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ABSTRACT 

 

Critical torque (CT) is an integrative measure/concept that represents the “critical” or 

upper boundary of steady-state work that can be performed without leading to 

exhaustive fatigue. While this concept has been observed across multiple voluntary 

exercise modalities, it has not been tested using neuromuscular electrical stimulation 

(NMES). PURPOSE: The purposes of this study were to 1) observe if an electrically 

stimulated exercise protocol in the quadriceps results in a hyperbolic power-duration 

pattern seen in voluntary contractions, and 2) determine if the decline in torque 

production over time during electrically stimulated exercise occurred due to similar 

mechanism(s) as the decline in torque during voluntary exercise. METHODS: 

Participants (Men = 6, Women = 8) completed 2 familiarizations and 3 testing visits. 

Voluntary CT (VOL) and involuntary end-test torque (ETT) were assessed at several 

frequencies including 100 Hz, an intermediate frequency (Intermediate; 15-30 Hz) and a 

frequency that elicited a torque below the ETT of 100 Hz (Below; <15 Hz). Twitch 

torque (TT), low frequency fatigue (LFF), M-wave amplitude, and lactate were 

measured during each exercise protocol, and %ACT was assessed during the VOL test. 

RESULTS: ETT was calculated as the mean peak of the last 7 contractions for the 

stimulated exercises. Mean and relative ETT was significantly different from starting 

torque for each of the 100 Hz and Intermediate (15-30 Hz) protocols (p ≤ 0.002), but 

ETT was not significantly different across protocols (p ≥ 0.127). ETT of the Below 

protocol did not change from starting (p ≥ 0.558), and ETT was significantly lower than 

any of the other stimulated protocols (p ≤ 0.035).VOL TT declined approximately 60% 

from starting TT (p ≤ 0.014). TT declined about 50-60% during the 100 Hz protocols (p 



x 
 

≤ 0.018). Except for transient increases in the middle of the protocol, there were no 

changes in TT for the Below protocol (p ≥ 0.052).VOL LFF ratio was significantly 

reduced from pre exercise measures at all post exercise time points (p ≤ 0.004). There 

was acute high frequency fatigue immediately after all of the stimulated protocols (p ≤ 

0.040). M-wave amplitude decreased about 10% from pre to immediately post (IP) for 

the 100 Hz protocols (p ≤ 0.027). There were no changes in M-wave amplitude for 

VOL, Intermediate, and Below protocols (p ≥ 0.19). Lactate levels during VOL were 

significantly higher than of all of the stimulated protocols IP and 3-min post (3P) 

exercise (p ≤ 0.001). The 100 Hz protocols were significantly higher than the Below 

protocol at both IP and 3P measures (p ≤ 0.018). The 100 Hz protocols were not 

significantly different from the Intermediate protocol at IP (p ≥ 0.59), but D2 was 

significantly higher than Intermediate at 3P (p = 0.044), while D1 was not (p = 0.598). 

Lactate during IF was not significantly higher than Below at IP (p = 0.234), but was 

higher at 3P (p = 0.017). CONCLUSIONS: Despite differences in fatigue mechanisms, 

NMES exercise at 100 Hz and at intermediate frequencies declined to a similar torque 

value, while exercise under ETT showed no declines in torque. These findings suggest 

that the observed threshold during NMES exercise is CT. 
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Chapter 1 – Introduction 

 

1.1 Introduction 

Exercise performance, specifically endurance exercise performance, is 

determined by a host of physiological (e.g. muscle fiber type, mitochondrial number 

and density, cardiac output, VO2 peak) and psychological variables (e.g motivation, 

RPE, muscle pain). Fatigue, defined as a failure to produce the desired or expected 

force, is a major factor that limits exercise performance. Fatigue that occurs proximal to 

the neuromuscular junction can be referred to as central fatigue, which involves decline 

in voluntary motor-unit recruitment and/or activation of skeletal muscle due to 

decreased signaling from the motor cortex, the cervicomedullary region of the brain, 

and/or the spinal cord [1]. Fatigue of this type can be influenced by a host of factors 

including feedback from afferent nerves monitoring the cellular and biochemical 

environment of the exercising muscles [2]. Conversely, peripheral fatigue occurs distal 

to the neuromuscular junction and can include failures of acetylcholine release, 

impairments in calcium release, excitation contraction coupling, and impairments of 

cross-bridge formation and function [1, 3]. 

Critical power (CP) is an integrative measure/concept that represents the 

“critical” or upper boundary of steady-state work that can be performed without leading 

to fatigue or task failure [4]. CP has been demonstrated to be a better predictor of 

endurance exercise performance than VO2 peak and work-rate at lactate threshold [5]. 

Research has demonstrated that exercise above critical power leads to fatigue in a 

predictable manner—often termed the power-duration relationship where the higher the 

work-rate is above CP, the shorter the exercise duration.  Exercise at or below CP 

allows for the attainment of a metabolic (denoted by VO2 and blood lactate) steady state 
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in which fatigue does not limit exercise duration [6]. The power-duration relationship 

and exercise time to exhaustion (Tlim) can be modeled using the following equation [6]: 

Tlim = W’ / (P – CP) 

Where W’ , the curvature constant above CP, encompasses the total work, measured in 

Joules, which can be performed above CP, and is a function of exercise duration and 

power output (P). Tlim can be impacted by either the magnitude of P or W’ . For 

example, a higher power output would result in a more rapid time-to-exhaustion, as W’  

is depleted more rapidly. Conversely, a larger W’  would allow for greater work to be 

performed above CP prior to exhaustion. 

While the physiological and psychological determinants of CP are not fully 

understood, recent research has expanded the understanding of the role of peripheral 

fatigue on critical power. Voluntary exercise at CP has been shown to reach a steady 

state in VO2, blood lactate, and pulmonary ventilation. However, exercise above CP 

results in progressive increases in blood lactate and progressive increases in VO2 such 

that VO2 peak will be reached [7]. Additionally, fatigue above critical power has also 

been shown to be associated with the depletion of PCr, the build-up of inorganic 

phosphate (Pi), and a decrease in pH in the muscle [8]. 

Several recent studies by Amann [2, 9, 10] have demonstrated the important role 

of feedback from group III and IV afferent nerve fibers in muscular fatigue and exercise 

time-to-exhaustion. Group III and IV afferent fibers “sense” the build-up of certain 

metabolic by-products, which can then lead to the development of “central” fatigue via 

a reduction in central motor drive from the cortex and spinal motoneurons [10-13]. 
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Thus, the accumulation of peripheral metabolites can reduce exercise performance via a 

central, rather than a peripheral mechanism. Since critical power plays an important role 

in determining exercise performance, it is plausible group III and IV afferent signaling 

may play a role in determining CP. However, it is difficult to delineate the independent 

effects of central fatigue and peripheral fatigue during voluntary exercise. 

Traditionally, CP has been assessed by performing multiple exercise bouts at 

various intensities, presumably over CP, until exhaustion. Each individual test is then 

plotted to construct a power-duration relationship, from which CP can be derived. 

Recently, single session, all-out tests have been developed and validated for 

determining CP across a host of exercise modalities (e.g. running, cycling, and 

isometric exercise) [14-17]. Burnley [14] has demonstrated a leveling off of torque 

production during the final minute of a 5-min test where repeated maximal isometric 

efforts (MVC’s) were performed. This end-test torque value was found to be similar to 

the critical torque (CT) determined using the traditional multiple tests model. 

Interestingly, several studies [18-20] using electrical stimulated isometric exercise have 

demonstrated a similar pattern of decline in isometric torque (an initial decline that 

eventually stabilizes) that appears to mimic the torque-duration relationship observed in 

the voluntary test of Burnley [14]. However, not enough is yet understood about the 

similarities in the patterns to suggest that what is observed during electrically stimulated 

exercise represents CP/CT. If, through further study, it could be determined that the 

end-test torque observed during electrically stimulated exercise does represent a critical 

threshold, it could provide a valuable tool to investigate the central and peripheral 

contributions to CT. 
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1.2 Research questions 

1. Does intermittent electrically stimulated isometric exercise lead to the 

attainment of a steady-state end-test torque? 

Sub-Questions 

a. Does electrically stimulated exercise, with a similar initial torque, at 100 Hz 

result in similar end-test torques on different testing days? 

b. Does manipulating initial torque during stimulated exercise, by altering 

stimulation frequency (from 100 Hz to 15-30 Hz), lead to the attainment of a 

similar steady-state end-test torque?  

c. Does manipulating initial torque during stimulated exercise, by altering 

stimulation frequency, such that it is below end-test torque from 100 Hz not 

result in a decline in torque (no fatigue)?  

d. Does the decline in torque production over time during electrically 

stimulated exercise occur due to similar mechanism(s) as the decline in 

torque during voluntary exercise? 

1.3 Hypotheses 

Ho: Critical torque 

1. There will be a plateau in end-test torque during 100 Hz stimulation, determined 

by no significant difference among the final 7 contractions. 

2. There will be a plateau in end-test torque at an intermediate (15-30 Hz) 

stimulation frequency stimulation, determined by no significant differences 

among the last 7 contractions. 

3. The end-test torques from 100 Hz and the intermediate frequency will not differ. 
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4. There will be no change over time in torque during stimulation at a frequency 

that evokes a torque below end-test torque. 

Ha: Critical torque 

1. There will be a change (decline) in end-test torque at 100 Hz, determined by 

significant differences among the final 7 contractions. 

2. There will be a change (decline) in end-test torque at the intermediate frequency, 

determined by significant differences among the final 7 contractions. 

3. The end-test torques from 100 Hz and the intermediate frequency will be 

significantly different from each other. 

4. There will be a significant change in force over time during stimulation at a 

frequency that evokes a torque below end-test torque. 

Ho: Fatigue mechanisms 

1. Normalized M-wave amplitudes will not change over time (pre-test, during, and 

post-test) for each exercise protocol (voluntary, 100 Hz, the intermediate 

frequency, and the low frequency). 

2. Normalized M-wave amplitudes will not differ among exercise testing protocols 

for each measurement point (pre-test, during, and post-test). 

3. There will be no significant differences in low frequency fatigue between pre-

test and post-test for each exercise protocol (voluntary, 100 Hz, the intermediate 

frequency, and the low frequency). 

4. There will be no significant differences in low frequency fatigue among exercise 

testing protocols for each measurement point (pre-test and post-test). 
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5. There will be no significant differences in voluntary activation over time during 

the voluntary exercise protocol. 

6. There will be no significant differences in twitch torque over time (pre-test, 

during, and post-test) for voluntary, 100 Hz, intermediate, and below CT 

frequency exercise protocols. 

7. There will be no significant differences in twitch torque among exercise testing 

protocols at each measurement point (pre-test, during, and post-test). 

Ha : Fatigue mechanisms 

1. There will be significant differences in M-wave amplitudes pre-test, during, and 

post-test for each exercise protocol (voluntary, 100 Hz, the intermediate 

frequency, and the low frequency). 

2. There will be significant differences in M-wave amplitudes between exercise 

testing protocols for each measurement point (pre-test, during, and post-test). 

3. There will be significant differences in low frequency fatigue between pre-test 

and post-test for each exercise protocol (voluntary, 100 Hz, the intermediate 

frequency, and the low frequency). 

4. There will be significant differences in low frequency fatigue between exercise 

testing protocols for each measurement point (pre-test and post-test). 

5. There will be significant differences in voluntary activation (ITT) between pre-

test, during, and post-test during the voluntary exercise protocol. 

6. There will be significant differences in twitch torque pre-test, during, and post-

test for voluntary, 100 Hz, and the intermediate frequency exercise protocols. 
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7. There will be significant differences in twitch torque between exercise testing 

protocols for each measurement point (pre-test, during, and post-test). 

1.4 Significance 

A passive stimulation exercise that is capable of producing the power-duration 

relationship would be significant because it removes the voluntary element from the 

calculation. It would demonstrate that a critical threshold of force or power output could 

be an inherent property of muscles themselves, and not entirely the result of central 

fatigue or changes in neural stimulation. As a result, it would allow us to examine the 

effect of group III and IV afferent feedback on CT via central fatigue. 

1.5 Delimitations 

The delimitations of this study include the following: 

1. Participants are males and females (18-45 years). 

2. Participants will be recruited from the University of Oklahoma and the 

Norman area. 

3. Participants will not be eligible for this study if they have any leg injuries 

that would prevent them from performing a seated knee extension. 

4. Participants will not be eligible for this study if they answered “yes” to any 

of the questions on the physical activity readiness questionnaire (PAR-Q). 

5. Participants will not be eligible for this study if they are pregnant or thinking 

of becoming pregnant. 

