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Abstract

Letu : M — N be an F-harmonic map between Kahler manifolds of finite di-
mensions. Is u £+ holomorphic? In the special case of a harmonic map, Y. T. Siu
[50] gave an affirmative answer when the target manifold is of semi-strongly neg-
ative curvature. In other cases such as p-harmonic, exponentially harmonic maps
etc., answers to the above question were less satisfactory. For the general case of
F-harmonic maps, when the domain manifolds are complex space forms this the-
sis investigates the holomorphicity of F-harmonic maps and obtains Liouville-type

theorems.
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Chapter 1

Introduction

Details are all that mattter: God dwells there and you will never get to

see Him if you don’t struggle to get them right! Stephen Gould

The study of harmonic maps has been extensively developed in the frame work
of differential geometry since its introduction in 1964 by J. Eells and J. H. Sampson
[18]. In the early 1970’s, A. Lichnerowicz [38] began to study harmonic maps in
the setting of complex geometry. By the 80’s, J. Jost and S. T. Yau [33] treated ap-
plications to nonpositively curved Kahler manifolds where the theory of harmonic
maps had shown itself to be most successful. From its inception, extensions to
the notions of p-harmonic [58], exponentially harmonic [14], f-harmonic [10][11],
biharmonic and f-biharmonic maps [9] were continually introduced. Extensive re-
search had been carried out and applied to broad areas in science and engineering

including robot mechanics.



By the beginning of the present millennium, in an attempt to generalize all as-
pects of harmonic maps into a single concept, M. Ara ([1][2][3]) had introduced
the notions of F-harmonic maps, F-stress energy tensor and studied the F-stability
of these maps. This new concept unifies several varieties of harmonic maps such as
p-harmonic maps, exponentially harmonic maps, minimal hypersurfaces, maximal
spacelike hypersurfaces and steady compressible flows aside from the well-known
classical harmonic maps [12].

This thesis investigates the role that F-harmonic maps play in Kahler geometry
whose building blocks are the sixteen classes of almost Hermitian manifolds classi-
fied by A. Gray and L. M. Hervella [22]. In Chapter 1, we give local representations
and the decomposition of the complexified differential of a C'*° map in Hermitian
geometry. In Chapter 2, we study F-harmonic maps from a different perspective: we
give the notion of {2-harmonic maps then derive all basic facts about F-harmonic
maps via this definition. In Chapter 3, we explore the realm of Kahler geometry
through concrete examples. In Chapter 4, we give applications of F-harmonic maps
in the setting of Kahler geometry and prove several results yielding partial affirma-
tive answers to the question posed in the abstract when the domain manifolds are
complex space forms. We also obtain Liouville-type theorems. All manifolds in

consideration are C'*°(or smooth), connected and of finite dimensions.



1.1 Main results

Theorem 2.15 : Let u : (M",g) — (N*,h) be a stable F-harmonic map from a

complete noncompact Riemannian manifold M into a complete Riemannian mani-

fold N. Let ¢ be a smooth function on M. Then the following inequality holds:
0 < [y F'(%5) { [du? V] + ¢*| S, B@. &)l }dv,
u 2 n ~
+ fu FIUGE) {RIVOP + ¢ X0, S, (21B(Va &)
- < B(V;u‘/;l)vB(ézaéz) > ) } dvg s

where dv, is the volume element of M and é; := du(e;) .

Theorem 2.15 generalizes Wei’s theorem [58] .

Theorem 3.18:  Let (M",g,J) be an n-dimensional complete noncompact
Kahler manifold. If at each point of M the sum of any q eigenvalues of the Ricci
tensor is nonnegative then any 2-finite harmonic form of type (0, ¢) or (g, 0) is par-
allel. In addition, if M has infinite volume or the sums of any q eigenvalues of the

Ricci tensor are all positive at some point of M then any such form vanishes.

Theorem 3.18 generalizes Greene and Wu’s work [24] .

Theorem 4.14 : Let u : (C", g) — (NN, h) be a C*° map into a Kahler manifold
and ¢ < 0 be a constant satisfying 2 — g = n , where g is the standard metric on
C" and n > 3. Let F' : [0,00) — [0,00) be a strictly increasing C? function
suchthat  F(t) < 2tF'(t) < n F(t) fort € (0,00). Ifuisan F-harmonic map
satisfying the above conditions then w is constant, provided u has slowly divergent

energy.



Corollary 4.15 :Let u : (C", g) — (N*,h) be a C> map into a Kahler mani-
fold and ¢ < 0 be a constant satisfying 2 — ¢ = n , where g is the standard metric
on C" andn > 3. Let F : [0,00) —> [0, 00) be a strictly increasing C* function
such that

F(t) < 2tF'(t) < nF(t) , for t € (0,00).
If w is an F-harmonic map satisfying the above conditions then u is constant, pro-

vided u has the following enegy growth

Jsr) F('d;|2) dv, = o(R*) as R— co.

Theorem 4.18 : For n > 1 , let M" be a complete simply connected, noncom-

pact Kahler manifold of holomorphic sectional curvature H R which satisfies

—a? < HRM™ < —b% | where a, b are some positive constants. Let N be any Kahler

manifold and F : [0, 00) — [0, 00) be a strictly increasing C function such that
(n—1)bF(t) — 2ta F'(t) > 0 fort € (0,00) .

If u:(M", g)— (N* h) is an F-harmonic map with following growth condition

S50 F(@) dv, = o(p*) as p— oo, thenuis constant.

Corollary 4.19: For n > 1 , let M"™ be a complete simply connected,
noncompact Kahler manifold of holomorphic sectional curvature HRM which
satisfies —a? < HRM < —b? | where a, b are some positive constants. Let N be
any Kahler manifold and F : [0, 00) — [0, o0) be a strictly increasing C function
such that

(n—1)bF(t) — 2ta F'(t) > 0 fort € (0,00) .
If w:(M" g)— (N* h) is an F-harmonic map with slowly divergent F-energy

then u is constant.



Corollary 4.20 : Any F-harmonic map with slowly divergent F-energy from the
complex hyperbolic space CH" to any Kahler manifold must be constant, provided

the condition on the function F as in Theorem 4.22 is satisfied.



1.2 Differentiable maps in complex geometry

Let f:(M",g,J) — (N* h,J') beaC>™ map between almost Hermitian
manifolds of dimensions n, k together with Riemannian metrics g, h and almost
complex structures .J, J', respectively. The complexified differential of f

df¢ . TM® — TN¢
determines the partial differentials by compositions with inclusions of 7'M |
TM%! in TM¢ and projections of TN® onto TN'? , TN%! as follows
df’|TM*Y° = of + of : TMY* — TN @ TNO!
df’|TM*Y = of + of : TM*' — TN @ TNO!

df¢ = dfe|TM"° + dfe|TM*' = of + of +0f + Of
Let {z!, ..., 2"}, {w!, ..., w*} be local complex coordinate systems in M, N, respec-
tively. Then the partial differentials of f are represented in local coordinates by

of : TMY — TNY, of =%, frde0% T*M'YO® f*TN0

ow™

T*Mo’l ®f*TN1,O

of : TM®™ — TNYW, 9f =%, frd7o52

Ow™

e I( )
of : TM™ — TN, of =3, ffde'®z% € T(I"MYYo f*TN)
e I'( )
e I( )

Of : TM® — TN Of =3, fFdz @5 T*MO' @ f*T N
where 1 =1,...n , a=1,...,k.

Henceforth, for convenience we denote df¢ simply by df .

Denote by <, > the J-invariant real inner product of various tensor bundles
of M induced by g. The complex bilinear extension is also denoted by the same
<, > . Define the Hermitian inner product <<, >> by

<< U,V >> = <uU,v >
There always exists a local orthonomal Hermitian frame field on an almost Her-

mitian manifold. Let {e;, Je;};=1,., be this local Hermitian frame field on M.

.....



Then with respect to the Hermitian inner product <<, >> , we obtain the following

corresponding -+ holomorphic orthonormal frame fields

spanning T'M*° and TM®! , respectively, such that
<<y, M >> = << Ny, N >> =
<ep e >=<Je,Jej >= 6
<e,Je; >=<Je,e;>= 0.
Similarly, we can choose a local Hermitian frame field {é,, J'é,}a—1. ,0on N with
corresponding + holomorphic orthonormal frame fields
{0 = F5(60 = i720) Yoo

- V2 ) =1,..., k
spanning TN and TN%! | respectively.

