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Abstract 

 Flash floods, a subset of floods, are a particularly damaging natural hazard 

worldwide due to their multidisciplinary nature, difficulty in forecasting, and fast 

response that limits emergency responses. The purpose of this work is to develop a 

framework of characterizing floods and flash floods based on a multitude of explanatory 

variables that describe the geology, topography, pedology, climatology, and rainfall 

spatial variability.  Until now, flash flood characterization studies in the United States 

have been limited in scope due to the lack of a comprehensive database matching flood 

characteristics such as peak discharges and flood duration with geospatial and 

geomorphologic information. In this study, A long data record spanning 78 years from 

the United States Geological Survey (USGS) stream gauge network is combined with 

National Weather Service (NWS) flooding thresholds to study floods at basin and event 

scale, with special focus on the rise time and unit peak discharge. A new metric for flash 

flood severity called ‘flashiness’ is also proposed that represents the rate of rise of the 

hydrograph during flooding conditions and thus captures both the magnitude and timing 

aspects of floods.  

 Associations between flashiness and geophysical variables are initially 

constructed at locations where there is known information from both discharge 

observations and the geospatial datasets. These relationships are first investigated 

through first-order characterization of trends and their variability. Since we don’t have 

discharge observations everywhere, a multi-dimensional statistical modeling approach 

is built upon these associations to regionalize flashiness to all ungauged locations across 

the Continental United States (CONUS). Several localized flash flood hotspots were 
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identified outside of the originally defined regions including the western slopes of the 

Appalachians in Tennessee, Kentucky, and West Virginia. Furthermore, a high-

resolution Multi-Radar/Multi-Sensor (MRMS) rainfall reanalysis dataset (1 km/5-min 

resolution) from 2002-2011 was used to quantify the relative impact of sub-basin scale 

rainfall spatial variability and geomorphology on flashiness. It was found that the 

percentage contribution of rainfall spatial variability to flashiness is 9% more for flash 

floods compared to floods.  

Results from this research highlight how the trend and variability of flooding 

variables such as rise time, unit peak discharge, flash flood severity etc. could be 

explained using a large number of explanatory variables. It also demonstrates how 

complex non-linear association between the hydrologic response and variables 

representing causative processes could be modeled with reasonable skill to predict in 

ungauged locations.
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Chapter 1.  Introduction 

Flash Floods are naturally occurring events that have been defined by the National 

Weather Service (NWS) as “a rapid and extreme flow of high water into a normally dry 

area, or a rapid water level rise in a stream or creek above a predetermined flood level, 

beginning within six hours of the causative event (e.g., intense rainfall, dam failure, ice 

jam). Flash floods are swift flood responses to intense rainfall or release of water over a 

small area. Inundation over dry land occurs within minutes to a few hours of the rainfall 

event, potentially causing devastating impact on lives and infrastructure (Hong et al., 

2012).  

Ashley and Ashley (2008) found floods to be the second-deadliest U.S. weather-

related hazard after heat. They compiled a nationwide database of flood fatalities across 

the contiguous United States from 1959 to 2005 with detailed event and demographic 

information and found that the majority of the fatalities were caused by flash floods. 

Pielke and Downton (2000) found that flood damage costs for the United States has 

steadily increased throughout the twentieth century. For the water year 2014 (October 1, 

2013 – September 30, 2014) alone, direct flood damages totaled $2.86 billion in the 

United States according to the Flood Loss Report compiled by the National Weather 

Service (NWS, 2014). In 2014, 55 flood-related fatalities were recorded, 29 were 

attributed to vehicle-related accidents and 39 to flash flood events (NWS, 2014). An 

increasing trend of heavy precipitation at both continental (Groisman et al., 2004) and 

global scale (Groisman et al., 2005), combined with rapid urbanization, is expected to 

increase the frequency and impact of flash floods. Studies such as Mallakpour and 
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Villarini (2015) and Hirsch and Archfield (2015) have presented evidence that the 

frequency of flooding has increased over the decades but not the magnitude. 

But despite posing significant threat to economy and human life, there is a lack of 

research into the spatial distribution of flash flooding across the United States as well as 

its causative processes. Floods, and especially flash floods, are poorly understood and 

documented and to perform a spatially and temporally comprehensive characterization, 

we need appropriate databases of flooding events along with data on variables that 

potentially influence these floods. Also, we need to go beyond the state-of-the-art by not 

only investigating first-order dependencies but also variability in the associations 

between flooding characteristics and variables describing causative processes related to 

geomorphology, climatology, and causative rainfall of a flooding event. The overarching 

goal of this research is to identify the processes that most significantly impact flooding 

from climatological to flood event scale. 

1.1 The need for flood and flash flood characterization 

Flood and flash flood responses are dictated by a complex interaction of various 

runoff generating processes and conveyance of water out of the basin. Understanding how 

space and time scales of floods vary with these causative processes is the key to 

understanding the nature of floods and improving hydrologic modeling. To investigate 

the spatial, temporal, and geographic distribution of floods, we must first have a 

centralized database that collates quantitative information regarding floods. The flooding 

information combined with other geospatial datasets covering geomorphology, climate, 

and precipitation allows us to uncover a general picture of flooding across the US. This 

dissertation characterizes flooding across the US from continental to flood event scale. 
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However, such databases are not easily available as formal records on previous 

floods are scattered across disparate sources. Due to this limitation, flood 

characterization studies have been performed mostly based on case studies or limited 

databases. Costa (1987a) described the hydraulic characteristics of twelve of the largest 

floods of small basins ever measured by the U.S. Geological Survey (USGS) in the 

conterminous United States (CONUS) and related them to basin morphometry of the 

channels. He concluded that basin physiography and geology, in addition to rain intensity 

and duration, are major factors in maximizing runoff. In order to devise a procedure to 

distinguish flash floods from other floods, Bhaskar et al. (2000) developed a Flash Flood 

Index. The index utilizes characteristics describing the shape of the flood hydrograph 

and shows weak to moderate correlation with additional hydrograph variables such as 

unit peak discharge and direct runoff volume. Merz and Blöschl (2003) identified the 

causative mechanisms of various types of floods using 11,518 maximum annual flood 

peaks in 490 Austrian catchments. They studied long-rain, short-rain, flash floods, rain-

on-snow, and snowmelt floods and found that 43% of floods are long-rain floods and 

only 3% are snowmelt floods. Gaume et al. (2009) reported the compilation of an 

inventory containing 550 documented flash flood events in seven hydrometeorological 

regimes in Europe. Marchi et al. (2010) performed a detailed study of 25 selected 

extreme flash floods in Europe to identify causative processes and related them to climate 

and basin morphology. They characterized these events in terms of basin morphology, 

flood-generating rainfall, peak discharges, runoff coefficient, and response time to 

identify implications for flash flood risk management. To approximate the basin 

behavior in response to rainstorms, Perucca and Angilieri (2011) evaluated the flash 
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flood hazard of del Molle basin in Argentina by analyzing different morphometric 

properties. The study reported the probability of a serious flash flood hazard in the basin 

and suggested implementation of mitigation measures. Such studies have provided 

important insights into understanding floods in ungauged locations. Castellarin (2007) 

found that the reliability of probabilistic regional envelope curve (PREC) flood quantiles 

for ungauged sites is comparable with the reliability of regional estimates produced by 

the application of the index flood approach. Gaume et al. (2010) reduced the 

uncertainties in estimating regional flood quantiles by employing a Bayesian method on 

flash flood events occurring in ungauged catchments. Ruiz-Villanueva et al. (2013) 

characterized 41 flash flood events in small mountain basins of Central Spain and 

analyzed their frequency, severity, seasonality, synoptic meteorological causes, as well 

as the human impacts in terms of damage and fatalities. These methods can be used to 

reconstruct floods in ungauged basins.  

This study provides a more comprehensive characterization of floods across the US 

due to a more spatio-temporally representative sample of observations. Previous studies 

don’t go beyond first order characterization of trends while this study investigates the 

trend as well as variability in the relationship between flooding characteristics and 

variables describing causative processes. It also proposes a new definition of flash flood 

severity called flashiness that represents the potential of a basin to produce a rapid and 

improves upon the discharge frequency-based approaches adopted in studies such as 

Smith and Smith (2015). Finally, a multi-dimensional modeling approach was built upon 

these association to regionalize flashiness across ungauged locations of the United States.  



5 

 

Moreover, there is no consensus on how the spatial organization of rainfall impacts 

basin response. Rainfall is a highly heterogeneous process over a wide range of scales in 

space and time (Fabry, 1996; Marani, 2005; Rodriguez- Iturbe and Rinaldo, 1997) and 

the influence of rainfall spatial variability on hydrologic response of watersheds has been 

a recurrent theme in hydrology for decades. But the extent to which spatial heterogeneity 

of rainfall impacts catchment response and its influence in comparison to basin 

morphology is poorly understood. Greater availability and significant improvement in 

high-resolution radar rainfall data in recent decades has resulted in an increasing number 

of studies in this area. Still, the literature has not yielded a consensus on how these 

rainfall heterogeneities impact hydrologic responses, which has implications for flood 

forecasting and accurate process representations in distributed hydrologic models. At 

larger spatial scales, catchment responses are often simpler as much of the hydrologic 

system heterogeneity is subsumed and averaged (Sivapalan et al., 2003).  But prediction 

becomes increasingly difficult at smaller spatial scales, as runoff is more intricately 

linked to details of landscape structure, thereby exhibiting greater space-time variability 

(Merz and Blöschl, 2004). The spatial variability in precipitation also adds to the 

variability in response by partially activating basins to produce a hydrologic response 

and to different magnitudes, especially when storm size is much smaller than the 

catchment. Because of this, flood forecasting models often rely on basin-averaged 

rainfall information. On the other hand, several studies have found that basin flood 

responses are sensitive to the spatial structure of rainfall (Dawdy and Bergmann, 1969; 

de Lima and Singh, 2002; Douinot et al., 2016; Kirstetter et al., 2015, p. 201; Lobligeois 

et al., 2014; Mei et al., 2014; Rafieeinasab et al., 2015; Viglione et al., 2010; Wilson et 
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al., 1979; Wood et al., 1988). Hydrologists have sought to understand the link between 

rainfall space-time variability and hydrologic responses for several decades, but it 

remains an open-ended question in hydrology.  

Thus, from the perspective of improving flood forecasting and as a diagnostic tool, 

it is important to systematically quantify the impact of different explanatory factors on 

catchment responses for a variety of space and time scales and basin physiography. 

1.2 Hypothesis and objectives 

The dissertation establishes a framework for characterizing flooding from 

climatological to event scale based on a multitude of causative factors related to geology, 

topography, pedology, climatology, and rainfall spatial variability to understand 

hydrological behavior. To that end, this study proposes two hypotheses – 

1. If the hydrologic responses of the basin are influenced by a large number of factors 

(namely geomorphology, climatic regime, spatial organization of rainfall, soil 

type, land use/land cover etc.), then these relationships could be used to explain 

the trend and variability of flooding variables such as rise time, unit peak 

discharge, flash flood severity etc.  

2. If this complex association between the hydrologic response variables and 

causative processes could be modeled with reasonable skill, it could be used to 

predict hydrologic variables beyond locations where observation dataset is 

available as well as disaggregate the influence of individual variables.  

The study is a part of the larger project called Flooded Locations And Simulated 

Hydrographs (FLASH) which encompasses a suite of products to advance the state of the 

science in flash flood prediction (Gourley et al., 2017). This dissertation, till now, has 



7 

 

resulted in two publications concerning the characterization of floods (Saharia et al., 

2017) and the mapping of flash flood severity in the United States (Saharia et al., 2016). 

Specific objectives of this work are listed below: 

1. Perform a spatially and temporally comprehensive flood characterization over the 

CONUS. 

2. Propose a new definition for flash flood severity and quantify the relative 

influence of a large number of causative factors. Predict flash flood severity across 

the CONUS using a multidimensional modeling framework. 

3. Quantify the impact of rainfall spatial variability on flash flood severity using 

high-resolution rainfall data. 

1.3 Structure of the dissertation 

The research work presented in this dissertation consists of three studies that 

describe the progressive development of a framework to characterize floods and flash 

floods. Chapter 2 describes the various datasets used in this study, such as the flash flood 

observation database, the MRMS radar precipitation, and the spatial datasets describing 

physiography and climatology.  

Chapter 3 describes how flooding characteristics are examined to identify 

variation of space and time scales of floods with climatic regimes and geomorphology. 

Flood events were characterized by linking flood response variables in gauged basins to 

spatially distributed variables describing climatology, geomorphology, and topography. 

The availability of a representative and long archive of flooding events spanning 78 years 

over a variety of hydroclimatic regions results in a spatially and temporally 

comprehensive flood characterization over the continental U.S. 
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Chapter 4 introduces a new variable called “Flashiness” as a measure of flood 

severity by utilizing the long archive of flooding events. It is modeled as a function of a 

large number of geomorphological and climatological variables, which is then used to 

extend and regionalize the flashiness variable from gauged basins to a high-resolution 

grid covering the conterminous United States. Six flash flood “hotspots” are identified 

and additional analysis is presented on the seasonality of flash flooding. The findings 

from this study are then compared to other related datasets in the United States including 

National Weather Service storm reports and a historical flood fatalities database. 

Chapter 5 explores the impact of rainfall spatial variability on flash flood severity 

by using a high-resolution rainfall and flooding dataset spanning 2002-2011. The study 

employs an observation-based big data approach to develop a robust understanding of 

how rainfall spatial variability impacts flash flood severity and quantify its contribution 

relative to basin physiography.  

Finally, Chapter 6 summarizes the findings and conclusions made from the 

studies. Suggestions are also provided on how the work can be extended to improve the 

characterization of flooding. 
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Chapter 2.  Datasets 

2.1 Unified Flash Flood Database 

In the United States, flood characterization has been done mostly through limited 

case studies or for a part of the country since the available information is usually sparse 

and non-homogeneous. Most flood databases do not catalogue sufficient information 

such as geospatial and geomorphologic data to be adequate for flood characterization 

studies. A comprehensive flood database should have certain information such as flood 

response variables (e.g. flooding rise time, recession time, etc.), peak discharge 

information, gridded rainfall rate data and as many geomorphologic parameters of the 

basins as possible to evaluate specific parameters that improve analysis of the driving 

geomorphologic and climatological factors, and hydrologic simulations. Some of the 

existing hazard databases that catalogue flooding events include the freely-accessible 

Emergency Disasters Database (EM-DAT) by the Center for Research on the 

Epidemiology of Disasters (CRED), that covers natural and man-made disasters from 

1900-present (http://www.emdat.be/). The United Nations Office for the Coordination 

of Humanitarian Affairs (OCHA) also maintains ReliefWeb (http://www.reliefweb.int/) 

which publishes disaster reports in real-time. The International Flood Network (IFNET) 

publishes a flood event database based on voluntary submission of events that caused 50 

or more casualties between 2005-2007 (http://www.internationalfloodnetwork.org/). 

