automated and manual quality assurance techniques.  

Additional information on the Oklahoma Mesonet can be found in McPherson et al. 

(2007).  Upper-air observations are obtained from multiple sources, including the 

Meteorological Data Collection and Reporting System (MDCRS), which provides 

observations of flight-level temperature, dew point, and wind for assimilation in forecast 

models.  NWS radiosonde data are not available for the time period considered for this 

study, generally being available at 0000 and 1200 UTC, only.  Data from eight radars in 

the WSR-88D network fall within the domain used for the 11 April 2016 case study, with 

the most notable being the KFWS radar in Fort Worth, Texas.  Additional WSR-88D 

radars assimilated include Dyess Air Force Base, TX (KDYX), Frederick, OK (KFDR), 

Ft. Hood, TX (KGRK), Ft. Polk, LA (KPOE), Shreveport, LA (KSHV), Fort Smith, AR 

(KSRX), and Oklahoma City, OK (KTLX).  Lastly, visible and infrared data from the 

Geostationary Operational Environmental Satellite (GOES) are incorporated in the 

complex cloud analysis, which is described in detail in Section 3.2.2. 

2.2 Non-Conventional Observations 

With the inception of the National Mesonet Pilot Program, Global Science & 

Technology (GST) was selected to develop a new system known as Mobile Platform 

Environmental Data (MoPED), collecting observations from sensors developed by 

Weather Telematics and mounted on mobile fleets of trucks and other transportation 

vehicles (Dahlia 2013).  Since its beginning, MoPED has rapidly grown to provide more 

than two million observations daily, with the majority of observations originating from a 

fleet of over 1500 Con-way freight trucks.  These trucks have been fitted with sensors 
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that measure such variables as temperature, humidity, pressure, and precipitation.  One 

limitation of the MoPED system is that wind cannot be measured due to contamination 

from the motion of the vehicles.  Pressure measurements are corrected to account for 

these effects.  Since active vehicles collect data roughly every ten seconds, a data thinning 

algorithm has been developed to reduce the spatiotemporal resolution of these data.  

Observations are grouped together based upon truck identifier and thinned once either a 

five-minute time threshold or a one kilometer distance threshold are met.  Appendix A 

presents the results of statistical testing for various averaging schemes that only 

considered the effects of time, with these results helping motivate the final thinning 

methodology. 

The Automatic Position Reporting System as a Weather Network 

(APRSWXNET) represents an additional non-conventional data source in the DFW 

Urban Demonstration Network (CWOP 2014).  Electronic weather stations owned by 

ham radio operators and private citizens collect weather observations, which are ingested 

into the Meteorological Assimilation Data Ingest System (MADIS).  These observations 

are subjected to the MADIS Quality Control and Monitoring System (QCMS), which 

performs a variety of quality control checks.  This data source is more commonly known 

as the Citizen Weather Observer Program (CWOP). 

A third non-conventional data source is the Automated Weather Services (AWS) 

Convergence Technologies, Inc. WeatherBug network, which is operated by Earth 

Networks.  There are roughly 8,000 WeatherBug weather stations throughout the United 

States, the majority of which are located atop schools and public buildings.  These data 

are used daily in local weather broadcasts owing to partnerships with over 100 television 
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stations.  Additionally, educational tools utilizing these data are made available to K-12 

school children.  The expansive network of WeatherBug observations offers the potential 

for improvements to NWP forecasts, which has been demonstrated in Hilliker et al. 

(2010) and Carlaw et al. (2015). 

A recently deployed network of solar-powered weather stations from Understory 

Weather represents the fourth non-conventional data source.  This dense network was 

originally focused on the immediate Dallas area, with ten stations deployed at the time of 

the 11 April 2016 case study.  Since this time, the number of deployed stations has 

increased considerably, including increases in spatial coverage, with the full network of 

about 120 stations largely in place by April 2017.  Temperature, pressure and humidity 

variables are measured using standard sensors, while wind, rain, and hail impacts are 

calculated based upon the forces acting on a metallic ball, or sonde.  While these data are 

mainly intended for insurance companies responding to weather-related insurance claims, 

they could offer improvements to NWP forecast models. 

It is important to note that these non-conventional surface data sources are not 

subjected to the same siting standards as the ASOS and AWOS networks.  Thus, these 

data may be subject to bias and representativeness errors, such as the low wind speed bias 

noted previously by Hilliker et al. (2010) and Carlaw et al. (2015).   

Since the NWS radiosonde network typically only samples the vertical profiles of 

wind, temperature, and dew point at 12 hour intervals, additional instruments can be used 

to provide more continuous coverage of vertical profiles.  For instance, two SecondWind 

(now part of Vaisala) SODARs (SOnic Detection And Ranging) have been installed by 

WeatherFlow in the DFW Urban Demonstration Network to fill in these temporal gaps, 
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one at the Fort Worth NWS forecast office and the other in Midlothian.  Wind speed and 

direction in the PBL (up to about 2 km) are derived from these ground-based remote 

sensing instruments by measuring the Doppler shift of acoustic sinusoidal pulses that are 

scattered back by turbulence resulting from the atmosphere’s thermodynamic structure 

(Lang and McKeogh 2011).  Figure 2.1 displays a typical distribution of both 

conventional and non-conventional surface data sources, along with the locations of two 

SODARS, in the DFW Urban Demonstration Network.  The impact of the non-

conventional surface observations on analyses and forecasts will be examined in this 

study. 

 

Figure 2.1: Spatial distribution of the conventional and non-conventional surface data 

assimilated at the first analysis time (2150 UTC).  Observations shown include CWOP 

(red – 148), METAR (green – 44), WeatherBug (blue – 105), Understory (gray – 10), 

mesonet (black – 32), and SODAR (teal triangles – 2).  
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2.3 Non-Conventional Radar Data 

The CASA Integrated Project One (IP1) testbed from the spring of 2007 consisted 

of four dual-polarization X-band Doppler radars located in southwest Oklahoma, a region 

susceptible to severe thunderstorms (McLaughlin et al. 2009).  The radars were spaced 

30 km apart, on average, and have a range of 40 km.  These radars have a wavelength of 

3.2 cm, requiring an antenna size of roughly 1 m, significantly smaller than the 8.5 m 

antennas required for the 10-cm WSR-88D radars.  This allows the radar antennas to be 

placed on existing infrastructure, such as cell towers and buildings.  The short 

wavelength, however, makes these X-band radars susceptible to attenuation in regions 

where the radar reflectivity factor exceeds 40 dBZ (Brewster et al. 2005a).  Thus, these 

radar networks are designed to provide overlapping radar coverage, whenever possible 

(Brewster et al. 2005b).  In recent years, the CASA testbed has been relocated to the 

Dallas-Fort Worth metroplex, with radars located in Addison, Arlington, Denton, 

Midlothian, Fort Worth, and Johnson County at the time of the 11 April 2016 case study.  

Since this time, an additional radar has been deployed in Mesquite, with a further radar 

planned for McKinney (Brewster et al. 2017).  This network is comprised of the four 

radars from the original IP1 network, along with additional radars from EWR Weather 

Radar, Ridgeline Instruments, Furuno, and Enterprise Electronics Corporation.  This 

network is the result of a multisector partnership between CASA and the North Central 

Texas Council of Governments (NCTCOG; Bajaj and Philips 2012).  The beam width for 

each of the CASA X-band radars used in this work is shown in Table 2.1. 
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Table 2.1: Beam Width for CASA X-band Radars 

 

Radar Beam Width 

Addison (XADD) 2.3 degrees 

Arlington (XUTA) 1.8 degrees 

Denton (XUNT) 2.7 degrees 

Fort Worth (XFTW) 1.8 degrees 

Johnson County (XJCO) 1.8 degrees 

Midlothian (XMDL) 1.4 degrees 

 

One of the more notable features of the CASA IP1 radar network is the ability to 

scan the atmosphere both collaboratively and adaptively.  Collaborative sensing occurs 

when the radar control architecture from multiple radars coordinate with one another to 

observe the same volume simultaneously, which allows for radar-based detection 

algorithms such as multiple-Doppler wind retrievals.  Scanning strategies of the radars 

can also be modified by the radar control architecture based on the current highest priority 

observational needs, referred to as adaptive sensing.  Together, these features allow the 

radars to provide improved horizontal resolution and faster update times.  One example 

of a meteorological phenomenon in which these adaptive scanning strategies would prove 

useful is a supercell thunderstorm with rapidly evolving low-level rotation.  Rapidly 

forming and dissipating tornadic signatures could be observed by the X-band radars, but 

be missed if they occurred between scans of the WSR-88D or below the lowest elevation 

scan in the low-level data coverage gap.  To date, these collaborative adaptive scanning 

strategies have not been implemented in the Dallas-Fort Worth testbed.  Rather, the radars 

follow a traditional “sit-and-spin” scanning strategy, with pre-determined scanning 
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angles (see Figure 2.2) concentrating on low-level scans.  Despite this, these radars afford 

improved spatial coverage and faster update times than the existing WSR-88D network. 

In addition, two Terminal Doppler Weather Radars (TDWRs) are available from 

the two major passenger airports in the DFW metroplex (Istok et al. 2008).  These C-band 

(5-cm wavelength) radars are operated by the FAA.  There are 45 TDWRs operational at 

selected airports, with these radars mainly designed for the detection of precipitation and 

hazardous wind shear near airports.  Figure 2.3 displays the spatial distribution of the 

WSR-88D radars used in this study, while Figure 2.4 displays the spatial distribution of 

the two TDWR and six CASA radars deployed as of 11 April 2016, with the locations of 

the as yet deployed McKinney and Mesquite radars shown, as well.  

 

Figure 2.2: Radar beam heights vs. range for the six CASA X-band radars used in this 

study.  Beam spreading is illustrated in the upper left panel for the Addison radar, using 

a representative beam width of 1.8 degrees. 
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Figure 2.3: Locations of the 8 WSR-88D radars whose data are used in this work.  The 

blue shaded region represents the model domain used. 

 

 

Figure 2.4: Locations of the radars used in this study.  CASA X-band range rings are 

shown in blue (active for this case study) and green (proposed), TDWR range rings are 

shown in red, and the WSR-88D KFWS range ring is in black.  The range rings for seven 

additional WSR-88D radars are not shown. 
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2.4 Quality Control Procedures 

Observations assimilated in this work are subject to several quality control 

procedures.  Observations acquired from MADIS undergo internal quality control checks, 

the details of which are outlined in the NWS Techniques Specification Package (NWS 

1994).  Radar data are also subject to quality control procedures in the ARPS radar 

remapping program, which is described in the following chapter. 

Furthermore, the ARPS 3DVAR analysis program also employs several quality 

control checks to remove inaccurate observations.  Observations undergo a temporal 

consistency check, which compares each observation to a preceding observation at the 

same location, typically one hour earlier.  When the difference in these observations 

exceeds a user-defined difference threshold, the observation is deemed to be unreliable 

and is not assimilated.  Similarly, observations are discarded when the difference between 

the observed value and the background value interpolated to the observation location via 

the forward operator exceeds a user-defined threshold.  Finally, a local Barnes (Barnes 

1964) analysis to each observation site is used to check for spatial consistency among 

nearby observations. 
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Chapter 3 

3.1 Advanced Regional Prediction System (ARPS) 

The Center for Analysis and Prediction of Storms (CAPS) at the University of 

Oklahoma developed the first version of the Advanced Regional Prediction System 

(ARPS) model during the early 1990s (Xue et al. 1995, 2000, 2001).  ARPS is a 

compressible, non-hydrostatic model with a terrain-following vertical coordinate on an 

Arakawa C-grid.  The vertical coordinate is stretched using a hyperbolic tangent function.  

Simulations of tropical cyclones (Zhao and Xue 2009), MCSs (Dawson and Xue 2006) 

and tornadoes (Xue et al. 2014) have been performed using ARPS.  The ARPS model is 

used to perform the OSEs presented in this research.  Details on the parameterization 

schemes and model configurations used in these experiments can be found in Table 3.1. 

Table 3.1: Model parameterizations and configurations 

 

Microphysics Single-Moment (Milbrandt and Yau 2005) 

Radiation NASA atmospheric radiation transfer 

Planetary Boundary Layer (PBL) 1.5 order TKE (Deardorff 1980) 

Advection Fourth-order in the vertical and horizontal 

Convection Explicitly resolved 

Soil Model Two-layer diffusive soil model (Noilhan and 

Planton 1989) 

 

3.2 ARPS Three-Dimensional Variational (3DVAR) Analysis System 

The ARPS three-dimensional variational (3DVAR; Gao et al. 2004) analysis 

system produces an analysis by combining information from the background field and 
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observations.  The analysis is found by minimizing a scalar cost function, which is given 

by: 

𝐽(𝑥) =
1

2
(𝑥 − 𝑥𝑏)T𝐁−1(𝑥 − 𝑥𝑏) +

1

2
(𝐻(𝑥) − 𝑦𝑜)T𝐑−1(𝐻(𝑥) − 𝑦𝑜) + 𝐽𝑐  (3.1) 

The first term on the right hand side measures the distance between the analysis of the 

state variable, x, and the background field, 𝑥𝑏, and is weighted by the inverse of the 

background error covariance matrix, B.  The second term represents the distance between 

the analysis, x, brought to observation locations by the forward operator, H, and the 

observed variables, 𝑦𝑜, and is weighted by the inverse of the observation error covariance 

matrix, R.  Cross-correlations between model variables are not included in the B matrix, 

and a first-order recursive filter (Hayden and Purser 1995) is used to generate the isotropic 

Gaussian spatial error correlations.  Furthermore, observational errors are assumed to be 

uncorrelated, resulting in a diagonal observation error covariance matrix. 