The complexified differential df has the following local representation

df : TM*® o TM" — TN @ TN  defined by
df(n; + nj) = df[TM*™(n;) + df|[TM* (n5)
= 5 [ (dfITMYOy)|TNY + (df|TM* ()| TN
+ (df [TM* ()TN + (df [T M (n))ITN® ]
= 2o S e + [§0a + [0 + [ a]
where

df|[ITM*° . TMY — TNY ¢ TN%' is given by

df|ITMM (1) = 5 (df | TMM ()| TN + 5 (df [T MO ()| TN
= 0f(n;) +0f(n;)
= D0 ([ + fj@ﬁa)
and
df|ITM%' - TM% — TNY @ TN%' s given by
dfITM" (n;) = 3

(df T M () )ITNY + 5 (df T M (og3)) [ TN

7



= Of(n;) + 0f ()
= S (e + )

----------

{nj;m5} 5 {7, Na} - The complexified second fundamental form decomposes as
Vdf¢ = (V¥ + VoY (04 9) (f)

= VWof + VM Of + VO af + VOl of
= Vdf 20 + vdf 't + vdf °?

where the middle two terms of the second equation are the (1,1)-parts of Vdf¢ .

The local representation of Vdf® is given by

Vaf¢ = 30 [ [0 007 Q10 + [ 0" 067 @15

+ [ROFR0T Qi + [ O0F R0 Qs + [ OFR0 Qi + [ 08 R0 D1

+ [EOFROT Qi + 5000 @15

where  fii =7, f’%: o f,%:f’% , fl%:fgj_

Next, we investigate the invariant form of the partial differentials.
Let X € I'(TM®) . Then we can obtain 4- holomorphic vector fields
Z=X—iJX eD(TMY) | Z = X +iJX € [(TM"*)
ie. X = XYW 4 X0 =17+ 17
and the values of the partial differentials on vector fields can be calculated as follows
9f(Z) = L (dfITMY0)(Z) TN
L [df(X) — idf (JX)] TN
= 5 df(X) —iJ'df (X) — idf (JX) — i (—idf (JX))]
L[dF(X) — iJ'df (X) — idf (JX) — J'(df (T X))

0f(2) = 5 (df|TM'?)(Z) |[TN®!



5 [df (X) —idf (JX)] [TN®!
= 3 [df(X) +iJ'df (X) —idf (JX) +iJ'(—idf (J X))]
Ldf(X) +iJ'df (X) —idf (JX) + J(df (JX))]

0f(Z) = 5 (df|ITM*)(Z) |TNY
= 3 [df(X) +idf (JX)] [TN'0
= L[df(X) — iJ'df (X) +idf (JX) — iJ'(idf (JX))]
= Ldf(X) —aJ'df (X) +idf (JX) + J'(df (JX))]
0f(Z) = 5 (df|ITM*')(Z) TN

3 [df (X) +idf (JX)] TN
= L{df(X) +iJ'df (X) +idf (JX) + i (idf (JX))]
L[df(X) + i df (X) +idf (JX) — J'(df (T X))]

Note that since X =

df(X)=35df(Z+2Z)=5[0f(Z)+0f(2) +0f(Z) +0f(Z)].

Lemma 1.1. Let f:(M",g,J) — (N* h,J) be a C* map between almost
Hermitian manifolds of dimensions n,k together with Riemannian metrics ¢, h
and almost complex structures J, J', respectively. Then we have

L2 = [off2 + 137
where df = df¢ is the complexified differential of a smooth map between almost

Hermitian manifolds.

Proof : Choose a local Hermitian orthonormal frame field {e;, Je;},;—1  »

in M with corresponding =+ holomorphic orthonormal frame fields



In local coordinates, the partial energy densities of f are defied as follows
0f7 = Y201 << df(ny), Of(n;) >>
= > <O0f(my), of(ny) >
= >0y <0f(ny), Of () >
= 5 2 <Of(e;—ide;), Of(ej+iJe;) >
=1 Z?Zl < df(ej —iJe;) |TNY | df(e; +iJe;) [TN" >
= 5 20 < g5 ldf(e;) —iJdf(e;) —idf (Je;) —iJ'(—idf (Je;)) ],
3 Ldf(eg) +iJ'df (ej) + idf (Jej) + i (idf (Je;)) |
= § 2o < df(e;) —iJ'df(ej) —idf (Je;) — J'df (Jej) ,
df (e;) +iJ'df (e;) +idf (Je;) — J'df (Je;) >

V

= 5 2 [<df(e;), df(ej) > — < iJ'df (), df (e;) >
— < de(J€]),df(€]> > =< J’df(Jej),df(ej) >

b < df(e;),iTdf(e;) > — < iTdf(e;), i df (e;) >
— < de(Je]),zJ’df(e]) > —< J/df(J€j>,iJ/df(€j> >

+ < df(e)),idf(Je;) > — < iJ'df (e;), idf (Je;) >
— <idf(Je;),idf (Je;) > — < Jdf (Je;),idf (Je;) >

— < df(ey), J'df(Je;) > + < iJ'df (e;), J'df (Je;) >
+ <idf(Jej), J'df (Je;) > + < J'df (Je;), J'df (Je;) >]

= 1 2 [<df(eg),df(ej) > + < df(Je;), df (Je;) >
+2 < df(J@j), J’df(ej) >]

10



0fFF = X5, << 0f(m), 9f(n;) >>
= Y, < 0f(n), Of(m) >
= Y <Of(n;), Of(n;) >
= 5 2y <Of(e;+ide;), Of(e; —iJe;) >
= 5 2y <df(ej +iJe;) [TNYO df(ej —iJe;) TN >
= 3 25 < 3 Ldf(ey) —iJ'df (e;) +idf (Jey) — i (idf (Jey)) ],
3 Ldf(ej) +iJ'df (ej) —idf (Je;) +iJ'(—idf (Je;)) ] >
= § Yy < df(e;) —iJ'df (ej) +idf (Je;) + J'df (Je;)
df (e;) + iJ'df (e;) — idf (Je;) + Jdf (Jej) >

= % 2?21 [ < df(ej),df(ej) > — < iJ'df (e;),df (ej) >
+ < de(J€]), df<€j> >4+ < J’df(]ej),df(ej) >

b < dfle;),iddf(e;) > — < idf(e;), T df (e;) >
+ < zdf(Jej),zJ’df(e]) >+ < J’df(Jej),iJ’df(ej) >

— < df(ey) idf(Je;) > + < iJdf (e;),idf (Je;) >
— < zdf(Jej),zdf(Je]) > — < J/df<J€J),de(J€j) >

+ < df(ej), J/df<J€]> > —< iJ’df(ej), J’df(Je]) >
+ < idf(Jey), J'df (Jey) > + < J'df (Je;), J'df (Je;) >]

= 1 2 [<df(eg), df (e) > + < df(Jey), df (Je;) >
~2 < df (Je;), J'df (¢;) >]

11



Of1> = Y7, << df(ny), 0f(n;) >>

= Y0, <0f(n), 0f(n) >

= Y0 <Of(ny), 0f(m;) >

= 5 2y <Of(e;—ide;), Of(ej+iJe;) >

= 5 2y <df(e; —iJe;) TN df(e; +iJe;) TN >

= 3 2y < 3 Ldf(ey) +iJ'df (ej) —idf (Jey) + i (—idf (Je;)) ],
3 L df(e;) —iJ'df (ej) +idf (Je;) — i (idf (Jey)) |

= § Yy < df(e;) +iJ'df (ej) —idf (Je;) + J'df (Je;)
df (e;) —iJ'df (e;) + idf (Je;) + J'df (Je;) >

V

= % 2?21 [ < df(ej),df(ej) >+ < iJ'df (e;),df (ej) >
— < ’Ldf(JGJ),df(€]) >+ < J'df(Jej),df(ej) >

_ < df(ey),iTdf(e) > — < idf(e;), iTdf (e;) >
+ < de(Jej),zJ’df(e]) > —< J’df(Jej),z'J’df(ej) >

+ < df(e]),zdf(Jej) >4+ < ZJ/df(GJ),de(J€j> >
— < zdf(Jej),zdf(Je]) >+ < J’df(Je]),zdf(Jej) >

