UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PERFORMANCE MONITORING AND ANALYSIS OF GEOSYNTHETIC REINFORCED SOIL INTEGRATED BRIDGE SYSTEMS (GRS-IBS) IN

OKLAHOMA

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

LUIS PENA CASTANEDA Norman, Oklahoma 2017

PERFORMANCE MONITORING AND ANALYSIS OF GEOSYNTHETIC REINFORCED SOIL INTEGRATED BRIDGE SYSTEMS (GRS-IBS) IN OKLAHOMA

A THESIS APPROVED FOR THE SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE

 $\mathbf{B}\mathbf{Y}$

Dr. Kianoosh Hatami, Chair

Dr. Amy B. Cerato

Dr. Kanthasamy Muraleetharan

© Copyright by LUIS PENA CASTANEDA 2017 All Rights Reserved. Dedicated to my professors, my family, my wife and to the very life, that never stops showing me the right path.

Table of Contents

List of I	Figure	sviii
List of 7	Fables	xix
Chapter	1.	Introduction 1
1.1	Ba	ckground1
1.2	Ne	ed for the Study
1.3	Stı	udy Objectives and Tasks
1.4	Th	esis Layout
Chapter	2.	Literature Review
2.1	Ba	ckground on GRS-IBS 6
2.2	GF	RS-IBS Adams et al. (2012) guidelines
2.3	Ad	lvantages and Limitations11
2.4	De	sign Requirements 12
2.5	Ca	se Studies15
	2.5.1	BR 1-366 Bridge and BR 3-140, Delaware
	2.5.2	Palestine Road, Kentucky
	2.5.3	Cecil Creek, Big Lake, Cut off Creek, Louisiana
	2.5.4	CR12, CR24, CR35 and others, New York
	2.5.5	Ohkay Owingeh Tribe, New Mexico
2.6	Pe	rformance Monitoring techniques 46
,	2.6.1	Total Stations theodolite
	2.6.2	Inclinometers
2.7	Pe	rformance monitoring Case Studies 52

2.7.1	BR 1-366, Delaware
2.7.2	Cecil Creek, Big Lake, Cut off Creek, Louisiana56
2.7.3	CR-55 Bridge, Minnesota
2.7.4	Rustic Road Bridge, Missouri 60
2.7.5	Mount Pleasant, Pennsylvania
2.7.6	STH 40 Bloomer Bridge, Wisconsin
Chapter 3.	Analysis of Data on Surveyed GRS-IBS Projects
3.1 W	Vebpage-based Database of GRS-IBS Projects in the U.S
3.2 C	ost70
3.3 Fa	acing Type and Superstructure Type74
3.4 T	raffic Volume AADT
3.5 Pe	erformance Monitoring
3.6 R	eported Problems and Lessons Learned in Different States
3.7 C	onclusions and Recommendations from Experiences in Different States . 85
Chapter 4.	GRS-IBS Bridges in Ottawa County, Lincoln County, and Kay County,
OK	89
4.1 G	eneral information of one GRS-IBS bridge in Ottawa County, Oklahoma89
4.2 G	eneral information of one GRS-IBS bridge in Lincoln County, Oklahoma.
4.3 C	onstruction of one GRS-IBS bridge in Lincoln County, Oklahoma
4.4 C	ost analysis of one GRS-IBS bridge in Lincoln County, Oklahoma 101
4.5 G	eneral Information of the studied bridges in Kay County, Oklahoma 106
4.6 G	eotechnical Data of Kay County, Oklahoma 112

4.7 Hydraul	ic Considerations of four GRS-IBS bridges in Kay County,
Oklahor	na 120
4.8 Construe	ction Phase of two conventional bridges and four GRS-IBS bridges
in Kay C	County, Oklahoma121
4.9 Cost and	l Summary data of GRS-IBS bridge in Kay County, OK 132
4.10 Perform	ance Monitoring of GRS-IBS Bridges and Comparable
Convent	ional Bridges in Kay County, OK133
4.10.1 Wea	ther Data 133
4.10.2 Loca	al Seismicity
4.10.3 Alte	rnative Monitoring Systems Examined for Kay County Bridges 137
4.10.4 Surv	rey with Total Station Theodolite (TST)140
4.10.5 Bend	chmark installation and control Points146
4.11 Survey l	Results for GRS-IBS bridges and Comparable Conventional Bridges
in Kay C	County, OK154
4.11.1 Brid	ge No. 1
4.11.2 Brid	ge No. 2 157
4.11.3 Brid	ge No. 3
4.11.4 Brid	ge No. 4
4.11.5 Brid	ge No. 5
4.11.6 Brid	ge No. 6
Chapter 5. Num	nerical Modeling of Kay County Bridge No. 2 GRS Abutment 184
5.1 Introduc	tion
5.2 Model C	Configuration and Material Properties

5.3	Model Input	190
5.4	Preprocessing Algorithm	192
5.5	Material Properties	193
5.6	Parametric Study in the Numerical Model for Bridge No. 2	195
5.6	5.1 Influence of Different Facing Blocks	195
Chapter 6.	. Conclusions and Recommendations for Future Work	210
6.1	Summary and Conclusions	210
6.2	Recommendations for Future Work	215

List of Figures

Figure 1: Yearly and cumulative number of GRS-IBS bridges constructed vs year7
Figure 2: Typical GRS-IBS cross section (Adams et al. 2012)
Figure 3: (a) well-graded 21-A gravel; (b) Open-graded AASHTO No. 89 gravel
(Adams et al. 2012)
Figure 4: Requirements for GRS abutment backfill: (a) Well-graded (VDOT 21-A); (b)
Open-graded (AASHTO No. 89)
Figure 5: Split-Face CMU hollow blocks for GRS abutment systems (Adams et al.
2012)
Figure 6: Flowchart of FHWA recommended design steps for GRS-IBS (Adams et al.
2012)
Figure 7: GRS-IBS standard plans (Adams et al. 2012)
Figure 8. Completed and ongoing GRS-IBS projects across the U.S
Figure 9: BR 3-140 project in Sussex County, Delaware: (a) Original structure; (b)
Original structure after Hurricane Sandy in 2012; (c) New GRS-IBS bridge (Walls
2014)
Figure 10: BR 1-366 project in Newcastle County, Delaware: (a) Previous bridge; (b)
New GRS-IBS Bridge (Benton 2014)
Figure 11: Design drawings of the BR 3-140 Bridge (Walls 2014) 19
Figure 12: Design drawings of the BR 1-366 Bridge: (a) Bridge plan; (b) Bridge
elevation (Talebi et al. 2014); (c) Cross section of BR 1-366 Bridge abutment (Benton
2014)

Figure 13: Lateral and vertical loads on a GRS abutment (Talebi et al. 2014)...... 21

Figure 14: Soil properties and stratigraphy from one of the boreholes at the BR 1-366
bridge site (Talebi et al. 2014)
Figure 15: Construction of BR 1-366: (a) East abutment; (b) west abutment (Talebi et
al. 2014)
Figure 16: GRS-IBS construction in Palestine road north of Campbellsville in Taylor
County, Kentucky: (a) Stage 1:Demolition of old bridge; (b) Stage 2: Placement of first
row of CMU blocks; (c) Stage 3: Construction of GRS abutment; (d) Stage 4:
Preparation for placement of bridge deck; (e) Stage 5: Placement of bridge deck (f)
Stage 6: Finalizing the integrated approach and the roadway surface; (g) New GRS-IBS
bridge (Sweger 2014)
Figure 17: Example GRS-IBS projects, Louisiana (Meunier 2013)
Figure 18: Example GRS-IBS projects in St. Lawrence County, NY: (a) CR 12 Project;
(b) CR 24 or Leonard Brook; (c) CR 31 or Brandy Brook; (d) CR 35 or Trout Brook;
(e) CR 38 or Plum Brook; (f) CR 25 or Little River; (g) CR 40 or Hutchins Creek;
(h) River Road, and (i) Fraser Road or Oswegatchie River (Bogart 2013)
Figure 19: White Swan GRS-IBS Bridge in Ohkay Owingeh Pueblo, New Mexico: (a)
Aerial views of the location; (b) Existing bridge prior to the construction (Albert 2015,
Peters 2015)
Figure 20: White Swan Bridge during construction in Ohkay Owingeh Pueblo, New
Mexico: (a) Abutment construction; (b), (c) Superstructure installation (Albert 2015,
Meyer 2015)
Figure 21: Completed White Swan Bridge in Ohkay Owingeh Pueblo, New Mexico
(Albert 2015)

Figure 22: Standard survey level method to measure superstructure and wall settlement
(Adams et al. 2012)
Figure 23: (a) In-Place Inclinometer (IPI); (b) Inclinometer Probe System (Durham
2014)
Figure 24: Inclinometers used in the BR 1-366 Bridge in Delaware (Talebi et al. 2014)
Figure 25: Three 5-foot inclinometer casings snapped together during installation on a
bridge abutment in Delaware (Vennapusa 2012) 51
Figure 26: Instrumented plan for the 1-366 GRS-IBS bridge abutments in Delaware
(Talebi et al.2014)
Figure 27: Survey points on the abutment of 1-366 Bridge in Delaware (Talebi et
al.2014)
Figure 28: (a) Inclinometers and their site installation at the site in Delaware;
(b)Piezometers and their site installation; (c) Pressure cells and their site installation;
(d)Strain gauges and their site installation; (e) Thermistors and their site installation;
(f)Volumetric moisture content sensors (Talebi et al. 2014)
Figure 29: Plan view of GRS-IBS project in Rock County Minnesota; (b) Elevation
view of GRS-IBS project in Rock County Minnesota (Budge et al. 2014) 58
Figure 30: North abutment construction photographs for the CR-55 Bridge in Minnesota
(Budge et al. 2014)
Figure 31: Instrumentation plans for the Rustic Road Bridge in Boone County, Missouri
(a) Earth pressure cells; (b) Tensitometers; (c) Reflective targets
Figure 32: Surveying points for Mount Pleasant Road GRS bridge (Albert 2011) 63

х

Figure 33: Surveying set up use to measure the deformation of the GRS bridge in
Wisconsin (Garnier-Villarreal et al. 2014)
Figure 34: Surveying reflective target installed on abutment wall for STH 40 Bloomer
Bridge (Garnier-Villarreal et al. 2014)
Figure 35: Locations of survey points on the STH 40 over Hey Creek Bridge in
Wisconsin (Garnier-Villarreal et al. 2014)
Figure 36: Nomenclature and description of survey points for the STH 40 over Hey
Creek Bridge in Wisconsin (Garnier-Villarreal et al. 2014)
Figure 37: Screenshots of GRS-IBS webpage (under construction): (a) Index U.S. map
highlighting states with GRS-IBS projects; (b) Example GRS-IBS bridges in California
Figure 38: Cost vs Span Length (Cost < \$600,000): (a) SI units; (b) Imperial units 71
Figure 39: Histogram: (a) Span length (m); (b) Cost (\$)72
Figure 40: Cost vs Abutment Height: (a) SI units; (b) Imperial units
Figure 41: Histogram abutment height (m)
Figure 42: Pie chart distribution of facing types reported in the surveyed GRS-IBS
projects (From a total of 144 projects)75
Figure 43: Pie chart distribution of facing types reported in the surveyed GRS-IBS
projects (From a total of 77 projects)77
Figure 44: Classification of reported roads according to their AADT value
Figure 45: Pie chart distribution of monitoring types reported in the surveyed GRS-IBS
projects (From a total of 46 projects)

Figure 46: Screenshots of GRS-IBS webpage (under construction): Example features
and Lessons Learned GRS-IBS bridges in Delaware
Figure 47: First GRS-IBS Bridge in Ottawa County, Oklahoma, built in 2013
Figure 48: Issues observed in the first GRS-IBS bridge in Ottawa County, OK,
including leaning wing walls, gaps in facing blocks and exposed geotextile
reinforcement. (Photographs courtesy of C. Westlund, PE)
Figure 49: Lincoln County, OK location92
Figure 50: On-site preconstruction meeting on June 9, 2016 at Yates Bridge in Lincoln
County
Figure 51: Yates Bridge site after demolition of old bridge and excavation for new GRS
abutments
Figure 52: Placement of the first row of CMU blocks (Yates Bridge, 7/11/2016)95
Figure 53: Pumping of flood water out of the GRS abutment site, and placement of a
new reinforcement layer on the top of the RSF96
Figure 54: Construction of concrete deck at Yates Bridge, Lincoln County, OK96
Figure 55: GRS-IBS Yates Bridge over Spring Creek in Lincoln County, OK; (a) Title
sheet; (b) Typical sections; (c) General plan & elevation; (d) Superstructure details; (e)
Cover sheet; (f) Design dimensions and quantities; (g) Plan and elevation, facing block
schedule; (h) GRS-IBS details
Figure 56: Side-by-side comparison between GRS-IBS Yates Bridge over Spring Creek
(Left) and pile-supported Guilliam Bridge over Kickapoo Creek (Right) in Lincoln
County, OK: (a) Plan and elevation views; (b) Design data and bill of quantities 102

Figure 57: Bid tables for comparable bridge projects in Lincoln County, OK: (a) GRS-
IBS Yates Bridge over Spring Creek; (b) Pile-supported Guilliam Bridge over Kickapoo
Creek
Figure 58: General location of Kaw Nation bridge project (44 th Street) in Kay County,
Oklahoma 106
Figure 59: Locations of GRS-IBS bridges in Kay County 107
Figure 60: (a) Old and (b) New Bridge No. 2 (Photographs Courtesy of Mr. Tom
Simpson, PE) 108
Figure 61: (a) Old and (b) New Bridge No. 3 (Photographs Courtesy of Mr. Tom
Simpson, PE)
Figure 62: (a) Old and (b) New Bridge No. 4 (Photographs Courtesy of Mr. Tom
Simpson, PE)
Figure 63: (a) Old and (b) New Bridge No. 5 (Photographs Courtesy of Mr. Tom
Simpson, PE) 111
Figure 64: Geographical location of single-span: (a) Bridge 2-'B'; (b) Bridge 3-'C'; (c)
Bridge4-'D'; (D) Bridge 5-'E'; over Dry Creek in Kay County, OK (METCO 2012)
Figure 65: Fences of borings Based on geotechnical engineering report by METCO,
2012)
Figure 66: Hand auger samples taken from near an abutment of Bridge No. 5 down to a
depth of 4.27m. Numbers indicate the sampling depth in ft. (e.g. Sample No. 14 was
taken from the last foot of the borehole between 3.96 m and 4.27 m below ground
surface)

Figure 67: Visual classification of soil samples taken from a borehole at the location of
Bridge No. 5 following ASTM D2488 test protocol 119
Figure 68: Gravimetric water content results for the soil samples from a borehole at the
site of Bridge No. 5
Figure 69: As-built drawings for GRS-IBS Bridge No. 2 in Kay County 123
Figure 70: Bridge No. 1 - conventional abutment support with H-Piles driven to bedrock
Figure 71: Bridge No. 2 - GRS-IBS with an 18 inwide concrete-filled steel channel as
the bearing pad for the steel girders
Figure 72: Bridge No. 3 - GRS-IBS under construction with sheet pile facing
Figure 73: Bridge No. 5 - GRS-IBS with concrete block facing (geotextile
reinforcement needs to be trimmed)
Figure 74: Bridge No. 6 - Bridge on conventional pile support under construction 125
Figure 75: A GRS-IBS (Bridge No. 3) under construction near Blackwell in Kay
County with sheet piling for the abutment facing 126
Figure 76: Different stages of GRS-IBS construction near Blackwell in Kay County,
OK (photographs courtesy of Mr. Tom Simpson, PE)
Figure 77: Completed Bridge No. 3 (GRS-IBS) with sheet pile facing (red circle
indicates a 22 skew in the alignment of the bridge superstructure) 129
Figure 78: Completed Bridge No. 5 bridge (GRS-IBS) with sheet pile abutment facing
Figure 79: Completed Bridge No. 5 bridge (GRS-IBS) with sheet pile abutment facing

Figure 80: Completed Bridge No. 6 (conventional abutments on H-Piles driven to
bedrock but with sheet pile abutment facing)
Figure 81: Oklahoma seismicity data from 1973 to June 24, 2016 (USGS 2016) 135
Figure 82: Seismicity data for Kay County during the period beween 2014 and May 31,
2016 (USGS 2016)
Figure 83: Initial inclinometer plans for conventional and GRS-IBS bridges: (a) $-$ (d)
Figure 84: Recommended grout mix for the inclinometer boreholes and installation
process (RST 1997) 139
Figure 85: (a) Total Station Topcon GTS-211D used in this study to survey and monitor
the deformations of GRS-IBS and conventional bridges; (b) GPS Garmin - 72H 141
Figure 86: Bridges Nos. 1 & 2 with pilot survey points
Figure 87: TopoCal contour lines for Bridge No. 2 144
Figure 88: Higher resolution TopoCal contour lines for Bridge No. 2 145
Figure 89: Locations of the benchmarks: (a) Bridge No. 1; (b) Bridge No. 2; (c) Bridge
No.3 and Bridge No. 4; (d) Bridge No. 5; (e) Bridge No. 6 (Google Earth 2016) 149
Figure 90: Transverse axis for bridges 1,3,4,5 and 6 :(a) South Axis-SS; (b) Center
Axis- CC; (c) North Axis -NN 150
Figure 91: Marked control points: (a) Bridge No. 1; (b) Bridge No. 2; (c) Bridge No.3;
(d) Bridge No.4; (e) Bridge No. 5;(f) Bridge No.6
Figure 92: Coordinates of surveyed points on south, center and north axis of Bridge
No.1 relative to BM11

Figure 93: Coordinates of surveyed points on south axis of Bridge No.2 relative to
BM22
Figure 94: Coordinates of surveyed points on south center axis of Bridge No.2 relative
to BM22
Figure 95: Coordinates of surveyed points on north center axis of Bridge No.2 relative
to BM22
Figure 96: Coordinates of surveyed points on north axis of Bridge No. 2 relative to
BM22
Figure 97: Vertical movements of Bridge No. 2 superstructure based on the survey of its
two ends and the center over a 7-month period:
Figure 98: Differential vertical movements (ΔZ) of Bridge No. 2 superstructure based
on surveyed data of its mid-span and abutment ends over a $6\frac{1}{2}$ month period: (a) – (e)
Figure 99: Coordinates of surveyed points on south, center and north axis of Bridge
No.3 relative to BM31
Figure 100: Coordinates of surveyed points on south, center and north axis of Bridge
No.4 relative to BM31
Figure 101: Coordinates of surveyed points on south, center and north axis of Bridge
No.5 relative to BM51
Figure 102: Coordinates of surveyed points on south axis of Bridge No.6 relative to
BM61
Figure 103: Coordinates of surveyed points on center axis of Bridge No.6 relative to
BM61

Figure 104: Coordinates of surveyed points on north axis of Bridge No.6 relative to
BM61
Figure 105: Detailed as-built cross-section of the GRS-IBS Bridge No. 2 in Kay County
(Ngo 2016)
Figure 106: Construction stages in numerical modeling of GRS-IBS Bridge No. 2 (all
dimensions are in ft.) (Hatami et al. 2015; Ngo 2016)
Figure 107: Numerical modeling of Bridge No. 2 (Ngo 2016; Hatami et al. 2016) 189
Figure 108: GRS-IBS abutments model input: (a) Simplified design sketch defining
model geometry; (b) Geometry input parameters;(c) Materials input parameters 191
Figure 109: GRS-IBS abutments model: (a) Simplified design sketch for preprocessing
algortihm; (b) Geometry and material parameters calculated by the FLAC model 193
Figure 110: GRS-IBS FLAC models: (a) 8 in. \times 8 in. \times 8 in. CMU block facing; (b) 16
in. \times 24 in. \times 24 in.; and (c) 24 in. \times 24 in. \times 48 in. 'Dolese' block facing (1 inch = 25.4
mm)
Figure 111: Predicted bridge settlements at the end of construction and under equivalent
traffic load in numerical models with: (a) 8 in. \times 8 in. CMU block facing; (b) 16 in. \times 24
in. block facing ;(1 inch = 25.4 mm)
Figure 112: Predicted facing deflections at the end of construction and under equivalent
traffic load in numerical models with: (a) 8 in. x 8 in. CMU block facing; (b) 16 in. \times 24
in. block facing; ;(1 inch = 25.4 mm)
Figure 113: Comparison of the predicted foundation pressure in the numerical models
with 8 in. \times 8 in. CMU and 16 in. \times 24 in. block facing: (a) end of construction (Stage

6); (b) Under traffic load (Stage 7) using 280 psf (13.2 kPa) equivalent surcharge (100
kPa = 2.1 tsf)
Figure 114: Predicted reinforcement loads in the GRS abutment models when subjected
to equivalent traffic load: (a) Model with 8 in. \times 8 in. CMU block facing; (b) Model
with 16 in. \times 24 in. CMU block facing (1 lb/ft = 14.6 N/m)
Figure 115: Comparison of GRS-IBS numerical models with 8 in. \times 8 in. CMU and 24
in. \times 24 in. block facing at the end of construction (Stage 4) and subjected to 65.32 kPa
(1,365 psf) bridge load (Stage 6): (a) reinforcement load (N/m); (b) settlement contours
(m); and (c) contours of lateral deformation (m)
Figure 116:Comparison of GRS-IBS numerical models with 8 in. \times 8 in. CMU and 24
in. \times 24 in. 'Dolese' block facing at the end of construction (Stage 6) and subjected to
13.2 kPa (280 psf) traffic load: reinforcement load (N/m); (b) settlement contours (m);
and (c) contours of lateral deformation (m) 208
Figure 117: Numerical model of GRS-IBS abutments for Bridge No. 2 in Kay County:
(a) predicted axial loads and (b) predicted axial strains
Figure 118: Comparison of predicted axial loads in GRS-IBS numerical models with 8
in. \times 8 in. CMU and 24 in. \times 24 in. facing at end of construction and subjected to
service load. Loading applied in the model includes equivalent uniform surcharge load
due to traffic (Stage 7) Figure 107 209

List of Tables

Table 1: Summary of GRS-IBS guidelines form Adams et al. (2012)
Table 2: Summary table design features of GRS-IBS projects in Delaware 17
Table 3: 1-366 Bridge design loads (Talebi et al. 2014) 21
Table 4: Loading data for BR 1-366 Bridge in Delaware 22
Table 5: TerraTex High Performance Geotextile (HPG-57) properties used in the 1-366
project (Hanes Geo Components)
Table 6: Summary table of materials used in GRS-IBS projects in Delaware
Table 7: Summary table for hydraulic data in Delaware
Table 8: Summary table design features of GRS-IBS project in Kentucky 26
Table 9: Summary table of GRS-IBS bridges design features in Louisiana
Table 10: Summary table design features of GRS-IBS projects in St. Lawrence County,
New York
Table 11: Summary table of GRS-IBS projects design features in New Mexico
Table 12: White Swan GRS-IBS Bridge in Ohkay Owingeh Pueblo, New Mexico
(Albert 2015): (a) Summary information; (b) Estimated cost savings as compared to
conventional design; (c) Actual monetary savings relative to the allocated budget; (d)
Labor cost savings; (e) Time savings
Table 13: Summary of different monitoring instruments used in GRS-IBS projects
surveyed in this study (Hatami et al. 2015; Ngo 2016)
Table 14: Sensor types, locations, and quantities used in 1-366 GRS-IBS abutments
(Talebi et al. 2014)

Table 15: Summary of instrumentation and monitoring of settlements in the selected
GRS-IBS projects in Louisiana
Table 16: Summary table for the CR-55 Bridge design features in Minnesota
Table 17: Instrumentation monitoring for the CR 55 Bridge in Minnesota 58
Table 18: Summary of GRS-IBS bridges in Missouri
Table 19: Performance monitoring for Mount Pleasant Road Bridge in Clearfield
County, Pennsylvania
Table 20: Summary of Clearfield County GRS bridge vertical settlement (Albert 2011)
Table 21: Summary of monitoring of settlements in STH 40 over Hey creek project 64
Table 22. Cost vs Span Length linear regression 71
Table 23: Updated GRS-IBS facing types (Hatami et al. 2015; Ngo 2016)
Table 24: GRS-IBS superstructure types 77
Table 25: Statistics on AADT values GRS-IBS project across the U.S
Table 26: Selected GRS-IBS bridges with a reported performance monitoring program
(Hatami et al. 2015; Hatami et al. 2016; Ngo 2016)
Table 27: Reported problems and lessons learned in GRS-IBS construction across the
U.S. (Hatami et al. 2015; Hatami et al. 2016; Ngo 2016)
Table 28: Comparison of recommended GRS-IBS specifications per the FHWA
guidelines (Adams et al. 2012) with those reported in constructed projects across the
United States (Hatami et al. 2015; Hatami et al. 2016; Ngo 2016)
Table 29: Structural types of decks and abutments used in Kay County bridges (Hatami
et al. 2016)

Table 30: Scour countermeasure information on GRS-IBS projects in Oklahoma 120
Table 31: Updated information on the 6 bridges in Kay County, OK 132
Table 32: Summary data on the six bridges in Kay County, OK 133
Table 33: Historical weather data for the geographical location of GRS-IBS bridges
near Blackwell in Kay County during the period between 1985 and 2015 134
Table 34: Inclinometer grout
Table 35: Topcon GTS-211D measurement modes
Table 36: Coordinates of the benchmark and control points as obtained using the
Garmin GPS141
Table 37: Survey points initially considered for Bridges Nos.1 & 2
Table 38: Survey coordinates on Bridge No. 2 (in meters)
Table 39: Coordinates of benchmark used to survey Kay County bridges 146
Table 40: Coordinates of surveyed points on Bridge No. 1 154
Table 41: Coordinates of surveyed points on south axis of Bridge No. 2
Table 42: Coordinates of surveyed points on south center axis of Bridge No. 2 161
Table 43: Coordinates of surveyed points on north center axis of Bridge No. 2 163
Table 44: Coordinates of surveyed points on north axis of bridge No. 2
Table 45: Coordinates of surveyed points on Bridge No. 3 171
Table 46: Coordinates of surveyed points on Bridge No. 4 174
Table 47: Coordinates of surveyed points on Bridge No. 5 177
Table 48: Coordinates of surveyed points on south axis of Bridge No.6
Table 49: Coordinates of surveyed points on center axis of Bridge No.6
Table 50: Coordinates of surveyed points on north axis of Bridge No.6

able 51: Properties of materials used in FLAC simulation of GRS-IBS projects (Ng	;0
016)	4
able 52: Solid CMU properties in GRS-IBS numerical (FLAC) models 19	6
able 53: Static loading conditions (applied pressure) in GRS-IBS numerical (FLAG	2)
nodels (1 kPa = 20.89 psf; 1 kgf/m ³ = 0.062 pcf)	6

Abstract

In 2013, the University of Oklahoma, together with the Oklahoma Department of Transportation (ODOT) and the Oklahoma Bureau of Indian Affairs (BIA), started a feasibility study of GRS-IBS, which had been promoted by the FHWA as a costeffective solution to repair and/or rebuild bridges with spans that were primarily shorter than 25 m (80 ft). This technology also eliminates the "bump at the end of the bridge", which reduces the maintenance/repair cost of bridges without an integrated approach roadway. The purpose of this study was to continue the work by Hatami et al. (2016) and Ngo (2016) by performing the following tasks: (1) continuing the survey of documented GRS-IBS in the U.S., (2) performance (i.e. settlement) monitoring of six bridges (i.e. four GRS-IBS and two conventional) that were built in Kay County, OK within a one-mile segment of 44th Street near Blackwell, OK (Hatami et al., 2016; Ngo, 2016); (3) developing a numerical model for the analysis of GRS-IBS systems; and (4) developing the framework for an interactive online database for all of the documented GRS-IBS projects surveyed in this study (some 144 projects). The database of documented GRS-IBS projects in the U.S. (with the ancillary online website upon completion) together with the numerical simulation tool is helpful to ODOT and other departments of transportation in examining the costs and benefits of GRS-IBS as a potential solution for future bridge construction projects in Oklahoma and other states. Currently, GRS-IBS has been proven to be a cost-effective solution for bridge spans less than 25 m (80 ft) on county and local roads only. However, it is expected that through further development of this technology, and continued reports of its successful performance, its use and acceptance across the country will become more widespread.

Chapter 1. Introduction

1.1 Background

According to the 2015 National Bridge Inventory (FHWA 2016), 58,495 bridges are classified as structurally deficient. This number represents 9.6% of the total national inventory. The state of Oklahoma has been classified for three consecutive years (2013-2015) as the third state with the most structurally deficient bridges. From a total of 23,049 bridges reported for this state, 3,776 are classified as deficient. This number denotes 16.4%. Additionally, many existing bridges in the U.S. are not only structurally deficient but functionally obsolete (ASCE 2013). Another important issue, even with bridges that are currently in service, is the formation of a bump at the transition to the roadway, which stems from differential settlements between the abutments and the approach embankment. As early as 1997, state Departments of Transportation (DOTs) across the United States have collectively been contributing more than one hundred million dollars in research annually to try to resolve this problem on 150,000 bridges across the nation (Briaud et al 1997). In 2009, after the 2008 economic crisis, GRS-IBS became part of a program launched by the Federal Highway Administration (FHWA) in cooperation with the American Association of State Highway and Transportation Officials (AASHTO) called Every Day Counts (EDC); whose main initiative is to speed up the delivery of highway projects, and encourage creative and innovative solutions to address the challenge of dealing with very limited budgets. Geosynthetic Reinforced Soil - Integrated Bridges (GRS-IBS) emerged among the different successful technologies recognized in EDC-1, EDC-2 and EDC-3 because the technology provided

an efficient, innovative, and economic solution to the reconstruction of many short, single-span bridges in lessened time (Adams et al 2011; Adams et al. 2012).

1.2 Need for the Study

Finding long-lasting, stable, cost-effective, and efficient solutions to transportationrelated problems is a priority for any of the federal agencies working with roads and highways, especially in periods of more limited budgets. Considering this, GRS-IBS technology has proven to be an effective approach for constructing new bridges or replacing deficient ones located on local and rural roads. Specifically, in the state of Oklahoma, where rural roadways compose more than 50% of the state roads, GRS-IBS provide an achievable solution to the budgetary issues associated with building new bridges or replacing old ones in many county and local roadways. Therefore, from the investigation point of view, there is a need to cover more extensively the advantages, challenges, and fundamentals of GRS-IBS technology. Hence, this study emerged as a need for a better comprehension of this technique based on three main reasons: First, to determine the feasibility of GRS-IBS bridges in Oklahoma, a comprehensive study of all the GRS-IBS bridges successfully built in the U.S. needs to be performed, and a database with the bridge locations and characteristics need to be constructed in order to gather all the information available from them. It is necessary that this database can be easily accessed and maintained in a web-page environment; Secondly, as GRS-IBS has already been used in several small bridges in Oklahoma, there is a need to monitor and document these projects over time to determine the feasibility of this technology in future projects. Furthermore, there is a need to determine if the current FHWA

guidelines are adequate, or need to be adapted when implementing GRS-IBS technology for building future bridges in Oklahoma; Finally, a numerical model was developed to analyze the influences of selected design factors on the performance of GRS-IBS bridge systems.

1.3 Study Objectives and Tasks

The main objective of this thesis was to study the feasibility and cost efficiency of GRS-IBS projects, relative to conventional deep foundation bridges on selected county roads in Oklahoma. The scope of this study primarily includes a side-by-side comparison of four (4) GRS-IBS projects with two (2) conventional bridges in close vicinity of one another in Kay County, OK, which provided a unique field study within the United States. To achieve this purpose, the following tasks were defined and performed:

- Gathered and included information on 15 additional documented cases from across the U.S. in the database of GRS-IBS projects that had been developed in collaboration with Ngo (2016).
- Collected all the available information on the GRS-IBS bridges in Kay County and Lincoln County, including design plans, materials, geotechnical reports, construction periods, cost, construction, and performance monitoring, through local users and engineers' feedback. Two methods were used to obtain this information: (1) Direct contact with Mr. Tom Simpson, P.E., at the Bureau of Indian Affairs (BIA) in Anadarko, Oklahoma, and (2)

on-site documentation and performance monitoring, before, during and after the construction.

- Carried out a monitoring program to measure and document the serviceability performance of the four (4) GRS-IBS and two (2) conventional bridges in Kay County, OK by periodically visiting the sites and surveying the bridges.
- Developed a numerical model that upon further development and validation can be used as a design tool for GRS-IBS bridges based on bridge geometry and initial designing parameters.

1.4 Thesis Layout

This thesis is comprised of six chapters. Chapter 1 includes the background, need for the study, study objectives and the layout of the thesis.

Chapter 2 provides an introduction and background on the GRS-IBS technology, including its design requirements, FHWA guidelines (Adams et al. 2012), advantages, limitations, and design requirements. Selected case studies are provided for a more extensive explanation of the performance of the GRS-IBS systems.

Chapter 3 includes details on the development of a database and an ancillary webpage, which contain information on a total of 144 documented GRS-IBS from across the U.S., including cost, facing type, superstructure, average daily traffic, and performance monitoring measures.

Chapter 4 discusses monitoring of two (2) conventional and four (4) GRS-IBS bridges in Kay County, OK, as well as brief documentation of one (1) GRS-IBS bridge in Lincoln County, OK. Chapter 5 provides a detailed description of the numerical model developed using the Fast Lagrangian Analysis of Continua (FLAC) Software (Itasca, 2011), and the results of a parametric study.

Finally, Chapter 6 summarizes the findings and conclusions of the previous five chapters and provides recommendations for future work according to this study.

Chapter 2. Literature Review

This chapter consists of a general explanation of GRS-IBS technology. It covers a literature review that includes a description of the method, its benefits, basic elements, and requirements. It concludes by presenting several case studies of GRS-IBS projects in the U.S.

2.1 Background on GRS-IBS

In ancient times, constructors used straw and plant matter to improve soil's tensile strength (Adams et al. 2012). This technique evolved over the years and brought about mechanically stabilized earth walls (MSE) in the 1960s and geosynthetic reinforced soil abutments (GRS) in the 1980s. Although both technologies use reinforcement for cost reduction and improve the tension within soil structures, MSE is affected by steel corrosion over time. Geosynthetic Reinforced Soil-integrates Bridge System (GRS-IBS) is a fast, cost-effective method of bridge support that merges the roadway into the superstructure to eliminate joints between the bridge and the approach slab. This method of accelerated bridge construction (ABC) involves the following three basic components: (1) modular facing, (2) compacted granular fill, and (3) tightly-spaced geosynthetic reinforcement layers. In addition: GRS reduces lateral deflection, limits dilation, and enhances confinement. GRS-IBS emerged recently as a cost and time saving bridge construction technique. It was selected as part of the FHWA EDC-1, EDC-2, and EDC-3 initiatives (Figure 1; Alzamora et al. 2015). Additionally, it has been used in the construction or reconstruction of over 250 bridges across the U.S.