The final term in equation (3.1) is a penalty term, and represents a weak anelastic 

mass continuity constraint: 

𝐽𝑐 =
1

2
𝜆𝑐𝐷2     (3.2) 

where D is given by: 

 𝐷 = 𝛼 (
𝜕�̅�𝑢

𝜕𝑥
+

𝜕�̅�𝑣

𝜕𝑦
) + 𝛽 (

𝜕�̅�𝑤

𝜕𝑧
)        (3.3) 

Here, 𝜆𝑐 represents a weighting coefficient for the mass continuity constraint, 𝛼 and 𝛽 

correspond to weighting terms for the horizontal and vertical terms, respectively, and �̅� 

is the mean air density at a given height.  The anelastic mass continuity constraint acts to 

derive non-radial wind information from the observed radial velocities (Gao et al. 2004; 

Hu et al. 2006b).  It is a weak constraint, meaning that the mass divergence does not have 

to strictly equal zero.  When the grid aspect ratio is near unity (i.e., the horizontal and 
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vertical grid spacing are nearly the same), the anelastic mass divergence constraint is 

found to result in accurate analyses of vertical and horizontal velocity (Hu et al. 2006b).  

However, when the horizontal grid spacing is much larger than the vertical grid spacing 

(i.e., the aspect ratio is over 100), which is often true in the lowest levels of the model, 

adjustments to the vertical velocity dominate adjustments to the horizontal component of 

the wind.  This work follows that of Carlaw et al. (2015), which uses a horizontal 

weighting coefficient (𝛼) that is an order of magnitude larger than the vertical weighting 

coefficient (𝛽). 

The ARPS 3DVAR system numerically minimizes an incremental form of the 

3DVAR cost function using a conjugate-gradient minimization algorithm.  Furthermore, 

preconditioning is used to reduce the computational cost by reducing the number of 

iterations necessary for the minimization algorithm to converge to the final analysis.  

More information on the ARPS 3DVAR analysis system can be found in Gao et al. 

(2004). 

3.2.1 Incremental Analysis Updating 

When numerical models are forced to adjust to large volumes of information, all 

applied at the initial time, nonphysical adjustment processes such as gravity waves (or 

noise) often occur (e.g., Bloom et al. 1996; Brewster 2003).  To combat this issue, this 

research utilizes Incremental Analysis Updating (IAU), which is a method that applies 

analysis increments computed at the initial time gradually as a constant forcing for the 

model throughout an integration period (Bloom et al. 1996).  The general procedure of 

IAU is to apply the analysis increments during the model’s large time-step after all of the 

other forcing terms have been applied.  The analysis increments are generally applied 
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using a triangular distribution in time, thus applying the largest portion of the observation 

increment during the middle of the time window.  Increments are generally not applied 

to the pressure and vertical velocity fields during IAU at storm-scales, as these fields are 

not well observed and rapidly respond to changes in other model fields.  Recently, the 

ARPS IAU code has been updated to allow users to specify more than one shape for IAU 

to make the distribution in time different for each variable (Brewster et al. 2015).  More 

specifically, one can apply a larger portion of the wind and latent heat increments at the 

start of the assimilation window, while applying a more significant portion of the 

hydrometeor increments at the end of the window.  This has been shown to mitigate 

difficulties maintaining an updraft in a convective system by allowing some time for the 

model to establish wind and mass fields that are capable of supporting the weight of 

precipitation species before introducing additional precipitation. 

Additional information on the ARPS IAU with variable dependent timing (IAU-

VDT) can be found in Brewster et al. (2015), while the theoretical basis can be found in 

Bloom et al. (1996). 

3.2.2 Complex Cloud Analysis 

The variational assimilation of radar reflectivity data is rather challenging owing 

to nonlinearities in the microphysical models and complex cross-correlations among 

variables.  To account for these issues, the ARPS complex cloud analysis package is used 

in lieu of variational assimilation to account for radar reflectivity data (Brewster et al. 

2005c; Hu et al. 2006a).  The cloud analysis procedure uses satellite, radar, and surface 

observations of cloud layers to modify hydrometeor fields by using equations that relate 

hydrometeor mixing ratio values and observed radar reflectivity (e.g., Ferrier 1994; 
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Rogers and Yau 1989), recently updated to allow inversion of hydrometeor-to-reflectivity 

equations for all the microphysics schemes used in ARPS and WRF (Brewster and 

Stratman 2015).  The complex cloud analysis is performed after the 3DVAR 

minimization is completed. 

The background hydrometeor mixing ratio values are replaced by reflectivity-

derived values in regions where radar reflectivity is above a user-defined threshold 

(typically 10 to 20 dBZ).  This is based upon the belief that at this scale the radar 

observations, after quality control to remove non-precipitation echoes, are superior to the 

model background field.  On the other hand, precipitation in the model background field 

is removed in regions where there is radar coverage and radar reflectivity is below the 

prescribed threshold, thus removing spurious convection from the model field.  Finally, 

the cloud analysis procedure adjusts the temperature profile in regions where clouds and 

updrafts are present to account for the latent heat released during condensation processes.  

This has been shown to be important in maintaining updrafts in non-hydrostatic models, 

such as ARPS.  To calculate the temperature adjustment due to latent heating, a moist 

adiabatic ascent is calculated from the cloud-base, with entrainment in areas of analyzed 

ascent, and the resulting temperature values replacing the 3DVAR analysis value in 

regions where the analyzed temperature is colder.  More details on the complex cloud 

analysis procedure can be found in Brewster et al. (2005c) and Hu et al. (2006a). 

3.2.3 Radar Remapping 

Prior to being utilized in 3DVAR or the complex cloud analysis package, radar 

data must first be quality-controlled to account for radar artifacts.  First, the raw radar 

data are checked for beam blockage effects (e.g., from tall buildings and trees) and sun 
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strobes during sunrise and sunset.  Then, the raw radar data are checked for anomalous 

propagation effects, in which the radar beam is refracted towards the earth’s surface, by 

identifying regions of large vertical reflectivity gradients, reflectivity texture, and low 

radial velocities.  Isolated non-meteorological echoes are removed using a “despleckling” 

algorithm.  Finally, the raw radar data are checked for velocity aliasing.  This is performed 

by first converting the radial velocity data into increments from the mean wind, where 

the mean wind field represents an average of nearby data points in the background wind 

field.  This mitigates effects of the vertical shear of the mean wind and helps pinpoint 

isolated regions of aliased velocities.  Horizontal consistency checks are then performed 

across neighboring radials by calculating gate-to-gate shear; this is applied to the 

perturbation radial velocities following the method described in Eilts and Smith (1990).  

Once all of the quality checks are performed, the radar data are remapped from the polar 

coordinate system to the Cartesian grid used by ARPS via a least squares fit to a quadratic 

function in the horizontal and to a linear function in the vertical.  In addition to reflectivity 

and radial velocity data, the remapping program has the capability of producing velocity 

azimuth display (VAD) wind profiles.  Additional details concerning the ARPS radar 

remapping algorithm are found in Brewster et al. (2005c). 
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Chapter 4 

4.1 Case Study 

During the afternoon and early evening hours of 11 April 2016, a prolific hail-

producing supercell thunderstorm affected north-central Texas, including the northern 

portion of the Dallas-Fort Worth metropolitan area.  The supercell thunderstorm formed 

around 1900 UTC (2:00 PM CDT) just southwest of Wichita Falls and quickly became 

severe as it tracked to the east-southeast.   

Severe storm reports from the Storm Prediction Center (SPC) are shown in Figure 

4.1a, with numerous significant severe hail reports (diameter in excess of 2 inches, 5 cm) 

occurring along the track of this storm.  Figure 4.1b zooms in on the severe storm reports 

occurring in the northern portion of the Fort Worth NWS forecast office’s area of 

responsibility.  The first significant severe hail report occurred around 2000 UTC in 

Archer County, just south of Wichita Falls.  Significant severe hail was reported in Wise 

County, Texas beginning around 2130 UTC.  The storm continued into Denton County 

around 2210 UTC, with grapefruit sized hail (4.00 inch diameter, 10 cm) reported around 

2220 UTC.  Significant severe hail also occurred in Plano, Allen, and Wylie in Collin 

County, with an additional report of grapefruit sized hail occurring in Rockwall County 

around 2310 UTC.  The largest hail associated with the storm was reported in Wylie, with 

5.25 inch (13.3 cm) diameter hail reported.  The storm then gradually weakened as it 

moved out of the metropolitan area.  This hail storm, in conjunction with a separate storm 

in San Antonio, Texas the following day resulted in an estimated total of $3.5 billion in 

damage (NOAA 2017). 
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Figure 4.1: (a) Storm Prediction Center (SPC) severe storm reports for 11 April 2016 

and (b) zoomed in severe storm reports for the storm of interest.  Image credit: NWS Fort 

Worth, Texas (obtained online at http://www.weather.gov/fwd/20160411). 

 

4.1.1 Synoptic Setup 

A shortwave trough was present over the southern Plains, extending from the 

Texas Panhandle through New Mexico at 1200 UTC on 11 April 2016, as shown in the 

500-mb upper-air chart (Figure 4.2).  This trough deepened and moved to the east during 

the day, with a region of differential cyclonic vorticity advection (DCVA) present 
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downstream of the trough axis.  In addition, a region of upper-level divergence is evident 

in the 300-mb chart, in response to the incoming subtropical jet stream maximum (Figure 

4.3).  Together, these features resulted in the development of a surface low pressure 

system, centered over northwest Texas.  Southerly winds in the low-levels, as seen in the 

925-mb analysis (Figure 4.4), afforded a rich moisture return, which, along with mid-

level westerly winds, allowed for the formation of a dryline (e.g., Schaefer 1974; 

McCarthy and Koch 1982). 

By 1800 UTC, the surface low pressure system was centered over northwestern 

Texas, just south of Wichita Falls (Figure 4.5).  The aforementioned dryline extended 

south from this low pressure system through the Hill Country and Big Bend Regions of 

Texas.  A cold front was present just south of Wichita Falls, Texas, with a cold front 

extending west from the low pressure system into New Mexico.  A surface low pressure 

system centered north of the Great Lakes was associated with an additional cold front, 

which extended southwest to the Red River. 
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Figure 4.2: 500-mb upper-air analysis valid 1200 UTC on 11 April 2016.  Solid black 

lines represent geopotential height contours (isohypses), while dashed red lines are 

isotherms. 

 

 

Figure 4.3: 300-mb upper-air analysis valid 1200 UTC on 11 April 2016.  Isotachs are 

shaded, while streamlines are represented by solid arrows, and divergence is shown by 

solid yellow lines. 
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Figure 4.4: 925-mb upper-air analysis valid 1200 UTC on 11 April 2016.  Isohypses are 

shown by solid black lines, isotherms by dashed red lines, and isodrosotherms by solid 

green lines. 

 

 

Figure 4.5: Surface analysis from the Weather Prediction Center (WPC) valid 1800 UTC 

on 11 April 2016. 
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Figure 4.6: Observed sounding from Fort Worth (FWD) at 1800 UTC on 11 April 2016.  

The temperature and dew point profiles are shown in red and green, respectively.  

Analyzed variables are derived using the NSHARP program. 
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Figure 4.7:  Surface-based CAPE (SBCAPE; contoured) and surface-based convective 

inhibition (SBCIN; shaded) at 1800 UTC on 11 April 2016. 

 

The special 1800 UTC sounding from Fort Worth is shown in Figure 4.6.  Steep 

mid-level lapse rates in excess of 7.5 °C per kilometer, in association with intense surface 

heating, resulted in surface-based convective available potential energy (SBCAPE) in 

excess of 4000 J/kg and surface-based convective inhibition (SBCIN) of 0 J/kg.  These 

sounding values were obtained from the National Center Sounding and Hodograph 

Analysis and Research Program (NSHARP; Hart and Korotky 1991), which is used by 

the SPC.  SBCAPE values in excess of 3000 J/kg were present throughout the entire DFW 

metropolitan area (Figure 4.7).  Sufficient shear in the 0-6 km layer (i.e., in excess of 40 

knots) was present for the development of supercells, but with the wind profile largely 

characterized by a straight hodograph, any thunderstorms that developed would likely 

need to move off of the hodograph in order to ingest streamwise vorticity and develop a 
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mesocyclone.  Hail represented the dominant severe hazard on this date, owing to the 

ample CAPE values, deep-layer shear, and steep 700-to-500-mb lapse rates in excess of 

7.5 °C per kilometer.  Surface-to-1-km shear and storm-relative helicity (SRH) were not 

overly favorable for the development of tornadoes in the DFW area.  Sufficient forcing 

for ascent owing to the dryline, frontal boundaries, and upper-level divergence would aid 

in convective initiation. 