+ < df(ej), J'df (Je;) > + < iJ'df (e;), J'df (Jej) >
— < idf(Je;), J'df (Je;) > + < J'df (Je;), J'df (Je;) >]

= 1 2o [<df(eg), df (e) > + < df(Jey), df (Je;) >
~2 < df (Je;), J'df (¢;) >]

12



0fFF = >3-, << 0f(m), 9f(n;) >>
= >y <0f(m5), 0f () >
= Y <Of(n;), Of(n;) >
= 5 2y <Of(e;+ide;), Of(ej —iJe;) >
= 5 2y <df(ej +iJe;) [TNO, df(ej —iJe;) TN >
= 5 2o < g ldf(e;) +iJ'df (ej) +idf (Jej) + i (idf (Je;)) |
3 Ldf(ej) —iJ'df (ej) —idf (Je;) — i (—idf (Je;)) ] >
= § Yy < df(e;) +iJ'df (e;) +idf (Je;) — J'df (Je;)
df (e;) —iJ'df (e;) —idf (Je;) — J'df (Je;) >

= % 2?21 [ < df(ej),df(ej) >+ < iJ'df (e;),df (ej) >
+ < de(J€]),df<€j> > —< J’df(Jej),df(ej) >

— < df(e;),iJ'df (e;) > — < iJ'df (e;),iJ'df (e;) >
— <idf(Jey),1J'df (e;) > + < J'df (Jej),iJ df (e;) >

— < df(ej),zdf(JeJ) > —< ZJ/df<€j>,de((]6J) >
— < zdf(Jej),zdf(Je]) >+ < J’df(Je]),zdf(Jej) >

— < df(ey), J'df (Je;) > — < iJ'df(e;), J'df (Jej) >
— < idf(Je;), J'df (Je;) > + < J'df (Jej), Jdf (Je;) >]

= 5 2o (< df(eg), df(ej) > + < df (Je;), df (Je;) >
+2 < df(Je;), J'df(e;) >] . Thus, we obtain
sldfP = 5 05 [<df(e)), df (ej) > + < df(Jey),df (Jej) >]
= [0f> + [0f]? - O

13



1.3 Connections in the space of differential maps

Let u: (M" g,J) — (N* h,J') beaC>™ map between almost Hermitian
manifolds of dimensions n, k together with Riemannian metrics g, h and almost

complex structures .J, J', respectively, i.e. let u € C®°(M,N) .

Let VM denote the Levi-Civita connection of M which induces a map
VM. T(TM) — T(T*M @TM) .
The musical isomorphisms § and b between 7'M and 7 M induces a dual con-
nection V* on T*M as follows : for X, Y € I'(TM), w e I'(T*M) ,
(Viw)(¥) = (VHur)(Y)
= 9:(VYu?,Y)
= X(ga(w?,Y)) — gu(w?, VYY)
= Xw(Y) — w(VYY).
Furthermore, the compatibility of V* with g;; induces the compatibility of V* with
the inverse metric g on T* M as follows : for w,z € T'(T*M)
Xg*(w,2) = g"(Vxw,2) + g"(w, Vy2)
Indeed,
RHS = g((Viw), ) + glut, (Vie2)?)
= g(V¥w# %) + g(w', V)
= Xw(z*) = LHS .

Thus, V* is a Riemannian connection.

Consider the induced vector bundle w*T'N — M . At each point x € M, the
basis { 8%1, - a%k } of TN givesrise to a basis {(%ou)(m), . (%ou)(m)}

for the fiber T',,)N of u*I'N over x . Define a connection V in «*T'N induced

14



by the Levi-Civita connection V¥ on N by

(@ﬁ % ou)(xr) = V(Ji\;m(aii) % .
Equivalently, in the invariant form
VxW = VYW, where X e (TM), W € T(w'TN).
If heI'(TN®TN) isametricin TN , then
(uh)e = huw)

defines a fiber metric in ©*T'N .

The connections V* in 7*M and V in «*TN induce a connection V on
T*M @ u*T'N as follows :
Vx(we@W) = (Viw) @W + w® (VxW)
where w € T"M , W € w*IT'N ;, X € T'M . Thus, the differential of the map
u € C°(M, N) defines the C™ section du € I'(T*M @ u*T'N) and the covariant
differential of du, Vdu € I'(T*M @ T*M @ u*T'N) , defines a 2-form with value

in the induced bundle, called the second fundamental form of the map u .

Lemma 1.2. Let ue€ C®(M,N) and X,Y € I'(T'M) . Then,
Vdu(X,Y) = Vxdu(Y) — du(V¥Y) .

Proof : For w e I(T*M), W € T(w*TN),
Vx[(w@W)(Y)] = (weW)(VYY)
= Vx[w)oW] — w(VEY)o W
= Xw(Y)oW + w(lY)@VxW — w(V¥Y)o W
= (Viw) (Y)W + w(VEY)@W + w(Y)@VxW — w(VEY)eW
= [(Vxw) @ W + we (VxW)](Y)
= (Vx(w@ W))([Y)

15



— V(we W)(X,Y)
Since du is a special case of an arbitrary 1-form with value in the induced bundle

u*T'N, the lemma follows at once . [

16



Chapter 2

F-Harmonic maps

The true sign of intelligence is not knowledge but imagination.

A. Einstein

2.1 ()-Harmonic maps

Let u : (M",g) — (N* h) be a C* map between Riemannian manifolds of
dimensions n, k and with Riemannian metrics g, h, respectively. We follow the
notations in [8]. Let
Q: MxNxR — (0,00)
(z,y,t) — Qz,y,1)
be a positive function. For any compact domain D of M, the €2- energy functional
of u is defined by
Eq (u; D) = [, Qz,u(x),e(u)(z)) dv,
where dv, is the volume element and e(u) is the energy density of u defined by

e(u) = Y0, 1 h(du(e;),du(e;)) = 3 |dul?,

17



where |du| is the Hilbert-Schmidt norm of the differential du .
Here {e;}" , is an orthonormal frame field on M. A C° map u is called -

harmonic if it is a critical point of the {2-energy over any compact subset D C M.

The First Variation of the (2 — energy functional.

Denote 0, = % , Q= 0(0) , Q" = 0,(0(Q)) and define
Qu(x) = Qz, u(z), e(u)(x))
@, (2) = X(z,u(@) e(u)(z)) = FAz,u(@), e(u)(z))
Qr) = Q(z,ule),e(w)@) = H0(,ule), e(w)(x))
Let {u; }i e (— e,) be a C> variation of u supported in D and denote the variation
vector field of u by V = %hzo = dut(%)h:o Define
¢ : M x (—e€) — N by
o(z,t) = w (x) , where uy(z) = u(z).
Let V?, V be the induced connections on ¢*T'N and u*T'N . Then for any vector
field X on M, considered as a vector field on Mx(— €, ¢€), we have
[2,X]=0.

Let x € M . Choose a local orthonornal frame field {e;};—1 ..., which is normal at

T, 1.e.
Veeils =0 Vij=1,..n
Then , at x we have
& Ba (us; D)li=o
= Jp & Qz ui(@),e(ur) (@) ) im0 dv,
= [p 1A (do(5;)) + dU Gle(w)) )] |0 dv,
= [, [< (gradQ) ou, V > + 30", Q) < @eiV, du(e;) >1 du,
= [, [< (grad™Q) o u, V > + Y e <V, Q du(e;) >
— Y <V, V.. (Ydu(e;)) >]dv,
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= [, [< (grad¥Q) o u, V > + Y div (< V, Q du(e;) > e;)
— Y < Ve dule) > — X <V, Q. Vedu(e;) >] do,
= [, < (gradV"Q)ou,V >dv,+ [, > div(< V, Q, du(e;) > e;)dv,
— [, < V,du(grad™ Q) >dv, — [, <V, Q, 7(u) > dv,
= [, <V, (grad® Q) o u — du(grad™ ) — QU 7(u) > dv,
=— [, <1,V > dy,
where in the second equality we have used the following fact
%(e(ut))]tzo =< @%dut(ei), dug(e;) > |i=o
=< @eidut(%),dut(ei) > |4=o
= < V.V, du(e;) >
and in the last equality, the (2 - tension field is given by
ta(u) = — (grad” Q) o u + du( grad™ Q) + Q, 7(u),
where 7(u) is the tension field of u given by
T(u) = trace Vdu
= > ", Vdu(e;,e;)
= >, [@eidu(ei) — du(Vﬁfei)] ) O

The Second Variation of the 2 — energy functional.

