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Abstract 

Grass cell walls play an important role in plant development, pathogen defense, and are 

an abundant and sustainable carbon source for biofuel production. Chapter 1 introduces 

the great impact of cell wall composition on the major biomass-based biofuel 

technologies, biochemical and thermal conversion. To further improve biomass 

conversion efficiency by manipulating cell walls genetically, it is important to 

understand the molecular basis of cell wall synthesis and regulation. However, current 

understanding of grass cell wall synthesis lags behind that of dicots, despite the great 

compositional difference between them. In this dissertation, I apply “omics” methods to 

further our knowledge of cell wall synthesis during grass development and demonstrate 

that genetic manipulation of cell walls can potentially improve thermal conversion.  

In Chapter 2, we examine the cell wall composition and the transcripts of 65 putative 

cell wall synthesis genes in 30 rice samples from different organs at 10 developmental 

time points. A method is developed to identify candidate cell wall synthesis genes, 

based on the correlations between cell wall abundance and gene expression. We 

establish hypotheses for nine candidate genes that may synthesize cell wall components 

like xylans, mixed linkage glucan, and pectins. The cell wall profile also provides a 

baseline for evaluating the variation of cell wall composition. 

In Chapter 3, we perform proteomics, cell wall profiling, and metabolite profiling on a 

rice elongating stem internode. With LC-MS/MS, we detect a total number of 2356 

proteins in this internode. Many of them are glycosyltransferases, acyltransferases, 

glycosylhydrolases, cell wall-localized proteins, and protein kinases from families that 

may function in cell wall biosynthesis or remodeling or regulation. The presence of 
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these proteins is consistent with active cell wall synthesis in this internode, as indicated 

by cell wall assays. This study fills the void of shotgun proteomics data in rice stems 

and provides the basic information for a more detailed multi-omics experiment on 

internode segments. 

Chapter 4 is a proof of principal study demonstrating that genetic manipulation of cell 

wall structures can improve the efficiency of thermal conversion. A major challenge for 

thermal conversion, thermal products with various chemical natures can not be 

upgraded to fuels with a simple catalytic strategy. One solution, known as thermal 

fractionation, is to collect different thermal products separately at different conversion 

temperatures, which depends on the different thermal stability of cell wall components. 

The efficiency of thermal fractionation can be improved by altering the thermal stability 

of cell wall components. We hypothesize that lignin thermal stability will increase in a 

switchgrass knock-down mutant of caffeic acid O-methyltransferase, which has less S- 

lignin subunits that can not form strong linkages at C-5 position. The elevation of lignin 

thermal stability will lead to a better segregation lignin-derived products from 

polysaccharide-derived products. Indeed, the results indicate that the mutant yields less 

lignin-derived products at a low conversion temperature, at which most polysaccharides 

are converted.  

In conclusion, Chapter 2 and Chapter 3 develop an analysis method and a technical 

method for systems study of cell wall synthesis and identify a set of cell wall synthesis 

candidates for functional study. Understanding the function of more novel cell wall 

synthesis genes will provide more targets to manipulate cell wall structures. As a result, 
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there will be more opportunities to improve thermal fractionation efficiency other than 

the example we show in Chapter 4.  
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Chapter 1: Background 

Cell walls surround most plant cells and represent the most abundant source of organic 

carbon as the bulk of biomass (Gilbert 2010). The structure of plant cell walls is a 

scaffold of cellulose embedded in a cross-linked matrix consisting of lignin, 

hemicelluloses, pectins and other minor components such as cell wall proteins (Carpita 

1996). Though similar in the basic structure, plant cell walls show a large diversity in 

composition in different species, in different cell types, and during plant development 

(Freshour et al. 1996; Martin et al. 2017). This diversity allows plant cell walls to serve 

a wide range of biological functions like maintaining cell shape, controlling growth rate, 

mechanical support, pathogen defense and source of signaling molecules and 

development cues (Keegstra 2010; Sørensen et al. 2010; Wolf et al. 2012). Besides 

biological functions, cell walls also have great industrial importance since they directly 

influence the quality of wood, forage, and dietary fiber in foods (Barnett and Bonham 

2004; Jung and Allen 1995; Waldron et al. 2003). In recently years, biofuels made from 

biomass as a replacement of fossil fuels are receiving more attention due to global 

warming (Himmel and Bayer 2009). Biomass-biofuel conversion is directly impacted 

by cell walls since they represent up to 90% of biomass (Vogel 2008).  

 

Biological Functions of Cell Walls  

Cell walls form an extracellular matrix that enclose plant cells and directly affect plant 

growth (Wolf et al. 2012). Since cell walls and the extracellular environment usually 

contain fewer solutes than cytoplasm, so that turgor pressure that pushes outward 

against cell walls is created, which is the main driving force for cell expansion. The 
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balance between turgor pressure and extensibility of cell walls determines plant cell 

growth (Lamond 2002). During cell growth, the surrounding cell walls are flexible 

primary walls. The high extensibility of primary walls allows cells to expand 10- to 

more than 1,000-fold between their initial formation at cell division until cessation of 

growth (Cosgrove 2016a). At the late stage of cell growth, a more rigid secondary cell 

wall is deposited in many cell types during the slow-down of cell growth. Wall 

extensibility during development is mainly influenced by crosslinks among cell wall 

polymers and by cell wall remodeling events. For example, methyl-esterified pectins 

can be de-esterified to form crosslinks among molecules at the end of cell elongation 

(Goldberg et al. 1986). Another example is the deceleration of leaf elongation in tall 

fescue associated with the accumulation of diferulate cross-links (MacAdam and 

Grabber 2002). Many cell wall remodeling enzymes play a crucial role in adjusting cell 

wall extensibility. For example, the hydrogen bonds between cellulose and xyloglucan, 

a hemicellulose, can be disrupted by a group proteins called expansin to promote cell 

wall loosening (Cosgrove 2005). In another example, enzymes from the glycohydrolase 

9 family (GH9) possess cellulose activity in vitro and in vivo, which suggests they may 

loosen the cell wall to facilitate cell growth (Ohmiya et al. 1995; Park et al. 2003; 

Yoshida and Komae 2006).  

 

Cell walls also determine the direction of anisotropic cell growth (Baskin 2005). During 

the growth of many cells in root and stem, cellulose microfibrils are wrapped around 

cells in a largely transverse orientation (Bashline et al. 2014a; Lamond 2002). This 

directs cell elongation in the longitudinal direction (along the axis of stem or root), 
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perpendicular to the orientation of cellulose microfibrils. At the end of elongation, 

cellulose microfibrils will be deposited in both longitudinal and oblique orientations to 

slow cell elongation in the longitudinal direction (Bashline et al. 2014a) .  

 

Another basic function of cell walls is to provide mechanical support. The tension 

created by cell walls and turgor pressure provides mechanical rigidity for plant tissues 

and helps a plant to remain erect. This tension is also important for organ 

morphogenesis at the shoot apical meristem (Beauzamy et al. 2015). For specialized 

cells, such as sclerenchyma and fiber cells, mechanical strength is mainly from their 

secondary cell walls, which can be as thick as 2–6 µm (Haigler et al. 2012; Muraille et 

al. 2017). A “Bioinspired lignocellulosic film” experiment indicates that cellulose could 

be the main contributor of mechanical property in secondary cell walls but other cell 

wall components like lignin and xylan also play a role (Muraille et al. 2017).  

 

Another important biological function of the cell wall is pathogen defense (Zhao and 

Dixon 2014). As the outmost physical barrier of cells, most prospective microbial 

pathogens have to interact with cell walls at the beginning of infection. The damaged 

cell wall will generate damage-associated molecules, which can bind to cell wall 

integrity sensors on plasma membrane such as receptor-like kinases to trigger 

downstream defense related signaling pathways (Boller and Felix 2009; Malinovsky et 

al. 2014). For example, the oligogalacturonides (OGs) released from pectins can 

activate WAK1, a wall-associated kinase, and downstream defense responses against 

fungal and bacterial pathogens in Arabidopsis (Brutus et al. 2010). As one of the 
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defense response, plants will remodel and reinforce the cell wall at the site of infection 

to limit the access of pathogens (Dong et al. 2008). Phenolic polymers like lignin, 

which can not be easily degraded by pathogens are deposited to cell walls to prevent 

further invasion of pathogens (Underwood 2012). While the mutation of a lignin 

synthesis gene CAD, can cause an increase in susceptibility to pathogens (Tronchet et al. 

2010), though effects of cell wall biosynthesis mutants on defense are mixed.  

 

Cellulosic Biofuel  

The “Billion-Ton Vision” has reported that the United States has the potential to 

produce at least one billion dry tons of biomass resources on an annual basis without 

direct negative environmental impacts if under reasonable land usage policy (Tilman et 

al. 2009; US-DOE 2005). This amount of biomass could be used to produce enough 

bioenergy to displace about 30% of 2005 U.S. petroleum consumption without reducing 

food production (US-DOE 2016). Many benefits can be achieved by replacing 

petroleum with bioenergy such as ensuring future energy security, lowering greenhouse 

gas emission, producing less toxic byproducts, and improving the U.S. trade balance 

(US-DOE 2016). Two relatively well-developed biofuel technologies are biochemical 

conversion and thermal conversion. For biochemical conversion, biomass is 

deconstructed by enzymes into monosaccharides and fermented to mainly, ethanol, by 

micro-organisms. For thermal conversions, particularly pyrolysis and torrefaction, 

biomass is heated in a non-oxygen environment and the liquid products are collected for 

downstream chemical upgrade through catalytic reactions.  
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In the last decade, great advancement has been achieved in developing biochemical 

conversion technologies and applying them to establishing the lignocellulosic biofuel 

industry. Several bioconversion facilities have been initiated at the commercial scale 

including Beta Renewables, Fiberight, INEOS, Abengoa, American Process, DuPont, 

POET-DSM Advanced Biofuels, and GranBio. The total capacity of these facilities is 

about 90 millions gallons (US-DOE 2015). However, the current capacity is still far 

from the target of 21 billion gallons of renewable fuels derived from non-cornstarch 

feedstock by 2022 under the Energy Independence and Security Act of 2007. To 

accelerate the expansion of the biofuel industry, there is continuing need to improve 

conversion methods and the quality and quantity of feedstocks to support the U.S. 

Government goal of 30% production of transportation fuel from alternative sources by 

2030. The successful scale-up of lignocellulosic biofuel production requires biomass 

feedstocks to be produced, processed, and transported efficiently.  

 

Yield of biomass is especially important in terms of sustainability. As the world 

population rises to an estimated 9.3 billion by the year of 2050, there will be an 

increasing demand for energy and foods (Warnasooriya and Brutnell 2014). To achieve 

more efficient land usage and cost reduction, improving biomass yield per acre is 

important.  Biomass yield can be improved by breeding or engineering to enhance light 

capture efficiency and prolong the biomass accumulation period. Light capture 

efficiency become a limitating factor for yield especially when crops are grown in high 

density (Warnasooriya and Brutnell 2014). Leaf architecture such as leaf angel and leaf 

orientation, and the chlorophyll density in upper and lower leaves are all good targets 
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for improving light capture efficiency (Djakovic-Petrovic et al. 2007; Ort et al. 2011; 

Sinclair and Sheehy 1999; Zhao et al. 2013). Since leaves and stems represent the bulk 

of biomass, increasing the time of vegetative growth by postponing flowering will 

improve overall biomass yield. For example, over expression of the floral repressor 

gene FLC in tobacco delays flowering and increases biomass yield (Salehi et al. 2005).   

 

 Though yield is important, biomass has to be efficiently converted to fuels. The 

bottleneck for biochemical conversion is deconstruction of plant cell walls into 

lignocellulosic-derived sugars. The sugar yield is mainly limited by the low 

deconstruction efficiency of cell wall, also known as, recalcitrance. Without 

pretreatment, the recovery efficiency of lignocellulosic-derived sugars for biochemical 

conversion is about 10-20% (Fu et al. 2011). With moderate routine pretreatment, the 

efficiency can be more than 60% though extra chemical or mechanical inputs are 

required (Fu et al. 2011; Fu et al. 2012; Willis et al. 2016). Many cell wall factors such 

as lignin, cellulose crystallinity, hemicelluloses, pectins, cell wall proteins, and 

hydroxycinnamic acids as well as the interactions among polymers affect cell wall 

recalcitrance (Tavares et al. 2015). Cell wall recalcitrance can be decreased by chemical 

pretreatments (Alonso-Simon et al. 2010; Tavares et al. 2015) and by genetic 

engineering to manipulate the structure and content of cell walls (Chen et al. 2013; Fu et 

al. 2011; Wilkerson et al. 2014).  

Transportation and logistics are also constraints for the scale-up of biorefineries 

(Richard 2010). The total cost of transportation increases as facility capacity increases 

since the size of the facility determines the biomass draw area (Sultana et al. 2010). At a 
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scale of 200 to 1000 megaliters, the cost of biomass transport can be greater than the 

savings of larger biorefinery equipment (Aden A. 2002). Therefore, it is important to 

reduce transportation cost by densifying biomass, such as by creating pellets and cubes. 

Densification can be coupled with pretreatment processes that prepare the feedstock for 

downstream conversion. For biochemical conversion technologies, ammonia fiber 

expansion pretreatment can be applied to pelletize biomass and increase digestibility at 

the same time (Bals et al. 2010). For thermal conversion, the biomass can be converted 

on site into liquid fuel precursors that are more dense (Uslu et al. 2008). Mobile thermal 

conversion devices are under development and the current bench-scale machine 

developed by Battelle Corp. has a throughput of 50 pounds per day.  

 

For thermal conversion, the biggest challenge is heterogeneity of thermal products that 

prevents efficient downstream upgrade processing. Though many catalytic strategies 

have been developed, the catalysts usually perform well on one class of thermal 

products but poorly on other products or even inhibited by the presence of other 

products (Carlson et al. 2008; Lin et al. 2015; Rezaei et al. 2016). To improve catalyst 

performance, one separation approach called thermal fractionation has been developed 

to separate the thermal products during conversion (Herron et al. 2017). This approach 

uses a successively increasing series of temperatures to fractionate the biomass into 

different product streams. Since the basis of thermal fractionation is the different 

thermal stability of cell wall components, more efficient thermal fractionation could be 

achieved by altering chemical bonds in cell walls (Herron et al. 2017).  
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Grass biomass is a promising feedstock for biofuel production. Cultivated grasses 

(family Poaceae) such as rice and maize are the most abundant, sustainable class of 

terrestrial biomass that can be produced in the U.S. (~57%) (US-DOE 2011). Globally, 

rice straw alone constitutes 23% of world agricultural waste (Lal 2005), a major 

potential source of biomass for fuel production. As a leading grass energy crop, 

switchgrass has high biomass yield, minimal water and nutritional requirements, 

widespread adaptability and high net energy gain (Baxter et al. 2014). Due to its 

perennial nature, switchgrass also have less cultivation input and higher nutrient use 

efficiencies than annual energy crops such as sorghum (van der Weijde et al. 2013). 

However, because switchgrass is an outcrossing tetraploid, interpretation of gene 

expression is challenging due to the complexity of multiple alleles. Furthermore, though 

now routine (Li and Qu 2011), switchgrass transformation is slow and reverse genetic 

resources are not available, hindering model testing. Thus, we have to first study grass 

cell wall biosynthesis in model grass organisms such as rice and then applied the 

knowledge to manipulate switchgrass biomass to enhance biofuel production.    

 

Switchgrass is highly diverse in growth habit and drought tolerance, and can be divided 

into two ecotypes. Upland plants typically have better drought tolerance and produce 

more tillers than lowland plants. Lowland plants (usually tetraploid) are higher and 

grow better under flooded conditions than upland plants (Porter 1966). Relative to 

upland cultivars under the same conditions, lowlands tend to have a longer growing 

season and longer, thicker stems, contributing to lowlands typically accumulating 
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greater biomass than uplands (Wullschleger et al. 2010). However, most lowlands are 

cold-sensitive and fail to overwinter in northern, continental locations.  

 

 

Grass Cell Wall Composition and Biosynthesis 

Typical angiosperm plant cell walls consist of cellulose, hemicelluloses, lignin, pectins, 

proteins, and other minor components. Though the composition of cell walls varies 

significantly among species, cell types and developmental stages, cellulose, 

hemicellulose, and lignin are usually the three major components by the percent dry 

weight (Pauly and Keegstra 2010). Cellulose is a linear homogenous polysaccharide 

composed of glucose. Hemicelluloses encompass various heterogeneous 

polysaccharides with different monosaccharide composition and sidechain substituents 

(Scheller and Ulvskov 2010). Lignin is a large phenolic polymer composed of three 

major subunits: guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) unit (Vanholme et 

al. 2010a). The subunits can form various covalent bonds across each other and also be 

decorated by HCAs, tricin and other substituents (Lan et al. 2015; Vanholme et al. 

2010a). Due to the complexity, the structure of natural lignin is still not fully understood. 

 

Grass cell walls are different from dicot cell walls in terms of hemicelluloses, pectins, 

and cross-links among cell wall components (Vogel 2008). The most abundant 

hemicellulose in grass is the arabinoxylan, while xyloglucan is most abundant one in 

dicots cell walls. Grass xylans are usually substituted by considerable amount of 

arabinose residues and hydroxycinnamic acids (HCAs), namely, para-coumaric acid 
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(pCA) and ferulic acid (FA) (Rennie and Scheller 2014). Dicot xylans have more 

glucuronic acid substituents but much less arabinose substituents and barely any HCAs 

(Doering et al. 2012). Since dicot xylans almost contain no ferulic acid, the ferulic 

dimers that cross-link xylans and lignin become a unique feature of grass cell walls. The 

second most abundant grass hemicellulose, mixed-linkage glucan, is absence in dicots 

and other monocots expect horsetails (Xue and Fry 2012). Mainly present in primary 

cell walls, pectins represent up to 25% of primary cell walls in dicots but only 5% in 

grasses. The variation of cell wall composition among grasses is not as dramatic as the 

difference between grass and dicots (Pauly and Keegstra 2008). For example, the 

cellulose content in switchgrass and rice are both about 32%. The lignin and 

hemicellulose content in switchgrass is about 17% and 26%, slightly higher than the 12% 

and 24% in rice straw, respectively (Kimball Christensen 2008).  

 

The complex structure of various cell wall polymers requires a large set of genes for 

synthesis and modification. More than 2000 genes are estimated to be required for 

metabolism of cell wall components (McCann and Rose, 2010). Currently, most genes 

in the phenylpropanoid pathway, which synthesizes lignin subunits, are well studied in 

Arabidopsis by genetic approaches (Fraser and Chapple 2011) and some of them were 

also characterized in rice. Genes in the phenylpropanoid pathway have relative conserve 

function across species, for example, the COMT mutant show similar phenotypes in 

Arabidopsis, tobacco, Alfalfa, sorghum, and switchgrass (Fornale et al. 2017; Fu et al. 

2011; Goujon et al. 2003; Guo et al. 2001; Sattler et al. 2014). Cell wall polysaccharides 

are synthesized by several families of glycosyltransferases (GTs) and modified by 
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acyltransferases (ATs) from a grass-expanded clade of the BAHD acyltransferases 

family (Mitchell et al. 2007). Cellulose synthases from the GT2 family are known to 

form complexes that synthesize cellulose microfibrils at the plasma membrane 

(Bashline et al. 2014b). For the biosynthesis of arabinoxylans, the main grass 

hemicellulose, enzymes from the GT43, GT47, GT61, and GT75 families play a role 

(Rennie and Scheller 2014). These GT families consist of 15-41 members in rice (Cao 

et al. 2008) but only a few of them have been functionally characterized (Chen et al. 

2013; Chiniquy et al. 2012; Konishi et al. 2007). The grass unique hemicellulose, mixed 

linkage glucan (MLG), is synthesized primarily by CSLF8, CSLH1, and CSLF6 from 

GT2 family (Burton et al. 2006; Vega-Sanchez et al. 2012). In recently years, genetic 

studies have revealed ATs are the enzymes that incorporate pCA to arabinoxylans or 

incorporate FA to lignin (Bartley et al. 2013; Petrik et al. 2014; Sibout et al. 2016). 

However, there are remaining questions about the grass cell wall synthesis like which 

gene incorporates FA to xylans and how does xylan backbone synthesis initiate (Faik 

2010).  

 

These cell wall synthesis families all contain multiple members in grasses. Cell wall-

related GT families in rice such as GT61 can up to 40 members (Cao et al. 2008). The 

functions of these members may be redundant or non-redundant. For example, a study 

on four genes in GT43 family have shown they belong to 2 functionally nonredundant 

groups, but may have functional redundancy within groups (Lee et al. 2014b). The 

families of phenylpropanoid enzymes also have four to ten members in rice. For 

example, 4CL families have 5 members, and biochemical characterization of these 4CL 
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genes shown some differences of substrate specificities and turnover rates (Gui et al. 

2011) 

 

The regulation of cell wall biosynthesis has been most intensively studied in 

Arabidopsis but also in rice. About 30 transcription factors from six protein families 

have been studied in Arabidopsis with genetic approaches and yeast one-hybrid 

experiment (Handakumbura and Hazen 2012; Taylor-Teeples et al. 2015; Zhong et al. 

2008). However, the transcriptional regulatory hierarchy of the entire pathway is still 

under investigation (Taylor-Teeples et al. 2015). Protein kinases also play a role in 

regulating cell walls synthesis since several protein kinase mutants show cell wall or 

vascularization phenotypes (Hematy et al. 2007; Matschi et al. 2013; Oh et al. 2011). 

For example, the overexpression of THE1 causes accumulation of ectopic lignin in 

seedlings (Hematy et al. 2007). However, which phosphorylation positions and how 

they connect to the cell wall regulatory network remains enigmatic. In addition, a recent 

study showed that the stunted growth of a lignin-deficient Arabidopsis mutant can be 

rescued by the disruption of a Mediator complex (Bonawitz et al. 2014). This result 

indicates that two Mediators are in an transcriptional pathway that links lignin 

biosynthesis to plant growth but the genes upstream and downstream of Mediators are 

still under investigation (Mach 2015). Knowledge of grass cell wall biosynthesis 

regulation lags behind that for Arabidopsis (Handakumbura and Hazen 2012) though 

some evidence has indicated the transcription factors regulating major cell wall 

components possess conserved in functions (Shen et al. 2012; Zhao and Bartley 2014; 

Zhong et al. 2011). 
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Given there are still gaps in our knowledge about cell wall synthesis and regulation, 

especially in grasses, it is important to identify other players by systematic studies. The 

dynamic changes of cell wall synthesis during development facilitate identification of 

cell wall related genes by transcriptomics (Shen et al. 2013; Zhang et al. 2014). 

Combining -omics data with other large-scale measurements such as cell wall profiling 

can be a powerful systematic approach that allows more direct result interpretation (Guo 

et al. 2014; Redestig and Costa 2011). Though they will require proper experiment 

design and new quantitative analysis methods, combining multiple -omics techniques 

such as transcriptomics, proteomics, and phosphoproteomics will allow identification of 

posttranscriptional regulation events and increase predictability of gene regulation 

network (Walley et al. 2016). The development of more comprehensive systematic 

approaches will allow us complete the full picture about cell wall synthesis and 

regulation, which will provide more opportunity and strategies for genetic manipulation. 

In addition, understanding how regulation of cell wall synthesis are coupled to the 

regulation of other biological processes such as plant growth will help reduce the 

potential defects in genetically manipulated energy crops.  

As the understanding of cell wall biosynthesis grows, another important question is how 

this knowledge can be applied to improve the efficiency of biomass conversion. For 

biochemical conversion, genetic modifications on key recalcitrance factors such as 

lignin and FA cross-links can significantly increase sugar yield (Bartley et al. 2013; 

Loque et al. 2015). However, most of these studies are either based on model organisms 

or energy crops growing in lab conditions. There has been considerable speculation 

about how cell wall altered feedstocks would perform in the field when they exposed to 
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pests, pathogens, and temperature changes (Pedersen et al., 2005). In addition, 

significant differences in cell wall composition between rice cultivars growing in the 

greenhouse and field has been reported (Tanger et al. 2015). Therefore, it is important 

to evaluate if beneficial traits from small scale greenhouse experiments are still 

significant in energy crops grown in field. One successful example is a two-year field 

study on field-grown switchgrass COMT mutants showing consistently higher sugar 

yield than the wild type biomass (Baxter et al. 2014).  