The Dartmouth Flood Observatory (DFO) maintains a Global Archive of Large Flood 

Events (http://floodobservatory.colorado.edu/) which is one of the most comprehensive 

flood databases derived from a variety of sources such as remote sensing images and 

http://www.emdat.be/
http://www.reliefweb.int/
http://www.internationalfloodnetwork.org/
http://www.dartmouth.edu/~floods/)
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government reports (Brakenridge and Karnes, 1996). However, even though the database 

has good global coverage, it is not exhaustive enough and its events are only geo-

referenced up to 2006, which limits its usability in evaluating and improving flood 

models. Adhikari et al. (2010) also reported a digitized global flood inventory (1998–

2008) with georeferenced flooding events. 

The Unified Flash Flood Database released by the HyDROS group at the University 

of Oklahoma is a curated database of flooding information from a variety of sources such 

as gauge measurements of streamflow by US Geological Survey (USGS), flash flooding 

reports in the National Weather Service Storm Events Database, and public survey 

responses on flash flood impacts collected during the Severe Hazards Analysis and 

Verification Experiment (Gourley et al., 2010; Ortega et al., 2009). The high-resolution 

information provided by SHAVE, spatial coverage of NWS reports, and automated data 

collection mechanism of USGS streamflow records makes it one of the most 

representative flash flood databases in the United States (Gourley et al., 2013). It is 

publicly available for no cost at: https://blog.nssl.noaa.gov/flash/database/ 

Michaud et al. (2001) have depicted the distribution of large floods in the U.S. using 

data from 130 USGS stations, but only for basins less than 200 km2. O’Connor and Costa 

(2004) was the first study to systematically analyze large portions of the USGS 

streamflow dataset comprising largest 10% of annual peak flows from 14,815 stations. 

While it states that specific basins of high unit peak discharge correspond to relatively 

high topographic relief, it only provides a qualitative assessment of this relationship due 

to unavailability of geomorphological data. Other studies have uncovered flooding 

characteristics in a portion of the country using the same USGS data, such as Villarini 

https://blog.nssl.noaa.gov/flash/database/
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and Smith (2010) in the eastern U.S. and Mallakpour and Villarini (2015) in the central 

U.S. Smith and Smith (2015) uses a similar dataset to identify the “flashiest” watersheds 

in the contiguous United States based on the frequency of discharge peaks exceeding 1 

m3s-1km-2. They noted urban areas were frequently affected by flash flooding in the 

south-central U.S. (i.e., Tulsa, Oklahoma and St. Louis, Missouri) up through the mid-

Atlantic (i.e., Baltimore, Maryland) as well as the Pacific Northwest. 

This work uses automated streamflow measurements from the USGS. USGS collects 

instantaneous streamflow data at intervals ranging from 5 to 60 minutes for 10,106 

gauges in the database. The NWS coordinates with local stakeholders and the USGS to 

define stages corresponding to action stage, minor, moderate and major flooding for 

3,490 stream gauge locations. This subset of gauges from the USGS network has defined 

flooding thresholds which is useful information for many applications including 

modeling. These thresholds are used to extract flooding events from the streamflow 

record. Action stage is defined as the stage at which NWS forecasters take “mitigation 

action for possible significant hydrologic activity” and it often corresponds to bankful 

conditions. In fact, 41% of USGS stations have identical action stage and bankful stages, 

differing on average by 1.3%.  

USGS also supplies regulation codes for these gauges, which is used to further 

screen out the gauges that have some amount of anthropogenic influence from regulation 

or diversion. After removing gauges with anthropogenic influences and no defined action 

stage, we are finally left with a data sample of 70,273 flooding events from 1649 stations. 

Flood events are defined when streamflow exceeds the defined action stage for that gauge. 

There must be a 24-hour difference between when streamflow drops below action stage 



12  

to the next rise for it to be counted as a separate event. The primary database comes with 

the following information for each gauge: the USGS Gauge ID, latitude (decimal 

degrees), longitude (decimal degrees), start time (UTC) at which the flow first exceeded 

the action stage threshold, end time (UTC) when the flow dropped below the threshold, 

peakflow magnitude (m3/s), peak time (UTC) at which peakflow occurred (UTC), and 

the difference between the time at which the discharge first exceeded action stage and 

reached its maximum value, defined as the flood rise time (in hours). 

2.2 Physiographic and climatological data  

The Unified Flash Flood Database detailed above was further enhanced with 

geomorphologic and climatological attributes derived for each basin in the dataset. 

Spatially distributed parameters were introduced to elucidate and quantify how the 

underlying, static basin characteristics influence flood response. Several 

geomorphological attributes were extracted from the Digital Elevation Model (DEM) 

data of the National Elevation Dataset (NED; http://ned.usgs.gov/) as potential 

explanatory variables of flash flood severity. Flow accumulation and flow direction 

information was extracted by delineating basins with USGS stations. The 30-m DEM 

was resampled to a 1-km grid using the National Hydrography Dataset (NHD; 

http://nhd.usgs.gov/) to ensure that DEM-based flow accumulation computations agree 

with the actual river network across the CONUS. The geomorphologic parameters were 

derived from the grid-based delineated catchments using custom libraries developed 

using MATLAB. Soil datasets from the STATSGO database (Miller and White, 1998) 

were utilized to derive variables such as mean depth-to-bedrock and K-factor 

(erodability). Land cover and land use data from the National Land Cover Dataset (Fry 

http://ned.usgs.gov/
http://nhd.usgs.gov/
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et al., 2011) were used to estimate the runoff curve number. Lastly, in addition to the 

geomorphological variables, the hydroclimatic variables of mean annual precipitation 

and temperature were extracted from the 30-year datasets (for period 1981-2010) 

prepared by the PRISM Climate Group of Oregon State University 

(http://www.prism.oregonstate.edu/normals/). Custom libraries developed in MATLAB 

were utilized to derive different parameters based on the resulting grid-based delineated 

catchments which have been described in the later chapters.  

2.3 Multi-Radar/Multi-Sensor (MRMS) Precipitation 

Traditionally, rainfall data has been collected using manual and automatic rain 

gauges. The process has now evolved with radars providing rainfall data with near real-

time updates. An increasingly extensive coverage of radars has led to the development 

of mosaic radar rainfall products over the CONUS with high spatio-temporal resolution. 

The MRMS project, initiated by the NOAA NSSL, has revolutionized the way 

precipitation is measured by producing a seamless high-resolution dataset that updates 

in the order of two minutes without human intervention. A complete description of the 

MRMS system can be found in Zhang et al. (2015) along with the Quantitative 

Precipitation Estimation (QPE) generation process that comes from the preceding 

National Mosaic and Multi-Sensor QPE (NMQ) system (Zhang et al., 2011). MRMS 

system currently centralizes collection and collation of data from 180 operational radars 

and ~7000 hourly gauges across the CONUS and southern Canada. The radar data is 

integrated with atmospheric, environmental, satellite, lightning and rain gauge 

observations to generate a suite of products suitable for weather and hydrologic modeling 

(Zhang et al., 2015). The use of a multi-sensor network increases the accuracy of rainfall 

http://www.prism.oregonstate.edu/normals/
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estimation compared to a single-radar framework, addressing the issue of significant 

rainfall estimation errors offsetting the improvements afforded by incorporation of 

rainfall spatial variability in hydrologic modeling (Ogden et al., 2000; Quintero et al., 

2012; Schröter et al., 2011; Villarini et al., 2010). 

Figure 2.1 shows the MRMS CONUS domain bounded by latitudes 20º-50ºN and 

longitudes 130º-60ºW along with the radar beam height (in KM) used in the hybrid scan 

reflectivity computation. The radar coverage is not uniform across the country and 

western CONUS has large areas with high radar beam height, which decreases the 

accuracy of surface precipitation estimation (Kirstetter et al., 2015). Figure 2.2 shows the 

cumulative distribution function of the radar beam height across the country. 

Approximately 40% of the geography is in an area with radar beam height of less than 1 

km. This information is used for quality control of the dataset as described in Chapter 5. 

For performing more comprehensive studies and analyses, a reanalysis MRMS product 

has been recently produced for a period from 2001 to 2011. The reanalysis domain is 

analogous to the MRMS domain with products on a regular 0.01º grid with 7000 columns 

and 3500 rows for a total of 24,500,000 grid cells. The precipitation rainfall rates 

produced for this period are used to characterize the rainfall spatial variability and its 

impact on the flooding events reported in the Unified Flash Flood Database. 



15  

 

Figure 2.1: MRMS domain and locations of the US WSR-88D radar sites within the 

CONUS domain, along with the radar beam height. 

 

 

Figure 2.2: Distribution of MRMS radar beam height over the CONUS 
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Chapter 3.  Characterization of Floods in the United States 

3.1 Introduction 

Flood hazard studies at the continental and global scales increasingly receive more 

attention as the destructive effects of flooding events are given more importance in public 

policy. However, floods have still not received systematic and comprehensive 

characterization studies commensurate with their social and economic impacts.  

Benefiting from the representativeness and length of the Unified Flash Flood 

Database, this study provides a spatially and temporally comprehensive flood 

characterization over the CONUS. The long USGS component of the database containing 

70,273 flooding events from 1649 stations is suitable for characterizing floods because it 

contains most of the necessary attributes such as flooding rise time, peak discharge, basin 

area, etc. This study for the first time, employs a large-events database based on NWS 

definitions of floods instead of a frequently-adopted case study or frequentist approach 

which allows us to base our analyses and conclusions on real definitions of floods. It 

examines flood regimes across the CONUS to determine how space and time scales of 

floods vary with climatic regimes, seasons, and geomorphology. This characterization of 

flood events paves the way towards improving hydrologic forecasting and risk 

management.  

The purposes of this analysis are to (i) present an overview of the database that 

covers flooding events over more than 70 years from 1936-2013, (ii) characterize 

flooding events according to geomorphological basin attributes and climate classes, (iii) 

establish new relationships and envelope curves taking advantage of the lengthy historical 
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record of floods, (iv) explore the results from the perspective of improving flood 

forecasting and risk management. The study is organized as follows. Section 3.2 provides 

an overview of the spatial and temporal distribution of floods over the CONUS. Sections 

3.3 characterizes floods based on physiographic factors. Sections 3.4 and 3.5 

characterizes unit peak discharge and flooding rise time, respectively, based on 

geomorphologic parameters such as basin area, relief ratio, and shape factor. Finally, 

Section 3.6 provides a summary of findings and concluding remarks. 

3.2 Spatial and temporal distribution of floods 

In order to investigate the potential dependence of floods on climatic regime, the 

analysis used the Köppen-Geiger Climate Classification over the U.S given in Kottek et 

al. (2006). Figure 3.1 shows the distribution of all USGS stations in the database over the 

CONUS segregated as per the Köppen-Geiger climate classes. Six classes were utilized 

in this study: Warm temperate fully humid extremely continental (Cfa), Warm temperate 

summer dry warm summer (Csb), snow fully humid hot summer (Dfa), snow fully humid 

warm summer (Dfb, West and East) and Arid steppe cold arid (BSk). The number of 

flooding events and gauges in each climate class is given in Table 3.1, along with the 

number of flooding events normalized by the number of gauges in each regime to enable 

comparison between different climate classes. Cfa has the highest number of 39,872 

events while Dfb (W) has the lowest with 905 events. Basins in the eastern half of U.S. 

that comprises of Dfb (E), Dfa, and Cfa have higher number of flooding events per gauge 

than the western half of U.S. comprising Csb, BSk, and Dfb (W). 

 

 



18  

 

 

Table 3.1: Number of flooding events and gauges in each climate class along with 

normalized values of number of flooding events. Floods are defined by discharge 

exceeding action stage, as defined by National Weather Service employees and local 

stakeholders. 

 

 

 

 

Figure 3.1: Distribution of USGS streamflow stations used in this study color-coded by 

Köppen-Geiger Climate Classes. The black box within the Csb region is a sub-class called 

Csb 1 and the rest of Csb outside the box is termed Csb 2 in this study. 

Climate Classes Flooding events Gauges Flooding events/Gauges

Csb 1688 78 21.64

BSk 1129 110 10.26

Dfb (W) 905 84 10.77

Dfb (E) 9901 230 43.05

Dfa 16778 313 53.60

Cfa 39872 827 48.21
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Precipitation, being the primary driver of floods, is important to explain the variability 

of flooding events. The summary statistics for average annual precipitation computed for 

the six climate classes is provided using the box-and-whisker plot of Figure 3.2. The band 

inside the box is the second quartile (median), while the bottom and top of the boxes 

correspond to the first (25th percentile) and third quartiles (75th percentile), respectively. 

The mean is given by the open circle inside the box. The whiskers extend to the extremes 

of the observations and outliers outside 1.5 times the inter-quartile range are plotted as 

filled circles. The highest annual precipitation of 1537 mm/y falls in the Csb region, 

which is expected as moisture-laden westerlies from the ocean encounter the high 

mountain ranges of California, Oregon, and Washington, including the Olympic 

Mountains, the Cascades, and the Sierra Nevada range. After Csb, areas in the East such 

as the southeastern US (Cfa), eastern and midwestern US from the Atlantic to the 100th 

meridian (Dfa) and the Great Lakes region with New England (Dfb (E)) experience high 

precipitation. The semi-arid region of BSk that acts as a transition zone between humid 

and desert climate has the lowest annual precipitation among the six classes, while the 

Dfb (W) region that contains the Rocky Mountain range receives slightly higher 

precipitation. 
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Figure 3.2:  Box-and-whisker plot of annual precipitation in different climate classes. 

 

Even though the dataset spans 78 years, most the data (92.9% of events) is 

concentrated in the last two decades. The number of gauges also doesn’t remain constant 

during this period. So, to detect any temporal trend in the most extreme floods, the number 

of major stage floods in each year were normalized by the number of action stage floods 

for the past three decades. This was performed on the dataset for the CONUS as well as 

for the different climate classes. No clear trend was observed nationally; however, Dfb 

(E) suggests an increasing trend as shown in Figure 3.3. A similar increasing trend in 

annual maximum daily flow was observed in the northeastern U.S. by Lins and Slack 

(1999) that was attributed to precipitation patterns linked with the persistent high index 

phase of the North Atlantic Oscillation at that time. However, a detailed analysis of this 



21  

trend would need additional studies involving climate datasets and is beyond the scope 

of this study. 

 

Figure 3.3: Temporal evolution of the number of the events that exceeded major flood 

stage divided by the number of action stage events each year for Dfb (E). 

 

The regional variations of flood frequency are evaluated on a monthly basis for a 

better understanding of flood dynamics and the driving factors. Figure 3.4 shows the 

monthly distribution of flooding events normalized by the total number of events in the 

various climate classes. The northern migration of the jet stream during the winter brings 

most of the precipitation to the West Coast, which experiences the highest number of 

flooding events among all classes during the November-March period. Michaud et al. 