Figure 1: Yearly and cumulative number of GRS-IBS bridges constructed vs year

2.2 GRS-IBS Adams et al. (2012) guidelines

GRS-IBS has three main components (**Figure 2**): (1) the integrated approach, which incorporates the approach section of the roadway with the bridge superstructure, in order to generate a joint-less transition between the bridge and the roadway; (2) the abutment, which is comprised by modular facing elements, compacted granular fill and a set of tightly-spaced geosynthetic reinforcement layers which will be described in the following sections; and (3) the reinforced soil foundation (RSF). Additionally, Adams et al. (2012) recommends that GRS-IBS bridges should be designed using the AASHTO LRFD method (AASHTO 2014). The dead loads on the GRS abutment include the weights of the bridge superstructure, roadway pavement, and the integrated approach. Surcharge load includes the structural backfill of the road base. The traffic and truck loads are included as a live load on the approach pavement and the bridge superstructure.

Figure 2: Typical GRS-IBS cross section (Adams et al. 2012)

The backfill of the abutments is design to support traffic load in which backfill contributes significantly. Open or well-graded aggregate, (**Figure 3**) or a combination of both can be used as backfill material. Adams et al. (2012) recommends that it is better if the aggregate is angular, which will provide greater shear strength, and that its gradation should allow for optimum compaction, workability, and drainage. Additionally, either aggregate used (**Figure 4**) should be compacted to achieve a minimum of 95% of maximum dry unit weight based on the AASHTO T-99 (Standard Proctor) procedure. It is common practice to use open-graded type rather than well-graded type for the RSF and abutment backfill.

Figure 3: (a) well-graded 21-A gravel; (b) Open-graded AASHTO No. 89 gravel (Adams et al. 2012)

Gradation (VDOT 21-A)	U.S. Sieve Size	Percent Passing	Gradation (AASHTO M-43)	U.S. Sieve Size	Percent Passing
	2 inch	100		¹ / ₂ inch	100
	1 inch	94–100		³ /s inch	90-100
	³ / ₈ inch	63-72		No. 4	20-55
	No. 10	32-41		No. 8	5-30
	No. 40	14-24		No. 16	0-10
	No. 200	6-12		No. 50	0-5
Plasticity Index (PI) (AASSHTO T-90)	0 PI≤6		Plasticity Index (PI) (AASHTO T-90)	PI ≤ 6	
Soundness (AASHTO T-104)	The backfill shall be substantially free of shale or other poor durability particles. The material shall have a magnesium sulfate loss of less than 30 percent after four cycles (or a sodium value less than 15 percent after five cycles).		Soundness (AASHTO T-104)	The backfill shall be substantially free of shale or other poor durability particles. The material shall have a magnesium sulfate loss of less than 30 percent after four cycles (or a sodium value less than 15 percent after five cycles).	

Figure 4: Requirements for GRS abutment backfill: (a) Well-graded (VDOT 21-A); (b) Open-graded (AASHTO No. 89)

The abutment facing element serves two purposes: provide a formwork for backfill compaction and also serves as facade that protects the granular fill from outside weathering. The split face concrete masonry unit (CMU), with nominal dimensions of 203.2 mm \times 203.2 mm \times 406.4 mm (8 in. \times 8 in. \times 16 in.), is the most commonly used facing element for the GRS abutment (**Figure 5**). This facing element is required to have a minimum compressive strength of 27,579 KPa (4,000 psi) and a water absorption limit of 5%. Finally, for proper construction of the abutment, it is necessary that the first row of facing blocks is properly aligned and that the backfill directly behind the facing is adequately compacted.

Figure 5: Split-Face CMU hollow blocks for GRS abutment systems (Adams et al. 2012)

Adams et al. (2012) recommends the use of geotextiles for the integrated approach, and geotextiles or a geogrid for the GRS abutments. The reinforcement must have a minimum ultimate strength of 70KN/m (4,800 lb/ft.) Several reported projects have been built using biaxially woven polypropylene geotextiles for the reinforcement. Additionally, Alzamora (2014) suggested the following construction guidelines that contractors should be aware of when placing geosynthetic reinforcement: (1) It must be rolled out with strong direction perpendicular to the abutment face, (2) wrinkles must be removed and material cannot overlap, especially at the facing, (3) it must be extended to connecting devices inside the facing, or to a minimum of 75% of the block width, (4) it must not be overlapped or tied, and (5) it must be trimmed at the facing of the blocks.

2.3 Advantages and Limitations

GRS-IBS technology has several major advantages over conventional construction techniques including cost, efficiency, and environmental benefits. The following features summarizes its advantages: (1) it's an environmentally friendly technique with minimal impact on the environment, (2) it eliminates the need for installing deep foundations or cast-in-place (CIP) concrete, (3) the cost savings can potentially be between 25% and 60% compared to that of conventional bridges, (4) reduced construction time, (5) uses readily available materials and equipment, (6) eliminates the "bump" at the end of the bridge, creating a smoother and safer transition from the bridge to the road, (7) improved durability, (8) flexible design that can be easily field-modified for unforeseen site conditions, and (9) improved seismic performance (Adams et al. 2012; Alzamora 2015), among others. These benefits make this technology a feasible alternative to the conventional methods of constructing new bridges, or replacing old ones. However, **Table 1** shows limitations presented by Adams et al. (2012)

Specification	Recommendation	Reference
Abutment height	*Less than 30 ft.	Adams et al. 2012, p.25
Maximum span length	*140 ft.	Adams et al. 2012, p.25
Reinforcement spacing	*Less than 12 in.	Adams et al. 2012, p.27
Facing elements	*A common option includes (8 in. × 8 in. × 16 in.) Concrete Masonry Units (CMU) with a minimum compressive strength of 4,000 psi and water absorption limit of 5%	Adams et al. 2012, p.16
GRS abutment backfill	*Friction angle (Ø) should be no less than 38° *Maximum aggregate size between 0.5 in and 2 in with fines content less than 12%	Adams et al. 2012, p.18
Geosynthetic	*Should be at least 4,800 lb/ft for GRS load-bearing	Adams et al.

Table 1: Summary of GRS-IBS guidelines form Adams et al. (2012)

Specification	Recommendation	Reference
ultimate tensile	applications	2012, p.21
strength		
Design code	*All federal-aid funded projects should be designed using the AASHTO Load and Resistance Factor Design	Adams et al. $2012 \text{ p } 27$
	(LRFD) method	2012, p.27
Denth of	*Should equal one-quarter the total width of the GRS	
excavation for	abutment base including the block face	Adams et al
the DSE	*Additional excavation may be necessary depending on	2012 n 27
(DRSF)	the soil condition (e.g., compressible soils) and should be	2012, p.27
	determined by the engineer	
	*FHWA Hydraulic Engineering Circulars, (HEC 23):	
	recommended for smaller, more culvert-like structures	
	(flow length through structure is longer than structure	
Potential scour	width)	Adams et al.
	*FHWA Hydraulic Engineering Circulars, (HEC 18 and	2012, p.32
	20): Recommended for larger, more bridge-like	
	structures (opening length is greater than the flow length	
	through the structure)	
Seismic design	*GRS abutments are expected to perform well in medium	Adams et al.
Seisine design	earthquakes.	2012, p.73

2.4 Design Requirements

Figure 6 shows the recommended design steps by Adams et al. (2012).

Figure 6: Flowchart of FHWA recommended design steps for GRS-IBS (Adams et al. 2012)
			E O E	TDANCDODT	A TT			STATE PROJ	OECT SHET
U. S. 1	DEPARTN	AEN.	I OF	TRANSPORT	ATT	ON		FHWA G	SRS-IBS A
FEDE	ERAL HIC	GHW	AY .	ADMINISTRA'	TIO	N _			
		15	OF TRANSP				INDEX T	O SHEETS	
PRELIMINARY		L'AY	DN	A 8510		~~··	COVER SHEET AND NOT	5	
NOT FOR		8		N 10		в.	QUANTITIES & DESIGN	DIMENSIONS	
CONSTRUCTION		76	STATES OF ANE			C.	PLAN AND ELEVATION F	ACING BLOCK SCH	IEDULE
		GR	S-II	3S		D.	GRS-IBS ABUTMENT DE	TAILS	
	D	ESIGN	I DRA	WINGS					
			2011						
GENERAL NOTES							The error used for the		
PURPOSE: These example plan Sheets A through D were prepared to illustrate the braical contrasts of a set of drawlags percentage of a GPS-JPS project. Precented in	7. Settlement below	the RSF is as	sumed to be	negligible. No differential	supersti nads arr	ructure can be posit resized for less than	ioned on the GRS abutm 4.000 psf pear the face	ent provided the or of the abutment w	outrigger vall. Greater
these plans are the assumptions for the bridge and GRS-IBS systems with typical wall heights (H) ranging from 10 to 24 feet. Two conditions were prepared for the	8. Sliding checke we	en abutments re conducted	is assumed at the top a	nd bottom of the RSE to	loads co checked	ould be supported wi d by the Engineer of	th increasing distance fi Record. An additional la	om the abutment I ayout of geosynthe	face if thic
quantity estimate Sheet B: "poor soil conditions" and "favorable soil conditions". INTENDED USE: These plans are not associated with a specific project. All	meet the minimur	m factors of s	afety in the	reference manual.	reinforci to provi	ement can be place ide additional protec	d between the beam sea tion of the beam seat.	t and the concrete Set beams square a	or steel beams and level
amensions and properties should be confirmed and/or revised by the Engineer of Record prior to use. Project specifications should be prepared to supplement this plan set	Road base thickne pavement thickne	ess (h _{rb}) assui 155.	mes a 32-ind	h structure and 2-inch	9. Integrat	ted Approach Placen	pent: Following the place	ement of the super	rstructure.
prese and					geotexti built in i	tile reinforcement lay maximum lift height	vers are placed along the 's of 6-inches (maximum	e back of the super vertical spacing of	rstructure, f
DESIGN DESIGN LOADS AND SOIL PROPERTIES	CONSTRUCTION SPE	ECIFICATIO	NS		reinforci 2-Inches	s below the top of the	The top of the final wra be superstructure to allo	p should be approx w at least 2-inches	ximately s of aggregate
Combined load: Superstructure (qLL + qB) 2 TSF maximum (service load, allowable stress design). Roadway live load surcharge: 250 psf uniform vertical	 Site Layout/Survey 1.0 inch of the stak 	r: Construct th ked elevations	he base of the bas	e GRS abutment and wingwalls within the external GRS abutment and	REINFOR	RCING STEEL	theat to protect it from	noc mix asphaic.	
Road Base unit weight = 140 pcf, thickness = 34-inches	wingwalls to within	±0.5 inches	of the surve	ved stake dimensions.	Provi CMU BLC	ide reinforcing steel	conforming to ASTM A6.	15, GR. 60.	
"Poor" Soil Conditions: Retained backfill: Unit weight= 125 pcf, friction angle= 34°, cohesion = 0 psf,	 Excavation: Compl for all excavations. 	y with Occupa	itional saret	y and Health Administration (USHA)	In co	older climates, freeze	-thaw test (ASTM C126	2-10) should be co	oncluded
(Cohesion ≥ 200 psf assumed for temporary back slope cut conditions during construction.) during 1.0 instea	 Compaction: Comp density according t 	oact backfill to to AASHTO-T-	a minimum 99 and ± 2	of 95 percent of the maximum dry percent optimum moisture content In	speci at th	ification (ASTM C13) the face of the blocks	72). Additives can be us if they are at locations s	ed to reduce efflor	rescence chemicals.
Reinforced fill: Unit weight=115 pcf, friction angle = 38°, cohesion = 0 psf RSF backfill: Unit weight = 140 pcf, friction angle = 38°, cohesion = 0 psf	the bearing reinform according to AASH	cement zone, TO-T-99. Onl	compact to y hand-oper	100 percent of the maximum dry density ated compaction equipment is allowed	Comp	presive strength = 4	.000 psi minimum		
Foundation soil: Unit weight = 125 pcf, friction angle = 30°, cohesion = 0 psf	CMU blocks, coveri	ing $\geq 85\%$ of	the full widt	h of the block to the front face of the wall.	Water H block	r absorption limit = $k = 7\%^{*}$ L block =	5 % 15% " $b_{block} = 7\%$ "		
Retained backfill: Unit weight = 125 pcf, friction angle = 40°, cohesion = 100 psf deux= 2 0.5inches	 Geosynthetic Reinf any wrinkles and la 	forcement Plac ay flat prior to	placing and	the geosynthetic taught to remove compacting the backfill material.	Note: joint t	: In many construct to create an in place	ion applications CMU blo nominal dimension of 8	icks are placed with " x 8" x 16".	h a ¾" mortar
Foundation soil: Unit weight = 125 pcf, friction angle = 40°, cohesion = 100 psf Reinforced fill: Unit weight = 120 pcf, friction angle = 42°, cohesion =0 psf	Splices should be s bearing reinforcem	taggered at le lent zone. No	east 24-inch equipment	es apart and splices are not allowed in the is allowed directly on the geosynthetic.	REINFO	RCED BACKFILL GR	ADATION		
RSF backfill: Unit weight = 120 pcf, friction angle = 42°, cohesion = 0 psf	equipment over the sudden braking or	e geosynthetik sharp turning	c at speeds i	ess than 5 miles per hour with no	Reint Bridg GRS	ge System Interim II CMU minimal dimer	nion = see Geosynthetii nplementation Guide, Ti nions to be the same.	able 1 or Table 2.	Consider
1. Geosynthetic Reinforced Spil Integrated Bridge System Interim Implementation	5. RSF Construction:	The RSF show	uld be encap	sulated in geotextile reinforcement	GEOSYA	NTHETIC REINFORCE	EMENT TENSILE PROPER	TIES	
Guide, FHWA-HRT-11-026, January 2011.	on all sides with m corners need to be than 6-inches in co	inimum overla tight without ampacted bein	aps of 3.0 fe exposed so abt. Grade av	et to prevent water infiltration. Wrapped I. Compact backfill material in lifts less ad level the top of the BSE prior to final	Requ or AS	uired ultimate tensile STM D 6637 (geographic tile strength at 200	n strength = 4,800 lb/ft ids)) train = 1,370 lb/ft	by (ASTM D 4595 ((geotextiles)
Design methods follow the ASD design methods presented in Chapter 4 of the reference Manual. No seismic design assumed.	encapsulation, as t abutment.	this will serve	as the level	ng pad for the CMU blocks of the GRS	POLYST	YRENE FOAM BOARD	D		
 Conduct a subsurface investigation in accordance with "Soils and Foundations", FHWA-NHI-06-088 (2006) and "Subsurface Investigations", FHWA-NHI-01-031. 	6. GRS Wall Face Alig	nment: Chec	k for level a	ignment of the CMU block row at	Prov	vide polystyrene foa	m board conforming to A	ASHTO M230, type	e VI.
(2006).	greater than 0.25 i	ayer or the GA inches.	is abutment	Correct any alignment deviations			U.S. DEPA FEDERAL	RTMENT OF TRANSPORTA HIGHWAY ADMINISTRAT	ATION TION
 Design factor of safety against sliding is ≥ 1.5; Factor of safety against bearing failure is ≥ 2.5. 	 Beam Seat Placem approximately 8 to 	ent: Generall 12 inches an	ly, the thick d consists of	ess of the beam seat is a minimum of two 4-inch lifts of wrapped	1-		WESTERN FEI	DERAL LANDS HIGHWAY I	DIVISION
 A global stability analysis must be performed for each site. Factor of safety against global failure is to be ≥ 1.5. 	face GRS. Place pr reinforcement butt beight (depending)	recut 4-inch th against the b	hick foam bo lack face of i	ard on the top of the bearing bed he CMU block. Set half-height or full ad clear space) solid CMU blocks on				GRS-IBS	
 Performance criteria: tolerable vertical strain = 0.5% of wall height (H): televable lateral strain = 0.0% of h and a (hand a strain strain strain). 	top of the foam bo Before folding the l	ard. Wrap tw final wrap, it i	o approxima may be nece	tely 4-inch lifts across the beam seat. ssary to grade the surface aggregate			co	VER SHEET	
coverable lateral strain = 1.0% or b and a_b (bearing width and setback)	of the beam seat si superstructure and	lightly high, to to maximize	o about 0.5 contact with	nches, to aid in seating the the bearing area.					
	AD ICIONC	DESIGNED BY	00 0101 81		60416	COLUMN TEAM FADER	PRIDOS DO MIGNO	6475	00000000000
NU. UNITE DT REVISIONS NO. DATE BY 03/25/11 Revision 1	REVISIONS	FHWA	C. TUTTLE	R. BARROWS, B. COLLINS, M. DODSON, M. ELIAS A. ALZAMORA, J. NICKS	NTS	M. ADAMS	1 of 4	04/2011	LHORWING NO.

Figure 7 sh	ows a summary	of standard	plans rep	ported by	Adams et al.	(2012)
-------------	---------------	-------------	-----------	-----------	--------------	--------

		GRS	IBS Poor	Soil Con	dition Q	antites Per	Abutme	nt 1/					GR	S-IBS F	Poor S	oil Con	ndition	DESIG	IN DIM	ENSIC	NS		
HEXSHT (H) (FT)	ROAD BASE h _{it} THICKNESS (IN)	GEOSYNTHETIC REINFROCEMENT (SQYD)	CMU BLOCK HOLLOW (EA)	CMU BLOCK SOLID	#4 REBAR (FT)	GRS BACKALL (CUYD)	RSF FILL (CUYD)	FOAM BOARD (SQFT)	ROAD BASE AGGREGATE (CUYD)	CONCRETE BLOCK WALL FILL (CUYD)	WALL HEIGHT (PI)	WINGWALL LENGTH, L	₫/ ď.,	a.,	ь	ь,	Btater	В	B _{RSF}	D _{RSP}	x _{RSF}	ABUT WIDTH	WINGW L HEIGI
			2	2 cherry	2					2	(FT)	(FT)	(IN)	(IN)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)
10.42	34	1200	755	320	705	287	52	18	54	2.0	10.42	15.63	3	7.6	2.5	3.83	9.5	8.86	11.88	2.38	2.38	37.76	14.0
12.32	34	1700	1000	335	750	399	73	18	63	2.1	12.32	18.23	3	7.6	2.5	3.83	11.0	10.36	13.75	2.75	2.75	37.76	15.8
14.31	34	2100	1220	340	775	509	94	18	68	2.1	14.31	19.53	- 4	7.6	2.5	3.83	12.5	11.86	15.63	3.13	3.13	37.76	17.7
16.22	34	2700	1510	355	820	655	123	18	77	2.2	16.22	22.14	- 4	7.6	2.5	3.83	14.0	73.36	17.50	3.50	3.50	37.76	19.7
18.21	34	3200	1760	360	845	793	154	36	82	2.3	18.21	23.44	5	7.6	2.5	3.83	15.5	14.86	19.38	4.00	3.88	37.76	21.6
20.12	34	4000	2095	375	890	973	187	36	92	2.3	20.11	26.04	5	7.6	2.5	3.83	17.0	16.36	21.25	4.25	4.25	37.76	23.5
22.1	34	4600	2375	380	910	1139	220	36	96	2.4	22.10	27.34	6	7.6	2.5	3.83	18.5	17.86	23.13	4.63	4.63	37.76	25.4
24.01	34	5600	2745	395	960	1354	267	.36	105	2.5	24.01	29.95	6	7.6	2.5	3.83	20.0	19.36	25.00	5.00	5.00	37.76	27.8
		GRS-IBS ABBL	TMENT F	avorable	Soil Co	ndition Quar	tities Pe	r Abutme	nt ^{1/}				GRS-I	BS Fav	orable	SoilC	onditio	on DES	SIGN D	MENS	IONS		
HEIGHT (H) (FEET)	ROAD BASE h _{rb} THICKNESS (IN)	GEOSTNTHETIC REINFROCEMENT (SQYD)	CMU BLOCK HOLLOW (EACH)	CMU BLOCK SOLID	#4 REBAR (FEET)	GRS BACKFILL (CUYD)	RSF FILL (CUYD)	FOAM BOARD (SQFT)	ROAD BASE AGGREGATE (CUYD)	CONCRETE BLOCK WALL FILL (CUYD)	WALL HEIGHT (H)	WINGWALL LENGTH, L=	4/ d.	(8 ₄)	b	b,	Braw	B	Base	Dage	Xasr	ABUT WDTH	WINGW HEIGP
			2	2.	ź.					a.	(FT)	(FT)	(IN)	(11)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT;	(FT)	(FT)
10.42	34	1000	755	320	705	176	24	18	54	2.0	10.42	15.63	3	7.6	2.5	3.83	6.0	5.36	7.50	1.50	1.50	37.76	14.0
12.32	34	1400	1000	335	750	242	26	18	63	2.1	12.32	18.23	3	7.6	2.5	3.83	6.0	5.36	7.50	1.50	1.50	37.76	15.8
14.31	34	1700	1220	340	775	305	27	18	68	2.1	14.31	19.53	4	7.6	25	3.83	6.0	5.36	7.50	1.50	1.50	37.76	17.7
16.22	34	2200	1510	355	820	394	29	18	77	2.2	16.22	22.14	4	7.6	25	3.83	6.0	5.36	7.50	1.50	1.50	37.76	19.7
18.21	34	2700	1760	360	845	483	35	36	82	2.3	18.21	23.44	5	7.6	2.5	3.83	6.5	5.86	8.13	1.63	1.63	37.76	21.6
20.12	34	3400	2095	375	890	605	43	36	92	2.3	20.11	26.04	5	7.6	2.5	3.83	7.0	6.36	8.75	1.75	1.75	37.76	23.5
22.1	34	4000	2375	380	910	715	50	36	.96	2.4	22.10	27.34	6	7.6	25	3.83	7.5	6.86	9.38	1.88	1.88	37.76	25.4
24.01	34	4800	2745	395	960	865	60	36	106	2.5	24.01	29.95	6	7.6	2.5	3.63	8.0	7.36	10.00	2.00	2.00	37.76	27.8
CMU block from estin (5-feet as: height: co and at the coping at t flush conc the beam of these d Maximum (Hasok) In reinforcen Geosynthe FOOTNO	assumptions: so lated sour eleva sumed here): sol sumed bi: hollow bi top of the wall o the top row of ex- rete fill in the CM seat below the cl stat below the cl stat below the cl stat spacing of reinforced backfi hent ≤ 6-inches is this reinforcement this reinforcement TES:	lid blocks at the i tion to 100-year (d blocks in setba locks for remainin f guardwall and a tis assumed 3 row f guardwall and a posed CMU at ab US at the top of posed CMU at ab US at the top of ar zone. Assimut bearing bed zor t quantity include	base of the i flood event ck location t g wall heigi rs deep belo t all corners utment wall the abutmer ext C and D = height of s n vertical sp e and integ s RSF and Il	GRS abutr elevation to beam si to and gue w bearing to well casi and wingy to wall unce for illustra to CMU bio accing of rated appo BS geotex	nent sat irdrail pad vall: ser stions ck ck ck tile quanti	ties.	PRE	LIMIN OT FO TRUC	ARY R TION		θ _b B b b b b b c a b r b c a b r b c a b c a b c a b c a b c a b c b c c a b b b b	A Set back of element a Base long the wall fi Bearing w Width of t Width of c Length of Width of F Total widt including	IBREVIA distance nd bear th of re ace idth for he bridg CMU bearing tSF h at ba the wal	NTIONS: t betwee n seat inforcen bridge, bridge, t bed rei se of GR facing	n back sent noi beam s nforcen S abuti	of facin t includi wat nent ment	g k ng L	H = $h_{rb} =$ $h_{rb} =$ IBS = L = $L_{abut} =$ ploce = RSF = $X_{RSF} =$	Wall hei of beam Height of Super st Integra Length Abutme Length Wingwa Reinford Length	ight mei seat of CMU of road I tructure ted Brid of geosy int width of CMU ill length ced soil of RSF I	asured f base (ex and pa ige Syst inthetic t foundat n front	rom top o quals heig vernent ti em reinforce tion of the abo	of RSF to tht of hickness ment utment v
Foam boa	ateo materiais qu ying plan sheets. I void the quantit rd thickness is 4-	ianuties correspo Deviation from (ies. inches (typ.).	na to the di he dimensia	nensions ins on the	plan						CMU de	 Concrete : Clear spaces superstruction Maximum 	masonry ce from cture.	r unit top of w	all to b	ottom o	e e		W	U.S. DEI FEDER IESTERN F	ARTHENT	OF TRANSP AY ADMINIS ANDS HIGHI	ORTATION TRATION WAY DEVTS
	os in geosyntheti	cs measured for a	quantities.								dmax	backfill	partica	aamet	er in re	intorced					GRS	5-IBS	
No overtaj																							

Figure 7: GRS-IBS standard plans (Adams et al. 2012)

2.5 Case Studies

This research project started in summer of 2013. The majority of results and case studies where published by Ngo (2016), Hatami et al. (2015), and Hatami et al. (2016). The author of this document contributed to the initial database by optimizing and maintaining it since January 2015, when joining the research group. Additionally, the author started the development of an online tool which will be explained in Section *3.1* – *Webpage-based Database of GRS-IBS Projects in the U.S.* To date, we identified three (3) ongoing and 144 completed GRS-IBS bridges in 39 different states, Puerto Rico, and the District of Columbia (**Figure 8**).

Figure 8. Completed and ongoing GRS-IBS projects across the U.S

Based on the results of the literature review, the following main parameters of the bridges where selected as the primary criterion to be reported, analyzed and compared: (1) Identification, (2) State, (3) Region, (4) County, (5) Bridge Name, (6) Geometry (e.g. length of spans, abutment height, width, and area), (7) Cost, (8) Completion year, (9) Superstructure and facing type, and (10) Reference and/or source of the information. This information will be subsequently used to identify trends, good practices, and improvement potentials that will help in the design and construction process of new bridges in Oklahoma and other states. This study presents the general information of some highlighted GRS-IBS cases, in addition to the cases reported by Ngo (2016). Additionally, this study includes the most used surveying techniques and performance monitoring information of some surveyed cases across U.S

2.5.1 BR 1-366 Bridge and BR 3-140, Delaware

Delaware reported the construction of two (2) GRS-IBS bridges: (1) BR 3-140 Bridge in Sussex County (**Figure 9**), and (2) BR 1-366 Bridge in Newcastle County (**Figure 10**). BR 1-366 Bridge was constructed in 2013 to replace an existing 77-year-old bridge, with an average daily traffic (ADT) value of 2,094. BR 3-140 in Sussex County was completed on April 11, 2014; a 13-year-old bridge, which was damaged, as result of the culverts being plugged by a large quantity of debris and branches after Hurricane Sandy in 2012. The Department of transportation of Delaware (DelDOT) received a grant from the Federal Highway Administration (FHWA) for \$300,00 to replace BR 1-366. With total costs of \$737,090 (Benton 2014) and \$419,634 (Walls 2014) for BR 1-366 and BR 3-140 respectively, bridges in Delaware cost less than half that of traditional bridges. Additionally, the bridges were constructed by Mumford and Miler Concrete, Inc. and George & Lynch, Inc. under DelDot supervision, providing local employment and experience (Benton 2014). **Table 2** shows selected data on the existing GRS-IBS bridges in Delaware.

Table 2: Summary table design features of GRS-IBS projects in Delaware

Bridge	Span m (ft)	Abutment Height m (ft)	Bridge Width m (ft)	Cost (\$)	Completion Year	AADT	Superstructure	Contractor
BR 3- 140	12.19 (40)	3.96 (13.0)	7.32 (24)	\$419,634	2014	125 in 2012	Precast concrete beam	George & Lynch, Inc.
BR 1- 366	11.28 (37)	4.75 (15.6)	12.19 (40)	\$737,090	2013	2094 in 2010	Adjacent precast concrete frame boxes	Mumford & Miller Concrete Inc.

(a)

(b)

(c)

Figure 9: BR 3-140 project in Sussex County, Delaware: (a) Original structure; (b) Original structure after Hurricane Sandy in 2012; (c) New GRS-IBS bridge (Walls 2014)

(a)

(b)

Figure 10: BR 1-366 project in Newcastle County, Delaware: (a) Previous bridge; (b) New GRS-IBS Bridge (Benton 2014)

Figure 11 through **Figure 12** show the plan and elevation views of BR 3-140 and BR 1-366.

Figure 11: Design drawings of the BR 3-140 Bridge (Walls 2014)

(a)

(c)

Figure 12: Design drawings of the BR 1-366 Bridge: (a) Bridge plan; (b) Bridge elevation (Talebi et al. 2014); (c) Cross section of BR 1-366 Bridge abutment (Benton 2014)

Information about loading on the GRS abutment of BR 1-366 is schematically shown in **Figure 13** (Talebi et al. 2014). Individual Design loads are given in **Table 3**. Magnitudes of total dead load and live load on the bridge abutments are 84.00 kPa (1.77 ksf) and (112.00 kPa) 2.35 ksf, respectively (**Table 4**).

Figure 13: Lateral and vertical loads on a GRS abutment (Talebi et al. 2014)

Loading	Notation	Value
Bridge DL KPa (ksf)	qb	73.20 (1.53)
Bridge LL KPa (ksf)	qLL	97.00 (2.04)
Roadway LL KPa (ksf)	qt	14.84 (0.31)
Road base DL KPa (ksf)	qrb	11.49 (0.24)
Weight of GRS abutment KN/m (klf)	W	2.15 (147.51)
Weight of reinforce soil foundation KN/m (klf)	WRSF	0.39 (26.85)
Lateral load (Retained backfill) KN/m (klf)	Fb	0.71 (48.61)
Lateral load (qrb effect) KN/m (klf)	Frb	0.17 (11.87)
Lateral load (qt effect) KN/m (klf)	Ft	0.22 (15.19)

Table 3: 1-366 Bridge design loads (Talebi et al. 2014)

Bridge	LL KPa (ksf)	DL KPa (ksf)
BR 1-366	112.51 (2.35)	1.77

Table 4: Loading data for BR 1-366 Bridge in Delaware

The bridge superstructures are precast concrete beams and adjacent precast concrete frame boxes respectively. As recommended by Adams et al. (2015), both solid and split-face, hollow 203.2 mm \times 203.2 mm \times 406.4 mm (8 in. \times 8 in. \times 16 in.) CMU blocks were used to protect the GRS structure. Also, the non-biodegradable TerraTex HPG-57 with an ultimate strength of 70kN/m (4,800 lb/ft) was used in the both projects.

Benton (2014) reported that No. 89 stone was specified. However, an open graded material with a select No. 8 stone was used for the GRS abutments, due to local availability. Crushed stone No. 8 with 3/8 in. to ½ in. aggregate size was used in the BR 1-366 project.

High performance geotextile Terra Tex HPG-57 was used in the BR 1-366 project, and in the BR 3-140 project. Both products are biaxial woven polypropylene geotextiles produced by Hanes Geo Components. They are also non-biodegradable with a minimum ultimate strength of 70 KN/m (4,800 lb/ft) (**Table 5**).

 Table 5: TerraTex High Performance Geotextile (HPG-57) properties used in the 1-366 project (Hanes Geo Components)

PROPERTY	TEST METHOD	ENGLISH	METRIC
Wide Width Tensile (Ultimate)	ASTM D4595	4,800 x 4,800 lbs/ft	70.0 x 70.0 kN/m
Wide Width Tensile (2% Strain)	ASTM D4595	960 x 1,320 lbs/ft	14.0 x 19.3 kN/m
Wide Width Tensile (5% Strain)	ASTM D4595	2,400 x 2,700 lbs/ft	35.0 x 39.4 kN/m
Permittivity ¹	ASTM D4491	0.400 sec ⁻¹	0.400 sec ⁻¹
Water Flow Rate ¹	ASTM D4491	30 gpm/ft ²	1,222 Lpm/m ²
AOS ^{1,2}	ASTM D4751	30 US Std. Sleve	0.600 mm
UV Resistance	ASTM D4355	80 % @ 500 hrs	80 % @ 500 hrs

		Backfi	11 M	aterials		Geosynthetic
Bridge/FHWA	Facing blocks	Materials	c'	φ'	Geosynthetic	Ultimate Strength-Tf KN/m (lb/ft)
FHWA Guidelines	Concrete Masonry Unit (CMU)	Well graded or open graded	0	$\Phi \ge 38^{\circ}$, well/open graded	*Either geogrid or geosynthetic *Most common is Biaxial Woven Polypropylene (PP) geotextile	≥ 70 KN/m (4,800)
BR 1-366	CMU red solid core and split- face hollow core blocks	No. 8 Stone	0	40°	*HPG-57 Geotextile	70 KN/m (4,800)
BR 3-140	Red solid core and voided CMUs	N/A	0	N/A	*Biaxial woven polypropylene Geotextile	70 KN/m (4,800)

Table 6: Summary table of materials used in GRS-IBS projects in Delaware

The geotechnical tests were reported by Talebi et al. (2014). Two boring logs were taken from each side of each abutment of the BR 1-366 bridge, which showed high blow counts. A total of six consolidation tests, two unconfined compression tests, 41 soil classification tests, and four UU triaxial shear tests were carried out to determine the properties of the subgrade soil. The test results identified the foundation soil as consisting of stiff clays, and medium to dense sands which are suitable for shallow foundation design. **Figure 14** shows soil properties from one of the boreholes.

Figure 14: Soil properties and stratigraphy from one of the boreholes at the BR 1-366 bridge site (Talebi et al. 2014)

The use of GRS as abutment requires proper hydraulic design. This includes the evaluation of long term aggradation and degradation, scour vulnerability, potential for lateral migration of stream and the calculation of contraction and abutment scour. The predicted depth of scour must be less than the permanent design value to insure the safety and durability of the bridge abutment. Both bridges BR 1-366 and 3-140 involve water crossings. Therefore, riprap was used as a scour countermeasure (**Table 7**).

Bridge	Scour (ft)	Service Under Bridge
FHWA	*Low scour potential, scour countermeasures: riprap aprons,	Either waterway
Guidelines	gabion mattresses, and articulated concrete blocks	or roadway
BR 1-366	*A riprap slope was placed against the facing block to armor the face of the wall against scour	Waterway
BR 3-140	*Riprap	Waterway

 Table 7: Summary table for hydraulic data in Delaware

Finally, Talebi et al. (2014) reported excavation and construction procedures in the BR 1-366 project (**Figure 15**). Construction of the east abutment started on March 22, 2013 and was completed in 14 days. Construction of the west abutment started on April 3, 2013 and was completed in 20 days. The entire project was completed in approximately seven (7) weeks, which was comparatively quick for a first-time experience. The construction crew did not include more than five (5) individuals: three (3) to four (4) laborers and one equipment operator. The equipment operator handled the bulldozer to excavate the soil in preparation for the RSF and the GRS abutment, and placement of the GRS fill.