For thermal fractionation, improved thermal product segregation efficiency is the 

primary goal. The decomposition temperature range of lignin is wide and partially 

overlapped with decomposition temperature range of cellulose and hemicellulose. 

Therefore, though some parts of lignin are converted at a higher temperature than 

cellulose, the segregation of lignin-derived products from cellulose derived products is 

less efficient. In theory, modifying lignin structure for higher thermal stability will raise 

the decomposition temperature of lignin and facilitate better product segregation. 

Though this is a promising direction, no genetically manipulated biomass has been 

tested for this purpose so far.   

In this dissertation, I have studied grass cell wall biosynthesis at the system level and 

demonstrated that genetically manipulated biomass can improve thermal fractionation 

efficiency. In Chapter 2, we analyzed the atlas of gene expression and cell wall 

composition in 30 rice samples of different tissues and developmental stages. Candidate 

grass cell wall synthesis genes were identified by the correlations between gene 

expression and abundance of cell wall components. Chapter 3 constitutes a proteomics 

study on an elongating rice stem internode where cell wall synthesis is active. The 
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presence of several uncharacterized GTs, ATs and regulators suggest they may have a 

function in stem cell wall development. In Chapter 4, we did thermal conversion and 

analyzed the thermal products on field-grown switchgrass COMT mutants. The results 

demonstrate more efficient thermal fractionation of lignin-derived products in mutants 

than in the wild-type plants.  
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Abstract 

Cell walls of grasses, including cereal crops and biofuel grasses, compose the majority 

of plant biomass and intimately influence plant growth, development, and physiology. 

However, the functions of many cell wall synthesis genes, and the relationships among 

and the functions of cell wall components remain obscure. To better understand the 

patterns of cell wall accumulation and identify genes that act in grass cell wall 

biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. 

Kitaake) at 10 developmental time points，3 to 100 days post germination. Within 

these samples, we measured 15 cell wall chemical components, enzymatic digestibility, 

and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse 

transcriptase PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases 

and 8 phenylpropanoid genes, many of which had previously been identified as being 

highly expressed in rice. Most cell wall components vary significantly across 

development and correlations among them support current understanding of cell walls. 

We identified 92 significant correlations between cell wall components and gene 

expression and establish nine strong hypotheses for genes that synthesize xylans, MLG, 

and pectin components. This work provides an extensive analysis of cell wall 

composition throughout rice development, identifies genes likely to synthesize grass 

cell walls, and provides a framework for development of genetically improved grasses 

for use in lignocellulosic biofuel production and agriculture. 
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Introduction 

Cell walls play a key role in plant vegetative development. They provide mechanical 

support for plant aerial structures (Carpita 1996) and determine the morphology and 

extension of cells (Cosgrove 2005; Ryden et al. 2003; Sasayama et al. 2011). Changes 

in cell wall composition alter plant organ biophysical properties that contribute to 

lodging resistance (Wang et al. 2012) and pathogen resistance (Zhao and Bartley 2014), 

with direct implications for crop production. In addition, cell walls in biomass are a 

source of animal feed and have potential to be converted to transportation fuels. In 

particular, stems and leaves of cereal crops, such as maize (Zea mays), rice (Oryza 

sativa), wheat (Triticum aestivum), sorghum (Sorghum bicolor), and related bioenergy 

grasses, like switchgrass (Panicum virgatum), represent over half of the estimated 

billion tons of biomass that can be sustainably produced in the U.S. for lignocellulosic 

biofuels (US-DOE 2011). Furthermore, rice straw alone, comprises almost one quarter 

of all agricultural waste globally (Lal 2005). Recalcitrance to enzymatic digestion 

remains a major bottleneck for efficient biochemical conversion of lignocellulosic 

material to biofuels (Bartley et al. 2013; Lynd et al. 2008). Cell wall biosynthesis and 

modification has been most extensively studied in the dicotyledenous reference plant, 

Arabidopsis thaliana. However, much remains to be learned about grass cell walls, 

which differ from those of dicots in terms of composition and patterning. For example, 

many questions remain as to which proteins function in grass cell wall synthesis and the 

contributions of grass cell wall components to cell wall strength, flexibility and plant 

growth have not been well determined. To reduce this gap, we present here a study of 
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grass cell wall content across development and its relationship to expression of putative 

cell wall biosynthesis genes.  

Structural components of plant cell walls include cellulose microfibrils, matrix 

polysaccharides, lignin, minerals, and structural proteins. Primary cell walls form at the 

cell plate during division and add to expanding cells; whereas, secondary cell walls 

form around some cells after cessation of growth. Compared to those of eudicots, grass 

cell walls differ in the abundance and structures of matrix polysaccharides (i.e., 

hemicelluloses and pectin) and proteins; modifications on lignin; and silica (Ishii 1997; 

Vogel 2008). Grass primary walls contain more glucuronoarabinoxylans (GAX) and 

mixed linkage glucans (MLG); but less xyloglucan (XyG), pectins, mannans, and 

structural proteins (Fincher 2009; Scheller and Ulvskov 2010; Vogel 2008).  

 

Xylan is the major grass hemicellulose. It consists of a β-(1→4)-linked xylose (Xyl) 

backbone with α-(1→2)- or α-(1→3)-linked arabinose (Ara) moieties. To a minor 

extent compared with dicots, the xylose backbone can also be substituted by α-(1→2)-

linked glucuronic acid (GlcA) and 4-O-methyl-GlcA (Rennie and Scheller 2014; 

Scheller and Ulvskov 2010; Zeng et al. 2010). Some of the α-(1→3)-linked Ara 

residues are esterified with hydroxycinnamic acids (HCAs, primarily, ferulic acid [FA] 

and p-coumaric acid [pCA]) at the O-5 position. The ferulic acid on GAX can undergo 

radical-oxygen mediated cross-linking to form dehydro-ferulate dimers, as well as 

higher-order oligomers and ether bonds with lignin (Buanafina 2009). A variety of 

minor side chains have also been documented on grass xylan such as β-D-Xyl-(1→2)-α-

L-Ara-(1→3)- and β-D-Gal-(1→4)-β-D-Xyl-(1→2)-α-L-Ara-(1→3)- (Chiniquy et al. 
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2012; Pena et al. 2016). However, the structure of grass GAX is still not fully 

understood. For example, it is unknown if the tetrasaccharide, 4-β-d-Xyl-(1–4)-β-d-Xyl-

(1–3)-α-l-Rha-(1–2)-α-d-GalA-(1–4)-d-Xyl, at reducing ends of dicot xylan also exists 

in grass GAX. This reducing end tetrasaccharide may be an initiator or terminator for 

dicot xylan backbone synthesis (York and O'Neill 2008), which raises the question of 

how the synthesis of grass GAX initiates or terminates.  

 

Other components that are different in grasses compared to dicots include MLG, an 

unbranched glucan with both β-(1→4)- and β-(1→3)-linkages, which has been only 

found in grasses, horsetail (Equisetum), and some ferns (Xue and Fry 2012). Though 

present, pectins, arabinogalactan proteins (AGPs), and other structural proteins have 

low abundance and have received relatively little attention in grasses (Atmodjo et al. 

2013; Carpita 1996). Grass lignin is esterified by HCAs, primarily pCA, and etherified 

by the flavone tricin (Lan et al. 2015; Ralph 2010). In addition, acetylation of grass 

lignin predominantly occurs on guaiacyl rather than syringyl units, the opposite of 

dicots (del Rio et al. 2012). Finally, grass cell walls generally accumulate more silicon, 

mainly in forms of silica (SiO2•nH2O) (Carnelli et al. 2001; Ma and Yamaji 2006; Parry 

et al. 1984).  

 

Though incomplete, progress has been made in revealing the proteins that function in 

grass-diverged aspects of cell wall synthesis. Glycosyltransferases (GTs) are an enzyme 

superfamily with 97 families, many of which form the glycosidic bonds of cell wall 

polysaccharides (Cosgrove 2005; Scheible and Pauly 2004). In grasses, CSLFs and 
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CSLHs from the GT2 family function in the synthesis of MLG (Burton and Fincher 

2012; Burton et al. 2008; Burton et al. 2006; Doblin et al. 2009). Mutations in several 

GT43s and GT47s are known to reduce the synthesis of the GAX backbone (Chen et al. 

2013; Lee et al. 2014a). Why multiple GTs appear to be utilized for the synthesis of 

xylan backbone is still unknown, since a GT47 (IRX10) is capable of synthetizing a 

backbone structure in vitro in the absence of other proteins (Jensen et al. 2014; 

Urbanowicz et al. 2014). Some GT61s add side groups to xylan that are unique to or 

more abundant in grasses (Anders et al. 2012; Chiniquy et al. 2012). Acyl-CoA 

acyltransferases (ATs) from a particular subclade of the so-called “BAHD” family 

modify grass cell wall precursors. Specifically, OsAT10, incorporate pCA into GAX, 

(Bartley et al. 2013; Withers et al. 2012). However, an acyltransferase that incorporates 

FA into GAX and other polysaccharides have still not been unambiguously identified 

(de Oliveira et al. 2015), though AT1 has been implicated (Buanafina et al. 2016).  

 

Several reverse genetics studies of cell wall synthesis have been directed by the 

hypothesis that grass-diverged cell wall synthesis genes are more highly expressed 

relative to their homologs in dicots (Mitchell et al. 2007). Such clades often possess 

more members in grasses (i.e., are grass-expanded) relative to other groups of putative 

cell wall biosynthesis genes (Bartley et al. 2013; Cao et al. 2008; Penning et al. 2009), 

as is the case for the GT61 and the cell wall AT genes. Moreover, the synthesis 

enzymes and functions of other less abundant components such as pectins and the 

oligosaccharides on AGPs have mainly been studied in Arabidopsis (Atmodjo et al. 

2013; Harholt et al. 2010; Mohnen 2008). Even when polymers are very similar 
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between dicots and grasses, the problem remains of which genes in large protein clades 

possess a given function in a given cell type, organ or developmental time point. 

Identifying the genes that function in grass wall polymer biosynthesis as well as 

understanding the patterns of accumulation will allow us to use genetic means to 

examine the functions of different cell wall components in grass biology and gain 

insight into the fundamental question of the selective basis of cell wall evolution. 

 

Rice is an excellent model to study grass cell wall synthesis due to its well-annotated 

genome, abundant genetic resources (Krishnan et al. 2009; Li et al. 2016), ease of 

genetic transformation, and well-described development (Itoh et al. 2005; Sylvester et 

al. 2001). As with other grasses, changes in rice cell wall composition accompany 

development of organs and passage along the stages of plant development, e.g., 

seedling, vegetative, reproductive (Azuma et al. 1996; Guo et al. 2014; Rancour et al. 

2012). Though distinct morphological and chemical differences have been observed 

between the juvenile and adult vegetative stages in other grasses, such as maize 

(Abedon et al. 2006; Williams et al. 2000), the development of rice is continuous and 

there is not a distinct juvenile to adult boundary (Itoh et al. 2005; Sylvester et al. 2001). 

The leaves and internodes of grasses mature from tip to base and from outer or basal 

organs to inner, distal organs. Hence, newly formed organs and basal parts of organs 

nearest the meristems possess young, still growing cell walls, while older organs and 

distal organ parts have ceased both primary growth and secondary wall formation. 
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Changes in metabolite abundance and gene expression during plant and organ 

development or under genetic perturbation have allowed researchers to study 

correlations among metabolites, genes, and traits (Christensen et al. 2010; Guo et al. 

2014; Taboada et al. 2010; Yonekura-Sakakibara et al. 2008). Small-scale correlation 

analysis has been used to study lignin components that reduce silage digestibility (Jung 

and Allen 1995; Taboada et al. 2010) and secondary cell wall components that alter 

enzymatic digestibility (Li et al. 2015; Van Acker et al. 2013). Recently, correlation 

analysis based on microarray data and cell wall composition data of rice identified 

correlations between lignin and major monosaccharide components with gene modules 

composed of hundreds of genes (Guo et al. 2014). That cell walls are abundant, 

structural components may facilitate correlation analysis (Rajasundaram et al. 2014). 

On the other hand, the fact that most cell wall components co-occur may confound 

correlation analyses, requiring the use of other information, such as knowledge of 

associations among cell wall components and phylogenetic relationships among 

putative synthesis proteins. 

Here, we report the comprehensive measurement of cell wall chemical and polymer 

composition, and expression of putative cell wall genes in aerial vegetative organs of 

rice. This cell wall composition atlas provides a baseline for evaluating the variation of 

cell wall composition across developmental time points and organs, and for 

comparisons to other plant species. Through analysis of the correlations within and 

among the cell wall and gene expression datasets, we establish testable hypotheses for 

the potential interactions among cell wall polymers, and the functions of putative cell 

wall synthesis genes. For example, correlations among GAX, AGP and pectin 
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components suggest that the covalent interaction found in Arabidopsis may also exist in 

rice. We also hypothesize that AT7 and AT9 transfer FA to GAX. These results may 

lead to the discovery of novel grass cell wall synthesis enzymes, and may improve 

biofuel production and other agricultural uses of cereals and grasses.  
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Results. 

This study focuses on rice aerial, vegetative organs as this grass material is used for 

animal feed and forage and as a biorefinery feedstock. Cell wall functions in these 

organs include mechanical support, transport of water and nutrients, and defense against 

foliar and stem pathogens and pests. We collected 30 samples of different rice aerial, 

vegetative organs and organ segments in 10 developmental time points of Kitaake rice 

(Figure 2-1, Table 2-S1). The 30 samples include 28 vegetative organ samples, 

including leaf blades, leaf sheaths, and stems; and 2 reproductive organ samples 

including the endosperm and hull of mature seeds. Sampling included leaves or leaf 

parts that represent developmental progressions from young to old, i.e., gradients 

(Figure 2-1 A-E and H).  

 

We applied three complementary approaches for measuring cell wall content. First, we 

utilized a variety of chemical assays to determine enzymatic digestibility and 17 cell 

wall components, including monosaccharide residues, acetyl bromide soluble lignin, 

and MLG (referred to as MLG.w to distinguish it from determinations with the MLG 

antibody) (Figure 2-2, Table 2-S2). Second, we measured the presence of 21 

polysaccharide epitopes/ligands by Comprehensive Microarray Polymer Profiling 

(CoMPP), an antibody-based high throughput method that detects polymers released by 

sequential chemical extraction of cell walls (Figure 2-S1, Table 2-S3) (Moller et al. 

2007). Figure 2-3 presents the aggregated CoMPP data, summed across the three 

sequential extractions to represent the trend of total abundance of epitopes. The signals 

of the same antibody in the sequential extracts are not often correlated with each other 



26 

(Table 2-S4) since the components can bind to other cell wall polymers to different 

degrees, and therefore different in the resistance of solvent extraction .Therefore, we 

use the unaggregated CoMPP-values for correlation analysis, as described further 

below. Third, to confirm and extend the cell wall components measured by CoMPP, we 

also applied glycome profiling to extracts of three leaf samples and three stem samples 

(Figure 2-S2, Table 2-S5). Compared with CoMPP, the glycome profiling analysis 

equalizes total input sugars in each extraction and used a larger set of antibodies.  

 

In parallel to samples for cell wall compositional analysis, we harvested samples for 

gene expression analysis, targeting 67 putative cell wall synthesis genes and 6 negative 

control genes with quantitative reverse transcriptase PCR (qRT-PCR; Table 2-S6).  

 

We present the data as follows: 1) the compositional relationships among the samples, 

2) the patterns of accumulation of the major cell wall polymers and variation in 

digestibility, 3) the patterns of gene expression, and 4) the correlations between gene 

expression and cell wall components.  

 

Cell Wall Content Changes During Rice Development 

Analysis of variance shows that cell wall components and digestibility vary 

significantly across rice development and among organs (Figure 2-2, Figure 2-3, Table 

2-S2). All cell wall components, except Ara and GlcA, differ significantly among 

sample organ groups—young leaves, leaf blades, leaf sheaths, and stems (α=0.05, 

Bonferroni corrected; Table 2-S2 - Sheet D). Digestibility and many components also 
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differ significantly among samples within each group, with the largest number of 

significantly varying components in leaf blades and young leaves (Table 2-S2 - Sheet 

D).  

 

Principal component analysis (PCA) and hierarchical clustering of the chemical data 

indicate that most samples segregate into young and old groups (Figure 2-4A, Figure 2-

S3), with the “Young Tissue” subset mostly consisting of immature organs up to 20 

DPG, and the “Old tissue” subset consisting of most mature or senesced adult organs 

(Table 2-S1). The second principal component (PC2) separates the young and old 

samples. The loadings indicate that primary cell wall components, such as GalA and 

Rha, positively contribute to PC2, while secondary wall components, such as xylose 

and phenolics, negatively contribute to PC2 (Figure 2-4B). Thus, the segregation of the 

young and old subsets is mainly caused by the compositional difference between 

primary and secondary cell walls (Figure 2-4), consistent with an underlying contrast 

between the groups similar to the juvenile to adult transition observed in other grasses 

(Abedon et al. 2006). Hulls (Hul), endosperm (End) and stem nodes (Nod) cluster 

poorly with the young and old subsets and are therefore labeled “specialized tissue” in 

Table 2-S1. The cell wall composition of the two structures of “stems,” nodes and 

internodes, differ strikingly from each other in all assays, with internodes possessing 

lower amounts of GAX side units and pectin components but more MLG relative to 

nodes (Figure 2-2, Figure 2-3 and, Figure 2-S2).  
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In addition to examining trends across development, we applied Pearson’s and 

Spearman’s correlation methods to the total, young, and old datasets, for the chemical 

assay and the unaggregated CoMPP data (Table 2-S7). Figure 2-S4 is a graphical 

representation of the most significant correlations for each dataset. We identified 121 

significant Pearson’s and Spearman’s correlations in the total dataset, 61 correlations in 

the young subset, and 105 correlations in the old subset (Figure 2-S5, Table 2-S8). By 

both correlation methods, we observed a bias towards positive correlations (Figure 2-

S5B), consistent with cell wall components functioning together and being connected 

through hydrogen bonds, covalent bonds, or simply co-regulation. Figure 2-5 represents 

a simplified presentation of the stronger relationships among components as indicated 

by a total of five or more positive correlations in any of the dataset. 

Glucuronoarabinoxylans  

The major hemicellulose in grasses, GAX components were measured by 

trifluoroacetate (TFA)-release of monomeric sugars (Xyl, Ara, GlcA); alkali-hydrolysis 

of hydroxycinnamoyl esters (FA and pCA); and the LM10 and LM11 antibodies, which 

recognizes unsubstituted xylans and unsubstituted and Ara-substituted xylans, 

respectively. Along the seedling and mature leaf blade developmental gradients, Xyl, 

Ara and LM10 epitopes all decrease (Figure 2-2, 2-3, and Figure 2-S2). We observe a 

similar trend for most of the other chemical components, which is consistent with the 

decrease of cell wall mass extracted (Figure 2-S6), and may be due to accumulation of 

silicon (de Melo et al. 2010), not measured here due to the requirement for large 

amounts of material (Guntzer et al. 2010). When expressed as mol%, Xyl increases as a 

fraction of sugars during seedling development; whereas, the Ara:Xyl ratio decreases 
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(Table 2-S2 – Sheet E). FA also decreases during early seedling development from 3 

DPG to 9 DPG, which coincides with an increase in growth rate (Figure 2-S7). Unusual 

xylan substitution ratios distinguish samples classified as “specialized tissue.” For 

example, the leaf joint (Ljn_100), which includes the leaf collar, the ligule, and the 

auricle (Figure 2-1N) has the highest FA, the second highest Ara content, and relatively 

high FA:Ara and Ara:Xyl among all samples (Figure 2-S8) , though is similar to mature 

leaf blade and sheath samples in many components (Figure 2-2, 2-3, 2-4). 

The data exhibit many positive correlations among xylan components and with other 

cell wall polymers (Figure 2-5, Figure 2-S4). In the young dataset, Ara correlates with 

Xyl and GlcA (Figure 2-5), but in the old dataset, Xyl did not correlate with Ara but 

correlates with L10-xylan and pCA. The correlations between Ara and Xyl are 

dramatically different in the young and old datasets, indicative of changes in Ara 

substitution rates across development (Figure 2-S9). GAX components also correlate 

with other cell wall components such as MLG, pectins and AGPs as described below. 

 

Mixed Linkage Glucan 

MLG is the second most abundant hemicellulose in rice, providing tensile strength to 

both mature and immature tissues (Buckeridge et al. 2004; Vega-Sanchez et al. 2012). 

We found similar, but not identical results, from the three measures of MLG content 

employed, a direct lichenase assay (MLG.w), CoMPP (B-MLG), and TFA-soluble 

glucose (Glc), the latter of which also includes amorphous cellulose, and a small 

contribution from xyloglucan. Across seedling- and mature leaf-development, MLG 

decreases via all three measures (Figure 2-2, Figure 2-3, Table 2-S2). In mature leaf 
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samples, this trend is also supported by glycome profiling of the carbonate extract 

(Figure 2-S2). MLG measures correlate with several GAX components. For example 

the B-MLG epitope correlates with L11-xylan epitope in the total dataset (Figure 2-5). 

In addition to correlating with GAX components, the MLG epitope correlates with the 

CBM4-1 amorphous cellulose epitope in the total and old datasets (Figure 2-5).  

Pectins. 

Pectins are the least abundant polysaccharides in grass cell walls, though their retention 

across evolution is consistent with important functions in grasses, especially in 

undifferentiated tissues (Rancour et al. 2012). The major component of pectin, GalA 

represents no more than 1.5% of the rice cell wall (Table 2-S2). In addition to GalA and 

Rha, we measured pectin with various antibodies via CoMPP (Figure 2-3) and glycome 

profiling (Figure 2-S2). The different pectin epitopes display different organ- and time 

point-enrichment patterns, suggesting that pectin functions vary by organ (Figure 2-3). 

L5-galactan, in particular, shows a very different binding pattern from the other pectin 

epitopes. Across mature leaf development (Lfb_b34, Lfb_m34, Lfb_t34), the increase in 

the low methylation J5-HG epitope and concomitant decrease of the high methylation 

J7-HG epitope suggest de-methylation of homogalaturonan during leaf development.  

 

Arabinogalactan Proteins  

Arabinogalactan proteins (AGPs) are glycoproteins with demonstrated roles in cell 

division, cell expansion, embryogenesis, root vascular tissue development and biotic 

stress in Arabidopsis (Majewska-Sawka and Nothnagel 2000; Nguema-Ona et al. 2014), 

though again there is a paucity of information for grasses. We measured AGPs with 
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four antibodies that recognize the oligosaccharide chains of AGP (Figure 2-3), and 

attribute AGPs as the origin of the monomeric sugar, Gal, though this is also a side 

chain component of the pectin, rhamnogalacturan I. Like those of the pectin epitopes, 

the AGP epitope patterns vary, but show uniformly high signals in seedlings. The data 

contain many correlations between components and epitopes of AGP with GAX, 

pectins, cellulose, and MLG (Figure 2-5, Figure 2-S4). Correlations among APG, GAX, 

and pectin are especially abundant in the total dataset but also present in the young data.  

 

Cellulose  

We estimated cellulose, the major polysaccharide in the cell wall, with the anthrone 

assay and two carbohydrate binding modules, CBM4-1 and CBM3a, which recognize 

amorphous cellulose and crystalline cellulose, respectively. These three cellulose assays 

measure different cellulose pools as they do not correlate with each other, except 

cellulose-3a and cellulose-4-1 in the old dataset. Consistent with its major structural 

role and fraction in the cell wall, cellulose also correlates with many other cell wall 

components including MLG, AGPs, and pectins (Figure 2-S6). 