Let u: (M" g) — (N* h) be an Q-harmonic map between Riemannian
manifolds and { us }¢sc (—c) bea 2-parameter variation with compact support
in D. Set

8ut, . aUt,
V — ats |S,t:0 ) W = 683 |57t:0

Define ¢ : M X (—¢€,€) X (—e,¢) — N by

d(x,t,8) = wus(x) , Upo(r) = u(z).
For any vector field X on M, considered as a vector field on M x (—¢, €) X (—¢, €)

we have
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[ath] = [asaX] = [at7as] =0.

Let x € M . Choose a local orthonornal frame field {e;};—; ..., which is normal at

T, 1.e.
Vebjle =0 Vi,j=1,..n
Then , at z we have
Eq (us; D) |s1=0
= Jp & L5 Qw uns(@), e(urs) (@) ] om0 dug
= fD o5 A2 (dp(0r)) + d2 (In(e(urs))) | [si=0 dug
= [p &l< (gradVQ)ou, dg(d;) > +>-0,, < vgtd¢(ei)7d¢(ei> >]|s4=0dvy
= [p< vgs(gmdN Q) o u, do(8) >

asat

+ < (grad" Q) o u, Vgs do (0;) >
+ 3 < V5V5déle), dole) >
+ 3 < V9, do(er) , Vi do(e:) > U,
£ < Vi dé(es), dbles) > 0, (X, )] o do,
The following calculations of each term in the above integral are straightforward.
In the first term of the integral, since [V, W] = 0 , we have
<V.VwgradQ >= Vy < V,grad Q) > — < VyV,grad ) >
= Vy dQ(V) - <VwV, grad Q >
= Vy dQW) + dQ([W,V])— < VwV, grad Q >
= Vy <W,grad Q) > — < VyW,grad ) >
=< W,Vy grad Q) >. Thus
<d¢(Z), Vgs(gradNQ) o u> |gmo =< W, (V¥grad¥ Q) o u >
In the third term, the definition and properties of the curvature tensor yield
< V5. V5 db(e) , dole;) > @, oo
= < V5 VLdo(r) , diler) >

= Q;tys < RN(d¢(as)7 d¢(el))d¢(at) ) d¢<€z) > ‘s,t:O

s,t=0
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+ Q< V2VY do(d) , dgler) > |aio
= Q' < RV(W,dg(e;)V , do(e;) >
+ Q< V2V do(d) , dble;) > |sio
= — Q' < RN(V,d¢(e;))do(e;), W >
+Q, < VEVS do(0) , diler) > |aio
= — Q' < RN(V,d¢(e;))do(e;), W >
+ e < V5 do(D), X, dp(es) > |si=o
— < V5, do(D), VI, dp(es)) > o
= — Q' < RN(V,d¢(e;))do(e;), W >
+ e < Vi de(dy), @, ddler) > oo
— < V5 do(d), V2, )do(e:) > a0
— < V5 do(), Q. Vido(e) > oo
= -0 < RN(V, do(e;))do(e;), W >
+ div(< V5 de(dy) , U, dp(er) > €) |sio
— < V5 dp(dy), do (grad™ ©, ) > |si=o
— < V5 dedr), Q,, T(6) > |ai=o
In the fourth term, since

e; < Ve dp(dy), dp(dy) > — < Ve, (¥ Ve dp(d,)), dp(ds) >
= < V' V. dp(dy), Ve, dp(ds) >, we get
< Vhdele:) , Vi dp(e;) >

=< U V. do(dy), Ve,dp(ds) >

= div(< U Ve dp(dy) , dp(ds) > e)— < Ve (¥ Ve dp(dy)), dp(d,) >

In the fifth term, from the following equations
A (dg(0s) ) lsp=0 = < W, (grad” ') o u >,
dY (0y(e(ues))) lsumo = QU < Vo, W, du(e;) >,
QY (d(0s) ) + d¥ (0s(e(urs)) ) = Os (V(x, urs(w), e(urs)(2)) )
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we obtain the following
< Vhdo(es), dole) > 0. () lai=o
=< VV,du >< W, (grad® @) ou> + < VV,du > Q' < VW, du(e;) >
= < W, < VV,du > (grad™ Q') o u >
+ei(< W, < VV,du > Q du(e;) >)
— < W,V [<VV,du> Q" du(e;)] >
= < W,< VV,du > (grad™ V') o u >
+ div(< W, < VV,du > Q' du(e;) > e;)
— <W,V,,[<VV,du> Q' du(e;)] >
Note that the second term in the integral combines with the last two negative terms
in the third term of the integral to give the {2-tension field with the negative sign
which vanishes for an {2-harmonic map .

By the divergence theorem, all the integrals involved with divergence vanish and

we finally obtain
% Eq (uts ; D) [s=0
= [, < (Vigrad® Q) o u, W >
— 'S < RV(V,dé(e;)) dole;) , W >
— 3 < Ve (YV V), W >
+ << VV,du> (grad® ) o u, W >
— Y < V., [« VV,du> Q' du(e;)], W >]dv,
= [y < Jou (V),W > dy, ,
where the -Jacobi operator Jo,, (V) € I'(u*T'N ) is given by
Jou (V) = = Q. tr RN(V,du)du — tr V [, VV] + (VY grad¥ Q)ou
+ < VV,du > (grad¥ )ou — tr V[<VV,du> Q" du]. O
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The Stress — Energy Tensor of an {2 — harmonic map.

Let u : (M",g) — (N* h) be a C™ map between Riemannian manifolds of
dimensions n, k and with Riemannian metrics g, h, respectively. Let
Q: MxNxR — (0,00)
(2, y,t) — Qz,y,1)

be a positive function. Then
% Eq (u; D)|i=o

= Jp & (Qz,u(@), e(u)(z) ) o dvg + [;, Az, u(z), e(u)(x)) 5(dvg,) li=o

= fD %(e(u)) Q, dv, + fD Q. %(dvgt) ,

sle(u) = —% <u*h,%g Z@2T*M 5 %(dvgz) = %<97%9 >g2repy dvg

Thus , we obtain the following lemma.

Lemma2l. % Eq(u;D)img = 3 [, < Qug — Quwh, £g > dv,.

Definition 2.2. The stress energy tensor of an {2-harmonic map w : M — N is
given by
Sa(u) = Qg — Q, uh.
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2.2 F-harmonic Maps

Let u : (M",g) — (N* h) be a C* map betwenn Riemannian manifolds of
dimensions n, k and with Riemannian metrics ¢, h. Let F : [0,00) — [0,00) be
a strictly increasing C*? function with F(0) = 0. To study F-harmonic maps we set
Q, (2, ulw), e(u)(z)) = Fle(u)(@)) = F(L |du,?) .
Then u is an F-harmonic map if for every compact subset D C M , w is a critical
point of the F-energy functional
Ep(u) = [, F(3|du*) dv, ,
where |du| is the Hilbert-Schmidt norm of the differential du . This is equivalent to
saying that iff for any compactly supported variation w; : M — N, —e <t < €,
with u, = u , the following equation holds
9 Ep(w) = 0.
Let VM | V¥ be the Levi-Civita connections of M, N and V be the induced
connection on u*T'N defined by
VxW = Vi oW, where X e T(TM), W € T(w*TN) .
Choose a local orthonormal frame field {e;} on M. If weset V = V"M ® w'ITN
then the F-tension field is given by
Te(u) = d*(F/(42E)du)

= trace V (F’(@) du)

= Y (V (F(55)du) (er.e)

= Y (Ve (F(5F)du)) (e0)

= i Ve (P55 du)(e) — S0y (F/(155)du)(V2e)

= YL, (Vo (55)du(e) + S, F/(%5) V. du(e)

- T PR du(V e

— S < grad F/(EY e > du(e) + F'(10) 7 ()
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= du( grad™ F’(@)) + F’(%) 7(u)

where 7(u) = trace Vdu = Y. [ Ve du(e;) — du( Ve ].