The supercell of interest failed to produce a tornado in the Dallas-Fort Worth 

metropolitan area.  The storm was quickly undercut by the cold front depicted in Figure 

4.5, along with an outflow boundary generated by the storm itself.  Once this undercutting 

occurred, the supercell’s supply of warm, moist surface air was restricted, and the storm 

became elevated in nature.  As a result, the potential for tornadogenesis was significantly 

reduced. 

4.2 ARPS Model Grid Setup and Specifications 

The experiments presented here use the ARPS model on a single grid with a 

horizontal grid spacing of 1 km.  The domain is centered on 33.0 °N, 97.25 °W, and is 

400 km x 360 km in size (see Figure 2.3 and Figure 4.9 for a map of the domain).  There 

are 50 vertical levels, with vertical grid spacing averaging 400 m increasing with height 

from a minimum of 20 m at the lowest model level following a hyperbolic tangent 

function (Xue et al. 1995).  Land surface features are specified using the ARPS surface 

data files, while terrain elevation information is derived from the 30-second U.S. 

Geological Survey (USGS) terrain dataset.  Additional model specifications and 

parameterization schemes are outlined in Table 3.1 in the preceding chapter. 
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This work follows that of Snook and Xue (2008) and Carlaw et al. (2015) and 

uses a reduced value of the rain intercept parameter in the raindrop size distribution in the 

Milbrandt and Yau single-moment microphysics scheme.  The single-moment 

microphysics scheme used in this research predicts the mixing ratio for each hydrometeor 

species, while setting the intercept parameter to a constant value.  Deep, moist convection, 

such as in the storm considered in this work, tends to have a drop size distribution (DSD) 

that favors larger raindrops.  It has been shown that reducing the rain intercept parameter 

results in the generation of more large raindrops, while reducing the number of smaller 

drops (Snook and Xue 2008).  The production of larger hydrometeors results in the 

reduction of total hydrometeor surface area, which, in combination with the faster 

terminal velocities associated with larger particles, results in less evaporational cooling.  

As a result, weaker cold pools develop, yielding stronger, more-sustained updrafts.  The 

rain intercept parameter is reduced one order of magnitude to 8.0 × 105𝑚−4 (Carlaw et 

al. 2015). 

4.3 Experimental Design 

For the experiments presented here, four intermittent data assimilation cycles are 

used to incorporate observational data in the model forecast, with the first cycle beginning 

at 2150 UTC.  Analysis increments are determined using the 3DVAR analysis system and 

applied gradually during the subsequent 10 minutes using incremental analysis updating 

with variable-dependent timing (IAU-VDT).  A larger fraction of the wind and latent heat 

increments are applied early in the IAU window, while the hydrometeor increments are 

largely applied near the end of the IAU window.  Three 10-minute forecasts are 

performed with the forecast becoming the background field for the subsequent cycle.  The 
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fourth cycle is used to launch a one and a half hour free forecast, beginning at 2220 UTC 

and ending at 2350 UTC, during which no data is assimilated beyond what is used during 

the first 10 minutes.  Initial conditions are obtained for the model grid using the 2100 

UTC and 2200 UTC Rapid Refresh (RAP) analyses, which use a 13 km grid.  These 

model analyses are interpolated both in space and in time to produce the initial conditions 

valid at 2150 UTC for the model grid used.  Lateral boundary conditions (LBCs) are also 

derived from the RAP analyses valid at 2100, 2200, 2300, and 0000 UTC, with lateral 

boundary forcing occurring every 5 minutes.  A schematic of the assimilation and forecast 

procedure used is shown in Figure 4.8.  Quantitative verification metrics are performed 

using a smaller verification grid, which is outlined in red in Figure 4.9. 

 

Figure 4.8: Assimilation procedure for the experiments presented.  Data assimilation 

cycles begin at 2150Z, with a 1.5 hour free forecast beginning at 2220Z.  Triangles 

represent the weighting of fractions of the computed analysis increment introduced during 

each assimilation window. 

 

The ARPS 3DVAR analysis system used here incorporates four analysis passes, 

which accounts for the diverse spacing of observation types assimilated.  The horizontal 

correlation scale distance for the first, second, third, and fourth pass is 100 km, 50 km, 

10 km, and 0.8 km, respectively.  Profiler data, namely from the two SODARs, are 

incorporated on the first and second passes, which allows this information to be spread 

across the model domain as the observations are considered to be representative of a 

larger area.  Conventional surface observations (ASOS/AWOS) and MDCRS flight data 
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are incorporated in the second and third passes.  Non-conventional surface data, along 

with the mesonet observations, are assimilated in the third analysis pass.  Radar 

reflectivity data are incorporated only during the fourth and final pass using the smallest 

correlation scale distance.  Smaller-scale details are filled into the analysis as the 

correlation scale is decreased on subsequent passes.  The vertical correlation scale is 

defined to be four grid points for all four assimilation passes. 

 

Figure 4.9: Model domain with the subdomain used for quantitative verification metrics 

outlined in red. 

 

The data types assimilated for each experiment are listed in Table 4.1.  In the 

CONTROL experiment, all available data are used, including reflectivity and radial 

velocity data from the WSR-88D, CASA, and TDWR radars with coverage in the domain.  

Conventional data sources include surface observations from ASOS/AWOS and from the 

Oklahoma and West Texas Mesonets, along with MDCRS aircraft data.  Non-

conventional surface data sources include GST MoPED, WeatherBug, CWOP, and 
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Understory.  Finally, data from two SODARS located in the testbed are assimilated.  

NOTESTBED simulates what would occur if the DFW Urban Demonstration Network 

was not in place at the time of the case study.  More specifically, the only data assimilated 

for this case are the data available in the federal observing network (ASOS/AWOS, 

Oklahoma and West Texas Mesonet, MDCRS, and WSR-88D radar data).  Non-

conventional surface data are denied, along with all CASA and TDWR data.  

NONEWSFC denies the non-conventional surface data, while retaining the CASA and 

TDWR radar data.  NOGST, NOWXBUG, NOCWOP, and NOUNDERSTORY 

individually deny the GST MoPED, WeatherBug, CWOP, and Understory data, 

respectively.  NOCWOPWXBUG denies both the CWOP and WeatherBug data.  

NOCASA denies reflectivity and radial velocity data from the six CASA radars active at 

the time of the storm of interest, whereas NOCASAVR denies only the CASA radial 

velocity data, but still employs the reflectivity data in the complex cloud analysis.  

NOTDWR denies the TDWR radar data, while 88DONLY additionally denies the CASA 

radar data.  CASAONLY demonstrates what would occur if there were no WSR-88D 

radars active at the time of the storm of interest.  NORADAR presents the model forecast 

using only surface, aircraft, and SODAR data.   
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Table 4.1: Observing System Experiments Performed 

 

Experiment Conventional 

surface data 

Non-

conventional 

surface data 

88D 

data 

CASA 

data 

TDWR 

data 

Upper-

air 

profiles 

CONTROL All All All All All All 

NOTESTBED All None All None None Deny 

SODARs 

NONEWSFC All None All All All All 

NOGST All Deny 

MoPED 

All All All All 

NOWXBUG All Deny 

WxBug 

All All All All 

NOCWOP All Deny CWOP All All All All 

NOUNDERSTORY All Deny 

Understory 

All All All All 

NOCWOPWXBUG All Deny CWOP 

and 

WXBUG 

All All All All 

NOCASA All All All None All All 

NOCASAVR All All All Reflectivity 

only 

All All 

NOTDWR All All All All None All 

88DONLY All All All None None All 

CASAONLY All All None All None All 

NORADAR All All None None None All 
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4.4 Results 

The experiment results presented here largely fall into two categories.  The first 

category considers the impact of radial velocity and reflectivity data from the WSR-88D, 

TDWR, and CASA radar networks, while the second category considers the impact of 

non-conventional surface data.  One experiment (NOTESTBED) considers the combined 

impacts of the CASA and TDWR data and non-conventional surface networks.  The first 

section offers a qualitative comparison of the simulated reflectivity field for several 

experiments in the radar category.  The second section presents a quantitative comparison 

of the forecasted reflectivity field.  The third section details the quantitative hail 

verification.  The fourth section performs a surface-level forecast verification.  The 

chapter concludes with a brief foray into the impacts of the choice of microphysics 

parameterization scheme. 

4.4.1 Qualitative Reflectivity Comparison 

Figure 4.10 shows how the simulated reflectivity at model level 21 at 

approximately 2 km above ground level (AGL) for the CONTROL experiment compares 

with low-level reflectivity observations, namely the 0.5 degree tilt from the KFWS WSR-

88D radar in Fort Worth.  The last data are assimilated at 2220 UTC and it can be seen 

that the reflectivity pattern in the CONTROL experiment generally matches the 

observations at this time, as it captures the most intense precipitation occurring in Denton 

County.  Furthermore, the maximum reflectivity value in both cases is about 65 dBZ.  

The region of precipitation that extended into southern Oklahoma was also captured in 

the CONTROL experiment, although the reflectivity values are somewhat larger than 

what was observed.  The areal coverage of reflectivity in the CONTROL experiment is 
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more expansive than in reality, likely due to the inherent differences in the figures (2 km 

AGL vs 0.5 degree tilt).  By 2250 UTC, 30 minutes into the free forecast period, the 

simulated supercell was centered in southern Collin County, close to where the storm 

appeared in observations, although the hook echo is difficult to discern in the 2 km AGL 

image.  Twenty minutes later, at 2310 UTC, the observed storm was beginning to enter 

Rockwall County, while the simulated storm was centered in extreme northeastern Dallas 

County, indicating that there are slight propagation speed errors in the CONTROL 

experiment.  This general pattern continues at 2330 UTC, as well, as the simulated storm 

is positioned slightly to the southwest of the observed position.  The CONTROL 

experiment exhibits a general wet bias, with reflectivity predicted over a larger area than 

what was observed.  Additionally, in the observations, a fine line is evident to the south 

of the supercell, which is indicative of the cold front and outflow boundary that undercut 

the storm early in its lifespan.  This feature is suggested in the wind fields at this level 

and is more apparent at low-levels (discussed later). 
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Figure 4.10: Simulated reflectivity at 2 km AGL for the CONTROL experiment (left) 

and reflectivity from the KFWS 0.5 degree scan (right). 
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Figure 4.11 shows the simulated wind vectors and 2 km AGL reflectivity fields 

for several of the experiments with more notable differences from CONTROL. The 

CONTROL experiment has an ill-defined hook echo by 2300 UTC, with a well-defined 

hook echo evident by 2330 UTC in eastern Rockwall County.  The 88DONLY 

experiment does not exhibit a well-defined hook echo at 2300 UTC, which is also the 

case at 2330 UTC, as there appear to be two distinct hook echoes at that time.  The 

NOCASA supercell appears less-defined than for the CONTROL experiment, with a 

secondary hook feature evident at 2300 UTC.  By 2330 UTC, the secondary feature has 

weakened, while the main supercell has a well-defined hook echo and moves out of 

Rockwall County.  Therefore, the storm is displaced to the east in the NOCASA 

experiment relative to the actual storm and the CONTROL run.  Overall, it appears that 

the inclusion of the low-level radial velocity data from the CASA X-band radars afforded 

a better initial analysis of the wind field, which resulted in a superior simulation in the 

CONTROL experiment.  Thus, the CASA data appear to provide some positive value for 

this case study.  However, as can be seen by CASAONLY, the CASA radar network is 

insufficient as a standalone tool.  Given that the CASA radars tend to only have two or 

three elevation scans, with radar beams approaching 2 km AGL at a range of 40 km (see 

Figure 2.2), the radars were incapable of observing the full depth of the ongoing storm.  