(2001) found that as one moves inland, the primary flood season shifts to the warm 

season: late spring/early summer in the northern intermountain West and late summer in 

the more southerly monsoon-dominated regions. The monthly frequency confirms this, 
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as the other climate classes experience more flooding events than the West Coast during 

the warm season. The intermountain West in the Dfb (W) region experiences a high 

number of floods during the onset of the warm season (April-July) while the semi-arid 

region of BSk, which receives monsoon precipitation, experiences the highest number of 

floods in the late summer months (June-September). Basins in the Great Lakes region of 

Dfb (E) tend to be flooded more during the spring season while the Southeast in Cfa 

shows the lowest monthly variation of flooding, with a higher tendency of being flooded 

in early spring.  

 

Figure 3.4: Monthly distribution of flooding events normalized by the total number of 

events in different climate classes. 

 

The number of flooding events in a climate class is correlated with the average 

annual precipitation given in Figure 3.2. Except for Csb, which is driven by synoptic-

scale precipitation events during the cool season, the next two classes experiencing the 
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highest annual average precipitation, Cfa and Dfa, get the largest number of floods during 

spring and early summer. As we move westward to basins in Dfb (W) and BSk, deep 

moist convection plays a larger role with the occurrence of highest number of floods 

occurring in late-spring and summer. 

3.3 Characterization of floods based on physiographic factors  

The terrain of a catchment influences catchment response through the combined 

effects of orography on precipitation rates and topographic relief on streamflow 

evolution. Geomorphologic analysis is thus of vital importance in describing the 

hydrologic behavior of basins as it influences factors such as response times and peak 

discharge values. Relationships between flooding variables and geomorphological 

parameters are very useful in modeling as geomorphology changes very slowly and most 

of these parameters can be easily calculated from DEM data. Studies such as Collier and 

Fox (2003) and Collier (2007) identified several morphological characteristics such as 

catchment slope and ratio of catchment area to mean drainage path length that have a 

large correlation with basin susceptibility to flooding. Apart from exploring the general 

interdependence between flooding variables and basin area, this study also explores 

several other variables such as relief ratio and shape factor to determine how various 

basins respond in different regions. 

The relief ratio is the ratio between the total relief of a basin (elevation difference of 

lowest and highest points of a basin) and the longest dimension of the basin parallel to 

the principal drainage line (Schumm, 1956). This dimensionless height-length ratio 

allows for comparison of relative relief of basins with varying topography. We can 

generally anticipate that a higher relief ratio would be associated with a basin more prone 
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to flooding with faster concentration of streamflow. Higher terrain gradients with 

generally shallow soils imply that a greater proportion of the water becomes infiltration-

excess runoff, while runoff is more likely to be saturation-excess in gently sloping basins. 

The relation between relief ratio and basin area for different climate classes is given in 

Figure 3.5. The general relationship of decreasing basin relief with increasing basin area 

is in conformity with reported literature (Dade, 2001; Marchi et al., 2010).  

 

 

Figure 3.5: Relief ratio plotted as a function of basin area where the colors correspond to 

different climate classes (refer to legend). The sample size of each climate class is reported 

in Table 3.1. 
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The summary for values of relief ratio over the six climate classes is given by the box-

and-whisker plot of Figure 3.6. Values of relief ratio over the CONUS range from 0.0002 

to 0.17, with an average value of 0.008 which is comparable to values reported in other 

studies (Costa, 1987a; Marchi et al., 2010). From the box-and-whiskers plots, it can be 

seen that basins in the western half of the CONUS, i.e. West Coast (Csb), Rocky 

Mountains (Dfb (W)) and the intermountain West (BSk) have higher average relief ratio 

values than the basins in the eastern half (Dfa, Dfb (E) and Cfa). The highest mean values 

of relief ratio are found in the Rocky Mountain range of Dfb (W) and the West Coast 

(Csb), both of which also experience some of the highest number of flooding events in 

the CONUS. The lowest value is in Dfa, which covers most the Midwest (High Plains).  

 

Figure 3.6: Box-and-whisker plot of relief ratio in different climate classes. The horizontal 

line within the box is the second quartile (median), the open circle is the mean, and the 

bottom and top of the boxes correspond to the first (25th percentile) and third (75th 

percentile) quartile respectively. The whiskers extend to the extreme values and filled 

circles are the outliers outside 1.5 times the inter-quartile range. 



26  

 

3.4 Characterization of floods based on unit peak discharge  

The relationship between peak discharge and basin area is well-understood and has 

been explored in several studies (Furey and Gupta, 2005; Gupta et al., 1996; Marchi et 

al., 2010; Smith, 1992). A strong correlation between drainage area and discharge is 

intuitive as it is expected that channels in larger catchments will collect and carry 

proportionately larger discharges. This relationship will be linear if the unit peak 

discharge (i.e. the ratio between peak discharge and upstream basin area) is spatially 

constant. However, in reality, spatial heterogeneity is introduced in the amount of peak 

discharge per unit area by various factors such as slope, vegetation, rainfall intensity, 

and spatial rainfall coverage over the basin, etc. The peak discharge values in this study 

vary greatly in magnitude as the basin sizes vary over several orders of magnitude from 

3.68 km2 to 1,061,895 km2. Figure 3.7 and Figure 3.8 shows the summary statistics of 

unit peak discharges and basin area respectively for the six climate classes. Both the 

highest median unit peak discharge and smallest basin area occurs in West Coast (Csb).  
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Figure 3.7: Box-and-whisker plot of unit peak discharge in different climate classes 

 

 

Figure 3.8: Box-and-whisker plot of basin area in different climate classes. 
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Envelope curves provide an effective summary of historical floods in a study area 

and have been widely used in previous studies on extreme floods (Jarvis, 1926; 

Crippen and Bue, 1977; Herschy, 2002; Castellarin, 2007). The dependence between 

basin area and unit peak discharge for each climate class is explored using log-log 

diagrams, envelope curves and quantile plots. A simple power-law formula (Eq. 3.1) 

used in previous studies is selected here.  

 

Qu = αAβ 

 

(3.1) 

where Qu is the unit peak discharge (m3 s-1 km-2), A is the contributing basin area 

(km2), coefficient α is known as reduced discharge and β is a scaling coefficient (Gaume 

et al., 2009). The values of α and β were determined by fitting a regression line between 

log (Qu) and log (A) values for each climate class. The regression was computed on the 

entire sample and shifted to identify the upper envelope. While α is independent of A, the 

constant β represents the degree to which unit peak discharge varies with basin area. 

Atmospheric humidity and surface characteristics affect the unit peak discharge values of 

basins. The lower the value of β, the faster the proportionate decrease of unit peak 

discharge with the contributing basin area.  

 The envelope curves are the straight lines on the log-log diagram 

developed for different levels of floods and each climate class that can be seen in Figure 

3.9 and Figure 3.10 respectively. The National Weather Service has defined flood stage 

levels in selected gauging stations across the country such as action, minor, moderate and 

major stage. Flood levels exceeding action stage are closely related to bank-full 
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conditions and require the authorities to start taking mitigation procedures for possible 

flooding; minor stage causes minimal property damage; moderate stage causes some 

inundation in roadside structures and roads near streams; and major stage causes 

extensive inundation of structures and roads. The solid lines are the envelope curves for 

the four levels of floods in CONUS and the dotted line is the envelope curve for major 

floods in Europe (Qu = 97.0 A-0.4) for comparison, as proposed in Gaume et al. (2009).  

 

Figure 3.9: Unit peak discharges versus basin area along with their CONUS-wide envelope 

curves for (a) action, (b) minor, (c) moderate, and (d) major stage floods. The solid line is 

for CONUS-wide envelope curves while the dotted line is the envelope curve for 25 

extreme floods across Europe as reported in Marchi et al. (2010). 
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Figure 3.10: Unit peak discharges versus basin areas along with their envelope curves for 

the (a) warm temperate summer dry warm summer (Csb) (b) arid steppe cold arid (BSk), 

(c) snow fully humid warm summer west (Dfb(W)), (d) snow fully humid warm summer 

east (Dfb(E)), (e) snow fully humid hot summer, and (f) warm temperate fully humid 

extremely continental (Cfa) climate classes. 

 

Table 3.2 gives the α and β values of the CONUS-wide envelope curves for the four 

flood stages and the exponent (β) in the power-law relationship varies according to stage. 

The most extreme floods in the CONUS corresponding to the major stage have a β value 

of -0.44, which is very near to the value of -0.40 proposed for European extreme floods 

by Gaume et al. (2009) and Marchi et al. (2010). This can also be seen in Figure 3.9, 

where the solid line corresponding to the major stage is nearest to the European envelope 

curve. The reported β value for major stage floods in CONUS is greater than the value of 

-0.643 proposed for global extreme floods (Herschy and Fairbridge, 1998) and -0.57 for 

mostly riverine floods in Europe (Herschy, 2002). Nonetheless, the asymptotic increase 

of the envelope curves derived in this study with increasing flood severity toward the 



31  

European curve supports the argument that there is a global envelope or upper limit to 

unit peak discharges.  

 

Table 3.2: Coefficients of CONUS-wide envelope curves describing relationship between 

unit peak discharge and basin area for the different flood stages. 

 

 

 

Table 3.3 gives α and β values of the envelope curves according to climate classes. 

While some of the values are comparable, the range of basin areas as well as sample sizes 

is greater in this study than in the European studies (Gaume et al., 2009; Herschy, 2002; 

Marchi et al., 2010). Within the CONUS, the approximate value of β is highest for Csb 

class (-0.081) and lowest for BSk (-0.501). With the lowest annual average precipitation 

(479 mm/yr) as well as lowest annual maximum rainfall (866 mm/yr) as given in Figure 

3.2, the arid basins in the BSk class experience the most drastic reduction in unit peak 

discharge values with basin area compared to other classes. Basins in the West Coast of 

the U.S. falling in climate class Csb have the highest annual average rainfall (1537 

mm/yr) among the six classes which results in higher values of unit peak discharge, and 

these basins show the slowest decrease in unit peak discharge values with basin size. 

Upon further analysis, a discontinuity in range of basin areas of in West Coast was 

Flood stage α β

Action 59.322 -0.460

Minor 116.749 -0.503

Moderate 87.813 -0.512

Major 91.267 -0.440

Unit peak discharge versus Basin area
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observed. On dividing the events based on a 250-km2 threshold, the two areas were found 

to be geographically distinct where the larger basins were in Coastal California (Csb 1) 

and the smaller basins were mostly in the Sierra Nevada mountain range along with some 

isolated basins in Northern and Southern California (Csb 2).  The basins in Csb 1 with an 

average size of 1700 km2 are much larger than those in Csb 2 with an average basin size 

of 77 km2. Computing the envelope curves for these two sub-regions, we get β values of 

-0.56 for Csb 1 and -0.31 for Csb 2. Interestingly, the unit peak discharges in basins with 

contributing areas less than 100 km2 of BSk and Csb are similar. This means that flash 

flooding resulting from intense, convective cells in these arid basins results in similar 

peakflows as those experienced in the Pacific Northwest that receive much more rainfall 

on average. However, the unit peak discharges in BSk at larger scales (> 100 km2) are 

much lower due to the influence of drier surface conditions, evaporation, and the smaller 

space-time scales of the causative precipitation systems. Basins in the eastern half of the 

CONUS exhibit similar values of β, but there is a general increase in α going from north 

to south. This means that the effective scales of the causative rainfall have similar 

characteristics in the east with increasing rainfall intensities as one moves south.   
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Table 3.3: Coefficients of envelope curves between unit peak discharge and flooding rise 

time versus basin area for the different climate classes. 

 

  

Unit Peak Discharge Flooding Rise Time 

v/s v/s 

  Basin Area Basin Area 

Climate Classes α β α β 

CONUS 108.000 -0.470 0.001 0.434 

Csb 9.864 -0.081 0.027 0.174 

Csb 1 203.000 -0.560 0.201 0.042 

Csb 2 18.000 -0.310 0.045 0.118 

BSk 55.123 -0.501 0.038 0.085 

Dfb (W) 1.351 -0.063 0.118 0.086 

Dfb (E) 45.217 -0.356 0.008 0.413 

Dfa 51.736 -0.399 0.007 0.307 

Cfa 116.846 -0.478 0.002 0.493 

 

In comparison to floods in Europe reported in Gaume et al. (2009) and Marchi et al. 

(2010), we find similarities in the following characteristics. First, the highest unit peak 

discharges tend to occur in basins near the ocean that also have mountainous terrain. 

These conditions are met both in the Cevennes-Vivarais region of the Mediterranean and 

also along the West Coast of the US. The seasonality of the events are different, however, 

with the Mediterranean ones generally occurring in autumn and the West Coast events 

occurring in the cool season. Similar to Europe, the unit peak discharges generally 
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decrease moving inland. The dependence of unit peak discharge on basin area is attributed 

to the spatial scales of the rainfall forcing that can be exacerbated by evaporation and dry 

surface conditions. The U.S. has some regions that are quite distinct from Europe. In 

particular, the BSk region of the desert Southwest is influenced by warm season, monsoon 

rainfall that exhibits very high unit peak discharges that depend strongly on basin area. 

Finally, the largest unit peak discharges in the U.S. occur in the Cfa region of the 

Southeast. Some basins are situated in the Appalachian mountains but this large class 

includes a wide variety of surface characteristics including plains. The causative rainfall 

in this most extreme class is also variable ranging from land-falling tropical storms from 

the Gulf of Mexico and Atlantic Ocean to localized, convective thunderstorms. The 

seasonality of Cfa events is quite different from those in Europe with a peak in the early 

spring months and a minimum during the late part of the warm season.       

Beyond this first order characterization of trends with envelope curves, the 

relationship between unit peak discharge and area can be further quantified in terms of 

variability, which would be a prerequisite for any prediction in ungauged basins. More 

meaningful information can be extracted from quantile plots, as shown on Figure 3.11 

with the 10th, 25th, 50th, 75th and 90th quantile of unit peak discharge values conditioned 

on drainage area over all climate classes in the CONUS. The first order relationship is 

provided by the conditional median, the interquartile area provides an estimate of the 

uncertainty of the relationship, and the 10th and 90th deciles describe the extreme values. 

Ultimately, the derivation of a conditional probability density function (PDF) of unit peak 

discharge for any particular value of basin area can be the basis for the modeling of flood 

behavior at ungauged basins. These relationships can be especially helpful for modeling 
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in ungauged basins for which trustworthy flow measurements are not available, but 

drainage areas can be readily calculated from DEMs. Using these relationships, it will 

also be possible to ascribe an uncertainty band to anticipated unit peak discharge values 

of an ungauged basin based on upstream basin area and climate class. This information 

could potentially be useful to predict the behavior of the extremes, even in future climate 

scenarios, thus informing risk management practices. It will be further developed in a 

future study. 