(a)

(b)

Figure 15: Construction of BR 1-366: (a) East abutment; (b) west abutment (Talebi et al. 2014)

2.5.2 Palestine Road, Kentucky

During 2014, one GRS-IBS bridge was built in Kentucky to replace an older bridge that suffered from frequent flooding and was required to be closed regularly, in order to clear the resulting debris from the 18 in pipe culvert. The solution to these issues was to build a cost-effective bridge on a rural secondary road. The new bridge was built on Palestine road, north of Campbellsville in Taylor County, Kentucky.

Construction of the new bridge lasted less than three weeks, considering there was a one week delay for late material delivery, and a lack of details on the construction of the substructure. The materials used for the superstructure, were salvaged box beams left from another project, and for the facing: conventional CMU blocks were used. The bridge's design features are shown in **Table 8**.

Bridge	Span m (ft)	Width m (ft)	Skew (deg)	Cost (\$)	Completion Year	Superstructure	Type of environment
FHWA	≤42.7					Concrete or	Urban or
Guidelines	(140)	-	-	-	-	Steel	Rural
Palestine	16.8	7.6	5	114 000	2015	Salvaged box	Durol
Road	(55.0)	(25.0)	3	114,000	2015	beams	Kulai

Table 8: Summary table design features of GRS-IBS project in Kentucky

The bridge settlement was monitored by the staff, and was found to be negligible. It was determined that the GRS-IBS alternative saved 20% in cost when compared to a conventional solution. **Figure 16** shows the stages of construction of the GRS-IBS. It is important to note that it is essential to have adequate compaction in both the RSF and the GRS abutment, in order to meet strength and performance requirements.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 16: GRS-IBS construction in Palestine road north of Campbellsville in Taylor County, Kentucky: (a) Stage 1:Demolition of old bridge; (b) Stage 2: Placement of first row of CMU blocks; (c) Stage 3: Construction of GRS abutment; (d) Stage 4: Preparation for placement of bridge deck; (e) Stage 5: Placement of bridge deck (f) Stage 6: Finalizing the integrated approach and the roadway surface; (g) New GRS-IBS bridge (Sweger 2014)

2.5.3 Cecil Creek, Big Lake, Cut off Creek, Louisiana

The state of Louisiana has 6 GRS-IBS bridges. This makes it the lead state in number of GRS-IBS bridges for the South-East portion of the country. Out of those six, one was built to handle higher traffic in Saint Bernard County, two bridges were built to replace an old timber trestle bridge in Vermilion County and three bridges in Union County used to replace an old rail car bridge. (**Figure 17**)

These bridges comply with the span recommendations by Adams et al. (2012) for GRS-IBS bridges. The longest bridge is the one in Saint Bernard County with a span of 110 ft. The shortest one is in Vermilion County with a span of 9.1 m (30.0 ft). and finally, the three bridges in Union County have a span of 23.2 m (76.0 ft.)

The recommendations by Adams et al. (2012) for abutment height in GRS-IBS are 4.6 m (15.0 ft.), with a maximum of 9.1 m (30 ft.), while still being verifiably safe. The abutment heights reported for the bridges in Vermilion County, were 10 ft. for the Creek Bridge and 4.05 m (13.3 ft.) for the one at Maree Michel Bridge. The three GRS-IBS bridges in Union County saved 40% in construction expenses compared to pile-supported bridges (Meunier 2013).

All of these bridges built in the state of Louisiana are credited with being among the most efficient and cost-effective bridges of their size; proving that GRS-IBS technology is a great match for the state needs. The selected data on the existing GRS-IBS bridges in Louisiana is shown in **Table 9**.

(a)

(b)

Figure 17: Example GRS-IBS projects, Louisiana (Meunier 2013)

Bridge	Span m (ft)	Abutment Height m (ft)	Cost (\$)	Completion Year	Super structure	LL KN (kips)	DL KN (kips)	Geosynthetic
FHWA Guidelines	42.7 (140)	≤ 9.5 (30.0)	-	-	Concrete or Steel	-	-	Either geogrid or geosynthetic. Most common is Biaxial Woven Polypropylene (PP) geotextile in the abutment
Cecil Creek	23.1 (76)	N/A	40% less than pile- supporte d	2005	N/A	N/A	N/A	N/A
Big Lake	23.1 (76)	N/A	40% less than pile- supporte d	2005	N/A	N/A	N/A	N/A
Cut off Creek	23.1 (76)	N/A	40% less than pile- supporte d	2005	N/A	N/A	N/A	N/A
Yscloskey	33.5 (110)	N/A	N/A	2005	N/A	N/A	N/A	BX 1200 geogrid placed every 20 cm (8 in.) to 24 cm (10 in.) within reinforced stone footing
Creek	9.1 (30)	3.1 (10.0)	N/A	2005	Slab span bridge	1,054 (237) at beam seat	845 (190) at beam seat	N/A
Maree Michel	16.7 (65)	4.1 (13.3)	N/A	2005	steel girder	1,423 (320) at beam seat	1,254 (282) at beam seat	N/A

Table 9: Summary table of GRS-IBS bridges design features in Louisiana

2.5.4 CR12, CR24, CR35 and others, New York

St. Lawrence County in New York, is the leading county in the nation with regards to bridge technology. In 2013, the County reported to have 356 bridges, with 84 of them being deficient and in need of care. Of these deficient bridges, 26 were in critical condition and needed to be urgently replaced. The county put these on the priority replacement list and left the remaining 58 bridges in the corrective maintenance list (Bogart 2013). Two main reasons were considered for using GRS-IBS technology to build bridges in St Lawrence County: (1) The speed of building GRS-IBS bridges is faster than that of conventional bridges, and, (2) GRS-IBS technology has a lower construction cost than conventional bridges. GRS-IBS technology was chosen, since it represented the perfect solution when considering the large number of bridges St. Lawrence County needed to replace and the county's budget deficit.

All the GRS-IBS bridges built in St. Lawrence County were single span structures that were shorter than 43 m (140 ft.) of span, making them compliant with the recommendations by Adams et al. (2012). Several conditions were considered when establishing the span of each of these bridges such as hydraulic opening, setback for new abutment location, and bearing area. Of these bridges, the longest one was at Trout Brook with a 28.6 m (94-ft.) span, and the shortest was the CR12 project. Additionally, all the GRS-IBS bridges in this county fell within the advised abutment height by Adams et al. (2012) of 9.5 m (30 ft.) A good example is the CR12 project with an abutment height of 4.6 m (15 ft.) **Figure 18** shows examples of the GRS-IBS bridges built in St. Lawrence County.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 18: Example GRS-IBS projects in St. Lawrence County, NY: (a) CR 12 Project;
(b) CR 24 or Leonard Brook; (c) CR 31 or Brandy Brook; (d) CR 35 or Trout Brook;
(e) CR 38 or Plum Brook; (f) CR 25 or Little River; (g) CR 40 or Hutchins Creek;
(h) River Road, and (i) Fraser Road or Oswegatchie River (Bogart 2013)

The loading information of each of the bridges in St. Lawrence County was determined by the amount of traffic on the bridge. Per Adams et al. (2012), GRS-IBS bridges should be applied in low volume road construction. In the case of the bridges built in the state of New York, Hutchins Creek bridge presented the greatest average daily traffic with 2,334 vehicles per day. Most bridges in St. Lawrence county (13 of them), had an average daily traffic (ADT) of less than 1,000 vehicles per day. Regarding bridge widths, the widest were the CR12 and Leonard Brook projects with 10 m (33 ft.), and the narrowest was at Oswegatchie River. Note that Adams et al. (2012) does not specify any recommendation on the GRS-IBS bridge's width. Generally, GRS-IBS bridges cost between 30 % and 50% less than traditional bridges. In the state of New York, the most expensive GRS-IBS bridge was built in Chippewa Creek at a cost of \$373,000. The rest of the GRS-IBS bridges range from \$165,000 to \$320,000 in cost.

Most of the GRS-IBS bridges in St. Lawrence County were constructed using 203 mm \times 203 mm \times 406 mm (8 in. \times 8 in. \times 16 in.) CMU blocks as facing wall with existing concrete abutment and for those with water crossings there was rip rap on the sides (Bogart 2013).

Bogart (2013) reported four main lessons from the construction of these bridges: (1) In order to stay behind the existing abutment, the span must be increased and the additional costs will be compensated by the lack of a cofferdam, (2) RSF can be usually installed in dry conditions without constructing a cofferdam, (3) Environmental permitting is shortened to 10 days, and (3) Construction in water increases the cost.

NYDOT concluded that overall, GRS-IBS bridges provided better performance than conventional pile-cap foundation systems at a lower cost. For St. Lawrence County, 50% of the bridges could be replaced using this technology, saving around 50% of the costs. NYDOT recommended to keep the partial concrete abutment in place and have a dry construction zone for the reinforced soil foundation, in order to have cheaper and faster results. **Table 10** shows a summary of design features for 13 GRS-IBS bridges in St Lawrence County, NY

Bridge	Span (ff) m	Bridge Width m (ff)	Cost (\$)	Completion Year	Superstructure	ADT	Facing blocks	Scour	Service Under Bridge
HWA idelines	≤43.6 (140)	1			Concrete or Steel	Typical for low volume road	Concrete Masonry Unit (CMU)	Low scour potential, scour countermeasures: riprap aprons, gabion mattresses, and articulating concrete blocks	Waterway or Roadway
12 Project	12.4 (40.5)	10.6 (33)	\$240,000	2011	N/A	N/A	N/A	N/A	Waterway
R12 o. erna Creek	12.4 (40.5)	N/A	N/A	2009	N/A	N/A	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	Existing concrete abutment and rip rap on the sides	N/A
R24 o. Iard Brook	14.3 (47)	10.6 (33)	\$232,122	2010	Prestressed concrete, Box Beam or Girders - Multiple	580 (2011)	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	Existing concrete abutment and rip rap on the sides	Waterway
5 o. Trout Brook	20.1 (67)	10.6 (33)	\$310,000	2010	Prestressed concrete, Box Beam or Girders - Multiple	1369 (2001)	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	Existing concrete abutment and rip rap on the sides	Waterway
l o. Brandy Brook	17 (56)	6.1 (20)	Material cost \$165,000	2010	Prestressed concrete, Box Beam or Girders - Multiple	940 (2010)	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	Existing concrete abutment and rip rap on the sides	Waterway

 Table 10: Summary table design features of GRS-IBS projects in St. Lawrence County,

New York.

Service Under Bridge	Waterway	Waterway	N/A	Waterway	N/A	Waterway	N/A	Waterway
Scour	Existing concrete abutment and rip rap on the sides	N/A	N/A	Existing concrete abutment and rip rap on the sides	N/A	N/A	N/A	Existing concrete abutment and rip rap on the sides
Facing blocks	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	N/A	N/A	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	N/A	203 mm x 203 mm x 406 mm CMU and existing concrete abutment	N/A	203 mm x 203 mm x 406 mm CMU and existing concrete abutment
ADT	900 (2010)	560 (2009)	N/A	10 (2011)	N/A	2334 (2001)	N/A	630 (2010)
Superstructure	Prestressed concrete, Box <u>Beam</u> or Girders - Multiple	Prestressed concrete, Box Beam or Girders - Multiple	N/A	Prestressed concrete, Box Beam or Girders - Multiple	N/A	Prestressed concrete, Box Beam or Girders - Multiple	N/A	Prestressed concrete, Box Beam or Girders - Multiple
Completion Year	2010	2011	2011	2011	2011	2011	2011	2011
Cost (\$)	Material cost \$175,000	N/A	\$320,764	N/A	N/A	\$252,362	\$373,110	N/A
Bridge Width m (ff)	9.7 (32.0)	9.1 (30)	N/A	3.7 (12)	N/A	(9.7) 32	N/A	(7.3) 24.0
Span m (f t)	19.5 (63.5)	21.3 (70.0)	21.9 (72.0)	25.9 (85.0)	26.2 (88.0)	16.5 (54.0)	25.9 (95.0)	28.6 (94.0)
Bridge	CR38 o. Plum Brook	CR60 o. Little River	CR27 o. N. Br. Grasse River	Fraser Road o. Oswegatchie River	CR25 o. Little River	CR40 o. Hutchins Creek	CR3 o. Chippewa Creek	River Road O. Trout Brook

(cont'd)

2.5.5 Ohkay Owingeh Tribe, New Mexico

The first GRS-IBS bridge in New Mexico was built 48 km (30 miles) north of Santa Fe by the Ohkay Owingeh Tribe using local labor. This bridge replaced the one shown in **Figure 19**, which suffered from frequent flooding given its skewed angle. Additionally, the sufficiency rate of the bridge was assessed as "fair" with 65.8. For this reason, the local tribal council designed a long-term resolution with a 100-year flooding plan. The project site was located on a major drainage basin close to Arroyo de Chingague. The design used a single span to reduce the amounts of potential sediment deposits. Three main observations can be made considering this project: (1) With proper training, unexperienced crews can complete a GRS-IBS project in a timely and cost efficient manner; (2) Even in dry areas, scour analysis is an important design consideration for GRS-IBS projects; and (3) in cases involving turbid rivers sediment deposits shall be also considered. **Table 11** shows a summary for the GRS-IBS design in New Mexico.

	Spop	Bridge	Abutment			
Dridge	Span	Width	Height	Completion	Type of	
Blidge	(ft)	m	m	year	environment	
	(11)	(ft)	(ft)	-		
FHWA	≤ 42.67		≤9.1		Unhan on Dunal	
Guidelines	(140)	-	(30)	-	Urban of Kurai	
White	19.8	8.5	3.1	2015	Duro1	
Swan	(65.0) (28.0)		(10.0)	2013	Kulai	

Table 11: Summary table of GRS-IBS projects design features in New Mexico

(a)

(b)

Figure 19: White Swan GRS-IBS Bridge in Ohkay Owingeh Pueblo, New Mexico: (a) Aerial views of the location; (b) Existing bridge prior to the construction (Albert 2015, Peters 2015)

The approximate construction time of the GRS-IBS project in New Mexico was 5 weeks, plus a 5-week delay in the delivery of the precast concrete beams for the bridge superstructure. **Figure 20** shows the construction of the GRS-IBS bridge and **Figure 21** shows it completed.

(a)

(b)

(c)

Figure 20: White Swan Bridge during construction in Ohkay Owingeh Pueblo, New Mexico: (a) Abutment construction; (b), (c) Superstructure installation (Albert 2015, Meyer 2015)

Figure 21: Completed White Swan Bridge in Ohkay Owingeh Pueblo, New Mexico (Albert 2015)

Table 12 shows that this project saved 58% in cost and 44% in construction time compared to conventional designs. This bridge is also included in the survey of GRS-IBS projects in the U.S. (Hatami et al. 2016) since it represents another good example of the advantages of using this technology when there are time and cost constraints.

Table 12: White Swan GRS-IBS Bridge in Ohkay Owingeh Pueblo, New Mexico(Albert 2015): (a) Summary information; (b) Estimated cost savings as compared toconventional design; (c) Actual monetary savings relative to the allocated budget; (d)Labor cost savings; (e) Time savings

County	Bridge	Construction Time	Surface Road	Superstructure	Scour Countermeasure	Ser Under Bridge
Rio Arriba	White Swan Bridge	75 days	Asphalt	9 precast concrete beams	Riprap	Waterway

(a)

Conventional design (engineer estimation)	\$1,000,000
GRS-IBS design	\$419,331.26
Monetary savings	\$580,668.74 (58% Saving)

(b)

Accelerated Innovation Deployment (AID)	\$200,000
FHWA ridge Replacement Program	\$284,706
Total project cost	\$419,331.26
Project balance	65,374.74 (13% under budget)

(c)

Estimated contractual cost for outside contractor	\$105,000
Local road crew actual labor cost (4 crews)	\$52,103
Total labor cost savings	\$52,897 (50.4% Saving)

(d)

Conventional design (Engineer estimation)	4 ¹ / ₂ Months
GRS-IBS design	2 1/2 Months
Time savings	2 Months (44% Saving)

(e)

2.6 Performance Monitoring techniques

A review of the monitoring techniques related to GRS-IBS projects is given in this section. The survey techniques include measuring vertical and lateral deformations, bridge settlements, thermal movements, and stress distributions during the service life of the GRS-IBS bridges. They also include the descriptions, applications, advantages, precision and installation considerations of the instruments, and monitoring techniques reported in the literature. The vertical and lateral deformations are especially important because they are related to the serviceability of the bridge's structure. Since the GRS abutment backfill is composed of granular material, a significant part of the vertical deformation (settlement) typically occurs immediately after the superstructure is placed on the abutment. Lateral deformations can be estimated using the profile of vertical settlements (Adams et al. 2012) and/or using measured reinforcement strains due to vertical load. Additionally, **Table 13** shows the updated information of the different monitoring instruments used in GRS-IBS projects in this study. Total Station Theodolite (TST) is the most widely used technique due to its ease of implementation and low cost.

Instrumentation Type	No. Bridges Installation
Total Station Theodolite	16
Pressure Cells	9
Inclinometers	5
Piezometers	4
Extensomers	3
Strain Gauges	3
Settlement Plates	2
ShapeAccelArrays (SAA)	2
Tensiometers	1
Fiber Optic Sensors	1
Telltales	1
Volumetric Water Sensors	1
Thermistors	1

Table 13: Summary of different monitoring instruments used in GRS-IBS projectssurveyed in this study (Hatami et al. 2015; Ngo 2016)

2.6.1 Total Stations theodolite

TST's are used to record the bridge's settlement and movements of the GRS abutments. In a few pilot GRS-IBS projects documented by Adams et al. (2012), the total settlements and deformations of the abutment facing wall and the superstructure have been measured using an electronic distance measurement (EDM) survey or a standard survey level and rod system. The precision of both surveying methods is on the order of ± 0.0015 m (0.005 ft.) According to Adams et al. (2012), "the difference between the settlement measured on the abutment facing wall and the superstructure is the vertical deformation within the GRS mass alone due to the bridge load". The angular distortion and differential settlement can be evaluated by measuring the bridge settlement at four corners of the bridge with a survey level. **Figure 22** shows the layout of how a standard survey is carried out.

Figure 22: Standard survey level method to measure superstructure and wall settlement (Adams et al. 2012)

2.6.2 Inclinometers

Inclinometers are used in geotechnical engineering for performance monitoring of slopes and earthwork structures. They are also used in combination with micro-electromechanical systems (MEMs) to monitor wall deformations, ground movements and gradual landslides through real-time, remote-sensing means or typically more affordable onsite readout approaches. There are two types of inclinometers: Slope Inclinometer Arrays, commonly known as In-Place Inclinometers (IPI), and Manual Slope Inclinometers (Abdoun et al. 2008).

In the case of IPI, a series of inclinometers is continually kept inside the casing in each borehole, which makes it possible to provide remote, continuous and real-time sensing (**Figure 23a**). This type of inclinometer is ideal for early failure warning with a resolution of about ± 0.01 mm/m (0.012 in/ft; HMA 2014), but at a comparatively high total cost because the inclinometers have to stay at a fixed location, and therefore cannot be shared across different boreholes.

Manual Slope Inclinometers are used across several boreholes (**Figure 17b**). It is typically used in vertical boreholes with a flexible, grooved casing to guide the inclinometer into the depth of the fill (Abdoun et al. 2008). The cost can be controlled by reducing the number of inclinometers with accuracy of ± 2 mm per 25 m (± 0.0026 in. per 25 ft; HMA 2014). However, this system increases the amount of work necessary to complete the monitoring task. It requires at least one operator to access the site, temporarily install the inclinometer inside a borehole and take measurements. This
procedure should be repeated at every borehole (RST 2014). Furthermore, due to the periodic but discontinuous nature of taking measurements, important events and information may be missed in the periods between the measurements (Abdoun et al. 2008).

(a)

Figure 23: (a) In-Place Inclinometer (IPI); (b) Inclinometer Probe System (Durham 2014)

In GRS-IBS applications, inclinometers are used to monitor lateral ground movements during construction and subsequent bridge operation. In the survey of related GRS-IBS projects across the U.S., the following five (5) projects in three (3) states were found to have reported using inclinometers to monitor abutment deformations:

- BR 1-366 Bridge in New Castle County, DE (**Figure 24**) four (4) In-Place Inclinometers (IPI) were installed in the clay foundation layer under the west abutment (Talebi et at. 2014)
- 250th Street Bridge in Buchanan County, IA (**Figure 25**) inclinometers were installed inside 3.34 in. diameter casings
- Cecil Creek Bridge in Union Parish, LA
- Big Lake Bridge in Union Parish, LA
- Cutoff Creek Bridge in Union Parish, LA (Meunier 2013)

The 8.48 cm (3.34 in.) diameter inclinometer casing has been reported to be suitable for landslide and long-term monitoring applications (Durham 2013). Additionally, (Vennapusa 2012) listed the steps for the inclinometer installation: (1) Drill a borehole in the abutment, (2) Fill the inclinometer casing with water to overcome buoyancy effects in the hole due to groundwater, (3) Insert the casing into the borehole (**Figure 25**), and (4) Fill the cavity around the casing with sand and cement grout up to the top foot of the cavity (**Figure 25**).

Figure 24: Inclinometers used in the BR 1-366 Bridge in Delaware (Talebi et al. 2014)

Figure 25: Three 5-foot inclinometer casings snapped together during installation on a bridge abutment in Delaware (Vennapusa 2012)

2.7 Performance monitoring Case Studies

This section presents performance monitoring in several states.

2.7.1 BR 1-366, Delaware

Table 14 and **Figure 26** show the Instrumentation plan to monitor the long-term performance of the 1-366 Bridge. Instrumentation types, quantities and locations, together with a schematic of an instrumented cross section are shown below.

Table 14: Sensor types, locations, and quantities used in 1-366 GRS-IBS abutments(Talebi et al. 2014)

Instrument types	Location	No.
Inclinometer sensors	Foundation, West Abutment	4
Piezometers	Foundation, West Abutment	3
Pressure cells	Foundation, GRS Abutment, between Bridge and Integrated Zone, West Abutment	8
Strain gauges	West GRS Abutment, East GRS Abutment and beneath the Bridge	110
Thermistors	West GRS Abutment and East GRS Abutment	50
Volumetric water content sensors	West GRS Abutment	5
Surveying points	West and East Facing Walls	40

Figure 26: Instrumented plan for the 1-366 GRS-IBS bridge abutments in Delaware (Talebi et al.2014)

Figure 27 shows the locations of the twenty survey points that Talebi et al. (2014) placed on each abutment, which were spread out at the top, middle, and bottom of the facing wall to measure facing wall deflection during service. However, details such as the precision of the survey equipment or its type (e.g. EDM vs. standard surveying level) were not specified.

Figure 27: Survey points on the abutment of 1-366 Bridge in Delaware (Talebi et al.2014)

Figure 28 shows the 1-366 bridge abutment sensors and their installation at the site. Talebi et al. (2014) reported that four inclinometer sensors and three vibrating wire piezometers were installed to measure displacements and pore water pressure in the clay foundation layer during construction and service periods. Eight vibrating wire pressure cells were placed in various locations (i.e. one between the superstructure and the integration approach, three inside the west abutment, and four under the foundation) to monitor static and instantaneous pressure fluctuations. Strains in the HPG-57 geotextile reinforcement were measured using 50 strain gauges mounted on the geotextile. The strain gauges and pressure cells were covered with sand to protect them against the overlying No. 8 stone backfill material. Twenty-five YSI 55000 thermistors were wired and waterproof sealed in the University of Delaware laboratory prior to field installation, and were placed between the strain gauges to detect temperature and its effect on the measured strains in the woven geotextile. Finally, five MAS-1 volumetric moisture content sensors were placed in the west side abutment to check the moisture content and its effect on strains in the geotextile.

(a)

(b)

(c)

(d)

(e)

Figure 28: (a) Inclinometers and their site installation at the site in Delaware;
(b)Piezometers and their site installation; (c) Pressure cells and their site installation;
(d)Strain gauges and their site installation; (e) Thermistors and their site installation;
(f)Volumetric moisture content sensors (Talebi et al. 2014)

2.7.2 Cecil Creek, Big Lake, Cut off Creek, Louisiana

Meunier (2013) reported that the selected GRS-IBS projects in Union County were monitored using inclinometers and extensometers with a total settlement of less than 3.81 cm (1.5 in.) and differential settlement of less than 0.9 in. (**Table 15**)

Bridge	Instrument	Settlement cm (in)	Differential Settlement cm (in)
Cecil Creek	Inclinometers and extensometers	1.98 (0.78) 2.67 (1.05)	0.6 (0.27)
Big Lake 2	Inclinometers and extensometers	$ \begin{array}{r} 1.65 \\ (0.69) \\ 0.91 \\ (0.36) \end{array} $	2.29 (0.9)
Cut off Creek	Inclinometers and extensometers	0.1 (0.06) 0.7 (0.03)	1.52 (0.6)

 Table 15: Summary of instrumentation and monitoring of settlements in the selected

 GRS-IBS projects in Louisiana

2.7.3 CR-55 Bridge, Minnesota

The instrumented monitoring for this project was set for three (3) years. Figure 29 shows the plan view and elevation view of GRS-IBS instrumentation in Rock County Minnesota (Figure 30; Budge et al. 2014). Table 16 shows the summary table for the CR-55 Bridge design features in Minnesota. The monitoring techniques for the bridge abutment are shown in Table 17 (Budge et al. 2014). Two horizontal Shape Accel Array (SAA) systems were installed at the base of the fill material to measure the vertical position change with respect to a fixed end. Forty-two optical prisms were installed on the facing wall to detect the lateral and vertical movement of the abutment. Two vertical Shape Accel Array systems were placed on the abutments to check movement of the facing wall. Vibrating-wire (VW) earth pressure cells (EPC) were mounted at the base of the abutment to check backfill pressures acting on the foundation soils. Since this area has been experiencing large temperature variations, a weather station was installed to measure the temperature and solar radiation.

(a)

57

Figure 29: Plan view of GRS-IBS project in Rock County Minnesota; (b) Elevation view of GRS-IBS project in Rock County Minnesota (Budge et al. 2014)

Table 16: Summary table for the CR-55 Bridge design features in Minnesota

Bridge	Span m (ft)	Abutment Height m (ft)	Completion Year	Superstructure	AADT
FHWA Guidelines	≤43 (≤140)	9.14 (≤ 30.00)	-	Concrete or Steel	-
CR-55 over MN Southern Railway	23.62 (77.50)	6.92 (22.70)	2013	Concrete adjacent boxes	135

 Table 17: Instrumentation monitoring for the CR 55 Bridge in Minnesota

Bridge	Instrument
CR-55 over MN Southern Railway	Horizontal Shape Accel Array (SAA), Vibrating-wire (VW), Earth pressure cells (EPC), optical prism, weather station

Figure 30: North abutment construction photographs for the CR-55 Bridge in Minnesota (Budge et al. 2014)

2.7.4 Rustic Road Bridge, Missouri

Boone

Bridge

(65.00)

The Rustic Road Bridge was instrumented for performance monitoring purposes as shown in **Figure 31**. In addition to surveying, instrumentation was used to monitor the bridge performance including telltales, tensitometers, earth pressure cells, inclinometers, and Shape Accel Arrays (SAA). **Table 18** shows the summary table for the design features in Rustic Road Bridge.

Span Abutment Bridge Skew Completion Cost (\$) County Bridge m (ft) Height (ft) Width (ft) (Degrees) Year Route B 19.81 5.79 9.75

(19.00)

 Table 18: Summary of GRS-IBS bridges in Missouri

(32.00)

31.5

\$514,000

2014

2.7.5 Mount Pleasant, Pennsylvania

Mount Pleasant Road Bridge was monitored for a duration of one year using survey techniques (unclassified standard level survey or EDM survey). Albert (2011) reported that 17 survey points were monitored and the vertical settlement of bridge was recorded as 0.25 mm (0.01 in.), which indicates the bridge performed excellent and the "bump at the end of the bridge" is inexistent (**Table 20** and **Figure 32**). **Table 19** shows the performance monitoring for Mount Pleasant Road Bridge in Clearfield County.

Table 19: Performance monitoring for Mount Pleasant Road Bridge in Clearfield County, Pennsylvania

			Settlement
Bridge	Survey Technique	Monitoring Period	mm
			(in)
Mount Pleasant Road Bridge	Survey	1 year	0.25 (0.01)

Table 20: Summary of Clearfield County GRS bridge vertical settlement (Albert 2)	2011)
--	-------

		E				
Point	10/20/2011	12/7/2011	2/3/2012	4/13/2012	7/23/2012	Description
A	993.85	993.85	993.81	993.82	993.83	NE Top of GRS Block Row
В		996.09	996.09	996.08	996.08	Ne Top of Cap
С		994.16	994.16	994.16	994.15	NE Top of Sill Plate
D	993.82	993.81	993.77	993.78	993.82	SE Top of GRS Block Row
E		996.07	996.03	996.06	996.06	SE Top of Cap
F		994.14	994.15	994.15	994.14	SE Top of Sill Plate
G	993.87	993.87	993.83	993.84	993.86	SW Top of GRS Block Row
н		996.11	996.09	996.10	996.09	SW Top of Cap
1		994.20	994.20	994.21	994.19	SW Top of Sill Plate
J	993.88	993.89	993.85	993.87	993.87	NW Top of GRS Block Row
ĸ		996.12	996.11	996.11	996.12	NW Top of Cap
L		994.21	994.21	994.20	994.19	NW Top of Sill Plate
M		996.38	996.36	996.36	996.35	NW Top of Deck
N		996.35	996.32	996.32	996.32	NE Top of Deck
0		996.34	996.32	996.31	996.32	SE Top of Deck
P		996.36	996.36	996.36	996.36	SW Top of Deck
Q		996.41	996.41	996.41	996.40	Center of Deck

Figure 32: Surveying points for Mount Pleasant Road GRS bridge (Albert 2011)

2.7.6 STH 40 Bloomer Bridge, Wisconsin

Garnier-Villarreal et al. (2014) reported that for the STH 40 Bloomer Bridge the monitoring program included: (1) Foundation, (2) Abutment walls, (3) Deck, (4) Roads, and (5) creek erosion. Standard survey level and rod system with a precision range of $\pm 3.1 \text{ mm}$ (0.12 in.) was used to monitor the deformation of STH 40 Bloomer Bridge caused by environmental and service loads. Figure 33 shows a sketch of the surveying layout with a photograph of the survey target as shown in Figure 34.

The setup included a reference point, two surveying positions and several survey points. The elevations of target points on the bridge abutment were determined using the distances and angles between any given two points. Initially, the benchmark at the reference point by the power line pole (denoted as REF in Figure 35) was the only point with a known elevation, from which the elevation of surveying position 1 (POS 1 in Figure 35) was determined. The elevation of surveying position 2 (POS 2 in Figure 35) was then determined by referencing POS 1. The elevation of each surveying point, identified by reflective targets and settlement plates, was then determined from either POS 1 or POS 2, depending on the visibility from the surveying positions.

This procedure of elevation determination needs to be carried out periodically to monitor the elevation changes of each surveying point. Elevation changes indicate vertical displacement, which is determined by computing the difference between the latest and the initial elevation data. **Figure 36** shows the nomenclature and description of survey points for the STH 40 over Hey Creek Bridge in Wisconsin. Preliminary results show that the bridge has performed as expected, showing no differential settlement and therefore proving a simple, cost-effective solution for replacing deficient bridges. **Table 21** shows the summary of monitoring of settlements in STH 40 over Hey creek project.

Table 21: Summar	y of monitoring (of settlements in a	STH 40 over Hey	creek project
	-		2	1 5

	Survey		
Bridge	Tashnisus	Precision m	Monitoring Period (yrs)
	rechnique	(in)	
STH 40 Bloomer over Hay Creek	Conventional Survey	0.12	2

Figure 33: Surveying set up use to measure the deformation of the GRS bridge in Wisconsin (Garnier-Villarreal et al. 2014)

Figure 34: Surveying reflective target installed on abutment wall for STH 40 Bloomer Bridge (Garnier-Villarreal et al. 2014)

Figure 35: Locations of survey points on the STH 40 over Hey Creek Bridge in Wisconsin (Garnier-Villarreal et al. 2014)

Surveying point	Description				
NC/NE/NW	Surveying targets on north abutment wall: central, east and west locations				
SC/SE/SW	Surveying targets on south abutment wall: central, east and west locations				
BE/BNE/BSE	Surveying points on bridge deck: east, northeast and southeast locations Surveying points on bridge deck: west, northwest and southwest locations				
BW/BNW/BSW					
NE P/NW P/SE P/SW P	Settlement plates in foundation soil: northeast, northwest, southeast and southwest locations				
RNE/RNW/RSE/RSW	Approaching road points: northeast, northwest, southeast and southwest locations				
NE A/NW A/SE A/SW A	Points on top of the abutment walls' corners: northeast, northwest, southeast, and southwest locations				
GNE/GE/GSE/GNW/NW/GSW	Creek surveying points: northeast, east, southeast, northwest, west and southwest locations				

Figure 36: Nomenclature and description of survey points for the STH 40 over Hey Creek Bridge in Wisconsin (Garnier-Villarreal et al. 2014)

Chapter 3. Analysis of Data on Surveyed GRS-IBS Projects

Based on the literature review performed by Hatami et al. (2015), Hatami et al. (2016), Ngo (2016), and the author across the United States: a summary, development of a web page, and analysis factors such as cost facing type, traffic volume, and performance monitoring methods are presented in this chapter.

3.1 Webpage-based Database of GRS-IBS Projects in the U.S.

The development of a web page containing the surveyed case studies started in 2016. The objective was to produce a tool that would give designers and constructors access to information about the good practices and improvement potentials of the documented cases across United States.

The first stage was maintaining the database created by Hatami et al. (2015), Ngo (2016) and the author (i.e. checking for data errors, erasing duplicated fields, etc.). Additionally, while performing this task, the author added case studies to the database. This database was maintained in Microsoft Acces ® and exported to Microsoft Excel ®.

Initially, the queries were based on the following fields (Ngo 2016): Span length, abutment height, superstructure width, cost, completion year, construction time, surface road type, superstructure material, instrument monitoring, reported deformations, facing blocks material, geosynthetic type and specification, construction technique, geotechnical data, hydraulic data and some remarks.

However, based on the inconsistent information from the available sources, the author decided to discard certain fields and instead develop the web page with the following fields: ID, county, span length, abutment height, width, area, cost, completion year, facing type and source reference. **Figure 37** shows example screenshots of this developing website, which will have the following features: (1) A front page, which contains an interactive map of the United States, with participating and nonparticipating states in the FHWA GRS-IBS program differentiated using crimson and gray colors (A user can access documented GRS-IBS projects in a crimson-colored state from the database by clicking on the yellow drop pins that indicate the locations of existing bridges in that state (**Figure 37a**)); and (2) subsequent state-specific webpages, which describe technical specifications, features, and lessons learned references and pictures of documented bridges (**Figure 37b**).