This can be seen in Figure 4.12, which shows cross-sections through the CONTROL and 

CASAONLY experiments.  The depth of the storm is significantly shallower in 

CASAONLY.  As a result, the final analysis at 2220 UTC did not include a dynamically-

sound supercell, with the storm beginning to intensify by 2230 UTC, 10 minutes into the 

free forecast.  The storm in CASAONLY was positioned west of what was observed by 
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2330 UTC, likely due to the model’s poor initial handling of the storm.  The final 

experiment presented here, NORADAR, does not have an analyzed storm at the 

beginning of the free forecast, owing to the denial of all radar data.  Therefore, the storm 

present by 2300 UTC must be “spun up” by the model during the forecast period.  Despite 

this, the simulation produces a supercell positioned in Rockwall County by 2330 UTC, 

not far from where the observed storm was located.  However, the simulation also 

produces a band of heavy precipitation extending northwest to the Red River, which is 

not as prevalent in the other experiments nor the observations. 
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Figure 4.11: Simulated reflectivity and wind vectors at 2 km AGL for CONTROL, 

88DONLY, NOCASA, CASAONLY, and NORADAR experiments. 
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Figure 4.12: Vertical cross-sections for the CONTROL and CASAONLY experiments. 
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Figure 4.13 shows the simulated surface winds and 1 to 5 km updraft helicity (UH; 

Kain et al. 2008).  Updraft helicity allows for the detection of rotating thunderstorms in 

numerical models and is defined by  

𝑈𝐻 = ∫ 𝑤𝜁 𝑑𝑧
𝑧1

𝑧0
       (4.1) 

where w is the vertical component of the wind and 𝜁 is the vertical component of vorticity.  

The CONTROL experiment has a clear UH center present at 2300 UTC, which 

strengthens further by 2330 UTC.  In the 88DONLY experiment, the UH center is not as 

well-defined at 2300 UTC.  The result of this is two distinct UH centers at 2330 UTC, 

with the stronger center located to the northeast of the corresponding feature in the 

CONTROL experiment.  The weaker feature was located in western Rockwall County.  

This is consistent with the reflectivity field, as there appears to be two distinct hook 

echoes at 2330 UTC.  A similar pattern is observed for the NOCASA experiment, 

although the stronger feature tracked further into Hunt County than in 88DONLY.  The 

CONTROL, 88DONLY, and NOCASA experiments all do not have a clear UH center 

present at 2220 UTC, likely owing to the ARPS model requiring some time to build a 

dynamically-consistent supercell.  The CASAONLY experiment fails to build a strong 

UH center by 2330 UTC, consistent with the less-organized supercell evident in the 

reflectivity field at the time.  Surprisingly, the NORADAR experiment, which assimilates 

only surface, SODAR, and aircraft data, develops a UH center that is located in Rockwall 

County by 2330 UTC, not too far from where the observed storm was positioned.  

However, there are also several lobes of UH that are not as prevalent in the other 

experiments. 
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Figure 4.13: Surface winds and 1 to 5 km updraft helicity (UH) for the CONTROL, 

88DONLY, NOCASA, CASAONLY, and NORADAR experiments. 
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4.4.2 Quantitative Reflectivity Verification 

Quantitative comparisons of the forecasted reflectivity field among experiments 

are performed using the fractions skill score (FSS; Ebert 2008).  The FSS compares the 

fractional coverage of forecast events to the observed fraction of the same event.  The 

FSS is therefore a probabilistic verification technique and is defined by:  

𝐹𝑆𝑆 = 1 −
1

𝑁
∑ (𝑃𝑓−𝑃𝑜)

2
𝑁

1

𝑁
[∑ 𝑃𝑓

2+𝑁 ∑ 𝑃𝑜
2]𝑁

              (4.2) 

where 𝑃𝑓 is the fraction of grid points within a neighborhood that have forecasted values 

exceeding the specified threshold, 𝑃𝑜 is the fraction of grid points within the same 

neighborhood that have observed values above the same threshold, and N is the number 

of neighborhoods in the domain.  FSS values can range from 0 to 1, with a value of 1 

corresponding to a perfect forecast.  Values of 0 correspond to instances when there are 

no events forecasted within a neighborhood and some are observed, and vice versa. 

The FSS is considered more robust than traditional grid-based metrics because, 

unlike traditional grid-based verification metrics, the FSS does not double-penalize the 

forecast when there are slight spatial errors in the forecasted field. 

Here, the “event” corresponds to composite reflectivity, which is determined for 

the WSR-88D radar in Fort Worth (KFWS) and compared to composite reflectivity for 

each of the experiments performed.  Composite reflectivity was chosen rather than 

reflectivity at a single height (e.g., 1 km AGL) as the KFWS radar is unable to observe 

the storm completely at a single level during the entire free forecast period.  

Since the FSS seeks to determine at what spatial scale the forecast and 

observations agree with one another, the neighborhood scale for which the forecast 

exhibits useful skill is first determined.  A useful forecast (i.e., one in which the skill is 
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halfway between random and perfect) is defined as one in which 𝐹𝑆𝑆 ≥ 𝐹𝑆𝑆𝑢𝑛𝑖𝑓𝑜𝑟𝑚, 

where 

𝐹𝑆𝑆𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 0.5 +
𝑓𝑜

2
       (4.3) 

and 𝑓𝑜 is the observed fraction average over the domain (Roberts and Lean 2008).  To 

determine this neighborhood scale, FSS is computed using a range of neighborhood scales 

and reflectivity thresholds and averaged over the free forecast period.  Figure 4.14 shows 

the average FSS value using reflectivity thresholds of 20, 25, and 30 dBZ using varying 

neighborhood sizes.  Figure 4.14 shows the results for the CONTROL, 88DONLY, and 

CASAONLY experiments, with the dashed line corresponding to the 𝐹𝑆𝑆𝑢𝑛𝑖𝑓𝑜𝑟𝑚 value.  

Figure 4.14 shows a general increase in the FSS as the neighborhood size is increased, 

although there is a slight decrease at neighborhood scales above 129 grid points (129 km) 

for the 25 and 30 dBZ thresholds.  Additionally, it can be seen that the average FSS value 

decreases as the reflectivity threshold is increased from 20 dBZ (Figure 4.14a) to 25 dBZ 

(Figure 4.14b) to 30 dBZ (Figure 4.14c), which indicates that the simulations are better 

able to predict lower reflectivity thresholds.  In other words, small regions of larger 

reflectivity values are harder to predict.  Similar patterns can be seen in Figure 4.15, which 

shows the results for the CONTROL, NOTESTBED, and NONEWSFC experiments.  

Since large neighborhood sizes reduce the value of the 1 km grid spacing used in these 

experiments, it is desired to choose the scale that exhibits useful skill, without overly 

smoothing the model forecast.  All experiments presented in Figures 4.14 and 4.15 exhibit 

useful skill for neighborhood scales at 1 km when the 20 dBZ threshold is used, with the 

exception of the CASAONLY experiment, which requires a 15 km neighborhood. 
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Figure 4.14: Average FSS values for composite reflectivity as a function of 

neighborhood size for a) 20 dBZ threshold, b) 25 dBZ threshold, and c) 30 dBZ threshold.  

Experiments shown include CONTROL, 88DONLY, and CASAONLY.  The dashed line 

corresponds to the 𝑭𝑺𝑺𝒖𝒏𝒊𝒇𝒐𝒓𝒎 value. 
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Figure 4.15: As in Figure 4.14, but for the CONTROL, NOTESTBED, and NONEWSFC 

experiments. 

 

A neighborhood size of 16 km was chosen to account for increased uncertainty in 

timing and location of the forecasted features as the free forecast progresses forward in 

time.  Figure 4.16 shows the time series for the CONTROL, 88DONLY, CASAONLY, 

and NORADAR experiments.  Figure 4.16a shows the results for a 20 dBZ reflectivity 

threshold.  The NORADAR experiment exhibits an FSS value of 0 at the beginning of 

the free forecast period, as it has yet to spin-up precipitation during this time, with values 

beginning to increase roughly 15 minutes into the free forecast as precipitation begins to 

develop within the model.  The FSS value for NORADAR converges to the values seen 

for CONTROL and 88DONLY roughly one hour into the free forecast period.  

CASAONLY performs better than the NORADAR experiment initially, as it able to 
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capture some of the precipitation ongoing at the onset of the free forecast.  Despite this, 

the NORADAR experiment has a higher FSS value than the CASAONLY experiment at 

the end of the free forecast period.  The 88DONLY experiment has the highest FSS value 

for the entirety of the free forecast period, exceeding that of the CONTROL experiment.  

This indicates that the inclusion of the CASA and TDWR radar data reduces the FSS 

value when the 20 dBZ threshold is used.  Some of this may be attributed to the KFWS 

data being used for verification rather than a mosaic of all radars as was used in 

initializing CONTROL.  Figure 4.16b shows the results for a 25 dBZ reflectivity 

threshold.  The NORADAR experiment exhibits a similar pattern of no skill at the 

beginning of the free forecast period, but this experiment again performs better than 

CASAONLY at the end of the free forecast period.  CASAONLY has slightly better skill 

at the beginning of the free forecast period for this threshold.  The forecast dips below the 

useful threshold between 2255 and 2315 UTC for the CONTROL experiment, whereas 

the 88DONLY experiment exhibits useful forecast skill through the entirety of the free 

forecast period.  Figure 4.16c shows results for the 30 dBZ threshold.  Besides 

NORADAR, the CONTROL experiment exhibits the lowest FSS value through the first 

half of the free forecast period.  CASAONLY and 88DONLY have the highest skill 

through the majority of the free forecast period.  The CONTROL experiment performs 

slightly better than CASAONLY at the end of the free forecast period. 
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Figure 4.16: Time series of FSS values during the free forecast period using a 17 grid 

point (16 km) neighborhood size for a) 20 dBZ, b) 25 dBZ, and c) 30 dBZ reflectivity 

thresholds.  Experiments shown include CONTROL, 88DONLY, CASAONLY, and 

NORADAR. 

 

Figure 4.17 shows the time series for the CONTROL, NOTESTBED, and 

NONEWSFC experiments.  The NOTESTBED experiment consistently scores better by 

this metric than the other experiments, including CONTROL, for the 20 dBZ threshold 

(Figure 4.17a).  The CONTROL and NONEWSFC experiments perform similarly for this 

threshold, indicating that the majority of the differences seen in the NOTESTBED and 

CONTROL experiments are attributable to the inclusion of data from the CASA and 

TDWR radars.  NOTESTBED consistently performs better for the 25 dBZ (Figure 4.17b) 

and 30 dBZ threshold (Figure 4.17c), as well. 
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Figure 4.17: As in Figure 4.16, but for the CONTROL, NOTESTBED, and NONEWSFC 

experiments. 

 

4.4.3 Hail Verification 

The maximum estimated size of hail (MESH) can be determined by the WSR-

88D radar network using a hail detection algorithm (HDA; Witt et al. 1998).  MESH is 

calculated from a weighted vertical integration of the horizontal reflectivity factor (Z) 

exceeding 40 dBZ above the melting level.  Reflectivity data are first converted into flux 

values of hail kinetic energy (�̇�): 

�̇� = 5 × 10−6 × 100.084𝑍𝑊(𝑍)    (4.4) 
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where Z is the horizontal reflectivity factor in dBZ and �̇� is in 𝐽 𝑚−2𝑠−1 (Waldvogel et 

al. 1978).  The following reflectivity weighting function acts to filter out reflectivity 

values that often tend to be associated with liquid water: 

𝑊(𝑍) = {

0   𝑓𝑜𝑟 𝑍 ≤ 𝑍𝐿
𝑍−𝑍𝐿

𝑍𝑈−𝑍𝐿
 𝑓𝑜𝑟 𝑍𝐿 < 𝑍 < 𝑍𝑈

1   𝑓𝑜𝑟 𝑍 ≥ 𝑍𝑈

               (4.5) 

where 𝑍𝐿 and 𝑍𝑈 are 40 dBZ and 50 dBZ, respectively.  Thus, reflectivity values below 

40 dBZ are assigned a weight of 0, while reflectivity values exceeding 50 dBZ are 

assigned a weight of 1. 

The significant hail index (SHI) is defined by: 

𝑆𝐻𝐼 = 0.1 ∫ 𝑊𝑇(𝐻)�̇� 𝑑𝐻
𝐻𝑇

𝐻0
     (4.6) 

where 𝐻𝑇 is the height of the storm cell and 𝐻0 is the height of the environmental melting 

level above radar level (ARL).  The assumptions are that hail growth only occurs at 

subzero temperatures and is maximized when the temperature is at or below -20°C, which 

can be represented by the following temperature-based weighting function: 

𝑊𝑇(𝐻) = {

0   𝑓𝑜𝑟 𝐻 ≤ 𝐻0
𝐻−𝐻0

𝐻𝑚20−𝐻0
 𝑓𝑜𝑟 𝐻0 < 𝐻 < 𝐻𝑚20

1   𝑓𝑜𝑟 𝐻 ≥ 𝐻𝑚20

    (4.7) 

where 𝐻𝑚20 is the height of the -20°C environmental temperature.  Both 𝐻0 and 𝐻𝑚20 are 

determined using numerical model output for each experiment.  Finally, MESH is given 

by: 

𝑀𝐸𝑆𝐻 = 2.54(𝑆𝐻𝐼)0.5            (4.8) 

with units of millimeters.  For additional information on the development of the MESH 

algorithm, see Witt et al. 1998. 
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Observed MESH swaths are derived using remapped WSR-88D radar data and 

compared to forecast MESH swaths for each experiment.  MESH swaths are computed 

for the free forecast portion of each experiment, namely from 2220 to 2350 UTC.  Figure 

4.18 shows the observed MESH swath (left) and forecast MESH swath for the 

CONTROL experiment (right) with a black contour indicating where MESH values in 

excess of 25 mm were observed.  It can be seen that the observed MESH swath has a 

smaller areal extent than that of the CONTROL experiment, indicating that the 

microphysics scheme produced hail over a larger area than what was observed.  In 

addition, the coverage of severe hail (diameter 25 mm or greater) is significantly larger 

than what was observed, with extraneous swaths of severe hail occurring both to the 

northwest and northeast of the main hail zone.  Lastly, there is an under-prediction of the 

maximum hail size evident in the CONTROL experiment, which is also evident in the 

other experiments (Figure 4.19), which is likely a result of the microphysics scheme used.  