 

Lignin and pCA 

Formed in many secondary cell walls after growth cessation, lignin is a complex 

phenolic polymer that in grasses includes modification with phenolic esters. Here, total 

phenolics represent the acetyl bromide solubilized (ABS) phenolics from total AIR, 

which includes feruloyl- and p-coumaroyl-esters (Table 2-S2). After removing these 

esters via alkali treatment, we also measured ABS-lignin, which represents 20 to 100% 
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of total phenolics (Table 2-S2 – Sheet F). Total phenolics and ABS-lignin are most 

abundant in hull (Hul100) (Figure 2-2), which likely contributes to physical and 

chemical protection of the seed against pathogens and insects (Cho et al. 1998). Mature 

leaf blades and stems generally have more total phenolics, lignin, and pCA compared to 

seedlings (bottom vs. top of Figure 2-2). Many correlations among lignin, total 

phenolics, hydoxycinnamic acids and GAX components appear in the total and old 

datasets (Figure 2-5, Table 2-S8). For example, total phenolics and ABS-lignin 

positively correlate with LM10 xylan in the total dataset.  

 

Enzymatic Digestibility  

A critical indicator of efficiency of biochemical conversion of biomass to biofuels, cell 

wall enzymatic digestibility (ED) indicates the fraction of biomass polysaccharides 

available for fermentation to biofuels and is highly dependent on cell wall composition 

(Li et al. 2015). In all datasets, the two time points (8 and 145 hours, designated ED8 

and ED145, respectively) are highly correlated (Figure 2-5). The kinetics for most 

samples are similar, with half-times near 8 hours, though a few reactions were near 

completion at the early time point (Figure 2-S10). The different rice samples exhibit 7-

fold variation between the highest (End100, 390 ± 90 µg/mg) and lowest (Hull100, 56 ± 

15 µg/mg) enzymatic sugar release at 145 h (Figure 2-2, Figure 2-S10). The young 

samples are more digestible than the old samples, as is apparent with the decrease in 

digestibility along the seedling and leaf developmental gradients (Figure 2-2) and in the 

positive PC2 loadings of ED8 and ED145 in the PCA (Figure 2-4B).  
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Many cell wall polymers significantly correlate with digestibility. MLG.w and/or TFA-

soluble Glc positively correlate with cell wall digestibility in all datasets (Figure 2-5). 

The L6-Arabinan epitope negatively correlate with ED in the young dataset. Lignin 

negatively correlates with digestibility, though weakly (PCCtotal= -0.38, Table 2-S7). In 

agreement with the literature on biodiversity and cell wall recalcitrance (Schmer et al. 

2012), ED positively contributes to PC2 along with MLG, GalA, GlcA, and Rha as 

opposed to the negative contribution to PC2 of Xyl and phenylpropanoids (FA, pCA, 

phenolics, and lignin, Figure 2-4B).  

 

Identification of Genes Involved in Cell Wall Synthesis by Correlation Analysis 

To provide insight into grass cell wall synthesis, we used qRT-PCR to measure 

expression of 73 rice genes, many of which were previously identified as being grass-

diverged and/or highly expressed in grasses relative to dicots (Bartley et al. 2013; Cao 

et al. 2008; Mitchell et al. 2007). Listed in Table 2-S6, our transcript targets include 

those of 50 glycosyltransferase (GT), including six GT1 family members that, though 

highly expressed, most likely function in small molecule synthesis (Bowles et al. 2005; 

Lairson et al. 2008), 15 Acyl-CoA acyltransferases genes from two subclades, and 8 

genes known or implicated in the monolignol biosynthesis pathway (Penning et al. 

2009). To address the challenge posed by the highly interconnected and correlated 

nature of the cell walls for distinguishing direct and indirect correlations among 

analytes, we again divided samples into developmental subsets (Table 2-S9). This 

approach facilitated the identification of high-confidence gene-polymer correlations for 

nine functionally uncharacterized genes (Table 2-S10 – Sheet F). 
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Gene Expression Clustering and Correlation Analysis 

We used hierarchical clustering to summarize the patterns of gene expression (Figure 2-

6). Most genes grouped into five major clusters, A through E, with many genes showing 

high normalized relative expression (∆∆Cq) in only a few samples. Cluster A is 

enriched in young leaf samples like bLf13 and Lfb20 and dominated by GT1 and GT4 

transcripts, the products of which are not directly involved in cell wall synthesis. 

Cluster B is highly expressed in the endosperm sample (End100) and mainly consists of 

GT2, GT17 and subclade-II AT transcripts. Cluster C transcripts are highly expressed in 

Nod34 and Int_b55, where secondary wall deposition is active, but also in the leaf 

sample, uLf13. This cluster contains phenylpropanoid, GT8, GT43, GT47, GT61, GT75 

and subclade-I AT transcripts, many implicated in lignin (Gui et al. 2011; Kawasaki et 

al. 2006; Withers et al. 2012; Zhang et al. 2006) and GAX synthesis (Bartley et al. 

2013; Chiniquy et al. 2012; Konishi et al. 2007). Cluster D transcripts are highly 

expressed in young samples, especially Lf3 and uLf13. This cluster consists of AT 

subclade II transcripts, GT2 transcripts including GT2-CslfF6, which is critical for 

MLG synthesis (Vega-Sanchez et al. 2012), and other GTs. Cluster E transcripts are 

highly expressed in Lsh55, Int_b55 and Lf7 and include the GT75-UAM1 gene that 

indirectly affects GAX synthesis (Konishi et al. 2007). In particular, Cluster B and D 

provide some evidence of organ-specific expression modules, in which a set of genes 

appear to have sub-functionalized to act in a particular organ.  
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We hypothesized that the abundance of cell wall components positively correlates with 

expression of the corresponding synthesis gene(s) and applied both Pearson’s and 

Spearman’s correlations to this model (Table 2-S9). We also used linear regression to 

complement and extend the correlation analysis (Table 2-S11). We tested the analysis 

methods using the identification rate of known cell wall genes as an indication of “high 

confidence” correlations (Table 2-S12 and Table 2-S13). Pearson’s correlation 

reproduced more high confidence correlations than Spearman’s correlation, and is the 

focus of our discussion, as summarized in Figure 2-7 and Table 2-S10 - Sheet E. The 

observation that only four GT1-related correlations are found among the 92 positive 

significant correlations suggests that the method controls the false positive rate 

reasonably. We also tested a second model that applied a delay in cell wall component 

accumulation following expression of synthesis genes. The second model yielded fewer 

high confidence correlations (Table 2-S12 and Table 2-S13) and is not further 

discussed. 
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Discussion 

With the goal of revealing patterns of grass cell wall component abundance and 

narrowing candidate cell wall biosynthesis genes, this study examined cell wall 

composition, digestibility and the expression of grass-diverged and/or highly expressed 

cell wall candidate genes across development and organs of rice. We discuss the 

distributions of each cell wall polymer and cell wall digestibility among samples and 

correlations among polymers. Next, we highlight candidate cell wall synthesis genes 

revealed by the correlations between expression of known and putative synthesis genes 

and cell wall components.  

 

Cell Wall Composition Relationships 

The GAX-related changes and correlations (Figure 2-5) during development are 

consistent with GAX components contributing to growth cessation and mechanical 

support. The increase of xylose in mol% and decrease of Ara:Xyl ratio during aging of 

rice seedlings is similar to seedlings in the Pooideae grass tribe, i.e., wheat, 

Brachypodium, and barley (Christensen et al. 2010; Gibeaut et al. 2005; Obel et al. 

2002). The low Ara:Xyl ratio in old tissues may enable hydrogen-bond formation 

between GAX polymers or to cellulose microfibrils, thereby tethering these 

polysaccharides (Busse-Wicher et al. 2016; Urahara et al. 2004). Among cell wall 

components attributed to GAX, GlcA exhibits the strongest positive correlation with 

rice seedling growth rate (PCCGlcA,mol% = 0.93), suggesting a model in which GlcA 

substitution interferes with xylan interactions with other polymers (Rennie and Scheller 

2014). Examining rice mutants in orthologs of xylan GlcA-transferases would test this 
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(Mortimer et al. 2010; Oikawa et al. 2010; Rennie et al. 2012). The crosslinking 

phenylpropanoid FA, which is primarily esterified to arabinoxylan, is 10- to 50-fold 

more abundant and exhibits a different timing of accumulation in rice seedlings 

compared to Pooideae grass tribe members (Christensen et al. 2010; Obel et al. 2002). 

These differences may relate to disparate timing of growth between these grasses. An 

increase in growth rate from 5 to 9 DPG accompanies the decrease in FA during rice 

seedling development. Whereas, the period of rapid growth of Pooideae seedlings is 

earlier, when these seedlings possess low FA (Christensen et al. 2010; Gibeaut et al. 

2005). The specialized cell wall of leaf joints posses high Ara and FA content, which 

may provide mechanical support that holds leaf blades at a characteristic angle relative 

to the stem (Ning et al. 2011; Xu et al. 2012). 

 

 

MLG, which also plays a role in providing tensile strength, correlates with GAX 

components and an amorphous cellulose epitope. Interactions among MLG, GAX and 

cellulose have been observed in studies of primary cell walls. For example, correlation 

of MLG with low molecular weight GAX fragments and MLG accumulation during 

maize root elongation may suggest that MLG coats a portion of GAX and serves as a 

spacer to separate cellulose microfibrils, rendering cellular elongation irreversible 

(Kozlova et al. 2014). Furthermore, in primary walls absence of MLG due to mutation 

alters cellulose orientation and arabinoxylan-cellulose interactions (Smith-Moritz et al. 

2015). Here, correlations between GAX and MLG epitopes are also apparent in the 
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secondary wall-rich, old dataset. Their interaction may have a role in mechanical 

support there as well. 

 

AGPs in Arabidopsis have recently been found to covalently link RGI and arabinoxylan 

(Tan et al. 2013). The multiple correlations among AGPs, pectins and GAX suggest the 

possibility of similarly crosslinked structures in grasses. This is also supported by the 

fact that GAX fragments from grasses contain AGP or pectin sugars (Carpita 1989; 

Kato and Nevins 1992; Nishitani and Nevins 1989). Of course, due to the scarcity of 

AGPs and pectins and the high abundance of GAX, GAX-linked structures may differ 

between grass cell walls and those of dicots. Furthermore, it is tempting to speculate 

that many significant correlations between AGPs and glucans may also reflect 

structures yet to be revealed by careful cell wall fractionation experiments.  

Correlations between phenolics and GAX components agree with the covalent bonding 

between GAX and lignin via ferulate esters (Bunzel et al. 2004; Ralph et al. 1995) and 

with the dominance of these polymers in secondary cell walls. The correlations between 

pCA and phenolics agree with the high abundance (up to 18% in maize lignin) of 

lignin-associated pCA esters (Bartley et al. 2013; Grabber et al. 2004; Hatfield et al. 

2008; Molinari et al. 2013; Ralph 2010). Nonetheless, the observation that pCA varies 

significantly among organs and developmental whereas ABS-lignin does not (Table 2-

S2 – Sheet F), may assist with determining the function of lignin acylation by pCA 

(Petrik et al. 2014; Ralph 2010).   

Cell wall enzymatic digestibility exhibits large variation among the samples from 

different rice tissues and time points. Young samples are more digestible than the old 
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samples, consistent with efforts to “juvenilize” bioenergy crops to increase biofuel 

yields (e.g., (Chuck et al. 2011)). Leaves are surprisingly more recalcitrant than 

internodes at the same age, in contrast to the digestibility of Miscanthus and wheat via a 

Clostridium-based assay (Costa et al. 2014). This may be due to the relatively high 

silicon content of rice leaves (Yamaji et al. 2008), and reflected by the low measured 

cell wall content in leaves versus stems (Figure 2-S6).   

 

Cell wall digestibility positively correlates with MLG and negatively correlates with an 

arabinan epitope and lignin. The correlation between digestibility and MLG is 

consistent with the observation of a weak positive correlation between MLG and ED 

among diverse rice genotypes grown in both the greenhouse and field (Tanger et al. 

2015). This relationship may be due to MLG loosening the structure of cell walls and 

increasing the accessibility of cellulose (Kozlova et al. 2014), but also our observation 

that MLG, itself, is digested by the cellulase and beta-glucosidase cocktail used. In 

either case, this correlation supports the notion that MLG is a preferred cell wall 

component for a biofuel feedstock (Tanger et al. 2015). The negative correlations of the 

LM6-Arabinan epitope and ED in the young dataset are consistent with a role for 

pectinases in improving switchgrass cell wall digestibility (Chung et al. 2014). Lignin 

negatively correlates with digestibility, though weakly. The weaker than expected 

correlation may be due to the vastly different cell wall structures of the tissues 

examined, and is in agreement with emerging evidence that lignin is not as important a 

determinant of recalcitrance in grass biomass as it is in tree biomass (De Souza et al. 

2015; DeMartini et al. 2013). 
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Identification of Genes Involved in Cell Wall Synthesis by Correlation Analysis 

We measured expression of selected grass-diverged and highly expressed GTs and ATs 

and observed many correlations between the expression of known/putative synthesis 

genes and cell wall components, which lead to identification of nine candidate cell wall 

synthesis genes (Table 2-S10 – Sheet F).   

 

Four genes, two encoding GT75-UAMs and two encoding GAUT-like proteins, are 

“hubs” in the cell wall component-gene network, each correlating with at least five 

components (Figure 2-7, Table 2-S10, Sheet E). About half of the GT75-UAM1 and 

GT75-UAM3 correlations are with GAX, AGP, and pectin components. GT75-UAM1 

and GT75-UAM3 are UDP-arabinopyranose mutases that convert UDP-

arabinopyranose to UDP-arabinofuranose, which is used for the synthesis of GAX, the 

polysaccharide of AGPs, and arabinogalactan sidechains of rhamnogalacturonan I 

(Rautengarten et al. 2011). Since Ara is connected to many other moieties of these 

polymers, other components are also affected by the expression of UAMs. For example, 

down regulation of GT75-UAM1 and GT75-UAM3 decreases both FA and Ara in rice 

(Konishi et al. 2011; Konishi et al. 2010). In fact, many GT75-UAM1 and GT75-UAM3 

correlations are with GAX, AGP, and pectin components, consistent with their 

functions in synthesizing precursor sugars for cell wall synthesis. However, the 

correlations between GT75-UAM3 and MLG.w and Glc remain to be understood. The 

other closely related member UAM2, which lacks mutase activity (Konishi et al. 2010), 

does not exhibit correlations above our stringent criteria, as expected. 
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The other two hub genes, GT8-GAUT1L and GT8-GAUT9L, significantly correlate with 

pectin and AGP components (Figure 2-7). The correlation between GT8-GAUT1L and 

GalA and other pectin/AGP components suggest that this rice gene may also encode an 

HG:GalA transferase that synthesizes the backbone of HG as the related GAUT1 does 

in Arabidopsis (Atmodjo et al. 2013; Caffall et al. 2009). GT8-GAUT9L, a putative co-

ortholog of GAUT9, also correlates with GalA, consistent with the decrease in GalA in 

gaut9-3, an Arabidopsis GAUT9 knockdown mutant (Caffall et al. 2009), though the 

acceptor of GAUT9 remains to be determined. In summary, our study indicates that the 

function of GAUTs 1 and 9 orthologs in rice are likely to be conserved between 

Arabidopsis and the grasses, though work is required to test this and determine onto 

which oligosaccharides they transfer GalA.  

 

Several GTs are implicated in GAX synthesis (Figure 2-7). GT61-XAX1L-1 correlates 

with FA in the old subset and with the LM13-pectin epitopes in the total dataset; GT61-

XAX1L-1 also significantly relates to FA by linear regression. This suggests that, like 

other GT61 proteins (Anders et al. 2012; Chiniquy et al. 2012), GT61-XAX1L-1 also 

participates in xylan synthesis, such as by adding side groups to GAX that are (or will 

be) feruloylated. GT77-4 and GT17-C-1 also significantly correlate with GAX 

components, in the total dataset, though these gene families have not been implicated in 

GAX synthesis. Both correlations are supported by linear regression results (Table 2-

S11). The encoded proteins may function in the addition of minor GAX side groups 

(Rennie and Scheller 2014) or in processing of xylan synthesis enzymes (Olszewski et 
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al. 2010), respectively. Distantly related Arabidopsis GT77s function as xylosyl and 

arabinosyltransferases involved in RGII synthesis and protein glycosylation, 

respectively (Egelund et al. 2006 ; Gille et al. 2009). GT10-FucTAL and GT2-CslA6 

also correlate with GAX components but are not supported by linear regression results. 

They may synthesize cell wall components that correlate with the GAX components. In 

addition, we might have expected to observe a correlation between OsIRX9 and GAX 

components. However, since several rice GT43s function in GAX backbone synthesis 

(Chiniquy et al. 2013; Lee et al. 2014b), a direct correlation between this individual 

GT43 and xylan abundance may have been obscured.  

 

Three GT2s may be involved in MLG synthesis. Each of the different measures of 

MLG correlates most strongly with expression of a different gene implicated in MLG 

biosynthesis (Figure 2-7). GT2-CslF6 correlates with the B-MLG epitope in CDTA 

extracts in the total dataset; GT2-CslH1 correlates with TFA-soluble Glc in the total 

dataset; and GT2-CslF8 correlates with lichenase-based MLG.w in the young dataset. 

Based on heterologous expression, the current model of MLG synthesis is that CSLF 

and CSLH enzymes function independently of each other and are each capable of 

synthesizing MLG (Burton et al. 2006; Doblin et al. 2009; Vega-Sanchez et al. 2012). 

Genetic studies of rice csfl6 found a ³97% decrease in detectable MLG content in the 

cslf6 knock out mutant (Vega-Sanchez et al., 2012); whereas, a barley CslF6 missense 

mutation reduces grain MLG by 60% (Hu et al. 2014). A quantitative trait locus for 

MLG in barley finds that HvCslF8, the ortholog of rice CslF8, and three other HvCslF 

map to a region that causes ~19% of the variation of MLG in grain (Burton et al. 2008). 
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Though recent studies discount the participation of CslH1 in MLG biosynthesis in 

seedling organs based both on protein localization and gene expression (Wilson et al. 

2015), the CslH1 gene of rice is reasonably expressed (Cao et al. 2008). The different 

highly significant predominant correlations of each of these genes, and the existence of 

multiple gene family members in the CslF and CslH families suggest spatial and 

temporal regulation of MLG synthesis that merits additional genetic and biochemical 

studies of CslF and CslH gene family members in rice. 

 

We also identified numerous correlations between cell wall components and so-called 

“Mitchell-clade” acyltransferases that modify cell wall polymers with HCAs (Bartley et 

al. 2013; Buanafina et al. 2016; Mitchell et al. 2007; Sibout et al. 2016) (Figure 2-7, 

Table 2-S10). Two studied members of this clade in rice are pCA transferases, with 

OsPMT/OsAT4 and the Brachypodium distachyon PMT, transferring pCA to 

monolignols (Petrik et al. 2014; Withers et al. 2012) and rice AT10 functioning in pCA 

esterification on a five-carbon sugar, likely Ara of GAX (Bartley et al. 2013). It has also 

been suggested that some AT subclade I homologs in Brachypodium may be FA-

transferases involved in cell wall modification (Buanafina et al. 2016; Molinari et al. 

2013). In our results, OsPMT/OsAT4 positively correlates with pCA as expected (Petrik 

et al. 2014; Withers et al. 2012). OsAT10 positively correlates with a xylan epitope 

though a correlation between AT10 expression and total pCA is not observed, which 

may be due to the relatively low abundance of this modification. OsAT7 positively 

correlates with a xylan epitope, L10-xylan-C, and may be involved in HCA 

incorporation onto GAXs. In a screen a rice AT7 knock-down mutant showed decreased 
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FA-esters in rice leaf sheath cell walls, reinforcing this hypothesis (Bartley et al. 2013). 

The correlation between OsAT9 and FA in the old dataset suggests rice AT9 may also 

be a FA-arabinosyl transferase. Other uncharacterized acyltransferses like AT12, AT14, 

AT16, AT17, AT18 correlate with other cell wall components in different datasets. 

Besides lignin and GAX, feruloylation of other polymers has been documented in 

grasses or dicots, including xyloglucan, arabinan, and galactan  (Ishii and Hiroi 1990; 

Mathew and Abraham 2004). Based on the dispersion of ATs with significant 

correlations to various cell wall components (Figure 2-6), it is tempting to suggest that 

there may be other instances of cell wall hydroxycinnamylation in rice that remain to be 

revealed. 
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Conclusion 

The cell wall composition profile of rice presented here provides a detailed atlas for 

understanding the distribution of chemical components and cell wall epitopes across 

aerial vegetative development. We applied both chemical and antibody-based assays to 

quantify cell wall polymers and, in many cases, found significant correlations between 

chemical components and antibody/CBM-recognized cell wall epitopes. On a technical 

level, correlations among related components measured with different assays, such as 

the MLG epitope, MLG.w lichenase measurement, and TFA-soluble glucose indicate 

that the relative quantitation of many epitopes agrees with the abundance of components 

as measured by chemical assays. The correlations among cell wall components such as 

GAX, AGPs and pectins also suggest possible covalent or non-covalent interactions that 

should be tested by further chemical and structural analysis. The cell wall data will 

facilitate further studies of rice and other grasses, providing guidance for when and 

where samples should be collected in order to observe phenotypes related to particular 

cell wall polymers. We have also revealed potential physiological functions for grass 

cell wall substituents, such as the observation that GlcA correlates with high seedling 

growth rate.  

 

In addition to providing insight to cell wall development and function, this map lays a 

foundation for developing hypotheses for the biochemical and physiological function of 

genes that exhibit coordinated expression with specific cell wall components. This work 

successfully moves beyond the observation that particular GTs and ATs are grass-

diverged and highly expressed to providing testable hypotheses for specific cell wall 
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synthesis activities, pinpointing nine uncharacterized genes with putative functions in 

rice cell wall synthesis. These results indicate that the correlation analysis approach 

presented here is valuable for identifying novel synthesis genes that cannot be identified 

via simple phylogenetic analysis. This method can also be used to identify genes likely 

to function in cell wall and other metabolite synthesis in whole-genome transcriptome 

data. However, to be most effective, such an analysis will require many samples with 

high cell wall composition variation to identify significant correlations among tens of 

thousands of genes.  
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Materials and Methods 

Supplemental File 1 contains more detailed information. 

Rice Growth Conditions, Measurements, and Harvest. 

The names of samples are defined by organ, segment, and age of plant in days post 

germination (i.e., sowing) as described in Table 2-S1. Oryza sativa ssp. japonica cv. 

Kitaake seedlings were grown in topsoil in a greenhouse. Harvests of healthy, 

developmentally similar plants with a uniform height were conducted between 2:30 and 

6:00 pm with samples frozen on dry ice immediately. Six biological replicates or 

replicate pools were harvested for each sample, and three each used for cell wall and 

RNA analysis.  

Cell Wall Preparation and Measurements 

For all cell wall assays, fresh-frozen material were ground, made into AIR and 

destarched as described previously (Bartley et al. 2013). Assay methods are 

summarized in Table 2-S2 – Sheet A. “Total Phenolics” represents the traditional acetyl 

bromide soluble lignin of the destarched AIR (Fukushima and Hatfield 2004), scaled for 

a micro-plate reader, as described (Bartley et al. 2013). “ABS lignin” was measured on 

the pellet remaining from the HCA extraction protocol. Chemical measures were made 

in biological triplicates. CoMPP was performed as described previously (Moller et al. 

2007) on 15 to 50 mg dsAIR pools created from biological replicates with technical 

triplicates, except for the Lf3 sample, for which duplicates were performed. Antibodies 

or carbohydrate binding modules (CBMs) used are listed in Table 2-S3-Sheet A. Z-

scores were calculated as the biological average for a given sample minus the mean of 

the biological average values for all the samples, divided by the standard deviation of 
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all the biological averages. Glycome profiling was conducted as reported previously 

(Pattathil et al. 2012) with 50 mg dsAIR pools of the three biological replicates per 

sample. 

 

Gene Expression Measurements by Quantitative PCR 

The method of RNA preparation, cDNA synthesis, and quantitative PCR using SYBR 

green was as described (Bartley et al. 2013) with some exceptions. The Ubq5 primer 

pair (Jain et al. 2006)was used for normalization (∆Cq) and a pool of all cDNAs was 

run on each plate to determine relative expression (∆∆Cq). Samples for which the 

coefficient of variation of ∆∆Cq among replicates was >2 were excluded from analysis. 