(a)

68

Uni	versity	of Oklahoma										1	IOME
					G R S - 1	BS Bri	idges i	in Calife	ornia				
California Map				Features and Lessons Learned • The construction of the abutments in Lake Marie and Twin lake GRS bridges had to meet rigorous criteria: • Seismic peak ground acceleration between 0.40g and 0.50g • coo pid Seigns now load at an elevation of opproximately you on the • coo pid Seigns now load at an elevation of opproximately you on the • coo pid Seigns now load at an elevation of opproximately you on the • coo pid Seigns now load at an elevation of opproximately you on the • coo pid Seigns now load at a elevation of opproximately on the seigns of the s									
Code	County	Name	Span 1 (ft)	Span 2 (ft)	Avg. Abutment Height(ft)	Width(ft)	Area (ft^2)	Cost (\$)	Completion Year	Superstructure Type	Facing Type	Reference	Page
CA-1	Mono	Lake Mamie	67	0	7*	NR	NR	NR	2000	CIP Concrete	CMU Blocks	FHWA HRT-11-027	January 2011
CA-2	Mono	Twin Lake	71	0	NR	25*	1,775*	NR	2000	CIP Concrete	CMU Blocks	FHWA HRT-11-027	January 2011
CA-3	Butte	Feather Falls Trail	40	0	7	6*	240*	NR	1999	Timber	Timber	Geosynthetica.net	GRS-IBS Part 2
CA-4	Tulare	Disney Bridge, Sequoia National Park	45*	0	9*	13*	563*	NR	2012	Timber	CMU Blocks	FHWA Adams 2014	17
*Data in fi	Data is field represents an approximate value obtained by using CGoagle earth or reported pictures Details field represents an approximate value obtained by using CGoagle earth or reported pictures CA-1, Lake Marrie Image taken from here												

(b)

Figure 37: Screenshots of GRS-IBS webpage (under construction): (a) Index U.S. map highlighting states with GRS-IBS projects; (b) Example GRS-IBS bridges in California

Ngo (2016) reported that the savings resulting from selected GRS-IBS range from 16% to 63% less expensive than conventional alternatives. In addition, the abutment cost per square meter is \$1,026 vs \$2,239 (square foot is \$95.5 vs \$208.5) for traditional abutments in Pennsylvania. Figure 38 shows that the cost increases by approximately \$25,000 for every 3 m (10 ft.) span length, with some exceptions around span lengths of 10 m -12 m (30 ft.-40 ft.). Likewise, **Table 22** shows that the linear regression of cost vs span length has an R Squared of 0.42, which is similar to the one reported by Ngo (2016) of 0.53 in for the state of Pennsylvania. Also, Figure 39 shows that most of the documented bridges have a span length between 0 to 10 m (0 to 30 ft.) and cost between \$0 and 100,000. Figure 40 shows no clear correlation between the abutment height and cost; as the total cost is driven by various factors, such as span length, superstructure type, transportation, and labor. However, Figure 41 shows that most of the documented bridges have an abutment shorter than 4 m (13.09 ft.). The aforementioned factors ratify the feasibility of this technology for bridges within the span length, abutment height and budged.

(a)

Figure 38: Cost vs Span Length (Cost < \$600,000): (a) SI units; (b) Imperial units

Table 22. Cost vs	Span Length linear	regression
-------------------	--------------------	------------

Linear regression output			
Regression S	Statistics		Coefficients
Multiple R	0.649852205	Intercept	1,070.93
R Square	0.422307888	X Variable 1	7,702.58
Adjusted R Square	0.418323804		
		Cost =	
Standard Error	319936.8641	1,070 + length(m)	* 7,702 (\$/m)
Observations	147		

(a)

Figure 39: Histogram: (a) Span length (m); (b) Cost (\$)

(b)

Figure 40: Cost vs Abutment Height: (a) SI units; (b) Imperial units

Figure 41: Histogram abutment height (m)

3.3 Facing Type and Superstructure Type

As explained in section 2.2, the main purpose of the facing type is to protect the backfill from weathering, and serve as a façade which facilitates backfill compaction. **Table 23** and **Figure 42** show the updated information presented by Hatami et al. (2015), Hatami et al. (2016) and Ngo (2016).

Out of 144 surveyed projects, 33% didn't report the facing information. 52% were built with CMU due to their low cost and installation ease. Adams et al. (2012) presents CMU blocks as the standard facing type. However, this facing type is only suitable for GRS abutments built in zones with stream velocities less than 7 fps. If the stream velocity is within 7fps to 10fps, then the blocks must be reinforced with rebar and grout.

Sheet piling was found in 6% percent of the projects surveyed. Within that percentage, Kay County represent 25% of it. Two GRS-IBS bridges where built with this facing type. The main advantage of it is the ease of installation with a track hoe and/or excavator, which reduces the construction time as reported in Kay County. However, it is worth noting that sheet piles shall have perforated holes in order to account for drainage in situations such as the flash flood event in Kay County (Ngo 2016).

Large precast block were found to be the third most common facing type, comprising only 3% of the total surveyed GRS-IBS. Large precast blocks are the facing type used when stream velocities are faster than 10 fps.

Facing Wall Type	Nominal Dimension	Number of Bridges	Percentage
CMU	203mm × 203 mm × 406 mm (8 in. × 8 in. × 16 in)	75	52%
Steel piling	N/A	8	6%
Large precast block	457 mm × 1168 mm × 711 mm (18 in. × 46 in. × 28 in.) and 406 mm × 1219 mm × 610 mm (16 in. × 48 in. × 24 in.)	4	3%
Treated timber panels	$152 \text{ mm} \times 152 \text{ mm}$ (6 in. × 6 in.)	3	2%
Cellular Confined System (CSS)	152 mm (6 in. tall)	2	1%
Flexible geosynthetic wrapped facing	Each Reinforced Spacing	1	1%
Pre-cast panels	203 mm (8 in.) thick	1	1%
Segmental Retaining Wall (SRW)	N/A	1	1%
Redi-precast modular blocks	152 mm (6 in. tall)	1	1%
Not reported	Not reported	48	33%

Table 23: Updated GRS-IBS facing types (Hatami et al. 2015; Ngo 2016)

Figure 42: Pie chart distribution of facing types reported in the surveyed GRS-IBS projects (From a total of 144 projects)

Out of 144 surveyed projects, 46% didn't report the superstructure information. 58% of the reported cases used cast in place (CIP) concrete as their superstructure type. One of the main reasons of this is due to the knowledge of the constructability method, and sometimes the reduced cost compared to other superstructure types. However, this superstructure type will take more construction time than precast concrete slabs, which were reported as the second most used superstructure method.

Precast concrete slabs were found in 23% percent of the projects surveyed. Their main advantage is the speed with which they can be installed. However, for bridges with long span lengths, the precast slabs must be installed with cranes, which in-turn increases the cost. As reported in Kay County, the bridge that was constructed with precast slabs cost 25% more than a CIP concrete superstructure bridge. It is worth noting that one of the main advantages of precast slabs is that the bridge can be opened for use right after the installation; which doesn't occurs with the CIP concrete, that needs a minimum time of 28 days to gain the service strength.

Other types of superstructures: such as prestressed, and precast-prestressed timber, were reported on 19% of the remaining bridges. **Table 24** and **Figure 43** show the quantity of superstructure types reported.

Superstructure Type	Number of Bridges	Percentage
CIP Concrete	45	58%
Precast Concrete	18	23%
Timber	6	8%
Prestressed Concrete	2	3%
Precast, Prestressed Concrete	2	3%
Other	4	5%

Table 24: GRS-IBS superstructure types

Figure 43: Pie chart distribution of facing types reported in the surveyed GRS-IBS projects (From a total of 77 projects)

3.4 Traffic Volume AADT

Out of 144 projects, 49% didn't report the traffic volume. However, based on the geographical location during the development of the web page, the author could establish if the GRS-IBS bridge was a low volume road (specifically a local rural road). Per the FHWA 2013 report, low volume roads are defined as those with an AADT<400 in rural areas or an AADT<700 in urban areas. **Table 25** and **Figure 44** show the updated histograms reported by Ngo (2016) and Hatami et al. (2016). This figure shows that out of 85 bridges, 71 were built on low-volume roads. This confirms the recommendation provided by Adams et al. (2012), which states that GRS-IBS shall be primarily built for low-volume roads.

	Functional Classification	AADT	Reported Bridges
	Local	15-400	47
Rural	Minor Collector	150-1110	8
roads	Major Collector	300-2600	2
	Principal Arterial (interstate)	12000-34000	2
Urban	Collector	1100-6300	1
roads	Principal Arterial (interstate)	34500-129000	2
Not	NR 1	<400	16
Reported	NR 2	400-1110	5
	NR 3	>1110	2
		Total Bridges	85

Table 25: Statistics on AADT values GRS-IBS project across the U.S.

Figure 44: Classification of reported roads according to their AADT value

3.5 Performance Monitoring

Vertical and lateral deformations are essential because they are related to the serviceability of the bridge. Because GRS-IBS is still considered a new technology, the monitoring of different bridges shows the technical benefits of this technology. Also, lateral deformation can be correlated to vertical deformation as reported by Adams et al. (2012). Out of 144 projects: 68% didn't report the monitoring technique, 35% of the reported cases used a TST, 20% used piezometers, and 11% used inclinometers. Ngo (2016) and Hatami et al. (2016) reported that the maximum deformation was recorded in Tiffin river bridge, OH (5.33 cm~ 2.1 in.) which is almost 4 times bigger than the recorded deformation in Kay County, OK (1.2cm ~0.5 in.). An update of the survey of instruments that were reported by Ngo (2014), Hatami et al. (2015) and Hatami et al. (2016) for the GRS projects across the U.S. is summarized in **Table 26**.

Figure 45: Pie chart distribution of monitoring types reported in the surveyed GRS-IBS projects (From a total of 46 projects)

Table 26: Selected GRS-IBS bridges with a reported performance monitoring program(Hatami et al. 2015; Hatami et al. 2016; Ngo 2016)

State	Bridge	Instrumentation Type	Survey	Bridge	Lateral
	-		Period	Settlement	Der.
		sensors niezometers			
DE	BR 1-3661	pressure cells, strain gauges,	N/A	N/A	N/A
		thermistors, volumetric water			
		content sensors			
ш	Kauaula Stream	Surveying	12	2.16 cm	2.54 cm
п	Bridge	Surveying	months	(0.85 in.)	(1 in.)
		Inclinometers, piezometers,	12	1.27cm	1.02 cm
	250th Street	semiconductor and vibrating	months	(0.5 in)	(0.4 in)
IA		wire earth pressure cells	montilis	(0.5 m.)	(0.4 m.)
	Olympic Avenue	Surveying	14	1.78 cm	0 cm
Bridge		Surveying	months	(0.7 in.)	(0 in.)
	Casil Craak	Inclinometers and	5	3.00 cm	NI/A
	Cechi Cleek	extensomers	months	(1.18 in.)	IN/A
Dig lake		inclinometers and	5	0.89 cm	NI/A
LA	Dig lake	extensomers	months	(0.35 in.)	IN/A
	Cut off Crook	inclinometers and	5	2.39 cm	NI/A
Cut off Creek		extensomers	months	(0.94 in.)	1N/A

State	Bridge	Instrumentation Type	Survey Period	Bridge Settlement	Lateral Def.
MA	SR 7A over Housatonic RR	Pressure Cell, Inclinometer	N/A	N/A	N/A
MN	CR 55 over MN Southern Railway	Horizontal and Vertical ShapeAccelArray (SAA), Vibrating-wire (VW) Earth pressure cells (EPC), optical prism, weather station	10 months	4.32 cm (1.7 in.)	4.83 cm (1.9 in.)
МО	Rustic Road Bridge	Surveying on facing wall, Earth Pressure Cell, Tensiometer, Telltale, inclinometer, SAA	N/A	N/A	N/A
MT	US HGW 89 south of Dupuyer	Surveying	19 months	0.91 cm (0.36 in.)	N/A
	East Canal Bridge	Standpipe piezometers and settlement plates	N/A	1.52 cm (0.6 in.)	N/A
NC	Mattamuskeet National Wildlife Refuge - Central Canal Bridge	Standpipe piezometers and settlement plates	N/A	1.22 cm (0.48 in.)	N/A
	Bowman Road	EDM and total station, Earth pressure cells, strain gauge	20 months	2.16 cm (0.84 in.)	0.51mm (0.0)
ОН	Vine street	Surveying	40 months	1.07 cm (0.42 in.)	3.3 cm (0.1 in.)
	Glenberg road	Surveying	43 months	3.25 cm (1.28 in)	0.32 in
	Tiffin River	EDM and total station, Vibrating wire earth pressure cell	18 months	5.33 cm (2.1 in.)	0.04 in
	Huber road	Surveying	40 months	1.27 mm	2.0 mm
	Bridge 2	Surveying	18 months	1.27 cm (0.5 in.)	N/A
OV	Bridge 3	Surveying	18 months	1.27 cm (0.5 in.)	N/A
OK	Bridge 4	Surveying	18 months	1.27 cm (0.5 in.)	N/A
	Bridge 5	Surveying	18 months	1.27 cm (0.5 in.)	N/A
PA	Mount Pleasant Road Bridge	Surveying	7 months	0.91cm (0.36 in.)	N/A
PR	1121 Bridge (West Bound)	Pressure Cells and geosynthetic fiber-optic sensors	NR	NR	N/A
WI	STH 40 Bloomer over Hay creek	Surveying	10 months	1.47 cm (0.58 in.)	N/A

3.6 Reported Problems and Lessons Learned in Different States

Table 27 shows an update of the summary of lessons learned on different aspects of GRS-IBS projects reported by Hatami et al. (2015), Hatami et al. (2016) and by Ngo (2015). Also, **Figure 46** shows some examples of the implementation of lessons learned and improvement potentials in the web page.

Table 27: Reported problems	and lessons learned in	GRS-IBS construction	across the
U.S. (Hatami e	t al. 2015; Hatami et a	l. 2016; Ngo 2016)	

	State	Lessons Learned/Issues Found
Knowledge	DE	* Inspectors need to understand how the GRS-IBS work
Attitude	OH ME NY	 * The most vital lesson was a readiness to try it with an open mind * Staff attitude towards new technology is crucial * NYDOT 50% of the county bridges are suitable to be replaced using GRS-IBS technology
Experience	DE MT NC OH	 * Allow for learning curve, so the second abutment will be much better than the first * The contractor needs to provide proper training to their project managers and workers on basic elements of assembling this type of bridge support * Highly dependent on contractor's QA/QC; otherwise could become distorted during construction * Taking advantage of others' experiences is crucial
	NY	* Construction would be more expensive in water
	MA	* 49% cost saving as compared to micropile foundations
Cost and Time	NM	*58% savings in the cost project *44% savings in its construction time relative to a conventional design
	NY	*Savings in materials, labor and equipment *Consistent cost saving of 50% as compared to other methods
	CA	*Seismic rigorous criteria met including peak ground accelerations between 0.40g and 0.5g
Design	MO OH CO	* Check buoyancy and consider anchorage * GRS-IBS design is about getting comfortable that it acts as a composite material
	ME	*GRS-IBS can have more than one span (e.g. 3 spans) and reinforced piers.
Equipment	MO	* Big roller compactor next to blocks was not a concern
Geosynthetics	MO	* Geogrid orientation and placement are key * Additional geotextile behind facing blocks
Backfill Materials	МО	* Using an open graded granular backfill increases production and can reduce testing requirements * Material availability

	State	Lessons Learned/Issues Found
	MT	* One fill layer was overly saturated and had to be removed and replaced with new backfill * Excessive water in the backfill during compaction should be avoided
	PR	* Only open-graded material is permitted and it is easier to source in Puerto Rico making it faster to place and compact * The compaction process can affect the alignment of the hollow blocks on the well-graded materials because a 95% compaction is required. In this case, the loose materials caused increased forces on the blocks, which made them outward
Spacing	IA	* Ultimate Tensile Strength of geosynthetics \geq 4,800 lbs/ft and good permeability (30gal/min/ft ²) is required
Foundation	IA	 * Avoid the excavation at the toe of slopes because of its instability. Any excavation at the toe of slope must be done before constructing the fill layer * Subsurface soil information before bridge construction is important
	NY	*Having a dry construction zone for the reinforced soil foundation yield cheaper and faster results
Bearing	IA	* Evaluate the bearing capacity in full-scale field testing to failure to determine the ultimate bearing capacities with different backfill and geosynthetic materials
Capacity	NC	*Soft clays in the subsurface profile. Thus, preloaded for settlement prevention
Facing Block	MO MT PR	* Hollow facing blocks were pushed outward during compaction
	DE	 * East abutment with broken blocks * 3/4 in. wide joint gap in 2nd row from top * If the edges are too smooth, the blocks slide easily; thus, a batter is necessary to allow movement * First course of block is vital. Must be straight, level and plumb
	МО	 * Wet cast block is more durable * Dry cast CMU block does not meet freeze-thaw requirement *Large block are less uniform in size than regular CMU
	PR	* Solid blocks with a minimum weight of 66 pounds (30 kilograms) for the facing of the abutments. Lighter (hollow) CMU (~45 lbs) will be easily pushed out during the compaction.
	OK	* The abutments' leaning profiles and some gaps in the facing blocks
	MT	* A frontal gap was created at the abutment corner radius caused by rectangular shape of CMU block * Grout patching of the gaps between the blocks is substandard
	NC	*Cellular confinement system (CSS) used as facing wall and scour countermeasure.
	ME	*RediRock large wet cast blocks outperform in tidal and marine environment
Bidding	OH MO	* Good education prior to bidding is essential
Bidding	MO	* Allow flexibility in the construction timeframe

	State	Lessons Learned/Issues Found
Performance monitoring	IA	 * Must evaluate long-term performance of GRS abutment with different facing elements (sheet piles, CMUs, and timber-faced wall) * Must evaluate long-term performance of GRS abutment with different granular fills (sheet piles, CMUs, and timber-faced wall) * Must evaluate long-term performance of GRS abutment with different geosynthetics (sheet piles, CMUs, and timber-faced wall) * TST most efficient monitoring technique
OF		* More than 20 bridges using GRS abutments have performed well
.Scour Countermeasures	MD	* A 1.17 m (46 in.) thick bed of Class III riprap underlaing by geotextile fabric was placed across the complete stream channel

Figure 46: Screenshots of GRS-IBS webpage (under construction): Example features and Lessons Learned GRS-IBS bridges in Delaware
3.7 Conclusions and Recommendations from Experiences in Different States

Out of the 144 projects surveyed during this study, the following conclusions and recommendations were identified as the principal trends throughout the country: (1) GRS-IBS provide cost savings up to 68%; (2) the bridges can be completed in half the time of conventional bridges with the same span length; (3) severe weather will not affect the construction process; (4) construction crews with only 4 to 6 non-skilled workers can easily complete the bridges; (5) the foundation can be placed on any type of soil condition; (6) settlement reported is less than 4 cm (1.57 in.) which eliminated the "bump" at the end of the bridge; (7) most of the bridges are built to have a span length and abutment height shorter than 30 m and 18 m respectively; (9) 83% of the bridges were built in low volume roads; (10) proper compaction and placement of the geotextile will avoid facing deformation; (11) it is important to evaluate the abutment behavior with different backfill materials, reinforcement types and facing elements; (12) states like Ohio, Pennsylvania and New York reported that GRS-IBS saved up to 50% compared to conventional bridges. Thus, with the same budget they could build twice the amount of conventional bridges; (13) it is better using solid CMU blocks rather than hollow CMU blocks because the latter will be easily pushed out during compaction; (15) GRS-IBS can be used in all the possible environments with span lengths longer than 43 m (140 ft.); and (16) GRS-IBS was reported to be easy to build and to maintain. **Table 28** shows the updated comparison of recommended GRS-IBS specifications per the FHWA guidelines (Adams et al. 2012), with those reported in completed projects across the United States reported by Hatami et al. (2015), Hatami et al. (2016) and Ngo (2016).

Table 28: Comparison of recommended GRS-IBS specifications per the FHWAguidelines (Adams et al. 2012) with those reported in constructed projects across theUnited States (Hatami et al. 2015; Hatami et al. 2016; Ngo 2016)

Design Matrix	FHWA Recommendations	Reported GRS-IBS projects in the U.S.
Span length	Max Span < 42.7m (140 ft.)	134 bridges reported with span length. Among those: *44% (59 bridges) shorter than 9 m (30 ft.) *56% (75 bridges) longer than 9 m (30 ft.) *27% (37 bridges) longer than 18 m (60 ft.) *2% (3 bridges) longer than 42 m (140 ft.)
	Single span bridge	106 bridges reported number of spans Among those: *94% (102 bridges) is single span bridges Except: *ME (2 spans) *CO (2 side-by-side bridges each with 3 spans)
Abutment height	<9.14 m (30 ft.)	134 bridges reported with abutment height. Among those: *32% (43 bridges) greater than 4.5m (15 ft.) *1% (2 bridge) greater than 9.0 m (30 ft.)
Facing elements	CMU 203mm × 203 mm × 406 mm (8 in. × 8 in. × 16 in) block with: *Minimum compressive strength of 27,580 KPa (4,000 psi) *Water absorption limit of 5%	*Majority are CMU 203mm × 203 mm × 406 mm (8 in. × 8 in. × 16 in.) *Large wet cast concrete 457 mm × 1168 mm × 711 mm (18 in. × 46 in. × 28 in.) and 406 mm × 1219 mm × 610 mm (16 in. × 48 in. × 24 in.) *Sheet piling panel *Cellular confinement system *15.2 cm × 15.2 cm (6 in. × 6 in.) treated timber
GRS abutment backfill	Well/Open graded or with: *Max aggregate size ranges from1.27cm to 5.08 cm (0.5 in. to 2 in.) *Fines content < 12% *(well-graded) and < 6% *(open-graded), $\Phi' > 380$	Each one meets this requirement except NC with $\Phi' = 34o$

Design Matrix	FHWA Recommendations	Reported GRS-IBS projects in the U.S.					
Geosynthetic	Geogrid or geotextile in abutment but must use geotextile in RSF and approach roadway	69 bridges reported with geosynthetic type. Among those: *82% (57 bridges) geotextile *18% (12 bridges) geogrid.					
	Geosynthetic Ultimate Strength ≥ 70KN/m (4,800 lb/ft) for GRS load- bearing application with minimum FSbearing = 3.5	Almost all geotextiles meet this requirement. Except: *Iowa (17.5 KN/m (1200 lbs/ft) Lower FSbearing = 1.8 to 2.6)					
Spacing of the reinforcement	 *≤ 30.5 cm (12 in.) for primary reinforcement *10.2 cm (4 in.) for secondary in the top 5 layers of the GRS abutment bearing beds for CMU 203mm × 203 mm × 406 mm (8 in. × 8 in. × 16 in)blocks 	Each one meets this requirement Typically: *20.32 cm (8 in.) spacing for primary reinforcement *10.16 cm (4 in.) spacing for secondary reinforcement due to CMU 20.32 cm (8 in.) height					
Thickness of RSF	61 cm (24 in.) or 0.25B	Each one meets this requirement					
AADT	Low volume local road < 400 (rural) or < 700 (urban) - (FHWA 2013)	Most of the DOT's use GRS-IBS in low volume roads, some use in heave traffic					
Performance monitoring	Standard survey level and rod system or EDM survey	Typical surveying. Others are inclinometer, extensometer, strain gauge, earth pressure cell, piezometer, settlement plate, weather station, Tensiometer, ShapeAccelArray, and thermistor					
Scour countermeasure	*Riprap aprons *Gabion mattresses *Articulating concrete blocks	Most of the project used: *Riprap *Cellular confinement system *Sheet piling					
Service under bridge	*Bridge crossing driveway is more advisable. *When crossing waterway, precaution should be taken regarding: *Stream instability *Scour *Adverse flow conditions	 133 bridges reported with the service under bridge Among those: *90% (119 bridges) over waterways only *7% (9 bridges) over driveways only including 2 interstate highways *2% (3 bridges) over railroads only *1% (2 bridges) in Colorado over both railroad and driveway 					

Design Matrix	FHWA Recommendations	Reported GRS-IBS projects in the U.S.
	Construction days	43 bridges reported with construction days Among those: *37% (16 bridges) under 30 days *65% (29 bridges) under 60 days *4% (2 bridges) in Colorado have taken more than 120 days due to its complex 3-span design

Chapter 4. GRS-IBS Bridges in Ottawa County, Lincoln County, and Kay County, OK

This chapter provides detailed information and discussion on eight low-volume road bridges (i.e six GRS-IBS bridges and comparable conventional bridges) that were constructed in Ottawa County, Lincoln County and Kay County, OK. The information presented includes: (1) General information for the bridge built in Ottawa County, (2) Background, construction and cost analysis for the bridge built in Lincoln County, and (3) A brief review and update of the information presented by Ngo (2016) and Hatami et al. (2016) in addition to geotechnical data, hydraulic considerations, and construction phase for the four GRS-IBS bridges in Kay County. The chapter continues with the performance monitoring of two conventional bridges and four GRS-IBS bridges in Kay County which includes : (1) Weather Data, (2) Local Seismicity, (3) Traffic Count, (4) Alternative monitoring systems, (5) Surveying Methodology, and (6) Surveying results for six bridges. The chapter concludes with the lessons learned about the reported bridges to date.

4.1 General information of one GRS-IBS bridge in Ottawa County, Oklahoma

In 2013, the first GRS-IBS bridge was constructed in Oklahoma (Figure 47). This bridge was built using county staff under the direction of Mr. Russell Earl. Since this bridge was the first GRS-IBS bridge in Oklahoma, there were some issues related to the abutments leaning profiles in the facing blocks (Figure 48). However, this issued appeared to be primarily cosmetic and the bridge to date has been reported with no sign of settlement. Also, Sheffert (2013) reported that the learning curve was very steep and

the bridge serve as significant learning experience for the bridges built in 2014 in Kay County, OK. Finally, is worth noting that the bridge was built over a county road and therefore, no scour countermeasure was necessary for the abutments.

Figure 47: First GRS-IBS Bridge in Ottawa County, Oklahoma, built in 2013

(Photographs courtesy of C. Westlund, PE)

Figure 48: Issues observed in the first GRS-IBS bridge in Ottawa County, OK, including leaning wing walls, gaps in facing blocks and exposed geotextile reinforcement. (Photographs courtesy of C. Westlund, PE)

4.2 General information of one GRS-IBS bridge in Lincoln County, Oklahoma.

The Bureau of Internal Affairs (BIA) and the Kickapoo tribe in Oklahoma initiated the bidding process for a GRS-IBS bridge in Lincoln County (Yates Bridge) in May of 2016. **Figure 49** shows the location of the new GRS-IBS bridge. Technical details as the layout of the bridge at the site, and the specifications and sources of the construction materials were discussed in a preconstruction meeting on June 9, 2016 at the bridge site by the parties involved, i.e. a design engineer from the EST, Inc., two representatives from River Ridge Construction, LLC, two Lincoln County District Engineers and one delegate from the BIA office. Completed in July 2016, the Yates Bridge with 5.8 m (17 ft.) -high abutments at the beam seat was more challenging to build because of its height and the fairly steep back-slope. Also, is a significant GRS-IBS project in Oklahoma (**Figure 50**) in comparison to the GRS-IBS bridges in Kay County were only approximately 2.13 m (7 ft.) high at the beam seat.

Figure 49: Lincoln County, OK location

Figure 50: On-site preconstruction meeting on June 9, 2016 at Yates Bridge in Lincoln County

4.3 Construction of one GRS-IBS bridge in Lincoln County, Oklahoma.

In early June 2016, the construction of the bridge started. Pictures of the site after demolition of the old bridge and excavation for the abutments of a new GRS bridge are shown in **Figure 51**. **Figure 52** shows construction of east abutment including its reinforced soil foundation (RSF). The construction challenges included the increase of the stability of the back-slope in a sandy loam soil and so that the crew could access the bottom of the abutment with the track-hoe. Thus, it was decided to use a much milder 2:1 slope instead of the 1:1 slope shown in Adams et al. (2012) standard details. Additionally, the first layer of reinforcement underneath the GRS abutment was overlain with a new layer of geotextile due to its contamination with silt deposits because of flooding of the site for two days (**Figure 53**). **Figure 54** shows construction of the concrete deck and **Figure 55** shows design drawings used in the project.

Figure 51: Yates Bridge site after demolition of old bridge and excavation for new GRS abutments

Figure 52: Placement of the first row of CMU blocks (Yates Bridge, 7/11/2016)

Figure 53: Pumping of flood water out of the GRS abutment site, and placement of a new reinforcement layer on the top of the RSF

Figure 54: Construction of concrete deck at Yates Bridge, Lincoln County, OK (Photograph courtesy of Mr. Tom Simpson, PE)

(d)

U. S. DI FEDEF	EPARTMENT OF TRANSPORTA RAL HIGHWAY ADMINISTRAT	TION INDEX TO SHEETS						
		A. COVER SHEET AND NOTES B. QUANTITIES & DESIGN DIMENSIONS						
	CPS-TBS	C. PLAN AND ELEVATION FACING BLOCK SCHEDULE D. GRS-IBS ABUTMENT DETAILS						
	DESIGN DRAWINGS 2011							
GENERAL NOTES FURIOUSE: These example plan Sheets A through D were prepared to disorbate the hypotal antitret of a set of drawings accessary for a GR-105 project. Presenting in the set of drawings are consistent of the set of the set of the weak highlight (b) ranging from 30 to 34 files. This conditions were presented for the quantity estimate bine fit: "pore solid conditions" and "Available set of conditions". NITENDED USE: These pairs are use associated and a secolic project. All NITENDED USE: These pairs are use associated and a secolic project. All Record prof to use Project paired/Tables should be prepared to tappenent the	Settlement below the RSF is assumed to be negligible. No differential settlement between adultments is assumed. Settlement between adultments is assumed. Settlement actuard satisfies in the represent bottom of the RSF to meet the ministrum factors of adults in the represent bottom of the RSF to meet the ministrum factors of adults in the reference manual. Nod faces thickness. Nod faces thickness.	Superstructure Recenser: The case used for the placement of the superstructure can be positioned on the GRS abument provided the outryger paids are sared for users may doog pairway the fise of the adversement way. Greater checked by the fisquere of Record. An additional space of geosysteter: reinformative can be placed believed in the mass read and the contrels of the fore endormality of the bigging advection. An additional space of geosysteter: the place believes the space believes the mass read and the contrels of the bigging without organize actual the bigging advection. The bigging advection the advection believes the bigging advection believes the bigging advection. The bigging advection believes the bigging advection believes the bigging advection. The bigging advection believes and the bigging advection believes the bigging advection. The bigging advection believes and the bigging advection believes the bigging advection. The bigging advection believes and the bigging advection believes the bigging advection. The advection believes advection below advection believes the bigging advection believes the bigging advection below advection below advection below advection. The bigging advection below advection b						
pun set. DESTGN Combined babs: Superstructure (gLL = qB) 2 TSF maximum (service load, combined babs: Superstructure (gLL = qB) 2 TSF maximum (service load, allwahte stretes design). Roadway the load sectorarye: 250 pd uniform vertical Bread Base and works the gLd of the foreases . Juli-hold the sectorary	2 CONSTRUCTION SPECIFICATIONS 1. Site Layout/Survey. Construct the bases of the GRE absolutest and initigable within 1.0 and of the stakes deviations. Construct the external GRE absolutest and wingwalls to within 5.0.5 incide of the surveyed stake dimensions.	pedentitie neithercennet upers are placed along the back of the superstructure, but in maximum (in heights of "n-hords (maximum versical spacing of penintercenter's (=wichde)). The top of the final wear should be approximately back cover over the gensynthetic target of the final wear should be back cover over the gensynthetic target (if horn hot mux applicable). REINFORCHIG STEEL Pravide reinforcing sheet candomining to ASTM 4615, CM. 60.						
"Non" Self Conditions: (Cohesion > 200 aff assumed for temporary back sites of any cohesion = 0 and, (Cohesion > 200 aff assumed for temporary back sites of cohesion = 0 and, of the cohesion = 0 and the cohesion = 0 and Resonances file: Link respire 1.13 pcf. fection angle = 3%, cohesion = 0 pdf Foundations link times of a 1.25 pcf. fection angle = 3%, cohesion = 0 pdf Foundations link times of a 1.25 pcf. fection angle = 3%, cohesion = 0 pdf	 Broundstrin: Camply with Occupational Safety and Health Administration (05H4) for all encandence. Compaction: Compact backfill to a minimum off of percent of the maximum dry density according to Add/970-798 and a 2 percent genome modular constants in the second percent of the second second second second second and according to Add/970-798. Only faint-operated compaction equipment is allowed works 3 bited of the work flow, distributionent estimation fails percent is demonstration works 3 bited of the work flow, distributionent estimation fails percent is allowed by the second percent of the second se	CMU BLOCK In colder climates, freeze-thaw test (ASTM C1262-10) should be concluded to assue the duagetile of the CMU and ensure it follows the standard manual standard and the blocks of they are at housing subject to de-slag chemicals. Compressive strangth — 4,200 pst minimum Water advapted wint = 5 %						
"Faramaba" Sol Conditions: Relative budfit: Unit weight = 125 pcf, futtion angle = 40%, cohesion = 100 pcf draw 2 & 3 index draw 2 & 0 index in the second secon	4. Geopyrithetic Redifficament Recentration: Pull But geosphthetic Lought to remove any enhance and grid far prior to relate loading and comparing the backfit materials befores should be staggerered at least 24-inches apart and spices are not athered in the energy methodes and explorement at a loading directly on the geosynthetic equipment over the persynthetic at speech shares than 5 miles per floar with no sucher braining or sharp turning.	Note: π_{1}^{*} π_{2}^{*} , Lance, π_{2}^{*} π_{2}^{*} , π_{2}						
Geosynthetic Reinforced Solf Integrated Bridge System Interim Implementation Guide, FHWM-HRT-11-026, January 2011 Zeogign methods resented in Chapter 4 of the reference Neural. No settimic design assumed	5. IESF Construction: The IESF about be encapsulated in pertextile miniforcomment and all sides with minimum contrapts of 2.0 feets to prevent network initiatian, "Wrapped corners need to be tight without exposed soil. Compact backfill material in this loss than & initiations in compacted height. Cande and level the top of the IESF prior to final encapsulation, as this will serve as the leveling pad for the CHU blocks of the GRS abutment.	GEOSYNTHETIC REIN-RORCEMENT TENSILE PROPERTIES Roewind universe tonsile screept = 4,800 lk/ft by (ASTM D 4595 (geotextiles) ASTM D 6527 (geogenyids)) Tensile strength at 2% strain = 1,370 lk/ft POV/STYREW FOAM BOARD						
 Conduct a subsurface investigation in accordance with "Solis and Foundations", FHWA-NH1-06-088 (2006) and "Subsurface Investigations", FHWA-NH1-01-031, (2006). Device factor of safety against sublex is > 1.5: Factor of safety against human 	 GRS Wall Face Alignment: Check for level alignment of the CMU block row at least every other layer of the GRS abutment. Correct any alignment deviations greater than 0.25 inches. 	Provide polystyrene foam board conforming to AASHTO M230, type VI. U.S. Deverteerd of Texesoretation TECERAL IDEVENTION WESTER TEDEAL UNDER IDEVENTION						
Takine $m_2\geq 3.$. The product strain $m_2=g_{-1,0}$, there is shown gradients of some gradients of the shown gradient strain $g_{-1,0}$ and $g_{-1,0}$ and $g_{-1,0}$. The shown gradient strain $g_{-1,0}$ are gradient gradient strain $g_{-1,0}$ and $g_{-1,0}$ are gradient strain $g_{-1,0}$ and $g_{-1,0}$ and $g_{-1,0}$ and setback (Figure 1.0).	approximately it to 12 incides and consists of a minimism of the 4-incid Mtd of wrapped- face (GR). River prevail-wint thick these hand on the top of the bearing bed height (page-14-inc) that (Stee bear of the top of the bearing bed height (page-14). The second of the second of the top of the bearing bed height (page-14). The second of the second of the second of the second of the top of the bear hand required of the second second of the second of the of the bear hand of the second of the second of the second of the superstructure and to manife contact with the bearing and second of the bear handline of the bearing and the superstructure and to manife contact with the bearing and the							
0. DATE 87 REVISIONS NO. DATE 87 R 0/25/11. Revision_1	EVESCING DESIGNED BY DRAWN BY CHECKED BY HINAC. TUTTLE	SCALE PROJECT TEM LEADER BRIDGE DRAWING DATE DRAWING NO.						