 

Figure 3.11: Quantiles (10-90th percentile) of unit peak discharges versus basin area for 

all 70,273 flooding events spanning 78 years over the CONUS. 
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3.5 Characterization of floods based on flooding rise time 

The National Weather Service defines flash floods as those caused by heavy or 

excessive rainfall in a short period, generally less than 6 hours. The short lead time is an 

important aspect of flood risk management and associating flood response times with 

morphological and topographic parameters such as basin area is a critical element of our 

analysis. It is essential for flood forecasting and risk management. Similar studies such 

as Creutin et al. (2013) and Marchi et al. (2010) used the concept of lag-to-peak or lag 

time, which is the duration between the time of the centroid of the generating rainfall 

sequence and the time of the discharge peak. However, historical gridded rainfall 

information is not available for all events, given our lengthy dataset of river discharge. 

The present study utilizes a stream discharge response variable called flooding rise time, 

which is the difference between the time when flow exceeded the action stage flooding 

threshold (closely related to bank-full conditions) and the time at which the peakflow 

occurred. It can be regarded as a proxy for the lag time which is analyzed below as a 

function of basin area. There is a wide range of values of flooding rise time with an 

average value of 20.6 hours and a median of 10 hours. Figure 3.12 reports the 

relationship between flooding rise time and basin area for the six climate classes.  The 

lower bounded curve enclosing all flooding rise times for each value of watershed area 

was derived, similar to what was derived for lag time in Marchi et al. (2010).  

A power-law relationship (Eq. 3.2) was used to represent the lowest bound of 

flooding rise time Tr (h) versus basin area (km2).  
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𝑇R = αAβ 

 

(3.2) 

where β is a scaling coefficient. The values of α and β were determined by fitting 

a regression line between log (Tr) and log (A) values for each climate class. 

 

Figure 3.12: Flooding rise times versus basin area along with their envelope curves for the 

(a) warm temperate summer dry warm summer (Csb) (b) arid steppe cold arid (BSk), (c) 

snow fully humid warm summer west (Dfb(W)), (d) snow fully humid warm summer east 

(Dfb(E)), (e) snow fully humid hot summer, and (f) warm temperate fully humid 

extremely continental (Cfa) climate classes. 

 

 

Table 3.3 gives the α and β values for the various climate classes as well as CONUS. 

Higher values of the β exponent indicate a faster increase of flooding rise time with basin 

area. The β value is the highest for Cfa (0.493) and lowest for Csb 1 (0.042). Figure 3.12 

shows that the time at which floods reach their peak values after exceeding flood stage 

occurs more quickly at small basin scales, as one would expect. Examination of the scatter 

plots, envelope curves, and β values reveal a distinction between basins in the western 
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(Csb, Csb 1, Csb 2, BSk, and Dfb(W)) and eastern half of the U.S. (Dfb(E), Dfa, and 

Cfa). Basins in the eastern half of U.S. with β values of 0.042-0.174 exhibit faster 

increases in flooding rise times with basin area than in western half with β values of 

0.307-0.493. The arid intermountain West BSk stations tend to have quicker flooding rise 

times for a given basin area. This is most likely a result of the causative precipitation from 

intense convective cells that yield quick-responding flash floods during the monsoon. 

Further, many of the BSk stations are situated in steep terrain which contributes to these 

fast responses. In contrast, the Dfb (W) stations are not significantly displaced 

geographically from the BSk stations, but they are at much higher altitude. The high data 

density at slow flooding rise times is interpreted to be a result of snowmelt influences on 

flood peaks. Snowmelt generally occurs more gradually as compared to stream response 

to intense convective cells and likely explains this discrepancy. This inference is 

supported by Figure 3.4, which shows that the Dfb (W) floods tend to occur earlier in the 

late spring months as compared to Bsk. The West Coast (Csb) consists of two distinct 

sub-regions based on basin area and events in Csb1, which is mostly the mountainous 

Sierra Nevada range, have very small exponent value of 0.042, which is a reflection of 

the small size of basins in this sub-region. While Csb2 has a slightly higher value of 0.174 

as the basins are bigger than those in Csb1. 

3.6 Conclusions 

A systematic analysis of spatial and temporal characteristics of floods in the 

United States was performed based on USGS observations combined with NWS flood 

stage thresholds. Flood thresholds were studied to explore the influence of 
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geomorphology and climatology. Flooding variables investigated are the unit peak 

discharge and the flooding rise time. The results are summarized as follows: 

 Regions such as the West Coast (Csb) and southeastern United States (Cfa), which 

experience the most extraordinary precipitation, have the highest unit peak 

discharges. The dependence of unit peak discharge on basin area is determined by 

the spatial scales of the causative rainfall as well as the atmospheric humidity and 

aridity of the basin’s soils.   

 Analysis of the monthly frequency of flood events shows great variations among 

the different climate classes. While the West Coast experiences the highest 

number of floods during the cool season, the peak flood season shifts towards the 

warmer months as one moves further inland to basins within the Intermountain 

West.  

 Unit peak discharge and flooding rise time depend on catchment area for all the 

climate classes. In mountainous areas, especially in the Rocky Mountains, relief 

has a greater impact on both unit peak discharge and rise time than basin area. 

 The envelope curves developed for unit peak discharges and basin area are 

consistent with the studies of floods in Europe and worldwide. In general, the 

magnitude of the unit peak discharges depends on the causative rainfall, which 

tends to be more intense in the Southeast U.S. and the West Coast. The unit peak 

discharges of floods in the monsoon-dominated desert Southwest are modulated 

by dry atmospheric and land surface conditions, which becomes more apparent 

with increasing basin scale. Finally, the seasonality of the U.S. floods is quite 

variable compared to Europe. This variability is attributed to the diversity of 
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flood-causing storms ranging from rainfall organized at synoptic scales but with 

orographic enhancements in the West Coast during the cool season to monsoon 

thunderstorms during the warm season in the desert Southwest to land-falling 

tropical storms and localized, intense thunderstorms in the Southeast.  

 Flooding rise times are quickest in the desert Southwest (BSk) due to the 

coincidence of intense thunderstorms and steep terrain. Basins in the nearby Dfb 

(W) Intermountain West region are much slower to respond, presumably due to 

the influence of snowmelt.  

 

This study proposes a general picture of the flood characteristics over the U.S. As 

a continuation, we will employ more sophisticated modeling techniques to analyze the 

impact of variables such as shape factor, curve number, event-scale precipitation 

variability indices, etc. on the flooding variables. The eventual goal is to use this dataset 

to make better prediction of floods in the vast number of ungauged basins.  
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Chapter 4.  Mapping Flash Flood Severity in the United States 

Floods have gained increasing global significance in the recent past due to their 

devastating nature and potential for causing significant economic and human losses. 

Several approaches have been attempted to identify and characterize flash floods, such 

as geomorphology-based (Costa, 1987a; Gaume et al., 2009; Marchi et al., 2010), 

frequency-based (Reed et al., 2007; Vogel et al., 2001), and flash flood guidance 

(Georgakakos 2006) among others. This work utilizes 70,273 flooding events from 1649 

stations spanning 78 years to map flash flood severity over the CONUS using a novel 

approach that combines flooding data with geo-climatic information. A natural flood 

generally begins with snowmelt or intense rainfall. The characteristics of the underlying 

basin then dictate the speed at which water is conveyed through the basin and the 

magnitude of the maximum discharge. We concentrate on those floods with faster rise 

times and higher peak flows due to their devastating nature and lack of time to take 

mitigating actions. 

The purposes of this study are to (i) propose a new variable called flashiness to 

describe the severity of flash flooding across the U.S., (ii) identify hotspots and evaluate 

their seasonal behavior, (iii) extend the flashiness analysis beyond gauged basins to a 

continuous grid over the CONUS based on spatially distributed variables describing 

basin topography, hydroclimatology, underlying geology, and geomorphology, and (iv) 

identify flash flood prone areas that are not highlighted in the observation database. It is 

suggested that this analysis can be used for regional and community planning and 

mitigation purposes. The paper is organized as follows. Section 4.1 proposes the 

flashiness variable, which is then evaluated spatially and seasonally in section 4.2. The 
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relationships of variables that describe flashiness are explored in section 4.3. Section 4.4 

then regionalizes the flashiness variables to all grid points in the U.S., permitting an 

analysis of the potential for severe flash flooding in ungauged basins. This section 

evaluates the flashiness maps through comparisons to related databases. The summary 

and conclusions are provided in section 4.5.   

4.1 A new metric for flash flood severity 

A new variable called “Flashiness” is introduced in this paper as a measure of flood 

severity. It is defined as the difference between the peak discharge and action stage 

discharge normalized by the flooding rise time and basin area as given in Eq. (4.1) and 

visualized in Figure 4.1. The flashiness metric gives the rate of rise of the hydrograph 

during flooding conditions and thus captures both the magnitude and timing aspects with 

higher values corresponding to more severe floods. Let Φ be the flashiness, S the number 

of gauging stations, and Ni the number of events for a given gauge i, i=1,...,S. Thus, the 

flashiness for a given event j, j=1,...,Ni, at a given location i is,  

 

𝜙𝑖𝑗 =  
𝑄𝑖𝑗

(𝑝)
−  𝑄𝑖𝑗

(𝑎)

𝐴𝑖 . 𝑇𝑖𝑗
 

 

(4.1) 

where Q(p) denotes the peak discharge (m3/s), Q(a) the action stage discharge 

(m3/s), A is the basin area (m2), and T the flooding rise time (s). An empirical cumulative 

distribution function (ecdf) function was then used to scale the values between 0 and 1 

(Eq. 4.2). The standardized version of Φ is  
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(4.2) 

where 𝟙{E} is the indicator function yielding 1 if the condition E is true and 0 

otherwise. The flashiness information is available at two levels: event and basin. Event-

level flashiness given in Eq. (4.2) is computed for all 70,596 flooding events. The 

characteristic scaled flashiness variable for a given basin i is summarized by the 

median value computed from all flooding events Ni observed at that station. 

 
{ϕ̃𝑖 ∶ ℙ[ϕ̃𝑖𝑗 ≤ ϕ̃𝑖]} =  

1

2
 , 𝑓𝑜𝑟 𝑗 ∈ {1, … , 𝑁𝑖} 

(4.3) 

 

Figure 4.1: Graphical representation of the definition of event-level flashiness 

 

Often, frequency-based approaches such as the discharge peak-over-threshold 

occurrences in Smith and Smith (2015) are used to quantify basin response as being 
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flashy or not. The frequency of peaks-over-threshold highlights small basins, typically 

in urban areas, that are situated in hydroclimatic regimes with persistent and heavy 

annual rainfall such as the south-central US, mid-Atlantic, and Pacific Northwest. 

However, this frequency-based definition of flashiness fails to identify those regions that 

may not flood on a frequent basis, but when they do flood, it can be catastrophic. Some 

dramatic examples include Big Thompson Canyon in July 1976, which killed 145 

people, the great Colorado flood of September 2013 (Gochis et al., 2014), both of which 

are situated along the Front Range of the Rocky Mountains, and the Arizona-Utah border 

canyon flash flood that killed up to 20 people in September 2015. It is postulated that the 

paucity of these flash floods is even more devastating than they would be if they were 

persistent because the occupants are less prepared and often unaware of the danger. The 

flashiness variable used in this study differs from the frequency-based approaches in that 

it identifies those basins that have a high conditional probability of having a large-

magnitude discharge in a short period of time. Flashiness is conditioned on the 

occurrence of heavy rainfall; thus, it represents the potential for a flashy response to input 

rainfall. The scaled flashiness variable for a given basin is the median value computed 

from all flooding events observed at that station.  

Figure 4.2 shows the observed flashiness across the CONUS. At this point, the true 

spatial distribution of flashiness is limited by the density of the USGS stations with 

defined flooding thresholds. However, several regions emerge as being prone to flash 

flooding: 1) West Coast, 2) Arizona, 3) Front Range, 4) Flash Flood Alley, 5) Missouri 

Valley, and 6) Appalachians. High flashiness in the West Coast region is restricted to the 

coastal basins and the upslope region of the Sierras near Lake Tahoe. Arizona hosts a 
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large number of flashy basins that range from the low deserts in southeast Arizona all 

the way up to the Mogollon Rim and the higher terrain plateau in the northern part of the 

state. Several flashy basins are apparent just to the east of the Rocky Mountains in the 

Front Range region. In Texas, several flashy basins are clustered around San Antonio, 

Austin, and Waco along the Balcones escarpment in what is locally known as Flash 

Flood Alley (Safety, 2005). There is a secondary cluster closer to the Gulf Coast near 

Houston. Moving further to the northeast, flashiness increases and appears to maximize 

in the center of Missouri. The Appalachian Mountains in the eastern U.S. exhibit high 

values of flashiness from Georgia all the way to Maine.   

 

Figure 4.2: Distribution of observed flashiness (0-1) over CONUS. The bounding boxes 

highlight known flash flood hotspots: (1) West Coast, (2) Arizona, (3) Front Range, (4) 

Flash Flood Alley, (5) Missouri Valley, and (6) Appalachians. 

 

Flashiness, a continuous variable, may prove to be useful in the definition of a flash 

flood. To date, many definitions exist and often refer to the stream response to causative 



46  

rainfall on the order of a few minutes to hours, typically less than six (US Department of 

Commerce, n.d.). In the U.S. NWS, the timescale of six hours is used to divide 

operational responsibility between local weather forecast offices that issue flash flood 

warnings and regional river forecast centers that issue river flood warnings. Definitions 

also refer to the basin catchment scale, which is linked to the basin’s response time. The 

European flash flood database described in Gaume et al. (2009) uses a catchment area 

threshold of 500 km2. Marchi et al. (2010) used the European flash flood database to 

examine the characteristics of extreme events. They refer to a maximum basin scale 

associated to flash flooding of 1000 km2. A limitation of a basin scale threshold to define 

flash flooding is the effective basin area can be quite small for a localized convective 

storm near the basin outlet, which can produce a rapid response for a relatively large 

catchment. 

In this study, we apply a subjective 75% quantile threshold on the flashiness 

variable (corresponding non-standardized flashiness index is 0.0279 m-3s-2) to separate 

basins that have “flashy” and “non-flashy” responses. This cutoff was later verified using 

actual storm data from the National Weather Service. It is interesting to note that there 

are no flashy gauged basins as per our definition in the state of Florida as well as a 

contiguous area stretching from the north central plains westward into the intermountain 

region of the Rockies. Some caution must be exercised at this point because flashiness 

can only be assessed in USGS-gauged basins that have flood stage definitions.  The state 

of Wyoming, for example, only has four of these candidates. 
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4.2 Monthly variability of flash floods by region 

A variety of meteorological processes such as convective thunderstorms, tropical 

cyclones, and orographically enhanced precipitation in complex terrain causes 

precipitation of varying characteristics and intensity at different times of the year to cause 

flash flooding (Saharia et al., 2016). A better understanding of the monthly variation of 

flash flooding is necessary for assessing vulnerabilities and developing flood mitigation 

strategies. The locations of the regional hotspots identified using basin-level flashiness as 

shown in Figure 4.2 can be attributed to specific conditions of topography and climate. 