The effects of the choice of microphysics parameterization scheme will be examined in 

Section 4.4.5. 

 
Figure 4.18: a) Observed MESH swath (mm) derived using WSR-88D radar data and b) 

forecast MESH swath (mm) for the CONTROL experiment.  MESH swaths are shown 

for the free forecast period, namely 2220 to 2350 UTC. 
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Figure 4.19 shows the forecast MESH swaths for several experiments, with the 

black contour representing the region where MESH values in excess of 25 mm were 

observed, corresponding to severe hail.  THE CONTROL experiment (Figure 4.19a) 

forecasts severe hail in regions where severe hail was observed, but, again, there is an 

over-prediction bias, with more severe hail forecasted by the model than what was 

actually observed.  Significant severe hail (diameter in excess of 50 mm) was also 

forecasted in the CONTROL experiment; however, some of this hail was forecasted 

outside the region of observed severe hail.  This general pattern holds true for the 

remaining experiments, with the exception of NORADAR (Figure 4.19c-f).  The 

NORADAR experiment (Figure 4.19b) does not forecast any hail for roughly half of the 

region where severe hail was observed.  Given that no radar reflectivity data were 

assimilated in this experiment, the model must “spin-up” the storm, with the storm taking 

roughly 15 to 20 minutes to form (not shown).  Given the poor initial representation of 

the main storm of interest, the storm takes longer to mature, producing the majority of its 

severe hail later in the forecast period than for the CONTROL experiment.  Moreover, 

little, if any, significant severe hail was forecasted for this experiment.  The 88DONLY 

experiment (Figure 4.19c) has a somewhat smaller swath of forecasted severe hail than 

the CONTROL experiment, with a larger portion of the swath falling outside the region 

of observed severe hail.  Maximum hail size is under-predicted in the western-most 

portion of the observed severe hail swath.  Additionally, the largest hail predicted falls 

within the significant severe category, but this hail occurs entirely outside of the region 

of observed severe hail.  The NOTDWR experiment (Figure 4.19d) similarly under-

predicts the maximum hail size in the western-most portion of the observed severe hail 
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swath, but does capture some significant severe hail within the observed severe hail 

swath.  The NOCASA experiment (Figure 4.19e) exhibits significant differences from 

the CONTROL experiment.  Most notable is the area of significant severe hail (indicated 

by magenta colors) that is forecasted to occur outside the area where severe hail was 

observed.  This pattern was also observed for the 88DONLY experiment, but to a lesser 

extent.  In addition, a swath of significant severe hail was forecasted just north of the 

observed MESH contour, with this swath extending further east than that of the 

observations.  The northward shift of the NOCASA hail is a result of the forecasted storm 

track being slightly north of the track in the CONTROL experiment.  The eastward 

extension is likely a result of the supercell moving faster to the east in the NOCASA 

experiment than in the CONTROL experiment, which was noted previously in the 

reflectivity fields (Figure 4.11).  The NOCASAVR experiment (Figure 4.19f) shows a 

very similar pattern to the NOCASA experiment, which indicates that the differences 

between the CONTROL and NOCASA experiment are largely attributed to the denial of 

the CASA radial velocity data. 
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Figure 4.19: Forecast MESH swaths (mm) for the a) CONTROL, b) NORADAR, c) 

88DONLY, d) NOTDWR, e) NOCASA, and f) NOCASAVR experiments. 

 

Figures 4.20a and 4.20b show the forecasted MESH swath for the CONTROL and 

NONEWSFC experiments, respectively.  The experiments exhibit a fairly similar spatial 

coverage of hail, but there is a notable region of significant severe hail that occurs to the 

southeast of the main observed swath in the NONEWSFC experiment. 
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Figure 4.20: As in Figure 4.19, but for the a) CONTROL and b) NONEWSFC 

experiments. 

 

Forecasts of MESH are verified quantitatively using performance diagrams 

(Roebber 2009) that are based on the forecast contingency table presented in Table 4.2. 

Table 4.2: Contingency Table for Forecast vs. Observations 

 

 

 

 

 

Forecast 

                                                 Observed 

 
Yes No 

Yes Hit False Alarm 

No Miss Correct Null 

 

In performance diagrams, the y-axis represents the probability of detection 

(POD), while the x-axis corresponds to the frequency of hits (FOH) or success ratio (SR), 

which is defined as 1 − 𝐹𝐴𝑅, where FAR is the false alarm rate. 

𝑃𝑂𝐷 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
          (4.9) 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
                  (4.10) 

𝐹𝑂𝐻 = 𝑆𝑅 = 1 − 𝐹𝐴𝑅 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
                (4.11) 
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Dashed lines represent bias, with values below 1 corresponding to an under-prediction 

bias and values exceeding 1 representing an over-prediction bias.  The hyperbolic lines 

correspond to the critical success index (CSI): 

𝐶𝑆𝐼 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
    (4.12) 

Since a perfect forecast has no misses or false alarms, the 𝑃𝑂𝐷 = 1, 𝑆𝑅 = 1, 𝑎𝑛𝑑 𝐶𝑆𝐼 =

1.  Therefore, a perfect forecast falls in the upper-right corner of the diagram. 

Because severe hail is such a localized phenomenon, observed MESH swaths are 

modified using a neighborhood threshold, so the forecast is not penalized when hail is 

forecast within a specified radius of the observed hail.  For each grid point, if hail is 

observed within the specified radius, observations of hail are expanded to include that 

grid point. 

Figure 4.21 presents the performance diagram for 5 mm hail using a neighborhood 

threshold of 15 km for the radar denial experiments.  It can be seen that the CONTROL 

experiment has the highest POD, indicating that the forecasted region of hail most closely 

encompasses the region of observed hail.  It also has the highest success ratio (SR) of all 

experiments.  This indicates that the inclusion of all available data in the CONTROL 

experiment results in the best forecast of hail.  The NORADAR experiment has the lowest 

POD and SR out of all the experiments presented, which is due to the aforementioned 

model “spin-up” time.  It can also be seen that 88DONLY has a lower POD and SR than 

the CONTROL experiment, indicating that the denial of CASA and TDWR radar data 

degraded the forecast.  The NOTDWR experiment has a similar POD and SR as the 

CONTROL run, whereas NOCASA performs similarly to 88DONLY.  Thus, the majority 

of the differences noted in the 88DONLY experiment are attributed to the denial of CASA 
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radar data.  More specifically, since the NOCASAVR experiment has a similar result as 

the NOCASA experiment, it can be deduced that the degraded forecast is most 

attributable to the denial of CASA radial velocity data, which offers high-resolution 

sampling of the lowest-levels of the storm, below that of the WSR-88D network.  The 

CASAONLY experiment, which indicates the value of the CASA radars in the event of 

all WSR-88D radars that observe the storm failing during a severe weather event, has a 

lower POD and SR than the CONTROL experiment. 

 

Figure 4.21: Performance diagram for radar data denial experiments, using a hail size of 

5 mm and neighborhood threshold of 15 km. 

 

Likewise, Figure 4.22 shows the performance diagram for 25 mm (severe) hail 

using the same 15 km threshold.  As before, the CONTROL experiment has the highest 

POD, indicating that the inclusion of all available data results in the forecast that best 

encompasses the region of severe hail.  NORADAR has the lowest POD, consistent with 
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the forecasted severe hail only marginally falling within the observed region of severe 

hail.  NORADAR also has the smallest SR (i.e., highest FAR), which is in response to 

the reduced number of hits and added sensitivity to false alarms.  The 88DONLY 

experiment has a lower POD and SR than the CONTROL experiment, indicating that the 

addition of CASA and TDWR data improves the prediction of this hail event.  Unlike for 

the smaller hail size, there is a more notable decrease in POD for the NOTDWR 

experiment; this is counter-balanced, however, by an increase in SR.  However, the 

resultant CSI for the NOTDWR experiment is slightly higher than for the CONTROL 

experiment, so overall the NOTDWR experiment performs slightly better than the 

CONTROL.  The NOCASA experiment shows a reduced POD and reduced SR, when 

compared to the CONTROL experiment.  However, unlike for the smaller hail size, there 

is a lower POD and slightly lower SR for the NOCASAVR experiment when compared 

to the NOCASA experiment, which indicates that the inclusion of CASA reflectivity data, 

without radial velocity data, results in a slight degradation of the forecast.  As before, the 

CASAONLY experiment has a lower POD than the CONTROL experiment, suggesting 

that the CASA data alone is not enough to produce a simulation that captures the majority 

of the severe hail that occurred.  It is also worth noting that the majority of experiments, 

with the exception of the CASAONLY and NORADAR experiments, suffer from an 

over-prediction bias (values above 1.0).  This is consistent with the MESH swaths 

presented earlier, as the areal coverage of severe hail in these experiments exceeded that 

of the observations. 
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Figure 4.22:  As in Figure 4.21, but for a hail size of 25 mm. 

 

Figure 4.23 shows the performance diagram for the surface data denial 

experiments, using a hail size of 25 mm and neighborhood threshold of 15 km.  The 

NOTESTBED experiment is an extension of the 88DONLY experiment in that it denies 

non-conventional surface data in addition to the non-conventional radar data (CASA and 

TDWR).  Thus, this experiment has a similar performance to the 88DONLY experiment.  

The NONEWSFC experiment has a slightly lower POD than the CONTROL experiment, 

along with a slightly higher SR.  Therefore, the CSI for this experiment is not significantly 

different from the CONTROL experiment.  The individual data denial experiments 

(NOGST, NOUNDERSTORY, NOCWOP, NOWXBUG, and NOCWOPWXBUG) all 

experience fairly similar PODs and SRs, and it is difficult to definitively say which 

experiments exhibit the best performance due to the close clustering of points.  A similar 
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pattern is seen in the 5 mm hail performance diagram (not shown), although the range of 

values seen is less disperse for that case. 

 

Figure 4.23: As in Figure 4.22 but for surface data denial experiments. 

 

4.4.4 Surface-Level Forecast Verification 

Forecast performance is also evaluated by considering the root mean square 

difference (RMSD) of surface fields such as temperature and dew point temperature.  

Twelve independent stations (i.e., not assimilated in the 3DVAR analysis system) are 

used in the RMSD calculations, including 10 ASOS stations and 2 Oklahoma Mesonet 

stations, which are shown in Figure 4.24.  These stations were chosen because the data 

from these networks are considered more reliable than other surface networks.  The 

analysis or forecast is linearly interpolated to the observation location in order to compute 

the RMSD value.   
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Figure 4.24: Locations of the 10 ASOS and 2 Oklahoma Mesonet stations that are denied 

for verification purposes. 

 

Figure 4.25a shows the 2 meter temperature RMSD for the CONTROL, 

NORADAR, CASAONLY, NOCASA, and 88DONLY experiments.  The RMSD at the 

beginning (0 min) represents the difference between the observations and the model 

background.  The vertical line at 30 min corresponds to the beginning of the last data 

assimilation cycle and the free forecast period.  All five experiments start out with a very 

similar RMSD as each experiment assimilates all available surface data.  However, as the 

forecast progresses, differences among the experiments become more apparent.  The 

CONTROL experiment has the lowest RMSD value for the middle of the free forecast 

period, roughly from 2300 to 2320 UTC (70 to 90 min).  The 88DONLY experiment has 

the lowest RMSD at the end of the free forecast period.  The RMSD is slightly higher for 

the NOCASA experiment, which is followed by CONTROL.  Thus, the inclusion of the 
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CASA and TDWR radar data results in a slight increase in the 2 m temperature RMSD at 

the end of the forecast period.  The RMSD for NORADAR increases considerably around 

75 min into the forecast period (2305 UTC).  CASAONLY and NORADAR have the 

highest RMSD at the end of the free forecast, most likely due to the poor initial handling 

of the storm of interest in these simulations.  It is likely that these simulations do not 

adequately capture the strength of the cold pool and associated gust front.  Figure 4.25b 

shows the 2 m dew point temperature RMSD.  As for temperature, all experiments start 

out with a similar RMSD owing to the inclusion of all available surface data in this set of 

experiments.  The differences in dew point RMSD are not as clear as for temperature at 

the end of the free forecast period, with the CONTROL and NOCASA experiments 

having the lowest RMSD values.  Therefore, it appears that the radar data have a stronger 

influence on the resulting surface temperature field than the surface dew point field, 

despite the insertion of hydrometeors and humidity aloft in the cloud analysis. 
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Figure 4.25: Root mean square difference (RMSD) for a) 2 m temperature and b) 2 m 

dew point temperature.  The vertical line at 30 minutes represents the start of the free 

forecast. 