(e)

		OR5	485 Poor 5	Soil Con	dition Q	antiles Per	Abutmer	9F 2/					GR	5-185 /	Poor S	oil Con	office	DEIS/G	W DIM	ENSIO	MS		
90 10	ACAD BASE N., THEOREM (PC)	GLOCOWINETN RENARCOLIMENT JOINT	GAV-REDCK HOLLOW FAN	CHEV AUDICE JOLD	ALL	GIS MODULI JELNEY	ASF TR.L (CUPD)	1044	ADAD BASE ADDREAM JOANN	CONCRETE BLOCF BALL ALL (CARD)	WALL HEROHT	UNINGHINGLE LENGTH: 1	d_i^H	*1		8,	8.00e		8.00	Day	-	ABUT WIDTH	WINGHT
					-						#17)	#D	170	670	øŋ	萨功	#7)	#7)	#17	#T)	ψŋ	#17	#7)
2047	34	1/90	79.0	310	/10	187	- 52	- 10	54	10	18.42	15.62		7.6	2.8	2.40	8.5	8.86	11.68	2.30	2.30	37.76	14.00
14.12	34	1760	3000	305	790	319	79		60		12.52	18.23	3	7.8	2.5	2.83	11.0	10.38	13.75	2.75	2.75	32.76	15.89
14.00		1100	1110		100	411					14.00	19.52	4	10	2.0	2.60	12.8	17.00	15.60	2.12	2.9	37.78	40.70
196.71	34	82000	1250	368	845	290	154	36	42	22	18.24	20.44	1	7.6	2.4	2.62	15.5	14.00	19.38	4.00	3.86	37.78	21.60
20.12	34	4000	3080	329	890	879	187	38	82	2.8	20.17	28.04	1	16	2.5	2.62	17.0	19.38	27.25	4.25	4.25	37.76	23.51
22.1	34	4500	2375	300	910	13.19	229	36	96	2.4	22.40	37.34	4	7.6	2.8	3.63	18.5	17.86	29.45	4.63	4.63	37.78	25.42
24.01	81	84000	2710	199	992	2814	287	.18	208	2.8	24.07	29.85		2.0	2.5	2.62	20.0	19.30	25.00	5.00	5.00	27.79	27.82
			THE PATE OF		Red for				- N			-	088-0	RS Fas	rorabile	SoilC	anditic	n DES	LINGW (D	MENS	NONS	-	
icart (n) prizzy	IOAP-BIELE THCONELL/NJ	answinen anwactien anwactien	ONU BLOCK HOLLOW BADS	CMU BLOCK 30100 (DECH	MANA ANTO	GHE BACKTEL (CUPE)	157 ALL (C372)	70.400	ROAD-BROX ADDRIDH TT JOURDI	EDWORETE BLDCK WALL PRILICOPOL	WALL HEIGHT JR	UNDERLL LENGTH Law	4	*.		b ,	۶		8.00	Day	*	ABUT WIDTH	retroit
			-								100	175	1940	640	#10	02	073	60	10	#0	#10	#10	10
1940		1000	100	340	760	1/6	24			2.0	10.42	45.63	3	7.8	2.8	3.60	6.0	5.36	7.90	1.50	1.50	27.78	34.00
14.01		1200	1280	340	215	200	20			21	12.82	18.23	1	7.8	2.8	3.82	6.0	5.30	7.90	1.80	1.50	30.76	15.89
14.22		2308	1000	311	#10	200	20	10	22	22	14.34	++.53	4	78	2.8	3.60	6.0	5.36	7.60	1.00	1.50	27.78	17.79
1821	M	2709	1760	340	645	48.1	25	- 16	#2	2.8	16.22	22.14	4	1.0	2.0	2.82	80	0.30	1.80	1.00	1.00	00.76	11.00
3813	M	1409	2008	178	840	604	48	M	82	2.8	10.71		1.1	24		1.40	2.0		4.74	1.00	1.14	37.74	23.44
12.1	.14	4809	1975	380	\$30	715	50	36	26	2.4	23.49	27.34	-	7.8	2.8	3.60	7.8	4.84	0.70	1.88	1.00	27.78	25.47
16.91	.14	00816	2748	.285	ReD	281	60	.00	308	2.8	14.00	19.95		7.6	2.5	1.40	4.0	2.96	10.00	2.80	2.00	327.746	27.45
Sector and a secto	and here () with a constraint of the soft	tion of Jak-Foor I Socke in earth leads for remain if guardeal and a guard OW at ab US of the two of lear point. See Sh of resolutioners of lear point. Nations of resolutions in thermal bet auto I cautolity include + M + 3-Poet.	report events and the events of the event of the events of the event of the even o	overse o Deen e e ded gue e beering e wel and for illustre for illustre CMU bise scring of the appr to ded appr to geotexi	ent solonat part wait: for fit storm storm storm the quant the quant	lies.					Bash Bash Past Bash Bash Bash	 Set back - clonent o Base lengt the wall fit Desning will be wall fit Width of IB Width of C Length of C Length of F Width of F Total width 	ligtance nd bear lin of re- toe with fur- he triking MU bearing SF h at bas line unit	battarde miscot inforcer bridge, pr bed re se of GF	en back nent no beam s inforcer S abut	of facily Lindualis real: next next		nos = hos = L = los = hos = hos = kSF = kSF =	of beam Height is Juger at Integral Length (Abutme Length (Wingwal Reinford Longth (Tease of CMU friend I ruchurs tod Brid of geory et widet of CMU I longth and suit of RSF I	lasar De and pa ga Syst mthatsic t foundat n front i	puals het vomant t am reinforce ion of the ab	pte of fickness) sment
he cotine	ided meterials at	uentities correspe Deviation frank	nd to the dir Ne dimensio	nensione is an the	oe the pten						ONU -	- Concrete I	neeonn	y unit						115.00	No. 196.0	OF TANKS	City Con
loa.m Boar	d thickness is 4	inches (top.).									6. ·	 Clear space superstruct Hanimure 	a from fure.	top of a	cart to b	ottom e	·			0070904	CR	ADE 105	nen blette
in evening	s in pessynthes	es measured for a	poantities.								Den 1	Lackfill Depth of #	SF NO	w hote	an of w					DES	GRC MICE	0-100	SION
	- second time for										GRS -	Geosynthe	tic Rev	forced	Seil					1	OLIAN	TITIE	5

(f)

Figure 55: GRS-IBS Yates Bridge over Spring Creek in Lincoln County, OK; (a) Title sheet; (b) Typical sections; (c) General plan & elevation; (d) Superstructure details; (e) Cover sheet; (f) Design dimensions and quantities; (g) Plan and elevation, facing block schedule; (h) GRS-IBS details

4.4 Cost analysis of one GRS-IBS bridge in Lincoln County, Oklahoma.

In this section cost details are provided for the Yates Bridge over Spring Creek in Lincoln County (GRS-IBS) in comparison with the projected costs of a comparable bridge (i.e Guilliam Bridge) with conventional abutments based in the information obtained from Mr. Tom Simpson of the BIA. The GRS-IBS abutment was the only construction alternative considered for this project. However, the bidding results of October 19,2015 for a pile-supported abutment bridge with comparable bridge dimensions were also obtained. **Figure 56** shows selected information on the two bridges including some design specifications and bill of quantities.

Figure 56: Side-by-side comparison between GRS-IBS Yates Bridge over Spring Creek (Left) and pile-supported Guilliam Bridge over Kickapoo Creek (Right) in Lincoln County, OK: (a) Plan and elevation views; (b) Design data and bill of quantities

Bid tables for both bridges are shown in **Figure 57**, which include quote comparisons between different contractors and engineer's estimate. Also, this data indicates that GRS abutment and the conventional abutment were comparable with respect to factors such as their width, height, span length, ADT and superstructure. Contractors' quotes on the two projects vary over a rather wide range (nearly by a factor of two). However, after ignoring the highest unit prices, it can be observed that the unit cost of the superstructure $(\$/ft^2)$ for the conventional bridge is higher than that of the GRS-IBS bridge (i.e. $\$39.03/\text{ft}^2$ vs. $\$31.27/\text{ft}^2$). However, this difference seems to be counterbalanced by a slightly higher cost of the GRS abutment relative to the pile support. Even though these prices are only estimates, the data in **Figure 57** indicate that the cost-effectiveness of GRS-IBS relative to conventional bridges could be significantly compromised for taller abutments. In addition, since the back-slope of the GRS abutments had to be changed from 1:1 to a milder 2:1 for stability, there were additional quantities of excavation and aggregate that were used to build the abutments. Per the latest estimate, the actual cost of the bridge was approximately \$170,000 (Simpson, T. 2016).

Lincolr	Cour	nty							EST, Inc.
									615 N. Hudson, 3rd Floor
Bid No	. 16-0	1							Oklahoma City, OK 73012
Yates	Bridge	w/ GRS Abutments							(405)815-3600
Bids R	eceive	ed May 2, 2016							
BRA-	YATES	BRIDGE 56' I-BEAM W/ CONCRETE DECK	ON GRS	ABUTMENTS					
ITEM	NO.	DESCRIPTION	UNITS	QUANTITY	Enginee	's Estimate	Contra	ctor A	Contractor B
501(B)	1307	SUBSTRUCURE EXCAVATION COMMON	CY	681.00	20.00	13,620.00	12.00 \$	8,172.00	8.00 \$ 5,448.00
506(A)	1322	STRUCTURAL STEEL	LB	6055.00	2.50 \$	15,137.50	5.22 \$	31,607.10	6.00 \$ 36,330.00
509(A)	1326	CLASS AA CONC.	CY	37.00	350.00	12,950.00	229.00 \$	8,473.00	400.00 \$ 14,800.00
511(A)	1332	REINFORCING STEEL	LB	8692.00	1.00 \$	8,692.00	0.60 \$	5,215.20	1.20 \$ 10,430.40
601(B)	1353	TYPE 1-A PLAIN RIPRAP	TON	510.00	35.00 \$	17,850.00	44.25 \$	22,567.50	55.00 \$ 28,050.00
880(J)	8905	CONSTRUCTION TRAFFIC CONTROL	LSUM	1.00	2000.00	2,000.00	2500.00 \$	2,500.00	2000.00 \$ 2,000.00
SP	0	BEAM GUARD RAIL ON THE BRIDGE	LF	125.00	11.00 \$	1,375.00	30.00 \$	3,750.00	50.00 \$ 6,250.00
SP	0	GEOSYNTHETIC REINFORCEMENT	SY	5400.00	3.25 \$	17,550.00	2.75 \$	14,850.00	6.00 \$ 32,400.00
SP	0	CMU BLOCK - HOLLOW	EA	2910.00	2.80 \$	8,148.00	4.00 \$	11,640.00	19.00 \$ 55,290.00
SP	0	CMU BLOCK - SOLID	EA	778.00	3.00 \$	2,334.00	2.40 \$	1,867.20	22.00 \$ 17,116.00
SP	0	GRS BACKFILL	CY	1310.00	30.00 \$	39,300.00	24.45 \$	32,029.50	95.00 \$ 124,450.00
SP	0	RSF FILL	CY	246.00	30.00 \$	7,380.00	30.00 \$	7,380.00	100.00 \$ 24,600.00
SP	0	FOAM BOARD (4" THICK)	SF	36.00	2.00 \$	72.00	10.00 \$	360.00	50.00 \$ 1,800.00
SP	0	ROAD BASE AGGREGATE	CY	186.00	30.00 \$	5,580.00	28.00 \$	5,208.00	100.00 \$ 18,600.00
SP	0	CONCRETE BLOCK WALL FILL	CY	4.00	220.00 \$	880.00	150.00 \$	600.00	900.00 \$ 3,600.00
SP	0	12 GA. SHEET PILING	SF	1998.00	10.00	19,980.00	0.45 \$	899.10	6.00 \$ 11,988.00
			2	TOTAL	9	172,848.50	\$	157,118.60	\$ 393,152.40

		Abutment type	(GRS-IBS			(Condu	sions											
		Bridge Name		Yates		Area of Superst	ructure		1,463.80	ft^2										
		Height	1	16.22 ft		Cost of superstr	ucture per f	ft^2	31.27	\$/ft	^2									
		Span Legth		56.3 ft		Cost of abutme	nt per LF of	height	7,376.68	\$/LF	-							IV	CIC	•
		Width		26 ft	1	Cost of abutme	nt per LF of	height	-	\$/LF						- F	AINA	LY	213)
		Superstructure type	Ste	el Beam				-												
		ADT-2015		50	1															
		ADT-2035		75																
		v		45	1															
					•	Supers	structure		Ab	utme	ent			Inform	ation Fro	om Mr	Simpson's	e-mails	Image 1	1
lt	em No	Description	Price	2	Units	Qty	Total		Abutment	Tota	əl	Total	Ωty	Enginee	er	Contra	actor A	Contra	ctor B	Contractor C
501(B)	1307	Substructure Excavation	\$	16.00	СҮ		\$	-	681	\$	10,896.00		81.0	\$	20.0	\$	12.0	*8		
506(A)	1322	Structural Steel	\$	3.86	LB	6,055.0	\$ 2	3,372		\$	-	6,0	55.0	\$	2.5	\$	5.2	*6		
509(A)	1326	Class AA Concrete	\$	289.50	СҮ	37.0	\$ 1	0,712		\$	-		37.0	\$	350.0	\$	229.0	*400		
511(A)	1332	Reinforcing Steel	\$	0.80	LB	8,692.0	\$	6,954		\$	-	8,6	92.0	\$	1.0	\$	0.6	*1.2		
601(B)	1353	Type 1-A Plain Riprap	\$	39.63	TON		\$	-	510	\$	20,208.75		510.0	\$	35.0	\$	44.3	*55	-	
880(J)	8905	Construction Traffic Control	\$	2,166.67	LSUM	1.0	\$	2,167		\$	-		1.0	\$ 2	2,000.0	\$	2,500.0	\$ 3	2,000.0	
SP	0	Beam Guard Rail	\$	20.50	LF	125.0	\$	2,563		\$	-		25.0	\$	11.0	\$	30.0	*50		
SP	0	Geosynthetic Reinforcement	\$	3.00	SY		\$	-	5,400	\$	16,200.00	5,4	00.0	\$	3.3	\$	2.8	*6		
SP	0	CMU Block- Hollow	\$	3.40	EA		\$	-	2,910.0	\$	9,894	2,9	10.0	\$	2.8	\$	4.0	*19		
SP	0	CMU Block - Solid	\$	2.70	EA		\$		778.0	\$	2,101		78.0	\$	3.0	\$	2.4	*22		
SP	0	GRS Backfill	\$	27.23	CY		\$	-	1,310.0	\$	35,665	1,3	10.0	\$	30.0	\$	24.5	*95		
SP	0	RSF Fill	\$	30.00	CY		\$		246.0	\$	7,380		46.0	\$	30.0	\$	30.0	*100		
SP	0	Foam Board (4"Thick)	\$	6.00	SF		\$	-	36.0	\$	216		36.0	\$	2.0	\$	10.0	*50		
SP	0	Road Base Aggregate	\$	29.00	СҮ		\$	-	186.0	\$	5,394.00		86.0	\$	30.0	\$	28.0	*100		
SP	0	Concrete Block Wall Fill	\$	185.00	CY		\$		4.0	\$	740.00		4.0	\$	220.0	\$	150.0	*900		
SP	0	12 GA Sheet piling	\$	5.48	SF		\$	-	1,998.0	\$	10,955.70	1,9	98.0	\$	10.0	\$	0.5	\$	6.0	
																*Out	of the ana	lysis, pr	ices to h	igh
						Superstructure	\$ 45,7	66.57	Abutment	\$	119,649.80	Total	orice	\$ 1	.72,849	\$	157,119	*		
												-							-	

	Bid Tabula	ation									
Lincoln County								EST, Inc.			
								615 N. Hudson	3rd Floor		
Bid No. 15-13								Oklahoma City	OK 73012		
Guilliam Bridge								(405)815-3600			
Bids Received October 19, 2015											
ITEM NO. DESCRIPTION	UNITS	QUANTITY	Engineer's	Estimate		Contrac	tor A	Contra	ctor B	Contra	actor C
506(A) 1322 STRUCTURAL STEEL	LB	15008.00	1.20 \$	18,009.60		2.50 \$	37,520.00	5.50 \$	82,544.00	9.50 \$	142.576.00
509(A) 1326 CLASS AA CONC.	CY	38.20	400.00 \$	15,280.00		320.00 \$	12,224.00	825.00 \$	31,515.00	900.00 \$	34,380.00
511(A) 1332 REINFORCING STEEL	LB	6630.00	1.20 \$	7,956.00		0.86 \$	5,701.80	1.50 \$	9,945.00	2.50 \$	16,575.00
514(A) 6010 PILES, FURNISHED (HP 10x42)	LF	240.00	21.00 \$	5,040.00		34.00 \$	8,160.00	35.00 \$	8,400.00	85.00 \$	20,400.00
514(A) 6011 PILES, FURNISHED (HP 12x53)	LF	480.00	26.00 \$	12,480.00		40.00 \$	19,200.00	42.00 \$	20,160.00	95.00 \$	45,600.00
514(B) 6292 PILES, DRIVEN (HP 10x42)	LF	240.00	8.00 \$	1,920.00		10.00 \$	2,400.00	15.00 \$	3,600.00	50.00 \$	12,000.00
514(B) 6294 PILES, DRIVEN (HP 12x53)	LF	480.00	10.00 \$	4,800.00		10.00 \$	4,800.00	18.00 \$	8,640.00	50.00 \$	24,000.00
SP 0 24 GA. TENSINLE FORM	SF	1755.00	5.00 \$	8,775.00		4.72 \$	8,283.60	9.20 \$	16,146.00	13.00 \$	22,815.00
SP 0 12 GA. SHEET PILING	SF	2190.00	10.00 \$	21,900.00		9.23 \$	20,213.70	20.00 \$	43,800.00	35.00 \$	76,650.00
SP 0 BEAM GUARD HAIL ON THE BRIDG	E LF	125.00	25.00 \$	3,125.00		11.00 \$	1,375.00	35.00 \$	4,375.00	75.00 \$	9,375.00
880(J) 8905 CONSTRUCTION TRAFFIC CONTRO	DL LSUM	1.00	2000.00 \$	2,000.00		2000.00 \$	2,000.00	4000.00 \$	4,000.00	11227.00 \$	11,227.00
	TOTAL	SURFACING	\$	101,285.60	٠	\$	121,878.10	\$	233,125.00	\$	415,598.00
		* Corrected									

		Abutment type	Pile	e Abutment					Conclu	sions										
		Bridge Name		Guilliam	1	Area of S	iuperstr	ructure		1,534.00	ft^2	2								
		Height		17 ft		Cost of s	uperstr	ucture	per ft^2	39.03	\$/ft	t^2								
		Span Legth		59 ft		Cost of a	butmer	nt per l	.F of height	3,775.65	\$/L	F						1.5		
		Width		26 ft		Cost of a	butmer	nt per l	.F of height	2,848.59	\$/L	F					ANA		1212	
		Superstructure type	S	teel Beam	1															
		ADT-2015		100																
		ADT-2035		150																
		V		45 MPH																
							Supers	tructu	re	Ab	utm	ent			Inform	ation	from biddin	g resi	ılts	
lte	m No	Description	Pric	:e	Units	Qty		Total		Abutment	Tot	al	Total Qty	Engir	neer	Cont	tractor A	Cont	ractor B	Contractor C
506(A)	1322	Structural Steel	\$	3.07	LB	8	,000.0	\$	24,533	7,008	\$	21,491.20	15,008.0	\$	1.2	\$	2.5	\$	5.5	*9.5
509(A)	1326	Class AA Concrete	\$	515.00	CY		38.2	\$	19,673	-	\$	-	38.2	\$	400.0	\$	320.0	\$	825.0	*900
511(A)	1332	Reinforcing Steel	\$	1.52	LB	6	,630.0	\$	10,044	-	\$	-	6,630.0	\$	1.2	\$	0.9	\$	1.5	\$ 2.5
514(A)	6010	Piles, Furnished (HP 10 x 42)	\$	30.00	LF			\$	-	240.0	\$	7,200	240.0	\$	21.0	\$	34.0	\$	35.0	*85
514(A)	6011	Piles, Furnished (HP 12 x 53)	\$	36.00	LF			\$	-	480.0	\$	17,280	480.0	\$	26.0	\$	40.0	\$	42.0	*95
514(B)	6292	Piles, Driven (HP 10 x 42)	\$	11.00	LF			\$	-	240.0	\$	2,640	240.0	\$	8.0	\$	10.0	\$	15.0	*50
514(B)	6294	Piles, driven (HP 12 x 53)	\$	12.67	LF			\$	-	480.0	\$	6,080	480.0	\$	10.0	\$	10.0	\$	18.0	*50
SP	0	24 GA Tensile form	\$	6.31	SF			\$	-	1,755.0	\$	11,068	1,755.0	\$	5.0	\$	4.7	\$	9.2	*13
SP	0	12 GA Sheet Piling	\$	13.08	SF			\$	-	2,190.0	\$	28,638	2,190.0	\$	10.0	\$	9.2	\$	20.0	*35
SP	0	Beam Guard Rail	\$	23.67	LF		125.0	\$	2,958		\$	-	125.0	\$	25.0	\$	11.0	\$	35.0	*75
880(J)	8905	Construction Traffic control	\$	2,666.67	LSUM		1.0	\$	2,667		\$	-	1.0	\$	2,000.0	\$	2,000.0	\$	4,000.0	*11227
																*0ı	ut of the ana	lysis,	prices to h	igh
1						Superstr	ucture	\$	59,875.78	Abutment co	st wi	ith furnished	Total price	\$	101,286	\$	121,878	\$	233,125	*
										Piles	\$	64,186								
1										Abutment co	st wi	ith driven								
										Piles	\$	48,426								
									(\mathbf{h})											
									(0)											

Figure 57: Bid tables for comparable bridge projects in Lincoln County, OK: (a) GRS-IBS Yates Bridge over Spring Creek; (b) Pile-supported Guilliam Bridge over Kickapoo Creek

4.5 General Information of the studied bridges in Kay County, Oklahoma

During the period between April 2014 and February 2015, four (4) GRS-IBS bridges and two (2) conventional bridges were constructed to replace six (6) bridges over Dry Creek near Blackwell, in Kay County, OK (**Figure 58**). All of them were built within a one-mile segment of the 44th St., which provided a unique opportunity for a side-by-side comparison as reported by Ngo (2016). Their performance was compared with one another for essentially the same geotechnical, climatic, traffic and construction conditions. In addition to the aforementioned conditions, this section reports the weather data, local seismicity and traffic count. The bridges are numbered as shown in **Table 29** and **Figure 59** for ease of reference in this study.

Figure 58: General location of Kaw Nation bridge project (44th Street) in Kay County, Oklahoma

Bridge	Abutment	Superstructure	Superstructure (As built)
	Types	(Planned)	
1	Driven H-piles	Steel girder	
2		Steel girder	Steel girders and tied rebar cast-in-place
3	CDS	Box beams	concrete deck
4	GKS	Precast slab span	
5		Girder/ slabs	Steel girder and present concrete deals slob
6	Driven H-piles	Girder/ slabs	Steer gruer and precast concrete deck stab

Table 29: Structural types of decks and abutments used in Kay County bridges (Hatami et al. 2016)

Figure 59: Locations of GRS-IBS bridges in Kay County

Figure 60 through **Figure 63** show side-by-side comparisons between the old and new (GRS-IBS) bridges (Bridges Nos. 2 through 5) in Kay County.

(b)

Figure 60: (a) Old and (b) New Bridge No. 2 (Photographs Courtesy of Mr. Tom Simpson, PE)

Figure 61: (a) Old and (b) New Bridge No. 3 (Photographs Courtesy of Mr. Tom Simpson, PE)

Figure 62: (a) Old and (b) New Bridge No. 4 (Photographs Courtesy of Mr. Tom Simpson, PE)

Figure 63: (a) Old and (b) New Bridge No. 5 (Photographs Courtesy of Mr. Tom Simpson, PE)

This technology provides economical and reliable solutions to replace many structurally deficient and functionally obsolete bridges on county roads across the states.

4.6 Geotechnical Data of Kay County, Oklahoma

Geotechnical information of the geotechnical report No. OGR-12126/27/28/29 by METCO (METCO 2012) is given in this section. One soil boring was drilled at the location of each replacement bridge using a truck-mounted hollow-stem drill rig. METCO reported 4 borings named B, C, D and E that corresponded to bridge 2,3,4, and 5 respectively (**Figure 59**). The borings, that contain essentially similar data and analysis, were drilled to an approximate depth of 18.3 m (60 ft.)

Apart from four (4) in. of gravel and topsoil, the boring generally encountered lean clays to an approximate depth of 11.9 ~ 13.4 m (39~44 ft.) below existing grade, underlain by soft to moderately hard sandy weathered shale of approximately 18.3 m 60.0 ft. Standard penetration resistance (N-Value; ASTM D1586) recorded in the soils ranged between weight-of-hammer (soft consistency) and 85 blows per foot of penetration (stiff soil). Texas cone penetration test results (in general conformance with ASTM D3431) in the sandy weathered shale bedrocks ranged from 100 blows/5 inches of penetration to 100 blows/2 inches of penetration indicating soft to moderately hard rock. Groundwater was encountered at approximately 3.7m (12 ft.) to 4.0 m (13 ft.) below existing grade. **Figure 64** shows the boring locations. In addition, **Figure 65** shows the fence diagram for all the bridges.

(c)

(d)

Figure 64: Geographical location of single-span: (a) Bridge 2-'B'; (b) Bridge 3-'C'; (c) Bridge 4-'D'; (D) Bridge 5-'E'; over Dry Creek in Kay County, OK (METCO 2012)

Figure 65: Fences of borings Based on geotechnical engineering report by METCO, 2012)

In addition to the geotechnical report soil samples were obtained from a borehole at a depth of 4.27 m (14 ft.) near Bridge No. 5 using a hand auger in February 2015. **Figure 66** shows the soil samples with the tare numbers indicating their original depth in ft. Results of a visual classification according to ASTM D2488 are shown in **Figure 67**. The classification included the samples moisture condition, color and consistency. The samples gravimetric water contents were then determined using the oven drying method (ASTM D2216) with the results as shown in **Figure 68**. Hand calculations indicated that a gravimetric water content value of 30% corresponds to full saturation. Therefore, it was concluded that the soil below the depth of 1.83 m (6 ft.) from Bridge No. 5 abutment toe was saturated when the soil samples were obtained from the site. However, due to capillary rise the phreatic surface was expected to be deeper than 1.83 m (6 ft.)

Figure 66: Hand auger samples taken from near an abutment of Bridge No. 5 down to a depth of 4.27m. Numbers indicate the sampling depth in ft. (e.g. Sample No. 14 was taken from the last foot of the borehole between 3.96 m and 4.27 m below ground surface).

Figure 67: Visual classification of soil samples taken from a borehole at the location of Bridge No. 5 following ASTM D2488 test protocol

Figure 68: Gravimetric water content results for the soil samples from a borehole at the site of Bridge No. 5

4.7 Hydraulic Considerations of four GRS-IBS bridges in Kay County, Oklahoma

According to Simpson (2015), the maximum water velocities for the GRS projects over Dry Creek in Kay County are within the range between 0.5 m/sec and 0.76 m/sec (1.5 and 2.5 ft/sec), which indicates that these structures are in a flood plain rather than in a high run-off area. Therefore, scouring is not a real concern for these abutment structures.

Nevertheless, the lower part of the GRS facings was covered with riprap as added precaution for their stability (**Table 30**). Also, the reinforced soil foundation (RSF) of each GRS-IBS was conservatively placed 30 in. below the scour depth determined by the hydraulic engineer.

Is worth noting that on May 23th, 2015 all six bridges experienced record-breaking rainfalls and flash flooding (Ngo 2015; Hatami et al. 2016). Bridges 5 and 6 were submerged by approximately 0.3m (1ft).

	Bridge	Scour Countermeasure	Service Under Bridge					
FHW	A Guidelines	*Gabion mattresses *Riprap aprons *Articulated concrete blocks	Waterway or Roadway					
	Bridge – 1							
Kay	Bridge – 2	Riprap	Waterway					
County	Bridge – 3							
	Bridge – 4							
Line Ya	coln County ates Bridge	Rip Rap	Waterway					
Ottawa	County Bridge	None	Roadway					

Table 30: Scour countermeasure information on GRS-IBS projects in Oklahoma
4.8 Construction Phase of two conventional bridges and four GRS-IBS bridges in Kay County, Oklahoma

The GRS-IBS bridges in Kay County were constructed in overall conformance with the FHWA standard drawings (Adams et al. 2011). However, some adjustments were made in the construction of some of the bridges depending on the conditions of the site and availability of materials, among other factors. For instance, **Figure 69** shows the asbuilt drawings for one of the GRS-IBS bridges with the deviations from the original plan marked in red. Example changes include the facing type (e.g. hollow CMU filled with aggregate and use of a filled steel channel instead of Styrofoam panels as a seating pad underneath the superstructure beams).Photographs of all six (6) bridges in this study are shown in **Figure 70** through **Figure 74**. Also **Figure 75** depicts the GRS-IBS Bridge No. 3. **Figure 76** shows a pictorial account of the construction of Bridge No. 5 including its abutments and superstructure.