Figure 4.3 shows the monthly frequency of flash floods using our 75th quantile of 

flashiness definition for each of the regions.  
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Figure 4.3: Region-wise monthly frequency of events for floods exceeding 75th quantile 

flashiness, i.e. Flash floods 

 

Flash floods on the West Coast (Figure 4.3a) are clearly a cool season phenomenon 

that’s related to the position of the jet stream, which directs extratropical cyclones with 

moisture from the Pacific Ocean into the mountains. Orographic enhancement by the 

topography increases precipitation amounts from the storms that can last several days.  

These flash flooding events begin to increase in November, reach their maximum 

frequency in December, and are essentially finished for the season by April. Very few 
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flash floods occur in this region during the warm season months of May through August.  

Despite its geographical proximity to the West Coast, the frequency of flash floods in 

Arizona has a bimodal character (Figure 4.3b). This reflects the same cool season 

phenomenon experienced on the West Coast, but a smaller, secondary peak occurs from 

July through September. This region is impacted by the North American monsoon that 

transports moisture from the Gulf of California northward into the semi-arid and hot 

deserts. The monsoon-forced flash floods do not occur as frequently as the larger scale 

storms in the cool season, but they can be particularly catastrophic with intense, localized 

rainfall. As we move further inland to the Front Range region, the frequency of flash 

floods increases at the beginning of the warm season and peaks during August (Figure 

4.3c). These storms are also related to the larger scale circulation patterns with the North 

American monsoon. They differ from the Arizona storms in that their moisture fetch tends 

to be from the Gulf of Mexico up to the upslope region of the Front Range. The shift of 

the flood season from winter to summer as one moves inland was discussed by Michaud 

et al. (2001) and is further confirmed here.   

The urban corridor spanning from Dallas to San Antonio in south-central Texas, also 

known as Flash Flood Alley, experiences some of the most dangerous floods in the 

country. This is caused by a combination of climatic and geomorphologic factors. 

Tropical air from Gulf of Mexico, tropical cyclones, extratropical cyclones, and 

orographic uplift over the Balcones Escarpment result in very high precipitation 

efficiencies in this area, which produces flash floods (Sharif et al., 2010). This area shows 

a unique variation in flash flooding with only a single month (August) where the 

frequencies are very close to zero (Figure 4.3d). The approximate bimodal distribution of 
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flash flood peaks in spring and autumn can be attributed to the synoptic scale patterns 

that drive the climatological rainfall peaks in these two seasons. Tropical cyclones also 

contribute in the latter, autumn peak.  

Similar to Flash Flood Alley, the Missouri Valley region has a strong peak in flash 

flooding in the late spring months of May and June (Figure 4.3e). This region is also 

known to have a secondary rainfall peak in the autumn months like Flash Flood Alley. 

However, this secondary rainfall maximum is not reflected in the monthly frequency of 

flash flooding. There are additional factors probably related to the characteristics of the 

rainfall (i.e., intensity) that apparently is not sufficient to cause many flash floods during 

the autumn months. The frequency of flash flooding in the Appalachians differs from the 

other regions with a peak occurring in early spring (Figure 4.3f). Moisture laden air from 

both the Gulf of Mexico and Atlantic Ocean is forced up the slopes of the Appalachian 

Mountains and causes rapid formation of runoff. Villarini and Smith (2010) explores the 

role of tropical cyclones in controlling the upper tail of flood distributions in eastern 

United States. Villarini et al. (2014) indicated that North Atlantic tropical cyclones are 

responsible for large flooding over the eastern United States from Florida to Vermont and 

Maine along with a secondary swath of enhanced flooding in the central United States. 

Tropical cyclones are more common in autumn and we see a relative maximum in flash 

flooding in September.  Sturdevant-Rees et al. (2001) also noted the large concentrations 

of unit peak discharges along the Atlantic seaboard and southeastern United States. The 

lack of flash floods in Florida and the coastal plains of the eastern seaboard states (see 

Figure 4.2) further highlights the importance of combination of moisture-rich air being 

forced upward by the terrain in causing flash floods. Konrad (2001) found that these 
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comparatively flat and permeable areas do not produce large unit discharges despite its 

proximity to moisture sources and being subject to frequent hurricanes. 

4.3 Association of flashiness with basin geomorphology and 

climatology 

Figure 4.4(a-d) shows the spatial distributions of potentially important 

geomorphologic and climatological characteristics that could influence a basin’s 

response.  

 

Figure 4.4: Distribution of (a) basin Area, (b) mean annual precipitation, (c) slope index, 

and (d) curve number over CONUS 

 

In Figure 4.4(a), we see that there are concentrations of relatively small gauged 

catchments near Lake Tahoe on the California/Nevada border, in some Midwest cities 

such as St. Louis and Indianapolis, and along the Appalachians extending into the more 



52  

populated regions of the Northeast. In comparing Figure 4.4(a) to Figure 4.2, we see many 

of these basins are deemed as flashy, which is largely driven by the fact that they are 

small catchments. The climatological rainfall seems to influence flashiness in the 

Southeast near the Appalachians as well as in the Pacific Northwest, but there are some 

notable exceptions (Figure 4.4b). Arizona, for example, hosts a number of flashy basins, 

but it is much more arid than other flashy region. The Slope Index is the DEM-derived 

slope along the main channel length of a basin and is shown in Figure 4.4c (Costa 1987a).  

Higher slope indexes are associated to flashy responses in the Appalachians, the Sierra 

Nevadas of California, and some basins in Arizona. But, again, there are numerous flashy 

basins that are relatively flat. Finally, the curve number is an empirical parameter that 

characterizes the runoff response to excess rainfall. It includes many factors such as 

hydrologic soil group and land cover in order to approximate infiltration, vegetative 

interception, and soil moisture retention processes on runoff generation. Figure 4d 

indicates higher runoff potential and thus some correlation with flashiness in Missouri 

and Flash Flood Alley. In reality, the behavior of a basin’s response to rainfall is a result 

of a complex interaction between a large number of geomorphologic and climatological 

factors.  

 The influence of each of the factors described above (i.e., basin area, mean annual 

precipitation, slope index and curve number) on flashiness is further analyzed using 

quantile plots in Figure 4.5(a-d). Information regarding the variability of the dependency 

can be extracted from the quantiles (1st, 10th, 25th, 50th, 75th, 90th and 99th) of basin 

flashiness conditioned on the evaluated variables. The conditional median provides the 

first order information of the dependency, while the interquartile area estimates the 
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uncertainty in the relationship and the 10th and 90th quantiles describe the variation of 

extreme values of flashiness. 

 

Figure 4.5: 1st-99th quantiles of flashiness versus (a) basin area, (b) mean annual 

precipitation (c) slope index, and (d) curve number. Dots represent the actual data. 

 

Figure 4.5(a) confirms the anticipated result that flashiness is more common in small 

catchments. The basin area associated to a median flashiness value of 0.75 (i.e., our 

subjective threshold for flash flooding) is 145 km2. Mean annual precipitation is likely to 

be correlated to the frequency of flooding. It is noted that the flashiness variable describes 

the potential for fast and extreme runoff generation conditioned on heavy rainfall. In other 

words, it is not dependent on the frequency of flash flooding. Figure 6(b) shows the 

quantiles of flashiness with mean annual precipitation across the study region of the 
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conterminous U.S. The correlation of flashiness to mean annual precipitation is much 

weaker than that with basin area, but there is a slight increase in flashiness with increasing 

climatological rainfall amounts.  

Basins with steeper topography generally experience flashier floods with higher unit 

peak discharges and faster concentration times. The relationship between flashiness and 

slope index in Figure 4.5(c) shows how flashiness of a basin increases as slope index 

increases, i.e. basins become steeper. This variable influences flashiness approximately 

equal to the basin’s catchment area. These two plots confirm that small catchments in 

steep terrain are generally expected to have a flashy response, according to our definition. 

Basin curve number is a widely-used empirical parameter in hydrology that is based on 

soil and ground cover of an area and is used to approximate direct runoff from a rainfall 

event. It has a range of 30 to 100, with higher numbers indicating higher runoff potential. 

Figure 4.5(d) shows how flashiness of a basin depends on curve number. When grouping 

all the basins together in a single plot, there is no apparent trend in the median flashiness 

with increasing curve number.   

The quantile plots provide valuable information about the variation of flashiness with 

individual geomorphologic and climatological variables. But in reality, flood processes 

are influenced by complex interactions between a large number of variables. Thus, this 

technique is extended into a multi-dimensional approach where the collective influence 

of a large number of explanatory variables on basin median flashiness can be understood. 

This can be used to not only predict flashiness in ungauged locations, but detect which 

explanatory variables have greatest impact on floods in any particular location as well as 

ascribe a band of uncertainty to predicted flashiness. 
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4.4 Regionalization of flashiness 

The dependence between the various explanatory variables and flashiness is 

examined using the generalized additive models for location, scale, and shape (GAMLSS 

Rigby and Stasinopoulos, 2005) technique. GAMLSS was proposed as an extension of 

the classical Generalized Additive Models (Hastie and Tibshirani, 1990), Generalized 

Linear Models (McCullagh et al., 1989) and Generalized Additive Mixed Models 

(Fahrmeir and Lang, 2001). The underlying assumption of all such models is that the 

variable we want to explain (flashiness, in this case) is a response variable whose 

distribution function varies according to the value assumed by the explanatory variables 

listed in Table 4.1. GAMLSS offers several advantages over the previously-mentioned 

approaches, such as (1) higher flexibility, as the response variable can follow a general 

distribution function and isn’t restricted to follow a distribution from the exponential 

family; and (2) allows for modeling of not only the location parameter (related to the 

mean), but also scale and shape parameters (related to dispersion, skewness and 

kurtosis). Due to its flexibility, GAMLSS has been used to model various hydro-

meteorological variables such as precipitation rates (Kirstetter et al., 2015), parameters 

of the kinematic wave routing parameters (Vergara et al., 2016), and flash flood severity 

(Saharia et al., 2016). 

 

Table 4.1: Geomorphologic variables included in this study 

Geomorphologic 

parameter 

Details 

Basin Area  Total upstream area that contributes runoff. 
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Shape Factor  A dimensionless number that is given by drainage 

area divided by square of the main channel length, 

𝐾 =  
𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝐴𝑟𝑒𝑎

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑙𝑒𝑛𝑔𝑡ℎ2 

River Length  Measured along a line centered from the basin outlet 

to the intersection of the extended main channel and 

the basin boundary. 

Relief Ratio  Relief is the difference in elevation between the 

outlet and the highest point in the basin and relief 

ratio is relief divided by the basin length. It is a 

measure of the basin-wide river slope. Higher the 

relief ratio, higher is the runoff and shorter is the 

flooding rise time. 

Slope Index  Slope between two points along the main channel 

upstream from the mouth of the basin at distances 

equal to 10 and 85% of the total main-channel 

length (Costa, 1987b). 

Slope to Outlet Local slope computed at a distance of 1 km over the 

basin outlet. 

Basin Curve Number  Soil Conservation Service Curve Number (SCS-CN) is 

an empirical parameter that characterizes the runoff 

properties for a particular soil and ground cover 

(United States Soil Conservation Service, 1972) 

Kfact Relative index of susceptibility of bare, cultivated soil 

to particle detachment and transport by rainfall. 

Rock Depth Depth to bedrock at the outlet. 
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Soil Texture (b 

parameter) 

It is a proxy for soil texture. Derived from the 

STATSGO database (Miller and White, 1998). 

 

 Two main assumptions are made: 1) the response variable flashiness is a 

random variable following a known parametric distribution with density f conditional on 

the parameters μ (mu) and σ (sigma), and 2) the observed α (alpha) values are mutually 

independent given the parameter vectors μ and σ. Each distribution parameter is modeled 

as a function of the explanatory variables using monotonic (linear/nonlinear or smooth) 

link functions. More details are provided by Rigby and Stasinopoulos (2001, 2005), 

Akantziliotou et al. (2002) and Stasinopoulos and Rigby (2007), particularly on the model 

fitting and selection. It involves identifying a suitable distribution of flashiness, the 

explanatory variables and the link functions. The estimation method is based on the 

maximum likelihood principle and the model selection is carried out by checking the 

significance of the fitting improvement in terms of information criteria such as the Akaike 

Information Criterion (AIC), the Schwarz Bayesian Criterion (SBC) and the generalized 

AIC (Stasinopoulos and Rigby, 2007). Forward, backward, and step-wise procedures 

were applied to select the meaningful explanatory variables, supervised by diagnostic 

plots to check the fitting performance as discussed in Stasinopoulos and Rigby (2007). 

The GAMLSS modeling has been performed using the gamlss package developed for the 

R language. 

A number of conditional two-parameter density functions (lognormal, normal, 

reverse gumbel, logistic, gamma, etc.) were tested to fit the data and the goodness of fit 

on the dataset was checked with the AIC for each of the semi-parametric density fits as 

well as by checking  the Gaussianity  and independence of residuals.  The beta distribution 
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was found to be the most appropriate to examine the dependence of flashiness on various 

geomorphological variables. The original beta distribution is given by: 

 

 

 

 

(4.3) 

for y = (0, 1), α > 0 and β > 0. In the GAMLSS implementation, α = µ and β > σ. 

The function above was used to model the conditional flashiness distributions, where the 

location μ is linked to the expected flashiness value, and the scale σ is representative of 

prediction uncertainty. After selecting the distribution family, the structure of the model 

was refined through an iterative procedure by trying several combinations of explanatory 

variables. The trends for each parameter are fitted using penalized splines, which are more 

flexible than polynomials or fractional polynomials for modeling complex nonlinear 

relationships. The geophysical variables retained after analysis are presented in Table 4.2 

along with their corresponding statistical significance values.  

 

 

 

 

Table 4.2: Statistical significance of explanatory variables in GAMLSS model. Not 

retained or not considered variable are marked with ‘-’. Significance is expressed as p-

value. 

 

Variable p-value 

Basin Area (km2) <2.2e-16 
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Shape factor <2.2e-16 

River length (km) - 

Relief Ratio 7.828e-06 

Slope Index <2.2e-16 

Slope to outlet 7.473e-11 

Annual Precipitation (mm/yr) 8.785e-10 

Mean Temperature (Celsius) <2.2e-16 

Curve Number <2.2e-16 

K Factor (Erodability) - 

Depth-to-Rock (cm) 8.796e-08 

Soil Texture (b parameter) 2.487e-13 
 

Consistency can be observed in the identification of the most important factors 

with what the spatial analysis suggested as discussed in section 4.4. Drainage area, slope 

index, the curve number and the hydro-climatic variables of mean annual precipitation 

and temperature are highlighted by their significance levels. This can be interpreted as a 

sign of robustness for the GAMLSS model. For validation, the dataset is separated into 

two randomly selected samples, and the model is trained over a 75% random sample of 

the observations while 25% is used for validation. The expected values yielded by the 

GAMLSS model are compared to the observations, and exhibit a correlation of 0.82 (67% 

of the variance of the data explained) and a negligible bias (0.4%). A similar result 

(correlation 0.83) is obtained with the validation dataset. The GAMLSS model is then re-

calibrated using geomorphological and climatological variables for the entire USGS 

observation dataset. Figure 4.6 shows a scatter plot of predicted versus observed 

flashiness. The two populations exhibit a correlation of 0.83 and bias as small as 0.6%. 