Proposition 2.3. (c¢f. [1]) The First Variation formula for the F-energy functional
is
given by

L Ep(u; D) o = — [, <V, mr(u) > du,,

where V = 2|, .

Proof : Let Q (z,y,t) = F(t) ,
Qu (z,u(),e(u)(z)) = Fle(u)(z)) = F(%) and @, = F/(4L)
Then from the last section,
4 Bo (us Do = [y & e (@), e(u) @) oo o,
= J,y 49 (do(2) + a9 Z(e(w))) ] lco dv,
= [, [< (grad®Q) o u, V > + 30 Q, < V.V, du(e;) >] dv,
= [, [ e <V, Qdule) > — S <V, Ve, (Qdule;)) >] du,
= [, [X div(< V, Q du(e;) > &) — > <V, e() du(e;) >
~ Y <V, Vdule;) >] do,
= [, > div(< V, Q du(e;) > e;)dvg— [, < V', du(grad™ ) > dv,
— [, <V, Q1(u) > du,
= — [, <V, du(grad™ Q) + @, 7(u) > do,
= — [, <V, 7p(u) > dv,. O
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Proposition 2.4. (c¢f. [1]) The Second Variation formula for F-harmonic maps is
given by
% Er (Uns ; D) |s,t=0
— [P < YV du > < VW, du > d,
+ [P (2 [ < GV, VW > — S h( RY(V, du(e;))du(e;), W ) ] dv,
= [, < Jru(V),W > duv,,
where < , > denotes the inner product on T*M @ u*T'N , and the variational
vector fields are
V=% a0 W= % .
In particular, the F-Jacobi operator is given by
Jpw (V) = — F'(1%) 4 RN(V, du)du — tr V [F'(12L) TV
—tr V [< VV,du > F"()qu) .

Proof : Let Q (z,y,t) = F(t). In particular, let
Q, (z,u(w),e(u)(x)) = Fle(u)(x) = F(%E), then
o = P and Q= P4l

2

We calculate
— < trVQVV], W >
= — Y < V. [V V], W >
= Y ea<UVV,W>+3 <V, V, V. W >
= — Y div(< UVV, W >e)+Q <VV, VW >
and
— < trVi< VVidu > Q' du], W >
= — Y < V., (< VV,du> Q du(e;)), W >
= — S e << VV, du> Q' dule;), W >
+ S << VV, du> Q' du(e;), Vo, W >
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= — Y div(<<VV,du > Q' du(e;), W > ¢;)
+ Q! < VV,du >< VW, du >
Since € is now a function on M independent of N, it follows that
grad® Q = grad® Q' = 0
and thus in this case, the {2—Jacobi operator simpliflies to
Jou (V) = = Q tr RN(V,du)du — tr V [Q, VV] — tr V [< VV,du > Q/ du]
In particular, the F-Jacobi operator is given by
Jpw (V) = — F'(\Ly 4 RN(V, du)du — tr V [F'(12L) TV
— trV [< VV, du > F"(14) qy]
= — F'(145) ¥ RV(V,du(es)dules) = X Ve, [F/(145) V., V]
— 3 Ve, [< YV, du > F'(12E) due,)]
Taking inner product with W, integrating and using the divergence theorem yield
I < Jeu(V), W > du,
= — [ F'(1%5) < I, RY(V, du(es)du(e;), W > do,
+ [y P25 <« OV,YW > do,
+ [P (Y <YV du>< VW, du> du,. O

2

Set I(V,W) = 25 |10 Erlusy) .

Definition 2.5. An F-harmonic map w is stable ( or F-stable ) if for any compactly
supported vector field V along u , we have
I(V,V) >0,

i.e. if the eigenvalues of the F-Jacobi operator Jr,, are all nonnegative.
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Definition 2.6.  The stress energy tensor of an F-harmonic map w : M — N is
defined by
’LL2 ’LL2 *
Si (u) = Fle(u) g — Fle()uh = F(%5)g — P(4E) wh.

The following two propositions are well-known. However, the proofs vary
among the authors. Here, we give our own version in order to fix notations for

later use.

Proposition 2.7. (div Sp(u)) (X) = — < 7p(u),du(X) >

Proof : Choose a local orthonormal frame field {e;} normal at p € M.
For X € T,,M, we have
(div Sp(u)) (X)
= Yy (Ve, Sp(u))(e;; X)
= 3t Ve (Sr(w)(e X)) — 3L, Se(u) (e, Ve, X)
= Y0 Ve [F(4E) <o, X > — P45 < du(er), du(X) > ]
— 3 Py <6, VX > 4+ Y P
= Y (Ve FI(4E) < e, X > + ¥ F(I4E)
— Y (eF'(15)) < du(e), du(X) — Y F'(1%
— 3 Py <6, VX > 4 Y P4
= Y F(IME) S < Ve du(ey), dule)) >< e, X >
— S F' (L)) < duley), du(X) > — 3 P/ < ¥, du(e;), du(X) >
— 3 PR < du(er), Ve, du(X) > + 3 /(L) < du(ey), du(Ve, X) >
= Y, F'(%E) < Vidu(e), du(e;) >
— 3 < VF(IE) ¢ > < du(e;), du(X) >
— 3 PR <, dule;) — du(Vee), du(X) >
— 3 P < du(e;), Vxdu(e;) >

< du(e;), du(Ve,X) >

<e;, Ve, X >

)ei < du(e;), du(X) >

< du(e;),du(Ve,X) >

28



— — <du(VF(2L)) du(X) > — F(1L) < 7(U), du(X) >
— — <du(VF'(2L)) + P2Er () du(X)>. O

Corollary 2.8. Any F-harmonic map satisfies the conservation law, i.e.

div Sp(u) = 0.

Proof : This follows directly from Proposition 2.8.

Proposition 2.9.
div (F(EYX) = S div(F/(1E) < du(X), du(e;) > e;)

2

— <du(X),mp(u) > + < Sp(u), Vix >.

Proof : For brevity we will use V for gradient when the context is clear.

Choose a local orthonormal frame field {e;} on M . Then, for X € T'M,

— P2 divX + < VP(2L) x >

— P givX 4+ v F(12E)

— P divX + Y /(L) < Vxdu(e,), du(e;) >
— P2 giv X + 3 F/(E) < (Vxdu)(e), dule;) >
— P givx + 3 FI(E) < (V. du)(X), du(e;) >
— PO givx + 3 /(L) < ¥, du(X), du(e;) >

— L F(4E) < du(Ve,X), du(e:) >
= P divX + Y < Vedu(X), F/(12L) du(e;) >
— Y P < qu(v,, X)), du(e;) >
— FE)givX + 3 e < du(X), F'(1%5)du(e;) >
— Y < du(X), e;(F/(1 L) du(e;)) > — S F/(E) < qu(V,,X), du(e;) >
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— P2 divX + 3 e (F/(E) < du(X), du(e;) >)
~ % < du(X), (e (“%E))du(e;) > = X < du(X), F'(“45) Ve du(e;) >
— S P < qu(V,, X), du(e;) >

— P25 divX + 3 (e /(L)) < du(X), du(e;) >
+ P (e, < du(X), dule;) > =Y < du(X), < VF/(L) ¢, > du(e;) >
— Y <du(X), F'(E) v, du(e;) > — 3 F/(E) < du(V,, X)), du(e;) >
— P givX + 3 < VF/(1E) ¢, > < du(X), du(e;) >
+ P < ¥ < du(X), dule;) > e > — < du(X), du(VF'(122)) >

= Y < du(X), F'(145) (Ve du(e;) — du(Ve,er) >

— 3 P < qu(V,, X)), du(e;) >

— P divX + Y < VF/(1) < qu(X), du(e;) >, e; >
+ 3 PR < ¥ < du(X), du(e;) >,e; >
— < du(X), du(VF (L)) 4+ Py () >
— S PRy < qu(V., X), du(e;) >
— PO givx + 3 < V(F/(L) < qu(X), du(e;) >), e; >
— < du(X), () > =S F () < qu(S < Vo X e > e;), dule;) >
— P2 giv X + 3" div(F'(1%E) < du(X), du(e;) > ;)
— < du(X), 1r(u) >
— Y PR < duley), du(e;) >< Ve, X, e; >
= Y div (F/(L) < qu(X), du(e;) > &) — < du(X), mr(u) >

2

+ 3, [Py 5 — P90 < du(e)), du(e;) >] < Ve, X, ej >

= > div (F’(%) < du(X),du(e;) > e;) — < du(X), 7p(u) >

+ <SF(U),V9X>. O
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Corollary 2.10. Ifu: (M,g) — (N,h)isa C? F-harmonic map and D CC M
a C*' compact domain with smooth hypersurface boundary 0D, then
Jop Se(u)(X,v)dSy = [, < Sr(u),VOx > dvy, + [, (div Sp(u))(X) dv,

where Ox isthe dual of X € TM and v is the unit normal vector of 0D .