1.6 Limitations 

 The limitations of this study include the following: 

1. The results of this study can only be applied to healthy males and females, 

ages 18 to 45 years. 
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2. Given the differences in recruitment patterns between voluntary and 

electrical stimulation, the critical torque values derived from NMES cannot 

be directly related to the values derived from MVCs.  

1.7 Assumptions 

 The assumptions of this study include the following:  

1. Participants will adhere to all instructions and guidelines given by the 

researchers.  

2. Participants will provide truthful answers on all questionnaires. 

1.8 Definitions of terms 

Given the specificity of our work, it would be helpful to define our primary terms:  

1. Critical power (CP): an integrative measure that represents the critical 

boundary of steady-state work that can be performed without leading to 

exhaustive fatigue [4]. 

2. Critical torque (CT): the critical power determined during isometric 

contraction. 

3. W’ : represents the curvature constant of the relationship. It is a finite 

amount of work that can be completed above the critical intensity or power 

[14]. 

4. Neuromuscular electrical stimulation (NMES): A method of activating 

muscle by sending electrical current through electrodes on cutaneous 

surface. Allows for mechanical contraction without voluntary activation. 

5. Low frequency fatigue (LFF): the phenomenon in which torque produced 

in response to low frequency stimulations decline disproportionately to the 

torque produced in response to higher frequency stimulations [21]. 
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6. Voluntary activation/interpolated twitch technique (ITT): A technique 

used to assess the percentage of skeletal muscle that an individual can 

voluntarily activate during a muscle contraction [22]. 

7. Peripheral fatigue: Changes within a muscle that impairs torque or force 

production. Occurs downstream of the neuromuscular junction. 

8. Central fatigue: Decrease in voluntary activation caused by inhibition of 

the nervous system. Occurs upstream of the neuromuscular junction.  
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Chapter 2 – Review of Literature 

 We searched the MEDLINE and PubMed electronic databases using the search 

terms critical power and (exercise tolerance) and (determination), critical power/torque 

and (estimation), critical power/torque and (exercise intensity), and neuromuscular 

electrical stimulation/electromyostimulation and (MRI). Only articles in English were 

used for review. 

2.1 Electrical stimulation 

 It is possible to artificially contract the muscle by using neuromuscular electrical 

stimulation (NMES), which results in the mechanical contraction, even without 

voluntary activation. Electrical current is run through electrodes placed on the 

cutaneous surface of the desired muscle, causing a contraction of the associated muscle 

fibers.  

While NMES allows for artificial activation of muscle fibers, it is important to 

consider the difference in response patterns of NMES and voluntary contraction – 

primarily that fatigue is achieved sooner during NMES than it is during voluntary 

contraction. While early research suggested that reversal of recruitment order during 

NMES, with large diameter, fast twitch fibers being recruited first, was responsible for 

the discrepancy in fatigue time, it is now generally believed that NMES-induced 

contractions are non-selective and motor neuron recruitment occurs in the same order as 

during voluntary activation [23]. 

A study by Adams et al [24] indicated that the time constant for decay of a 

magnetic resonance signal increased more in muscles activated by NMES than those by 

voluntary activation. The authors postulated that this was due to stimulated activation 

being synchronous, versus the asynchronous activation of voluntary contraction, a 
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strategy used to prevent fatigue during exercise [24, 25]. In addition, during repeated 

voluntary contraction, EMG activity increased, indicating increased motor unit 

recruitment to offset fatigue [26]. In addition to varied recruitment of motor units, 

increasing the total number of motor units activated during voluntary contraction can 

function to maintain muscle contraction despite the fatigue of individual motor units. 

Finally, during voluntary contraction, motor units can be activated at lower frequencies, 

which also function to offset fatigue [26]. None of these activation strategies appear to 

be available during NMES. This lack of variability in recruitment of motor units could 

explain the increased fatigability seen in NMES versus voluntary contraction [25]. 

As far as we know, no study has tested a method of estimating CP/CT by using 

NMES. However, a study by Bickel et al. that compared the decline in peak torque for 

the tibialis anterior muscle and the quadriceps femoris muscle over 180 contractions 

with NMES show a pattern that strongly resembles the critical torque relationship [18]. 

Similarly, a study by Russ and Binder-Macleod demonstrated a leveling out of force 

output during a 180-train fatigue test in the quadriceps [19]. However, it has not been 

determined if this characteristic of NMES can be described as critical torque. 

2.2 Fatigue 

 Fatigue, in the most basic sense, is the inability to maintain a desired level of 

intensity or force during exercise. There are many causes and sites of fatigue in skeletal 

muscle, including within individual muscle cells, the muscle, and extending to the 

whole body. For a comprehensive review on skeletal muscle fatigue, see Kent-Braun et 

al [1]. 
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Mechanisms of fatigue are often compartmentalized into two major categories 

depending on if it occurs proximally (central fatigue) or distally (peripheral fatigue) to 

the neuromuscular junction. 

Peripheral fatigue can be caused by several factors, including impairment of 

excitation-contraction coupling (altered Ca2+ release from the SR), build-up of 

metabolites, reduced Ca2+ availability, and depletion of acetylcholine at the 

neuromuscular junction. While peripheral fatigue appears to occur below CP, it 

develops at a slow rate that does not lead to task failure [14, 27]. While present, to some 

extent, during low intensity exercise, peripheral fatigue is often associated with high 

intensity exercises (>50% of MVC during intermittent contractions)[28]. 

 Central fatigue is associated with decreases in voluntary activation caused by 

inhibition in the nervous system. Inhibition can occur in the motor cortex, in the 

cervicomedullary region, and in the spinal cord. The muscular response to electrical 

stimulation at each of these locations can be measured using surface EMG, indicating 

the presence and location of central fatigue. Voluntary activation can also be measured 

using the interpolated twitch technique. Central fatigue is associated with low intensity 

sustained isometric contractions, approximately 15-30% of MVC [14, 28]. 

2.3 Assessment of fatigue 

M-wave amplitude 

 Electrical stimulation of the alpha-motoneuron results in a muscle response 

called the motor wave (M-wave) [29]. A decrease in the amplitude of the M-wave is 

indicative of neuromuscular transmission failure along the sarcolemma of the muscle 

cell. Neuromuscular transmission failure can be caused by decreased axonal excitability 
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(by blockade of axonal propagation of action potentials), by failure of acetylcholine 

release, by desensitization of acetylcholine receptors on the motor end plate, and 

reduced excitability of the sarcolemma [30-32]. Presynaptic failure is negligible, and 

decreases in m-wave amplitude are indicative of transmission failure along the 

sarcolemma [33]. 

A study by Takata and Ikata [31] observed greater decreases in M-wave 

amplitude during high frequency stimulation (100 Hz) than during low frequency 

stimulation (30 Hz) during 20 minutes of intermittent electrical stimulation of the sciatic 

nerve in rats. While tension produced during 100 Hz dropped dramatically during the 

first minutes then leveled out, tension produced by 30 Hz remained relative stable for 

the duration of the test. These results indicate that neuromuscular transmission failure is 

a major cause of fatigue during high frequency stimulation. 

Traditionally, the M-wave has been elicited by direct stimulation of the 

peripheral nerve. However, recent research [34] suggests the effectiveness of muscle 

stimulation to evoke an M-wave that can be used to assess fatigue.  

Low frequency fatigue 

Low frequency fatigue (LFF) is a phenomenon at which fatigue at low 

frequencies of stimulation (10 – 40 Hz) increases disproportionately to higher 

frequencies (>50 Hz) [21]. The effects of LFF can be long-term, lasting up to several 

days. LFF is generally assessed by comparing the ratios of force or tension produced at 

a low and high frequency before and after exercise [35]. 
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The causes of LFF are not fully understood and are the topic of much research. 

Takata and Ikata [31], measured changes in PCr, pH, and M-wave in rat gastrocnemius 

and soleus muscles during 20 minutes of intermittent electrical nerve stimulation at 100 

Hz and 30 Hz. They observed higher levels of PCr depletion and decreases in pH at 30 

Hz than at 100 Hz, while m-wave amplitude decreased significantly more for 100 Hz. 

These more pronounced metabolic changes at lower frequencies led them to postulate 

that LFF was due, at least in part, to decreases in energy levels and decreases in 

intracellular pH. While the exact causes of LFF are not yet known, it is likely 

impairment of excitation-contraction coupling plays a role [36, 37]. Westerblad and 

colleagues hypothesize that inhibition of Ca2+ release from the sarcoplasmic reticulum 

is the primary cause of LFF, however, the exact mechanisms of how failure of Ca2+ 

release induces LFF remain unknown [36, 37]. 

Voluntary Activation 

The interpolated twitch technique (ITT) can be used to calculate voluntary 

activation and motor unit recruitment using the following formula [22]:  

Voluntary activation (%) = 1 – (superimposed doublet/potentiated doublet) x 100 

As described earlier, decreases in voluntary activation are indicative of central 

fatigue. While the ITT can provide valuable information regarding the presence of 

central fatigue, it does not discern the location, which is an important limitation of this 

technique.  

2.4 Critical power 

There are many variables that influence exercise performance and endurance. 

These factors include physiological factors, such as muscle fiber type, cardiac output, 
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and VO2 max, and psychological factors, such as rating of perceived exertion (RPE), 

motivation, and pain. Critical power is a measure that incorporates these variables to 

predict exercise performance [4]. Monod and Scherrer [38] were the first to define the 

CP concept, in which there was a linear relationship between maximum work and the 

maximal amount of time. They also described the power-duration concept using a 

hyperbolic relationship, with the curvature of the relationship defined as W’  and the 

asymptote termed CP. They defined critical power as “The maximum rate (of work) that 

a muscle or muscle group can keep up for a very long time without fatigue [38].” W’  is 

constant and is often associated with the anaerobic work capacity [39]. This, however, 

is an oversimplification, as evidence suggests that anaerobic work capacity is only part 

of what determines W’  [40]. It is widely believed that the build-ups of metabolites such 

as inorganic phosphate, H+, and K+ play a role in determining W’  [4, 6, 41, 42]. 

A study by Poole et al [7] examined the physiological responses to exercise at 

CP compared to those just above CP during exercise on a cycle ergometer. They found 

that during exercise at CP, blood lactate and VO2 both reached a steady state and that all 

participants were able to complete a 24-minute exercise test. However, when exercising 

just above CP (+5% power), participants’ blood lactate increased to intolerance, and 

VO2 continuously climbed to VO2max, resulting in termination of the exercise before the 

24-minute mark. These findings highlight the nature of CP as a metabolic threshold. 

Likewise, a study by Jones et al [8] examined the intramuscular metabolic responses to 

exercise just above and below CP. At exercise below CP, muscle pH, inorganic 

phosphate, and PCr concentrations reached steady states and participants were able to 

complete the 20-minute exercise test. At exercise above CP, the same variables 



16 

 

increased until exercise intolerance before the 20-minute mark. These studies provide 

important insight into some of the factors integrated to determine CP. 

Critical power can be manipulated by varying levels of oxygen. A study by 

Vanhatalo et al [43] indicates that hyperoxia increases CP, while also reducing W’ . 

Muscle PCr and pH dropped at a slower rate, which extended exercise duration, as it 

took a longer time for these factors to drop to a level associated with intolerance. 

Reduced oxygen delivery (either hypoxia or blood occlusion) reduces CP [44, 45]. In 

fact, complete occlusion of the brachial artery had such a reductive effect that CP was 

measured to be less than zero during handgrip exercises [46], indicating that there is no 

sustainable metabolic rate under this condition. As would be expected, muscle PCr and 

pH dropped at a faster rate than during normal, which had a negative effect on exercise 

tolerance. In these studies, W’  responses to hypoxia varied greatly, ranging from 36% 

decreases to 66% increases [45]. This fluctuation of W’  as a result of changes in 

oxygen delivery refutes the idea that W’  is simply a fixed anaerobic work capacity 

above CP [6]. 

The critical threshold concept holds when applied to intermittent isometric 

contractions. When applied to this exercise modality, it is referred to as critical torque 

(CT). Burnley’s 5-minute all-out test to estimate CT indicated both central and 

peripheral fatigue during the test. However, the exact locations and mechanisms could 

not be elucidated [14]. Despite a growing interest in this critical threshold during recent 

years, much remains unknown regarding determinants of CP/CT and W’ . 

2.5 Assessment of CP 



17 

 

The criterion method of determining critical intensity has consisted of several – 

typically four to five – visits where during each visit the participant exercises at a 

constant intensity at some percentage of max until exhaustion [38, 47]. The time to 

exhaustion is plotted for every intensity, allowing the power-duration curve to be 

determined. 