Primers used for quantitative PCR are listed in Table 2-S14. 

 

Data Analysis 

R 2.15.2 (http://www.r-project.org/) was used for all analyses unless otherwise stated. 

The “prcomp” function was used for Principle components analysis (PCA), and the 

“pvclust” function was used for hierarchical clustering of the cell wall chemical data. 

Approximately unbiased p-values for the null hypothesis that the clade is not found in 

any of the rejected trees were calculated from 1000 multiscale bootstrap resampling. To 

identify significant differences in cell wall components within and between sample 

groups, we used ANOVA followed by Tukey’s range tests with a significance level (α = 

0.05) adjusted via a Bonferroni family-wise error rate correction. Chi-squared tests on 

the number of positive and negative correlations for each dataset were performed in 

Excel.  
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We analyzed Pearson’s and Spearman’s correlations (PCC and SCC, respectively) 

within the cell wall data and between the cell wall chemical components, disaggregated 

CoMPP data, and gene expression data for the total, young, and old datasets. Pearson’s 

and Spearman’s correlation coefficients and associated p-values and q- values were 

calculated with the “CCA” and “qvalue” packages (Storey and Tibshirani 2003). 

Because Pearson’s correlation is especially sensitive to outliers, we also applied a 

robustness filter to remove cases in which the correlation is determined largely by a 

single outlier point. For correlations within the cell wall data, we used q<0.001 for the 

total dataset, q<0.02 for the young and old datasets, and a |ΔCC|Max<0.5 for all datasets. 

For correlations between cell wall components and genes with the first model (N vs. N) 

we used q<0.07 and |ΔCC|Max<0.4 for all datasets, along with the following criteria: 

|CC|>0.66 for the total, |CC|>0.90 for the young, and |CC|>0.84 for the old dataset. 

Different Correlation coefficient cutoffs are applied due to the varying numbers of 

samples in each data subset.   

For linear regression analysis between gene expression data and cell wall data, 

significant linear regressions were identified using a q-value <0.07 for all datasets.  
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Figures and Tables    

 
Figure 1 Figure 2-1. Rice samples characterized in this study. 
 
Figure 2-1. Rice samples characterized in this study. (A-E) Rice seedlings from 3 

day-post-germination (DPG) to 11 DPG.  (F) Dissected plant at 13 DPG. (G) Dissected 
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plant at 20 DPG (H) Dissected plant at 34 DPG, Lfb_b34, Lfb_m34, and Lfb_t34 are 

samples representing mature leaf developmental gradient from young to old. (I) 

Dissected stems at 55 DPG. (J) Dissected leaves at 55 DPG. (K) Dissected leaf blades at 

55 DPG. (L) Dissected leaf blades at 10 DPG. (M) Dissected plants at 100 DPG. (N) 

Leaf joint at 100 DPG. (O) Seed hulls at 100 DPG. (P) Seed without endosperm at 100 

DPG. Scale bars indicate 1 cm in (A-F), indicate 2 cm in (G-J), (M) and indicate 0.5 cm 

in (K), (L), (N-P). The abbreviations of samples are labeled in yellow. Magenta lines 

indicate positions of dissection. More detailed description of samples can be found in 

Table 2-S1. 
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Figure 2 Figure 2-2. Abundance of cell wall components and properties measured 
by chemical assays. 
Figure 2-2. Abundance of cell wall components and properties measured by 

chemical assays. Color intensity indicates the z-score of abundance for each 

component. Red indicates relative enrichment and blue, relative scarcity. Slashed 

squares are missing values due to insufficient sample mass. The mean, un-normalized 

uLf34 
Lf3 
Lf5 
Lf7 
Lf9 
Lf11 
bLf13 
uLf20 
uLf13 
Lfb20 
Lfb_b34 
Lfb_m34 
Lfb_t34 
Lfb_nv55 
Lfb_v55 
Lfb_nv100 
Lfb_v100 
Lfb100 
Lsh20 
bLsh34 
Lsh55 
Lsh100 
Ljn100 
Nod34 
Nod55 
Int_b55 
Int_u55 
Int100 
Hul100 
End100 

Y
o

u
n

g
 L

e
a
f 

L
e
a
f 

B
la

d
e
 

L
e
a
f 

S
h

e
a
th

 
S

te
m

 

Z-score 

Missing 
values 

40 

30 

3 

2 

1 
0 

20 

10 

0.44 0.35 0.38 0.11 

X
y

l 

A
ra

 

G
lc

A
 

F
A

 

M
L

G
.w

 

G
lc

 

G
a
lA

 

R
h

a
 

G
a
l 

p
C

A
 

P
h

e
n

o
li
c
s
 

L
ig

n
in

 

E
D

8
 

E
D

1
4
5
 

C
e
ll
u

lo
s
e
 

-2 2 4 0 

M
e
a
n

 m
a
s
s
 (

%
) 



53 

mass for each component is shown above the heatmap. The color ribbons on the left of 

heatmap indicate organs. Samples are arranged by organs and in an ascending order of 

maturity (i.e., young to old).  Black boxes indicate developmental series with the arrows 

on right indicating the direction of the order of maturity.  The color ribbons at the 

bottom demarcate categories of cell wall components. Sample and components 

abbreviations are described in Table 2-S1 and Table 2-S2. 
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Figure 3 Figure 2-3. Comprehensive Microarray Polymer Profiling (CoMPP) 
analysis of cell wall epitopes and ligands. 
Figure 2-3. Comprehensive Microarray Polymer Profiling (CoMPP) analysis of 

cell wall epitopes and ligands. Color intensity indicates the z-score of abundance of 

cell wall epitopes summed across the three extractions. Red indicates relative 
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enrichment and blue, relative scarcity. Samples are arranged by organs and in an 

ascending order of maturity. The color ribbons on the left of heatmap indicate organs 

and those at bottom indicate categories of cell wall components. Sample and epitope 

and ligand abbreviations are described in Table 2-S1 and Table 2-S3.  
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Figure 4 Figure 2-4. Principal component analysis of chemical assay dataset shows 
two sample groups by Principal Component 2. 
Figure 2-4. Principal component analysis of chemical assay dataset shows two 

sample groups by Principal Component 2. (A) Axes values indicate principal 

components score and the percentages indicate the variation represented by the 
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principal component. Green symbols indicate young tissue, orange symbols indicate old 

tissue, and black symbols indicate samples that are not easily classified. Symbol shape 

indicates the organ: circle for leaf blade, triangle for leaf sheath, diamond for internode, 

X for leaf joint, and square for specialized organs. Sample abbreviations are described 

in Table 2-S1. (B) The loadings of PC2. Cell wall component abbreviations are 

described in Table 2-S2.  
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Figure 5 Figure 2-5. A simplified representation of the significant correlations 
among cell wall components. 
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Figure 2-5. A simplified representation of the significant correlations among cell 

wall components. Correlations with (A) total, (B) young, and (C) old datasets. 

Complete correlation networks are shown in the Figure 2-S4. To simplify the network

，we only demonstrate the correlations discussed and combine the three extractions of 

CoMPP to one node and an edge was added if any of the three extraction values 

correlate with another component. Xyloglucan, mannan, and cellulose correlations were 

excluded. Red and cyan lines indicate positive and negative correlations, respectively. 

The line style indicates whether the relationship is significant via Person’s correlation 

coefficient (PCC) and/or Spearman’s correlation coefficient (SCC) as indicated by the 

key. The thickness of lines is proportional to the absolute value of the higher PCC or 

SCC correlation. Cell wall components are represented by circular nodes, color-coded 

based on the cell wall polymers from which they originate, as described in Table 2-S3. 

Abbreviations used are defined in Table 2-S2 and Table 2-S3.  
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Figure 6 Figure 2-6. Gene expression profiles measured via qRT-PCR 
Figure 2-6. Gene expression profiles measured via qRT-PCR. The normalized 

relative expression of each gene is represented by the Z-score of ∆∆Cq.  The major gene 
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clusters were determined by hierarchical clustering (N=5000) shown as a dendrogram 

on the left.  Gene name codes are described in Table 2-S6. 
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Figure 7 Figure 2-7. Network of genes that positively correlate with cell wall 
components. 
Figure 2-7. Network of genes that positively correlate with cell wall components. 

Significant Pearson’s correlations were identified by setting cutoffs of q-value, 

correlation coefficient, and robustness of correlations as stated in the method. The styles 

of line indicate the correlations in different datasets as indicated by the key. The 

thickness of lines is proportional to the rank of components among all significant 
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correlated components. Cell wall components shown by oval nodes are color coated 

based on the cell wall polymers they mainly come from as shown in Table 2-S3. 

Squares indicate genes and are color-coded based on their protein family. Gene names 

are provided in Table 2-S6.  Cell wall components and epitope names are provided in to 

Table 2-S2 and Table 2-S3.  



64 

Supplementary data 

Additional supplementary data are available at PCP online.  

https://academic.oup.com/pcp/article/57/10/2058/2755865/Cell-Wall-Composition-and-

Candidate-Biosynthesis#50717385 

 
Supplementary file 1: Supplemental Methods. 

Supplementary file 2: Comprises ten additional figures that complement the data 

presented in the manuscript. Figure 2-S1. Relative abundance of cell wall epitopes and 

ligands measured by CoMPP. Figure 2-S2. Relative abundance of cell wall epitopes in 

rice stem and old leaf samples by glycome profiling. Figure 2-S3. Hierarchical 

clustering of samples based on cell wall composition. Figure 2-S4. Significant 

correlations among cell wall components in the (A) total, (B) young, (C) old datasets. 

Figure 2-S5. Venn diagrams of the classes of significant correlations among cell wall 

components. Figure 2-S6. The total fraction of cell wall materials measured in alcohol 

insoluble residue of each sample. Figure 2-S7. Plant height and growth rate for early 

rice seedlings. Figure 2-S8. Ratios of glucuronoarabinoxylan components across 

samples. Figure 2-S9. The relationship between arabinose and xylose differs among 

data subsets. Figure 2-S10. Enzymatic digestibility across all samples. 

Table 2-S1: Nomenclature, description, and categories of rice samples characterized in 

this study. Samples are referred to by abbreviations for the organs; the segment, if 

applicable; and the age of plant in days post germination (DPG). 

Table 2-S2: Description of cell wall chemical composition assays and digestibility, 

corresponding data, and ANOVA analysis for samples and sample groups. 
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Table 2-S3: Antibodies and carbohydrate-binding modules (CBMs) used to detect cell 

wall epitopes with CoMPP and raw CoMPP data. 

Table 2-S4: Correlations among extracts of a given epitope in CoMPP in different data 

subsets. 

Table 2-S5: Glycome profiling optical density values and sugar recovered from each 

extract. 

Table 2-S6: The categories and annotations of genes probed in this study and their 

normalized relative expression (∆∆Cq) determined by qPCR. 

Table 2-S7: Correlation coefficients and q-values among all cell wall components. 

Table 2-S8: Significant correlations among cell wall components. 

Table 2-S9: Pearson and Spearman correlation coefficients and q-values between cell 

wall variables and transcripts. 

Table 2-S10: Significant positive correlations between cell wall components and 

transcripts in the N vs. N model. 

Table 2-S11: Linear regression associations between gene expression and cell wall 

components.  

Table 2-S12: Significant positive correlations between cell wall component and 

transcript amount with the N vs. ∆(N+1) model and the sample pairs used. 

Table 2-S13: Comparison of Pearson's correlation (PCC) and Spearman's correlation 

(SCC) for model 1 (N vs. N) and model 2 (N vs ∆(N+1)). 

Table 2-S14: Primers used for qRT-PCR. 
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Abstract 

Internodes of grass stems function in mechanical support, transport, and, in some 

species, are a major sink organ for carbon in the form of cell wall polymers. To 

establish the rice elongating internode as a model for secondary cell wall development, 

we conducted cell wall composition, proteomic and metabolite analyses. We measured 

secondary cell wall components along eight segments of the second rice internode 

(internode II) at booting stage. Cellulose, lignin, and xylose increase as a percentage of 

cell wall material from the younger to the older internode segments, indicating active 

cell wall synthesis.   For whole elongating internodes, we measured trypsin-digested 

peptides of size-fractionated proteins via liquid-chromatography tandem mass 

spectrometry (LC-MS/MS). This study identified a total of 2356 proteins with at least 

two unique peptides, including many glycosyltransferases, acyltransferases, 

glycosylhydrolases, cell wall-localized proteins, and protein kinases that have or may 

have functions in cell wall biosynthesis or remodeling. We also identified 21 unique 

phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor 

like kinase. GO over-representation analysis and KEGG pathway analysis indicate 

many proteins involved in biosynthetic processes, especially the synthesis of secondary 

metabolites such as phenylpropanoids and flavonoids. We also used LC-MS to measure 

hot methanol-extracted secondary metabolites from whole internodes at the elongation 

stage, early mature stage, mature stage and post mature stage, and, for comparison, 

leaves and roots at the mature stage. The results indicate secondary metabolites in stems 

are distinct from those of roots and leaves, and differ during stem maturation. This 

study fills a void of knowledge of proteomics and metabolomics data for grass stems, 
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specifically for rice, and provides baseline knowledge for more detailed studies of cell 

wall synthesis and other biological processes during internode development. This and 

future work is aimed at optimizing stem development and cell wall composition of 

grasses to improve agronomic properties.  
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Introduction 

The grass family, Poaceae, includes the cereal crops and represents one of the most 

wide-spread plant taxonomic groups in terrestrial ecosystems (Kellogg 2001). Grass 

stems, also known as culms, mechanically support reproductive structures, transport 

nutrients and act as structural and non-structural carbohydrate storage organs 

(Moldenhauer et al. 2013). In rice, stem internodes rapidly elongate at the beginning of 

the reproductive stage (Bosch et al. 2011; Slewinski 2012). Many important biological 

processes including cell division, cell wall synthesis, and cell wall remodeling occur 

during stem development (Bosch et al. 2011; Cui et al. 2012). Among these processes, 

the change in cell walls is especially important for stem mechanical properties (Gritsch 

and Murphy 2005; Wang et al. 2012). The developmental stage of stems influences 

susceptibility to pests and pathogens (Bandong and Litsinger 2005; Viajante and 

Heinrichs 1987 ).  

 

Though overall culm development is acropetal, with younger internodes at the top away 

from the roots, each grass internode exhibits basipetal development. The intercalary 

meristem, located at the bottom of each internode, undergoes cell division to produce 

new cells that only have primary cell walls. The new cells elongate and then gradually 

mature, forming secondary walls toward the apex of each internode (Kende et al. 1998). 

Associated with this developmental progression, or gradient, is a change in cell wall 

composition dominated by deposition of secondary cell walls, which are deposited 

between the plasma membrane and primary walls in some cell types such as fibers and 

sclerenchyma cells. As with those of dicotyledonous plants, secondary cell walls of 
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grasses usually contain multiple layers with highly oriented cellulose microfibers, each 

at different orientations. The secondary walls are also layered or impregnated with the 

covalently crosslinking phenylpropanoid-derived lignin polymer and have higher 

strength, but lower extensibility relative to primary walls. In maize, secondary cell wall 

components such as cellulose, lignin, and a major grass hemicellulose, arabinoxylan, 

increase from the bottom to the top part of each internode, while other cell wall 

components, such as mixed-linkage glucan, mannan and pectins decrease (Zhang et al. 

2014). These changes are associated with the abundance of transcripts for cell wall 

synthesis enzymes, cell wall remodeling enzymes, and associated regulatory proteins 

(Zhang et al. 2014).  

 

Many proteins function in cell wall synthesis and remodeling, or regulate the amounts, 

localization, or activity of cell wall enzymes. Members of several glycosyltransferase 

(GT) families, including GT2, GT43, GT47, and GT61, synthesize cellulose and 

hemicellulose in grasses (Scheible and Pauly 2004; Scheller and Ulvskov 2010). 

Enzymes in the phenylpropanoid pathway synthesize lignin precursors and 

hydroxycinnamic acids (HCAs). The latter are incorporated into lignin or 

polysaccharides by so-called BAHD acyl-CoA acyltransferases (ATs) (Bartley et al. 

2013; Buanafina et al. 2016; Lin et al. 2016; Molinari et al. 2013; Petrik et al. 2014; 

Sibout et al. 2016; Withers et al. 2012). To date, all cell wall-precursor modifying ATs 

belong to a subclade of BAHDs dubbed the “Mitchell clade” (Bartley et al. 2013; 

Withers et al. 2012). Besides cell wall synthesis proteins, cell-wall-located glycosyl 

hydrolases (GHs) function in both degradation and growth of cell walls; extracellular 
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proteins, like arabinogalactan proteins, may function in signaling; and peroxidases 

catalyze lignin polymerization (Albenne et al. 2013 ; Cosgrove 2016b; Frankova and 

Fry 2013; Jamet et al. 2006; Passardi et al. 2004). Cell wall enzyme transcript 

abundance is regulated by transcription factors predominantly in the NAC, MYB, and 

WRKY families (Gray et al. 2012; Handakumbura and Hazen 2012; Wang and Dixon 

2012). In addition to transcriptional regulation, some cell wall synthesis enzymes and 

transcription factors are regulated by phosphorylation (Chen et al. 2010; Chen et al. 

2016; Taylor 2007; Wang et al. 2015b). For example, phosphorylation of Arabidopsis 

Cellulose Synthase (CES) A1 and CESA3 is important for producing ordered interfaces 

among cellulose microfibrils or macrofibrils and therefore affects anisotropic elongation 

of cells (Chen et al. 2010; Chen et al. 2016). In addition, phosphorylation of 

Arabidopsis CESA7 leads to rapid proteosomal degradation (Taylor 2007). In an 

example from pine, phosphorylation by PtMAPK6 of a cell wall-related transcription 

factor, PtMYB4, enhances transcriptional activation (Morse et al. 2009).  

 

Sophisticated manipulation of biosynthetic and regulatory pathways is enabled by an 

accurate knowledge of the molecules present in a particular biological system. Though 

more complete transcriptome data for rice, maize, switchgrass, and Setaria stems are 

available (Bosch et al. 2011; Hirano et al. 2013; Martin et al. 2016; Shen et al. 2013; 

Zhang et al. 2014), the current grass stem proteome data for rice, Brachypodium 

distachyon, sugarcanes and bamboo only have a coverage less than 600 proteins  

(Calderan-Rodrigues et al. 2016; Cui et al. 2012; Douche et al. 2013; Yang et al. 2006). 

Previous gel-based proteomics studies of rice stems only identified less than 300 



72 

proteins, likely missing many proteins involved in important biological processes 

(Dardick et al. 2007; Nozu et al. 2006). Transcriptome data may be an inaccurate 

indication of protein abundance and presense due to various post-transcriptional 

regulatory events (Albenne et al. 2013; Haider and Pal 2013; Vogel and Marcotte 2012; 

Walley et al. 2016), for example, less than 60% of transcripts are translated to proteins 

in maize (Walley et al. 2016). There is a similar dearth of metabolite profiling data for 

grass stems except for sugarcane, which is highly specialized in soluble carbohydrate 

storage (Glassop et al. 2007). A catalog of rice stem proteins and metabolites will 

provide a solid foundation for synthetic biology approaches to enhance stem properties 

and facilitate comparisons with data from other rice organs (Koller et al. 2002) and 

across species  Kalluri, 2009 #41}.  

 

We report here the abundance of biological components in the second rice internode 

during elongation, including variation in cell wall components, and an in-depth protein 

catalog and a low-depth phosphopeptides catalog of the entire internode. In addition, we 

also report soluble metabolites for entire internodes during elongation and three post 

elongation stages. We examined expression of putative cell wall metabolism and 

regulatory proteins in an elongating stem and tentatively identify metabolites enriched 

in each of the four stem developmental stages. In addition to known cell wall synthesis 

enzymes that synthesis lignin and polysaccharides, the presence of several putative 

acyltransferases and glycosyltransferases may indicate their functions in cell wall 

synthesis. We also detected changes over development in metabolites that have a role in 

plant-herbivore or plant-pathogen interactions such as tricin 7-glucoside and esculetin.    
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Results. 

During booting when the panicle is just about to emerge from the leaf sheath (BBCH 

stage 45), internode II of rice stems undergoes rapid elongation and secondary cell wall 

development. Internode II is the second internode below the panicle, or the internode 

immediately below the peduncle (Yamaji and Ma 2014). Measurement of rice internode 

II revealed that it elongates at a relatively constant rate until the panicle fully emerges 

from the sheath of the flag leaf (Figure 3-1). During elongation of internode II and 

subsequent panicle maturation, three different datasets were collected on rice internode 

II during elongation and subsequent panicle maturation. First, we report cell wall 

composition of eight asymmetrical segments of internode II of elongating stem (ES) 

during booting. Second, we describe proteomics and phosphoproteomics in the entire 

internode II at the same stage. Third, we describe metabolites present in entire internode 

II at ES stage and three later stages, ending at seed maturity. 

 

Cell Wall Polysaccharides and Lignin Varies along the Elongating Rice Internode 

Phloroglucinol staining of lignin in internode II of ES was more intense in the mature 

upper segments than the young lower segments, especially around the vascular bundles 

(Figure 3-2). We divided the internodes into eight asymmetrical segments (S1 to S8) 

based on the phloroglucinol staining (Figure 3-2). Segment boundaries were chosen so 

as to minimize the change in cell wall content within each segment. S1 includes the 

intercalary meristem but also mature tissue below the meristem (See method). We 

conducted cell wall analysis on pools of segments from developmentally and physically 

similar elongating internodes. The analysis revealed lignin, cellulose, and xylose 
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significant increase along the elongating rice internode, while other components like 

arabinose and glucose have a decrease or an increase followed by decrease (Figure 3-3).  

 

Acetyl bromide soluble lignin as a fraction of de-starched alcohol insoluble residues 

(dsAIR) generally increased from the younger to the older internode segments (Figure 

3-3A). The change in lignin was not significant from S1 to S4 but dramatically 

increased from S4 to S8 (Tukey’s test, p<0.05) (Table 3-S1). The rapid increase in 

lignin from S4 to S6 was consistent with the phloroglucinol staining from 1.5 to 3.5 cm 

above the first node.  

 

Cellulose, determined by the anthrone assay after removing hemicellulose, also 

generally increased from the younger to the older internode segments (Figure 3-3B, 

ANOVA, p<0.01). The mass fraction of cellulose increased continuously from S2 to S7 

(Table 3-S1) but did not change significantly between S7 to S8. S1 contained slightly 

higher cellulose content than S2 but the difference was not statistically significant. 

 

Monosaccharide components of hemicelluloses and other cell wall polysaccharides 

exhibited different patterns of abundance (Figure 3-3C and D). Except galacturonic acid 

and glucuronic acid, trifluoroacetic acid (TFA)-released monosaccharides varied 

significantly across samples (ANOVA, p<0.01 for xylose, arabinose, glucose, galactose, 

and mixed linkage glucan). Xylose and arabinose monosaccharides originate mostly 

from glucuranoarabinoxylan, the most abundant grass hemicellulose. Xylose increased 

from S2 to S6 (Tukey’s test, p<0.05) (Figure 3-3C, Table 3-S1), but did not change 
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significantly from S1 to S2 and from S6 to S8. Arabinose, did not change significantly 

from S1 to S3 but decreased continuously from S3 to S8 (Tukey’s test, p<0.05) (Figure 

3-3C). The other major hemicellulose, mixed linkage glucan (MLG), consists entirely of 

glucose linked via ß-(1-3) and ß-(1-4) bonds. TFA-released glucose mostly comes from 

MLG, though amorphous cellulose and xyloglucan also contribute. TFA-released 

glucose peaked at S3 and then gradually decreased. We also measured MLG with a 

specific lichenase-based assay, which showed a similar, but not identical pattern of 

abundance compared to the glucose measurement. Lichenase-measured MLG peaked at 

S4 (Figure 3-3D). TFA-released galactose, mainly from arabinogalactan proteins and 

pectins, decreased significantly from S2 to S8 (Tukey’s test, p<0.05) (Figure 3-3C).  