		GRS	IBS Poor	Soll Con	dition Qu	antites Per	Abutmer	nt 1/					GR	S-IBS I	Poor S	oll Cor	dition	DESIG	IN DIM	ENSIC	NS		
ВGHT (H) (FT)	ROAD BASE h & THICKNESS (W)	GEOSYNTHETIC REINFROCEMENT (SQYD)	CMU BLOCK HOLLOW (EA)	CMU BLOCK SOLID (EAC H)	#4 REBAR (FT)	GRS BACKFILL (CUYD)	RSF FILL (CUYD)	FOAM BOARD (SQFT)	ROAD BASE AGGREGATE (CUYD)	CONCRETE BLOCK WALL FILL (CUYD)	WALL HEIGHT (H)	WINGWALL LENGTH, L _{WY}	2/ d.	8.2	ь	b,	Biotal	в	Brok	DRSP	XREF	ABUT WIDTH	WINGWA L HEIGH
10.42	3.4	1200	210	349	652	287	5.3	10	54	1.4	(FT)	(FT)	(IN)	(11)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)
12.23	24	1200	050	285	608	207	72	10	67	1.5	10.42	15.63	3	7.6	2.5	3.83	9.5	8.86	11.88	2.38	2.38	37.76	14,00
14 31	34	2100	1165	373	721	509	0.6	10	68	1.6	12.32	18.23	3	7.6	2.5	3.83	11.0	10.36	13.75	2.75	2.75	37.76	15.89
16.22	34	2700	1455	389	766	655	123	18	27	1.7	14.31	19.53	4	7.6	2.5	3.83	12.5	11.86	15.63	3.13	3.13	37.76	17.79
18.21	34	3200	1700	397	789	793	154	36	82	1.7	16.22	22.14	4	7.6	2.5	3.83	14.0	13.36	17.50	3.50	3,50	37.76	19,70
20.12	34	4000	2030	413	835	978	187	26	02	1.8	18.21	23.44	5	7.6	2.5	3.83	15.5	14.88	19.38	4.00	3.88	37.76	21.60
22.1	34	4600	2305	421	858	1139	220	36	96	1.9	20.11	26.04	5	7.6	2.5	3.83	17.0	16.36	21.25	4.25	4.25	37.76	23.51
24.01	34	5600	3280	437	904	1354	267	26	105	2	22.10	27.34	6	7.6	2.5	3.83	18.5	17.86	23,13	4.63	4.63	37.78	25.42
									100		24.01	29.95	6	7.6	2.5	3.83	20.0	19.36	25.00	5.00	5.00	37.76	27.83
		GRS-IBS ABBU	TMENT F	avorable	Soil Co	ndition Qua	ntities Pe	r Abutme	nt ^{1/}	1		(GRS-IE	BS Fav	orable	Soil C	onditio	n DES	IGN D	IMENS	IONS	2004	
DGHT (H) (FEET)	ROAD BASE h n THICKNESS (IN)	GEOSYNTHETIC REINFROCEMENT (SQYD)	CMU BLOCK HOLLOW (EACH)	CMU BLOCK SOLID	#4 REBAR (FEET)	GRS BACKFAL (CUYD)	RSF FILL (CUYD)	2/ FOAM BOARD (SQFT)	ROAD BASE AGGREGATE (CUYD)	CONCRETE BLOCK WALL FLL (CUYD)	WALL HEIGHT (H)	WINGWALL LENGTH, L _{WW}	<i>لا</i> ط•	4	b	b,	Btate	B	Base	D _{RSF}	X _{RSF}	ABUT WIDTH	WINGWA
				Interd							(FT)	(FT)	(IN)	an	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)
10.42	34	1000	710	349	652	176	24	18	54	1.4	10.42	15.63	2	7.6	2.5	2.82	6.0	5.36	7.50	1.50	1.50	37.76	14.00
12.32	34	1400	950	365	698	242	26	18	63	1.5	12.32	18.23	3	7.6	2.5	3.83	6.0	5.35	7.50	1.50	1.50	37.76	15.89
14.31	34	1700	1165	373	723	305	27	18	68	1.6	14.31	10.53	4	7.6	2.5	2.62	6.0	5.26	7.50	1.50	1.50	37.76	17.79
16.22	34	2200	1455	389	766	394	29	18	77	1.7	10.22	22.14	4	7.6	2.5	3.83	8.0	5.36	7.50	1.50	1.50	37.76	19.70
18.21	34	2700	1700	397	789	483	35	36	82	1.7	18.21	23.44	5	7.6	2.5	3.83	6.5	5.86	8.13	1.67	1.63	37.76	21.60
20.12	34	3400	2030	413	.835	606	43	36	92	1.8	20.11	28.04	5	7.6	2.5	3.83	7.0	6.36	8.75	1.75	1.75	37.76	23.51
22.1	34	4000	2305	421	858	715	50	36	96	1.9	22.10	27.34	0	7.6	2.5	3.83	7.5	6.86	9.35	1.88	1.88	37.76	25.42
24.01	34	4800	3280	437	904	865	60	36	105	2	24.01	29.95	6	7.6	2.5	3.83	8.0	7.36	10.00	2.00	2.00	37.76	27.83
NOTES: estimated mpanying ts will voir to board th wall lengt block ass estimate et assum to conce to concete esam seat esa detail	: I materials quant plan sheets. De d the quantaties, wickness is 4-inct th = B total + H sumptions; solid d scour elevation ed heres); solid d d scour elevation ed heres); solid d ed); holow blocd tee-filled blocks a ed); holow blocd tee-filled blocks a fill in the CMU's below the clear Is.	illes correspond l viation from the i nes (typ.). + 3-feet. blocks at the bas to 100-year floc locks in setback to 5 for remaining i sssumed 3 rows o for remaining i ssardwall and at a at the top of the zone. See Sheet	to the dimensions of dimensions of d event elev ocation to b vall height a leep belaw b l corners: w ent wall and abutment w C and D for	sions on t in the plai ation can seat ad guardr caring pai et cast i wingwall all under illustratio	the n t ail d t :						$\sigma_b =$ B = $b_{\pm} =$ $B_b =$ $b_{bcock} =$ $B_{coce} =$ $B_{coce} =$	AB Set back di element an Base length the wall fac Bearing wid Width of the Width of CM Length of b Width of RS Total width Including th	REVIA) stance i d beam o of neir e of neir e bridge tU earing i i F at bass re wall i	TIONS: betweer seat aforcem oridge, l bed rein bed rein a of GRS	n back o ent not beam se lorcem	ot facing includin sat ent	He ng L L L L L L L L L	$H = V_{0}$ $kock = F$ $h_{r0} = F$ S $IBS = 1$ $L = L$ $kock = L$ $kock = L$ $kock = V$ $KSF = F$ $RSF = L$	Vall heig & beam leight of leight of uper str integrat integrat congth of butmer ength of Vingwall teinforor ength of ength of the structures of the structures	ht mea seat f CMU f road b ructure ed Bridg f geosyn et width f CMU i length ed soil f f RSF in	sured fr ase (eq and pav re Syste nthetic bundati front o	om top o uals heig errent th m reinforcer on f the abu	f RSF to i ht of ickness) nent tment wa
mum vert (a) in rein orcement verlaps in	tical spacing of n forced backfill zi s 6-inches in be geosynthetics n	einforcement = h one. Maximum vi saring bed zone a neasured for quar	eight of 1 Cl ertical spaci nd integrate ntities.	YU block ng of d approac	ħ.						d _e = d _{max} =	Clear space superstructs Maximum p backfill	from to ure. artical o	op of wa diamete	ell to bo r in reir	ttom of			WE	U.S. DEPV FEDERA STERN FE	GRS	ADMINIST	RTATION RATION AY DIVESION
in clear s	pace (a _k) rounde	o up to the reare	St 1.0 mcn.	antovtila	ousotition						D _{RSF} =	Depth of RS	F Delov	v botton	n of wal	l elevat	ion			DESI	GN D	IMENS	SION

Figure 69: As-built drawings for GRS-IBS Bridge No. 2 in Kay County

(Courtesy of Mr. Tom Simpson, PE)

Figure 70: Bridge No. 1 - conventional abutment support with H-Piles driven to bedrock

Figure 71: Bridge No. 2 - GRS-IBS with an 18 in.-wide concrete-filled steel channel as the bearing pad for the steel girders

Figure 72: Bridge No. 3 - GRS-IBS under construction with sheet pile facing

Figure 73: Bridge No. 5 - GRS-IBS with concrete block facing (geotextile reinforcement needs to be trimmed)

Figure 74: Bridge No. 6 - Bridge on conventional pile support under construction

Figure 75: A GRS-IBS (Bridge No. 3) under construction near Blackwell in Kay County with sheet piling for the abutment facing

Figure 76: Different stages of GRS-IBS construction near Blackwell in Kay County, OK (photographs courtesy of Mr. Tom Simpson, PE)

Additional photographs of completed Bridges No. 3 (GRS-IBS with sheet pile abutment facing), Bridge No. 5 (GRS-IBS with CMU blocks facing) and No. 6 (Conventional bridge abutments on H-piles driven to the bedrock but with sheet pile facing) are shown in **Figure 77** through **Figure 80**, respectively. The 22° skew in Bridge No. 3 is indicated with a red circle in **Figure 77**. In Bridge No. 5 (**Figure 79**), box beams were originally planned for the superstructure in the design. However, 7-inch concrete beams overlaid with steel girders from a 50-year-old bridge from the I-40 Crosstown project in Oklahoma City were ultimately used in its construction.

Figure 77: Completed Bridge No. 3 (GRS-IBS) with sheet pile facing (red circle indicates a 22 skew in the alignment of the bridge superstructure)

Figure 78: Completed Bridge No. 5 bridge (GRS-IBS) with sheet pile abutment facing

Figure 79: Completed Bridge No. 5 bridge (GRS-IBS) with sheet pile abutment facing

Figure 80: Completed Bridge No. 6 (conventional abutments on H-Piles driven to bedrock but with sheet pile abutment facing)

4.9 Cost and Summary data of GRS-IBS bridge in Kay County, OK

Table 31 and **Table 32** include updated data on the GRS-IBS and conventional bridges reported by Ngo (2016) and Hatami et al. (2016) that are the focus of this study. Kay County reported savings of up to \$40,000 dollars in this very first major experience with GRS-IBS construction and they expect greater time and monetary savings as more experience is gained in the future projects.

Table 31: Updated information on the 6 bridges in Kay County, OK(includes information from Mr. Tom Simpson, PE)

Bridge	Span Length m (ft)	Abutment Height m (ft)	Bridge Width m (ft)	Abutment Cost	Total Cost	Construction Time (days)	Completion Year	
Conventional Bridge 1				\$ 60,000	\$ 105,000	30 - 40	2014	
GRS-IBS Bridge 2				\$ 31,000	\$ 79,000	30	2014	
GRS-IBS Bridge 3	15.3	2.2	9.2	\$ 35,000	\$ 82,000	30	2015	
GRS-IBS Bridge 4	(50.0)	(7.0)	(30)	\$ 35,000	\$ 82,000	30	2015	
GRS-IBS Bridge 5					\$ 31,000	\$ 142,000	21	2014
Conventional Bridge 6				\$ 60,000	\$ 165,000	24	2014	

Bridge	Facing element	GRS fill	GRS reinforcement	Foundation type	Scour protection
Conventional Bridge 1	Sheet piling	N/A	N/A	H-Piles driven to bedrock	No rip-rap
GRS-IBS Bridge 2	CMU				Rip-rap
GRS-IBS Bridge 3	5-meters (15-foot)- high sheet piling	No. 89 stone in abutment, No.	TerraTex HPG-	RSF	No via ma
GRS-IBS Bridge 4	5 meters (15-foot)- high sheet piling	base and RSF	geotextile		по пр-гар
GRS-IBS Bridge 5	GRS-IBS Bridge 5 CMU				Rip-rap
Conventional Bridge 6	Sheet piling	N/A	N/A	H-Piles driven	No Riprap

Table 32: Summary data on the six bridges in Kay County, OK

4.10 Performance Monitoring of GRS-IBS Bridges and Comparable Conventional

Bridges in Kay County, OK

4.10.1 Weather Data

Performance monitoring started with the recollection of weather data for the site of GRS-IBS bridges in Kay County, OK. The data was obtained from Daymet and Mesonet which provided historical peak weather data such as maximum and minimum temperatures, precipitation record between 1985 and 2016. The data in **Table 33** indicate that the site of the GRS-IBS projects in Kay County is subjected to significant temperature fluctuations. For instance, in 2011 the temperature varied between -21°F and 110°F. Also, the peak precipitation was recorded as 10.73 in. in 2015, which resulted in flooding in the area reported by Ngo (2016) and Hatami et al. (2016)

	Temp.	Temp.	Temp.	Temp.	Max	Max
Year	Max	Max	Min	Min	Precip.	Precip
	(°C)	(°F)	(°C)	(°F)	(mm)	(in)
1985	41	105.8	-19	-2.2	48	1.89
1986	43.5	110.3	-14	6.8	120	4.72
1987	39.5	103.1	-15.5	4.1	76	2.99
1988	40.5	104.9	-24	-11.2	56	2.20
1989	39	102.2	-24.5	-12.1	69	2.72
1990	41.5	106.7	-18.5	-1.3	37	1.46
1991	40.5	104.9	-13	8.6	37	1.46
1992	37	98.6	-10.5	13.1	54	2.13
1993	40	104	-16	3.2	50	1.97
1994	39.5	103.1	-15	5	73	2.87
1995	41	105.8	-14.5	5.9	55	2.17
1996	43	109.4	-21	-5.8	86	3.39
1997	36.5	97.7	-17	1.4	90	3.54
1998	41	105.8	-16	3.2	98	3.86
1999	40	104	-14	6.8	53	2.09
2000	42	107.6	-17.5	0.5	44	1.73
2001	41	105.8	-14	6.8	47	1.85
2002	38	100.4	-17.5	0.5	60	2.36
2003	40.5	104.9	-16.5	2.3	64	2.52
2004	37.5	99.5	-16	3.2	47	1.85
2005	38.5	101.3	-18	-0.4	76	2.99
2006	42	107.6	-15.5	4.1	66	2.60
2007	39.5	103.1	-15.5	4.1	59	2.32
2008	39.5	103.1	-15.5	4.1	83	3.27
2009	39.5	103.1	-15	5	106	4.17
2010	41	105.8	-17.5	0.5	188	7.41
2011	43.5	110.3	-29.5	-21.1	119	4.68
2012	43.5	110.3	-12	10.4	66	2.61
2013	39.5	103.1	-16	3.2	157	6.18
2014	40	104	-19	-2	208	8.17
2015	41	105	-14	6	273	10.73
2016	40	104	-11	12	212	8.33

Table 33: Historical weather data for the geographical location of GRS-IBS bridgesnear Blackwell in Kay County during the period between 1985 and 2015

4.10.2 Local Seismicity

During the past two years, seismic activity has been increasing in including frequent earthquakes with magnitudes smaller than M = 4.5 (USGS 2016) on the west side of Kay County (**Figure 81** and **Figure 82**). Nevertheless, current FHWA guidelines (Adams et al. 2012) suggest that GRS-IBS should withstand significant seismic loads (reportedly, as high as 1g ground acceleration or M = 6), which is significantly greater than what has so far been recorded in Oklahoma. Therefore, GRS-IBS abutments can provide viable solutions to replace deficient bridges or construction of new bridges in Oklahoma.

Figure 81: Oklahoma seismicity data from 1973 to June 24, 2016 (USGS 2016)

Figure 82: Seismicity data for Kay County during the period beween 2014 and May 31, 2016 (USGS 2016)

4.10.3 Alternative Monitoring Systems Examined for Kay County Bridges

At the begging of this study, the possibility of using inclinometers in the bridge abutments was considered as a monitoring technique (**Figure 83**, **Figure 84** and **Table 34**). Inclinometers together with Micro-electro-mechanical systems (MEMs) provide real-time and remote-sensing capabilities to monitor wall deformations, ground movements, and slope movements. The bedrock at the site of the bridges in Kay County is approximately 12.2 m 40 ft. deep and the native soil at the sites of these bridges is mostly soft lean clay (METCO 2012).

However, based on the literature review results, the feedback provided by the Oklahoma Department of Transportation, the Bureau of Internal Affairs, and given the depth of the borehole needed for the inclinometers to reach the bedrock to provide reliable measurements and the comparatively short height of the GRS abutments, it was determined that using inclinometers would not be the best monitoring option for the Kay County projects and it was decided that the most practical and economic method survey method to use was the Total Station Theodolite (TST).

(b)

(c)

Figure 83: Initial inclinometer plans for conventional and GRS-IBS bridges: (a) – (d)

Figure 84: Recommended grout mix for the inclinometer boreholes and installation process (RST 1997)

Table 34: I	nclinometer	grout
-------------	-------------	-------

Bentonite- Cement Grout						
Materials	Weight kg (lb)	Percent				
Portland Cement	42.6 (94)	15%				
Bentonite*	17.7 (39)	6%				
Water	75 gallons ~ 283 kg (625 lb)	79%				
*Mix bentonite with water first, then add the cement						

4.10.4 Survey with Total Station Theodolite (TST)

As reported by Ngo (2016), a three-week TST training program was offered by Dr. Russel Dutnell on the University of Oklahoma campus. The training included a closed-loop survey near the CEC engineering building. The TST used was a Topcon GTS-211D model shown in **Figure 85a.** Also, the accuracy of each mode of operation is given in **Table 35**. *Fine Mode* with the accuracy of 1 mm (0.003 ft.) was used to survey the GRS-IBS abutments and comparable conventional bridges in Kay County.

Subsequent to the survey training period, a pilot surveying set was performed to Bridge No. 2 in Kay County, OK. One provisional benchmark and control point were installed on the shoulders of the road outside of the approach embankment. A GPS Garmin -72H was used initially to obtain the coordinates of the benchmark and the control points (**Figure 85b**). However, the accuracy of this GPS device is approximately 5 ft. Therefore, the coordinates determined in this preliminary stage (**Table 36**) were used only to help locate the reference points in the subsequent visits to the site. After the training, provisional survey points listed in **Table 37** were monitored as a pilot test (**Figure 86**).

Mode	Brief Description	Accuracy (ft)
Fine	This is the normal mode. Measurement time is 2.5 seconds	1 mm
Mode	This is the normal mode. Weasurement time is 2.5 seconds	(0.003)
Tracking	Useful when tracking the prism in motion. easurement time	1 cm
mode	is 0.3 seconds	(0.03)
Coarse	Can be used for stake out Measurement time is 0.5 seconds	1 cm
mode	Can be used for stake out. Measurement time is 0.5 seconds	(0.03)

 Table 35: Topcon GTS-211D measurement modes

Figure 85: (a) Total Station Topcon GTS-211D used in this study to survey and monitor the deformations of GRS-IBS and conventional bridges; (b) GPS Garmin - 72H

Table 36: Coordinates of the benchmark and control points a	s obtained using the
Garmin GPS	

Point	North Coordinates	East Coordinates
Benchmark (Total Station)	36° 54.341'	97° 20.214'
Control point (Back Sight)	36° 54.338'	97° 20.203'

Bridge No.1	Geographical Coordinates			
Control Point	36°54'13.15 N	97°20'12.58"W		
S1	36°54'13.53"N	97°20'12.72"W		
S2	36°54'13.54"N	97°20'12.40"W		
S3	36°54'13.08"N	97°20'12.75"W		
S4	36°54'13.07"N	97°20'12.41"W		
Benchmark	36°54'12.78"N	97°20'12.28"W		

 Table 37: Survey points initially considered for Bridges Nos.1 & 2

(cont'd)

Bridge No.2	Geographical Coordinates			
Control Point	36°54'21.22"N	97°20'12.67"W		
S1	36°54'21.65"N	97°20'12.86"W		
S2	36°54'21.66"N	97°20'12.50"W		
S 3	36°54'21.11"N	97°20'12.78"W		
S4	36°54'21.11"N	97°20'12.50"W		
Benchmark	36°54'20.89"N	97°20'12.43"W		

Figure 86: Bridges Nos. 1 & 2 with pilot survey points

After obtaining the coordinates of the benchmark and the control points, the following conventions were assigned: N (Northing), E (Easting) and Z (Z-value; i.e. collectively, NEZ) coordinates to the benchmark and the back-sight control points. **Table 36 and Table 38** list the coordinates obtained from the first monitoring attempt for Bridge No. 2. The data related to the NEZ coordinates, was input in the software program TopoCal (http://www.topocal.com/), which generated contour lines that allowed visual comparisons among different coordinates that were taken over the monitoring period. **Figure 87** shows an example TopoCal model of the GRS Bridge No. 2 in which the superstructure, the benchmark and the control point are shown. **Figure 88** shows a close-up view of the contour lines for the superstructure and the GRS abutment.

	Designation of the point in	East (V)	North (V)	Elevation (7)
r	TopoCal model	$East(\Lambda)$	Norui (1)	Elevation (Z)
	Benchmark (Total Station)	1000.000	1000.000	1000.000
	Control Point (Back Sight)	1000.016	1022.191	1000.227
of	1	978.321	1001.214	1000.726
ary re.	2	978.004	1002.320	1000.756
tund	3	977.851	1003.068	1000.765
bou	4	977.537	1004.149	1000.784
ern pers	5	977.310	1005.101	1000.785
suj	6	977.062	1005.946	1000.782
So	7	976.827	1006.756	1000.782
	8	976.642	1007.457	1000.781
	9	975.967	1009.824	1000.742
re.	10	970.883	999.253	1000.719
e of ictu	11	970.398	1000.968	1000.753
ddlo	12	969.873	1002.905	1000.776
Mid	13	969.328	1005.284	1000.761
Ins	14	968.707	1007.769	1000.710
of re.	15	959.459	1005.192	1000.709
ern ry c	16	960.434	1002.227	1000.752
nth ndai	17	960.704	1000.739	1000.760
No our pers	18	961.265	998.601	1000.750
q	19	961.774	996.680	1000.732

 Table 38: Survey coordinates on Bridge No. 2 (in meters)

Survey coordinates on Bridge No. 2 (Cont'd)

	Designation of the point in TopoCal model	East (x)	North (Y)	Elevation (Z)
		978.557	1001.334	1000.695
		977.959	1003.088	1000.747
		977.442	1005.133	1000.755
ent		976.775	1007.565	1000.769
utm		976.229	1009.889	1000.722
Abı		978.662	1003.265	1000.720
ith		978.363	1005.421	1000.742
Sou		977.608	1007.715	1000.744
	S-ABT 1	979.913	1003.587	1000.708
		979.132	1005.694	1000.730
	S- ABT 2	978.440	1007.988	1000.748
		961.553	996.586	1000.731
		961.103	998.567	1000.758
		960.570	1000.679	1000.749
ent		960.149	1002.104	1000.736
utm		959.667	1003.610	1000.716
North Abu		960.464	998.373	1000.746
		959.941	1000.489	1000.754
		959.533	1002.127	1000.744
	N-ABT 1	959.428	998.061	1000.746
		958.835	1000.220	1000.749
	N - ABT 2	958.403	1001.853	1000.764

Figure 87: TopoCal contour lines for Bridge No. 2

Figure 88: Higher resolution TopoCal contour lines for Bridge No. 2

(Blue line interval=10 mm, Red line interval = 2 mm)

4.10.5 Benchmark installation and control Points

Ngo (2016) and Hatami et al. (2016) reported the benchmark installation process which can be summarized by the following steps: (1) A 53-cm deep (21-inch deep), 20 cm (8 in.) diameter hole was dug at a higher terrain location near the bridges, (2) A 76 cmlong (30 inch-long), ½ in-dia. rebar was placed in the hole, (3) Water was carefully added to concrete mix to obtain a desired strength of > 13,800 KPa (2,000 psi) for the benchmark concrete cylinder in the ground, (4) Concrete was poured in the hole around the benchmark rebar and it was tamped to expel the air bubbles, and (5) The top surface of the concrete was leveled and completed with a benchmark cap. **Table 39** shows the coordinates of installed benchmarks and control points used to survey the Kay County bridges in this study. The locations of these points were chosen so that they fall within 10 m (33 ft.) from the centerline of the road on either side because the right-of-way on most county roads is 20 m (66 ft.) wide (Simpson 2015). Also, **Figure 89** depicts the locations of the installed benchmarks which are labeled as BMXY for ease of reference where:

- X = Bridge designation number ranging between 1 (southern) and 6 (northern)
- Y = Benchmark designation number ranging between 1 (eastern) and 3 (western)

Table 39: Coordinates of benchmark used to survey Kay County bridges

	Bridge No. 1		
Туре	North (Lat.)	East (Long.)	
BM11	36°54.206'N	97°20.219'W	
BM12	36°54.343'N	97°20.203'W	

	Bridge No. 2		
Туре	North (Lat.)	East (Long.)	
BM21	36°54.374'N	97°20.224'W	
BM22	36°54.382'N	97°20.218'W	
BM23	36°54.343'N	97°20.206'W	

	Bridge No. 3 and 4			
Туре	North (Lat.)	East (Long.)		
BM31	36°54.754'N	97°20.249'W		
BM32	36°54.770'N	97°20.227'W		
BM33	36°54.766'N	97°20.223'W		

	Bridge No. 5		
Туре	North (Lat.)	East (Long.)	
BM51	36°54.862'N	97°20.211'W	
BM52	36°54.817'N	97°20.209'W	

	Bridge No. 6		
Туре	North (Lat.) East (Long.)		
BM61	36°54.977'N	97°20.208'W	
BM62	36°54.928'N	97°20.210'W	

(b)

(c)

(d)

148

Figure 89: Locations of the benchmarks: (a) Bridge No. 1; (b) Bridge No. 2; (c) Bridge No.3 and Bridge No. 4; (d) Bridge No. 5; (e) Bridge No. 6 (Google Earth 2016)

Similarly, for bridges 1,3,4,5 and 6 on the 44th street (i.e. with the exception of Bridge No. 4 which has an E-W alignment) the control points for surveying are labeled as SSXY, CCXY, NNXY where:

- SS = Transverse South Axis (**Figure 90a**)
- CC =Transverse Center Axis (Figure 90b)
- NN = Transverse North Axis (**Figure 90c**)
- Xn = Bridge designation No. ranging between 1 and 6

Yn = Benchmark designation No. ranging between 1 (western) and 9 (eastern)

Note: Bridge No. 2 has Center South (CS) and Center North Axis(CN) instead

of only having one center CC axis.

Figure 91 shows the marked control points for all bridges.

(a)

(c)

Figure 90: Transverse axis for bridges 1,3,4,5 and 6 :(a) South Axis-SS; (b) Center Axis- CC; (c) North Axis -NN

(a)

(b)

(c)

(d)

(e)

Figure 91: Marked control points: (a) Bridge No. 1; (b) Bridge No. 2; (c) Bridge No.3; (d) Bridge No.4; (e) Bridge No. 5;(f) Bridge No.6

4.11 Survey Results for GRS-IBS bridges and Comparable Conventional Bridges

in Kay County, OK.

4.11.1 Bridge No. 1

During one visit to the bridge on August 30, 2015, one set of settlement control points

was surveyed. Table 40 and Figure 92 show the baseline results for Bridge No. 1.

(South Axis)						
	30-Aug					
Point	East (x)	North (Y)	Distance (R)	Elevatio		
SS11	998.535	1054.600	1.50	46.71		
SS12	997.328	1054.253	2.76	48.11		
SS13	996.346	1053.964	3.78	49.42		
SS14	995.400	1053.701	4.76	50.22		
SS15	994.301	1053.400	5.90	50.82		
SS16	993.348	1053.128	6.89	50.72		
SS17	992.339	1052.846	7.94	49.42		
SS18	991.094	1052.493	9.23	48.41		
SS19	990.119	1052.284	10.23	47.11		

Table 40: Coordinates of surveyed points on Bridge No. 1

(Center Axis)					
30-Aug					
Point	East (x)	North (Y)	Distance (R)	Elevation	
CC11	1002.488	1040.331	1.50	46.41	
CC12	1001.439	1040.007	2.60	47.81	
CC13	1000.335	1039.720	3.74	48.31	
CC14	999.250	1039.385	4.87	49.32	
CC15	998.173	1039.093	5.99	50.42	
CC16	997.247	1038.817	6.96	49.52	
CC17	996.126	1038.495	8.12	48.41	
CC18	995.116	1038.201	9.17	47.71	
CC19	994.038	1037.876	10.30	46.31	

Note: Coordinates in m. and Elevation in cm.

(North Axis)						
	30-Aug					
Point	East (x)	North (Y)	Distance (R)	Elevation		
NN11	1000.430	1047.378	1.50	44.91		
NN12	999.333	1047.106	2.63	46.91		
NN13	998.263	1046.779	3.75	48.11		
NN14	997.191	1046.545	4.85	49.52		
NN15	996.237	1046.236	5.85	49.32		
NN16	995.259	1046.000	6.86	49.22		
NN17	994.242	1045.705	7.91	48.92		
NN18	993.165	1045.457	9.02	47.31		
NN19	992.102	1045.158	10.12	45.91		

(North Axis)

Figure 92: Coordinates of surveyed points on south, center and north axis of Bridge No.1 relative to BM11
4.11.2 Bridge No. 2

In seven (7) separate visits to the bridge sites during the period between May 2015 and January 2017 (specifically, on 05/18/15, 05/31/15, 06/08/15, 07/17/15, 08/30/15, 20/11/16 and 01/20/2017), seven (7) slightly different sets of settlement control points were surveyed for Bridge No. 2, which is the first bridge for which the survey points were set up. Table 41 through Table 44 and Figure 93 through Figure 96 show the survey results for Bridge No. 2 from these seven (7) separate visits. The results show that the accuracy of the elevation measurements is less than 10 mm (0.03 ft.). Aggregated survey data on the movements of the deck for Bridge No. 2 are shown in Figure 93 through Figure 96, which indicate possible movements beyond the expected random variations in the survey data from different visits. To investigate the actual movements of the bridge deck more accurately, some measurements for each survey point was isolated and plotted separately as per the examples shown in Figure 97. The diagram on the left of each plot (Figure 97) shows the corresponding cross section of the bridge indicating the locations of its girders and survey points. The survey point specific to the data presented in each graph is shown with a larger arrow on the diagram. Different seasons during the surveying period are also marked on the graph for future analysis of any possible effects.

These results suggest that the bridge deck has undergone a seemingly consistent and predominantly upward movement between 6.35 mm to 12.7 mm (¹/₄ and ¹/₂ in.) during this monitoring period. In addition, further analysis of our survey data was carried out for Bridge No. 2. **Figure 98** shows three-dimensional contour plots of the changes in

the bridge deck elevation as seen from the south GRS abutment over the period of six and a half months between May and November 2015. The contours are plotted using the survey data from four (4) transverse axes (SS, CS, CN and NN), which are set up on the bridge as described in previous sections. An inset diagram at the bottom of each figure shows the corresponding cross section of the bridge indicating the locations of its girders and survey points (shown with downward arrows).

The results suggest that the bridge deck has undergone some differential settlement between the girders during this monitoring period. Also, an overall (albeit small) upward trend in the measured movements of the bridge deck might be due to a slight settlement of the benchmarks in the vicinity of the bridge as opposed to an actual heaving deformation of the abutments. However, the magnitudes of movements so far are within 5-15 mm, which are considered within the accuracy of the survey method used on these bridges. Further monitoring of the bridge movement in long term should help determine the validity and accuracy of this movement and its possible cause. Nevertheless, the survey results for Bridge No. 2 from the seven separate visits shown in **Figure 98** indicate that over the period of two years, there have not been significant deformations in the GRS bridge abutments in spite of severe weather conditions, and record rainfall and flooding in Spring 2015 (Ngo 2016; Hatami et al. 2016). Besides the survey results which point to fairly insignificant movements, the bridge has not shown any visible signs of serviceability or aesthetics-related problems since its construction in April 2014 either.

Table 41: Coordinates of surveyed points on south axis of Bridge No. 2

	$(1^{st} set)$				
			8-May		
Point	East (x)	North (Y)	Distance (R)	Elevation	
SS21	3152.179	3383.294	164.47	2.58	
SS22	3149.912	3380.666	164.64	2.69	
SS23	3147.574	3378.363	165.14	2.73	
SS24	3144.857	3376.098	166.03	2.76	
SS25	3141.872	3373.481	167.02	2.76	
SS26	3138.632	3370.556	168.14	2.75	
SS27	3135.566	3367.777	169.30	2.71	
SS28	3133.329	3366.029	170.34	2.69	
SS29	3130.924	3363.888	171.38	2.62	

(3rd set)

	8-Jun				
Point	East (x)	North (Y)	Distance (R)	Elevation	
SS21	3151.959	3383.084	164.51	2.59	
SS22	3149.682	3380.496	164.72	2.69	
SS23	3147.389	3378.222	165.20	2.72	
SS24	3144.600	3375.860	166.10	2.77	
SS25	3141.670	3373.314	167.09	2.77	
SS26	3138.412	3370.387	168.24	2.76	
SS27	3135.358	3367.543	169.36	2.72	
SS28	3133.146	3365.824	170.40	2.69	
SS29	3130.771	3363.652	171.40	2.66	

 $(2^{nd} set)$

()						
	31-May					
Point	East (x)	North (Y)	Distance (R)	Elevation		
SS21	3151.941	3383.195	164.59	2.58		
SS22	3149.747	3380.572	164.72	2.68		
SS23	3147.424	3378.271	165.21	2.73		
SS24	3144.668	3375.944	166.10	2.77		
SS25	3141.686	3373.363	167.11	2.78		
SS26	3138.497	3370.467	168.21	2.76		
SS27	3135.426	3367.648	169.35	2.73		
SS28	3133.143	3365.936	170.46	2.71		
SS29	3130.755	3363.735	171.46	2.64		

(4th set)

(1 500)						
	17-Jul					
Point	East (x)	North (Y)	Distance (R)	Elevation		
SS21	3152.008	3383.169	164.53	2.61		
SS22	3149.715	3380.594	164.76	2.70		
SS23	3147.356	3378.297	165.28	2.75		
SS24	3144.616	3375.975	166.16	2.79		
SS25	3141.624	3373.415	167.19	2.78		
SS26	3138.422	3370.453	168.27	2.78		
SS27	3135.394	3367.667	169.39	2.75		
SS28	3133.153	3365.932	170.45	2.72		
SS29	3130.784	3363.799	171.46	2.64		

(5th set)

	30-Aug				
Point	East (x)	North (Y)	Distance (R)	Elevation	
SS21	3152.060	3383.183	164.49	2.60	
SS22	3149.784	3380.673	164.75	2.69	
SS23	3147.517	3378.360	165.18	2.75	
SS24	3144.744	3376.073	166.11	2.78	
SS25	3141.723	3373.527	167.17	2.78	
SS26	3138.455	3370.482	168.25	2.77	
SS27	3135.407	3367.736	169.42	2.74	
SS28	3133.196	3365.965	170.43	2.69	
SS29	3130.824	3363.862	171.46	2.65	

(6^{th}s)	set)
----------------------------	------

20-Nov						
Point	East (x)	North (Y)	Distance (R)	Elevation		
SS21	3152.057	3383.242	164.53	2.60		
SS22	3149.793	3380.633	164.72	2.72		
SS23	3147.405	3378.347	165.26	2.76		
SS24	3144.702	3376.057	166.13	2.79		
SS25	3141.690	3373.471	167.16	2.80		
SS26	3138.553	3370.568	168.22	2.79		
SS27	3135.430	3367.746	169.40	2.76		
SS28	3133.189	3366.007	170.45	2.73		
SS29	3130.817	3363.832	171.45	2.65		

Figure 93: Coordinates of surveyed points on south axis of Bridge No.2 relative to BM22

Table 42: Coordinates of surveyed points on south center axis of Bridge No. 2

$(1^{st} set)$							
	8-May						
Point	East (x)	North (Y)	Distance (R)	Elevation			
CS21	3169.006	3364.734	139.80	2.55			
CS22	3166.642	3362.508	140.40	2.64			
CS23	3164.223	3360.331	141.13	2.70			
CS24	3161.708	3357.663	141.75	2.74			
CS25	3158.727	3355.376	143.06	2.73			
CS26	3155.555	3352.759	144.46	2.70			
CS27	3152.613	3350.038	145.71	2.64			
CS28	3149.998	3347.656	146.91	2.59			
CS29	3148.015	3345.768	147.84	2.53			

(2nd set)

	31-May					
Point	East (x)	North (Y)	Distance (R)	Elevation		
CS21	3168.861	3364.638	139.86	2.55		
CS22	3166.489	3362.434	140.48	2.65		
CS23	3164.132	3360.223	141.15	2.71		
CS24	3161.469	3357.637	141.94	2.75		
CS25	3158.602	3355.210	143.08	2.76		
CS26	3155.374	3352.684	144.58	2.73		
CS27	3152.471	3349.964	145.80	2.67		
CS28	3149.868	3347.549	146.98	2.61		
CS29	3147 846	3345 661	147.95	2.55		

(3rd set)

	8-Jun				
Point	East (x)	North (Y)	Distance (R)	Elevation	
CS21	3168.901	3364.606	139.81	2.53	
CS22	3166.440	3362.369	140.48	2.64	
CS23	3164.078	3360.095	141.12	2.72	
CS24	3161.463	3357.559	141.90	2.75	
CS25	3158.596	3355.141	143.05	2.74	
CS26	3155.394	3352.612	144.53	2.73	
CS27	3152.471	3349.862	145.75	2.67	
CS28	3149.859	3347.444	146.94	2.60	
CS29	3147.864	3345.587	147.90	2.54	

$(4^{th}$	set)

			17-Jul	
Point	East (x)	North (Y)	Distance (R)	Elevation
CS21	3168.891	3364.649	139.84	2.54
CS22	3166.463	3362.464	140.52	2.67
CS23	3164.104	3360.240	141.18	2.72
CS24	3161.447	3357.677	141.98	2.76
CS25	3158.602	3355.269	143.11	2.75
CS26	3155.404	3352.684	144.55	2.72
CS27	3152.464	3349.964	145.80	2.67
CS28	3149.856	3347.576	147.01	2.61
CS29	3147.808	3345.689	148.00	2.55