 Recently, another method of estimating critical intensity has been tested. 

Vanhatalo et al, found that a three-minute all-out test on a cycle ergometer was a valid 

and reliable estimator of CP and W’ [16, 17]. The concept of a critical intensity is not 

limited to dynamic activity. Research has been directed toward applying tests of critical 

intensities to isometric exercise. Burnley applied the all-out test to isometric contraction 

and found that a five-minute all-out test with a duty cycle of 3 seconds of contraction: 2 

seconds of relaxation predicted critical torque in the quadriceps [14]. Conversely, a 

study by Kellawan and Tschakovsky found that a ten-minute all-out test in the forearm 

muscles of 10 recreationally active males accurately predicted both critical force and 

W’  [15]. Differences in duty cycles between the two tests could explain some of the 

mixed results.  
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Chapter 3 – Methods 

 

3.1 Participants 

The sample consisted of 14 volunteers from the University of Oklahoma and 

Norman area. This sample size was chosen based upon samples used in previous 

research [14-16] and a power analysis. A sample of 14 was sufficient to detect an effect 

of ≥ 0.26 SD’s using a 4 condition x 3 time point repeated measures ANOVA.  

Participants provided written informed consent to participate in the study, which was 

approved by the University of Oklahoma ethics committee and complied with the 

Declaration of Helsinki. Participants were instructed to refrain from strenuous lower 

body exercise in the 24 hours preceding each test. Participants were also asked to 

refrain from caffeine 8 hours before testing and be food-fasted 2 hours before testing. 

3.2 Experimental design 

A within-participant, repeated measures design, whereby participants served as 

their own control, was employed. Participants visited the laboratory on five occasions at 

approximately the same time of day.  Familiarization visits occurred at least 24 hours 

apart, and testing visits occurred at least 48 hours apart.  

Visits 1 and 2: Familiarization 

Participants were briefed on the study, completed informed consent, and were 

familiarized with all the equipment and testing procedures during the first and second 

visits. Participants began by completing a stimulation current determination protocol to 

determine the amplitude (amount) of electrical current to be used during electrical 

stimulation (brief 1 ms single pulses of stimulation). Stimulation amplitude was 

increased until there was a plateau in twitch force, or stimulation was no longer 
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comfortably tolerable. The participants then performed 3 maximal voluntary isometric 

contractions (MVC) with their quadriceps. Voluntary activation was determined using 

the interpolated-twitch technique (ITT) during each MVC. After 10 minutes of rest, 

participants performed a 3-minute voluntary CT test to familiarize them with the 

protocol used during the third visit (see “Voluntary all-out test” below). The data from 

the all-out familiarization test was not be used in analysis.  During the second 

familiarization visit only, the highest tolerable current for a 2-second train of electrical 

stimulation at 100 Hz was determined for each participant. Additionally, each 

participant’s force-frequency curve was determined using electrical stimulation at his or 

her highest tolerable level. During the second visit, participants again practiced the 

voluntary CT test after determination of the force-frequency curve. 

Visit 3: Voluntary critical torque assessment 

 During the third visit, the twitch current was again determined. Participants then 

completed 3 MVCs with the ITT. Following a 10 minute rest participants then 

completed a voluntary 5-minute, all-out intermittent test consisting of 60 intermittent 

MVCs, as described by Burnley [14]. LFF, surface EMG, M-wave, and ITT were 

recorded at intervals during the voluntary test. Blood lactate, using finger stick, was 

measured pre-exercise, immediately post-exercise, and 3 minutes post-exercise. 

Visits 4 and 5: Electrically stimulated critical torque assessment 

During the fourth and fifth visits, the two separate current determination 

protocols were performed: 1) was completed for use with the ITT for the M-wave 

assessment (1 ms single pulses) and the LFF assessment (two 1 ms pulses spaced 5 ms 
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apart); and 2) for a 2-second train at 100 Hz for determining the amplitude of 

stimulation to be used during the involuntary exercise tests. Participants then completed 

3 MVCs with the ITT, after which the train current was determined. Then participants 

completed a series of 5-minute tests, each of which consisted of a series of 75 

intermittent isometric contractions (2 second trains of stimulation followed by 2 

seconds of rest) with neuromuscular electrical stimulation (NMES) [see below]. Visit 4 

will consist of identical electrical stimulation tests at 100 Hz and a low frequency 

(Below; <15 Hz), with 30 minutes of rest between each test. LFF, surface EMG, and M-

waves were evaluated at intervals during and following exercise. Visit 5 will occur at 

least 48 hours after visit 4 and consisted of electrical stimulation tests at 100 Hz and an 

intermediate frequency (15-30 Hz), again, with 30 minutes of rest between each test. 

LFF, surface EMG and M-wave were recorded during each of the tests. Blood lactate, 

using finger stick, was measured pre-exercise, immediately post-exercise, and 3 minutes 

post-exercise for both visits. An overview of the experimental design can be seen in 

Figure 1. 
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Figure 1 – Overview of experimental procedures. 
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3.3 Experimental procedures 

 

Dynamometry  

 All testing was performed using a KinCom isokinetic dynamometer. Participant 

positioning was similar to previous studies [14, 18]. Participants were seated in the 

dynamometer and positioned with the hip joint of 85° (with 0° being full extension) and 

the knee joint angle of 70° below horizontal. The lower leg was strapped to the lever 

arm at the ankle using a Velcro strap, and the participant was firmly strapped to the seat 

at the waist and chest. Participant position was marked and recorded to ensure 

continuity throughout the study. 

Maximal voluntary isometric contractions 

Participants produced 3 MVC’s with their knee extensors. Each contraction 

lasted ~3 seconds, and 120 seconds of rest was provided between each successive 

attempt. Participants were cued to contract and relax by verbal instruction from the 

researcher. Visual biofeedback of their torque was also provided following each 

attempt. The mean torque value from the plateau region of the force tracing was 

calculated. Values from 2 efforts that differed by ≤5% were averaged and served as the 

criterion value for MVC.  

Twitch current determination 

A current determination protocol was completed at the beginning of each visit to 

determine the amplitude of stimulation used during the ITT and M-wave measures 

during MVCs and the voluntary test. Stimulating electrodes were placed over the 
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proximal vastus lateralis and over the distal vastus medialis. Stimulation electrode 

positions were marked with indelible ink to ensure continuity throughout the study. 

Participants first received a single 1 ms twitch/pulse of stimulation at 30 mA. Current 

amplitude was then progressively increased every 20 seconds by ~20 mA until there 

was a plateau in the evoked torque production, or until the participant decided that the 

applied current was no longer comfortable. 

Train current determination 

At the beginning of the 2nd familiarization and the 4th and 5th testing visits, 

current for train stimulations was determined. Stimulating electrodes were placed over 

the proximal vastus lateralis and over the distal vastus medialis. Participants initially 

received a single, 100 Hz train, for 2-seconds at a current of 30 mA. Stimulation 

intensity was then progressively increased by 10 mA and additional stimulations will be 

applied every 20 seconds until the force produced was ~25% of the participant’s MVC, 

or until the participant decided that the applied current would no longer be comfortable 

when applied for 75 contractions over 5 minutes. The peak current was used for the 

trains during the force-frequency curve determination and the stimulated/involuntary 

exercise tests. 

Force-frequency curve determination 

 Constant frequency stimulation trains, using the highest tolerable current, were 

applied beginning at 5 Hz and increased in increments of 5 Hz until 100 Hz. Each train 

lasted 2 seconds and there were 30 seconds of rest between each train.  

Voluntary all-out test of critical torque 
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The all-out test was performed in a manner described previously [14]. A 5-

minute all-out test consisting of 60 maximal efforts (3 seconds of contraction followed 

by 2 seconds of rest) was performed. Participants were encouraged to exceed or equal 

the torque produced by their MVC, but were also informed that their torque will drop 

across the duration of the test. During the test, participants were verbally encouraged to 

always attempt a maximal effort. Participants were not informed of the time elapsed or 

the number of contractions that remained. Participants were cued to contract and relax 

by a metronome and verbal instruction from the researcher. During this test, ITT was 

performed during every 6th contraction (every 30 seconds). LFF was evaluated prior to 

and immediately following the voluntary test. M-wave analysis was performed from the 

twitches applied during the ITT and the LFF assessments. 

Stimulated critical torque assessments 

Each participant completed 3 different stimulated tests using constant frequency, 

constant current trains at 3 different stimulation frequencies. The 3 frequencies used 

allow for examination of the fatigue characteristics when stimulation occurred at a 

frequency eliciting peak torque (100 Hz), a frequency eliciting a torque below the end 

test torque from the 100 Hz protocol (<15 Hz), and a frequency eliciting a torque equal 

to 50% of the difference between peak torque and end-test torque from the 100 Hz 

protocol (15-30 Hz). The exercise duration for each test was 5 minutes. Each test 

consisted of cycles of 2-second trains of stimulation, followed by 2 seconds of rest for a 

total of 75 contractions. There were 30 minutes of rest between each test. Tests were 

completed in order of high frequency to low frequency in order to determine each 

participant’s end-test torque for each visit. LFF was evaluated prior to, immediately 
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after, and 3 minutes after each stimulated test. M-wave analysis was performed prior to, 

during and following the stimulated exercise by the application of single 1 ms pulses.  

Low frequency fatigue 

 Low frequency fatigue was assessed before, immediately after, and 3 minutes 

after each voluntary and involuntary test. Each measure was assessed by applying a 

series of doublets (two 1-millisecond pulses spaced 5 milliseconds apart) and single 

twitches. Each doublet was paired with a single twitch spaced 3 seconds apart, and each 

pair was spaced 3 seconds apart. Before the critical torque test, participants received 10 

doublet/single stimulation pairs, and the critical torque test was initiated 20 seconds 

after the final twitch. Two seconds after the conclusion of the critical torque test, 10 

more doublet/single pairs were applied. Another 10 pairs were applied 2 minutes later. 

During the voluntary critical torque visit (visit 3), the stimulation intensity determined 

during the twitch current determination was used. During the stimulated critical torque 

visits (visits 4 and 5), the stimulation intensity determined during the train current 

determination was used. The ratio of twitch torque production from the single twitch to 

the doublet was calculated as the criterion measure of LFF.   

M-wave  

  The M-wave was measured before, during, and after all voluntary and 

involuntary tests. M-waves were recorded through surface EMG electrodes positioned 

with an interelectrode distance of 30 mm and a distance of more than 50 mm from the 

stimulating electrodes [34]. One pair of EMG electrodes was placed on the vastus 

lateralis, distally from the stimulating electrodes, and the other pair was placed on the 
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rectus femoris lateral to the stimulating electrodes. The reference was placed on the 

patella of the knee. Permanent ink was used to mark electrode placement between visits. 

EMG signals were collected at a sample rate of 2000 Hz, and were high and low pass 

filtered at 500 Hz and 10 Hz, respectively.    

 M-wave amplitudes were determined from the single twitches applied during the 

LFF assessments before, immediately after, and 3 minutes after each critical torque test. 

In addition, amplitudes were determined from the single twitches applied every 6th 

contraction for voluntary activation/ITT assessments during the voluntary test. During 

the stimulated critical torque tests, M-wave amplitude was determined by the 

application of single 1 ms twitches after every 3rd contraction during the first minute, 

and every 7th contraction during the final 4 minutes. 

Interpolated twitch/voluntary activation 

 Voluntary activation and percent activation were determined during the 

voluntary test using the interpolated twitch technique. Approximately 2.5 seconds into 

the first voluntary contraction of the all-out test, a single-pulse stimulation was applied 

to determine the increase in torque above MVC (ITT). During the following relaxation 

phase, a single-pulse stimulation was applied (electrically evoked twitch; ETT). The 

twitch torques from the ITT and the EET were determined and used for analyses of 

muscle contractile properties. This method was used during all MVC assessments and 

every 6th contraction of the voluntary CT test. The following equation was used to 

determine percent activation (%act) [22]: 

%act = 100% x (1 – ITT/EET). 
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Blood lactate 

 Blood lactate concentrations was assessed during all exercise tests. Measures 

were made immediately before exercise, immediately after exercise, and 3 minutes 

post-exercise. The finger stick method was utilized for all measures. 