Proof : Applying Stokes’ theorem to the preceding two propositions. [

Lemma 2.11. (Weitzenbick Formula) [16] :  For any p-form o € A’(E),

Ao = —trace Vio + S(0)
where S,o(X1,..X,) = Zik(—l)k (R(e;, Xi)o) (e, X, ...,Xk, e Xp), ifp>1
— 0, ifp=0.

Remark 2.12. Let f: M — N beaC*™ map.
Then for df € A (f*TN) := [(T*M & f*TN), we have
Szdf(X) = — 32 (R(es, X)df ) (e;)
= — 2 Rle;, X)(df(e:)) + > df (R(ei, X)e;)
= — X RY(df(e)). df (X))df (e;) + df (Ric"'X), and
Adf(X) = — trace V2df(X) + S(df)(X)
= — V'Vdf(X) = 3 RV(df (e.), df (X))df (e;) + df (Ric™ X)

Lemma 2.13. ( Bochner Formula for F-harmonic maps ) [3] :
ARy — P2y |qu? | V|dul |2 + F'(125) [ - < Agdu, du > + [Vdul?

=2 < RN (du(e;), dule;))du(e;), du(e;) >+, < du(RicMe;), du(e;) >],

where Ay = dé + 0d is the Hodge-Laplace operator on forms.
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AF(Ey — gy F (2l

— V(F/(E) < Vdu, du >)

— P < Vdu,du >2 + F/(2L) < VVdu,du > + F/(2L) |V dul?
— F'(L) |qu? |V|du| 2 + /(L) { — < Aydu,du> + |Vdu]?
— > < RN(dules), dule;))dule;), dule;) > + 37 < du(RicMe;), du(e;) >}. O

Proposition 2.14. Let (N, h) be a Riemannian manifold and F : [0,00) — [0, 00)
be a strictly increasing C ? function. If u: S* — (N, h) is an F-harmonic map
from the unit 2-sphere, then the following equality holds
trace I(du(W), du(W))
= — o F’(%)|T(u)|2dvg+f52 trace < du(Vy gradﬁ(@)), du(W) > dv,
+ [ trace (< Vdu(W), du >)? F”(@) dv, ,
where [ is the index form and the vector field W is the orthogonal projection of any

parallel vector field in R?,

Proof : Consider the isometric embedding of S? in R? .

Letp € S?and a € R3 . Define ¢(p) = < a,p >, Vp € S?, and set

W = grad ¢ .
Let V and V be the Levi-Civita connections on S? and R?® with respect to the
standard flat metric, respectively. Choose an orthonormal frame field {e;};—1 2 in
S? normal atp € S? , i. e.

Veeilp=0.
Then, W = 3.7 ei(¢) e

= Zle e < a,p> ¢

) _
=7, <aV,p> ¢
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2
=Y., <ae> ¢

Thus W is the orthogonal projection of a parallel vector field in R3 onto S? and it
is easy to see that V. W|, =0, Vi=1,2.
Then for any vector field X € I'(T'S?), we obtain
VxW = —¢X and
trace VW = -V .

To see this, let p be a point on S? with the above local orthonormal frame field {e;}.
Then at p, we have
VxW = (VxW)T

= VxW — (VxW)+

= Vx(O <a,ei>e)— <Vx(O <a,e;>e),p>p

= Y <a,Vxe;>e; + > <a,e; > (Vxe)

— <Y <a,Vxe;>e,p>p — Y. <a,e; >< Vxe,p>p
=Y <a,Vxe;>e;+>. <a,e; > [(Vxe) + (Vxe)t]
— S <a,e, ><Vxe,p>p

= Y <a,Vxe; > ¢

= Y <a,Vxe; + (Vxe)t > e

=Y <a,<Vxe,p>p>e

= - Y <a,<e,Vxp>p>e since < ¢;,p >= 0

= — <ap>Y <e,Vxp>e

= - <ap>)y <e,X>e¢

= - <ap>X

- —4X,
and

trace V2W = S22 V.V, W
= 2 Veal(-de)
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= — Y eilde
= — ) <Vo,e >e
= — V¢
= -W.
Let du(W) € T'(u*T'N) be a vector field along the map u where W € T['(T'S?)
is a vector field on S? defined as above. We write I = F’ (@) and consider the
trace of the index form
trace I(du(W), du(W))
= Jq trace < Jpu(du(W)),du(W) > dv, ,
where the F-Jacobi operator is defined by
Traldu(W)) = —F' S RN (du(W), duleq)du(es) — X2 Vo [F'V. (du(W))]
— 3 V., [< V(du(W)),du > F" du(e;))
Henceforth, all calculations are carried out locally at p € S2.
Sy Ve, [F Ve, (du(W)]
=X (Ve ) (Ve, (du(W))) + 3 F'Ve, Ve du(W)
=V graagr du(W) + F' SV, Ve du(W)
= Vwdu(gradF’) + du([gradF’', W]) + F' 3. V., Viydu(e;)
+F' SV, du([e;, W)
since Vxdu(Y) = Vydu(X) + du([X,Y])
= Vwdu(gradF") + du(V gragr W) - du(Vy gradF")
+F S [RN (dules), du(W))du(e:) + Vi Ve,du(e;) + Vie, widu(e;)]
P Y Vedu((es, W)
= Vidu(gradF") - du(VygradF") + F'S° RN (du(e;), du(W))du(e;)
+F' SV Ve du(e) + F'S @[ei,w]du(ei)
+ F' Y Vi, mdu(e:) + F'Y du(les, [ei, W)

where we use
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Vradr'W = Vs cgraar e;>e,W = Y < gradF',e; > V W =0
and [e;, W] =V W —Vye, =0,
=3 Vwdu(gradF') - du(VygradF") + F' S RN (du(e;), du(W))du(e;)
+F'Vwlr(u) + Y du(Vee)] + F'S du(Ve,[ei, W] — Vie,wei) s
here we use
T(u) =3 [@eidu(ei) — du(Ve,e;) ]
=3 Vwdu(gradF") - du(VwgradF') + F'S" RN (du(e;), du(W))du(e;)
+F'Vyr(u) + F' S, Vigdu(Ve,e) + 'S du(Ve, Ve, W)
—F'S du(V, Vives)
=3 Vwdu(gradF’) - du(VygradF') - F'S" RN (du(W), du(e;))du(e;)
+Viw (F'r(w)) - (Vi F)71(u) + F' S (Vipdu)(Ve,e;)
+F' Y du(VwVee) + F' Y du(Ve, Ve, W) - F' Y du(V,,Ve;)

=- du(VwgradF') - F' > RN (du(W), du(e;))du(e;) - (Vw F')7(u)
+F' Y du[VwVee; — Ve, Vel + F' > du(Ve, Ve, W) , here
Tr(u) = du(gradF") + F' 7(u) =0 and Ve, =0,
=- du(VwgradF") - F' > RN (du(W), du(e;))du(e;) - (Vw F')7(u)
+F'du(>" RM (W, e;)e;) + F'du(> (Ve , Ve, W)
=- du(VwgradF') - F' > RN (du(W), du(e;))du(e;) - (Vw F')7(u)
+F'du(Ricci W) + F'du(trace VW),
here we note that on the unit n-sphere S™
Ricci®™" (W) = (n—1) W
and since trace V2W = —W , the last two terms vanish

=-du(VwgradF') - F' " RN (du(W), du(e;))du(e;) - (Vw F')7(u) .

The following calculations are straightforward :
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trace du( W(F’(@)) W)

= tracedu (), < a,e; > ei(F’(%)) <a,e; > ej)

= trace du ()_;; < grad F’('dgl2),ei >e; <a,e ><a,e;>)
= du(), <grad F’(@),ei >e <a,e >%)
= du(grad F’(@) )
trace < W(F’(@))T(u),du(W) >
= trace < T(u),du(W(F’(%))W) >
=< 7(u),du( grad F’(@) ) >

=< 7(u),— F' (%) 7(u) >, by the F-harmonicity condition .