 

Among measured components, cell wall hydroxycinnamoyl esters increased 

significantly and dramatically along the elongating internode, with a maximum change 

of 56- and 36-fold for p-coumarate (pCA) and ferulate (FA), respectively (Figure 3-3E, 

ANOVA, p<0.01). In grass cell walls, these hydroxycinnamic acids are esterified to 

lignin, arabinoxylan, and possibly other polysaccharides (Buanafina 2009; Lin et al. 

2016), with the majority of FA on arabinose residues of glucuranoarabinoxylan, and the 

majority of pCA is esterified to lignin (Molinari et al. 2013). Both hydroxycinnamoyl 

esters increased from younger to the older internode segments; however, FA and pCA 

showed different patterns of accumulation (Figure 3-3E). FA rapidly increased from S2 

to S4, but varied little from S4 to S8. In contrast, pCA increased continuously from S2 

to S8. The steady increase of the FA:Ara and pCA:lignin ratios (Table 3-S1) suggest an 

increase in both types of cell wall modification across stem development.   
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As a fraction of alcohol insoluble residue, the total mass of all measured cell wall 

components except MLG increased from about 500 µg/mg in S1 and S2 segments to 

about 700 µg/mg in S7 and S8 segments (Figure 3-3F). 

 

Protein Catalog of Elongating Internode 

To understand the proteins and phosphoproteins available to participate in cell wall 

changes and other biological processes during stem elongation, we measured trypsin-

digested peptides from the whole internode II of ES with three LC-MS/MS experiments 

(Table 3-1). The same peptide sample was used for experiment 1 and experiment 2. We 

focus our discussion on experiment 2 conducted by a Waters SYNAPT G2-Si high 

definition mass spectrometer with ion mobility assisted data-independent analysis 

(HDMSE) (Waters 2011). Experiment 3 validated the proteins identified in experiment 2 

by measuring an independent biological replicate with a Q Exactive Plus mass 

spectrometer. The phosphoproteomics is conducted on another internode II sample of 

ES and the identified phosphopeptides were validated by the identifications in the 

phosphopeptides fraction in experiment 3.  

 

In the whole elongating internode II, experiment 2 identified 2879 proteins and 

experiment 3 identified 6338 proteins with at least 2 unique peptides. There were 2356 

identified proteins shared by experiment 2 and experiment 3 (Table 3-S2). These 

confidently identified proteins by both experiments correspond to 6% of non-transposon 

genes in rice. About 53% of the 2356 identified rice proteins were novel identifications, 
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which have not been detected by at least 2 peptides according to Rice Protoegenomics 

Database (Figure 3-S1) (Helmy et al. 2012). We therefore have been able to extend the 

current protein catalog of rice. Subsequent analyses used only the 2356 proteins 

identified in both experiment 2 and experiment 3.  

 

Proteome Gene Ontology (GO) and KEGG Ontology (KO) Analysis 

We performed gene ontology (GO) enrichment analysis on cellular component, 

biological process, molecular function terms for the proteins detected in the elongating 

rice internode (Table 3-S3).  

  

Cellular Component GO-term enrichment showed some location biases in our dataset 

(Figure 3-4 and Table 3-S3). Hypergeometric p-values indicate that the GO terms of 

ribosome, cytosol, mitochondrion, cell wall, vacuole, plasma membrane were over-

represented. GO terms of endoplasmic reticulum, nucleus, and Golgi apparatus were 

observed at the expected frequencies. Cell wall synthesis and related proteins localize 

primarily to the cytosol, Golgi body, plasma membrane, cell wall, and endoplasmic 

reticulum (Helmy et al. 2012), all of which were reasonably covered here.  

 

Enrichment analysis of biological process and molecular function GO terms revealed 

some categories overrepresented in the rice elongating stem (Figure 3-5 and Table 3-

S3). The most highly overrepresented biological process GO terms were mostly cellular 

process such as “cellular macromolecule biosynthesis process” and “cellular 

biosynthetic process”. Metabolic process such as “generation of precursor metabolites 
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and energy” and “secondary metabolic process” were also significantly over-

represented in the elongating internode (Figure 3-5).  

 

Since many metabolic processes were overrepresented in the GO analysis, we 

conducted KEGG pathway mapping to further examine representation of identified 

proteins in different metabolic pathways. For all the 2356 proteins identified, we found 

945 proteins annotated by 709 KEEG Ontology (KO) terms (Table 3-S4). Among them, 

240 of proteins annotated by 156 KO terms were in secondary metabolite biosynthesis 

pathways such as the phenylpropanoid pathway. The 17 proteins in the phenylpropanoid 

pathway covered most major enzymes required to synthesize monolignols (Table 3-2, 

Figure 3-S2), except ferulate 5-hydroxylase and caffeic acid O-methyltransferase. 

 

Cell Wall Synthesis and Remodeling Proteins, and Extracellular Proteins 

From the list of identified proteins, we highlight proteins from our dataset that might be 

involved in the changes in cell wall composition observed along the elongating 

internode. We examined the GT2, GT43, GT47, GT61 and AT clades that contain 

known grass cell wall synthesis proteins. We identified two GT2, four GT61, and six 

Mitchell clade-AT proteins (Table 3-3). OsIRX10, a GT47 involved in xylan synthesis 

(Chen et al. 2013), though not identified in experiment 3, is identified by 2 unique 

peptides in experiment 2. Though no GT43s were identified by two unique peptides, 

OsGT43A (LOC_Os05 g03174), involved in xylan synthesis (Lee et al. 2014a), was 

identified by one unique peptide. The ATs identified consist of four hydroxycinnamoyl 

CoA transferases implicated by biochemical and genetic studies in cell wall 
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modification and two putative feruloyl CoA transferases that have not been described 

(Table 3-3).  

 

To identify grass cell wall remodeling genes, we examined 18 GH families that either 

modify or degrade specific plant cell wall components (Minic 2008), have been found 

in rice cell walls (San Clemente and Jamet 2015), or belong to a monocot-expanded 

family (Sharma et al. 2013). We identified 39 proteins in these families (Figure 3-6 and 

Table 3-S5). In the GH3, GH16, GH17, GH28 and GH31 families, more than 3 proteins 

were identified (Figure 3-6).  

 

Many extracellular proteins identified by cell wall proteomics had been collected in 

WallProtDB (Chen et al. 2009; Cho et al. 2009; Jung et al. 2008). We found 43 proteins 

in WallProtDB present in the elongating internode. The two most abundant categories 

were GHs and cell wall-localized type III peroxidases that may catalyze polymerization 

of monolignonols (Passardi et al. 2004) (Figure 3-S3 and Table 3-S6). Besides these 

two major groups, we also identified eight proteases, three leucine-rich repeat proteins 

that may participate in plant defense, two expansins that may function in cell wall-

loosening, and two fasciclin-like arabinogalactan proteins implicated in plant 

development and stress-response (Cosgrove 2000; Jamet et al. 2006; Johnson et al. 

2003). 
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Kinases and Transcription Factors  

Cell wall biosynthesis and other stem developmental processes are regulated by 

numerous transcription factors and kinases (Handakumbura and Hazen 2012; Wang et 

al. 2015b). From the rice kinase database (Dardick et al. 2007) and rice TF database, we 

identified 29 protein kinases including both receptor and cytoplasmic kinases (Table 3-

S7) and 44 proteins as transcription factors (Table 3-S8). 

 

We categorized protein kinases based on phylogeny, presence of a conserved kinase 

motif, and predicted subcellular localization (Figure 3-7). The literature reports protein 

kinases with cell wall phenotypes or that regulate cell wall genes belonging to three 

groups: TKL (Tyr-kinase-like) kinases, CMGC (CDK, MAPK, GSK3, and CLK) 

kinases, and CAMK (calcium/calmodulin-dependent) kinases (Matschi et al. 2013; 

Morse et al. 2009; Oh et al. 2011). We found evidence of the presence of 14 TKL 

kinases, including four from the LRR receptor-like kinase family. The six CAM kinases 

identified were all calcium-dependent kinases. Two CMGC kinases identified were both 

from the MAPK family. We also checked if the identified kinases contain a conserved 

arginine in the RD-motif in kinase subdomain VI. The absence of this motif (i.e., non-

RD) correlates with functioning in pathogen response (Dardick and Ronald 2006). We 

found 19 RD kinases and only 4 non-RD kinases (Figure 3-7B). Kinases that regulate 

plant development and cell wall biosynthesis are often localized to the plasma 

membrane (Hematy et al. 2007; Oh et al. 2011; Park et al. 2001). Five of the 29 

identified proteins were predicted to be in the secretory pathway and could be plasma 

membrane- localized (Figure 3-8C). 
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As phosphorylation mediated by protein kinases is an important regulatory mechanism 

for plant development and cell wall synthesis (Hematy et al. 2007; Oh et al. 2011; Park 

et al. 2001), we conducted a small phosphoproteomics experiment to explore 

phosphoproteins in the elongating internode. The identified phosphopeptides were 

further confirmed by their presence in the phosphoprotein enriched fraction in 

experiment 3. We consistently identified 21 unique phosphopeptides from 20 

phosphoproteins (Table 3-S9). Among them, 9 were phosphoproteins not reported 

previously in P3DB, including an LRR-III family receptor like kinase 

(LOC_Os03g12250).  

 

We also identified 41 protein transcription factors. The C3H family was most common 

(Figure 3-S4). We also identified a few proteins in cell wall-related or cell division-

related transcription factor families: CDC5 (LOC_Os04g28090) from the MYB related 

family and NAC2 (LOC_Os08g06140) from the NAC family (Feller et al. 2011; Wang 

et al. 2015a).  

 

Metabolite Profiles of the Elongating Internode, Mature Internodes, Leaf and Root 

The proteomics data confirmed the importance of secondary metabolic processes in the 

internode II of ES, thus, we also analyzed methanol-soluble secondary metabolites, 

including phenylpropanoids, isolated from different developmental stages of rice 

internode II. We collected internode II at the following four stages: the same elongating 

stem (ES) internode as the proteomics experiment, the early mature stem (EMS) 
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internode at flowering, the mature stem (MS) internode at grain filling, and the post 

mature stem (PMS) internode after seed maturity (Figure 3-6). For comparison, we also 

extracted metabolites from rice leaves and roots. We analyzed three biological 

replicates by LC-MS/MS with technical triplication in both negative and positive 

ionization modes. We identified 11,929 and 8,521 metabolite ions, respectively, that 

were reproducibly detected among replicates of any sample (See Methods; Table 3-S10 

and Table 3-S11). Of these, we tentatively annotated 22 negative ions and 53 positive 

ions based on mass similarity, isotope similarity, and theoretical fragmentation. We 

used commercial standards to confirm the MS/MS pattern and retention time of a 

phenylpropanoid, pCA, and a flavonoid, apigenin. 

 

Most metabolite ions varied significantly among organs and across stem development. 

As expected, principal component analysis (PCA) showed clear metabolic differences 

between stem metabolite profiles and those of roots and leaves (Figure 3-8A & B). PCA 

of just the ions from stem samples mostly separated the different stages from each 

other, consistent with differences in metabolite profiles during stem development 

(Figure 3-8C & D). Indeed, 6338 negative metabolite ions and 3110 positive metabolite 

ions varied significantly across stem development (ANOVA, q-value<0.01; Table 3-

S10 and Table 3-S11). The ions verified with authentic standards, pCA and apigen, 

varied significantly among organs though not across internode stages (Figure 3-S5). K-

means clustering of the metabolite dataset z-scores arranged in developmental order 

show that the metabolites are well-described by five clusters, with similar cluster 

patterns in the positive and negative ionization modes (Figure 3-9). The five clusters 
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correspond to metabolites that predominate in each of the four developmental stages 

and another cluster that is represented in both the ES and EMS samples. Table 3-4 lists 

the number of ions identified in each ionization mode for each cluster and some 

tentatively identified metabolites, with additional identifications listed in Table 3-S10 

and Table 3-S11. For example, cluster 1 metabolites were most abundant in ES. This 

cluster in negative ion mode contained 1021 metabolites including coniferyl aldehyde. 

Cluster 1 in positive ion mode contained 667 metabolites including methyl cinnamate.  

 

By examining the Plant Metabolic Network, we also found some enzymes related to the 

identified metabolites present in internode II of ES according to our proteome data. For 

example, C4H (LOC_Os05g25640), which synthesizes pCA from cinnamic acid and 

CCR (LOC_Os08g34280), which synthesizes coniferyl aldehyde from Feruloyl-CoA 

both present in ES and their direct products were detected. Two putative tricin synthases 

(LOC_Os08g38900, LOC_Os08g38910) that synthesize tricin from tricetin, which is 

synthesized from apigenin, were also present. Their presence together with the presence 

of apigenin and tricin 7-glucoside, a tricin derivative, suggest the tricin synthesis 

pathway is active.  
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Discussion 

The basipetal development of the grass internode renders it an excellent system for 

gaining molecular understanding of secondary development in monocots. In the 

internode, different developmental stages are available simultaneously under highly 

similar environmental conditions. Complementing recent transcriptome studies (Bosch 

et al. 2011; Hirano et al. 2013; Martin et al. 2016; Shen et al. 2013; Zhang et al. 2014), 

this study contributes novel grass stem proteomics, phosphoproteomics, and metabolite 

datasets toward understanding grass stem development and functions, specifically for 

the elongating rice internode.  

 

Cell Wall Changes Associated with Stem Development 

The cell wall measurements of rice elongating internode segments are mostly consistent 

with similar measurements from maize (Zhang et al. 2014). The patterns of lignin, 

cellulose and xylose were similar to those measured by methylation-based linkage 

analysis in maize elongating internodes. However, MLG and TFA-released glucose 

showed an initial increase and then decrease in rice elongating internode in contrast to 

the monotonic decrease of MLG in the maize elongating internode (Figure 3-3). MLG 

accumulation in maize and rice may be different, or alternatively, the short length of our 

segments S1 to S4 may have permitted us to detect this variation in young cell walls, 

missed in the uniform 1 cm segments of Zhang et al. The general consistency of rice 

and maize internode cell wall profiles during development suggests that the rice 

proteomics data can be used to gain insight into cell wall development of other grasses.  
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We extended the previous internode cell wall profiling with measurements of 

hydroxycinnamoyl esters, which play an important role in cross-linking cell wall 

polymers in grasses (Buanafina 2009). Both pCA and FA increased from young 

segments to old segments but showed different patterns of change, with pCA amounts 

continuing to increase through development but FA remaining constant in old segments. 

When integrated with gene expression or proteomics data of these segments, the 

difference in pCA and FA accumulation may facilitate identification of the transferases 

and other proteins that function in their incorporation, a topic of considerable recent 

interest (Buanafina et al. 2016; Chateigner-Boutin et al. 2016; Lin et al. 2016; Molinari 

et al. 2013). 

 

Cell Wall Synthesis, Remodeling, and Protein Phosphorylation are Important During 

Stem Elongation 

This study applied different proteomics methods to unveil the protein catalog in an 

elongating rice internode and provided technical guidance for future proteomics of 

internodes. Though many known or hypothesized cell wall-related proteins were 

identified (Table 3-2, Table 3-3, and Figure 3-6), others were absent from the dataset, 

especially some transcription factors from MYB and NAC family that controls cell wall 

synthesis. Coverage in future experiments can be improved by conducting further 

fractionation to reduce the complexity of protein samples, such as subdividing the 

sample, subcellular fractionation, or additional LC separation or using the combinatorial 

peptide ligand library (Li et al. 2013; Righetti and Boschetti 2016; Wang et al. 2010a).  
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Within the whole elongating rice internodes actively undergoing cell wall alterations, 

we detected 2356 proteins, including several known or implicated in cell wall synthesis. 

These observations reinforce the importance of the identified proteins. Since we 

detected them by LC-MS/MS with only minimal fractionation, these proteins are likely 

to be the most abundant representatives of their corresponding families, when family 

members can be distinguished. We detected proteins corresponding to almost the entire 

monolignol biosynthesis pathway (Table 3-2) (Humphreys and Chapple 2002). We 

detected one member in PAL, C4H, C3H, CCoAOMT, and CCR families, and two 

members in CAD, HCT and 4CL families. The one or two enzymes detected at each 

step of phenylpropanoid pathway could be the major enzymes that catalyze monolignol 

biosynthesis in rice stem. We also detected 5 peroxidases that are good candidates for 

acting in monolignol polymerization. One of the identified GT2s is CESA1, a likely 

primary cell wall cellulose synthase in rice (Table 3-3) (Wang et al. 2010b). Though 

only from experiment 2, we also detected OsIRX10, a GT47 involved in stem xylan 

synthesis. Mutants of this gene exhibit shorter stems, thinner secondary cell walls, and 

decreased cell wall xylose content (Chen et al. 2013). A GT61 we identified, OsXAX1, 

participates in synthesis of a xylan side chain (Chiniquy et al. 2012). Rice xax1 mutants 

have decreased FA and xylose. Among the six identified ATs, AT10 and AT4 have 

been previously reported to play a role in rice cell wall synthesis. AT10 incorporates 

pCA into arabinoxylan (Bartley et al. 2013), and OsAT4 functions as a p-Coumaroyl-

CoA:monolignol transferase that involve in lignin synthesis (Petrik et al. 2014; Withers 

et al. 2012). Functional data are also available for Brachypodium orthologs of rice 

OsAT3 and OsAT1 (Buanafina et al. 2016; Petrik et al. 2014). OsAT2 and OsAT9 have 
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not been characterized but are candidate feruloyl transferases based on expression 

patterns and a phylogenetic study in Brachypodium (Molinari et al. 2013). The 

correlation between AT9 and FA abundance in rice above-ground tissues also support 

its role as a feruloyl transferase (Lin et al. 2016) 

 

Many GHs we identified in the internode proteomics dataset are from families that may 

function in cell wall remodeling and defense responses (Figure 3-6) (Minic 2008). GH3 

and GH51 enzymes may remodel arabinoxylans. GH3s from barley seedlings and 

Arabidopsis stems have arabinofuranosidase or xylosidase activity (Lee et al. 2003; 

Minic et al. 2004). Two GH51s from barley have arabinofuranosidase activity on 

arabinoxylan (Ferre et al. 2000; Lee et al. 2001). These enzymes might be partially 

responsible for the decrease in arabinose:xylose ratio across internode development 

(Table 3-S1). Other families may function in minor polysaccharides in grass cell walls 

or pathogen cell walls. For example, the GH27 protein we detect may has galactosidase 

activity (Kim et al. 2002) and responsible for the decrease of galactose from young to 

old stem segments (Figure 3-3), though we cannot rule out that the decreases are caused 

simply by dilution due to addition of other components to the wall. Some rice GH16 

enzymes exhibit xyloglucan endotransglucosylase and xyloglucan endohydrolase 

activities (Hara et al. 2014). GH17 enyzmes have been found to be endo-1,3-β-

glucosidases that degrade pathogen cell walls, functioning in defense (Minic 2008); 

while, GH38s have mannosidase activity in bacteria, but unknown functions in plants 

(Suits et al. 2010).  
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We identified many protein kinases and novel phosphopeptides in the elongating 

internode, consistent with a role for protein phosphorylation in controlling stem 

development (Table 8). Currently, protein kinases with cell wall phenotypes or that 

regulate cell wall genes are mainly in three kinase groups. These include the LRR 

(Leucine-rich repeat) receptor like kinases, such as THE1 and FEI1 from Tyr-kinase-

like (TKL) group; MAPK6, which is in the CMGC (CDK, MAPK, GSK3, and CLK) 

group; and CDK28, from the CAMK (calcium/calmodulindependent protein kinase) 

group (Matschi et al. 2013; Morse et al. 2009; Oh et al. 2011). More than half of kinases 

identified in this study are from these three groups. One of the kinase from TKL group 

that we identified is a putative ortholog of the BRASSINOSTEROID INSENSITIVE 1-

ASSOCIATED RECEPTOR KINASE 1 (BAK1, LOC_Os02g09359). In Arabidopsis, 

BAK1 can form a heterodimer with BRASSINOSTEROID INSENSITIVE 1 (BRI1) in 

the presence of brassinosteriod to regulate plant development including inflorescence 

stem growth and secondary cell wall formation (Nam and Li 2002).  

 

Non-RD kinases, i.e., those that lack a conserved RD in the kinase subdomain IV, are 

predicted to function in pathogen recognition, while RD kinases are likely to be 

involved in other biological processes (Dardick et al. 2007; Dardick and Ronald 2006). 

The under representation of non-RD kinases in the elongating stem is consistent with 

pathogen detection not being a major function in the stem under our growth conditions, 

though could also be due to low expression of non-RD kinases relative to RD-kinases. 
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In our data, there are 5 identified kinases are likely to be processed through the 

secretory system. Many membrane-associated kinases, like WAK1, BRI1, and THE1, 

impact cell wall formation (Hematy et al. 2007; Oh et al. 2011; Park et al. 2001). We 

also identified a novel phosphopeptide from a membrane-associated LRR-III family 

receptor-like kinase. Autophosphorylation of LRR receptor like kinases is important for 

activation of plant growth regulation, disease resistance, and stress response signaling 

pathways (Mitra et al. 2015; Tor et al. 2009).  

 

 

Secondary Metabolites Vary During Stem Maturation   

During stem development, we observe that many metabolites change significantly. The 

vast diversity of secondary metabolites in plants evolved as protection against 

pathogens, insects, and animals (Dixon 2001; Gershenzon and Dudareva 2007; War et 

al. 2012), including functioning indirectly by alerting predatory insects to herbivory and 

other chemical ecological effects (Schuman and Baldwin 2016). Abundance of some 

rice pathogen-repelling metabolites varies across development. For example, 

diterpenoid phytoalexins, which repel rice blast fungus, are less abundant in young rice 

leaves relative to old leaves (Kodama et al. 1988). Susceptibility to insects like 
stemborers also differs during rice development (Bandong and Litsinger 2005; Viajante 

and Heinrichs 1987 ). For example, rice is susceptible to yellow stemborer at flowering 

but not at pre-booting or after panicle emergence (Viajante and Heinrichs 1987). 
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Correlation between rice metabolite abundance and pathogen and pest resistance across 

development might indicate a role for the metabolites in resistance (Gardner 1977; War 

et al. 2012). For example, 6,7-dihydroxycoumarin (esculetin) and phenylacetaldehyde 

were more abundant in the elongation and early mature stems (ES and EMS) but less 

abundant in the mature and post mature stems (MS and PMS). Esculetin has 

fungitoxicity and may be involved in defense (Gomez-Vasquez et al. 2004). On the 

other hand, tricin 7-glucoside, a phagostimulant that triggers feeding in insects like the 

small brown planthopper (Adjei-Afriyie et al. 2000; Bouaziz et al. 2001), remained 

relatively low until the post-mature stage, when grains are fully mature. 

 

This study catalogs cell wall changes, protein abundance, and secondary metabolite 

profiles of rice elongating internodes. The novel and relatively deep proteomics data 

reveals the presence of metabolic enzymes, including those for cell wall synthesis and 

remodeling, in agreement with the dramatic changes we observe in cell wall 

components. In addition, the changes of metabolite profiles associated with stem 

maturation could indicate potential defensive roles of secondary metabolites during 

plant development. The availability of the protein catalog and metabolite profiles 

provides a crucial tool for understanding fundamental molecular processes of grass stem 

development, over inferences from transcriptomics alone. These data will facilitate 

identification of protein targets for optimizing stem development and cell wall 

composition of grasses to improve their agronomic properties and downstream uses. 

 
  



91 

Materials and Methods  

 

Rice Growth Conditions, and Material Harvest 

Following an adaptation of a published protocol (Eddy et al. 2016), Oryza sativa ssp. 

japonica cv. Kitaake seedlings were grown in a mixture of Turface Athletics 

medium:vermiculite (1:1) in a greenhouse at 29-32°C during the day and 24-25°C 

during the night. Natural day lengths less than 13 h were supplemented with artificial 

lighting. Two weeks after germination, plants were fertilized three times per week with 

JACKS PROFESSIONAL LX 15-5-15 4CA2MG fertilizer. 