3.4 Statistical analysis  

Force values were converted to torque by multiplying force by each participant’s 

moment arm. One-way repeated measures ANOVA were used to analyze the last 6 

contractions (30 seconds) for the voluntary exercise protocol and the last 7 contractions 

(28 seconds) for each of the stimulated exercise protocols (100 Hz from the 2nd visit 

(100 Hz D1), 100 Hz from the 3rd visit (100 Hz D2), Intermediate frequency, and Below 

frequency) to determine whether a plateau in torque occurred during each exercise 

protocol. The average of the torque during the final 6 contractions of the voluntary test 

and the average of the torque during the final 7 contractions of each of the stimulated 

exercise tests were for end-test torque. Dependent t-tests were used to compare the 

mean absolute, the mean relative, the peak absolute, and the peak relative end-test 

torque to the first contraction of each of the exercise protocols. One-way repeated 

measure ANOVAs were used to analyze the percent activation during the voluntary 

exercise test, the mean absolute end-test torque, the mean relative end-test torque, the 

peak absolute end-test torque, and the peak relative end-test torque across the stimulated 

exercise protocols. One-way repeated measures ANOVAs were used to analyze the 

absolute and relative twitch torque for all exercise tests. LFF, lactate, and M-wave 

amplitudes from the rectus femoris and vastus lateralis will be compared using a 5 

condition (voluntary, 100 Hz D1, 100 Hz D2, Intermediate frequency, and Below 
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frequency) x 5 time points (pre, first post exercise, average of the final 3 post exercise, 

average of the first 3 post rest, and the average of the final 3 post rest) repeated 

measured ANOVA. If there was an interaction, 1-way repeated measures ANOVAs 

were run to analyze differences across time and differences across conditions. 

Mauchly’s test was used to determine assumptions of sphericity. If sphericity was 

violated, the Greenhouse-Geisser correction was applied. All statistical analysis was 

completed using SPSS 22 (IBM, Armonk, NY). Significance will be set at p ≤ 0.05. 

 

Protocol Overview for Voluntary CT Assessment 

1. Blood lactate measure 

2. LFF doublet/single twitch pairs x 10 

20 seconds 

3. 60 MVC (3s exercise, 2s rest); ITT during every 6th contraction 

2 seconds of rest 

4. Blood lactate measure 

5. LFF doublet/single twitch pairs x 10 

2 minutes of rest 

6. Blood lactate measure 

7. LFF doublet/single twitch pairs x 10 

 

Protocol Overview of Stimulated CT Assessments 

1. Blood lactate measure 

2. LFF doublet/single twitch pairs x 10 

20 seconds 
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3. 75 involuntary contractions (2s exercise, 2s rest); M-wave pulses every 3rd 

contraction during the first minute and every 7th contraction thereafter 

2 seconds of rest 

4. Blood lactate measure 

5. LFF doublet/single twitch pairs x 10 

2 minutes of rest 

6. Blood lactate measure 

7. LFF doublet/single twitch pairs x 10  
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Chapter 4 – Results 

 

4.1 Plateau in end-test torque 

Force produced during the exercise protocols was expressed as absolute torque 

(Nm) and normalized as a percent change from MVC for the voluntary (VOL) protocol 

and as a percent change from the torque of the first contraction for the stimulated 

protocols (relative). Absolute and relative end-test torque (determined as the average of 

the final 6 contractions) differed significantly from the first contraction of VOL (p < 

0.001). 

 

Figure 2 – Group peak torque during the 60 maximal voluntary 

contractions of the 5 minute protocol. Solid line indicates plateau in torque 

over final 6 contractions. Values are mean ± SEM. 

 

Absolute and relative end-test torque (determined as the average of the final 7 

contractions) differed significantly from the first contraction across the 100 Hz protocol 

of the first day (D1), the 100 Hz protocol of the second day (D2), and the Intermediate 

frequency (IF) exercise protocol (p ≤ 0.002; Figure 3 and Figure 4). Absolute and peak 
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relative end-test torque of the low frequency (Below) exercise protocol did not differ 

significantly from the first contraction (p ≥ 0.558; Figure 3 and Figure 4). 

 

Figure 3 – Group peak torque during the 75 stimulated contractions of each of the 

5 minute stimulated protocols.  

 

 

Figure 4 – Group peak torque during the 75 stimulated contractions of each of the 

5 minute stimulated protocols. All contractions are normalized to the starting 

torque achieved during the 100 Hz protocol. 
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4.2 End-test torque across exercise protocols 

One-way repeated measures ANOVAs were used to compare the absolute and 

relative end-test torque values across the 4 stimulation protocols. Significant differences 

were found among the protocols (p ≤ 0.039). Absolute (Figure 5), and relative (Figure 

6) end-test torque did not differ significantly between the two 100 Hz visits (p ≥ 0.127) 

or the IF protocol (p ≥ 0.133). Absolute and relative end-test torque from the Below 

protocol differed significantly from the end-test torque of each of the other stimulated 

protocols (p ≤ 0.035). 

 

Figure 5 – Peak critical torque values of each of the stimulated protocols. Critical 

torque is the mean of the final 7 contractions of each stimulated protocol. * 

indicates a significant difference from other protocols (p ≤ 0.05). Values are mean 

± SEM. 
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Figure 6 – Peak critical torque values of each of the stimulated protocols 

normalized to starting torque achieved during the 100 Hz protocol. Critical torque 

is the mean of the final 7 contractions of each stimulated protocol. * indicates a 

significant difference from other protocols (p ≤ 0.05). Values are mean ± SEM. 

 

Mean and peak torque production during VOL was then expressed relative to the 

torque produced during the first contraction and compared to the relative end-test 

torques of the stimulation protocols. One-way ANOVAs were significant for both mean 

and peak torque (p < 0.001). Post hoc analysis indicated that relative mean and peak 

end-test torque during VOL were significantly higher than end-test torque during all of 

the stimulated exercise protocols (p ≤ 0.005). 

4.3 Voluntary motor unit recruitment 

Motor-unit recruitment during the VOL protocol was expressed as a percentage. 

One-way ANOVA over time was significant (p < 0.001; Figure 7) with values for 

recruitment at Pre, 30-sec, 60-sec, and 90-sec into exercise being significantly higher 

than the value at the final assessment 270-sec into exercise (p ≤ 0.046). Motor-unit 
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recruitment at time points 120-sec – 240-sec of exercise were not significantly different 

than the final measure (p ≥ 0.145). 

 

 

Figure 7 – Motor-unit recruitment response during the voluntary protocol.         z 

indicates a significant difference from value at 270 sec (p ≤ 0.05). Values are mean 

± SEM. 

 

4.4 Twitch torque 

 Twitch torque during VOL was expressed as an absolute value (Nm) and as a 

percent change from the twitch torque produced during the highest MVC. Each 

stimulated exercise protocol was expressed as an absolute value (Nm) and as a percent 

change from average twitch torque of the final three twitches during the first low 

frequency fatigue assessment (Pre).  

One-way ANOVAs over time for VOL were significant (p < 0.001). Post hoc 

analysis revealed that twitch torque measures from 60-sec – 270-sec were significantly 

lower than pre for both absolute torque (p ≤ 0.014; Figure 8) and percent change (p ≤ 
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0.022; Figure 8). By 120-sec, absolute and relative twitch torque plateaued and were not 

significantly different from the final measure (p ≥ 0.135; Figure 8). 

 

Figure 8 – Twitch torque during the voluntary protocol as absolute twitch torque 

(A), and normalized to highest twitch torque achieved during MVC (B).  z indicates 

a significant difference from value at 270-sec (p ≤ 0.05). Values are mean ± SEM. 

 

Mean twitch-torque values during the 4 stimulated protocols are shown in 

Figure 9. One-way ANOVAs for time during 100 Hz D1 were significant for both 

absolute and relative twitch torque (p < 0.001). Absolute twitch torques at Pre – 172-sec 

were significantly higher than the final time measure at 284-sec (p ≤ 0.002). Time 

points 200-sec – 256-sec were not significantly different from 284-sec (p ≥ 0.06). Pre – 

228-sec were significantly different from 284-sec for relative twitch torque (p ≤ 0.028). 

Relative twitch torque at 256-sec was not significantly different from 284-sec (p = 

0.11). 

One-way ANOVAs for time during 100 Hz D2 were significant for both 

absolute and relative twitch torque (p < 0.001). Absolute twitch torques at Pre – 172-sec 

were significantly higher than the final time measure at 284-sec (p ≤ 0.014). Absolute 

twitch torque plateaued by 200-sec and remained plateaued for the remainder of the 
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protocol (p ≥ 0.096). Relative twitch torques at Pre – 200-sec were significantly higher 

than the final time measure at 284-sec (p ≤ 0.018). Relative twitch torque plateaued by 

228-sec (p ≥ 0.33). 

One-way ANOVAs for time during the IF protocol were significant for both 

absolute and relative twitch torque (p ≤ 0.002). Absolute and relative twitch torque at 

Pre was not different from the final measure (p ≥ 0.076). Absolute twitch torque from 

12-sec – 116-sec was higher than the final measure at 284-sec (p ≤ 0.03). By 148-sec, 

torque plateaued to a level similar to 284-sec (p ≥ 0.09). Relative twitch torque from 12-

sec – 148-sec was higher than the final measure at 284-sec (p ≤ 0.014). By 172-sec, 

torque plateaued to a level similar to 284-sec (p ≥ 0.099).  

One-way ANOVAs for time during the Below protocol were significant for both 

absolute and relative twitch torque (p ≤ 0.037). For absolute twitch torque, from 88-sec 

– 228-sec there was a transient, but significant, increase in torque compared to ending 

twitch torque (p ≤ 0.038). All other time points were not different from the final 

measure (p ≥ 0.054). For relative twitch torque, from 116-sec – 148-sec there was a 

similar, but briefer, elevation in torque compared to 284-sec (p ≤ 0.018). All other time 

points were not different from ending twitch torque (p ≥ 0.052).
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Figure 9 – Twitch torque during the stimulated protocols as absolute twitch torque 

(A), and normalized to mean of final 3 twitches during the LFF assessment (B).  

 

4.5 Low frequency fatigue 

 Low frequency fatigue (LFF) was expressed as the ratio of the torque produced 

by a single twitch to a doublet twitch as well as the percent change from the average of 

last 3 single/doublet pairs during the pre exercise assessment of LFF (Pre). LFF was 

assessed immediately post exercise (IP), 45 seconds post exercise (45-sec), 180 seconds 

post exercise (180-sec), and 230 seconds post exercise (230-sec). There was a 

significant protocol x time interaction for both LFF ratios and percent change measures 

(p < 0.001). One-way repeated measures ANOVAs were run for each exercise protocol 

and for each time point post exercise.  

One-way repeated measure ANOVAs across time for VOL was significant for 

both ratio and percent change (p < 0.001; Figure 10 and 11). LFF was significantly 

reduced from pre exercise measures at all post exercise time points for both ratio and 

percent change values (p ≤ 0.004).  

For D1, 1-way repeated measures ANOVAs were run for both ratio and percent 

change. Both were significant (p < 0.001). The single/doublet ratio was higher at IP 
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than at all other time points for both ratio and percent change values (p < 0.001). Ratio 

and percent change values returned to pre levels by 45 s and no other times points were 

significantly different from pre exercise (p ≥ 0.22). 

One-way repeated measures ANOVAs for ratio and percent change for D2 were 

completed (p < 0.001). The single/doublet ratio was significantly higher at IP than all 

other time points for both ratio and percent change values (p < 0.001). In addition, the 

ratio at 230 s was significantly lower than pre (p = 0.045). All other ratio and percent 

change values had returned to pre levels by 45 s (p ≥ 0.06).  

For IF, 1-way repeated measures ANOVAs were run for both ratio and percent 

change. Both were significant (p ≤ 0.010). Ratio and percent change values of LFF were 

higher at IP and 45 s (p ≤ 0.040). LFF ratio and percent change eventually dropped to 

pre exercise levels by 180 s (p ≥ 0.13). 

For Below, 1-way repeated measures ANOVAs were run for both ratio and 

percent change. Both were significant (p < 0.001). Ratio and percent change values 

were higher at IP and 45 s (p ≤ 0.004). Ratio and percent change eventually dropped to 

pre exercise levels by 180 s (p ≥ 0.27). 

 



40 

 

 

Figure 10 – Single/doublet ratio pre and post voluntary protocol (A), and pre and 

post stimulated protocols (B). a indicates a significant difference from pre value. b 

indicates significant difference from all other stimulated protocols. c indicates 

significant difference from the Intermediate protocol. d indicates significant 

difference from the Below frequency protocol. e indicates significant difference 

from 100 Hz D2 protocol. f indicates significant difference from 100 Hz D1 

protocol (p ≤ 0.05). Values are mean ± SEM. 