Thus, we obtain
trace < Jp(du(W)), du(W) >
= trace [—F" <Y RN (du(W), du(e;))du(e;), du(W) > + < du(VwgradF"), du(W) >
+F' < S" RN (du(W), du(e;))du(e;), du(W) > + < (Vi F')1(u), du(W) >
— ¥ < V., (< V(du(W)),du > F'du(e;)) , du(W) > ]
= trace [< W(F') 7(u), du(W) >+ < du(Vw grad F') , du(W) >
— S e (< (< Vdu(W),du > F"du(e;)) , du(W) >)
+ 3 < (< Vdu(W),du > F"du(e;)) , Ve,du(W) >]
= — F'|r(w)]* + trace < du(Vw grad F'), du(W) >
—trace . div (<< Vdu(W), du > F"du(e;), du(W) > ¢;)
+ trace (< Vdu(W), du >)? F”
By the divergence theorem, the integral of the third term in the last equality vanishes

and the lemma follows by integration. [
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Theorem 2.15. Let u : (M",g) — (N* h) be a stable F-harmonic map from a

complete noncompact Riemannian manifold M into a complete Riemannian mani-
fold N. Let ¢ be a smooth function on M. Then the following inequality holds:
0 < [y F(1%E) { |du? [Vo]? + ¢* |1, B, &) } du,
+ o FUOSE) LRIV + 62 b, S (21 B(Vié)?
— < B(Vo, Vo), B(é;,€;) >) } dug,

where dv, is the volume element of M and é; := du(e;)

Proof : The Nash’s embedding theorem says that we can isometrically embed
N* into R" for somer. Let {V,}"_, be an orthonomal basis in R" where
v .. VI = Vj,..,V; aretangent to N and

Vit ...V = Vi, ..., V. are normal to N.

Denote ft‘;s V" the flow generated by VI and apply the second variation for-

mula with
Up = ft¢v“Tou and u, =u,
then we sumover a = 1,...,r with s =1¢.
Sicr o Be(h” " o w)lino
= Yoy S (/055 (0, < Ve oVl 6> )?
+ F(%5) I {IVaoVI 2 = < RN(9V] . &), oV, >) )] du,

Denote V the Riemannian connection in R” . Since V, is parallel in R" , we get

V..Vl = vive
= (Ve, V)T
= (Ve [Va = V)T
= — (Ve VO
= Ayi(&)

Ved Vi = (ad) VI + ¢V, VT
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Thus,
Yo (X < Ve, oVl e >)?
=Y (XL < (@) Vilié> +¢ < Vo,V & >)?
= Y (X < (@) Vi &> + ¢? 3 (L <Avs (6),6>)°
= Yoo < Vi, du(Ve)>? +¢* 30 (3L, < B(6,6&),V; >)?
= Y < Vi, du(Ve) >? + ¢? Domkn < Doy B(E &), Ve >?
= |du(Ve) P + ¢ | 30, B(&i,é)
= [du?| Vo[ + ¢*| XL, B(@, &) .
since we can choose a local orthonornal frame field ey, ...,e, such that e is the
unit vector field in the direction of the gradient vector field V¢, it follows that
| du(V) [P = |du(|V¢| er) [P = |du(e))? [Vo|* = |dul* [V|*.
Next,
Yot L | Ve o VI P
= Yot Tt (@) Vi + o Ve VP
= 2 i { (@0) VI P+ 2(ei0)0 < VI Ve, Vi > +6* [V VTP )
= K[V + X0, Y {2(ed)g < VI Ay (&) > +6° Ve, VP )
= EIVoP + Yo X {0 [ Ave (@)1}

By the Gauss curvature equation, we obtain

S S A (@)~ < RNV &), VE >}
= Sk S (2] B(Ve,&) P~ < B(Vi,Va),Bé,&)>). O
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Chapter 3

Kahler geometry

Le génie est la longue patience.

French

The Kahler structures were introduced with the following motivation : given
any Hermitian metric on a complex manifold (M, h), the fundamental 2-form w
can be expressed in local holomorphic coordinates as follows

w =1 hygdz*ANdz? | h.z = h(z%,5)
The Kahler condition dw = 0 is equivalent to the local existence of some function
u such that

9%u

hap = grepze
i.e. the whole metric tensor is defined by a unique function! This remarkable
property of the metric allows one to obtain simple explicit expressions for the Ricci
and curvature tensors and a long list of miracles then occurs.
There is another remarkable property of Kahler metrics : every point x in a

Riemannian manifold has a local coordinate system {z‘} such that the metric
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osculates to the Euclidean metric to the order 2 at x. These special coordinate
systems are the normal coordinates around each point. On a Hermitian manifold,
the existence of normal holomorphic coordinates around each point is equivalent to
the Kahler condition, i.e. the metric is Kahler. Applications of Kahler manifolds
have been widely researched in differential geometry, complex analysis, algebraic
geometry, and theoretical physics.

In section 3.1, we gather a few relevant facts about Kahler geomtry. In section
3.2, we calculated the holomorphic sectional curvature of the complex hyperbolic
space CH™ . Then we give a detail description of the complex projective space
CP™. Along the way, we show that whenn =1, CP! behaves exactly like the unit

sphere S?. A list of other well-known Kahler manifolds are also given.

3.1 Kahler manifolds

An almost complex manifold M is a real manifold with a field J of endomorphisms
of TM such that J? = — I . This operator J can be extended linearly to an
operator, also denoted by .J, on the complexified tangent bundle 7'M with fiber
T,M ® C atx in M, which induces a decomposotion

TM¢ = TM* @ TMO!
of the bundles of the eigenspaces of .J on TM¢ associated to the eigenvalues i, - i
and further induces a dual decomposition of the complexified cotangent bundles

T*MC — T*Ml,O o) T*Mo,1

A Hermitian metric on an almost complex manifold M is a Riemannian metric
g satisfying
g(JX,JY) = g(X,Y), VX,Y € T'(TM). Then it follows that
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g(X,JY) = —g(JX,Y)
g(X,JX) =0

An almost complex manifold with a Hermitian metric is called almost Hermitian.

Proposition 3.1. [61] Every almost complex manifold admits a Hermitian metric

provided it is paracompact.

Proof : Since it is paracompact, we can take a Riemannian metric / and set
g(X,Y) = h(X,)Y) + h(JX,JY). Then

g(JX,JY) = h(JX,JY) + h(J?’X,J?Y)

= h(JX,JY) + h(X,Y)

= 9(X,Y).

The Hermitian metric g on an almost Hermitian manifold M extends to a com-
plex bilinear form on 7M€ and thus induces on 7'M the Hermitian form associ-
atedto X,Y € T,M'° the number g(X,Y).

The almost complex structure .J of an n-dimensional manifold )M is integrable
if locally there exists coordinates 2* = ' 4+ y', 1 < j < n, for which

J (%) = 2 and
0

J(55) = — 5% forall 1<j<n.

Theorem 3.2. [42] Any integrable almost complex structure is induced by a

complex structure.

Proposition 3.3. [36] An almost complex structure is integrable iff the Lie bracket

of vector fields preserves TM®' i.e. [TM*' TM™] c TM*! .
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To every almost complex structure .J, we can associate a (2,1)-tensor N7, the
Nijenhuis tensor defined by
N/(X)Y) = [X,Y] - [JX,JY]+ J([JX,Y] + [X,JY]) , VX,Y € T(TM).

Proposition 3.4. [32] LetJ be an almost complex structure on a real 2n-dimensional

manifold M. Then J is a complex structure iff N’ = 0.

Remark 3.5.  Every almost complex manifold is necessarily of even dimension.
To see this, let (M™, J) be an almost complex manifold of complex dimension n.

Its almost complex structure J, acts on the tangent space. Choose a real basis of

vector fields. The J}/(p) are real, where .J, = J}/(p) -2 @ da' . It follows that
[Det(J)]* = Det(J?) = Det(—I) = (=1)".

Since [Det(J)] is real, [Det(J)]? is positive, hence n must be even.

Remark 3.6. [6] Forn # 2,6, S™ does not admit any almost complex structure.