The model displays significant skill to predict the flashiness values, thus we have 

confidence in the results as they are regionalized to ungauged basins.  
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Figure 4.6: Scatter plot of predicted versus observed flashiness. Bias is 0.6% and 

correlation R=0.83. 

 

The model is used to make predictions of flashiness at every grid point over the 

CONUS with a spatial resolution of 1 km. Figure 4.7(a) is the expected value of the 

predicted flashiness values between 0-1 and Figure 4.7(b) shows the standard deviation 

of predicted flashiness.  
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Figure 4.7: Distribution of (a) expectation and (b) standard deviation of predicted 

flashiness values over CONUS 

 

The real value of this approach is the potential to identify flash flood hotspots in 

ungauged areas. In the predicted map, we see that the flashy basins on the West Coast are 

confined to the coastal areas and the upslope region of the inland, Sierra Nevada 

mountains extending northward. Arizona and the Front Range areas are also better 

highlighted in the predicted map. In Arizona, the flash flood prone basins are located 

where there are steep slopes extending from southeast Arizona and along the Mogollon 
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Rim that separates the lower deserts from the higher plateau region in the north part of 

the state.  The predicted flashiness along the Front Range extends southward from north 

central Colorado to southeastern parts of the state and then continues southward along the 

front range of the Rockies in New Mexico. In the observation database, Flash Flood Alley 

is largely concentrated in central Texas hill country and Houston area. But the predicted 

map highlights a band of flood prone areas all the way from southwest Texas to 

Oklahoma, Arkansas, Kansas and Missouri. Villarini et al. (2014) also highlighted the 

same area on spatial interpolation of maximum and 90th percentile of flood ratios 

associated with tropical cyclones. The predicted flashiness map highlights several regions 

that were not identified in the observed flashiness map in Figure 4.2. Several localized 

hotspots are revealed such as the western slopes of the Appalachians (Tennessee, 

Kentucky, West Virginia) and a contiguous area in the western Dakotas, eastern Montana, 

and northeastern Wyoming.   

 We introduce additional maps related to flash flooding to evaluate the 

predicted flashiness values in ungauged regions. Ashley and Ashley (2008) compiled a 

national database of all flood fatalities in the contiguous United States between 1959 and 

2005 along with their coordinates, which is shown in Figure 4.8. This fatalities map shows 

good qualitative agreement with the predicted flashiness map of Figure 4.7(a). 
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Figure 4.8: Map of flash flood fatalities from 1959 to 2005 (Source: Ashley and Ashley, 

2008) 

 

The entire West Coast and Sierra Nevada mountain range has been highlighted in 

the predicted flashiness map, but it doesn’t experience as many flood fatalities as the rest 

of the country. This may be due to better infrastructure, lower population densities in 

mountain communities and better community resilience to disasters. The fatalities in the 

Arizona area are situated geographically similar to the predicted flashiness map. Fatalities 

in the Front Range tend to occur further north rather than in southeast Colorado and New 

Mexico, as highlighted in the flashiness map. Low population densities are likely the 

culprit for the mismatch. Flash Flood Alley and the populated Northeast are the most 

devastating regions in the country in terms of flood fatalities. Though our observation 
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database in Figure 4.2 identifies a localized region, the fatalities in Flash Flood Alley are 

spread over a wider area as shown in Figure 4.7. The extension of Flash Flood Alley by 

the predicted flashiness map up to the north and east correlates better with the spatial 

distribution of flood fatalities, attesting to the predictive power of the model in ungauged 

locations. The Missouri Valley with high flashiness values also experiences large 

numbers of flood fatalities. The predicted flashiness map also points to the flood prone 

nature of the entire Appalachians, which is observed in the number of casualties in the 

whole belt. It must be kept in mind that this is a very indirect way of validating our model 

and flood fatalities are highly correlated with population density, infrastructure, and 

societal vulnerability.   

The flashiness predictions are also compared to the Storm Data database of 

flooding and flash flooding reports from 2007-2013. This dataset is included in the flash 

flood observation database described in Gourley et al. (2013). NWS forecasters report 

locations of flooding impacts using bounding polygons defined by as many as eight 

vertices. Currently, there are around 35,000 events in the database with an ID mentioning 

whether the event was a flood or a flash flood according the NWS definitions. Using GIS 

software, the mean flashiness in all such polygons were calculated and beta distributions 

were fitted to the populations of flashiness values in the flood and flash flood categories. 

Figure 4.9(a) gives the fitted Probability Distribution Functions (PDFs) of mean 

flashiness for floods and flash floods according to actual NWS reports. The PDF shows 

a clear distinction between NWS-reported floods and flash floods between flashiness 

values of 0.75, which is the value we used initially to define flash flooding. The empirical 

and fitted cumulative distributions are shown in Figure 4.9(b). A Kolmogorov-Smirnov 
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test performed on the two distributions yielded a p-value of less than 2.2e-16 and D-value 

of 0.22. Here, D is the maximum absolute difference between the two Cumulative 

Distribution Functions (CDFs) which is maximum near the mean flashiness value of 0.75. 

The p-value being small indicates that the distributions are significantly different, 

accrediting the usefulness of flashiness to characterize the flash flood severity. 

 

Figure 4.9: (a) PDF of fitted Beta models and (b) CDF of empirical mean flashiness by 

NWS categories of floods and flash floods. The fitted beta distribution models for floods 

(dotted line) and flash floods (dashed lines) are superimposed in (b). 

 

4.5 Conclusions 

A long flood database spanning 78 years over the continental U.S. was used to 

explore the dependency of flood severity on geomorphological variables and 

climatology. A new variable called flashiness was introduced in this paper as a measure 

of flood severity. Flashiness is not dependent on the annual likelihood of flash flooding, 

but rather gives the potential of a basin to produce a rapid and significant response to 
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heavy rainfall. Complex relationships between observed flashiness and a large number 

of geomorphologic and climatological variables were modeled using GAMLSS to 

predict flashiness at every location. The findings are summarized below: 

 The spatial patterns of flood severity correlate well with regions that have been 

previously reported. Six flash flood hotspots were identified across the country: 

West Coast, Arizona, Front Range, Flash Flood Alley, Missouri Valley, and 

Appalachians. 

 A monthly analysis of flash flooding in each of the hotspots revealed very 

different behavior in each region. The West Coast had the maximum frequency 

in flash flooding during the cool season while the interior regions were more 

commonly impacted during the warm season. Bimodal distributions in the 

monthly frequency of flash flooding were noted in both Arizona and in Flash 

Flood Alley in Texas.  

 Several variables were used to model flashiness and the most influential ones 

were the basin area and the basin’s slope index. Small, steep basins had the 

flashiest responses.  

 The predicted flashiness values were trained on observed values with a 

correlation of 0.82; the same correlation was met with stations that were 

independent from the training data set.  

 Additional spatial datasets related to flash flooding including fatalities and NWS 

reports showed good correspondence with the predicted flashiness map. The 

flashiness variable was shown to discriminate between NWS reports of flood and 

flash floods.  
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 Though the observation database showed Flash Flood Alley as being largely 

concentrated in central Texas hill country and Houston area, the model-predicted 

flashiness extends this flash flood prone area from southwest Texas through the 

Hill Country and continuing northeastward into adjoining states. 

 Localized hotspots were identified within the broad flash flood prone areas as 

well as some of those outside of the originally defined regions including the 

western slopes of the Appalachians in Tennessee, Kentucky, and West Virginia.  

This study proposes an overview of how flood severity varies across the United 

States using a model that can highlight flash flood-prone areas in ungauged locations. 

As an extension of this study, in the next chapter, the existing database will be augmented 

with event-level precipitation variability indices for improved modeling of flood 

severity.  
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Chapter 5.  Impact of Rainfall Spatial Variability on Flash Flood 

Severity 

In the previous chapters, flooding was characterized at climatological scale using 

a large number of geo-climatic variables. But to characterize flooding response at the 

event-scale, it is necessary to incorporate information on causative rainfall, especially 

the spatial organization of rainfall within a basin. In the absence of consensus on how 

spatial variability of rainfall impacts basin response, this study uses a high-resolution 

rainfall and flooding event dataset spanning 10 years to overcome a major limitation of 

existing studies basing their conclusions on limited case studies or simulations. The 

objective behind employing an observation-based big data approach is to develop a 

robust understanding of how rainfall spatial variability impacts flash flood severity and 

quantify its contribution relative to basin physiography. 

Significant advances in radar measurement of rainfall has led to an unprecedented 

ability to investigate these relationships through an ensemble of approaches. Some 

studies have sought to compare performance of hydrologic models forced by rainfall 

estimated by gauge network, weather radar, or a blend of both (Cole and Moore, 2008, 

2009; He et al., 2013; Jin-Hyeog Park et al., 2009; Philip B. Bedient et al., 2000; Smith 

et al., 2007). Other studies have investigated the impact of rainfall spatial variability on 

runoff modeling by comparing observed to modeled hydrographs forced by rainfall at a 

range of spatial scales from distributed to catchment averaged. Studies have found that 

the averaging effects of routing removed the majority of the impact of spatially variable 

rainfall at catchment scales such as 150 km2 (Adams et al., 2012) and 384 km2(Christian 
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Bernhofer et al., 2013). Adams et al. (2012)performed simulations using synthetic 

rainfall events typical of temperate climates in Melbourne, Australia while Christian 

Bernhofer et al. (2013) analyzed a single flood event in Eastern Germany, which limited 

the ability to extend the conclusions to a wider set of flooding scenarios. Contrasting 

results were reported by Zoccatelli et al. (2010) who found that not accounting for 

rainfall spatial variability reduced modeling efficiency in 30% of the cases while 

studying flash flood events in Romania.  

Several researchers also found that accounting for spatial variability in rainfall could 

play a major role in flood modeling even for small basins (Faurès et al., 1995; 

Michaelides and Wainwright, 2002; Michaud and Sorooshian, 1994; Schuurmans and 

Bierkens, 2007). Other studies have found that the impact of rainfall spatial variability 

on modeled hydrographs depends not just on basin scale (Gabellani et al., 2007; Wood 

et al., 1988), but also on precipitation type (stratiform or convective) (Bell and Moore, 

2000), soil properties (Anquetin et al., 2010; Sangati et al., 2009), and predominant 

hydrologic partitioning processes (Anquetin et al., 2010; Brath and Montanari, 2003; 

Gabellani et al., 2007). The Distributed Model Inter-comparison Project (DMIP) opined 

that distributed hydrologic modeling may not always yield better outlet simulations 

compared to lumped simulations (Reed et al., 2004), which may be due to non-linearities 

and/or many computational elements of distributed hydrologic models magnifying rather 

than smoothing errors in high-resolution radar rainfall data (Smith et al., 2004). Thus, 

past studies seeking to establish through simulations the importance of accounting for 

rainfall spatial variability on basin response may have unduly stressed on model 

sensitivity instead of observed sensitivity (Morin et al., 2001; Obled et al., 1994; Smith 
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et al., 2004; Winchell et al., 1998).An analysis of the impact of rainfall spatial variability 

on basin response using a database of observed events, as in this study, will remove some 

of the limitations of distributed hydrologic models compounding errors in data. 

Moreover, Smith et al. (2004) considered it important to not just determine where great 

spatial variability of rainfall exists but also to identify basins where the variability of 

rainfall overcomes filtering effects of a physical basin to significantly impact basin 

response. Overall, the determination of the most relevant rainfall spatial organization 

factors for flash floods in this study can be identified as an important exercise that will 

provide diagnostic capability to identify basins in which distributed hydrologic modeling 

is expected to be most effective. 

 

The literature review of this topic reveals that our understanding of the nature of the 

impact of rainfall spatial variability on flooding under a wide variety of rainfall, 

physiographic, and antecedent conditions remains limited. Contrasting results have been 

reported and the extent of this influence is not fully understood. Most of these studies 

are performed on a case study basis covering a few events which severely limits our 

ability to make conclusions applicable to a wide variety of scenarios. A few studies have 

attempted to address this shortcoming. For example, Emmanuel et al. (2015) adopted a 

simulation chain that combines a stream network model, a rainfall simulator, and a 

distributed hydrologic model to disentangle the relationship between rainfall spatial 

variability and runoff. By synthetically generating 9,900 simulated hydrologic events for 

hundreds of varying catchment sizes and rainfall types, they found that the organization 

of rainfall has an important influence on the catchment response. The study tested the 
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spatial rainfall variability indices described in Zoccatelli et al. (2010) and proposed two 

new indices that summarizes the spatial organization of rainfall. However, using 

distributed hydrologic models to study the importance of rainfall spatial variability may 

introduce more uncertainty in the results due to errors in data, model structure, and model 

parameters as the experiments implicitly stress on model sensitivity rather than basin 

sensitivity (Smith et al., 2004). The key difficulty in evaluating the influence of rainfall 

spatial variability on basin responses remains the lack of a large real-world dataset of 

flood events and corresponding radar rainfall that captures a great diversity of situations 

and geographies. This study seeks to fill an important gap in our existing body of 

knowledge by investigating the impact of rainfall spatial variability by relying on 

observations instead. 

Furthermore, existing studies (Douinot et al., 2016; Emmanuel et al., 2015; 

Zoccatelli et al., 2010) have reported the average relationships between rainfall 

variability indices and various aspects of flooding such as timing and level difference. 

But the complexity of the underlying processes necessitates investigating the variation 

in these relationships as well. Moreover, quantifying the impact of rainfall spatial 

variability on flash flood response is difficult due to limitations in monitoring rain and 

streamflow at those space and time scales using conventional instruments and 

methodologies (Creutin et al., 2013; Marchi et al., 2009). Investigation of flash floods 

have mostly been necessity event-based such as by using post-event surveys (Borga et 

al., 2007; Zoccatelli et al., 2010). 