 

The 2 m temperature RMSD for the CONTROL, NONEWSFC, 

NOCWOPWXBUG, NOCWOP, and NOWXBUG experiments are shown in Figure 

4.26a.  The NOCWOP experiment has the lowest RMSD at the end of the free forecast 

period, followed by CONTROL and NOWXBUG.  NONEWSFC and 

NOCWOPWXBUG exhibit an increase in RMSD around 50 min into the forecast period 
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(2240 UTC) that is not as prevalent in CONTROL, NOCWOP, and NOWXBUG.  Thus, 

the inclusion of the non-conventional surface observations results in a reduced RMSD at 

the end of the free forecast period.  The RMSD begins to diverge faster for this group of 

experiments than for the radar experiments owing to the varied group of surface data 

assimilated.   

There is a more distinct difference in the RMSD pattern for dew point temperature 

(Figure 4.26b).  The dew point RMSD exhibits greater spread during the assimilation 

period than does temperature.  The CONTROL experiment has the highest RMSD error 

at the beginning and end of the free forecast period, although NOCWOP is higher than 

CONTROL for a portion of the free forecast period.  NONEWSFC has the lowest RMSD 

throughout the entirety of the free forecast period.  The NOCWOPWXBUG experiment 

exhibits a similar pattern to the NONEWSFC experiment, indicating that the majority of 

differences seen in the NONEWSFC experiment are attributed to the CWOP and 

WXBUG observations.  Since both the NOCWOP and NOWXBUG experiments exhibit 

an RMSD at the end of the free forecast period that is slightly lower than for the 

CONTROL experiment, the combination of these observation types is likely resulting in 

the differences noted in NONEWSFC.  Although the NOUNDERSTORY and NOGST 

experiments are not shown here, these experiments have an RMSD value similar to that 

of the CONTROL experiment throughout the forecast period, indicating that the GST and 

Understory data do not result in significant differences for the dew point temperature 

field.  Thus, the inclusion of non-conventional surface data influences the forecast dew 

point evolution more so than temperature.  
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Figure 4.26: As in Figure 4.25, but for the surface data denial experiments. 

 

Figure 4.27 shows bias for the a) 2 m temperature and b) 2 m dew point 

temperature fields, where bias is defined as model minus observations, for the 

CONTROL, NONEWSFC, NOCWOWXBUG, NOCWOP, and NOWXBUG 

experiments.  The 2 m temperature bias is below -2.0 °C at the beginning of the forecast 

period.  All experiments exhibit a fairly similar pattern of bias throughout the forecast 

period, with bias increasing towards zero throughout the forecast period.  Bias for the 2 
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m dew point temperature field is lower for NONEWSFC throughout the forecast period, 

with CONTROL exhibiting a positive dew point bias through the majority of the forecast 

period.  The bias exhibits a similar pattern for the NONEWSFC and NOCWOPWXBUG 

experiments, indicating that the bias is mostly in response to the WeatherBug and CWOP 

observations.  Since NOWXBUG and CONTROL are similar throughout the forecast 

period, the majority of the bias in the dew point field is introduced by the CWOP 

observations. 
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Figure 4.27: Bias for a) 2 m temperature and b) 2 m dew point temperature for the surface 

data denial experiments. 

 

Figure 4.28 shows the background temperature field and wind vectors at 2150 

UTC.  Independent observations from the 12 verification stations are overlaid.  A 31.1°C 

observation from KFTW (Fort Worth) coincides with a background value of roughly 

25.2°C.  Moreover, the observed wind at this station is southerly, while the wind in the 

background field surrounding the observation is northerly.  This indicates that there is a 

phase shift in the model background field, with the front placed further south than in 
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reality.  This phase shift is also largely responsible for the large initial RMSD value for 

the 2 m temperature field, as can be seen in Table 4.3.  In addition, the model minus 

observed value is negative for all 12 verification stations, which indicates that the model 

background is colder than observations prior to any data assimilation.  This is consistent 

with the cold bias seen in Figure 4.27a. 

 

Figure 4.28: Background temperature field (°C) and wind vectors (m/s) at 2150 UTC.  

Independent (i.e., not assimilated) temperature and wind observations are overlaid. 
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Table 4.3: Model background (RAP) vs. observations at 2150 UTC. 

Station Model (°C) Observed (°C) Model-Observed (°C) 

ARD2 16.2 19.1 -2.9 

DURA 15.0 16.8 -1.8 

KDFW 24.3 25.6 -1.3 

KDTO 20.1 21.7 -1.6 

KFTW 25.2 31.1 -5.9 

KRBD 26.5 30.0 -3.5 

KTKI 18.8 18.9 -0.1 

KCRS 26.9 30.0 -3.1 

KMWL 29.4 31.7 -2.2 

KSPS 18.8 19.4 -0.7 

KGKY 27.0 30.6 -3.6 

KACT 27.5 29.4 -1.9 

 

 

Figure 4.29 shows specific humidity of vapor (qv) perturbations at the surface.  

The perturbations are determined by subtracting the qv value from the CONTROL 

experiment from that of the NONEWSFC, NOCWOPWXBUG, NOCWOP, and 

NOWXBUG experiments, respectively.  The NONEWSFC, NOCWOPWXBUG, and 

NOWXBUG experiments all exhibit a region of positive qv perturbations west of the 

DFW metro at 2220 UTC, indicating that the CONTROL experiment is drier in this 

region.  Since all three experiments deny the assimilation of WeatherBug observations, 

while CONTROL and NOCWOP do not, it can be seen that the WeatherBug observations 



81 

are introducing a dry region to the model background field in this region.  Conversely, 

the NONEWSFC, NOCWOPWXBUG, and NOCWOP experiments exhibit a negative qv 

perturbation just to the east of the aforementioned region, with this pattern not as 

prevalent in NOWXBUG.  This indicates that a moist region is introduced to the model 

background field by the CWOP observations.  Since more verification stations are 

collocated with the moist area caused by CWOP observations than the dry region caused 

by WeatherBug observations, the bias is largely driven by the CWOP observations, which 

is consistent with the moist bias seen in Figure 4.27b. 

Figures 4.30 and 4.31 show the forecasted surface temperature and wind fields, 

along with the observed temperature and wind at the 12 verification station for 2220 UTC, 

2240 UTC, 2300 UTC, and 2320 UTC. The placement of the combined cold front and 

gust front is indicated by the temperature gradient and wind shift.  As time progresses 

through the forecast period, more of the verification stations are located behind the cold 

front, outside of the region of greatest temperature gradient.  The frontal boundary 

passage is largely responsible for the notable decreases in RMSD evident in Figures 4.25 

and 4.26. 
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Figure 4.29: Specific humidity of vapor (qv) differences at the surface, which are 

determined by subtracting the qv value for the CONTROL experiment from the value for 

each experiment. 
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Figure 4.30: Forecasted temperature (°C) and wind (m/s) fields at the surface for 2220 

UTC and 2240 UTC, with observed temperature and wind fields overlaid for the 12 

verification stations. 
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Figure 4.31: As in Figure 4.30, but for 2300 UTC and 2320 UTC. 



85 

4.4.5 Single vs. Double Moment Microphysics 

The microphysics scheme used in all of the experiments presented in previous 

sections is the single-moment microphysics scheme of Milbrandt and Yau (2005).  While 

the CONTROL experiment has a MESH POD above 85% for the 15 km neighborhood 

threshold (Figures 4.21 – 4.23), the SR is around 50% owing to the general over-

prediction bias and corresponding large number of false alarms.  Although evaluating the 

results for varying microphysics schemes was not the main focus of this work, the 

aforementioned over-prediction bias motivated the comparison with the double-moment 

Milbrandt and Yau microphysics scheme.  The single-moment microphysics scheme 

predicts the mixing ratio (i.e., mass) for each of the hydrometeor species included, while 

keeping the intercept parameter to a constant value.  On the other hand, the double-

moment scheme predicts the number concentration, along with mixing ratio, for each 

hydrometeor type included.  As a consequence of this increased complexity (and 

computational cost), it is generally expected that double-moment schemes offer superior 

performance to single-moment schemes.  For instance, Dawson et al. (2010) considered 

the 3 May 1999 tornadic supercell that impacted Oklahoma and found that the use of 

multi-moment microphysics schemes resulted in a weaker cold pool than when the single-

moment scheme was used, owing to improved handling of evaporation and size sorting.  

Moreover, Stratman and Brewster (2017) found that forecasts of tornadic supercells were 

often improved when using multi-moment microphysics schemes, although in several 

metrics single-moment schemes provided similar, if not superior, performance to the 

multi-moment schemes.  Further improvements might be expected for a three-moment 

microphysics scheme, which predicts the shape parameter in addition to the mass field 
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and number concentration.  However, the three-moment scheme is not considered here.  

The microphysics sensitivity experiments performed are described in Table 4.4.  The 

CONTROL experiment uses the Milbrandt and Yau single-moment scheme, while 

CTLDOUBLE uses the double-moment scheme.  Both experiments assimilate all 

available surface, radar, and upper-air data. 

Table 4.4: Microphysics Sensitivity Experiments Performed 

 

Figure 4.32 shows the wind and reflectivity field roughly 2 km AGL for the 

single-moment scheme (CONTROL) and double-moment scheme (CTLDOUBLE).  For 

the final analysis time (2220 UTC), the CTLDOUBLE scheme has the same general 

reflectivity pattern as the CONTROL experiment, although the reflectivity values are 

generally lower for CTLDOUBLE.  This is particularly notable in Denton County, where 

reflectivity values above 65 dBZ are present in CONTROL, while CTLDOUBLE has 

reduced reflectivity with a small area peaking at around 55 dBZ.  By 2300 UTC, a hook 

echo is present in Collin County for both experiments, although there are still reduced 

reflectivity values in the CTLDOUBLE experiment.  By 2330 UTC, the CTLDOUBLE 

experiment has a hook echo that is not as well-defined as for the CONTROL experiment.  

Experiment Conventional 

surface data 

Non-

conventional 

surface data 

88D, CASA, 

and TDWR 

data 

Upper-air 

profiles 

Microphysics 

Scheme 

CONTROL All All All All Milbrandt and 

Yau single-

moment 

CTLDOUBLE All All All All Milbrandt and 

Yau double-

moment 
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Additionally, the reflectivity values in the hook region are again reduced from that of the 

CONTROL experiment. 

 

Figure 4.32: Comparison of the reflectivity field roughly 2 km AGL for the single-

moment microphysics scheme (CONTROL) and double-moment microphysics scheme 

(CTLDOUBLE).  Both experiments assimilate all available data.  

 

Figure 4.33 shows the forecast MESH swath for the a) CONTROL and b) 

CTLDOUBLE experiments.  It is clear that the areal coverage of the MESH swath is 

reduced for the CTLDOUBLE experiment, both for all hail (5 mm) and severe hail (25 

mm).  However, the severe hail predicted in CTLDOUBLE occurs predominantly outside 

of the region of observed severe hail.  The CTLDOUBLE experiment has a more compact 

hail core, although this core is positioned about 10 to 15 km to the north of the core found 

in the CONTROL experiment and observations.  Thus, the areal extent of the severe hail 

predicted in CTLDOUBLE is improved over CONTROL, although there is a 

displacement error present in CTLDOUBLE. 
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Figure 4.33: Forecast MESH swath (mm) for the a) CONTROL and b) CTLDOUBLE 

experiments.  Observed MESH above 25 mm is contoured in black. 

 

Figure 4.34 shows the performance diagram using a neighborhood threshold of 

15 km for the CONTROL and CTLDOUBLE experiments.  When considering 5 mm hail, 

the CONTROL experiment has a POD of roughly 0.85 with a SR of around 0.5.  

Conversely, the CTLDOUBLE experiment has a lower POD of around 0.55 and a higher 

SR of approximately 0.75 for a hail size of 5 mm.    This is consistent with what is shown 

in the MESH swaths (Figure 4.33), as the reduced number of false alarms would increase 

the SR.  When using a hail size threshold of 25 mm, the POD for CTLDOUBLE is 

significantly lower than it is for CONTROL (approximately 0.20), as the majority of the 

severe hail observed falls outside of the observed region with the 15 km neighborhood 

allowance.  However, the SR is again higher for CTLDOUBLE owing to the reduced 

spatial coverage of severe hail in this experiment. 
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Figure 4.34: Performance diagram comparing MESH forecasts from the CONTROL and 

CTLDOUBLE experiments, using a neighborhood threshold of 15 km. 