 

There was a main effect for protocol at IP for ratio and percent change (p < 

0.001). Ratio and relative LFF during VOL was lower than each of the stimulated 

exercise tests (p ≤ 0.015). The ratio and relative LFF values for D1 and D2 were higher 

than the other tests (p < 0.001), with D1 being higher than D2 (p ≤ 0.050). IF and Below 

were not different from each other at IP for either ratio or relative (p ≥ 0.64). There was 

not a main effect for protocol at 45-sec for ratio LFF (p = 0.37). There was a main effect 

for protocol at 45-sec for relative LFF (p < 0.001). However, by 45-sec, percent change 

in LFF for both D1 and D2 decreased to similar values as IF and Below (p ≥ 0.14). 

Percent change in LFF during VOL remained suppressed compared to all of the 

stimulated tests (p ≤ 0.010). There was also a main effect for protocol at 180-sec for 

ratio and percent change (p ≤ 0.009).  Ratio LFF during VOL was significantly higher 

than LFF for all of the stimulated tests (p < 0.001). Ratio LFF was not significantly 

different between any of the stimulated tests (p ≥ 0.116). At 180-sec, VOL remained 
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lower than IF and Below for percent change (p ≤ 0.006). D2 was also significantly 

lower than IP for percent change (p = 0.032). There was a main effect for protocol at 

230-sec for ratio LFF (p < 0.001). Ratio LFF during VOL was significantly higher than 

LFF for all of the stimulated tests (p < 0.001). Ratio LFF was not significantly different 

between any of the stimulated tests (p ≥ 0.09). By 230-sec, there was no main effect for 

protocol for percent change (p = 0.19). 

 

Figure 11 - Single/doublet ratio pre and post stimulated protocols normalized to 

pre. a indicates a significant difference from pre value. b indicates significant 

difference from all stimulated protocols. c indicates significant difference from the 

Intermediate protocol. d indicates significant difference from the Below frequency 

protocol. e indicates significant difference from 100 Hz D2 protocol (p ≤ 0.05). 

Values are mean ± SEM. 

 

4.6 Vastus lateralis M-wave 

 All vastus lateralis (VL) M-wave values were expressed relative to the average 

of the 10 M-waves collected during the pre-exercise LFF protocol (Pre). Changes in VL 

M-wave over time during exercise can be seen in Figure 12A. In order to compare the 

changes that occurred in M-wave among the exercise protocols only VL M-wave 

assessed Pre, immediately post (IP), 45 seconds post (45-sec), 180 seconds post (180-
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sec), and 230 seconds post (230-sec) exercise were statistically compared. There was a 

significant protocol x time interaction for relative VL M-wave (p = 0.007; Figure 12B).  

 A one-way repeated measures ANOVA during VOL was not significant (p = 

0.19; Figure 12B), indicating no changes to M-wave between pre, IP, 45-sec, 180-sec, 

and 230-sec. There was a significant effect over time during D1 (p = 0.004; Figure 

12B). During D1, M-wave was significantly lower than pre at all post exercise measures 

(p ≤ 0.025). Despite never recovering to Pre values, M-wave partially recovered to the 

extent that 45-sec, 180-sec, and 230-sec were not significantly different from each other 

(p ≥ 0.13).  

 Likewise, there was a significant effect for time for D2 (p = 0.024; Figure 11). 

Unlike D1, during D2, M-wave was only significantly lower than pre at IP (p = 0.027). 

M-wave recovered by 45-sec, and was not significantly different from pre at any other 

measure (p ≥ 0.058). IP was significantly lower from all of the subsequent post 

measures (p ≤ 0.020). The final three post exercise measures were not significantly 

different from each other (p ≥ 0.17). 

 One-way ANOVAs for time for both IF and Below were not significant (p ≥ 

0.197; Figure 12B), indicating that M-wave did not significantly increase or decrease at 

any time point during those protocols.  

 There was a significant effect for protocol at the IP time point (p = 0.009; Figure 

12B). M-wave amplitude during VOL was not significantly different than IF or Below 

(p ≥ 0.16), but amplitude at IF was lower than Below (p = 0.050). M-wave amplitudes 

at D1 and D2 were not significantly different from each other (p = 0.835), but were 
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significantly lower than the other 3 protocols (p ≤ 0.045). There was not an effect for 

protocol at 45-sec, 180-sec, and 230-sec (p ≥ 0.068). 

 

Figure 12 – Vastus lateralis M-wave amplitude during voluntary and stimulated 

protocols (A), and pre and post protocols (B). All amplitudes are normalized to the 

mean of the 10 M-wave amplitudes induced during the LFF assessment before 

exercise. a indicates a significant difference from pre value. b indicates significant 

difference from all stimulated protocols. d indicates significant difference from low 

frequency protocol (p ≤ 0.05). Values are mean ± SEM. 

 

4.7 Lactate 

 There was a significant protocol x time interaction for blood lactate values taken 

at rest (pre), immediately post (IP), and 3 minutes post (3P) exercise (p < 0.001; Figure 

13). One-way repeated measures ANOVAs were run for each exercise protocol and for 

each time point. 

 One-way ANOVA demonstrated that resting lactate levels were not different 

between exercise protocols (p = 0.843). There was a main effect for protocol at both IP 

and 3P (p < 0.001). Lactate levels IP and 3P during the voluntary protocol were 

significantly higher than the IP and 3P measures of all of the stimulated protocols (p ≤ 

0.001). D1 and D2 were significantly higher than the low frequency test at both IP and 

3P measures (p ≤ 0.018). D1 and D2 were not significantly different from the 
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Intermediate frequency protocol at IP (p ≥ 0.59), but D2 was significantly higher than 

Intermediate at 3P (p = 0.044), while D1 was not (p = 0.598). Lactate during IF was not 

significantly higher than Below at IP (p = 0.234), but was higher at 3P (p = 0.017). 

 There was a main effect for time during VOL (p < 0.001). Lactate increased in 

response to VOL as IP was significantly higher than resting (p < 0.001). Lactate levels 

continued to rise during the rest period after exercise, and were significantly higher at 

3P than IP (p = 0.017). 

 There was a main effect for time for D1 and D2 (p ≤ 0.035). Lactate increased 

above resting levels immediately after D1 (p = 0.022). During the resting period, lactate 

levels decreased so that at 3P, lactate was lower than IP (p = 0.003) and back to resting 

levels (p = 0.97). Similar to D1, D2 lactate increased in response to the exercise 

protocol (p = 0.004). However, lactate levels remained elevated during the 3 min rest 

period so that IP and 3P measures were not different (p = 0.34), and 3P measures were 

higher than resting levels (p = 0.010). 

 One-way ANOVAs across time were not significant for the Intermediate and 

Below frequency protocols (p ≥ 0.16), indicating that lactate did not change during 

these tests.  
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Figure 13 – Blood lactate concentration responses before, immediately after, and 3 

minutes after voluntary and stimulated exercise protocols. a indicates significant 

difference from pre. b indicates significant difference from all stimulated protocols. 
c indicates significant difference from Intermediate protocol. d indicates significant 

difference from the Below frequency protocol (p ≤ 0.05). Values are mean ± SEM. 
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Chapter 5 – Discussion 

Critical power/torque represents a threshold of exercise output or intensity. 

Hypothetically, exercise below that intensity can be maintained indefinitely, as VO2 and 

metabolite production should reach a steady-state. Above the critical work-rate 

threshold, VO2 increases and metabolites continue to build-up, ultimately resulting in 

exercise intolerance. This critical threshold phenomenon and its ability to predict time 

to fatigue is well studied under voluntary conditions, and can be expressed using the 

following equation [6]:  

Tlim = W’ / (P – CP) 

Despite several studies [18, 19] demonstrating what appears to be a similar hyperbolic 

time-duration relationship under electrically stimulated conditions, the critical threshold 

concept has not yet been applied to involuntary exercise. Studying the power-duration 

relationship under stimulated conditions would allow for the removal of the voluntary 

aspect, potentially isolating the peripheral fatigue mechanisms that are contributing the 

stabilization of work output. The purpose of this current study was 1) to observe if an 

electrically stimulated exercise protocol in the quadriceps results in a hyperbolic power-

duration pattern seen in voluntary contractions; and 2) determine if the decline in torque 

production over time during electrically stimulated exercise occurred due to similar 

mechanism(s) as the decline in torque during voluntary exercise. Ultimately, we hoped 

to determine if a critical torque test using neuromuscular electrical stimulation would be 

possible and useful for further studies. 

5.1 Critical torque 

We found that relative torque of the voluntary protocol plateaued at 

approximately 40% of the maximal voluntary contraction, which is very similar to the 
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findings of others [14] using an identical protocol in the knee extensors. Relative torque 

decreased and then plateaued at approximately 30% of starting torque during both D1 

and D2 of 100 Hz exercise and during the Intermediate frequency exercise protocol. 

These findings likely indicate the attainment of a metabolic steady-state or homeostasis. 

The attainment of a steady-state in response to electrically stimulated exercise are 

similar to the findings of other studies [18]. The 100 Hz tests declined approximately 

70% from starting torque, while torque declined approximately 25% during the 

Intermediate protocol—although it plateaued at a similar absolute torque level 

compared to D1 and D2 of 100 Hz stimulation. Similar absolute and relative end-test 

torque values between the two 100 Hz tests demonstrate the consistency of this torque 

value, providing further support of a critical threshold that is similar from day-to-day. 

Our hypothesis was partially supported by the end-test torques of the Intermediate and 

one of the 100 Hz tests being similar. Interestingly, when exercise was performed using 

a stimulation frequency that elicited a starting torque that was lower than the end-test 

torque during the 100 Hz and Intermediate protocols, no change in torque (i.e. no 

fatigue occurred) was observed during exercise. This finding further supports the 

supposition that the end-test torque observed during 100 Hz and Intermediate frequency 

stimulation represents a “critical” threshold where a metabolic steady-state occurs. 

These findings support our hypotheses that end-test toque during stimulated exercise 

represents a similar parameter to the CT parameter observed during voluntary exercise. 

5.2 Fatigue Mechanisms 

Voluntary activation 
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 Since voluntary activation describes how much muscle can be activated during 

voluntary efforts, declines in motor unit recruitment are indicative of generalized central 

fatigue [14, 22]. Voluntary activation of motor units declined to approximately 70% by 

the end of the voluntary exercise protocol, similar to the decline observed previously 

using the 5 minute all out test [14]. Taken together these findings clearly demonstrate a 

central fatigue component to the attainment of critical torque under voluntary exercise 

conditions. Work by Amann [2, 9-12] has shown an interaction between the 

accumulation of metabolic by-products and subsequent activation of type III and type 

IV afferent nerve fibers during exercise and a decline in the ability of the CNS to 

activate/recruit motor-units. Thus our findings of a decline in %ACT during the CT test 

may be the result of type III and type IV afferent nerves inhibiting voluntary motor-

output, rather than a decline in effort from our participants.  

Twitch torque 

 Declines in twitch torque are generally thought to be indicative of peripheral 

fatigue. Twitch torque dropped approximately 60% during the voluntary test, 

comparable to the decline in MVC torque. Twitch torque plateaued halfway through the 

test, long before MVC torque plateaued, indicating that peripheral fatigue was a 

contributor to declines in MVC during the first half of the critical torque test, but less so 

during the latter half of the test. Likewise, during the 100 Hz exercise protocol, twitch 

torque declined to a similar percentage of starting torque as the stimulation trains – 

about a 70% decline. However, twitch torque did not plateau until approximately 200 

seconds.  
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 Interestingly, twitch torque during the Intermediate frequency test did not fall to 

a similar percentage of starting torque as did torque during the stimulation trains. While 

torque declined 25% during the trains, there was only a 13% decline in twitch torque. 

This discrepancy suggests there may be different fatigue mechanisms affecting torque 

production during stimulation trains, which last multiple seconds and contain many 

individual twitches, and during a single twitch. This discrepancy may be due to 

differences in changes in sarcolemma excitability, t-tubule excitability, and/or calcium 

release from the sarcolemma.  

Low frequency fatigue 

 There was significant low frequency fatigue during/following the voluntary 

critical torque test. While there were signs of recovery during the 4 minutes of rest 

following the test, the single/doublet ratios did not return to resting levels. This is 

expected, as low frequency fatigue following certain types of voluntary exercise has 

been shown to persist for minutes, hours, or days [21, 48]. LFF is thought to represent 

impairment of calcium release/re-uptake by the sarcoplasmic reticulum—therefore it is 

likely that some of the decline in torque production that occurred during the voluntary 

CT test can be attributed to peripheral fatigue due to impair calcium kinetics.  