Plant samples were collected at development stages defined by “Biologische 

Bundesanstalt, Bundessortenamt und CHemische Industrie” (BBCH) identification keys 

of rice (Lancashire et al. 1991). Stem internodes II (the second internode from the top) 

at booting stage (BBCH stage 45) were harvested as the elongating stem internode (ES) 

for cell wall, proteomics, and soluble metabolite profiling. At this stage, the top of 

panicle is 0-1 cm beneath the top of flag leaf sheath. Internode II were cut right above 

node II where the leaf sheath and axillary bud attached to stem and at the dark green 

ring below node I. Axillary buds are carefully removed. For metabolite profiling, 

additional internode II at flowering stage (BBCH stage 65), grain filling stage (BBCH 

stage 75) and seed mature stage (BBCH stage 92) were harvested as early mature stem 

internode (EMS), mature stem internode (MS), post mature stem internode (PMS). The 

flag leaf blade and all roots of a plant in grain filling stage were harvested as mature 

leaf and root samples for metabolite profiling. Root samples were washed with de-

ionized water for 5 min. All samples for cell wall assays, proteomics and metabolite 
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profiling were immediately frozen in liquid nitrogen and stored at -80ºC.  

For cell wall assays, twenty internode II at ES with an average length of 10 cm were 

unevenly divided to segments and pooled per biological replicate, with 3 to 4 biological 

replicates collected, depending on the assay. The eight uneven segments from the base 

of internode II were as follows: S1-S4, the first four successive 5 mm segments; S5-S7, 

the next three 10 mm segments; and S8, the remainder of the internode. The uneven 

sampling strategy was designed based on the phloroglucinol staining data, which 

revealed rapid changes in lignin near the base of the internode, consistent with 

previously observed rapidly changing cell wall content in the basal part of the maize 

internode (Zhang et al. 2014). S1 segment locates right above the node II. Previous 

study haven shown that the intercalary meristem is about 2 mm above the node (Kende 

et al. 1998) The tissue below meristem exist before internode elongation and therefore 

is mature tissue.  

 

For proteomics, six developmentally matched internode II of ES were ground with a 

mortar and pestle with liquid nitrogen. This fine-ground stem material was divided into 

six equal parts with 3 technical replicates for Gel-LC-MS/MS (in-gel tryptic digestion 

followed by liquid chromatography-tandem mass spectrometry) and 3 technical 

replicates for in-solution digestion followed by liquid chromatography-tandem mass 

spectrometry.  

For metabolite profiling, all samples were pooled from two plants per biological 
replicate and three biological replicates were collected. 

Microscopy 
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We performed phloroglucinol staining on cross-sections of the internode II of ES as 

previously described (Liljegren 2010).  Internode sections were stained with 50 µL 

phloroglucinol solution for 2 min on slides and examined immediately after adding 50 

µL 50% (v/v) HCl. The sections were observed with a Leitz Dialux 20 microscope with 

a Leitz Wezlar 10x lens and imaged with an Olympus DP71 camera on automatic 

exposure mode controlled by DP controller software (ver 3.1.1.267).  

 

Cell Wall Measurements and Data Analysis 

For all cell wall assays, fresh-frozen internode II segments (S1 to S8) were ground, 

made into alcohol insoluble residue (AIR), destarched, and assayed for cell wall 

composition as described previously (Bartley et al. 2013). Briefly, hemicellulosic and 

pectic monosaccharides were released with 2 M TFA at 120°C for 2 hrs and measured 

by high performance ion exchange chromatography. The TFA-insoluble pellet was used 

for cellulose measurements via an anthrone assay. Lignin was measured by 

solubilization with 25% acetyl bromide in glacial acetic acid followed by absorbance 

measurements at 280 nm with a micro-plate reader. HCAs were released by incubation 

with 2 M NaOH at 25 °C for 24 h and measured by a high performance liquid 

chromatography with a UV detector (Bartley et al. 2013). MLG was measured with a 

lichenase-based kit (Megazyme, K-BGLU) as described previously (Vega-Sanchez et 

al. 2012). Three biological replicates were used for all experiments expect the lignin 

assay, which used four biological replicates. The R general package was used for data 

analysis. 
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Protein Extraction and Sample Preparation 

For experiment 1 and experiment 2, total proteins were extracted from each technical 

replicate with a phenol-based method previously described (Lee et al. 2010; Saravanan 

and Rose 2004). Briefly, plant material was re-suspended with extraction buffer 

consisting of 0.1 M Tris-HCl (pH 8.0), 10 mM EDTA, 0.9 M sucrose, 0.1% DTT, 1% 

protease inhibitor cocktail (Sigma P9599). Proteins were extracted with an equal volume 

of Tris buffered phenol (pH 8.8) for 30 min at 4ºC, and then precipitated and washed 

three times with 0.1 M ammonium acetate. The protein pellets were dried at room 

temperature and solubilized with 7 M urea, 50 mM Tris-HCl, pH 8.0. Protein samples 

were quantified with a BioRad Protein Assay Kit using BSA as a standard. For peptide 

preparation, 150 µg proteins of each technical replicate were loaded on three lanes on a 

12% (w/v) polyacrylamide gels with 5% (w/v) stacking gels. Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis was conducted on a BioRAD gel CryterionTM 

apparatus at an initial voltage of 120 V for 10 min followed by 100 V constant voltage 

in 1X Tris-Glycine running buffer. The gel was stained by Coomassie brilliant blue and 

divided into 5 slices corresponding to apparent molecular mass. Each gel slice was 

handled separately and diced into 1 mm cubes and incubated in detaining solution (200 

mM ammonium bicarbonate and 40% acetonitrile) for 30 min twice at 37ºC. The 

distained gel slices were dried and digested with proteomics-grade trypsin (Sigma, 

T6567). All peptide samples were equally split for LC-MS/MS in experiment 1 and 

experiment 2.  

 

For experiment 3, ground internode tissue was divided to four 15 mL centrifuge tubes 
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(1.5 g/tube) containing 15% (w/w) Polyvinylpolypyrrolidone (PVPP) as four technical 

replicates. To each tube, 10 mL of 0.1M ammonium acetate in MeOH with 2% β-

mercaptoethanol was added and incubated at -20 °C for 2 h. Samples were centrifuged 

at 4500 x g at 4°C for 10 min and the supernatant was discarded. The wash step was 

repeated 3 times, with the incubation step included between washes, as described above. 

After removing the supernatant from the final wash, pellets were dried using a Turbo 

Vap (Biotage, Charlotte, NC) under a stream of nitrogen for 10 min. 4 mL of a protein 

solubilization solution containing 7M urea, 2M thiourea, 4% 3-[(3-cholamidopropyl) 

dimethylammonio]-1-propanesulfonic, 10 mM tris(2-carboxyethyl)phosphine in 100 

mM NH4HCO3 was added and the samples were stored overnight at 4°C, then sonicated 

for 1 min in a sonication bath (Branson, Danbury, CT). Following sonication, samples 

were incubated for 30 min at 60°C with shaking at 1400 rpm, then briefly sonicated, 

vortexed, and centrifuged at 4500 x g, 4°C for 10 min. Prior to digestion, a Coomassie 

assay was performed on the supernatants containing the proteins. For digestion (with 

alkylation using chloroacetemide, 5 mM final concentration), the supernatants from 

each tube were transferred to 50 mL centrifuge tubes and diluted 10-fold with 50 mM 

NH4HCO3 and 100 µL of 1M CaCl2 was added. 10 mg/mL sequencing grade, modified 

trypsin was added in a 1:500 (w/w) trypsin:protein ratio. The samples were incubated at 

37°C for 3 h with gentle shaking. Digested proteins were desalted and washed using 

100 mg solid-phase extraction strong cation exchange (SPE-SCX) columns (Discovery 

DSC-SCX, Sigma-Aldrich, St. Louis, MO) on a GX-274 Liquid Handler (Gilson, 

Middleton, WI). Samples were concentrated using a SpeedVac SC 250 Express 

(Thermo Scientific, Waltham, MA). A second SPE-SCX wash step was performed 
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using a vacuum manifold (Visiprep, Sigma-Aldrich, St. Louis, MO). Samples were 

concentrated in a SpeedVac and a Bicinchoninic Acid Protein Assay (BCA) (Smith et 

al. 1985) assay was performed. Peptides were stored at -70°C. 

 

Peptides (200 µg) from each of the 4 technical replicates were dried in a SpeedVac. 30 

µL of 1 M triethylammonium bicarbonate (TEAB) was added to the dried peptides and 

4-plex iTRAQ™ labeling (Abdi et al. 2006) was performed following the 

manufacturer’s instructions (SCIEX, Framingham MA). 300 µL of water was added to 

hydrolyze the samples prior to combining the labeled samples together. The combined 

samples were concentrated and washed using SPE C18. The eluted sample was 

concentrated and a BCA assay was performed. 

 

 

A high-pH reversed phase liquid chromatography separation (HPRPLC) was performed 

using an Agilent 1100 HPLC System (Agilent, Palo Alto, CA) equipped with a 

quaternary pump, degasser, diode array detector, peltier-cooled autosampler, and 

fraction collector (set to 4°C for all samples). The separation columns consisted of an 

XBridge C18 250 x 4.6 mm analytical column containing 5 µM particles and equipped 

with a 20 x 4.6 mm guard column (Waters, Milford, MA) (Wang et al. 2011). Ninety-

six fractions were collected into microwells, with the first fraction collected after 15 

minutes into the gradient. Fractions were combined (rows) into 12 fractions, then 

concentrated using a SpeedVac. 
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Mass Spectrometry and Peptide Identification for Experiment 1 

The LC-LTQ Orbitrap XL was run at the University of Missouri, Proteomics Center. 

Samples were resuspended in 21 µL aqueous solution with 5% acetonitrile and 1% 

formic acid. Samples were vortexed, centrifuged, and transferred to autosampler vials.  

The vials were placed in a thermostatted (7°C) autosampler in the Proxeon Easy nLC 

system. A full loop injection (18µL) of each sample was loaded onto a C8 trap column 

(Pepmap100 C8 trap column Dionex/Thermo Scientific).  Bound peptides were eluted 

from this trap column onto a 25 cm x 150 µm inner diameter pulled-needle analytical 

column packed with HxSIL C18 reversed phase resin (5 µm particle size, 100 Å pore 

size, Hamilton Co).  Peptides were separated and eluted from the analytical column 

with a step gradient of solvent A (0.1% formic acid in water) and solvent B (99.9% 

acetonitrile, 0.1% formic acid) at 400nL/min at room temperature.  Initial conditions 

were 5% B, and ramping to 20% B from 2 min to 20min, then ramping to 30% B at 57 

min, then ramping to 90% B at 62 min, hold at 90% B from 62 min to 84 min, back to 

5% at 85 min and hold at initial conditions until 90 min.  

 

For the LC-LTQ Obitrap XL spectrometer (Thermo Fisher Scientific Inc., Waltham, 

MA, USA), nanoElectrospray positive-ion was used. FTMS data were collected at a 

resolution of 30000, 1 microscan, 300-1800 m/z, profile and a cycle of approximately 3 

seconds. The 9-most-abundant peptides were selected for ion-trap collision-induced 

dissociation MS/MS (2 m/z mass window, 35% normalized collision energy, centroid).  

Dynamic exclusion was enabled with the following parameters: repeat count 1, repeat 

duration 30 seconds, exclusion list 500, and exclusion duration 180 seconds.  
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The results of LC-LTQ Obitrap XL were analyzed by Proteome Discoverer (version 

1.4, Thermo Scientific) and Scaffold. The rice protein sequence FASTA file was 

imported and indexed for searching in Proteome Discoverer. A SEQUEST HT search 

and filtering was performed with the following parameters: tryptic peptides with a 

maximum mis-cleavage of 2, mass range 350 to 5000 Da, peptide mass tolerance 25 

ppm, fragment mass tolerance 0.8 Da, carbamidomethyl Cys and Met oxidation as 

variable mods. Data were then exported to Scaffold and filtered with peptide mass 

tolerance 10 ppm, peptide confidence > 95%, peptide per protein ≥ 2, and protein 

confidence > 99%, peptide FDR < 5.1%. Search results were exported to Scaffold and 

the results from different gel-slices were merged.  

 

Mass Spectrometry and Peptide Identification for Experiment 2 

For the proteomics with the LC-HDMSE method, peptide samples were resuspended in 

50 µL of 3% acetonitrile with 0.1% TFA and 5 fmol/µL yeast alcohol dehydrogenase 

(ADH1_YEAST, SwissProt P00330) as an exogenous standard for relative protein 

quantitation. Variable injection volume was used for each sample to maximize protein 

loads to 100 ng by adjusting the concentration of ADH1 to a final concentration of 1 

fmol/µL based on the concentration determined by scouting runs. A Symmetry C18 

column (180 µm x 20 mm) was used as trap column and a C18 HSS T3 column (75 µm 

x 150 mm) was used as the analytical column (Waters Corporation, Milford, MA). 

Nanoflow UPLC was performed at a flow rate of 500 nL/min. The LC gradient 

consisted of solvent A (0.1% formic acid in water) and solvent B (99.9% acetonitrile, 
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0.1% formic acid) starting at 5% B and ramping to 35% B over 90 min, then ramping to 

50% B to 95 min, then ramping to 85% B at 97 min, back to 5% at 107 min and re-

equilibrated until 120 min. Each sample was run in triplicate for statistical evaluation of 

technical reproducibility.  

 

A hybrid ion mobility quadrupole time-of-flight mass spectrometer, SYNAPT G2-Si 

HDMS (Waters, Wilmslow, UK) was used to identify and quantify the relative 

abundances of the tryptic peptides. LC-MS/MS experiments were acquired using ion 

mobility assisted data-independent analysis acquisition mode similar to that previously 

described (Distler et al. 2014). Data were collected at 25000 resolution, 50-2000 m/z, 

0.8 second/scan. The Transfer T-wave fragmentation method that we used applies a 

linear collision energy ramp from 17-60 V along the 20-200 drift bin scale (total of 200 

drift bins) for the elution of precursor peptide ions. 

 

The results of the LC-HDMSE experiment were analyzed with Progenesis™ QIP v2.0 

for proteomics (Waters, Wilmslow, UK). Each experiment was imported and 

chromatographically aligned. The peptide was identified by a previously described ion 

accounting algorithm (Li et al. 2009)  with rice protein sequences download from Rice 

Genome Annotation Project (Release 7, http://rice.plantbiology.msu.edu/index.shtml) 

(Ouyang et al. 2007). The search parameters were: tryptic peptides with a maximum 

mis-cleavage of 1, peptide mass tolerance 20 ppm, peptide accounting score >5, max 

protein mass 250 kDa, default protein modification (carbamidomethyl Cys and Met 

oxidation as variable mods), fragments per peptide ≥ 3, fragments per protein ≥ 7, 
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peptides per protein ≥ 1, FDR < 4%. Proteins identified by at least 2 unique peptides 

were analyzed. Proteins were quantified by the average of the 5 most abundant peptides 

or of all peptides if the number of peptides was less than 5 (Silva et al. 2006). The 

absolute amounts of proteins with no less than two unique peptides were calculated 

based on the response factors (counts per fmol) of an alcohol dehydrogenase standard of 

each run. 

Mass Spectrometry and Peptide Identification for Experiment 3 

Peptides were separated prior to MS analysis using a Waters nano-Acquity UPLC 

system system (Waters, Milford MA) configured for on-line trapping of a 5 µl injection 

(0.1 µg/µl peptide concentration) at 3 µl/min with reverse direction elution onto the 

analytical column at 300 nL/min. Separation occurred by way of in-house packed 

columns using Jupiter C18 media (Phenomenex, Torrence, CA), 5 µm particle size for 

trapping column (100 µm x 4 cm length) and 3 µm particle size for the analytical 

column (75 µm i.d. x 70 cm length) coupled to HF etched fused silica tips (Kelly et al. 

2006). Mobile phases consisted of (A) 0.1% formic acid in water and (B) 0.1% formic 

acid in acetonitrile with the following gradient profile (min, %B): 0, 1; 2, 8; 20, 12; 75, 

30; 97, 45; 100, 95; 110, 95; 115, 1; 150, 1. 

Tandem mass spectra (MS/MS) were generated for each fraction using high-energy 

collision dissociation (HCD) coupled to Q Exactive Plus mass spectrometer (Thermo 

Scientific, San Jose, CA) outfitted with a home made nano-electrospray ionization 

interface. The ion transfer tube temperature and spray voltage were 325ºC and 2.2 kV, 

respectively. Data were collected for 100 min following a 15 min delay from sample 

injection. FT-MS spectra were acquired from 400-2000 m/z at a resolution of 35k 
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(Automatic gain control target 3 x 106) and while the top 10 FT-HCD-MS/MS spectra 

were acquired in data dependent mode with an isolation window of 2.0 m/z and at a 

resolution of 17.5k (Automatic gain control target 1 x 105) using a normalized collision 

energy of 30 and a 30 s exclusion time.  

Spectra were converted to .dta files using Bioworks Cluster 3.2 (Thermo Fisher 

Scientific, Cambridge, MA) and amino acid sequences assigned to tandem mass spectra 

using the MS-GF+ search algorithm (Kim and Pevzner 2014) against the IRGSP-

1.0_protein.fasta (2016) database for O. sativa. Search parameters consisted of a 10 

ppm tolerance for precursor ion masses, and a ± 0.5 Da window on fragmentation 

masses, allowed dynamic modifications included oxidation of methionine (15.9949 Da), 

and static modifications included IAA alkylation of cysteine (57.0215 Da), and iTRAQ 

modification of lysine and N termini (+144.1021). Missed cleavages were allowed for 

full and partial tryptic peptides. Peptides were filtered to achieve a false discovery rate ≤ 

1% using spectral probability values generated by the search algorithm. A protein was 

considered positively observed if 2 or more unique peptides were measured for it across 

all iTRAQ labeled replicates. The ID of identified proteins are converted to Rice 

Genome Annotation Project ID by the online converter at OryzaExpress: 

http://bioinf.mind.meiji.ac.jp/OryzaExpress/ID_converter.php  

Sample preparation and Mass Spectrometry for Phosphoproteomics 

Similarly for phosphoproteomic analysis, six developmentally matching internode II of 

ES were ground with liquid nitrogen, divided into 3 replicates each for in-gel 

digestions. Proteins were extracted and digested with the same methods as experiment 1 

and experiment 2 but with the addition of 1% Phosphatase Inhibitors cocktails 1 & 2 
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(Sigma P2750 and Sigma P5726). For in gel digestion, 500 µg of total proteins were 

loaded to three lanes for sodium dodecyl sulfate polyacrylamide gel electrophoresis. 

Each lane on the gel was excised, subjected to in-gel trypsin digestion and then pooled. 

Tryptic digested peptides were enriched for phosphopeptides using PierceTM TiO2 

Phosphopeptide Enrichment and Clean-up Kit (Thermo Fisher Scientific, 88301 and 

88303) (Larsen et al. 2005). The eluted phosphopeptides were acidified with 2.5% TFA 

to pH 2.0 to 2.5, and cleaned with graphite column, lyophilized, and stored at −80°C.  

 

Phosphoprotein data were generated under contract by Pepproanalytics, LLC. 

Lyophilized tryptic phosphopeptides were resuspended in 25 µL of 0.1% formic acid 

and 10 µL was loaded. Peptides were desalted using C8 Captraps (Bruker-Michrom 

Bioresources, Auburn, CA). Chromatographic separations were achieved using a 55 

min linear acetonitrile gradient (5%-35% acetonitrile, 0.1% formic acid) with a column 

packed with “Magic C18” (200 Å, 5 µm bead, Bruker- Michrom Bioresources) 

stationary phase. The phosphoproteomics was conducted by LTQ Orbitrap XL with 

electron-transfer dissociation (Thermo Fisher Scientific, San Jose, USA). Survey scans 

(MS1) used the following settings: analyzer: FTMS; mass range: normal; resolution: 

60,000; scan type: positive; data type: centroid; scan ranges: 200-2000 m/z. The top 7 

masses from the survey scans were selected for data dependent acquisitions. Data 

dependent scan settings were the following: analyzer: ion trap; mass range: normal; 

scan rate: normal; data type: centroid. Dynamic exclusion, charge state screening and 

monoisotopic precursor selection were enabled. Unassigned charge states and masses 

with a charge state of one were not analyzed. The “data dependent decision tree” option 
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was enabled as previously described (Swaney et al. 2008), allowing for fragmentation 

of peptides using collision induced dissociation or electron transfer dissociation.  

 

The phosphoprotoemics results were analyzed with Proteome Discoverer (version 1.3, 

Thermo Scientific). Acquired spectra were searched against the rice protein sequence 

FASTA file concatenated with a randomized decoy database. Proteome Discoverer 

search parameters included a mass range of 200- 5,000 Da, positive mode polarity, 

signal-to-noise ratio of 3, and a minimum peak count of one. SEQUEST search 

parameters were static modification of cysteine- carboxyamidomethylation, 

dynamic/variable modifications of methionine-oxidation, and phosphorylation of Ser, 

Thr, and Tyr residues. Other search parameters included two missed tryptic cleavage 

sites and precursor and fragment ion tolerances of 1.0 Da and 1000 ppm, respectively. 

The peptide filter of “charge state versus Xcorr” was enabled. Additional filters 

included peptide mass deviation of 50 ppm, maximum ΔCn of 0.01, and at least one 

peptide per protein. Phosphopeptides that passed these filters were further analyzed 

using phosphoRS algorithm of Proteome Discoverer (Taus et al. 2011). The FDR was 

fixed at 0.01.  

 

Proteomics Data Availability and Analysis  

The mass spectrometry proteomics data generated by experiment1 and experiment 2 

were deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

(Vizcaino et al. 2013) with the dataset identifier PXD003676 (Reviewer account: 
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Username: reviewer09986@ebi.ac.uk   Password: PvKeb5Sj). Experiment 3 data were 

deposited to ProteomeXchange Consortium with the dataset identifier PXD000000. 

           

The proteins identified in both experiment 2 and experiment 3 with at least 2 unique 

peptides were used for GO analysis, KEGG pathway mapping, phylogenomic database 

search and cell wall protein database search. GO enrichment analysis was conducted at 

agriGO (http://bioinfo.cau.edu.cn/agriGO/analysis.php, v 1.2). For KEGG pathway 

search, we identified KO terms of all possible proteins identified with an online KO 

analysis tool at Rice Oligonucleotide Array Database 

(http://www.ricearray.org/analysis/overview.shtml). The identified KO terms are used 

for KO pathway search and mapping with KEGG mapper 

(http://www.genome.jp/kegg/mapper.html). We searched all possible protein models at 

specific rice GT and GH families, and at all transcription factor and kinases families in 

rice phylogenomic database (http://ricephylogenomics.ucdavis.edu/description.shtml). 

We also searched WallProtDB to find which previously identified extracellular proteins 

are present in our dataset (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/index.php).  

 

Metabolomics and Metabolite Identification  

Metabolites were extracted from frozen ground materials with a hot methanol-based 

method (Vanholme et al. 2012). Frozen samples were homogenized by Genogrinder and 

extracted with 1 mL methanol at 70ºC for 15 min. After 3 min centrifugation at 15000 

rpm, 300 µL supernatant was transferred to a new tube and lyophilized for storage. 

Samples were dissolved with 400 µL of cyclohexane and water (1:1) before use.  
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For LC-MS/MS, two parallel experiments were conducted on positive electrospray 

ionization (ESI+) and negative electrospray ionization (ESI-) mode with all three 

biological replicates. Each sample was run in triplicate to ensure technical 

reproducibility. A pooled sample was made of equal amount of each sample and run in 

quintuplicate. For each run, 2 µL was injected for metabolite profiling using liquid 

chromatography with an ACQUITY HSS C18 column (2.1 x 150 mm 1.7 µm Particle) 

coupled with Waters SYNAPT G2-Si mass spectrometry. For UPLC, a gradient of two 

buffers was used: buffer A (99/1/0.1, water/acetonitrile/formic acid, pH 3.0, formic acid 

was not used for ESI- mode), buffer B (99/1/0.1 acetonitrile/water/ formic acid, pH 

3.0); 95% A for 0.1 min decreased to 50 % A in 30 min (flow rate was 350 µL/min, 

column temperature was 40°C). For mass spectrometry, MSE was used for the 

acquisition mode, in which collision energy cycles between a low-energy state and a 

high-energy state, yielding fragment patterns for a large fractions of ions. Conditions 

were as follows: Mass range 50 to 1200 Da, scan speed 0.1 s per scan, source 

temperature 120°C, desolvation temperature 500°C, desolvation gas 1200 L/h, capillary 

1.0 KV, cone voltage 20 V, source offset 80 V, cone gas 50 L/h, resolution 20000 (full 

width at half maximum), high energy collision ramp 30 to 50 eV. 