In this paper, we seek to understand, through a carefully-designed large-sample study 

based on observations of rainfall and flooding, how rainfall spatial variability influences 
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the hydrograph in basins of widely varying characteristics. The flooding data is derived 

from the publicly available Unified Flash Flood Database described in Gourley et 

al.(2013), which collates flooding events from three sources: USGS streamflow 

measurements, storm reports collected by the National Weather Service (NWS), and 

public survey responses during the SHAVE experiment (Gourley et al., 2010).  This 

unique dataset has been subjected to extensive post-processing to harmonize data from 

a variety of sources over a long period.  Quality-controlled radar rainfall data of high 

spatial and temporal resolution are used to compute the rainfall variability indices 

described in Zoccatelli et al. (2011)and Emmanuel et al. (2015). They are combined with 

large number of geomorphological attributes to develop an observation database suitable 

for clarifying the dependence between rainfall spatial organization, basin morphology, 

and catchment response. The goal is to quantify the relationship between rainfall spatial 

variability and flood response, and its contribution to flooding relative to basin 

morphology.  

As severe floods cause great damage to life and property, we seek to investigate the 

severity of a flood in this paper, a hitherto unexplored aspect of the hydrograph in the 

context of rainfall spatial variability. To this end, a variable describing flash flood 

severity or “Flashiness”, proposed in Saharia et al. (2016), is utilized in this study. It 

encompasses both the timing and magnitude aspect of a flood and represents the potential 

of a basin to produce severe floods. This study, to the best of our knowledge, explores 

for the first time, not only first-order dependencies but also the variability in these 

relationships. Finally, the relative impact of various rainfall and physiographic properties 
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on flooding are quantified using a multi-dimensional modeling framework and the 

impact of the individual attributes are disaggregated.  

 

This provides an unprecedented opportunity to analyze the impact of event-level 

rainfall spatial variability on actual flooding using a big data approach. The purposes of 

this analysis are to (i) characterize flash flood severity (referred to as flashiness) using 

rainfall spatial variability and geomorphological parameters, (ii) quantify the relative 

impact of rainfall spatial variability and basin morphology on flashiness, and (iii) identify 

which variables are most important to explain flashiness. The chapter is organized as 

follows. Sections 5.1 describes the rainfall spatial variability indices and an overview of 

how the archive was developed. Section 5.2 presents a case study explaining these indices 

for a flooding event. Sections 5.3 and 5.4 characterizes flash flood severity based on 

rainfall spatial variability indices and large number of physiographic variables. Finally, 

Section 5.5 provides a summary of findings and concluding remarks. 

5.1 Rainfall spatial variability indices 

The indices found in Zoccatelli et al. (2010, 2011) and Emmanuel et al. (2015) are 

used in this study to quantify the impact of rainfall spatial variability on flooding. They 

provide metrics for space-time precipitation organization as a function of the flow 

distance i.e. distance measured from any point in the basin to the outlet along the flow 

path. The analytical framework in Zoccatelli et al. (2011) describes two indices by taking 

ratios of spatial moments of catchment rainfall [𝑝0(𝑡), 𝑝1(𝑡), 𝑝2(𝑡)] and the moments of 

flow distance (𝑔1 and 𝑔2). The n-th spatial moment of catchment rainfall is defined as: 
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 𝑝𝑛 =
1

𝐴
∫ 𝑝(𝑥, 𝑦, 𝑡)

𝐴

𝑑(𝑥, 𝑦)𝑛𝑑𝐴 (5.1) 

Where A is the catchment area. The zeroth order spatial moment of catchment 

rainfall, p0(t), is the average catchment rainfall rate at time t. Analogously, the nth 

moment of flow distance is given by: 

 𝑔𝑛 =
1

𝐴
∫ 𝑑(𝑥, 𝑦)𝑛

𝐴

𝑑𝐴 (5.2) 

 

Note that the first moment of flow distance is the catchment averaged flow distance. 

The non-dimensional (scaled) spatial moments of catchment rainfall correspond to 

spatial parameters characterizing rainfall and can be obtained by taking ratios of the 

moments of catchment rainfall and flow distance. The first two orders, δ1 and δ2, are as 

follows: 

 1(𝑡) =
𝑝1(𝑡)

𝑝0(𝑡)𝑔1
 (5.3) 

 

 2(𝑡) =
1

𝑔2 − 𝑔1
2 {

𝑝2(𝑡)

𝑝𝑜(𝑡)
− [

𝑝1(𝑡)

𝑝𝑜(𝑡)
]

2

} (5.4) 

 

According to the authors, 1 is the distance of the catchment rainfall centroid from 

catchment centroid. Values of δ1 close to 1 reflect a rainfall distribution either 

concentrated close to the catchment centroid position or spatially homogeneous. While 

values less than one indicate a rainfall distribution near the basin outlet, and values 

greater than one indicate rainfall distribution towards the catchment headwaters.  
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The second moment (δ2) describes the dispersion of the rainfall-weighted flow 

distances with respect to the dispersion of the flow distances. Values of δ2 close to 1 

represent a uniform-like rainfall distribution. Values of δ2<1 indicate that the rainfall is 

concentrated over a small region of the catchment with a spatially unimodal storm cell 

along the flow distance, while values greater than 1 indicate a multimodal rainfall 

distribution, which is generally rare. 

The spatial moments described in equations (5.3) and (5.4) describe the 

instantaneous rainfall spatial organization at a time t. To describe spatial organization of 

rainfall accumulated during a particular time-period, say a storm event, these indices are 

integrated over time, in which case they are denoted as Δ1 and Δ2 and can be analyzed 

the same way as δ1 and δ2 respectively. 

Emmanuel et al. (2015) proposed two additional indices based on comparing width 

function and the rainfall width function. The width function (wx) is defined as the portion 

of the basin area at a flow distance x from the outlet (Rinaldo et al., 1993), which is 

constant for a given basin and represents the hydrologic response of a catchment to 

spatially uniform rainfall. They proposed an analogously defined rainfall width function 

(wp) as the proportion of rainfall on the catchment falling at a flow distance x from the 

outlet, which combines rainfall spatial organization and the hydrologic response. The 

influence of rainfall spatial organization on the hydrologic response can be quantified by 

comparing the cumulative distribution functions of these two version of the width 

function. The index of Vertical Gap (VG) is defined as the absolute value of the 

maximum vertical difference between the two width functions while the Horizontal Gap 

(HG) is corresponding horizontal difference between the two width functions divided by 
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the longest flow path of the catchment. VG values close to zero indicates a rainfall 

distribution with weak spatial variability while higher VG values correspond to greater 

concentration of rainfall over a smaller portion of the catchment. Similarly, HG values 

close to zero represent a rainfall distribution either concentrated closer to the catchment 

centroid or spatially uniform. Greater than zero HG value (or lesser than zero) indicates 

a rainfall distributed upstream (or downstream) of the basin.  

A large events database collating flooding events from diverse geographies and 

seasons allows, for the first time, the testing of the efficacy of these variability indices in 

capturing the influence of rainfall spatial variability on catchment response. The moments 

of precipitation (zeroth, first, and second), moments of flow distance (first and second), 

and the four spatial variability indices (Δ1, Δ2, HG, and VG) are computed for each of the 

9,392 flooding events in the Unified Flash Flood Database between 2002 and 2011. The 

database was subjected to extensive post-processing based on radar beam height and 

snow percent of total precipitation in a basin to reduce input uncertainties in modeling 

results. Firstly, all events that fall in basins with mean radar beam height of greater than 

2 kilometers above the ground level were discarded. This was to ensure that we only 

include events for which we have high-quality radar rainfall data from MRMS. Similarly, 

all events for basins that get less than 15% of their annual precipitation from snowpack 

were included. For basins that get greater than 15% of its annual precipitation from 

snowpack, only events in summer months (May-Oct) were included. Table 5.1 shows 

how the number of flooding events changed at different stages of post processing. Finally, 

a dataset of 9,392 flooding events enhanced with corresponding geomorphologic and 

climatologic variables was finalized for modeling. 
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Table 5.1: Quality control of the dataset based on radar beam height and percent snow 

 

Quality control criteria Number of flooding events 

Initial dataset (2002-2011) 15,393 

Radar beam height 12,595 

Snow percent 9,392 

 

The indices are computed on the rainfall accumulated before the peak of the 

hydrograph (Tq), i.e. [Tq – X*Tr], with Tr being the catchment response time and X 

denoting the multiplier for the accumulation period. A value of X=1.5 has been adopted 

in this study as it was found to be the most suitable by Emmanuel et al. (2015) after a 

duration sensitivity analysis on a simulated database. Moreover, they found that these 

indices are not very sensitive to the accumulation period and very similar results were 

obtained for a wide interval period. In this study, the catchment response time is derived 

from the conceptual definition of the time interval between the centroid of effective 

rainfall and peak of the hydrograph. 

5.2 Case study 

A flooding event occurring on 27th August 2006, in the Blue river at Blue Ridge Blvd 

Ext in Missouri (USGS ID: 6893150) is presented to illustrate the conceptualization of 

various rainfall spatial moments. Important flooding information such as start of the 

flooding event (t1, when streamflow crosses the action stage) and peak flow (t4), along 

with associated total catchment rainfall is shown in Figure 5.1. The corresponding lag 
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time (From t2 to t4) for this event is 8.4 hours while the rainfall is accumulated 1.5 times 

that period as explained in the previous section. 

 

Figure 5.1: Illustration of rainfall and corresponding flooding for an event on 27th August, 

2006, in the Blue river at Blue Ridge Blvd Ext in Missouri with a USGS gauge of ID 

6893150. Here, t1 is the start of the rainfall accumulation period, t2 is the centroid of 

rainfall, t3 is the time at which the flooding starts (i.e. crosses action stage), and t4 is the 

peak of hydrograph. 

 

Figure 5.2 shows the flow distance grid, rainfall accumulation grid, and the 

computation of rainfall moments and width functions. The first (Δ1) and second order 

(Δ2) scaled spatial moments of catchment rainfall for this flooding event are 1.1 and 

0.886 respectively. Δ1 values greater than 1 signify upstream distribution of rainfall as is 

confirmed by the rainfall accumulation map of Figure 5.2(b). A value of Δ2 less than 1 

represents a rainfall distribution characterized by a unimodal distribution along the flow 
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distance. This is further confirmed by Figure 5.2(c) where the higher rainfall 

accumulations are concentrated in the higher ranges of the flow distance (i.e. furthest 

from catchment outlet). Similarly, horizontal gap (HG) value of 0.071 (greater than zero) 

indicates rainfall is distributed upstream. While, vertical gap (VG) of 1.11 (greater than 

unity) represents concentration of rainfall over a small part of the catchment. 

 

Figure 5.2: Rainfall spatial variability indices described in Zoccatelli et al. (2011)and 

Emmanuel et al.(2015) for a flooding event in the Blue river at Blue Ridge Blvd Ext in 

Missouri with USGS ID of 6893150 and a catchment area of 241 km2. The peak flow of the 

event happened at 27-Aug-2006 15:15. Here, (a) shows the flow distances of the basin, (b) 
rainfall accumulation field for a period of 12.61 hours, (c) width function and rainfall 

width function, (d) distributions of average and distributed rainfall accumulation along 

with associated values of Δ1, Δ2, horizontal gap, vertical gap, and flashiness. 
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5.3 Association of flashiness with rainfall and basin properties 

The influence of some of the rainfall and geomorphological properties on flashiness 

is further analyzed using quantile plots in Figure 5.3 and Figure 5.4. Traditional 

regression techniques summarize the average relationship between the explanatory and 

the target variables, which only provides a limited view of the relationship. But for 

relationships that explain substantial heterogeneity, it is prudent to look at the relationship 

at different points in the conditional distribution of the output variable, and this can be 

accomplished using quantile plots. The quantiles (1st, 10th, 25th, 50th, 75th, 90th, and 

99th) of event flashiness conditioned on the variability indices represents the variability 

in these relationships. The conditional median describes the first order information of the 

dependency, while the inter-quartile area estimates the variability in the relationship and 

10th and 90th quantiles describe the uncertainty of extreme values of flashiness. 

5.3.1 Spatial moments of catchment rainfall 

Figure 5.3 shows the quantile plots of some of the derived variables that describe the 

spatial organization of catchment rainfall as described previously including the spatial 

variability indices mentioned in Zoccatelli et al. (2011) and Emmanuel et al. (2015). The 

zeroeth order of catchment rainfall (P0), i.e. the basin-averaged catchment rainfall, is 

intuitively expected to impact the severity of a flash flood. Figure 5.3(a) confirms this 

relationship where higher average rainfall rates lead to higher flashiness. However, this 

increasing relationship is more prominent among higher values of P0. In lower ranges, 

increase in P0 don’t lead to corresponding increase in flashiness, indicating that there 

may be competing factors at play that dampen the impact of rainfall intensity on flash 



81  

flood severity. Similarly, Figure 5.3(b) shows the relationship of different quantiles of 

flashiness with second scaled spatial moment of catchment rainfall (Δ2) that reflects the 

mode of the rainfall. It is noted that large number of events have Δ2 values close to 1 

which represent uniform-like rainfall distributions. This relationship however, don’t 

exhibit a gradual dependence throughout the entire range of values of Δ1 and Δ2. The 

influence of vertical gap (VG) on flashiness can be seen in Figure 5.3(c). Higher values 

of VG imply greater concentration of rainfall over a small part of the catchment. In the 

figure, flashiness decreases as VG values increase. Horizontal Gap (HG) exhibits a more 

complicated relationship in Figure 5.3(d) with large number of events having HG values 

close to 1, indicating a rainfall concentrated near the catchment centroid. However, these 

quantile plots describe two-dimensional relationships, but the severity of a flood being 

impacted by many factors, further analysis is required to disaggregate competing 

dependencies. 
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Figure 5.3: 1st-99th quantile of flashiness versus (a) zeroeth moment of catchment rainfall 

or basin-averaged rainfall (P0), (b) first scaled moment of catchment rainfall (Δ1), (c) 

vertical gap (VG), and (d) horizontal gap (HG). These rainfall variability indices are from 

Zocatelli et al. (2010) and Emmanuel et al. (2015) 

5.3.2 Basin properties 

The influence of some of the physiographic variables on flashiness is analyzed using 

quantile plots in Figure 5.4. The first moment of flow distance (G1) is the catchment-

averaged flow distance, with higher flow distances corresponding to increased travel 

times and lower flow peaks, and, thus, lower flashiness. Figure 5.4(a) shows how 

flashiness decreases with increasing G1 values, along with the variability in the 

relationship. Similarly, steeper basins are expected to experience flashier floods as water 

travels faster to the outlet along with increased runoff. The relationship between 
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flashiness and slope index is portrayed by Figure 5.4(b), where increase in slope index 

(describing steeper topography) leads to increase in flashiness. The percentage of 

imperviousness in a basin controls the proportion of rainfall converting into runoff or 

infiltrating into the ground. Higher percentage of impervious area will lead to more water 

running off towards the outlet at faster speeds, which is reflected in Figure 5.4(c). Finally, 

larger number of first-order channel frequency increases channel conveyance of runoff 

and we can see its mild increase with flashiness. 