 Surprisingly, we observed acute high frequency fatigue following both 100 Hz 

protocols. Immediately after the conclusion of the exercise protocol, doublet torque 

levels were suppressed to the point that they nearly matched by the torque produced by 

a single twitch. This high frequency fatigue was transient, as the ratios returned to pre 

exercise levels by 45-sec post exercise. The Intermediate and Below frequency 

stimulation tests also produced high frequency, although to a much lesser extent than 
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the high frequency test. This effect was also short-term, as the ratios returned to normal 

by 45-sec post exercise. The mechanism(s) responsible for this observation are unclear, 

but could potentially be related to depletion of acetylcholine at the neuromuscular 

junction or impairments in repolarization of the sarcolemma and/or t-tubules that limit 

the transmission of the second action potential during the doublet stimulation.   

M-wave 

A decline in M-wave amplitude during exercise is indicative of neuromuscular 

transmission failure, which can be caused by reduced transmission of action potentials 

along the muscle sarcolemma, or, potentially, depletion of acetylcholine release at the 

neuromuscular junction [31]. Takata and Ikata observed a 75% decline in M-wave 

amplitude during the first 4 minutes of direct nerve stimulation of rat gastrocnemius 

muscle using a 1.5 s : 0.5 s duty cycle at 100 Hz [31]. In our 5 minute 100 Hz protocols, 

we observed a 20-30% decline in M-wave amplitude in the vastus lateralis, indicating 

some transmission failure occurred. The difference in M-wave decline between the 

study of Takata and Ikata and ours is mostly likely related to the use of nerve 

stimulation, which is known to be more fatiguing, and the 3:1 stimulation work-to-rest 

cycle compared to our use of a 1:1 work-to-rest cycle. Allowing greater rest between 

subsequent contractions should allow for greater acetylcholine re-uptake at the motor-

end plate and allow for greater repolarization in the sarcolemma. Takata and Ikata 

speculated that the magnitude of neuromuscular transmission failure may be 

proportional to the frequency of stimulation [31]—with higher frequencies of 

stimulation resulting in greater transmission failure. Our data support this hypothesis as 
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reducing the stimulation frequency during the Intermediate and Below protocols 

resulted in no changes in m-wave magnitude.  

During the voluntary CT test, M-wave magnitude did not change—similar to our 

findings from the Intermediate and Below stimulation protocols. This finding suggests 

that neuromuscular transmission failure was likely not responsible for any of the 

peripheral fatigue observed during the voluntary CT test. Our M-wave data highlights 

the inherent differences between stimulated contractions/exercise and voluntary 

exercise. Stimulated contractions only recruit a portion of the motor-units of a given 

muscle and the same motor-units are recruited repeatedly during stimulated contractions 

[25]. This typically leads to greater fatigue and fatigue caused by different mechanisms 

than what is observed during voluntary exercise.  

Lactate 

 Lactate increased significantly more as a result of the voluntary exercise 

protocol than from any of the stimulated exercise protocols. Since the amplitude of 

stimulation used during the involuntary tests was only high enough to elicit 25% of the 

voluntary MVC, less muscle was recruited. Since only a portion of the muscle was 

recruited, there was less total metabolic demand compared to the voluntary test.  

 Lactate increased significantly as a result of the high frequency stimulation (100 

Hz), but not as a result of the Intermediate or Below frequencies. This indicates that the 

higher frequency was more metabolically demanding, and that the Intermediate 

frequency does not replicate the metabolic demand of the voluntary critical torque test. 

5.3 Experimental Considerations 
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 Given the differences in motor unit recruitment patterns between voluntary and 

stimulated conditions, extreme caution must be taken to avoid making direct 

comparisons between the two methods [25]. We must also consider that electrical 

stimulation only activates a small percentage (~25%) of the quadriceps muscles, while a 

maximal voluntary contraction can activate much closer to 100%. 

Voluntary exercise was performed with a 60% duty cycle (3 s contraction, 2 s 

rest), while stimulated exercise was performed with a 50% duty cycle (2 s contraction, 2 

s rest). It is very likely that fatigue characteristics were influenced by these differences 

[6]. However, pilot testing indicated that using high frequencies for 3 s induced muscle 

rolling and spasms that likely altered the area of stimulated muscle. In order to reduce 

the possibility changing muscle recruitment, we chose to use a shorter duty cycle for the 

stimulation tests in this current study.  

Participants completed two stimulated exercise tests per visit. As a result, it is 

possible that there was some residual low frequency fatigue at the start of the second 

stimulation test. However, since the stimulated tests resulted in high frequency fatigue, 

but not low frequency fatigue, it is not likely that there was any residual effect. 

5.4 Conclusions 

 Our findings support the general hypothesis that intermittent electrically 

stimulated isometric exercise leads to a steady-state end test torque, and it is similar 

among different frequencies of stimulation, despite dissimilar patterns of fatigue 

(neuromuscular transmission failure, Ca2+ release, metabolic demand, etc.). This 

threshold appears to be reproducible from day to day. More testing is necessary to see if 

there is some common factor that could explain the similar end-test torque. 
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 There were apparent differences in fatigue mechanisms between voluntary and 

electrically stimulated conditions. Peripheral fatigue under voluntary conditions was 

likely driven by calcium kinetics and afferent feedback, while fatigue under stimulated 

conditions was driven by decreases in sarcolemma excitability. Despite these 

differences, testing critical torque under stimulated conditions could still be a useful 

tool for assessing fatigue profiles of both athletic and clinical populations. 
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APPENDIX B: INFORMED CONSENT FORM 

 

Signed Consent to Participate in Research  

 

Would you like to be involved in research at the University of Oklahoma? 

I am Dr. Christopher Black from the Department of Health and Exercise Science, and I 

invite you to participate in my research project entitled “Estimation of Critical Torque 

Using Neuromuscular Electrical Stimulation of the Quadriceps in Humans.” This 

research is being conducted at the Sensory and Muscle Function Laboratory. You were 

selected as a possible participant because you have no history of lower leg injuries, have 

no contraindications to performing resistance exercise, and are not pregnant. You must 

be between the ages of 18 and 45 to participate in this study. 

Please read this document and contact me to ask any questions that you may have 

BEFORE agreeing to take part in my research. 

What is the purpose of this research? The purpose of this research is to determine the 

effects of neuromuscular electrical stimulation on force output during isometric 

exercise. 

How many participants will be in this research? About 30 men and women will take 

part in this research. 

What will I be asked to do? If you agree to be in this research, you will be asked to 

visit the lab 5 times. You will complete 2 familiarization visits and 3 testing visits. 

During the testing visits, there will be an additional number of contractions that will not 

be performed during the familiarization. The purpose of the familiarization visits is to 

introduce you to the methods that will be used during the testing visits. During the 

familiarization visits, you will be seated in an adjustable chair, with your leg strapped to 

a lever arm. Then, we will place electrodes over the vastus lateralis muscle and the 

vastus medialis muscle of the quadriceps. There are four muscles in the quadriceps, and 

the vastus lateralis is the outermost muscle of the group and the vastus medialis is the 

innermost muslce of the group. We will complete a test called a current determination, 

in which we apply a series of electrical currents to your quadriceps so that they contract 

without you voluntarily contracting them. Each of the pulses will be 1 millisecond in 

length. Each application of electrical current can be thought of as a “shock” and allows 

us to make measures of the amount of force that your quadriceps muscle group can 

generate. This "shock" can be compared to the feeling of someone slapping or lightly 

punching your leg. We will gradually increase the intensity of the stimulation until there 

is a plateau in force produced, or until it is no longer comfortable for you. You will be 

asked to complete 3 maximal voluntary isometric contractions (MVC, exercises where 

you contract your quadriceps muscles by kicking out as hard as you can, but they do not 

move because you are pushing against padded straps). We will apply electrical 

stimulation approximately 2.5 seconds into each MVC, and then again 1 second after. 
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Each pulse will last 1 millisecond. We will measure the force produced by the 

contractions. You will then complete a shortened version of the voluntary test that you 

will complete during the testing visits. You will be asked to kick as hard as you can in 

increments of 3 seconds, followed by 2 seconds of rest. You will complete 36 of these 

repeated maximal contractions, and the test will last 3 minutes. You will be cued to kick 

and relax by a metronome and by verbal instruction. You will be encouraged to kick as 

hard as you can for the duration of the test despite inevitable drops in torque. During the 

second familiarization visit only, after the 3 individual MVCs and before the practice 

voluntary test, we complete a second current determination test, in which we will apply 

another series of electrical currents to your quadriceps. This time, each stimulation train 

will last 2 seconds. We will gradually increase the intensity of the stimulation until the 

force produced equals ~25% of your MVC, or until it is no longer comfortable for you. 

Then you will receive constant frequency stimulation trains at that intensity. The 

frequency will start at 5 Hz and will increase in increments of 5 Hz until reaching 100 

Hz. We will use the force produced from each of these contractions to create a force-

frequency curve.  

 

During the testing visits, we will place the electrodes in the same place as during the 

familiarization visits. You will complete the two current determination tests that were 

completed in the familiarization visits. You will complete the 3 MVCs with the 

electrical stimulation twitches during and after. During one of the testing visits, you will 

be asked to complete a 5-minute all-out voluntary critical torque test. You will kick as 

hard as you can in increments of 3 seconds, followed by 2 seconds of rest. You will 

complete 60 of these repeated maximal contractions, and the test will last 5 minutes. 

You will be cued to kick and relax by a metronome and by verbal instruction. You will 

be encouraged to kick as hard as you can for the duration of the test despite inevitable 

drops in torque. During this voluntary critical torque test, electrical stimulation twitches 

will be applied during and immediately after every 6th contraction (every 30 seconds). 

Before and after the critical torque test, low frequency fatigue (LFF) and M-wave 

amplitudes will be assessed by applying a series of doublets (two 1-millisecond pulses 

spaced 6 milliseconds apart) and single twitches. Each doublet will be paired with a 

single twitch spaced 3 seconds apart, and each pair will be spaced 3 seconds apart. 

Before the critical torque test, participants will receive 10 doublet/single stimulation 

pairs, and the critical torque test will be initiated 20 seconds after the final twitch. Two 

seconds after the conclusion of the critical torque test, 10 more doublet/single pairs will 

be applied. Another 10 pairs will be applied 2 minutes later. The current that was 

determined using the 1 millisecond twitches will be used for this assessment. Blood 

lactate will be measured by using a finger stick immediately before the exercise test, 

immediately after the test, and 3 minutes after the test. 

During another testing visit, you will complete a stimulation test that will not require 

any active participation on your part. You will be asked to remain as relaxed as possible 

and to try not to contract your quadriceps muscles during the test. During the test, an 
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electrical current will be applied to the quadriceps muscles at a frequency of 100 Hz. 

The current will be applied in increments totaling 4 seconds, with 2 seconds “on” and 2 

seconds “off”, for a total of 75 increments (5 total minutes). Pulse duration will be held 

constant at 200 microseconds and amplitude will be at a level sufficient to evoke 25% 

of MVC at 100 Hz. We will measure the torque produced by each of the individual 

contractions completed during each test. Current amplitude will be held constant for the 

duration of the stimulation test. During this involuntary critical torque test, electrical 

stimulation twitches will be applied immediately after every 3rd contraction during the 

first minute and every 7th contraction thereafter. Before and after the critical torque test, 

low frequency fatigue (LFF) and M-wave amplitudes will be assessed by applying a 

series of doublets (two 1-millisecond pulses spaced 6 milliseconds apart) and single 

twitches. Each doublet will be paired with a single twitch spaced 3 seconds apart, and 

each pair will be spaced 3 seconds apart. Before the critical torque test, participants will 

receive 10 doublet/single stimulation pairs, and the critical torque test will be initiated 

20 seconds after the final twitch. Two seconds after the conclusion of the critical torque 

test, 10 more doublet/single pairs will be applied. Another 10 pairs will be applied 2 

minutes later. The current that was determined using the 2 second trains will be used for 

these assessments. Blood lactate will be measured by using a finger stick immediately 

before the exercise test, immediately after the test, and 3 minutes after the test. 

After 30 minutes of rest, you will complete a second stimulation test, in the same 

manner as described above. However, the frequency of stimulation for this test will be 

determined by examining your force-frequency curve and the end-test torque from your 

first stimulation test. The frequency applied during this stimulation test will elicit a 

torque level that is below the end-test torque produced at 100 Hz. M-wave pulse, LFF, 

and blood lactate will be assessed in a similar manner. 

The other testing visit will be similar, with exception of the firing frequencies for the 5-

minute stimulation tests. The first test will be at a frequency that elicits a torque level 

that equals approximately 50% of the peak torque minus the end-test torque from the 

100 Hz test. The second test will be at 100 Hz. 

How long will this take? Your participation will take 5 visits, each lasting 

approximately 2 hours. The second visit will take place at least 24 hours after the first 

visit, and the following visits will take place at least 48 hours apart. The total time 

commitment for this study is approximately 10 hours.  