 

Peaks were aligned, picked, normalized and identified using Progenesis QI for 

metabolomics analysis (v 2.1) with the settings stated below. Automatic peak picking 

was set to default sensitivity and the front signal before 2 min was removed. Every 

sample was normalized to an automatic determined reference sample based on all 
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compounds. We applied ChemSpider to search against a Plant metabolic pathway 

database (PlantCyc) and MetaScope to search against a custom rice metabolite database 

extracted from the Human Metabolome Database. For both methods, the identification 

parameters were: precursor mass tolerance 5 ppm, theoretical fragmentation was 

performed, fragment mass tolerance 5 ppm. Mass similarity, isotope similarity and 

fragmentation score were used to calculate the identification score for each peak 

(maximum 60). Fragmentation score was calculated based on the match with theoretical 

fragmentation (Wolf et al. 2010). Peaks with scores ³50 were tentatively annotated with 

the highest score.  The presences of pCA and apigenin in stem were verified by running 

standards and a pool of stem samples. 

 

Statistical analyses, including principal component analysis, analysis of variance 

(ANOVA), and k-means clustering were performed in R (v 3.12). For all analyses, we 

only used metabolite ions that are: (1) Consistently present or absent in the technical 

replicates of all samples (with an average consistency score of at least 0.4 in all 

sample).  𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦	𝑠𝑐𝑜𝑟𝑒 = | .
/
− 0.5| , where s is the number of presence in n 

technical replicates. For example, if the metabolite is present or absent in 4 out of 5 

technical replicates of the pool sample, it has a consistency score of 0.4. Technical 

replicates were average before analysis. For k-means clustering, we first performed k-

means clustering with k = 2-20 and compared the silhouette plot and average silhouette 

width of results. We used k = 5 for clustering since it gave high silhouette coefficients 

in most clusters and had fewer outliers. Sample ES-3 and PMS-1 were slightly out of 

stage when collected, and therefore excluded from the ANOVA and clustering analysis.  
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Figures and Tables  

 

 
Figure 8 Figure 3-1 The internode II elongates until the panicle fully emerges from 
the leaf sheath. 
Figure 3-1 The internode II elongates until the panicle fully emerges from the leaf 

sheath. Internode lengths were measured across four developmental stages: ES, 

elongating stem, the panicle is about to emerge from the flag leaf sheath; EMS, early 

mature stem, panicle fully emerged from the flag leaf sheath; MS, mature stem, green 

husks and milky grains; PMS, post mature stem, yellow husks and hard grains. Negative 

numbers and positive numbers in brackets indicate days before and after a stage, 

respectively.  
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Figure 9 Figure 3-2. Internode II samples used for cell wall analysis. 
Figure 3-2. Internode II samples used for cell wall analysis. (A) Internode II of 

elongating stem at boosting stage when the panicle is just about to emerge. Scale bar is 

1 cm (B) Phloroglucinol stain of cross-sections taken from the bottom (left) of the 

elongating internode to the top (right) indicate the gradual accumulation of lignin. The 

labels below each photo indicate the distance from node II. Scale bar is 100 µm. 
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Figure 10 Figure 3-3. Cell wall composition changes along the rice elongating 
internode. 
Figure 3-3. Cell wall composition changes along the rice elongating internode. The 

internode was divided into eight uneven segments, from the youngest segment (S1) to 

the oldest (S8) (See Methods). Cell wall components are presented as percent weight of 

de-starched alcohol insoluble residue (dsAIR). Error bars indicate standard errors of 

three biological replicates for all measures except lignin, which used four replicates. (A) 
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Acetyl bromide soluble lignin. (B) Cellulose measured by anthrone assay. (C) 

Hemicellulosic and pectic sugars. Ara, arabinose; Gal, galactose; Glc, glucose; Xyl, 

xylose; GalA, galacturonic acid; GlcA, glucuronic acid.  (D) Mixed linkage glucan 

measured by β-glucan assay kit (E) Cell wall-associated hydroxycinnamic esters 

(HCAs) including ferulic acid (FA) and p-coumaric acid (pCA) (F) The sum of the 

mass of cell wall components measured except mixed linkage glucan.  
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Figure 11 Figure 3-4. Representation of cellular component Gene Ontology (GO) 
terms among rice elongating internode proteins. 
Figure 3-4. Representation of cellular component Gene Ontology (GO) terms among 

rice elongating internode proteins. Star indicate over-representation with a false 

discovery rate <0.01 by hypergeometric test. Fold enrichment is the ratio of identified 

proteins to the expected number of proteins for each GO terms. 
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Figure 12 Figure 3-5. Top 10 over-representation of biological process Gene 
Ontology (GO) terms among rice elongating internode proteins. 
Figure 3-5. Top 10 over-representation of biological process Gene Ontology (GO) 

terms among rice elongating internode proteins. All terms are over-represented with a 

false discovery rate <0.01 by hypergeometric test. Fold enrichment is the ratio of 

identified proteins to the expected number of proteins for each GO terms. 
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Figure 13 Figure 3-6. The representation of identified proteins in glycoside 
hydrolases (GH) families that may modify or degrade grass cell walls. 
Figure 3-6. The representation of identified proteins in glycoside hydrolases (GH) 

families that may modify or degrade grass cell walls. Red bars indicate the number of 

GH proteins identified in this study. Blue bars indicate total number of GH proteins in 

rice GH database. GH families that modify pant cell wall components or localize to cell 

wall or expand in monocots are included. 
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Figure 14 Figure 3-7. Protein kinases in the rice elongating internode. 
Figure 3-7. Protein kinases in the rice elongating internode. (A) Kinases by 

phylogenetic groups. The TKL (Tyr kinase-like) group includes mixed lineage kinases, 

transforming growth factor-β receptor kinases, and Raf kinases. The CAMK group 

consists of calcium/calmodulin-dependent protein kinases. The STE group includes 

homologs of yeast sterile 7, sterile 11, and sterile 20 kinases. The CMGC group 

includes CDK, MAPK, GSK3, and CLK kinases. The AGC group includes PKA, PKG, 

and PKC kinases. (B) Kinase categories based on a conserved kinase RD motif. Kinases 

containing this motif are RD kinases while non-RD kinases lack the motif. (C) 

Predicted subcellular localization of kinases. 
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Figure 15 Figure 3-8. Methanol extracted metabolite profiles differ among rice 
organs and internode II of different stem development stages. 
Figure 3-8. Methanol extracted metabolite profiles differ among rice organs and 

internode II of different stem development stages. (A &B) Principal component analysis 

(PCA) of samples from different organs. Leaf samples were labeled green, root are 

purple, stem are blue. The pool sample was labeled black. (A) Negative ion mode. (B) 

Positive ion mode. (C &D) PCA of stem samples of different developmental stages. 

Light green, green, blue, and dark blue represent elongating stem internode (ES), early 
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mature stem internode (EMS), mature stage stem internode (MS), and post mature stem 

internode (PMS), respectively. (C) Negative ion mode. (D) Positive ion mode.   
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Figure 16 Figure 3-9. K-means clusters of metabolites with significant change 
during stem internode maturation. 
Figure 3-9. K-means clusters of metabolites with significant change during stem 

internode maturation. The four stages are: elongating stem (ES), early mature stem 
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(EMS), mature stem (MS), post mature stem (PMS). Metabolite ions with a q-value < 

0.01 by ANOVA test were used for clustering analysis. The total number of clusters 

was determined by silhouette plot. Metabolites change in similar pattern during the four 

stages were grouped into five cluster. Black lines show the relative abundance of all 

metabolite ions in each cluster and the red line shows the average of them. The total 

number of metabolite ions in each cluster is indicated by n (A) Negative ion mode (B) 

Positive ion mode 
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Table 1Table 3-1. Samples and methods for the three proteomics experiments in 
this study.  

 

Table 2Table 3-2. Rice phenylpropanoid enzymes observed in the elongating internode. 
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Table 3-2. Rice phenylpropanoid enzymes observed in the elongating internode. 

Locus ID a Gene 

family b 

Peptide 

count c 

Unique 

peptide

s d 

Function or putative 

function  

Citation 

LOC_Os02g41630 PTAL 83 50 Putative phenylalanine 

/tyrosine ammonia-lyase 

 

LOC_Os05g25640 C4H 3 2 Putative cinnamic acid 4-

hydroxylase 

 

LOC_Os02g08100 4CL 33 21 4CL3, 4-coumarate:CoA 

ligase  

(Gui et al. 

2011) 

LOC_Os06g44620 4CL 24 10 4CL4, putative 4-

coumarate:CoA ligase  

(Gui et al. 

2011) 

LOC_Os02g39850 HCT 10 8 HCT2, 

hydroxycinnamoyl-

Coenzyme A 

shikimate/quinate 

hydroxycinnamoyltransfe

rase 

(Kim et al. 

2012)  

LOC_Os04g42250 HCT 6 4 Putative 

hydroxycinnamoyl-

Coenzyme A 

shikimate/quinate 

hydroxycinnamoyltransfe

rase 

 

LOC_Os06g06980 CCoAO 14 14 Putative caffeoyl CoA 3-  
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MT O-methyltransferase 

LOC_Os05g41440 C3H 3 2 Putative p-coumaroyl 

shikimate 3′-hydroxylase 

 

      

LOC_Os08g34280 CCR 8 5 CCR1, cinnamoyl CoA 

reductase  

(Kawasaki 

et al. 

2006) 

LOC_Os02g09490 CAD 25 25 CAD2, cinnamyl-alcohol 

dehydrogenase  

(Zhang et 

al. 2006) 

LOC_Os09g23540 CAD 20 4 Putative cinnamyl-

alcohol dehydrogenase  

 

LOC_Os08g02110 POX 9 8 Putative class III plant 

peroxidase e 

 

LOC_Os02g58720 POX 8 7 Putative class III plant 

peroxidase e 

 

LOC_Os06g46799 POX 5 4 Putative class III plant 

peroxidase e 

 

LOC_Os09g29490 POX 5 4 Putative class III plant 

peroxidase e 

 

LOC_Os01g36240 POX 3 2 Putative class III plant 

peroxidase e 

 

LOC_Os01g40860 REF 14 8 Putative sinapaldehyde 

dehydrogenase  

 

 
a Rice Genome Annotation Project (Version 7) (Ouyang et al. 2007). 
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b Gene families involved in phenylpropanoid biosynthesis. PTAL, 

phenylalanine/tyrosine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-

coumarate:CoA ligase; HCT, hydroxycinnamoyl-Coenzyme A shikimate/quinate 

hydroxycinnamoyltransferase; CCoAOMT, caffeoyl CoA 3-O-methyltransferase; C3H, 

p-coumaroyl shikimate 3′-hydroxylase; CCR, cinnamoyl-CoA reductase; CAD, 

cinnamyl alcohol dehydrogenase; POX, peroxidase; REF, reduced epidermal 

fluorescence. 

c Total number of peptides identified for a protein including those that match with other 

proteins.  

d The number of unique peptides private to a protein.  

e Class III peroxidases belong to one of the more than 60 classes of peroxidases as 

described in the PeroxiBase (updated May 2015, http://peroxibase.toulouse.inra.fr/). 

Class I-III peroxidases are found only in plants, 
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Table 3Table 3-3. Rice cell wall-related acyltransferases and glycosyltransferases 
observed in the elongating internode. 
Table 3-3. Rice cell wall-related acyltransferases and glycosyltransferases observed 

in the elongating internode. 

Locus ID a Protein b Peptide 

count c 

Unique 

peptide 

d 

Function or putative 

function 

Citation 

LOC_Os01g09010 OsAT9 27 22 Putative feruloyl 

coenzyme A 

transferase involved in 

glucuronoarabinoxylan. 

(Lin et al. 

2016)  

LOC_Os01g42880 OsAT1 26 22 Involved in the 

feruloylation of 

glucuronoarabinoxylan 

in Brachypodium. 

(Buanafina 

et al. 

2016)  

LOC_Os01g42870 OsAT2 11 10 Putative feruloyl 

coenzyme A 

transferase 

(Molinari 

et al. 

2013)  

LOC_Os05g04584 OsAT3 11 9 Involved in the p-

coumaroylation of 

lignins 

(Sibout et 

al. 2016) 

LOC_Os06g39390 OsAT10 9 9 p-coumaroyl coenzyme 

A transferase involved 

in 

glucuronoarabinoxylan 

modification 

(Bartley et 

al. 2013)  
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LOC_Os01g18744 PMT 

/OsAT4 

5 5 p-coumarate 

monolignol transferase 

contributes to p-

coumaroylation of 

lignins 

(Petrik et 

al. 2014; 

Withers et 

al. 2012)  

LOC_Os05g08370 GT2-

CESA1 

5 5 Cellulose synthase  

LOC_Os03g60939 GT2 2 2 Putative 

glycosyltransferase 

 

LOC_Os02g22380 GT61-

XAX1 

15 14 Glycosyltransferase 

involved in xylan side 

chain synthesis. 

(Chiniquy 

et al. 

2012) 

LOC_Os06g27560 GT61-

IV-1 

15 14 Putative 

glycosyltransferase 

 

LOC_Os01g02900 GT61-

IV-2 

2 2 Putative 

glycosyltransferase 

 

LOC_Os02g22190 GT61-

III-1 

4 2 Putative 

glycosyltransferase, 

high expression in root 

and stem at transcript 

level  

 

b Acyltransferases (AT) and glycosyltransferases (GTs) involved in polysaccharide 

biosynthesis. PMT, p-coumaroyl-CoA:monolignol transferase; CESA, cellulose 

synthase A; IRX, irregular xylem; XAX, xylosyl arabinosyl substitution of xylan. GT61 

subclade III and VI were defined in Chiniquy, 2012.  
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c Total number of peptides identified for a protein including those that match with other 

proteins.  

d The number of unique peptides private to a protein.   
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Table 4Table 3-4. Metabolites enriched at different stages of rice stem internode 
development 
Table 3-4. Metabolites enriched at different stages of rice stem internode development 

   ESI- c ESI+ c 

K-means 

cluster a 

Enriched 

sample(s) b 

Metabo

lite 

ions d 

Representative 

metabolite e 

Metabolite 

ion d 

Representatives 

metabolite e 

Cluster 1 Elongating 

stem (ES) 

1021 coniferyl aldehyde 667 methyl cinnamate 

Cluster 2 Elongating 

stem (ES) 

and mature 

stem (MS) 

1426 NI 1112 6,7-

dihydroxycoumarin, 

phenylacetaldehyde 

Cluster 3 Early mature 

stem (EMS) 

1222 NI 440 demethoxycurcumin

,  xanthotoxol 

Cluster 4 Mature stem 

(MS) 

770 NI 284 benzaldehyde, 

olivetol 

Cluster 5 Post mature 

stem (PMS) 

1899 isoscoparin 2-(6-

(E)-p-

coumaroylglucosi

de), isoscoparin 2-

(6-(E)-

ferulylglucoside) 

717 tricin 7-glucoside 

a Clusters of metabolites were determined based on abundance within the dataset.  

b Sample or samples in which metabolites in the cluster are most abundant.  
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c Charge of the electrospray used to ionize metabolites prior to mass spectrometry. ESI-, 

negative electrospray ionization mode; ESI+, positive electrospray ionization mode. 

d The number of metabolite ions in the cluster. The retention time and mass-to-charge 

ratio of detected ions can be found in Table 3-S10 and S11. NI indicates no confident 

identifications.  

e Examples of tentatively annotated metabolites. Other annotated metabolites can be 

found in Table 3-S10 and S11. 
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Supplementary data 

 

Figure 17 Figure 3-S1 Proteins identified in this study partially overlap with the 
proteins in Rice Proteogenomics Database (Oryza PG-DB). 
Figure 3-S1 Proteins identified in this study partially overlap with the proteins in Rice 

Proteogenomics Database (Oryza PG-DB). Proteins with at least 2 peptides from Oryza 

PG-DB were compared to proteins identified by at least 2 unique peptides in this study. 

Percentages indicate the percentage of proteins only presented in each dataset.  

 

(53%)(55%)
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Figure 18 Most phenylpropanoid enzymes were identified in rice elongating internode II 
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Figure 19 Figure 3-S3. Presence of previously reported extracellular proteins in the 
rice elongating internode. 
Figure 3-S3. Presence of previously reported extracellular proteins in the rice 

elongating internode. Proteins identified by this study were searched against 

WallProtDB database for extracellular proteins that have been reported by cell wall 

proteomics.  
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Figure 20 Figure 3-S4. Transcription factors identified in the rice elongating 
internode. 
Figure 3-S4. Transcription factors identified in the rice elongating internode. Identified 

proteins were searched against a rice TF database for transcription factors.  
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Figure 21 Figure 3-S5. The abundance of p-coumaric acid (pCA) and apigenin 
differ among organs. 
Figure 3-S5. The abundance of p-coumaric acid (pCA) and apigenin differ among 

organs. Error bars are standard deviation among three biological replicates.  
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The following supplementary table will be available at Frontiers in Plant Science 

 

Table 3-S1. Cell wall composition in internode segments. 

Table 3-S2. Protein identified with at least 2 unique peptides by both experiment 2 and 

experiment 3. 

Table 3-S3. Biological process, molecular function, and cellular component GO terms 

enriched in the rice elongating internode. 

Table 3-S4. KEGG ontology analysis of identified proteins in the elongating internode. 

Table 3-S5. Identified glycoside hydrolases (GHs) from the rice GH database. 

Table 3-S6. Presence of previously identified proteins by cell wall proteomics.. 

Table 3-S7. Characteristics of rice kinases identified in the elongating internode.  

Table 3-S8. Transcription factors detected in the elongating internode. 

Table 3-S9. Phosphopeptides identified in the rice elongating internode. 

Table 3-S10. Relative abundance of negative ions in four stages of rice stem internodes. 

Table 3-S11. Relative abundance of positive ions in four stages of rice stem internodes. 
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Abstract 

Thermochemical conversion can rapidly and efficiently convert biomass to liquid fuel 

precursors, which can be upgraded to transportation fuels by catalytic reactions. Since 

convention catalytic strategies can not handle all classes of thermal products as a 

mixture, separation of thermal products is necessary. Thermal fractionation is an 

approach to separate products by applying successively increasing series of 

temperatures. However, the broad decomposition temperature range of lignin hinders 

the segregation of lignin-derived products from polysaccharide-derived products. 

Therefore, reducing lignin decomposition at low temperature (290°C), at which 

polysaccharides decompose, will enhance the efficiency of thermal fractionation. In this 

study, we examined a down-regulation mutant of Caffeic acid O-methyltransferase 

(COMT) that synthesize the precursor of lignin S subunits. We hypothesized the 

reduction of S subunits in the COMT mutant as reflected by a decreased ratio of S 

subunit to G subunit (S/G ratio) will reduce low energy bonds in lignin and therefore 

increase the thermal stability of lignin. We measured the yield of phenolic products, 

which are mostly from lignin and hydrocinnamic acid (HCAs), at low (350°C) and high 

conversion temperatures (500°C). The mutant biomass has decreased yield of phenolic 

products at low temperature and no significant change of total phenolic product yield 

comparing to the wild-type. Though HCAs, which are less thermally stable, also 

decrease in the mutant, a reduction of phenolic product yield at low temperature is still 

observed after HCAs being removed from biomass by an alkali-treatment. We therefore 

conclude that reducing lignin S subunits can reduce lignin decomposition at low 

temperature and facilitates better segregation of lignin derived-thermal products from 
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polysaccharide-derived products. This study demonstrated genetic manipulation on 

lignin structure can help improving the efficiency of thermal fractionation. 
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Introduction 

Thermochemical conversion of biomass, and especially biomass fast pyrolysis, has been 

projected to be the most efficient method producing drop-in renewable fuels in the mid- 

to long-term. As compared to enzymatic conversion technologies, the rates of reaction 

afforded by the very high temperatures involved and the elimination of the high fresh 

water requirements drive these efficiency gains (Verma et al. 2012). Despite this, the 

significant downstream processing required to convert biomass pyrolysis products into 

refinery-compatible product streams remains a barrier to industry adoption of these 

technologies (Tanger et al. 2013). Due to the myriad issues involved with the liquid 

handling of condensed biomass pyrolysis products (hereafter referred to as ‘bio-oil’), 

some form of catalytic treatment is necessary, primarily to remove oxygen which is 

responsible for many of the undesirable properties of bio-oil including its reactivity, 

acidity, and low heating values. 

 

A variety of catalytic strategies are used to treat biomass pyrolysis products; some 

target the uncondensed vapor products (in-situ or ex-situ catalytic fast pyrolysis), while 

others are designed for liquid-phase bio-oil. Earlier work in pyrolysis product 

valorization involved investigation into the suitability of familiar petrochemical 

catalytic chemistries (most commonly zeolite cracking or hydrodeoxygenation) 

(Bridgwater 1994; Carlson et al. 2009). The resulting product streams are usually 

refinery compatible but suffer from poor efficiencies or economics. For example, 

hydrodeoxygenation could be very suitable for conversion of lignin derived phenolics, 

typically with 6 to 9 C-C bonds and high C:O ratios, but the high amounts of lighter, 
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C1-C4 polysaccharide-derived oxygenated species present lead to poor overall liquid 

carbon retention and prohibitive hydrogen consumption. Similarly, zeolites can 

effectively convert lighter oxygenates into BTX streams but rapidly deactivate due to 

internal and external coking reactions, causing much of the carbon in biomass to be lost 

as CO2 during catalyst regeneration (Carlson et al. 2008). To improve catalyst 

performance, some separation of the pyrolysis products must be achieved prior to 

reaction.  

 

One strategy proposed in the literature for segregation of biomass pyrolysis products is 

the use of a successively increasing series of temperatures to fractionate the biomass 

into product streams of approximate composition of those produced by individual 

biopolymers (Herron et al. 2017). This approach, using thermal segregation only, is 

attractive when compared with other options such as hybrid thermal-solvolysis due to 

low requirements for process chemicals or costly solid-liquid operations.  

 

However, a challenge for this approach is the broad temperature decomposition range of 

lignin. While most hemicelluloses and cellulose typically thermally decompose at 

separate temperature ranges, lignin is known to begin to decompose at temperature 

ranges which span those of both polysaccharides, causing the characteristic phenolic 

products to be released into multiple thermal streams (Antal and Varhegyi 1995; 

Varhegyi et al. 1997). This is especially troublesome for the lowest-temperature 

regimes targeted at decomposing hemicellulose. Hemicellulose degradation yields most 

of the acetic acid produced in pyrolysis, and acetic acid is known to catalyze 
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oligomerization reactions with these heavy phenolics (Tanger et al. 2013). In addition to 

this storage & handling concern, hemicellulose products are in general well suited for 

upgrading via zeolites or using aldol condensation/ketonization catalysts, both of which 

are deactivated by lignin-derived phenolics (Cheng et al. 2016).  

 

While the use of a low-lignin feedstock could help to minimize the selectivity to lignin-

derived phenolics in a first stage product stream, high amounts of lignin-derived 

phenolics are desirable from a whole-process viewpoint as the high C:O ratio and 

abundant C-C bonds could lead to relatively low-input fuel range molecules. However, 

if the thermal stability of the lignin could be altered to suppress decomposition at lower 

temperatures, especially without reducing the total lignin amount, both of these 

desirable outcomes could be achieved.  