Quantile plots provide valuable insights into the influence of moments of precipitation 

and flow distances, spatial variability indices, geomorphologic variables etc. on 

flashiness. But flooding is a result of complex interactions between many factors and a 

one-dimensional approach is limited in its ability to explain competing behaviors. Thus, 

this technique is extended into a multi-dimensional approach in the next section to 

account for the collective influence of many explanatory variables on flashiness. This will 

help in uncovering the relative impact of different factors on any flood event, thus, 

dramatically improving our ability to diagnose causative processes behind flash floods. 
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Figure 5.4: 1st-99th quantile of flashiness versus (a) first moment of flow distance (G1), (b) 

slope index, and (c) impervious area (%), and (d) first order channel frequency 

 

5.4 Multi-dimensional modeling of flashiness 

5.4.1 The model 

In this work, the complex relationship between the explanatory variables and 

flashiness is analyzed through conditional distribution functions using the generalized 

additive models for location, scale, and shape (GAMLSS, Rigby and Stasinopoulos 

2005) technique which has been discussed in detail in Section 4.4. To find the most 

suitable distribution for fitting event-level flashiness, several conditional two-parameter 

density functions (lognormal, normal, reverse gumbel, logistic, gamma, etc.) were tested 
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for goodness of fit using the AIC for each of the semi-parametric density fits as well as 

by checking the normality and independence of residuals. Finally, the beta distribution 

was selected as the most appropriate distribution for modeling the dependence of 

flashiness on various geomorphological, climatological, and rainfall variables. The 

original beta distribution is given by: 

 

 

 

 

(5.5) 

for y = (0, 1), α > 0 and β > 0. In the GAMLSS implementation, α = µ and β > σ where μ 

(representing location) and σ (representing scale) are the distribution parameters. The 

function given in Eq. (5) was used to model the conditional flashiness distributions, where 

the location μ is linked to the expected flashiness value, and the scale σ gives the 

uncertainty around the expected flashiness. The model is further refined through an 

iterative procedure of trying various combinations of explanatory variables by using 

domain knowledge of individual variables and diagnostics. Instead of polynomials or 

fractional polynomials, penalized splines are used for fitting trends for each parameter as 

they offer more flexibility in modeling complex nonlinear relationships. The variables 

that were retained in the final model are presented in Table 5.2 along with their 

corresponding statistical significance values. Overall, variables such as zeroth moment of 

catchment rainfall (P0), vertical gap (VG), first-moment of flow distance, curve number 

etc. were found to be the most impactful when it comes to explaining flashiness of an 

event. Here, P0 is the catchment-averaged rainfall rate and represents the general 
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availability of water for a flood to occur. Along with average rain rate, higher VG values 

represent greater concentration of rainfall over a small portion of a basin, which leads to 

more severe floods. In case of extreme floods, river network geometry as represented by 

catchment-averaged flow distance (G1) plays a vital role as heterogeneities of land 

properties play lesser role in runoff generation than for moderate floods. Finally, curve 

number also impacts the severity of a floods as it is a measure of a watershed’s runoff 

response to a rainstorm.  Figure 5.7 shows a scatter plot of the systematic part of modeled 

versus observed flashiness with a correlation of 0.72. Thus, the model exhibits significant 

explanatory power in modeling event flashiness, thereby increasing our confidence in the 

results to explain the relative impact of various parameters. 

 

Table 5.2: Statistical significance of explanatory variables in GAMLSS model. Not retained 

or not considered variable are marked with ‘-’. Significance is expressed as p-value. 

 

Variable p-value 

Catchment-averaged rainfall rate (P0) <2x10-16 

Vertical Gap (VG) <2x10-16 

Catchment-averaged flow distance (G1) <2x10-16 

Curve Number <2x10-16 

Slope Index 2x10-16 

Impervious Area 2.75x10-16 

Frequency of first-order channels 3.66x10-08 

Horizontal Gap (HG) 8.54x10-05 

Δ2 0.00235 

 

5.4.2 Conditional estimates of explanatory variables 

GAMLSS being an additive framework allows us to analyze the accuracy of 

individual predictors on the response variable (here, flashiness), which is a powerful 

diagnostic tool for disaggregating competing influences.  Figure 5.5 and Figure 5.6 
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shows the partial prediction of the flashiness based on the rainfall and geomorphological 

variables included in the final model. Figure 5.5(a) illustrates how the effect of zeroeth 

moment of catchment rainfall (i.e. basin average rainfall) on flashiness is low for lower 

values but has a sharp inflection as it increases. This indicates that the physiography of 

the basin dampens the effect of rainfall at lower values, but rainfall overwhelms other 

factors resulting in a higher contribution to flashiness at upper ranges. The influence of 

second scaled moment of catchment rainfall (Δ2) in Figure 5.6(b) indicates that floods 

are more severe for unimodal distribution of rainfall along the stream network 

characterized by lower Δ2 values. Lower values of Δ2 represent unimodal distribution of 

floods which translates to high peak discharges corresponding to higher flashiness due 

to resonance of rainfall and catchment flow distances. One can note that this relationship 

is not pronounced through a unidimensional approach of quantile plots as shown in 

Figure 5.5(b). Similarly, higher Vertical Gap (VG) values represent greater 

concentration of rainfall on a small part of the catchment which leads to higher 

flashiness. Overall, a combination of high basin average rainfall (P0), unimodal rainfall 

distribution along flow distance (Δ2), and greater concentration of rainfall over a small 

part of the catchment (VG) will yield the most severe floods. 
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Figure 5.5: Relative contribution on flashiness by rainfall parameters such as: a) zeroeth 

moment of catchment rainfall or basin-averaged rainfall (P0), b) second scaled moment of 

catchment rainfall (Δ2), (c) horizontal gap (HG), (d) vertical gap (VG) 

 

The contribution of geomorphological variables is similarly exhibited in Figure 

5.6. In Figure 5.6(a), the first moment of flow distance (G1), which is the average flow 

distance in the basin, is a proxy for how long it takes for water to reach the outlet and 

shows a sharp decreasing trend with flashiness. This variable is closely related to the size 

and shape of the basin which is known to have a large impact on flood response. The 

basin curve number is related to the runoff-producing potential of a basin and higher peak 

discharges and, expectedly, shows an increasing trend with flashiness in Figure 5.6(b). 

Curve numbers have a range of 30 to 100 where lower numbers indicate low runoff 
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potential corresponding to more permeable soil such as well-drained sands and gravels. 

Higher curve numbers indicate increasing runoff potential exhibited by soils with very 

low infiltration rates such as clay. According to Morisawa (1959), first-order channel 

frequency expresses the small-scale properties of a basin which complements G1. Higher 

number of first-order channels will carry more water into the main channel and, thus, 

shows increasing trend with flashiness in Figure 5.6(c). Greater imperviousness in a basin 

leads to greater percentage of rainfall converting into surface runoff as shown in Figure 

5.6(d). Finally, greater slope of a basin leads to lower travel time for runoff, and hence 

an increasing trend with flashness as observed in Figure 5.6(e) 

 

Figure 5.6: Relative contribution on flashiness by different geomorphologic parameters: 

(a) first moment of flow distance (G1), (b) basin curve number, (c) frequency of first-order 

channels, (d) impervious area, (e) slope index 
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5.4.3 Contrast between floods and flash floods 

Using the GAMLSS model, the event-based flashiness was characterized using 

rainfall and geomorphological variables. The model is used to further investigate how 

the influence of contributing processes change from floods to flash floods. Though, there 

is no universally accepted definition of distinguishing floods and flash floods, but, 

Saharia et al. (2016) has previously identified a flashiness value of 0.75 as a reasonable 

cutoff between floods and flash floods by fitting probability distribution functions 

between them based on actual NWS storm reports. Accepting this as the baseline, the 

equivalent cutoff for event-based flashiness was found to be 0.58. Accordingly, 33% of 

the lowest (<0.29) and 33% of the highest (>0.58) flashiness cases were selected for 

floods and flash floods respectively. Based on this cutoff, the GAMLSS model was 

refitted and percentage contribution of the two groups of variables, rainfall variability 

and geomorphology, were quantified. The comparative analysis was performed for three 

cases: all floods, floods, and flash floods and results are reported in Table 5.3. We found 

that the contribution of geomorphology to flashiness is almost twice that of rainfall 

variability for the entire dataset. But, a clear increase in the percentage contribution of 

rainfall variability from 34% to 43% was found for floods and flash floods respectively. 

Thus, the percentage contribution of rainfall spatial variability on flashiness is 9% more 

for flash floods compared to floods. This clearly underscores the importance of 

accounting for rainfall spatial variability for modeling at flash flood scales and, so far as 

the authors are aware, is the first quantification of this dependence varying with scale. 

 

Table 5.3: Percentage contribution of rainfall variability and geomorphology to flashiness 
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for all floods, floods, and flash floods. 

 

Dataset Percentage contribution to flashiness 

Rainfall variability Geomorphology 

All floods 35% 65% 

Floods (Flashiness <0.75) 34% 66% 

Flash Floods (≥0.75) 43% 57% 

 

 

Figure 5.7: Scatter plot of modeled versus observed flashiness. Correlation R=0.72 

 



92  

5.5 Conclusions 

The goal of this study is to quantify the impact of rainfall spatial variability on flash 

flood severity through a big data approach using a large dataset of observations. A robust 

methodology of including many rainfall spatial variability indices and morphological 

variables in analyzing 9,392 flooding events improves upon existing body knowledge 

replying on case studies and simulations. Complex relationships between the flashiness 

and a large number of explanatory variables such as the moments of rainfall and flow 

distance, spatial variability indices found in Zoccatelli et al. (2011) and Emmanuel et al. 

(2015), and geomorphologic factors were modeled using a multidimensional framework 

called GAMLSS. Along with the variability of these relationships, the relative influences 

of these factors on flashiness were also quantified, thereby, yielding an improved 

understanding of these dependencies. The findings are summarized below: 

1. Large number of variables were used to model event flashiness, and zeroeth 

moment of catchment rainfall or basin-averaged rainfall, vertical gap, first-

moment of flow distance, and curve number were found to be the most impactful. 

2. Among rainfall spatial variables, the flashiest floods ae caused by a combination 

of high basin average rainfall (P0), unimodal rainfall distribution along flow 

distance (Δ2), and greater concentration of rainfall over a small part of the 

catchment (VG). 

3. The systematic part of the multidimensional model yielded a correlation of 0.72 

between modeled and observed flashiness. 

4. The relative percentage contribution of rainfall spatial variability on flashiness 

increased from 34% to 43% for floods to flash floods.  
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This work proposes a general overview of the impact of rainfall spatial variability on 

flash flood severity. In future, this framework will be extended to propose indices that 

better capture the spatial variability of rainfall within a basin. 
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Chapter 6.  Summary and Future Work 

Flash floods are a leading cause of fatalities caused by natural disasters 

worldwide. Characterizing floods and flash floods is the key to understanding the 

dominant mechanisms impacting flooding based on a multitude of rainfall, physiographic 

and climatologic variables at different spatial and temporal scales. However, this is 

difficult due to the inherently multidimensional and non-linear relationships that these 

processes exhibit. In this work, different aspects of the hydrograph, such as the flooding 

rise time, unit peak discharge, and flood severity were characterized over the 

conterminous United States using a big data approach. This large events sample approach 

requires intensive data collection. Different geospatial datasets were utilized to compute 

geophysical attributes at continental scale.  

A unique database of USGS observations combined with NWS flood stage 

thresholds was used to perform the most spatial and temporally comprehensive 

characterization of floods in the United States. The monthly frequency of floods was 

found to greatly change depending on climate classes. The envelope curves were 

developed for unit peak discharges and basin area that were found to be consistent with 

those reported for Europe and worldwide in the literature.  

Next, a new variable called “flashiness” was proposed as a proxy for flash flood 

severity of a basin. The variable was modeled using a large number of explanatory 

variables covering geomorphology and climatology. The multi-dimensional GAMLSS 

model showing a correlation of 0.83 and bias of 0.6% during the calibration exercise was 

used to map the flashiness variable all over CONUS. Several hotspots were identified 

within known flash flood prone regions but also some that were outside the areas covered 
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by observations, including the western slopes of the Appalachians in Tennessee, 

Kentucky, and West Virginia.  

And, finally, the impact of spatial organization of rainfall on event-level flash 

flood severity was investigated using the high-resolution MRMS reanalysis precipitation 

dataset. The systematic part of the model yielded a correlation of 0.72 between modeled 

and observed flashiness at event scale and the relative percentage contribution of rainfall 

spatial variability on flashiness increased by 9% from floods to flash floods. 

The hypotheses proposed in Chapter 1 were confirmed as information regarding 

geomorphology, climatic regimes, rainfall spatial variability, soil type, land use/land 

cover etc. was useful in explaining trends in unit peak discharges, flooding rise time, flash 

flood severity etc. The relationships were explored using both unidimensional approaches 

such as quantile plots and envelope curves as well as multi-dimensional modeling using 

GAMLSS. The model for basin-median flashiness was found to be skillful enough to 

reliably regionalize the variable outside the observation dataset. The results were 

successfully verified using flash flood fatalities and the NWS storm database. The model 

for event-level flashiness was also found to have sufficient explanatory power to 

systematically disaggregate the impact of rainfall spatial variability and physiographic 

variables.  

The analysis framework presented herein is only a first-step towards improved 

characterization of flash floods. Several research endeavors are currently underway to 

explore other aspects of flooding such as the time of concentration of a basin and 

recession time. New rainfall spatial variables that describe the spatial organization of 

rainfall are being developed that accounts for precipitation intermittency. The flash flood 
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severity map would be connected to fatalities, demographic, and economic data to 

produce a CONUS-wide flood vulnerability map. The overarching goal is to augment 

the existing database and use sophisticated modeling techniques to improve predictions 

in gauged and ungauged locations. Moreover, the geomorphological and climatological 

variables included in this study can be computed globally and the flooding data available 

over the US is geographically diverse, thus the model could be extended to predict 

flashiness globally. 

Improved understanding of the dependence of hydrologic process on organization of 

rainfall and geomorphology at catchment scale will be useful in improving physics-based 

hydrological models. Threshold values of the rainfall spatial variability indices will 

identify basins most amenable to distributed hydrologic modeling where significant 

variability in spatial rainfall lead to corresponding variability in basin response. Since 

this study determines the relative importance of different spatial variability and 

geomorphological indices in flash flooding, it could be used to improve upon the spatial 

flash flood guidance (SFFG) approach proposed by Douinot et al. (2016) which currently 

only uses the first and second scaled spatial moments proposed by Zoccatelli et al. 

(2010). 

In the future, this analysis framework could be extended to serve as a baseline for 

evaluating distributed hydrologic model simulations from the Flooded Locations And 

Simulated Hydrographs Project (FLASH) (Gourley et al., 2017) under a variety of 

conditions. The flash flood climatologies derived from the hydrologic model could be 

verified for consistency against results in this study explaining the relative impact of 



97  

rainfall and geomorphology on flooding. The framework will also be extended to 

propose indices that better capture the spatial variability of rainfall within a basin.  
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