(5th set)

	30-Aug					
Point	East (x)	North (Y)	Distance (R)	Elevation		
CS21	3168.871	3364.728	139.91	2.57		
CS22	3166.565	3362.530	140.47	2.62		
CS23	3164.137	3360.328	141.20	2.71		
CS24	3161.473	3357.710	141.98	2.76		
CS25	3158.645	3355.341	143.12	2.75		
CS26	3155.469	3352.795	144.55	2.75		
CS27	3152.425	3350.036	145.87	2.66		
CS28	3149.862	3347.631	147.02	2.61		
CS29	3147.966	3345.765	147.89	2.54		

(6th set)

20-Nov				
Point	East (x)	North (Y)	Distance (R)	Elevation
CS21	3168.891	3364.751	139.91	2.58
CS22	3166.470	3362.503	140.53	2.66
CS23	3164.154	3360.358	141.20	2.72
CS24	3161.431	3357.782	142.05	2.76
CS25	3158.557	3355.410	143.23	2.76
CS26	3155.384	3352.848	144.65	2.75
CS27	3152.510	3350.053	145.80	2.68
CS28	3149.954	3347.658	146.95	2.62
CS29	3147.881	3345.781	147.97	2.55

Figure 94: Coordinates of surveyed points on south center axis of Bridge No.2 relative to BM22

 Table 43: Coordinates of surveyed points on north center axis of Bridge No. 2

	(1st set)				
			8-May		
Point	East (x)	North (Y)	Distance (R)	Elevation	
CN21	3173.156	3360.187	133.76	2.54	
CN22	3170.797	3358.071	134.44	2.63	
CN23	3168.407	3355.758	135.11	2.70	
CN24	3165.605	3353.419	136.19	2.73	
CN25	3162.717	3350.617	137.19	2.73	
CN26	3159.410	3347.991	138.76	2.70	
CN27	3156.370	3345.210	140.13	2.64	
CN28	3153.937	3342.886	141.26	2.57	
CN29	3151.982	3341.037	142.23	2.51	

(2nd set)

			31-May	
Point	East (x)	North (Y)	Distance (R)	Elevation
CN21	3173.044	3360.121	133.81	2.55
CN22	3170.600	3358.032	134.58	2.65
CN23	3168.248	3355.708	135.21	2.70
CN24	3165.461	3353.367	136.28	2.75
CN25	3162.566	3350.563	137.30	2.74
CN26	3159.334	3347.872	138.77	2.72
CN27	3156.222	3345.117	140.22	2.65
CN28	3153.783	3342.806	141.36	2.60
CN29	3151.847	3340 934	142.30	2.54

(3rd set)

	8-Jun				
Point	East (x)	North (Y)	Distance (R)	Elevation	
CN21	3173.009	3360.043	133.79	2.54	
CN22	3170.594	3357.946	134.53	2.63	
CN23	3168.228	3355.594	135.16	2.71	
CN24	3165.413	3353.222	136.24	2.74	
CN25	3162.559	3350.433	137.24	2.74	
CN26	3159.285	3347.749	138.75	2.70	
CN27	3156.230	3345.017	140.16	2.65	
CN28	3153.750	3342.723	141.36	2.58	
CN29	3151.831	3340.866	142.29	2.53	

(4th set)
----------	---

		17-Jul		
Point	East (x)	North (Y)	Distance (R)	Elevation
CN21	3173.018	3360.115	133.83	2.56
CN22	3170.604	3358.041	134.58	2.64
CN23	3168.327	3355.656	135.12	2.70
CN24	3165.482	3353.333	136.24	2.75
CN25	3162.576	3350.538	137.27	2.74
CN26	3159.265	3347.900	138.84	2.71
CN27	3156.227	3345.138	140.22	2.64
CN28	3153.796	3342.818	141.36	2.60
CN29	3151.883	3340.938	142.27	2.55

(5th set)

	30-Aug					
Point	East (x)	North (Y)	Distance (R)	Elevation		
CN21	3173.110	3360.158	133.78	2.56		
CN22	3170.650	3358.068	134.56	2.63		
CN23	3168.242	3355.778	135.26	2.70		
CN24	3165.548	3353.442	136.25	2.75		
CN25	3162.329	3350.617	137.53	2.74		
CN26	3159.314	3347.946	138.82	2.73		
CN27	3156.283	3345.204	140.20	2.64		
CN28	3153.812	3342.884	141.37	2.60		
CN29	3151.877	3341.066	142.33	2.53		

(6th set)

20-Nov					
Point	East (x)	North (Y)	Distance (R)	Elevation	
CN21	3173.045	3360.210	133.86	2.58	
CN22	3170.604	3358.068	134.60	2.65	
CN23	3168.265	3355.738	135.21	2.71	
CN24	3165.496	3353.435	136.29	2.76	
CN25	3162.605	3350.660	137.31	2.75	
CN26	3159.314	3347.966	138.83	2.72	
CN27	3156.198	3345.295	140.32	2.65	
CN28	3153.786	3342.907	141.40	2.61	
CN29	3151.857	3341.076	142.36	2.54	

Figure 95: Coordinates of surveyed points on north center axis of Bridge No.2 relative to BM22

Table 44: Coordinates of surveyed points on north axis of bridge No. 2

	(1st set)				
			8-May		
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN21	3190.133	3342.003	109.40	2.59	
NN22	3187.992	3340.003	110.10	2.62	
NN23	3185.254	3337.582	111.16	2.68	
NN24	3182.348	3334.879	112.34	2.71	
NN25	3179.605	3332.507	113.66	2.70	
NN26	3176.622	3329.784	115.14	2.68	
NN27	3173.998	3327.464	116.57	2.64	
NN28	3171.903	3325.432	117.71	2.60	
NN29	3169.321	3322.891	119.18	2.54	

(2nd set) 31-May
 Point
 East (x)
 North (Y)

 NN21
 3190.000
 3341.962
 Distance (R) Elevation 109.49 110.19 111.20 2.60 NN22 3187.858 3339.972 2.64 2.70 NN23 3185.178 3337.541 112.36 113.70 NN24 3182.302 3334.834 2.71 NN25 3179.513 3332.418 2.71 NN26 3176.511 3329.711 115.21 2.68 115.21 116.63 117.79 119.24 NN27 3173.890 3327.355 2.66 2.61 2.56 NN28 3171.787 NN29 3169.228 3325.361

(3rd set)

	8-Jun				
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN21	3189.974	3341.857	109.45	2.60	
NN22	3187.851	3339.830	110.12	2.64	
NN23	3185.174	3337.385	111.13	2.70	
NN24	3182.277	3334.787	112.36	2.70	
NN25	3179.498	3332.280	113.65	2.70	
NN26	3176.476	3329.554	115.17	2.68	
NN27	3173.855	3327.257	116.62	2.65	
NN28	3171.893	3325.256	117.65	2.60	
NN29	3169.242	3322.730	119.20	2.56	

(4	th	set)
· ·		

3322.798

17-Jul				
Point	East (x)	North (Y)	Distance (R)	Elevation
NN21	3190.020	3341.969	109.48	2.61
NN22	3187.854	3339.948	110.18	2.65
NN23	3185.144	3337.546	111.23	2.70
NN24	3182.254	3334.872	112.42	2.72
NN25	3179.544	3332.408	113.67	2.71
NN26	3176.473	3329.679	115.23	2.70
NN27	3173.911	3327.343	116.60	2.67
NN28	3171.759	3325.325	117.80	2.63
NN29	3169.206	3322.815	119.26	2.58

(5th set)

(6th set)

	30-Aug			
Point	East (x)	North (Y)	Distance (R)	Elevation
NN21	3190.023	3341.969	109.47	2.60
NN22	3187.831	3339.954	110.20	2.63
NN23	3185.220	3337.576	111.19	2.70
NN24	3182.284	3334.905	112.41	2.71
NN25	3179.538	3332.428	113.68	2.70
NN26	3176.421	3329.754	115.31	2.69
NN27	3173.858	3327.428	116.69	2.66
NN28	3171.729	3325.338	117.84	2.62
NN29	3169.242	3322.884	119.26	2.57

20-Nov				
Point	East (x)	North (Y)	Distance (R)	Elevation
NN21	3189.944	3342.044	109.58	2.62
NN22	3187.838	3340.033	110.24	2.65
NN23	3185.154	3337.595	111.25	2.69
NN24	3182.280	3334.948	112.44	2.73
NN25	3179.534	3332.389	113.67	2.72
NN26	3177.165	3330.243	114.84	2.69
NN27	3173.898	3327.425	116.65	2.67
NN28	3171.680	3325.384	117.90	2.64
NN29	3169.223	3322.920	119.29	2.57

165

Figure 96: Coordinates of surveyed points on north axis of Bridge No. 2 relative to BM22

North center

South center

Figure 97: Vertical movements of Bridge No. 2 superstructure based on the survey of its two ends and the center over a 7-month period:

(b)

(c)

(d)

Note: The diagram on the bottom of each plot shows the corresponding cross section of the bridge indicating the locations of its girders and survey points.

4.11.3 Bridge No. 3

During two (2) separate visits to the bridge sites over the last six months (i.e. 08/30/2015, 10/24/2015, 01/29/2015), two different surveys were carried out on Bridge No. 3 Table 45 and Figure 99 show the results for Bridge No. 3.

Table 45: C	oordinates	of surveye	d points c	on Bridge No. 3
-------------	------------	------------	------------	-----------------

Point SS31

1061.023

(South Axis) 1 st Set				
		17-J	un	
Point	East (x)	North (Y)	Distance (R)	Elevation
SS31	1061.023	1000.096	0.50	94.02
SS32	1061.451	1001.073	1.57	95.12
SS33	1061.931	1002.167	2.76	96.03
SS34	1062.449	1003.281	3.99	96.73
SS35	1062.934	1004.389	5.20	96.93
SS36	1063.430	1005.434	6.36	96.13
SS37	1063.936	1006.554	7.59	95.42
SS38	1064.440	1007.671	8.81	94.32
SS39	1064.884	1008.611	9.85	92.62

Note: Coordinates in m. and Elevation in cm.

SS32	1061.451	1001.073	1.57	93.52
SS33	1061.931	1002.167	2.76	95.22
SS34	1062.449	1003.281	3.99	95.53
SS35	1062.934	1004.389	5.20	95.42
SS36	1063.430	1005.434	6.36	95.22
SS37	1063.936	1006.554	7.59	93.92
SS38	1064.440	1007.671	8.81	93.22
SS39	1064.884	1008.611	9.85	91.52

1000.096

(South Axis) 2nd Set 29-Jan East (x) North (Y) Distance (R) Elevation

0.50

93.42

(Center Axis) 1st Set

(Center TMB) T Bet					
	17-Jun				
Point	East (x)	North (Y)	Distance (R)	Elevation	
CC31	1000.651	1052.314	0.50	92.02	
CC32	1001.493	1052.758	1.45	93.12	
CC33	1002.589	1053.298	2.67	94.42	
CC34	1003.697	1053.844	3.91	95.32	
CC35	1004.779	1054.391	5.12	95.63	
CC36	1005.993	1054.925	6.45	95.53	
CC37	1007.089	1055.481	7.68	95.32	
CC38	1008.194	1056.045	8.92	93.82	
CC39	1009.090	1056.485	9.92	92.32	

29-Jan

(Center Axis) 2nd Set

Point	East (x)	North (Y)	Distance (R)	Elevation
CC31	1000.651	1052.314	0.50	90.91
CC32	1001.493	1052.758	1.45	91.92
CC33	1002.589	1053.298	2.67	93.72
CC34	1003.697	1053.844	3.91	94.62
CC35	1004.779	1054.391	5.12	94.62
CC36	1005.993	1054.925	6.45	94.82
CC37	1007.089	1055.481	7.68	94.82
CC38	1008.194	1056.045	8.92	92.52
CC39	1009.090	1056.485	9.92	90.91

(North Axis) 1st Set

17-Jun				
Point	East (x)	North (Y)	Distance (R)	Elevation
NN31	1043.834	1001.183	0.50	92.62
NN32	1044.302	1001.996	1.44	93.92
NN33	1044.793	1003.155	2.70	94.52
NN34	1045.330	1004.227	3.90	95.42
NN35	1045.860	1005.309	5.10	95.83
NN36	1046.342	1006.457	6.35	94.82
NN37	1046.844	1007.593	7.59	94.52
NN38	1047.313	1008.718	8.81	93.42
NN39	1047.732	1009.672	9.85	92.52

(North Axis) 2nd Set

N/A

Figure 99: Coordinates of surveyed points on south, center and north axis of Bridge No.3 relative to BM31

4.11.4 Bridge No. 4

During three separate visits to the bridge sites over the last six months (i.e. 08/30/2015, 10/24/2015, 01/29/2016), two different surveys were carried out on Bridge No. 4, **Table 46** and **Figure 100** show the results for Bridge No. 4.

	(South Axis) 1 st Set			
		17-1	Jun	
Point	East (x)	North (Y)	Distance (R)	Elevation
SS41	1001.313	968.980	1.50	86.60
SS42	1002.308	968.933	2.50	88.01
SS43	1003.347	968.872	3.54	89.31
SS44	1004.426	968.811	4.62	90.61
SS45	1005.593	968.772	5.79	92.42
SS46	1006.814	968.720	7.01	92.22
SS47	1007.889	968.658	8.08	91.32
SS48	1008.961	968.588	9.16	90.21
SS49	1009.963	968.534	10.16	89.21

Table 46: Coordinates of surveyed points on Bridge No. 4

	(South Axis) 2 nd Set				
		29-3	lan		
Point	East (x)	North (Y)	Distance (R)	Elevation	
SS41	1001.354	968.996	1.50	85.90	
SS42	1002.353	968.946	2.50	86.80	
SS43	1003.382	968.882	3.53	88.41	
SS44	1004.466	968.827	4.62	89.61	
SS45	1005.629	968.784	5.78	91.92	
SS46	1006.829	968.736	6.98	91.82	
SS47	1007.925	968.666	8.08	90.91	
SS48	1008.985	968.591	9.14	89.71	
SS49	1009.985	968.559	10.14	88.71	

Note: Coordinates in m. and Elevation in cm.

	(Center Axis) 1 st Set				
		17-J	lun		
Point	East (x)	North (Y)	Distance (R)	Elevation	
CC41	1001.786	977.470	1.50	85.90	
CC42	1002.763	977.386	2.48	87.81	
CC43	1003.832	977.279	3.55	89.41	
CC44	1004.884	977.177	4.61	90.61	
CC45	1006.073	977.081	5.80	91.72	
CC46	1007.320	976.982	7.06	91.01	
CC47	1008.372	976.902	8.11	89.51	
CC48	1009.428	976.845	9.17	88.31	
CC49	1010.401	976.754	10.15	86.50	

(Center Axis) 2nd Set

29-Jan				
Point	East (x)	North (Y)	Distance (R)	Elevation
CC41	1001.823	977.479	1.50	85.50
CC42	1002.797	977.397	2.48	87.41
CC43	1003.868	977.291	3.55	88.61
CC44	1004.903	977.204	4.59	89.91
CC45	1006.108	977.102	5.80	90.91
CC46	1007.363	977.008	7.06	90.61
CC47	1008.396	976.947	8.09	88.91
CC48	1009.494	976.847	9.20	87.71
CC49	1010.434	976.779	10.14	85.80

(North Axis) 1st Set

17-Jun					
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN41	1002.248	986.061	1.50	90.61	
NN42	1003.179	986.003	2.43	91.21	
NN43	1004.370	985.936	3.63	92.12	
NN44	1005.453	985.889	4.71	92.72	
NN45	1006.611	985.843	5.87	92.92	
NN46	1007.626	985.737	6.89	91.52	
NN47	1008.855	985.723	8.12	89.71	
NN48	1009.938	985.645	9.20	88.71	
NN49	1010.920	985.584	10.19	87.61	

(North Axis) 2nd Set

	29-Jan				
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN41	1002.285	986.061	1.50	90.31	
NN42	1003.213	986.036	2.43	90.81	
NN43	1004.407	985.962	3.62	91.42	
NN44	1005.508	985.855	4.73	92.12	
NN45	1006.619	985.764	5.85	92.42	
NN46	1007.643	985.735	6.87	90.91	
NN47	1008.875	985.735	8.10	89.11	
NN48	1009.970	985.690	9.20	87.61	
NN49	1010.951	985.613	10.18	86.50	

Figure 100: Coordinates of surveyed points on south, center and north axis of Bridge No.4 relative to BM31

4.11.5 Bridge No. 5

During one visit to the bridge on November 20th, one set of settlement control points was surveyed. The baseline for Bridge No. 5 was established. Table 47 and Figure 101 show the baseline results for Bridge No. 5. Results show that on the north and south axes the bridge geometry is as expected.

(South Axis)						
	20-Nov					
Point	East (x)	North (Y)	Distance (R)	Elevatio		
SS51	1024.716	1036.320	1.50	8.16		
SS52	1025.385	1035.524	2.54	8.37		
SS53	1026.066	1034.716	3.60	9.07		
SS54	1026.780	1033.813	4.75	10.28		
SS55	1027.443	1033.045	5.76	10.48		
SS56	1028.200	1032.142	6.94	9.78		
SS57	1028.923	1031.266	8.08	9.57		
SS58	1029.569	1030.484	9.09	9.47		
SS59	1030.161	1029.736	10.04	8.77		

Table 47: Coordinates of surveyed points on Bridge No. 5

(Center Axis)						
20-Nov						
Point	East (x)	North (Y)	Distance (R)	Elevation		
CC51	1030.936	1041.507	1.50	6.35		
CC52	1031.431	1040.778	2.38	8.47		
CC53	1031.924	1039.973	3.33	8.57		
CC54	1032.879	1039.124	4.60	10.89		
CC55	1033.574	1038.140	5.81	10.99		
CC56	1034.423	1037.139	7.12	10.58		
CC57	1035.123	1036.291	8.22	10.38		
CC58	1035.809	1035.473	9.29	10.28		
CC59	1036.374	1034.767	10.19	8.67		

Note: Coordinates in m. and Elevation in cm.

(North Axis)					
	20-Nov				
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN51	1037.877	1047.234	1.50	4.23	
NN52	1038.456	1046.538	2.41	5.44	
NN53	1039.130	1045.637	3.53	7.76	
NN54	1039.700	1044.958	4.42	8.77	
NN55	1040.508	1044.024	5.65	8.97	
NN56	1041.287	1043.122	6.84	7.36	
NN57	1041.972	1042.233	7.97	7.26	
NN58	1042.737	1041.347	9.14	6.05	
NN59	1043.298	1040.643	10.04	5.34	

~ -....

Figure 101: Coordinates of surveyed points on south, center and north axis of Bridge No.5 relative to BM51

4.11.6 Bridge No. 6

In four (4) separate visits to the bridge sites during the period between August 2015 and January 2017 (specifically, on 08/30/2015 and 10/24/2015, 01/29/2016 and 01/20/2017), four (4) slightly different sets of settlement control points were surveyed for Bridge No. 6, Figure 102 through Figure 104 show the survey results for Bridge No. 6 from these four separate visits. Survey results for the conventional Bridge No. 6 (i.e. pile foundation) shows approximately 2.5 cm (one inch) of nearly uniform settlement in both the north and south abutments. However, this unexpected result may be attributed to fact that during construction stage the steel piles were not drive to bedrock (Simpson 2016). Also, the bridge has been re-graded several times because a slightly "bump" at the joint appeared. Nonetheless, this bridge has not shown any visible signs of major serviceability or aesthetics-related problems. Nevertheless, the above observations on the performance of the GRS-IBS projects in light of the flooding events and local seismicity to date, confirm that GRS-IBS can indeed provide reliable and cost-effective alternatives to conventional designs for many rural and county roads in Oklahoma.

(South Axis) 1 st Set							
	30-Aug-15						
Point	East (x)	North (Y)	Distance (R)	Elevatio			
SS61	1012.111	1067.065	1.50	8.65			
SS62	1011.215	1067.078	2.40	9.56			
SS63	1010.135	1067.040	3.48	9.66			
SS64	1008.947	1067.092	4.67	9.46			
SS65	1007.788	1067.134	5.83	9.26			
SS66	1006.551	1067.130	7.06	10.06			
SS67	1005.518	1067.115	8.10	9.96			
SS68	1004.449	1067.138	9.17	9.56			
0060	1002 202	1067 150	10.22	0.06			

Table 48: Coordinates of surveyed points on south axis of Bridge No.6

(South Axis) 2 nd Set						
24-Oct-15						
Point	East (x)	North (Y)	Distance (R)	Elevation		
SS61	1012.096	1067.086	1.50	8.65		
SS62	1011.211	1067.099	2.39	8.55		
SS63	1010.142	1067.062	3.45	8.65		
SS64	1008.973	1067.090	4.62	9.86		
SS65	1007.772	1067.107	5.83	9.86		
SS66	1006.575	1067.137	7.02	9.86		
SS67	1005.537	1067.117	8.06	8.96		
SS68	1004.460	1067.146	9.14	8.96		
SS69	1003.391	1067.158	10.21	8.55		

Note: Coordinates in m. and Elevation in cm.

	(South Axis) 3 rd Set					
		29-Jar	n-16			
Point	East (x)	North (Y)	Distance (R)	Elevation		
SS61	1012.084	1067.073	1.50	6.85		
SS62	1011.210	1067.095	2.37	7.75		
SS63	1010.132	1067.056	3.45	7.75		
SS64	1008.989	1067.071	4.60	7.45		
SS65	1007.866	1067.091	5.72	7.55		
SS66	1006.571	1067.105	7.01	7.55		
SS67	1005.539	1067.104	8.05	7.25		
SS68	1004.473	1067.144	9.11	7.15		
SS69	1003.383	1067.149	10.20	7.25		

	(South Axis) 4 th Set				
		20-Jar	n-17		
Point	East (x)	North (Y)	Distance (R)	Elevation	
SS61	1012.088	1067.073	1.50	6.95	
SS62	1011.203	1067.095	2.39	6.35	
SS63	1010.134	1067.056	3.45	6.35	
SS64	1008.980	1067.071	4.61	7.25	
SS65	1007.790	1067.091	5.80	7.35	
SS66	1006.567	1067.105	7.02	6.85	
SS67	1005.527	1067.104	8.06	7.05	
SS68	1004.483	1067.144	9.11	7.35	
SS69	1003.405	1067.149	10.19	7.25	

Figure 102: Coordinates of surveyed points on south axis of Bridge No.6 relative to BM61

(South Axis) 1 st Set					
		30-Au	g-15		
Point	East (x)	North (Y)	Distance (R)	Elevation	
CC61	1012.027	1059.047	1.50	8.25	
CC62	1011.203	1059.028	2.32	8.15	
CC63	1010.029	1059.042	3.50	5.95	
CC64	1008.950	1059.062	4.58	6.95	
CC65	1007.715	1059.065	5.81	6.95	
CC66	1006.536	1059.123	6.99	8.55	
CC67	1005.455	1059.114	8.07	7.35	
CC68	1004.315	1059.138	9.21	7.35	
CC69	1003.317	1059.231	10.22	7.35	

Table 49: Coordinates of surveyed points on center axis of Bridge No.6

(South Axis) 2nd Set

			,	
		24-Oc	t-15	
Point	East (x)	North (Y)	Distance (R)	Elevation
CC61	1012.047	1059.048	1.50	7.65
CC62	1011.213	1059.039	2.33	7.65
CC63	1010.026	1059.068	3.52	5.95
CC64	1008.945	1059.064	4.60	6.25
CC65	1007.727	1059.091	5.82	6.75
CC66	1006.551	1059.099	7.00	7.65
CC67	1005.457	1059.118	8.09	6.95
CC68	1004.322	1059.140	9.23	7.05
CC69	1003.339	1059.240	10.21	7.05

Note: Coordinates in m. and Elevation in cm.

	(South Axis) 3 rd Set				
	29-Jan-16				
Point	East (x)	North (Y)	Distance (R)	Elevation	
CC61	1012.050	1059.044	1.50	5.25	
CC62	1011.197	1059.012	2.35	5.35	
CC63	1010.022	1059.053	3.53	3.94	
CC64	1008.961	1059.034	4.59	4.54	
CC65	1007.725	1059.067	5.83	4.54	
CC66	1006.598	1059.080	6.95	5.45	
CC67	1005.463	1059.099	8.09	4.24	
CC68	1004.306	1059.131	9.25	4.44	
CC69	1003.323	1059.219	10.23	4.44	

(South	Axis)	4^{th}	Set
--------	-------	-----------------	-----

	20-Jan-17				
Point	East (x)	North (Y)	Distance (R)	Elevation	
CC61	1012.046	1059.044	1.50	5.05	
CC62	1011.224	1059.012	2.32	4.95	
CC63	1010.031	1059.053	3.52	4.85	
CC64	1008.955	1059.034	4.59	5.25	
CC65	1007.770	1059.067	5.78	4.85	
CC66	1006.612	1059.080	6.94	5.05	
CC67	1005.491	1059.099	8.06	5.15	
CC68	1004.323	1059.131	9.23	5.05	
CC69	1003.347	1059.219	10.21	4.95	

Figure 103: Coordinates of surveyed points on center axis of Bridge No.6 relative to BM61

(North Axis) 1 st Set					
		30-Aug	g-15		
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN61	1012.018	1052.097	1.50	7.05	
NN62	1011.178	1052.097	2.34	6.55	
NN63	1009.983	1052.134	3.54	6.55	
NN64	1008.838	1052.111	4.68	7.25	
NN65	1007.682	1052.147	5.84	7.95	
NN66	1006.523	1052.117	7.00	7.95	
NN67	1005.474	1052.163	8.05	6.35	
NN68	1004.300	1052.149	9.22	6.45	
NN69	1003.252	1052.151	10.27	6.45	

Table 50: Coordinates of surveyed points on north axis of Bridge No.6

(North Axis) 2nd Set

	24 Oct 15					
		24-00	L-15			
Point	East (x)	North (Y)	Distance (R)	Elevation		
NN61	1012.016	1052.091	1.50	6.45		
NN62	1011.190	1052.091	2.33	6.45		
NN63	1009.998	1052.122	3.52	6.35		
NN64	1008.834	1052.107	4.68	7.75		
NN6 5	1007.680	1052.150	5.84	7.75		
NN66	1006.551	1052.092	6.9 7	7.05		
NN67	1005.479	1052.179	8.04	7.05		
NN68	1004.289	1052.146	9.23	7.05		
NN69	1003.262	1052.158	10.26	6.35		

Note: Coordinates in m. and Elevation in cm.

(North Axis) 3 rd Set					
		29-Jan	ı-16		
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN61	1012.018	1052.085	1.50	4.14	
NN62	1011.185	1052.077	2.33	4.04	
NN63	1009.985	1052.101	3.53	4.04	
NN64	1008.823	1052.096	4.70	5.55	
NN65	1007.684	1052.141	5.84	5.35	
NN66	1006.559	1052.094	6.96	5.05	
NN67	1005.455	1052.157	8.07	5.05	
NN68	1004.287	1052.151	9.23	4.24	
NN69	1003.255	1052.145	10.27	4.04	

(North	Axis)	4^{th}	Set
--------	-------	-----------------	-----

-					
	20-Jan-17				
Point	East (x)	North (Y)	Distance (R)	Elevation	
NN61	1012.025	1052.085	1.50	4.34	
NN62	1011.192	1052.077	2.33	4.14	
NN63	1009.979	1052.101	3.55	4.34	
NN64	1008.828	1052.096	4.70	5.55	
NN65	1007.692	1052.141	5.83	5.65	
NN66	1006.553	1052.094	6.97	4.14	
NN67	1005.470	1052.157	8.06	4.24	
NN68	1004.293	1052.151	9.24	4.24	
NN69	1003.253	1052.145	10.28	4.24	

Figure 104: Coordinates of surveyed points on north axis of Bridge No.6 relative to BM61

Chapter 5. Numerical Modeling of Kay County Bridge No. 2 GRS Abutment

5.1 Introduction

The computer program Fast Lagrangian Analysis of Continua (FLAC; Itasca 2005) was used to continue the development and improvement of the numerical models developed by Ngo (2016). **Figure 105** shows an as-built cut-away section for numerical simulation of GRS-IBS Bridge No. 2 in Kay County, OK based on the information obtained from Mr. Tom Simpson at the Bureau of Indian Affairs (BIA) in Anadarko, OK, and Mr. Pete Lively, who is the former Road Foreman at Kay County, District 3. The information on local soils indicated in the figure is based on the geotechnical report discussed in Section 4.6-Geotechnical Data of Kay County, Oklahoma.

Figure 105: Detailed as-built cross-section of the GRS-IBS Bridge No. 2 in Kay County (Ngo 2016)

5.2 Model Configuration and Material Properties

Ngo (2016) proposed six stages for the numerical model. However, the author added the Model configuration and Geometry Stage as an initial input for the model. Thus, the numerical simulations for the GRS-IBS model were set up in seven different stages as listed below to evaluate abutment deformations during construction, placement of the bridge superstructure, construction of the gravel road, and an equivalent static load of the traffic:

Stage 1: Model configuration and geometry (Figure 106)

Stage 2a: Excavation of the abutment area and shallow foundation (RSF) (Figure 107a)

Stage 3: Construction of RSF (**Figure 107b**)

Stage 4: Construction of GRS abutment in lifts and placement of reinforcement (Figure 107c)

Stage 5: Application of the bridge load equal to 65.32kPa (1,365 psf) on the GRS-IBS abutment through the beam seat (**Figure 107d**)

Stage 6: Application of 18.8kPa (390 psf) surcharge load due to the approach roadway (20 cm ~ 8 in. unpaved gravel road) (**Figure 107e**)

Stage 7: Application of an equivalent static traffic load of 13.2 kPa (280 psf) (**Figure 107f**). Traffic load on the GRS abutment was simulated using an equivalent 13.2 kPa uniform surcharge load (i.e. 0.61 m ~ 2 ft of soil) on the top of the entire model as recommended by FHWA design guidelines (Berg et al. 2009).

Figure 106: Construction stages in numerical modeling of GRS-IBS Bridge No. 2 (all dimensions are in ft.) (Hatami et al. 2015; Ngo 2016)

(c)

Figure 107: Numerical modeling of Bridge No. 2 (Ngo 2016; Hatami et al. 2016)

5.3 Model Input

The author set up the numerical model to accept different geometries and material properties for future parametric analysis of different GRS-IBS models. Figure 108b and Figure 108c show a detailed list of the geometrical and material parameters that the user can input in either the imperial or SI units according to the simplified design sketch shown in Figure 108a, which is consistent with the standard FHWA design drawing shown in Figure 2 (Adams et al. 2012).

(a)

User Inputs : Geometry							
Input parameter		Variable	Qty	(SI)	Qty	(Imp)	
RSF Length	[length]	d_RSF	2.8956	m	9.500	ft	
RSF height	[length]	h_RSF	0.7620	m	2.500	ft	
Abutment height	[length]	h_RSM	2.1336	m	7.000	ft	
Mesh resolution; number of zones in 1 unit		mesh_num*	6.0000	Unit	6.000	ft	
Distance from the start of RSF to the facing block	[length]	d_block_start	0.6096	m	2.000	ft	
Block Height	[length]	h_block	0.2032	m	0.667	ft	
Block Depth	[length]	d_block	0.2032	m	0.667	ft	
Primary reinforcement depth	[length]	d_prim_geo	2.2860	m	7.500	ft	
Spacing Primary Reinf	[length]	spac_prim_geo	0.2032	m	0.667	ft	
Secondary reinforcement depth	[length]	d_sec_geo	1.1582	m	3.800	ft	
Primary Reinf spacing (must be integer of h_block)	[length]	spac_sec_geo	0.10160000	m	0.333	ft	
Secondary reinforcement number of blocks		sec_geo_num	5.0000	unit	5.000	unit	
Depth of the superstructure on the abutment	[length]	d_sprstr	1.0668	m	3.500	ft	
Superstructure Stress	[stress]	sprstr_load	-65,320.0000	Ра	-1.36E+03	lbf/ft2	
Approach Roadway height	[length]	h_approad	1.0058	m	3.300	ft	
Equivalent surcharge load height	[length]	h_eq_traff	0.6096	m	2.000	ft	

(b)

	User Inputs: Geometry					
Property		Variable	Qty	(SI)	Qty	(Imp)
Native Soil Mass Density	[mass/volume]	native_den	1735.0	kg/m3	3.37	slug/ft3
Native Soil Bulk Modulus	[stress]	native_bu	3.33E+07	Ра	6.95E+05	lbf/ft2
Native Soil Shear modulus	[stress]	native_sh	1.54E+07	Ра	3.21E+05	lbf/ft2
Native Soil Cohesion	[stress]	native_coh	2.00E+04	Pa	4.18E+02	lbf/ft2
Native Soil Friction Angle	[degrees]	native_fric	20.0	Dev	20.00	Deg
Cable Area [Structural element 1.4.2]	[length/2]	cbl_area	0.00160	m2	6.17E-10	ft2
Cable density (default value)	[mass / volume]	cbl_density	0.0	kg/m3	0.00	slug/ft3
Cable elastic modulus	[stress]	cbl_e	6.03E+08	Pa	1.26E+07	lbf/ft2
Cable Spacing (default value)	[length]	cbl_spac	1.0	m	1.00	ft
Cable Tensile yield strength	[force]	cbl_yield	1.93E+04	Ν	4338.81	lbf
Cable Compressive yield strength	[force]	cbl_comp	0.0	N	0.00	lbf
Cable Exposed perimeter	[length]	cbl_perim	2.0032	m	6.5721	ft
Cable stiffness of the grout	[force/cable length / displacement]	cbl_kbond	48000.0	m	1002.51	lbf/ft/ft
Cable cohesive strength of the grout	[force /cable length]	cbl_sbond	45500.0	N/m	3117.74	lbf/ft
Cable frictional resistance of the grout	[degrees]	cbl_sfric	26.0	Deg	26.00	deg
Reinforced soil foundation Density	[mass/volume]	RSF_den	1937.6	kg/m3	3.76	slug/ft3
Reinforced soil foundation Bulk Modulus	[stress]	RSF_bu	1.11E+08	Ра	2.32E+06	lbf/ft2
Reinforced soil foundation Shear Modulus	[stress]	RSF_sh	6.30E+07	Ра	1.32E+06	lbf/ft2
Reinforced soil foundation Cohesion	[stress]	RSF_coh	0.00E+00	Ра	0.00E+00	lbf/ft2
Reinforced soil foundation Friction angle	[degrees]	RSF_fric	52.0	Dev	52.00	Deg
Reinforced soil foundation Dilation	[degrees]	RSF_dil	15.0	Dev	15.00	Deg
Reinforced soil mass Density	[mass/volume]	RSM_den	1834.9	kg/m3	3.56	slug/ft3
Reinforced soil mass Bulk Modulus	[stress]	RSM_bu	1.04E+08	Ра	2.17E+06	lbf/ft2
Reinforced soil mass Shear Modulus	[stress]	RSM_sh	6.00E+07	Ра	1.25E+06	lbf/ft2
Reinforced soil mass Cohesion	[stress]	RSM_coh	0.00E+00	Ра	0.00E+00	lbf/ft2
Reinforced soil mass Friction angle	[degrees]	RSM_fric	44.0	Dev	44.00	Deg
Reinforced soil mass Dilation	[degrees]	RSM_dil	14.0	Dev	14.00	Deg
Block Density	[mass/volume]	blck_den	2240.0	kg/m3	4.35	slug/ft3
Block Bulk Modulus	[stress]	blck_bu	1.10E+10	Ра	2.30E+08	lbf/ft2
Block Shear Modulus	[stress]	blck_sh	8.90E+09	Ра	1.86E+08	lbf/ft2

(c)

Figure 108: GRS-IBS abutments model input: (a) Simplified design sketch defining model geometry; (b) Geometry input parameters;(c) Materials input parameters

5.4 Preprocessing Algorithm

Another feature added by the author was the inclusion of a preprocessing algorithm to set up the numerical model using the user input parameters and simplified sketches (**Figure 109**a and **Figure 109b** that are compatible with the standard FHWA design drawing (**Figure 2**).