 

The broad range of the thermal stability of lignin arises from the variety of different 

types of linkages present in the polymer. Lignin is a complex, cross-linked polymer 

comprising primarily three monomer (H, G, and S) units cross-coupled via oxidative 

reactions during incorporation in the cell wall (Boerjan et al. 2003). Figure 4-S1 shows 

an overview of these three lignin monomers and their resulting structures in the 

polymer. The most frequently occurring polymer unit is the β–O–4 structure (A), 

accounting for more than half of the inter-unit linkages; other commonly occurring units 

are β–5 (B), β–β (C), 5–5 (D), 5–O–4 (E), and β–1 (F) (other units are various special 

cases, and are included by the author for completeness). Increased production of G 

monomers over S monomers (i.e., a lower S/G ratio) leads to an increased prevalence of 
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β–5, 5-5, and 5-O-4 linkages in the lignin polymer over β–O–4, β–β, and β–1 linkages 

due to the increased availability of the 5 position as a reaction site (Boerjan et al. 2003). 

Table 4-1 summarizes the results from Density functional theory (DFT) calculations of 

the enthalpy of dissociation for these six bonds. These suggest that, in general, due to 

the increased prevalence of high-stability linkages with low S/G ratios, we should 

expect the initiation of the radical depolymerization reactions of the lignin biopolymer 

to be slower at lower temperatures for low S/G ratio lignins. This would result in lower 

selectivity to lignin decomposition products at lower temperatures.  

 

As lignin synthesis is a biological process, it includes multiple steps of reaction. The 

production of all three monomers is determined by several enzymes in the 

phenylpropanoid synthesis pathway (Boerjan et al. 2003). One of them, Caffeic acid O-

methyltransferase (COMT) is responsible for the methylation on 5-OH group to 

produce sinapaldehyde and sinapyl alcohol, the precursors of S lignin monomer. The 

knockdown mutants of COMT in Arabidopsis have lower S/G ratio as a result of the 

reduction of S monomer and relative elevation of guaiacyl and 5-hydroxyl guaiacyl 

monomer. In this mutant, NMR data indicate inter-unit linkages such the β-aryl ether 

(β-O-4) (A) and resinol (β-β) (B) decreased but benzodioxane (β-O-4) increased 

(Vanholme et al. 2010b). The COMT mutants in bioenergy crops such as switchgrass 

and sorghum also show lower S/G ratio phenotype, which indicates COMT plays a 

similar role across dicot plants and monocot plants.  

 



141 

Switchgrass is an excellent bioenergy crop because it has high biomass production, low 

requirement for water and nutritional input, good tolerance to drought and high 

photosynthesis efficiency. Two-year field study indicates the knockdown of COMT in 

switchgrass show 20-30% reduction in lignin S/G ratio and 10% reduction of total 

lignin in senesced plants (Baxter et al. 2014). Polysaccharides in the mutants are mostly 

unchanged expect a 6-8% elevation of xylans. At the secondary year of growing in 

fields, the COMT mutants did not show reduction in dry biomass yield, tiller height, 

plant diameter, tiller number and disease resistance, which indicate plant growth and 

productivity is not sacrificed for the change in lignin composition. These characteristics 

of COMT mutant make it suitable for improving biofuel production.  

 

In this study, we compare the low-temperature and high-temperature thermochemical 

products of the genetically modified switchgrass COMT mutants to those of the 

unmodified wild-type. We hypothesize that this modification will result in lower 

phenolic product yield during low temperature pyrolysis for the down-regulated mutants 

as compared with their unmodified wild-type.  
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Results and Discussion 

 
Since HCAs contribute to the yield of phenolics products and are decreased in a 

sorghum COMT mutant (Palmer et al. 2008), we first checked the HCA content in the 

switchgrass COMT mutant. A significant decrease of both FA and pCA are observed. 

Though FA only has a subtle decrease in the COMT mutant, pCA decreases more than 

30% (Figure 4-1). The decrease of HCAs is likely to be a side effect of COMT down-

regulation, which may impact the phenylpropanoid pathway that synthesizes both lignin 

precursors and the putative precursors of cell wall incorporated HCAs. A previous 

transcriptomics and metabolomics study indicates the phenylpropanoid pathway are 

suppressed in the Arabidopsis COMT mutant and other S-lignin mutants (Vanholme et 

al. 2012). It has been proposed there is a feedback system to adjust the phenylpropanoid 

pathway in response to the modifications on lignin though the regulatory mechanisms 

for this system is mostly unknown (Vanholme et al. 2012).  

 

We did thermal conversion experiment on the fine-ground biomass of two COMT 

mutant lines named as COMT-2 and COMT-3. To separate the factors that can 

contribute to the yield of phenolic products, we included biomass samples treated by 

NaOH and water. The water treatment will remove soluble phenolic metabolites in 

biomass and the NaOH treatment will remove both soluble phenolic metabolites and the 

HCAs incorporated to cell walls. A two-step thermal conversion was conducted on the 

treated and untreated biomass with the low temperature regime at 290°C and the high 

temperature regime at 500°. Thermal product yields at both steps were measured by a 

GC/MS-FID system. Since the lignin in COMT mutant is 10% less than the wild type 
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(Baxter et al. 2014), the yield of phenolic products was normalized by the weight of 

lignin.  

 

For untreated biomass samples, the mutant biomass yield 30% less phenolic products 

than the wild type at low temperature (290℃) (Figure 4-2A). The phenolic product 

yield at high temperature (500℃) is only significantly decreased in the COMT-2 mutant 

line but not in the COMT-3 mutant line (Figure 4-2 B). The changes of total phenolic 

product yield in the mutant (Figure 4-2 C) was similar to that of the high temperature 

regime since more than 80% of the total phenolic products were produced at the high 

temperature step.  

 

Comparing to untreated samples, the water treated samples yield 50% less phenolic 

products and the NaOH treated samples yield 80% less phenolic products at low 

temperature (Figure 4-2A). However, the phenolic product yield at high temperature 

remains the same after both treatments. This indicates HCAs and soluble phenolic 

metabolites have low thermal stability and contribute to a large proportion of phenolic 

product yield at low temperature. When comparing the mutant to the wild type, the 

water treated mutant biomass yield 40% less phenolic products at low temperature than 

wild type biomass (Figure 4-2A). This indicates soluble phenolic metabolites removed 

by water did not contribute to the yield reduction in the mutant. After removing both 

cell wall incorporated HCAs and soluble phenolic metabolites by NaOH, the mutant 

biomass still yield 30% less phenolic products at low temperature than the wild type 

biomass (Figure 4-2A). This suggests lignin has a main contribution to the low 
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temperature yield reduction in the COMT mutant. A comparison between water treated 

samples and NaOH treated samples indicates HCAs may also contribute to the yield 

reduction since the reduction was diminished after the removal of HCAs (Figure 4-2A). 

For high temperature regime and total phenolic product yield, the COMT-3 line shows 

no significant change comparing to wild type but the COMT-2 line shows a yield 

reduction (Figure 4-2 B and C). The reason for the yield reduction of COMT2 at both 

high-temperature and low temperature is unknown. One possibility is some parts of 

altered lignin become highly thermally unstable and were converted to light gases like 

CO2 rather than phenolic products even at low temperature.  

 

 

Overall, these results indicate that switchgrass COMT mutant biomass produce fewer 

amounts of phenolic products upon low-temperature conversion than their 

corresponding wild-types. The lignin structure and the amount of cell wall incorporated 

HCAs may contribute to the level of lignin decomposition at low temperature. Based on 

a previous NMR study on the lignin of an Arabidopsis COMT mutant, decreased 

abundance of β–O–4 inter-unit linkages in the mutants is caused by the suppression of S 

monomer formation. This structural change can lead to higher bond dissociation 

enthalpy distributions by reducing percentage of thermally unstable bonds (Table 4-1), 

and therefore an increase in the overall thermal stability of lignin. Admittedly, there 

could be other uncharacterized changes in the COMT mutant that also contribute to the 

low temperature yield reduction. To further confirm S/G ratio is the main contributor, 
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we will test how the phenolic yield at low temperature influenced by the natural 

variation of lignin S/G ratio in diverse switchgrass genotypes in the future. 

 

Besides more detailed mechanism study, we also evaluate the fractionated thermal 

products from COMT mutant can benefit downstream processing. Since COMT-3 

biomass have a lower phenolic yield at low temperature and no reduction in total 

phenolic yield, we would expect better performance of condensation/ketonization 

catalysts on the low temperature fraction of thermal products and unaltered performance 

of hydrodeoxygenation on high temperature faction.  
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Materials and Methods  

Biomass Source 

C. N. Stewart and associates generously provided dry switchgrass biomass of two 

independent Caffeic acid O-methyltransferase knock down lines COMT2 and COMT3, 

as described and characterized in a previous study(Baxter et al. 2014). The isogenetic 

wild-types and mutants exhibit significant differences in their S/G ratios, while the total 

lignin content is only slightly lower in the mutants.  

Biomass Preparation 

Dry switchgrass biomass was ground with a Thomas Wiley® Mini-Mill with 60-mesh 

screen. Approximately 100mg each of 5 biological replicates for each genetic line 

(COMT-2 and COMT-3) were mixed together to create sample pools. From these 

mixtures, approximately 1mg of biomass was prepared for analysis in a CDS analytical 

5250T pyroprobe system, attached to a Shimadzu QP-2010+ GC/MS-FID. The samples 

were loaded into a fire polished quartz tube with a filler rod below to prevent the 

samples from falling out of the bottom. The quartz tubes were weighed before and after 

sample loading, and the difference was taken as the mass of the sample in the tube. The 

tubes were then transferred into the pyroprobe for rapid screening. 

Pyrolysis Experiments 

Pyrolysis experiments were done in a ‘double-shot’ manner; the first temperature 

regime was 290°C with a hold time of 120 seconds, followed by 500°C for 60 seconds. 

Evolved vapors from the pyroprobe apparatus were transported via transfer lines heated 

to 300°C to the injection port of a Shimadzu QP-2010+ GC/MS-FID system with a 60m 
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RTX-1701 column. The resulting ion chromatogram was used to identify significant 

peaks in the FID chromatogram, which was used for quantification.  

Two publications by (Faix et al. 1991) were used as the primary means of compound 

identification. Each integrated FID peak area was then divided by the total mass of the 

material in the sample tube, thereby normalizing each experiment to the initial amount 

of sample fed into the pyroprobe. Identified compounds were assigned into lumps of 

compounds based on organic functionalities, in a similar manner as described by 

Dauenhauer et al. (Paulsen et al. 2013). Lumped areas were summed and the mean 

values of these compound lumps across the technical replicate experiments performed 

are reported throughout this work as ‘yield’. The identified compounds and their lumps 

as used in this work are listed in table 3. 

 

NaOH and Water Treatment 

About 60mg of biomass are weighed and extracted with 10ml 2M NaOH and water 

separately in 15ml tubes. The tubes are rotated on a shaker for 24h at room temperature. 

NaOH extraction is terminated by adding 2ml concentrated HCl to adjust pH to 2-3. 

The tubes are centrifuged at maximum speed for 5min to remove supernatant. The 

pellets are wash twice with deionized water and lyophilized overnight for thermal 

conversion analysis. Water washed samples go through the same washing steps as a 

control.   

Analysis of Hydroxycinnamic Acids 

The hydroxycinnamic acids (HCAs) are extracted and analyzed using the previously 

published method (Bartley et al. 2013). Briefly, biomasses are extracted with 2M NaOH 
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at room temperature and quantified by a Dionex Ultimate 3000 HPLC system (Thermo 

Scientific-Dionex) with C18 column and UV detection.  
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Figures and Tables  

  

Figure 22 Figure 4-1. Hydroxycinnamic acids (HCAs) in switchgrass COMT 
mutant biomass. 
Figure 4-1. Hydroxycinnamic acids (HCAs) in switchgrass COMT mutant biomass. 

Error bars indicate standard deviation of four biological replicates of the COMT2 line. 

Asterisks indicate the difference is significant at 0.05 level by two tail t-test. 
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Figure 23 Figure 4-2 The yields of phenolic products in a two-step thermal 
conversion at 290°C and 500°C. 
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Figure 4-2 The yields of phenolic products in a two-step thermal conversion at 290°C 

and 500°C. Yield values are (Summed phenolic product peak areas) / (mg of total 

biomass phenolics). (A) First step low temperature conversion at 290°C (B) Second step 

high temperature conversion at 500°C. (C) The summed yield from both steps. The 

sample for each mutant line is a pool of biomass from 5 plants. Each value reported is 

the mean of three technical replicates; error bars indicate 95% confidence interval of the 

mean for these three replicates. Asterisks indicate the difference is significant at 0.05 (*) 

or 0.01 (**).  
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Table 5Table 4-1. Summarized results from Density Functional Theory (DFT) 
calculations of the enthalpy of dissociation for six common lignin crosslinks. 
Table 4-1. Summarized results from Density Functional Theory (DFT) calculations of 
the enthalpy of dissociation for six common lignin crosslinks. 
  

Bond Structure ΔHdiss , kcal/mol, 298K Reference 

β-5 

 

101.6 – 107.1 (Kim et al., 
2011) 

5-5 

 

111.8 – 118.1 (Kim et al., 
2011) 

5-O-4 

 

77.7 – 82.5 (Parthasarathi 
et al., 2011) 

β–O–4 

 

67.7 – 71.3 (Kim et al., 
2011) 

β-β 

 

81.1 – 82.6 (Elder, 2014) 

β-1 

 

64.7 – 69.1 (Parthasarathi 
et al., 2011)  
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Figure 24 Figure 4-S1. Lignin monomers and structures in the polymer. 
 
Figure 4-S1. Lignin monomers and structures in the polymer. Figure from a review by 
Boerjan et. al. (Boerjan et. al.2003)  
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Chapter 5: Conclusions and Future Directions 

With this dissertation, I aimed to expand knowledge of grass cell wall synthesis and 

provide a proof of concept for how this knowledge could be applied to improve the 

biomass to biofuel conversion. I achieved three specific objectives as follows: (1) 

Understanding how cell wall composition changes over development in above-ground 

organs of rice (2) Identification of candidate cell wall synthesis genes the alteration of 

which may improve biomass chemical conversion efficiency (3) Demonstration that cell 

wall engineering can improve thermal fractionation, a means to improve biomass 

conversion to fuels and other chemical products.  

 

Chapter 2 reported measurements of cell wall composition and transcripts in 30 samples 

from different rice organs and developmental time points and tested a strategy to 

identify grass cell wall synthesis genes by correlating cell wall abundance and gene 

expression. For this strategy, we focused on candidate genes highly expressed in rice 

instead of looking at the whole transcriptome to reduce the background noise. We 

compared different correlation methods based on performance of positive and negative 

controls. We found that the cell wall composition was distinct in young and old tissues, 

which suggests different synthesis activities in them. Therefore, we subdivided the 

samples into a young subset and an old subset based on cell wall composition and 

performed correlation on each subset. With all the efforts to improve signal to noise 

ratio, we identified nine cell wall candidate genes and corresponding cell wall 

components. One of the candidate gene, AT9, may incorporate FA into arabinoxylan 
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and is a promising target to reduce cell wall recalcitrance. However, there is still space 

to improve since several positive control genes did not correlate with the cell wall 

components they synthesize. The noise that disrupted the control correlations could be 

from organ- or tissue-specific expression, post-transcriptional regulations, or substrate 

avaliablity. Therefore, we decided to focus on a single organ and proteomics study in 

Chapter 3.  

 

In Chapter 3, we analyzed cell wall composition along eight segments of an elongating 

stem internode at booting stage and the proteins and metabolites present in the whole 

stem internode. I choose stems since they represent >50% of the above ground biomass 

of many species being developed as energy crops (Fu et al. 2011; Olson et al. 2012). 

Knowledge of cell wall biosynthesis in stem also may be applied to other organs. 

According to the data from Chapter 2, a majority of cell wall genes expressed in 

internode samples are also expressed in leaf samples though the magnitude is usually 

different. Microscopy analysis revealed this elongation internode have uniform tissue 

structures longitudinally, which we expect to produce less noise caused by the tissue-

type changes across different segments. Cell wall analysis reveals active cell wall 

synthesis, especially in lower segments. We tested several proteomics methods on this 

elongating internode and end up with 2356 proteins being confidently and repeatedly 

identified. At this depth, we found most enzymes required for lignin present in this 

elongating stem. We also identified several GTs and ATs, of which AT9 was the most 

abundant one by total peptide count. As only 60% of transcripts of the maize-sorghum 



156 

syntenic genes are translated to proteins (Walley et al. 2016), the presence of these 

enzymes suggests they are likely to be functional.  

 

Both Chapter 2 and Chapter 3 were dedicated to developing strategies for studying cell 

wall biosynthesis with high-throughput technologies (Objective 1). The correlation 

analysis method developed in Chapter 2 and the proteomics and the cell walls 

characterization of elongating internodes established in Chapter 3, lays the groundwork 

for a comprehensive multi-omics experiment to reveal the molecular mechanism of cell 

wall synthesis and rice stem elongation. More specifically, I propose to measure 

transcripts, proteins, and phosphopeptides in the eight internode segments 

corresponding to the eight segments in Chapter 3. By correlating these data with the cell 

wall measurements in Chapter 3, transcripts, proteins, and protein phosphorylation 

events that related to cell wall synthesis or remodeling can be identified. Since the 

internode possesses a unidirectional development gradient, the samples are continuous 

in development from young to old. This will allow us to interpret the results even if 

there is a lag between the expression of a cell wall synthesis gene and the accumulation 

of the cell wall components being synthesized. The other advantage of this experiment 

is we can interpret the high-throughput measurement together to reveal post-

transcriptional regulation and post-translational regulation. Phosphorylation as one 

important translational-regulation mechanism have been shown to change the activity or 

the half-life of some cell wall enzymes like CesA (Chen et al. 2010; Taylor 2007), or 

the activity of cell wall transcription factors such as MYB4 (Morse et al. 2009). A 

correlation network built on this multi-omics data will not only provide valuable 
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information about the regulation of cell wall synthesis but also the regulation of other 

developmental processes like cell division and cell wall elongation that occur in the 

lower segments (Kende et al. 1998). A recently maize study highlighted that gene 

regulation networks combining transcriptome, proteome, and phosphoproteome 

preforms better than the networks with single input (Walley et al. 2016). They evaluated 

the performance of networks by known target genes of two transcription factors and 

found the multi-omics network can identify more true positives than single-input 

networks at the same false positive rate. Therefore, I would expect the multi-omics 

network have advantages over most current co-expression networks that only built on 

transcriptomic data (Cao et al. 2012; Mutwil et al. 2011). All these results will guide 

functional study of cell wall synthesis and regulation and yield genetic alterations that 

are very likely to improve the efficiency of biofuel production.  

 

The acyltransferase genes and glycosyltransferase genes identified in rice by Project 2 

and Project 3 may improve the efficiency of chemical conversion of rice straw, in 

particular, which is a major agricultural waste globally. The mutants for many of the 

identified genes such as AT7 and AT9 are available and we are in the process of 

characterizing them (Jeon et al. 2000). Previous characterization of an AT7 knock-down 

mutant show a decrease of FA (Bartley et al. 2013), we expect the biomass of this 

mutant to have elevated sugar yield due to the disruption of FA cross-links.  However, 

the FA phenotype and the potential sugar yield phenotype of this AT7 mutant have to 

be confirmed in RNAi knockdown lines. We could study the function of AT9 by 

overexpressing it in Arabidopsis, which only have one AT that was not shown to 
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influence cell wall associated FA in its mutant. If we are able to confirm the function of 

AT as an FA transferase in Arabidopsis, we will make knock-down or knock-out rice 

mutants to see if the sugar yield will be increase or not. The AT genes in switchgrass 

and other species has been found by a phylogenetic study, which allow the genetic 

manipulation of them in switchgrass (Karlen et al. 2016).     

 

Chapter 4 demonstrated that COMT mutants with altered lignin structure display better 

segregation of lignin-derived products from polysaccharide-derived products by 

yielding less lignin-derived product mass with low temperature thermal treatment than 

the from the wild type. This indicates the reduction of S subunits in lignin can elevate 

lignin thermal stability and improve segregation of lignin-derived products from 

cellulose-derived products. By improving thermal fractionation efficiency and reducing 

product heterogeneity, downstream processing with catalysts is expected to be more 

effective. A success on this opens the path to apply other knowledge of cell wall 

synthesis to improve thermal fractionation.  

 

Besides lignin, some polysaccharides could also be potential targets for improving 

thermal fractionation. For example, some hemicelluloses, especially those possess 

complex substituent structures such as xylans, also have relative wide range of 

decomposition temperature like 250-375°C (Werner et al. 2014). Reducing the higher 

decomposition temperature of hemicellulose will facilitate better segregation of their 

products from cellulose-derived products that decompose at 300-350 °C. One thermal 

conversion experiment on purified xylans indicates unsubstituted xylans have a 
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decomposition temperature of 250-300°C, which is lower than the decomposition 

temperature of arabinoxylans at 300-350°C (Werner et al. 2014). The relatively high 

decomposition temperature of arabinoxylans could due to the FA crosslinks on the 

arabinose substituent of them. To test this hypothesis, we can reduce FA and arabinose 

substituents on arabinoxylans by manipulating their sysnthesis genes. Two GT61s 

involved in the synthesis of the arabinose substituent and the xylose-arabinose 

substituent have been studied in grasses by genetics (Anders et al. 2012; Chiniquy et al. 

2012). An UDP-arabino-mutase gene that synthesizes the precursor of arabinose 

substituents has been knocked down in switchgrass resulting in a 50% reduction of 

arabinose in cell walls, which is mostly from arabinoxylans. In Chapter 3, we also 

identified several putative GT61s that may synthesize xylan substituents and AT9 and 

AT7, which may incorporate FA into arabinoxylans. An initial thermal fractionation 

analysis on the rice mutants of these genes will provide a hint. Though this could be 

tested by chemically modifying the structure of isolated xylans, it is better to retain all 

other biomass components that closely interact with xylans in real biomass. Due to the 

complexity of biomass, the interaction among components such covalent cross-links, 

non-covalent interaction, and the ions that possess catalytic effects also affect thermal 

conversion (Du et al. 2014; Lin et al. 2015; Zhang et al. 2015). More biomass properties 

important for thermal fractionation may be identified by measuring biomass 

components, cell wall features, and thermal fractionation efficiency in natural 

switchgrass variant and identify associations. More understanding of how thermal 

fractionation is influenced by biomass properties may further drive basic research on 

cell wall synthesis or modification.   
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Since cell walls are involved in biological process such as cell elongation, mechanical 

support, and pathogen defense, some genetically modified plants suffer biomass yield 

losses and increased susceptibility to lodging and pathogens (Aohara et al. 2009). This 

highlights the opportunity and necessity to understand the function of cell walls in plant 

biology. For example, the the stunted growth of a lignin mutant, ref8, is caused by a 

regulatory pathway activated by lignin deficiency and mediated by the transcriptional 

activator Mediator complex (Bonawitz et al. 2014). By disrupting the Mediator 

complex, the lignin mutant shows high sugar yield without developmental defects. 

Another strategy is to make fine adjustment on the structure of cell wall components to 

minimize the effect on major biological function. For example, is a OsCESA9 

conserved-site mutant have more than 2-fold increase in sugar yield and enhanced 

lodging resistance by decreasing the degree of polymerization and crystallinity index of 

cellulose. This work highlights the importance of understanding how to changing the 

cell wall while retaining or even enhancing cell wall mechanical properties. Another 

example are the p-Coumaroyl-CoA:monolignol transferase mutants. By having more 

pCA esters on lignin, the mutants has greater sugar yields than the wild type without 

affecting biomass yield (Petrik et al. 2014).  

 

Knowledge of cell wall synthesis obtained in this dissertation will not only advance the 

efficiency of biomass-biofuel conversion, but also allow us to test the biological 

functions of cell walls. Some cell wall mutants with altered cell wall composition and 
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structures influence plant development and pathogen resistance (Bonawitz et al. 2014; 

Lionetti et al. 2015), while many others have not been examined for these changes in 

details (Bartley et al. 2013). These mutants can be used to further understand the 

molecular mechanism, for example, of how plant cells sense deficiencies of cell walls, 

what proteins are involved in signaling cascades, and how signal pathways cross-talk 

with other processes such as cell elongation, programed cell death and the synthesis of 

other metabolites. Better understanding of these effects caused by cell wall changes will 

allow us to genetically modify grass cell walls without sacrificing important agronomic 

traits of crops. 
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