What are the risks and/or benefits if I participate? During the exercise protocols, an 

electrical current will be applied to the vastus lateralis and vastus medialis muscles of 

your quadriceps. You may experience pain and/or discomfort in your quadriceps from 

the electrical stimulation and the force of the contractions. The intensity of pain or 

discomfort varies from person to person. It may gradually progress to the sensation 

similar to the stinging feeling in your hand after performing a very hard “high five”. 

There is minimal risk of developing muscle soreness or injury resulting from isometric 

exercise. There are no direct benefits to participating in this study. 
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What do I do if I am injured? If you are injured during your participation, report this 

to a researcher immediately. Emergency medical treatment is available. However, you 

or your insurance company will be expected to pay the usual charge from this treatment. 

The University of Oklahoma Norman Campus has set aside no funds to compensate you 

in the event of injury. 

Will I be compensated for participating? You will be given a $10 gift card for 

completing the study. 

Who will see my information? In research reports, there will be no information that 

will make it possible to identify you. Research records will be stored securely and only 

approved researchers and the OU Institution Review Board will have access to the 

records. 

You have the right to access the research data that has been collected about you as a 

part of this research. However, you may not have access to this information until the 

entire research has completely finished and you consent to this temporary restriction. 

Do I have to participate? No. If you do not participate, you will not be penalized or 

lose benefits or services unrelated to the research. If you decide to participate, you don’t 

have to answer any question and can stop participating at any time. 

Will my identity be anonymous or confidential? Your name will not be retained or 

linked with your responses. The data you provide will be destroyed unless you 

specifically agree for data retention or retention of contact information at the end of the 

research. Please check all of the options that you agree to:  

I agree for the researcher to use my data in future studies. ___Yes ___ No  

Photographing of Research Participants/Activities In order to preserve an image 

related to the research, photographs may be taken of participants. These photos may be 

used for research publication or for posters. You have the right to refuse to allow 

photographs to be taken without penalty. Please select one of the following options: 

I consent to photographs.   ___ Yes ___ No 

Will I be contacted again? The researcher would like to contact you again to recruit 

you into this research or to gather additional information.  

_____ I give my permission for the researcher to contact me in the future.  

_____ I do not wish to be contacted by the researcher again. 

Who do I contact with questions, concerns or complaints? If you have questions, 

concerns or complaints about the research or have experienced a research-related injury, 

contact me at 918-293-8976 or nataliejanzen@gmail.com. Additionally, you may 

contact Dr. Christopher Black at 405-325-7668 or cblack@ou.edu.  

You can also contact the University of Oklahoma – Norman Campus Institutional 

Review Board (OU-NC IRB) at 405-325-8110 or irb@ou.edu if you have questions 

about your rights as a research participant, concerns, or complaints about the research 

mailto:nataliejanzen@gmail.com
mailto:irb@ou.edu
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and wish to talk to someone other than the researcher(s) or if you cannot reach the 

researcher(s). 

You will be given a copy of this document for your records. By providing information to 

the researcher(s), I am agreeing to participate in this research. 

Participant Signature 

 

 

Print Name Date 

Signature of Researcher 

Obtaining Consent 

 

 

Print Name Date 

Signature of Witness (if 

applicable) 

 

 

Print Name Date 
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APPENDIX C: HIPAA 

  

   

  

AUTHORIZATION TO USE or SHARE 

HEALTH INFORMATION1 THAT IDENTIFIES YOU FOR RESEARCH 

An Informed Consent Document for Research Participation may also be required. 

 

Title of Research Project: Estimation of Critical Torque Using Neuromuscular 

Electrical Stimulation of the Quadriceps in Humans.  

IRB Number: 5246 

Leader of Research Team: Christopher D. Black 

Address: 1401 Asp Ave., #110 HHC, Norman, OK 73019 

Phone Number:  405-325-7668 (office); 706-255-3750 (cell) 

If you decide to sign this document, University of Oklahoma (OU) researchers may use 

or share information that identifies you (protected health information) for their research. 

Protected health information will be called PHI in this document. 

 

PHI To Be Used or Shared.  Federal law requires that researchers get your permission 

(authorization) to use or share your PHI. If you give permission, the researchers may 

use or share with the people identified in this Authorization any PHI related to this 

research from your medical records and from any test results.  Information used or 

shared may include all information relating to any tests, procedures, surveys, or 

interviews as outlined in the consent form; medical records and charts; name, address, 

telephone number, date of birth, race, and government-issued identification numbers. 

Purposes for Using or Sharing PHI. If you give permission, the researchers may use 

your PHI to determine if it is safe for you to participate in the exercise used in this study. 

Other Use and Sharing of PHI. If you give permission, the researchers may also use 

your PHI to develop new procedures or commercial products. They may share your PHI 

with other researchers, the research sponsor and its agents, the OU Institutional Review 

Board, auditors and inspectors who check the research, and government agencies such 

as the Department of Health and Human Services (HHS), and when required by law.  

The researchers may also share your PHI with your physician and/or a University of 

                                                             
1 Protected Health Information includes all identifiable information relating to any aspect of an 

individual’s health whether past, present or future, created or maintained by a Covered Entity. 
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Oklahoma physician in the event of a serious health risk or adverse event that occurs 

during the study. 

Confidentiality. Although the researchers may report their findings in scientific journals 

or meetings, they will not identify you in their reports. The researchers will try to keep 

your information confidential, but confidentiality is not guaranteed.  The law does not 

require everyone receiving the information covered by this document to keep it 

confidential, so they could release it to others, and federal law may no longer protect it. 

YOU UNDERSTAND THAT YOUR PROTECTED HEALTH INFORMATION 

MAY INCLUDE INFORMATION REGARDING A COMMUNICABLE OR 

NONCOMMUNICABLE DISEASE. 

Voluntary Choice. The choice to give OU researchers permission to use or share your 

PHI for their research is voluntary.  It is completely up to you.  No one can force you to 

give permission.  However, you must give permission for OU researchers to use or share 

your PHI if you want to participate in the research and, if you cancel your authorization, 

you can no longer participate in this study. 

Refusing to give permission will not affect your ability to get routine treatment or health 

care unrelated to this study from OU.   

Canceling Permission. If you give the OU researchers permission to use or share your 

PHI, you have a right to cancel your permission whenever you want. However, 

canceling your permission will not apply to information that the researchers have 

already used, relied on, or shared or to information necessary to maintain the reliability 

or integrity of this research. 

End of Permission. Unless you cancel it, permission for OU researchers to use or share 

your PHI for their research will never end.  

Contacting OU: You may find out if your PHI has been shared, get a copy of your PHI, 

or cancel your permission at any time by writing to: 

Privacy Official                     or Privacy Board 

University of Oklahoma    University of Oklahoma  

PO Box 26901      201 Stephenson Pkwy, Suite 

4300A 

Oklahoma City, OK 73190    Norman, OK 73019 

 

If you have questions, call: (405) 271-2511         or   (405) 325-8110 

 

Access to Information. You have the right to access the medical information that has 

been collected about you as a part of this research study.  However, you may not have 

access to this medical information until the entire research study is completely finished.  

You consent to this temporary restriction.  
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Giving Permission.  By signing this form, you give OU and OU’s researchers led by 

the Research Team Leader permission to share your PHI for the research project listed 

at the top of this form. 

  

 

 

Participant Name (Print): _________________________  

 

 

__________________________________________  _______________ 

Signature of Participant      Date 

or Parent if Participant is a minor 

 

Or  

 

__________________________________________  _______________ 

Signature of Legal Representative**     Date 

 

**If signed by a Legal Representative of the Participant, provide a description of the 

relationship to the Participant and the authority to act as Legal Representative: 

 

______________________________________________________________________

_ 

OU may ask you to produce evidence of your relationship. 

 

A signed copy of this form must be given to the Participant or the Legal 

Representative at the time this signed form is provided to the researcher or his 

representative. 
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APPENDIX D: HEALTH STATUS QUESTIONNAIRE 

 

Health Status Questionnaire 

 

 

 

Part 1.  Information about the individual 

 

1.  ____________________________________  

     Participant ID 

 

2.  _________________________________________  

     Date       

 

3.  _________________________________________

 ________________________ 

      Mailing Address     Phone # 

          ________________________ 

     ________________________________________  Email  

 

4.  _______________________________________  ______________________ 

       Primary Physician     Physician Phone# 

      

     _______________________________________  

      Date of Last Physical Examination 

 

 

5.  _______________________________________ ______________________ 

     Person to contact in emergency   Phone 

 

6.  Gender (circle one)  Female  Male 
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7. Age ________  Date of Birth _______/________/________ 

 

8. Height ____________    Weight___________      

 

9.  Do you smoke?     Yes          No 

 

10.  If you are a smoker, indicate number smoked per day: 

 Cigarettes: 40 or more          20-39          10-19          1-9 

 Cigars or pipes only: 5 or more or any inhaled  Less than 5, none 

inhaled 

 

11. Are you currently taking prescription or over-the-counter medication(s)? If so, please 

list the medication, daily dose, and why you are taking it. 

 

 

 

 

 

12. Are you currently taking any vitamins or nutritional supplements? If so, please list 

the vitamin/supplement, the daily dose, and why you are taking it. 

 

 

 

 

 

Part 2.  Medical History 

 

You have had or currently have any of the following:  
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History 

___ A heart attack  

___ Heart surgery  

___ Cardiac catheterization  

___ Coronary angioplasty (PTCA)  

___ Pacemaker-implantable cardiac defibrillatory/ rhythm disturbance  

___ Heart valve disease  

___ Heart failure  

___ Heart transplantation  

___ Congenital heart disease 

___ Peripheral arterial disease 

___ Stoke   

 

Signs/Symptoms  

___ You experience discomfort and/or pain with exertion in the chest, neck, jaw, arms   

___ You experience unreasonable breathlessness at rest or with mild exertion 

___ You experience dizziness, fainting, or blackouts 

___ You experience ankle edema 

___ You experience heart palpitations or tachycardia (unpleasant awareness of force or 

rapid heart beats) 

___ You have or experience intermittent claudication (muscle pain due to ischemia) 

___ You have a heart murmur  

___ You take medication(s) for ANY type of heart condition or high blood pressure 

 

Other health issues  

___ You have diabetes 

___ You have a thyroid disorder 

___ You have a renal (kidney) disorder 

___ You have  liver disease (e.g. cirrhosis)  



70 

 

___ You have COPD, asthma, cystic fibrosis or other lung disease  

___ You have burning or cramping sensation in your lower legs when walking short 

distances  

___ You have musculoskeletal problems that limit your physical activity (arthritis, etc.)  

___ You are pregnant  

 

Part III: Cardiovascular Risk Factors 

 

 Age 

___ You are a man older than 45 years  

___ You are a woman older than 55 years, have had a hysterectomy, or are 

postmenopausal 

  

Medical/Lifestyle  

___ You smoke, or quit smoking within the previous 6 months 

  

___ A physician has ever said have high blood pressure (>140/90)?  

   

___ A physician has said you have high cholesterol (Total >200 mg/dl or LDL 

cholesterol is >130 mg/dl)  

 

___ You have a close blood relative who had a heart attack or heart surgery before age 

55 (father or        brother) or age 65 (mother or sister) 

  

___ You are physically inactive (i.e., you get <30 minutes of physical activity 3 days 

per week) 

 

___ You have impaired fasting glucose (> 100mg/dl) that has been confirmed by a 

doctor on two separate occasions 
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___ Your BMI is >30   BMI___________ 

 

 

 

I understand my signature signifies that I have read and understand all the information 

on the questionnaire, that I have truthfully answered all the questions, and that any 

questions/concerns I may have had have been addressed to my complete satisfaction.  

 

Name (please print)______________________________________________________  

 

Signature _________________________________________Date _________________  
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APPENDIX E: INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 

INTERNATIONAL PHYSICAL ACTIVITY 

QUESTIONNAIRE 

(October 2002) 

http://www.ipaq.ki.se/ipaq.htm 

 

 

LONG LAST 7 DAYS SELF-ADMINISTERED FORMAT 

 

 

FOR USE WITH YOUNG AND MIDDLE-AGED ADULTS (15-69 years) 

 

The International Physical Activity Questionnaires (IPAQ) comprises a set of 4 

questionnaires. Long (5 activity domains asked independently) and short (4 generic 

items) versions for use by either telephone or self-administered methods are available. 

The purpose of the questionnaires is to provide common instruments that can be used 

to obtain internationally comparable data on health–related physical activity. 