 

The RMSD metric for the CONTROL experiment was lower than the 

CTLDOUBLE experiment for 2 m temperature (Figure 4.35a) for the entirety of the free 

forecast period.  In addition, the RMSD for 2 m dew point temperature (Figure 4.35b) is 

lower in CONTROL than CTLDOUBLE from approximately 10 min to 1 hour into the 

free forecast.  Figure 4.36 shows potential temperature perturbations at the surface for a) 

2220 UTC, b) 2300 UTC, and c) 2340 UTC.  These perturbations are defined as  

𝜃𝑑𝑜𝑢𝑏𝑙𝑒 − 𝜃𝑠𝑖𝑛𝑔𝑙𝑒.  It is evident that the cold pool generated by the double-moment 

scheme is warmer than the one produced when using the single-moment scheme.  This 

finding is consistent with Dawson et al. (2010), which found warmer and smaller cold 

pools when using multi-moment microphysics schemes owing to improved handling of 

evaporation and drop size sorting.  At 2340 UTC, the cold pool is located further south 



90 

in the CONTROL experiment than in the CTLDOUBLE experiment, which is shown by 

a band of positive potential temperature perturbations in c).  The observed location of the 

gust front can be deduced from Figure 4.36d, which shows the 0.5 degree tilt from the 

KFWS WSR-88D radar at 2340 UTC.  The gust front placement is more accurate in the 

CONTROL experiment, which used the single-moment scheme, although both 

experiments offer a good prediction of the cold pool placement. 

 

Figure 4.35: As in Figure 4.25, but for the CONTROL and CTLDOUBLE experiments. 
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Together, this indicates that the single-moment microphysics scheme used 

performed better than the double-moment version.  While it is generally expected that a 

double-moment scheme would provide superior results to a single-moment scheme, the 

results were mixed for this case.  While the over prediction of reflectivity outside the 

primary supercell and over prediction of areal extent of large hail within that cell was 

significantly reduced when using the double-moment scheme (MY2), the MY2 had 

reduced POD for the MESH field and slightly increased RMSD errors.   

 

Figure 4.36: Potential temperature perturbations at the surface, which are defined as 

𝜽𝒅𝒐𝒖𝒃𝒍𝒆 − 𝜽𝒔𝒊𝒏𝒈𝒍𝒆 for a) 2220 UTC, b) 2300 UTC, and c) 2340 UTC.  The reflectivity 

observed by the KFWS WSR-88D radar (0.5 degree tilt) at 2340 UTC is shown in d), 

with a fine line indicative of the placement of the cold front.  
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Chapter 5 

5.1 Summary and Conclusions 

The United States Weather Research Program (USWRP) convened a workshop 

in 2003 to discuss means of improving the current observational network (Dabberdt et al. 

2005).  The committee recommended that a nationwide network of mesoscale surface 

stations be established to supplement the current observational network by providing 

additional observations in the lowest levels of the atmosphere.  A 2009 report by the 

National Research Council (NRC) entitled Observing Weather and Climate from the 

Ground up: A Nationwide Network of Networks took this recommendation one step 

further and proposed that new mesoscale networks be integrated with existing ones to 

create a nationwide “network of networks” thereby maximizing the benefit of these 

distinct networks.  An additional recommendation of this report was for the establishment 

of research testbeds to objectively assess the future impact of proposed observing 

systems.   

The DFW Urban Demonstration Network was recently established in the Dallas-

Fort Worth metroplex.  Non-conventional surface data sources that are not available in 

the federal observing network include Global Science & Technology (GST) Mobile 

Platform Environmental Data (MoPED), WeatherBug, Citizen Weather Observer 

Program (CWOP), and Understory Weather.  Non-conventional radar data include two 

Terminal Doppler Weather Radars (TDWRs) at the major passenger airports in the DFW 

metroplex and six Collaborative Adaptive Sensing of the Atmosphere (CASA) X-band 

radars.  Two Sonic Detection and Ranging profilers (SODARs) have been installed in the 
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network, providing more frequent vertical profiles of wind than what are provided by the 

radiosonde network. 

The purpose of this work was to evaluate the performance of the aforementioned 

new observing systems in the DFW testbed using observing system experiments (OSEs).  

In an OSE, an analysis and forecast are performed for a control experiment, in which all 

available data are assimilated.  The control experiment can then be compared to the results 

of data denial experiments, in which a particular class of observations is denied, thus 

revealing the value of those observations. 

In this work, OSEs are performed on a prolific hail-producing supercell 

thunderstorm that impacted the northern portion of the DFW metroplex on 11 April 2016.  

The Advanced Regional Prediction System (ARPS) model is used, along with the ARPS 

three-dimensional variational (3DVAR) analysis and complex cloud analysis.  

Incremental analysis updating with variable-dependent timing (IAU-VDT) is used to 

apply the analysis increments gradually during the assimilation window.  Four 10-minute 

intermittent data assimilation cycles begin at 2150 UTC, with a one-and-a-half hour free 

forecast beginning at 2220 UTC. 

The CONTROL experiment, which assimilated all available surface, radar, and 

aircraft data, generally captures the behavior of the observed supercell during the free 

forecast period, although this experiment exhibits a general wet bias in the reflectivity 

field as the free forecast progresses. Slight propagation speed errors are also evident as 

the simulated storm was positioned slightly southwest of the observed storm at 2330 

UTC.  The 88DONLY simulation does not produce a well-defined hook echo at the end 

of the forecast period, as evident in the reflectivity and updraft helicity fields, indicating 
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that the inclusion of the CASA and TDWR data in the CONTROL experiment aided in 

the production of a realistic supercell simulation.  This general pattern is also observed 

for NOCASA, along with an eastward displacement of the storm by 2330 UTC when 

compared to both the CONTROL experiment and observations, indicating that the CASA 

data contributed to accurately capturing the storm evolution.  More specifically, the 

NOCASAVR experiment, which still included CASA reflectivity data in the complex 

cloud analysis, performs similarly to NOCASA indicating that the low-level radial 

velocity data were most crucial for accurately analyzing and predicting this supercell.  

However, based upon the CASAONLY experiment, it is clear that the CASA radar data 

are insufficient as a standalone tool.  Unlike for the 2007 Integrated Project One (IP1) 

testbed in southwestern Oklahoma, the CASA radars in the DFW Urban Demonstration 

Network do not take advantage of the collaborative adaptive scanning strategies, instead 

using more traditional “sit-and-spin” strategies that remain at elevation angles of 4.5 

degrees or lower.  As a consequence, these radars are incapable of observing the entire 

depth of the storm, as shown in vertical cross-sections (Figure 4.12). 

The fractions skill score (FSS) is used to perform quantitative comparisons of the 

forecasted composite reflectivity field to the composite reflectivity field observed by the 

KFWS WSR-88D radar.  When comparing the CONTROL, 88DONLY, CASAONLY, 

and NORADAR experiments using a 20 dBZ reflectivity threshold, the 88DONLY 

experiment has a consistently higher FSS throughout the free-forecast period than the 

remaining experiments.  When using a 25 dBZ threshold, the 88DONLY experiment was 

the only forecast with skill greater than the “useful” mark by this metric during the 

entirety of the free forecast period.  This indicates that the inclusion of the CASA radar 
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data degrades the forecasted reflectivity field by this metric, which is somewhat 

contradictory to what was noted subjectively for the reflectivity field structure, as the 

CONTROL experiment exhibited the best structure at the end of the free forecast period.  

The CONTROL and NONEWSFC experiments perform similarly at all reflectivity 

thresholds, indicating that the new surface networks resulted in little improvements to the 

forecasted reflectivity field. 

Hail was an important element in this case, so forecast performance is also 

evaluated by comparing model-derived hail with radar-observed hail using the maximum 

estimated size of hail (MESH) algorithm, which incorporates a weighted vertical 

integration of the horizontal reflectivity factor exceeding 40 dBZ above the melting level.  

Deficiencies in the Milbrandt and Yau single-moment microphysics scheme (MY1) used 

are evident, as the areal extent of the hail in the CONTROL experiment’s predicted hail 

swath is much larger than the observed MESH swath.  Moreover, there is an under-

prediction of the maximum hail size in the CONTROL experiment.  The NOCASA and 

NOCASAVR experiments predicted a region of significant severe hail outside of the 

region where severe hail was observed, indicating that the inclusion of CASA radial 

velocity data in the lowest-levels of the atmosphere aided in the superior CONTROL 

experiment.  This pattern of extraneous significant severe hail was also noted, although 

to a lesser extent, in a number of the other radar experiments.  MESH forecasts were 

evaluated quantitatively using performance diagrams.  The CONTROL experiment had 

the highest probability of detection (POD) and success ratio (SR) of all experiments using 

a hail size of 5 mm and neighborhood threshold of 15 km.  The 88DONLY simulation 

has a lower POD and SR, which can largely be attributed to the denial of CASA radial 
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velocity data.  The surface data denial experiments do not exhibit clear differences on the 

performance diagram, indicating that the radar data are most critical for accurately 

predicting hail.  The CONTROL experiment also has the highest POD when considering 

severe hail (25 mm). 

The root mean square difference (RMSD) of the surface temperature and dew 

point temperature fields are also used to assess forecast performance.  Twelve stations 

are denied from the assimilation process for an independent comparison.  When 

comparing the CONTROL, NORADAR, CASAONLY, NOCASA, and 88DONLY 

experiments, the 88DONLY experiment has the lowest 2 m temperature RMSD at the 

end of the free forecast period, indicating that the inclusion of the CASA and TDWR 

radar data degraded the resultant 2 m temperature forecast.  The CASAONLY and 

NORADAR experiments have the highest RMSD at the end of the forecast period, likely 

in response to inadequate depictions of the cold pool and gust front intensity.  The 

influence of radar data on the surface dew point temperature field was not as clear.  When 

comparing the CONTROL, NONEWSFC, NOCWOPWXBUG, NOCWOP, and 

NOWXBUG experiments, the pattern is reversed, with the more pronounced differences 

occurring for the surface dew point temperature field.  The NONEWSFC experiment has 

the lowest RMSD error at the end of the free forecast period, while the CONTROL 

experiment actually has the highest error.  Based upon comparisons with 

NOCWOPWXBUG, NOCWOP, and NOWXBUG, it appears that the CONTROL 

experiment has the highest RMSD error due to the combined effects of the WeatherBug 

and CWOP data.  The 2 m temperature RMSD value at the beginning of all experiments 

is in excess of 2.5°C, owing to a slight phase error in the frontal boundary placement in 
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the model background field.  The RMSD decreases with time during the forecast period, 

as the frontal boundary passes the verification stations.  The model background field has 

a cold bias initially, with the background field colder than the observed temperature for 

all 12 verification stations; however, the bias increases towards 0 as the forecast 

progresses. 

Finally, the sensitivity to model microphysics parameterization schemes is 

explored by comparing the results using the MY1 microphysics scheme to the results 

when using the more sophisticated double-moment version (MY2).  The reflectivity 

values when using the double-moment scheme (CTLDOUBLE) are generally less than 

when using the single-moment version (CONTROL) throughout the entirety of the free 

forecast.  Moreover, the hook echo at 2330 UTC is not as well-defined in the 

CTLDOUBLE experiment.  The forecasted MESH swath for the CTLDOUBLE 

experiment has a smaller areal extent than in CONTROL, although a large portion of the 

forecasted severe hail falls outside of the region of observed severe hail.  The smaller 

areal extent (i.e., reduced number of false alarms) results in an improved success rate 

(SR) for the CTLDOUBLE experiment, although the probability of detection (POD) is 

reduced.  The CONTROL experiment has a lower RMSD for 2 m temperature than the 

CTLDOUBLE experiment for the entirety of the free forecast period.  Together, these 

factors indicate that the double-moment version does not provide superior results for the 

storm considered in this study. 

5.2 Future Work 

One major limitation of this work is that it only considers one convective mode 

(i.e., supercell) for one case.  Furthermore, the storm considered here was elevated in the 
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cold sector, which could have potentially limited the forecast benefit of the non-

conventional surface data and low-level radial velocity data from the CASA X-band 

radars.  Similar comparisons should be performed for a more diverse array of weather 

events in order to obtain more comprehensive results.  The CASA radar data may prove 

useful for simulating a quasi-linear convective system (QLCS; e.g., Schenkman et al. 

2011a) and tornadic supercell (e.g., Schenkman et al. 2011b, Stratman and Brewster 

2015).  Moreover, the additional low-level dual-polarization radar data could provide 

valuable information to forecasters in a winter forecasting event.  More complete results 

could also be obtained by considering a quasi-real-time month-long system, in which an 

analysis and forecast using all available data are compared to experiments using only a 

subset of the available data.  The aggregated results over the month-long period would 

serve as more substantial evidence of the potential value of these observing systems. 