(a)
Calculated by the program						
Input parameter	Equation	Variable	Qty	(SI)	Qty	(Imp)
Gravity		gravity	9.8100	m/s2	32.185	ft/s2
Depth of Soil Mass	[= d_RSF * 4]	d_soil	11.5824	m	38.00	ft
Height of Soil Mass	[= h_RSM*4]	h_soil	8.5344	m	28.00	ft
Number of grid zones in depth	[=mesh_num*d_soil]	d_grid_num	228.0000	Unit	228.00	unit
Number of grid zones in height	[=mesh_num*h_soil]	h_grid_num	51.2064	m	168.00	ft
Total grid point number in depth	[=d_grid_num+1]	x_grid_num	69.7992	m	229.00	ft
Total grid point number in height	[=d_grid_num+1]	y_grid_num	51.5112	m	169.00	ft
X coordinate of RSF Start	[=d_RSF]	x_RSF_start	2.8956	m	9.50	ft
X coordinate of RSF end	[=x_RSF_start + d_RSF]	x_RSF_fin	5.7912	m	19.00	ft
Y coordinate of RSF Start	[= h_soil - h_RSM - h_RSF]	y_RSF_start	5.6388	m	18.50	ft
Y coordinate of RSF end	[= h_soil - h_RSM]	y_RSF_fin	6.4008	m	21.00	ft
Y coordinate of excavation start	[= h_soil - h_RSM]	y_exc_start	6.4008	m	21.00	ft
Block_num	[=(int(h_RSWh_block))]	block_num	3.3528	unit	11.00	unit
X coordinate of Block Start	[= = x_RSF_start + d_block_start]	x_block_start	3.5052	m	11.50	ft
X coordinate of Block end	[= x_block_start + d_block]	x_block_fin	3.7084	m	12.17	ft
Y coordinate of Block Start	[=h_soil - h_RSM]	y_block_start	6.4008	m	21.00	ft
Y coordinate of Bloc end	[=h_soil]	y_block_fin	8.5344	m	28.00	ft
X Coordinate primary reinforcement start	[= x_block_start]	x_prim_geo_start	3.5052	m	11.50	ft
X coordinate of primary reinforcement attached to face	[= x_prim_geo_start + d_prim_geo]	x_prim_geo_fin	3.7084	m	12.17	ft
Number of layer from top to bottom of block	[=int(h_block/spac_prim_geo)]	prim_rear_num	0.3048	unit	1.00	unit
Number of layer between the prim reinf	[= int (h_block / spac_sec_geo)]	sec_rear_num	0.6096	m	2.00	ft
X Coordinate of secondary reinforcement start	[= x_block_start + d_block]	x_sec_geo_start	3.7084	m	12.17	ft
X Coordinate of secondary reinforcement end	[=x_sec_geo_start + d_sec_geo]	x_sec_geo_fin	4.8666	m	15.97	ft
X Coordinate of Superstructure Start	[= x_block_start + d_block]	x_sprstr_start	3.7084	m	12.17	ft
X Coordiante of Superstructure End	[= x_sprstr_start + d_sprstr - d_block]	x_sprstr_fin	4.5720	m	15.00	ft
Y Coordinate of Superstructure Start	[=h_soil]	y_sprstr_start	8.5344	m	28.00	ft
Y Coordiante of Superstructure End	[=h_soil]	y_sprstr_fin	8.5344	m	28.00	ft
Weight of Approach Roadway	[= RSF_den * gravity * h_approad]	approad_load	19118.86	Ра	399.61	lbf/ft2
Weight of Equivalent traffic load	[= RSF_den * gravity * h_eq_traff]	eq_traff_load	11587.1886	Pa	242.19	lbf/ft2

(b)

Figure 109: GRS-IBS abutments model: (a) Simplified design sketch for preprocessing algorithm; (b) Geometry and material parameters calculated by the FLAC model

5.5 Material Properties

Selected input parameters for the numerical model were determined through laboratory

tests and related literature as shown in Table 51.

Backfill AASHTO No.89 gravel (GRS abutment bac	kfill) properties				
Density (kg/m ³)	1834.9				
Friction angle (deg)	44				
Dilation angle (deg)	14				
Bulk Modulus, K (MPa)	104				
Shear Modulus, G (MPa)	60				
Backfill AASHTO No. 57 gravel (RSF backfill) properties					
Density (kg/m ³) - Modified Proctor	1937.6				
Friction angle (deg)	52				
Bulk Modulus, K (MPa)	111				
Shear Modulus, G (MPa)	63				
Sandy lean clay - Native soil properties					
Density (kg/m ³)	1735				
Friction angle (deg)	20				
Cohesion (kPa)	20				
Bulk Modulus, K (MPa)	33				
Shear Modulus, G (MPa)	15				
Solid 8" × 8" × 16" CMU (facing block) properties					
Young's Modulus, E (MPa)	20000				
Poisson's ratio	0.2				
Density (kg/m3)	2240				
Bulk Modulus, K (MPa)	11111				
Shear Modulus, G (MPa)	8333				
Geotextile properties (TerraTex HPG-57) Structural element: Cable					
Area, A $(m^2) = 1$ m width * thickness	0.0016				
Tensile strength, T(kN/m) in cross machine direction	19.3				
Tensile stiffness, J _{2%} =T _{2%} /0.02 (kN/m)	965				
Young's Modulus, E (MPa) = J/A	603				
Geotextile-backfill (No.89) interface					
K _{bond} (N/m/m)	48000				
S _{bond} (N/m/m)	45500				
Friction Angle, δ (deg)	26				
Interface properties between No. 89 backfill and CMU					
Friction angle (deg)	29				
Cohesion (kPa)	0				
Interface properties between No. 89 backfill and native soil					
Friction angle (deg)	29				
Cohesion (kPa)	13				

Table 51: Properties of materials used in FLAC simulation of GRS-IBS projects (Ngo 2016)

5.6 Parametric Study in the Numerical Model for Bridge No. 2

5.6.1 Influence of Different Facing Blocks

A set of parametric analyses was carried out on GRS facing blocks, which included two additional sizes of 41 cm \times 61 cm (16 in. \times 24 in.) and 61 cm \times 61 cm (24 in. \times 24 in.) in cross-sectional view in addition to the control (as built) size of 20 cm x 20 cm (8 in. x 8 in.) blocks. The 61 cm \times 61 cm (24 in. \times 24 in.) blocks represented those available from a local block manufacturer (Dolese 2016). In this case, surcharge pressures equal to 0.450, 0.395 and 0.355 kPa (i.e 9.39, 8.24 and 7.3 psf) were applied on the top of the blocks, GRS mass (Gravel No. 89) and the retained native soil behind the GRS mass, respectively to compensate for the facing height diffrence in the model with large blocks and keep it comparable to other models. It should be noted that the numerical models represent plane strain conditions, and the results are interpreted for a unit width of facing perpendicular to the plane of analysis. Therefore, the dimension of the block in the running length of the facing is irrelevant to the analysis, and the blocks are merely referred to by their cross-sectional dimensions in the analysis and discussion of results presented in this section. The 41 cm \times 61 cm (16 in. \times 24 in.) model is used here as an example and can be modified to include other large blocks that are commercially available, as necessary. Figure 110 shows the numerical models with different size facing blocks that are otherwise comparable to one another with respect to their geometry and material properties. The facing block properties and loading conditions for the two GRS-IBS models are listed in **Table 52** and **Table 53**, respectively.

Table 52: Solid CMU properties in GRS-IBS numerical (FLAC) models

Solid CMU (facing block) properties				
Young's Modulus, E (MPa)	20,000			
Poisson's ratio,	0.2			
Density, (kg/m ³)	2,240			
Bulk Modulus, K (MPa)	11,111			
Shear Modulus, G (MPa)	8,333			

 $(1 \text{ kgf/m}^3 = 0.062 \text{ pcf}, 1 \text{ MPa} = 20.89 \text{ ksf})$

Table 53: Static loading conditions (applied pressure) in GRS-IBS numerical (FLAC)models (1 kPa = 20.89 psf; 1 kgf/m³ = 0.062 pcf)

	Beam Bridge	Approach Roadway Equivalent static load, σv
End of Construction (kPa)	65.32	18.8
Traffic Surcharge Load (kPa)	78.52	32.0

(a)

Figure 110: GRS-IBS FLAC models: (a) 8 in. \times 8 in. \times 8 in. CMU block facing; (b) 16 in. \times 24 in. \times 24 in.; and (c) 24 in. \times 24 in. \times 48 in. 'Dolese' block facing (1 inch = 25.4 mm)

Figure 111 and Figure 112, respectively, show predicted settlements at the top and lateral deformations of the GRS-IBS abutment models at the end of construction, and when subjected to a 13.2 kPa (280 psf) uniform surcharge (0.61 m ~ 2 ft of soil) on the top of the abutment representing traffic load, as suggested by FHWA design guidelines (Berg et al. 2009). The numerical models and the corresponding predicted results await future validation. Nevertheless, the predicted results suggest that the performance of the GRS-IBS abutments with both facing types is expected to be satisfactory with relatively small settlements and lateral deformations. The maximum lateral movement of the model with 8 in. \times 8 in. CMU facing is predicted to be approximately 3 mm (1/8 in) at one-third of the abutment height from the top, while the corresponding value for the model with 16 in. \times 24 in. block facing is negligible. However, the maximum settlements of both models are predicted to be similar (~3 mm = 1/8 in).

(b)

Figure 111: Predicted bridge settlements at the end of construction and under equivalent traffic load in numerical models with: (a) 8 in. \times 8 in. CMU block facing; (b) 16 in. \times 24 in. block facing ;(1 inch = 25.4 mm)

(a)

Figure 112: Predicted facing deflections at the end of construction and under equivalent traffic load in numerical models with: (a) 8 in. x 8 in. CMU block facing; (b) 16 in. \times 24 in. block facing; (1 inch = 25.4 mm)

Foundation pressure and reinforcement load are important factors in GRS-IBS design. One potential concern with the use of large (16 in. \times 24 in. \times 24 in.) blocks as GRS facing is the bearing pressure on the subgrade soil underneath the block column, which was explored using the FLAC model. On the other hand, it was hypothesized that larger facing blocks would result in reduced reinforcement load, which was also examined in the numerical model. **Figure 113** shows predicted foundation pressure at the bottom of the GRS abutment models at the end of construction and under equivalent traffic load for GRS models with the control and larger concrete blocks. Results indicate that predicted foundation pressures in the two models are comparable. It can also be observed that in both models, pressure distributions in the foundation show increased magnitudes at the toe of the facing and reduced magnitudes toward its back due to down-drag forces at reinforcement connections in addition to an overturning tendency

of the facing column away from the GRS backfill. Similar observations have been reported in previous studies (e.g. Hatami and Bathurst 2005).

Figure 114 shows predicted axial loads in the reinforcement behind the facing in the two GRS models. The reinforcement was modeled as a series of cable elements (geotextile) that can only resist tension. Data shown in **Figure 114** indicate the following important and interesting results: (1) reinforcement loads are significantly larger in the case of the GRS abutment with smaller (standard) CMU blocks, (2) in both models (i.e. regardless of the size of blocks used in the facing), reinforcement layers that are connected to the facing blocks carry significantly larger connection loads than those terminated immediately behind the facing, and (3) regardless of the block size, significantly larger loads develop toward the top of the GRS mass underneath the bridge abutment in the reinforcement layers that are connected to the facing whereas the distributions of reinforcement load over the height of the GRS mass are more uniform in the layers that are not connected to the facing, especially in the model with large facing blocks, indicating its potential for a more optimum design.

These findings are exciting in that they point to the merit of large-block facing construction in GRS-IBS projects in Oklahoma and other states as per Mr. Sheffert and PI's early discussions leading to the present work. They also provide added incentive for future work to look for possible field projects to compare the performance of GRS-IBS projects with different facing construction in addition to measuring reinforcement loads in instrumented cases to validate these numerical simulation results in the future.

These efforts will help develop adjustments to the current FHWA guidelines (Adams et al. 2012) for GRS-IBS construction that could lead to more economical design by using large-block facing alternatives.

Figure 113: Comparison of the predicted foundation pressure in the numerical models with 8 in. \times 8 in. CMU and 16 in. \times 24 in. block facing: (a) end of construction (Stage 6); (b) Under traffic load (Stage 7) using 280 psf (13.2 kPa) equivalent surcharge (100 kPa = 2.1 tsf)

Figure 114: Predicted reinforcement loads in the GRS abutment models when subjected to equivalent traffic load: (a) Model with 8 in. × 8 in. CMU block facing; (b) Model with 16 in. × 24 in. CMU block facing (1 lb/ft = 14.6 N/m)

The influence of block size used in the facing on the predicted GRS performance was further examined through a FLAC numerical model with 24 in. x 24 in. facing blocks. Distributions of earth pressure in the GRS fill, reinforcement axial load, settlement at the top of the GRS fill and facing deformation were examined using the numerical model. Example snapshots of model results for end of construction and when subjected to the bridge dead load (Stages 4 and 6, respectively; **Figure 106**) are shown in **Figure 115** and **Figure 116**, respectively.

Maximum reinforcement loads in the GRS abutments with the 8 in. \times 8 in. and 24 in. \times 24 in. blocks are 299 N/m (20.48 lb/ft) and 214.4 N/m (14.68 lb/ft), respectively (**Figure 116a**) indicating a greater structural contribution of the larger block facing. These values can be compared with the allowable strength (T_{all}) of the geotextile reinforcement used in Bridge No. 2 in Kay County, OK, and calculate a factor of safety using selected values of partial reduction factors (Koerner 2005) as the following:

$$T_{all} = \frac{T_{ult}}{FS * \prod RF}; \ FS = \frac{T_{ult}}{T_{all} * \prod RF}$$

where:

 T_{ult} = Wide Width Tensile Strength at 2% elongation (Cross Machine Direction) $T_{ult} = 19,300 \frac{N}{m} \approx 1,322 \frac{lb}{ft} \text{ (Table 5)}$

 $\prod RF = RF_{Intallation \ Damage} \times RF_{Creep} \times RF_{Chemical \ / \ biological \ degradation}$ $\prod RF = 2 \times 4 \times 1.5; \ \prod RF = 12$ $T_{all} = \frac{19,300 \frac{N}{m}}{12}; \ T_{all} = 1,609 \frac{N}{m} \approx 110.2 \frac{lb}{ft}$

$$FS_{8 in.x 8 in.} = \frac{110.2 \frac{lb}{ft}}{20.48 \frac{lb}{ft}}; FS_{8 in.x 8 in.} = 5.4$$

$$FS_{24 in.x 24 in.} = \frac{110.2 \frac{lb}{ft}}{14.68 \frac{lb}{ft}}; FS_{24 in.x 24 in.} = 7.5$$

Predicted settlements in the Reinforced Soil Mass (RSM) in **Figure 116b** is also slightly larger in the model with 8 in. × 8 in. facing units relative to those with 24 in. × 24 in. facing blocks. However, settlement contours below the Reinforced Roil Foundation (RSF) in the two models appear to be comparable. Finally, slightly larger facing deformations are predicted for the model with larger blocks (i.e. 12 mm vs. 10 mm; **Figure 116c**), which could be attributed to the fact that a larger number of reinforcement layers' interlock with the blocks in the 8 in. × 8 in. model resulting in a stiffer RSM-block structure as compared to the 24 in. × 24 in. model. Nevertheless, predicted facing deformations in both models are limited to approximately 10 mm \approx 3/8 in., which can be considered acceptable. It should be noted that FHWA guidelines (Adams et al. 2012) state that: "Since the facing element is not structural in a GRS wall or abutment, any facing element can be used". In addition, no maximum allowable facing deformations have so far been specified in the said guidelines.

Figure 117 and **Figure 118** show predicted distributions of axial load and axial strains in the reinforcement behind the facing in the two GRS models with different size facing blocks. Data shown in **Figure 118** confirm the following important and interesting results we obtained in an earlier comparative study involving different size blocks: (1) reinforcement loads are significantly larger in the case of the GRS abutment with smaller (standard) CMU blocks, (2) in both 8 in. \times 8 in. and 24 in. \times 24 in. block GRS models (i.e. regardless of the size of blocks used in the facing), reinforcement layers that are connected to the facing blocks carry significantly larger connection loads than those terminated immediately behind the facing, and (3) regardless of the block size, significantly larger loads develop toward the top of the GRS mass underneath the bridge abutment in the reinforcement layers that are connected to the facing whereas the distributions of reinforcement load over the height of the GRS mass are closer to uniform in the layers that are not connected to the facing, especially in the model with large facing blocks, indicating its potential for a more optimum design.

(b)

Figure 115: Comparison of GRS-IBS numerical models with 8 in. × 8 in. CMU and 24 in. × 24 in. block facing at the end of construction (Stage 4) and subjected to 65.32 kPa (1,365 psf) bridge load (Stage 6): (a) reinforcement load (N/m); (b) settlement contours (m); and (c) contours of lateral deformation (m)

Figure 116:Comparison of GRS-IBS numerical models with 8 in. × 8 in. CMU and 24 in. × 24 in. 'Dolese' block facing at the end of construction (Stage 6) and subjected to 13.2 kPa (280 psf) traffic load: reinforcement load (N/m); (b) settlement contours (m); and (c) contours of lateral deformation (m)

(a)

Figure 117: Numerical model of GRS-IBS abutments for Bridge No. 2 in Kay County: (a) predicted axial loads and (b) predicted axial strains

Figure 118: Comparison of predicted axial loads in GRS-IBS numerical models with 8 in. × 8 in. CMU and 24 in. × 24 in. facing at end of construction and subjected to service load. Loading applied in the model includes equivalent uniform surcharge load due to traffic (Stage 7) Figure 107

Chapter 6. Conclusions and Recommendations for Future Work

6.1 Summary and Conclusions

GRS-IBS technology has a track-record of field projects across the nation. Although, to date only 250 bridges have been recorded it is estimated that currently, a greater number have been completed. In this study, a database was developed that includes a wide range of data on 144 GRS- IBS projects in the U.S. on which at least some basic information was available. The bridges documented in the database include those from 82 different counties in 44 states. GRS-IBS is an alternative to conventional bridge systems, especially useful in low-volume roads that can be taken as a solution for replacement of many outdated bridges in the nation. The information on the surveyed bridges included their geographical locations, size, geometry and other related design information, geotechnical, hydraulic and traffic data, types of superstructure, facing wall, backfill material and geosynthetic used, performance monitoring methods/results, and feedback from the corresponding local agencies.

The main benefits of GRS-IBS are: (1) Cost reduction of the bridge construction and maintenance, saving up to 62% compared to standard technologies, (2) Fast construction given the fact bridges built with this technology don't required complex equipment or materials, (3) Flexible design that can be easily adapted according the environment or design requirements, and (4) Elimination of the bump at the end of the bridge which allows a smoother transition between road and bridge and decreases the need for frequent maintenance of bridge roads. The database is used to summarize a set

of suitable criteria with respect to the items above for future GRS-IBS projects in Oklahoma.

FHWA guidelines (Adams et al. 2012) on GRS-IBS are extremely conservative. Recommended limits for eligible projects are those with low traffic volume, single span of no more than 42.7 m (140 ft.) and 9.1 m (30 ft.) in abutment height. Although most bridges covered in this report follow these guidelines, several other documented projects have surpassed them and proven to have a good performance (e.g. Bridge No. 169 in Knox County, ME; Ngo 2016). Numerous DOT's reported learned lesson of the GRS-IBS experience. California reported a successful technical challenge, due to its geographic location with an elevation of approximately 2,744 m (9,000 ft.) and seismic peak ground acceleration between 0.40g and 0.50g. Delaware reported three main good practices during construction: (1) Accurate and proper placement of the first layer of the facing block is very important, (2) The first layer must be level, straight, and plumb, and (3) If the edges of the blocks are too smooth, they can slide easily over each other. Therefore, an inward slope (batter) is necessary to accommodate movement. Iowa reported the experience as "successful" based on the following outcomes: (1) Construction costs were 50% - 60% lower than what would be expected for a conventional bridge, (2) Measured settlements were less than 2 cm (0.7 in) and differential settlements were less than 5.8 mm (0.2in), and (3) The projects confirmed the ease and reduced time of construction, and reduced material and labor costs. New York concluded that GRS-IBS construction results in a shorter construction schedule as well as cost savings in materials, labor and equipment. It is also more adaptable, less

211

weather sensitive, less prone to settlement and eliminates the bump and crack at the bridge approach.

From the documented information of the surveyed bridges, we can conclude: (1) The most common facing type is the CMU blocks (8 in. \times 8 in. \times 16 in.) with 52% followed by sheet piles with 6%, (2) The most used monitoring instrument is the conventional surveying with 35%, pressure cells with 20% and inclinometers with 11%, and (3) The highest reported savings in a project were in Olympic Avenue, IA with 53% -62% of cost savings (Ngo 2016). Additionally, the state of Pennsylvania reported a per square foot abutment cost analysis with an average cost of \$95.5 (GRS) vs \$208.5 (traditional). All this information was initially compiled in the reported database, which evolved into the development of a project website. This tool will contain design features, good practices and improvement potentials that will be very useful for designing.

In Oklahoma, the set of four GRS-IBS bridges in Kay County together with two other bridges with conventional driven pile support systems all with a 1-mile segment of 44th street in Kay County provided a unique opportunity for this study. The bridge essential information as weather, traffic, geotechnical reports and construction phase were documented in this project. Essentially, all six bridges are subjected to the same conditions. Furthermore, all of them were built by the same crew and GRS-IBS were reported to be more cost effective than their conventional counterparts. Performance monitoring was conducted during this project. Is worth noting that during the monitoring period, the bridges were subject severe weather and seismic events (e. g April 2015 flooding; Sept 2016 earthquake). The results show, that so far, all the bridges have outperformed. GRS-IBS Bridge No. 2 bridge deck has undergone a seemingly consistent and predominantly upward movement between 6.35 mm and 12 mm(¼ and ½ in.) during this monitoring period. Conventional Bridge No. 6 shows approximately 2.54 cm (one (1) in.) of nearly uniform settlement in both the north and south abutments. However, this unexpected result may be attributed to fact that during construction stage the steel piles were not drive to bedrock (Simpson 2016). Also, the bridge has been re-graded several times because a slightly "bump" at the joint appeared. Nonetheless, this bridge has not shown any visible signs of major serviceability or aesthetics-related problems. Furthermore, baselines were monitored for conventional Bridge No.1 and GRS-IBS Bridges No. 3, 4 and 5. Further monitoring of the bridges movement should determine the validity and accuracy of the initial findings.

The develop of a numerical model helped investigate the influences of select design factors such as size of facing blocks. A computer program Fast Lagrangian Analysis of Continua (FLAC; Itasca 2005) was used to develop the numerical models based on the as-built geometry and construction details of Bridge No. 2 in Kay County and material properties that were either tested or otherwise obtained during this study. Parametric study was carried out which showed: (1) The performance of the GRS-IBS abutment under static loading conditions (e.g. end of each construction stage) is expected to be satisfactory with relatively small deflection. The maximum lateral movement at the end of construction and including the approach roadway (Stage 6) is predicted to be approximately 7 mm (0.27 in.) at slightly above mid-height of the facing wall.

Predicted maximum facing deformation and bridge settlement under traffic loading are 6.1 mm and 7 mm (0.24 in. and 0.26 in.), (2) Predicted deformations of the GRS-IBS abutments in this study are not sensitive to the interface shear stiffness properties assumed in the analysis within the range of values examined, (3) Predicted maximum settlements consistently occur under the abutment beam seat. (4) maximum values of bridge settlement and facing deformation for the most critical case of Sv= 16 in and ϕ = 340, are limited to 5/16 in. and 5/8 in. (8 mm and 15 mm), respectively. Therefore, the performance of GRS abutments with different combinations of reinforcement spacing and friction angle values in this study could be considered as satisfactory. However, these results need to be validated in the field before they can be applied in practice, and (5) Reinforcement loads are significantly larger in the case of the GRS abutment with smaller (standard) CMU blocks. In both 8 in. \times 8 in. and 24 in. \times 24 in. block GRS models (i.e. regardless of the size of blocks used in the facing), reinforcement layers that are connected to the facing blocks carry significantly larger connection loads than those terminated immediately behind the facing. Regardless of the block size, significantly larger loads develop toward the top of the GRS mass underneath the bridge abutment in the reinforcement layers that are connected to the facing whereas the distributions of reinforcement load over the height of the GRS mass are closer to uniform in the layers that are not connected to the facing, especially in the model with large facing blocks, indicating its potential for a more optimum design. Further development of the numerical model together with its more rigorous validation can lead to a useful tool for GRS-IBS design and their more widespread acceptance in the U.S. and internationally.

6.2 **Recommendations for Future Work**

The GRS-IBS database needs to be expanded and maintained periodically. Additionally, it is important to survey more bridges with reported performance monitoring. More research in the documented bridges shall be done in order to complete the current database with missing information as span length, height, superstructure system, facing type and construction methods. This information will help in future designs across the U.S.

The web-page needs to be completed and updated periodically. It is also recommended to implement an auto-update feature. This feature can be based in forms that once submitted will automatically add information to the database. Thus, when the webpage is refreshed the new information will be shown.

Further monitoring needs to be performed in Bridges 1, 3, 4 and 5. These bridges which were initially monitored in this project, can be compared to the reported performance of Bridges No. 2 and No. 6 in Kay County, OK.

Lastly, it is recommended to perform additional developing of the numerical model together with its more rigorous validation based on the results obtained by the performance monitoring. This can lead to a useful tool for GRS-IBS design.

215

References

- AASHTO M-145-91 (2008). Classification of Soil and Soil-Aggregate Mixtures for Highway Construction Purposes, American Association of State Highway and Transportation, Washington, D.C., USA.
- AASHTO M-143. (2009). Standard Specification for Sizes of Aggregate for Road and Bridge Construction, American Association of State Highway and Transportation, Washington, D.C., USA.
- AASHTO T-99 (2012). Moisture-Density Relations of Soils: Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 in) Drop, American Association of State Highway and Transportation, Washington D.C., USA.
- Abdoun, T., Bennett, V., Danish, L., Barendse, M. (2008). Real-Time Construction Monitoring with a Wireless Shape-Acceleration Array System, GeoCongress 2008.
- Adams, M., Nicks, J., Stabile, T., WuJ., Schlatter, W., and Hartmann, J. (2011).
 Geosynthetic Reinforced Soil Integrated Bridge System Synthesis Report, Report
 No. FHWA-HRT-11-027, Federal Highway Administration, McLean, VA.
- Adams, M., Nicks, J., Stabile, T., WuJ., Schlatter, W., and Hartmann, J. (2012).
 Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation
 Guide, Report No. FHWA-HRT-11-026, Federal Highway Administration, McLean,
 VA.
- Albert, R. (2011). Huston Township, Clearfield County Mount Pleasant Road Bridge, Pennsylvania Department of Transportation, 2011.
- Albert, R. (2015). GRS-IBS EDC Webinar Penn DOT. GRS-IBS EDC Webinar . U.S. Department of Transportation Federal Highway Administration. Retrieved from:

- https://connectdot.connectsolutions.com/p7t4uvdqg9c/?launcher=false&fcsContent=tru e&pbMode=normal
- Alzamora, D. (2014). Construction of Geosynthetic Reinforced Soil-Integrated Bridge System, Federal Highway Administration, Arlington, VA.
- Alzamora, D., Hogan, S., Mermejo, C., Carrol, N., Albert, R. (2015). GRS-IBS EDC
 Webinar Penn DOT. GRS-IBS EDC Webinar . U.S. Department of Transportation
 Federal Highway Administration. Retrieved from:
- ASTM International D2216. (n.d.). Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, American Society for Testing and Materials, West Conshohechen, PA, USA.
- ASTM International D2487. (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), American Society for Testing and Materials, West Conshohechen, PA, USA.
- ASTM International D3080. (2011). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, American Society for Testing and Materials, West Conshohechen, PA, USA.
- ASTM International D698. (2012). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft-lbf/ft3 (600 kN-m/m3)), American Society for Testing and Materials, West Conshohechen, PA, USA.
- ASTM International D2488. (n.d.). Standard Practice for Description and Identification of Soils (Visual-Manual), American Society for Testing and Materials, West Conshohechen, PA, USA.

- ASTM International D5321. (2014). Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear, American Society for Testing and Materials, West Conshohechen, PA, USA.
- Benton, B. (2014). BR 1-366 on Chesapeake City Road: DelDOT's First GRS-IBSBridge, Delaware Department of Transportation (DelDOT), February 14, 2014.
- Bogart, T. (2013). Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) Technology, St. Lawrence County DEPARTMENT OF Highways, New York, September 18th, 2013.
- Briaud, J. L., James, R. W., Hoffman, S. B. (1997). Settlement of Bridge Approaches:(the Bump at The End of The Bridge). National Cooperative Highway ResearchProgram (NCHRP), Report 234.
- Budge, S., Dasenbrock D., Mattison J., Bryant K., Adams M., and Nicks. (2014). Instrumentation and Early Performance of a Large Grade GRS-IBS Wall, Geo-Congress 2014 Technical Papers, GSP 234, American Society of Civil Engineers, Wisconsin, 2014.
- Daymet. (2015). The Single-Pixel Extraction Tool, Retrieved from : http://daymet.ornl.gov/singlepixel.html
- Durham. (2013). Inclinometer Casing Datasheet, Slope Indicator Company. Retrieved from www.slopeindicator.com: http://www.slopeindicator.com/pdf/inclinometercasing-datasheet.pdf.
- Durham. (2014). Retrieved from: http://www.durhamgeo.com/field-instruments/introinstrumentation.html

- FHWA. (2011). Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide- FHWA-HRT-11-026, Federal Highway Administration, Washington, D.C., USA.
- FHWA. (2012). Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide. Publication No. FHWA-HRT-11-026, Federal Highway Administration, Washington, D.C., USA.
- FHWA. (2012). Sample Guide Specifications for Construction of Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS), Federal Highway Administration, Washington, D.C., USA.
- FHWA Innovator Newsletter. (2012). Twin Geosynthetic-Reinforced Soil Bridges, by Utah DOT, Federal Highway Administration Innovator Newsletter, December 7, 2012.
- FHWA (2016). Personal communications.
- Hatami, K, Ngo, T, Pena, L and Miller, G. (2015). Feasibility Study of GRS Systems for Bridge Abutments in Oklahoma, Annual Project Status Report ~FFY 2015, ODOT SP&R Item No. 2262, ODOT, OKC, OK.
- Hatami, K, Ngo, T, Pena, L and Miller, G. (2016) "Feasibility Study of GRS Systems for Bridge Abutments in Oklahoma," Final Report ~FFY 2016, ODOT SP&R Item No. 2262, ODOT, OKC, OK.
- Itasca Consulting Group, Inc. (2005). Fast Lagrangian Analysis of Continua (2D) Version 5.0, Itasca Consulting Group, Inc., Minneapolis.
- Meunier, S. (2013). GRS-IBS Geosynthetic Reinforced Soil Integrated Bridge System Technology, Louisiana Transportation Conference, 2013

- Ngo, T. (2016). Feasibility study of geosynthetic reinforced soil integrated bridge systems (GRS-IBS) in Oklahoma, MSc Thesis, University of Oklahoma, Norman, OK.
- Peters, V. J. (2015). Technology Developments Tribal Providers Conference, Anchorage Alaska, Federal Highway Administration, Office of Federal Lands. Retrieved from http://biaprovidersconference.com/wpcontent/uploads/2013/12/2015-12-02-Technology-Deployment.pdf
- RST. (1997). QC Inclinometer Casing Installation Guide, Slope Indicator Company, Retrieved from: http://www.slopeindicator.com/pdf/manuals/qc-casing-installationguide.pdf
- RST. (2014). How to use a Digital MEMS Inclinometer for a Borehole Survey PART
 - 2 OF 2, RST Geotechnical Instruments. Retrieved from: https://www.youtube.com/watch?=idfvef29T2s.
- Simpson, T, P.E. (2015). Personal Communications.
- Simpson, T, P.E. (2016). Personal Communications.
- Sweger, B. (2014). An Innovative and Cost-Effective Solution: KYTC Designs, Builds
 Quicker Using New Bridge Technology, Quality Matters IV.3 (2014): 1-4.
 Kentucky Transportation Cabinet KYTC. Fall 2014. Web. 31 May 2016. Online
 available at: http://transportation.ky.gov/HighwayDesign/Quality%20Matters/2014_3_Fall_QualityMatters.pdf
- Talebi, M., Meehan, C., Cacciola, D., and Becker M. (2014). Design and Construction of a Geosynthetic Reinforced Soil Integrated Bridge System (2014), Geo-Congress

2014 Technical Papers, GSP 234, American Society of Civil Engineers, Wisconsin, 2014.

- USGS. (2015). Kay County and Lincoln Seismicity Map, United States Geological Survey (USGS), May 31, 2016.
- USGS. (2015). Oklahoma Seismicity Map 1970 to 2016, United States Geological Survey (USGS), Retrieved from: http://earthquake.usgs.gov/earthquakes/byregion/oklahoma.php
- Vennapusa, P., White, D., Klaiber, W., and Wang, S. (2012). Geosynthetic Reinforced Soil for Low-Volume Bridge Abutments, Iowa Highway Research Board and Iowa Department of Transportation (IDOT), January 2012.