 

Background on IPAQ 

The development of an international measure for physical activity commenced in 

Geneva in 1998 and was followed by extensive reliability and validity testing 

undertaken across 12 countries (14 sites) during 2000. The final results suggest that 

these measures have acceptable measurement properties for use in many settings and 

in different languages, and are suitable for national population-based prevalence 

studies of participation in physical activity. 

 

Using IPAQ  

Use of the IPAQ instruments for monitoring and research purposes is encouraged. It is 

recommended that no changes be made to the order or wording of the questions as 

this will affect the psychometric properties of the instruments.  

 

Translation from English and Cultural Adaptation 

http://www.ipaq.ki.se/ipaq.htm
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Translation from English is encouraged to facilitate worldwide use of IPAQ. Information 

on the availability of IPAQ in different languages can be obtained at www.ipaq.ki.se. If 

a new translation is undertaken we highly recommend using the prescribed back 

translation methods available on the IPAQ website. If possible please consider making 

your translated version of IPAQ available to others by contributing it to the IPAQ 

website. Further details on translation and cultural adaptation can be downloaded from 

the website. 

 
Further Developments of IPAQ  

International collaboration on IPAQ is on-going and an International Physical Activity 

Prevalence Study is in progress. For further information see the IPAQ website.  

 

More Information 

More detailed information on the IPAQ process and the research methods used in the 

development of IPAQ instruments is available at www.ipaq.ki.se and Booth, M.L. 

(2000). Assessment of Physical Activity: An International Perspective. Research 

Quarterly for Exercise and Sport, 71 (2): s114-20. Other scientific publications and 

presentations on the use of IPAQ are summarized on the website. 

http://www.ipaq.ki.se/
http://www.ipaq.ki.se/
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INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 

We are interested in finding out about the kinds of physical activities that people do as 

part of their everyday lives. The questions will ask you about the time you spent being 

physically active in the last 7 days. Please answer each question even if you do not 

consider yourself to be an active person. Please think about the activities you do at 

work, as part of your house and yard work, to get from place to place, and in your 

spare time for recreation, exercise or sport. 

 

Think about all the vigorous and moderate activities that you did in the last 7 days. 

Vigorous physical activities refer to activities that take hard physical effort and make 

you breathe much harder than normal. Moderate activities refer to activities that take 

moderate physical effort and make you breathe somewhat harder than normal. 

 

PART 1: JOB-RELATED PHYSICAL ACTIVITY 

 

The first section is about your work. This includes paid jobs, farming, volunteer work, 

course work, and any other unpaid work that you did outside your home. Do not 

include unpaid work you might do around your home, like housework, yard work, 

general maintenance, and caring for your family. These are asked in Part 3. 

 

1. Do you currently have a job or do any unpaid work outside your home? 

 

  Yes 

 

 No Skip to PART 2: TRANSPORTATION 

 

The next questions are about all the physical activity you did in the last 7 days as part 

of your paid or unpaid work. This does not include traveling to and from work. 

 

2.  During the last 7 days, on how many days did you do vigorous physical 

activities like heavy lifting, digging, heavy construction, or climbing up stairs as 

part of your work? Think about only those physical activities that you did for at 

least 10 minutes at a time. 

 



75 

 

_____ days per week 

  

 No vigorous job-related physical activity Skip to question 4 

 

3. How much time did you usually spend on one of those days doing vigorous 

physical activities as part of your work? 

 

_____ hours per day 

_____ minutes per day 

 

4. Again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

physical activities like carrying light loads as part of your work? Please do not include 

walking. 

 

_____ days per week 

 

 No moderate job-related physical activity 

 Skip to question 6 
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5. How much time did you usually spend on one of those days doing moderate 

physical activities as part of your work? 

 

_____ hours per day 

_____ minutes per day 

 

6. During the last 7 days, on how many days did you walk for at least 10 minutes at 

a time as part of your work? Please do not count any walking you did to travel to or from 

work. 

 

_____ days per week 

 

 No job-related walking Skip to PART 2: TRANSPORTATION 

 

7. How much time did you usually spend on one of those days walking as part of 

your work? 

 

_____ hours per day 

_____ minutes per day 

 

 

PART 2: TRANSPORTATION PHYSICAL ACTIVITY 
 

These questions are about how you traveled from place to place, including to places 
like work, stores, movies, and so on. 
 

8. During the last 7 days, on how many days did you travel in a motor vehicle like a 

train, bus, car, or tram? 

 

_____ days per week 

 

 No traveling in a motor vehicle Skip to question 10 
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9. How much time did you usually spend on one of those days traveling in a train, 

bus, car, tram, or other kind of motor vehicle? 

 

_____ hours per day 

_____ minutes per day 

 

Now think only about the bicycling and walking you might have done to travel to and 

from work, to do errands, or to go from place to place. 

 

10. During the last 7 days, on how many days did you bicycle for at least 10 minutes 

at a time to go from place to place? 

 

_____ days per week 

 

 No bicycling from place to place  Skip to question 12 
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11. How much time did you usually spend on one of those days to bicycle from 

place to place? 

 

_____ hours per day 

_____ minutes per day 

 

12. During the last 7 days, on how many days did you walk for at least 10 minutes 

at a time to go from place to place? 

 

_____ days per week 

 

 No walking from place to place Skip to PART 3: 

HOUSEWORK, HOUSE MAINTENANCE, AND CARING FOR FAMILY 

 

13. How much time did you usually spend on one of those days walking from place 

to place? 

 

_____ hours per day 

_____ minutes per day 

 

 

PART 3: HOUSEWORK, HOUSE MAINTENANCE, AND CARING FOR FAMILY 

 

This section is about some of the physical activities you might have done in the last 7 
days in and around your home, like housework, gardening, yard work, general 
maintenance work, and caring for your family. 
 

14. Think about only those physical activities that you did for at least 10 minutes at a 

time. During the last 7 days, on how many days did you do vigorous physical activities 

like heavy lifting, chopping wood, shoveling snow, or digging in the garden or yard? 

 

_____ days per week 
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 No vigorous activity in garden or yard Skip to question 16 

 

 

15. How much time did you usually spend on one of those days doing vigorous 

physical activities in the garden or yard? 

 

_____ hours per day 

_____ minutes per day 

 

16. Again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

activities like carrying light loads, sweeping, washing windows, and raking in the garden 

or yard? 

 

_____ days per week 

 

 No moderate activity in garden or yard Skip to question 18 
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17. How much time did you usually spend on one of those days doing moderate 

physical activities in the garden or yard? 

 

_____ hours per day 

_____ minutes per day 

 

18. Once again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

activities like carrying light loads, washing windows, scrubbing floors and sweeping 

inside your home? 

 

_____ days per week 

 

 No moderate activity inside home Skip to PART 4: 

RECREATION, SPORT AND LEISURE-TIME PHYSICAL ACTIVITY 

 

19. How much time did you usually spend on one of those days doing moderate 

physical activities inside your home? 

 

_____ hours per day 

_____ minutes per day 

 

 

PART 4: RECREATION, SPORT, AND LEISURE-TIME PHYSICAL ACTIVITY 

 

This section is about all the physical activities that you did in the last 7 days solely for 

recreation, sport, exercise or leisure. Please do not include any activities you have already 

mentioned. 

 

20. Not counting any walking you have already mentioned, during the last 7 days, on 

how many days did you walk for at least 10 minutes at a time in your leisure time? 

 

_____ days per week 

 

 No walking in leisure time Skip to question 22 
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21. How much time did you usually spend on one of those days walking in your 

leisure time? 

 

_____ hours per day 

_____ minutes per day 

 

22. Think about only those physical activities that you did for at least 10 minutes at a 

time. During the last 7 days, on how many days did you do vigorous physical activities 

like aerobics, running, fast bicycling, or fast swimming in your leisure time? 

 

_____ days per week 

 

 No vigorous activity in leisure time Skip to question 24 

 

23. How much time did you usually spend on one of those days doing vigorous 

physical activities in your leisure time? 

 

_____ hours per day 

_____ minutes per day 

 

24. Again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

physical activities like bicycling at a regular pace, swimming at a regular pace, and doubles 

tennis in your leisure time? 

 

_____ days per week 

 

 No moderate activity in leisure time Skip to PART 5: TIME 

SPENT SITTING 

 

25. How much time did you usually spend on one of those days doing moderate 

physical activities in your leisure time? 

_____ hours per day 

_____ minutes per day 
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PART 5: TIME SPENT SITTING 

 

The last questions are about the time you spend sitting while at work, at home, while 

doing course work and during leisure time. This may include time spent sitting at a desk, 

visiting friends, reading or sitting or lying down to watch television. Do not include any 

time spent sitting in a motor vehicle that you have already told me about. 

 

26. During the last 7 days, how much time did you usually spend sitting on a 

weekday? 

 

_____ hours per day 

_____ minutes per day 

 

27. During the last 7 days, how much time did you usually spend sitting on a 

weekend day? 

 

_____ hours per day 

_____ minutes per day 

 

 

This is the end of the questionnaire, thank you for participating. 
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APPENDIX F: PHYSICAL ACTIVITY READINESS QUESTIONNAIRE 

 

PAR-Q & YOU 
(A Questionnaire for People Aged 15 to 69) 

Regular physical activity is fun and healthy, and increasingly more people are starting to become more active 

every day.  Being more active is very safe for most people.  However, some people should check with their doctor 

before starting to become much more physically active. 

If you are planning to become much more physically active than you are now, start by answering the seven 

questions in the box below.  If you are between the ages of 15 and 69, the PAR-Q will tell you if you should check 

with your doctor before you start.  If you are over 69 years of age, and you are not used to being very active, 

check with your doctor. 

Common sense is your best guide when you answer these questions.  Please read the questions carefully and 

answer each one honestly:  check YES or NO. 

YES NO 

  1. Has your doctor ever said that you have a heart condition and that you 

should only do physical activity recommended by your doctor? 

  2. Do you feel pain in your chest when you do physical activity? 

  3. In the past month, have you had chest pain when you were not doing 

physical activity? 

  4. Do you lose your balance because of dizziness or do you ever lose 

consciousness? 

  5. Do you have a bone or joint problem (for example, back, knee or hip) that 

could be made worse by a change in your physical activity? 

  6. Is your doctor currently prescribing drugs (for example, water pills) for 

your blood pressure or heart condition? 

  7. Do you know of any other reason why you should not do physical activity? 
 

If 

you 

answered 

YES to one or more questions 

Talk to your doctor by phone or in person BEFORE you start becoming much more physically 

active or BEFORE you have a fitness appraisal.  Tell your doctor about the PAR-Q and which 

questions you answered YES. 

 You may able to any activity you want – as long as you start slowly and build up gradually.  
Or, you may need to restrict your activities to those which are safe for you.  Talk with your 
doctor about the kinds of activities you wish to participate in and follow his/her advice. 

 Find out which community programs are safe and helpful to you. 

NO to all questions 

 

DELAY BECOMING MUCH MORE ACTIVE: 

If you answered NO honestly to all PAR-Q questions, you can be 

reasonably sure that you can: 

 start becoming much more physically active – begin slowly 
and build up gradually.  This is the safest and easiest way to go. 

 If you are not feeling well because of a 
temporary illness such as a cold or a fever – wait 
until you feel better; or 

 If you are or may be pregnant – talk to your 
doctor before you start becoming more active. 
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 Take part in a fitness appraisal – this is an excellent way to 
determine your basic fitness so that you can plan the best way 
for you to live actively.  It is also highly recommended that you 
have your blood pressure evaluated.  If your reading is over 
144/94, talk with your doctor before you start becoming much 
more physically active. 

PLEASE NOTE: If your health changes so that you then 

answer YES to any of the above questions, tell your 

fitness or health professional.  Ask whether you 

should change your physical activity plan. 

Informed use of the PAR-Q: The Canadian Society for Exercise Physiology, Health Canada, and their agents 

assume no liability for persons who undertake physical activity, and if in doubt after completing this 

questionnaire, consult your doctor prior to physical activity. 

No changes permitted.  You are encouraged to photocopy the PAR-Q but only if you use 

the entire form. 

NOTE: If the PAR-Q is being given to a person before he or she participates in a physical activity program or a fitness appraisal, this section may be used 

for legal or administrative purposes. 

“I have read, understood and completed this questionnaire.  Any questions I had were 

answered to my full satisfaction.” 

NAME        

SIGNATURE   DATE       

SIGNATURE OF PARENT  WITNESS       

Or GUARDIAN (for participants under the age of majority) 

Note: This physical activity clearance is valid for a maximum of 12 months from the date it 

is completed and becomes invalid if your condition changes so that you would answer YES 

to any of the seven questions. 
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APPENDIX G: TALENT RELEASE 
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APPENDIX H: PHOTO RELEASE 

  
 