Additionally, the seventh CASA X-band radar has recently been deployed in 

Mesquite, with the final radar planned for McKinney.  Once the entire radar network is 

in place, a case should be identified to ascertain the value of the completed network.  The 

Understory Weather observations used in this study represent a small subset of the 

observations available beginning in the spring of 2017.  The number of stations collecting 

data has risen from only 10 for the case considered here to around 120 by April 2017.  A 

case should be identified to gauge the potential forecast improvements of this recently-

completed network.  

Lastly, additional data denial experiments should be performed to assess the 

utility of the CASA X-band radars in the event that a WSR-88D radar experiences 

technical difficulties during a severe weather event.  For the case presented here, the 
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KFWS radar was the most important radar for observing the storm; thus, these data denial 

experiments should focus on the denial of KFWS data.  More specifically, two 

experiments should be performed, one with and one without the CASA data, to determine 

the ability of CASA radars to supplement upper-level radar data from neighboring WSR-

88D radars.  These experiments should also deny the inclusion of TDWR radar data, as 

these radars are not available nationwide. 
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Appendix A: Comparing Data Averaging Techniques using 

Permutation Testing 
 

Since Global Science & Technology (GST) Mobile Platform Environmental Data 

(MoPED) observations are collected every 10 seconds, data thinning is necessary to 

reduce the spatiotemporal resolution of the observations.  The purpose of this portion of 

our research is to compare various averaging techniques for thinning this data.  

Permutation testing is used to perform a hypothesis test that is designed to assess whether 

2-min, 3-min, 4-min, and 5-min averages are statistically different from averages using a 

shorter 1-min window. 

A severe weather event on 5 November 2015 presents a test case to examine the 

forecast impact of these mobile observations.  Figure A.1 shows a surface analysis valid 

at 2100 UTC on 5 November 2015.  A 992 hPa surface low pressure system was 

positioned over Canada, just northwest of Lake Superior.  An associated cold front 

extended south through Kansas and into the Oklahoma panhandle, with a dryline out 

ahead of this cold front, extending from eastern Kansas through central Oklahoma and 

into central Texas.  Convection formed along this surface boundary, some of which would 

become severe, as evidenced by severe hail and wind reports from the Storm Prediction 

Center (SPC; Figure A.2). 

A.1 Data and Methodology 

 GST MoPED data were obtained for the period from 1700 to 2200 UTC for 5 

November 2015.  The domain considered is shown in Figure A.3, with latitude spanning 

31.5 to 33.9 degrees N and longitude spanning 96.0 to 98.4 degrees W.  Twelve trucks 

passed through the domain during the specified time period, although not all are analyzed 

here. 
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 The data were then thinned for five different lengths of time.  The data were 

grouped based on truck identifier and averages computed using data from individual 

trucks.  One-minute averages were generated using data for a single minute, with the 

averaged observation assigned to the midpoint of the interval (e.g., data from 17:00:00 to 

17:00:59 were averaged into a single observation for 17:00:30).  A second methodology 

for computing 1-min averages is to consider data centered about the beginning of a minute 

(e.g., data from 17:00:30 to 17:01:30 were averaged and assigned to 17:01:00).  Two-

minute averages were computed by dividing the time period into 2-min periods (e.g., 

observations from 17:00:00 to 17:01:59 were assigned to 17:01:00).  Four-min averages 

were computed in a similar fashion as the 2-min averages.  Three-min averages were 

computed by considering 3-min windows (e.g., observations from 17:00:00 to 17:02:59 

were averaged and assigned to 17:01:30).  Five-min averages were calculated similarly 

to 3-min averages.  Three-min and 5-min averages are compared to 1-min averages from 

the first approach, whereas 2-min and 4-min averages are compared to 1-min averages 

using the second methodology.  Trucks with only intermittent observations were 

discarded from consideration here. Three distinct time periods emerged from this 

analysis.  The first period is for truck CW0WG and spans from 1700 to 1810 UTC.  The 

second period is for the one hour period beginning at 1700 UTC (truck CW14L).  The 

third and final period is for truck CW14L, with a time span from approximately 1950 to 

2150 UTC.   

A hypothesis test is utilized to determine if the various averaging schemes 

produce statistically different results (Wilks 2011).  More specifically, 2-min, 3-min, 4-

min, and 5-min averages of temperature are compared with the corresponding 1-min 
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averages.  The null hypothesis (Ho) is that the difference between the mean temperature 

(°C) when averaging over 2-min windows and 1-min windows is equal to zero.  The 

alternative hypothesis (HA) is that the difference between the two means is non-zero.  A 

two-sided hypothesis test is performed, as the longer averaging periods could yield over- 

or under-estimates of the 1-min averages.  The level of significance is set to 90%.  This 

procedure is then repeated to compare 3-min, 4-min, and 5-min averages to the 1-min 

averages, as well as assess differences in averaging schemes for dew point temperature 

(°C) and surface pressure (hPa). 

The hypothesis tests described above are performed using permutation testing 

(Wilks 2011).  A key principle of permutation testing that holds under the null hypothesis 

is exchangeability, or the idea that the data from both samples originate from the same 

distribution.  If exchangeability holds true, the labels attributing values to a given data set 

are arbitrary.  To outline the process of permutation testing, consider the case comparing 

2-min averages of temperature to the respective 1-min averages for the period from 1700 

to 1810 UTC.  Each data set contains 35 observations (i.e., n1 = n2 = 35), as 1-min 

averages without a matched observation were not included.  Once all observations are 

pooled, the resulting sample size is n = n1+ n2 = 35 + 35 = 70.  The samples are then 

selected without replacement from the resulting pool and placed into one of two artificial 

subsets, each containing n = 35 observations.  The sample mean is recorded for each 

subset and the difference is computed.  The permutation process is repeated 999 times for 

each hypothesis test that is performed. 
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A.2 Results 

 The results in Table A.1 correspond to data for the period from 1700 to 1810 UTC 

for truck CW0WG.  The standard deviation of the differences in means of the permutated 

subsets is reported.  A p-value is reported, which indicates how likely it is to observe the 

mean difference calculated from the permutation differences assuming that the samples 

are drawn from the same population.  This p-value is then used to determine whether or 

not to reject the null hypothesis.   

Figure A.4 shows time-series plots of temperature, dew point temperature, and 

surface pressure for the differing averaging schemes, with gray dots representing 1-min 

averages, while Figure A.5 shows histograms of the differences in sample mean among 

the 999 permutations.  The columns correspond to temperature, dew point temperature, 

and surface pressure, respectively, while the rows represent the various averaging 

regimes, with the first row representing the 2-min averages.  For this case, the null 

hypothesis is not rejected for each of the temperature and surface pressure averaging 

schemes, and no statistical difference exists between the 1-min averaging scheme and the 

schemes using a longer averaging time interval.  The p-value for the four-minute averages 

of dew point temperature is 0.096, which is below the level of significance of 0.10; thus, 

4-min averages of dew point temperature are statistically different from the 1-min 

averages and, according to this theory, the null hypothesis is rejected.  The null hypothesis 

is not rejected for the remaining averaging time lengths.  Figure A.5 shows more 

variability in the differences in mean for the permuted samples as the length of the 

averaging window increases. 
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Two additional time periods were considered (not shown).  The second data set 

uses observations from 1700 to 1800 UTC for truck CW14L.  In this case, 4-min averages 

of surface pressure are shown to be statistically different from 1-min averages.  The third 

data set uses observations from roughly 1950 to 2150 UTC for the same truck.  Three-

min averages of dew point temperature are shown to be statistically different from the 1-

min averages.  In both cases, the other averaging schemes did not produce statistically 

different results. 

A.3 Conclusions 

 For the three time periods considered in this study, no statistical difference was 

found between the 2-min and 1-min averaging regimes.  Statistically different regimes 

were found for several of the 3- and 4-min averages.  For this case study alone, the results 

indicate that statistically different averages are found once the averaging time length is 

increased to three minutes and above.  However, it is important to note that this 

experiment only considers data over a limited domain for a specific date.  The 

methodology used in this study should be extended to an increased number of trucks over 

a wider domain for varied dates to determine if additional patterns emerge.  Also, it should 

be noted that the difference in means for temperature, dew point temperature, and 

pressure are all smaller than expected instrument error, which indicates that, while the 

results may yield statistically significant results, these differences would likely be 

unachievable using current sensor technology.  Moreover, by comparing 2-, 3-, 4-, and 5-

minute averages to 1-minute averages rather than the raw data, the measurement errors 

are largely averaged out, mitigating the effects of these errors. 



113 

While there are no major deviations in temperature and dew point temperature 

throughout the time periods considered, the surface analysis in Figure A.1 shows a dryline 

approaching the domain used in this study (Figure A.3).  If a vehicle were to intersect a 

dryline, the dew point temperature would be subject to rapid fluctuations that may impact 

the applicability of longer averaging time scales, which is especially true in cases where 

trucks are traveling at highway speeds (up to 120 kilometers per hour). 

 Additionally, for the averaged results in which the null hypothesis is rejected, 

results averaged using a longer length of time were not rejected.  For instance, in Table 

A.1, it can be seen that 4-minute averages of dew point temperature are deemed 

statistically different from the 1-minute averages to which they are compared and the null 

hypothesis is rejected.  However, 5-minute averages are not found to be statistically 

different.  This study utilized 999 permutations for each experiment.  To test whether 

these findings are consistent with the data sets tested, the number of permutations 

considered should be increased.  For example, increasing the number of permutations to 

9,999 or 99,999 may result in different conclusions. 

 A major limiting factor of the averaging schemes used in this research is that they 

only rely on elapsed time and do not take the vehicle’s speed into account when 

computing averages.  Since truck speed can vary from stationary to full highway speed 

(upwards of 120 km/h), the distance a truck travels in the averaging window varies 

considerably from sample to sample.  For this reason, a spatial averaging regime has been 

devised that takes into account both time and the accumulated distance between 

subsequent observations. 
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Table A.1: Results for truck CW0WG from 1700 to 1810 UTC 

 

Comparison of 1 minute and 2 minute averaging schemes (n = 35): 

 Temp. Dew point temp. Sfc. pressure 

Mean of 1 minute averages 25.520 22.645 993.180 

Mean of 2 minute averages 25.518 22.646 993.177 

Difference in means -0.002 0.001 -0.003 

Standard deviation 0.0068 0.0046 0.0404 

Two-sided p-value 0.780 0.692 1.000 

Decision Do not reject Do not reject Do not reject 

 

Comparison of 1 minute and 3 minute averaging schemes (n = 23): 

 Temp. Dew point temp. Sfc. pressure 

Mean of 1 minute averages 25.533 22.641 993.165 

Mean of 3 minute averages 25.541 22.655 993.230 

Difference in means 0.008 0.014 0.065 

Standard deviation 0.0084 0.0122 0.0706 

Two-sided p-value 0.410 0.240 0.414 

Decision Do not reject Do not reject Do not reject 

 

Comparison of 1 minute and 4 minute averaging schemes (n = 17): 

 Temp. Dew point temp. Sfc. pressure 

Mean of 1 minute averages 25.561 22.639 993.182 

Mean of 4 minute averages 25.565 22.665 993.282 

Difference in means 0.004 0.026 0.100 

Standard deviation 0.0189 0.0159 0.1038 

Two-sided p-value 0.776 0.096 0.376 

Decision Do not reject Reject Do not reject 

 

Comparison of 1 minute and 5 minute averaging schemes (n = 14): 

 Temp. Dew point temp. Sfc. pressure 

Mean of 1 minute averages 25.498 22.639 993.236 

Mean of 5 minute averages 25.517 22.645 993.179 

Difference in means 0.019 0.006 -0.057 

Standard deviation 0.0312 0.0202 0.1417 

Two-sided p-value 0.726 0.842 0.662 

Decision Do not reject Do not reject Do not reject 
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Figure A.1: Surface analysis from the Weather Prediction Center (WPC), valid at 2100 

UTC on 5 November 2015. 

 

 

Figure A.2: Storm Prediction Center (SPC) storm reports from 5 November 2015.  

Severe hail and wind were both reported in the Dallas-Fort Worth metroplex. 
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Figure A.3: (Left) Outline of the geographic area considered in this study (outlined in 

black), which includes Dallas-Fort Worth.  (Right) The geographic location of trucks 

considered in this study. 

 

 
 

Figure A.4: Results of the thinning algorithm for truck CW0WG for the time period from 

1700 to 1810 UTC.  The gray dots correspond to one-minute averages.  A red box 

indicates that an experiment resulted in statistically different results. 
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Figure A.5: Results of the permutation test for truck CW0WG for the time period from 

1700 to 1810 UTC.  The rows correspond to two-minute, three-minute, four-minute, and 

five minute averaging windows, respectively. 