The Kahler form on an almost Hermitian manifold (M, g, J) is the 2-form
w(X,Y) = g(X,JY)
It is easy to check that
w(X,Y) = w(JX,JY) . Indeed,
w(JX,JY) = g(JX,J?Y) = — g(JX,Y) = g(X,JY) = w(X,Y)

Definition 3.7.  An almost Hermitian manifold (), g, J) is almost Kahler if the

Kahler form is closed , i.e. dw = 0 . Furthermore, if J is induced by a complex
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structure then almost complex, almost Hermitian, and almost Kahler manifolds are

called complex, Hermitian, and Kahler manifolds.

Let (M", g) be a Kahler manifold and R be its curvature tensor. Then we have
R(X,Y)J = JR(X,Y) ,[36] p.145
R(JX,JY) = R(X,Y)
R(JX,Y) = — R(X,JY)
Ric(JX,JY) = Ric(X,Y)

s trace(JR(X, JY))
(VzRic)(X,Y) = (VxRic)(Y,Z) + (VyyRic)(JX, Z)

Proposition 3.8. [36] Let (M",q,J) be a Kahler manifold. Forn > 2, if M is

of constant sectional curvature then M is flat.

Proof : R(X,Y)Z = c¢[g(Y,Z2)X — g(X,2)Y ]

for X, Y, Z € T(TM)
Since R(JX,JY) = R(X,Y) ,

we get
RIX, Y)Y = c[ gV, V)X — g(X,Y)Y]
= c[g(Y.2)X — g(X,2)Y]

= R(JX,JY)Y which implies
2n — 1)cX = ¢cX

Since n > 2, we have

2n —2)c =0 = c¢=0. 0O

In view of this proposition, the notion of constant sectional curvature for Kahler
manifolds is no longer essential. Thus, the notion of constant holomorphic sectional

curvature in Kahler geometry is the analog of sectional curvature in the Riemannian
case.
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The holomorphic sectional curvature H R(v,Jv) for a unit tangent vector v
in a Kahler manifold is the sectional curvature of the plane generated by {v, Jv} .
If HR(v,Jv) does not depend on v, then M is of constant holomorphic sectional
curvature. A complex manifold with constant holomorphic sectional curvature is
a complex space form which must be locally isometric to one of the following
complete, simply connected Kahler manifolds [65] : C", CP"(4k?) , CH™(—4k?),
where —4k? means that the sectional curvature lies in [ —4k?, —k?| and likewise
for 4k? . For these spaces, sectional curvature of the planes spanned by orthonormal
vectors u, v 18

g(R(u,v)v,u) = + HR[1 + 3(g(u, Jv))?].

We also have the following relation :

holomorphic sectional curvature C holomorphic bisectional curvature C sec-

tional curvature

Proposition 3.9. [32] A Kahler manifold of constant holomorphic sectional cur-

vature is an Einstein manifold .

Remark 3.10. [21] If the holomorphic bisectional curvature is positive (negative) ,
then sois the Riccitensor > | R(X;, JX;, X, JY),where {X1,..., X,,, J X1, ..., JX,.}

is an orthonormal basis of T}, M .

Remark 3.11. [25] The Fubini-Study metric on CP™ has positive bisectional

curvature.
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3.2 Examples of Kahler manifolds

Example 1. 'The complex hyperbolic space CH".

Lemma 3.12.  The holomorphic sectional curvature of the complex hyperbolic

space CH™ is negatively quarter-pinched.

Proof : It is well-known [28] that we can define the complex hyperbolic
space CH™ as
CH™ = SU(n,1)/S(U(n)x U(1))
Let p = C be the first coordinate axis. The isotropy group is given by
S(U(n) x U(1)) which are the matrices in U(n) x U(1) of determinant 1. This

group is naturally isomorphic to U(n) via the map

B 0
B —

0 —trace B

The involution that makes CH™ symmetric is given by the conjugation by

The canonical decomposition of the Lie algebra is

su(n,1) = u(n) ® u(l) & m, where

Z1 29
su(n, 1)={ 21, z3 skew-Hermitian of ordern,l ; tr z,+z3 = 0; and 2y arbitrary}

25 23
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A z :
={ | 2 = eC", A= —-A"}
zx  —traceA :
Z?’L
B 0
The inclusion of u(n) in su(n, 1) is givenby B +—
0 —trace B
Thus we can write elements of su(n, 1) as
A z A 0 0 =z
= -
2k —traceA 0 —traceA zx 0
where we identify the Lie subalgebra m with C" via
0 =z
m = { |z € C*} = C™
zx 0
We can use the following standard inner product
<A,B>= —1trace(AB) = 1 trace(AB").
2t w?
Let z2=| |, w = | eC". We calculate
2" w"
0 =z 0 w 0 =z 0 w
< : > = Ltrace(
zx 0 wkx 0 zx 0 wx 0
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*

W 0
1
= §trace

0 zw
s(trace(zw*) + z*w)
= H(w'z + Z*'w)
= Re< z,w >
where < z,w > is the standard Hermitian inner product on C™ which is conjugate

linear in the second variable. Note that

w
sw=(Z..| | = N =<wz>
w"
1
w2z = (w'...a") | - Sk =< zw >
n

which implies < z,w >= <w,z>.

The next step is to calculate the Lie bracketonm : letp € CH™ , then at p we have

0 =z 0 w
[va]:[ )
zx 0 wx 0
0 =z 0 w 0 w 0 =z
zx 0 wx 0 wx 0 zx 0
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zw* — wz* 0

0 Z*w — w¥z

From Corollary 6.3.5 (p.295 [32]) and Lemma 3.2 ( p.243 [47]) , since CH" is

a symmetric space, we get the following for its curvature tensor R.

R(z,w)w = [w,[z,w]]
0 w 2w* — wz* 0 ]
wx 0 0 2w — wrz
0 w zw* — wz* 0 zw* — wz* 0
wx 0 0 2w — wrz 0 ' — w¥z
0 w(z'w —w*z) — (zw* — wz*)w

w*(zw* —wz*) — (2*w — w*z2)w*

We observe the following.

* *

[w*(zw* — wz*) — (z*w — w*z)w?|
= (zw* —wz*)'w — w(z*w — w*z)*
= (wz* — z2w*)w — w(w*z — z*w)
= w(z*w —w*z) — (zw* — wz*)w

[

Therefore the identification m = C" yields

R(z,w)w = w(z*w —w*z) — (zw* — wz*)w

0

To compute the sectional curvature, we choose an orthonormal basis {z,w} of a

plane where |z = |w|*> =1 and Re < z,w >= 0. Then the sectional curvature
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of the plane spanned by {z,w} is given by
sect(z,w) = < R(z,w)w, z >
=< w(z'w—wz) — (2w —wzw, z >
= Z'w(z*w —w*z) — 2" (zw* — wzF)w
= Z'wz'w — ZFrww*z — 2 2wtw + Fwfw
= 2 Z7'wz*w — Zfww*z — 1
= 2R <w,z>—2Im? <w,z>
+4iRe<w,z>Im<w,z> —Re? <w,z>—-Im? <w,z> -1
= Re2<w,z>—-3Im? <w,z>
+4iRe <w,z>Im<w,z>—1
= —3Im?’<w,z>—-1 , sinceRe<w,z>= 0
Thus it is easy to see that
if < z,w >= 0 then sectisequalto — 1, and
if w = i z then sectis equal to — 4 .
Since 0 < [Im <w,z>] < 1, itfolows that all other sectional curvatures

lie between | —4, —1] ,i.e. CH™ is negatively quarter-pinched.  [J

Remark 3.13.  Let D" be the open unit ball in C" defined by
Dm = {(z'...,2")| Y 2%2* < 1}. Set
w = 4i00 (1 - z42%).
Then the associated metric g is

9 (1=3272) (32 dz¥dz?) + (3 2%d=) (3 2¥dz)
dS - 4 (1_22,&2&)2

It is well-known that the complex hyperbolic spaceCH" can be identified with D"

[36] and thus its Kahler metric is this metric.
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Example 2. 'The complex projective space CP" .
Consider the complex vector space C"*! . A complex linear subspace of com-
plex dimensionl in C"*! is a complex line. Define
CP™ := the space of all complex lines in C"*!
= (C"*' — {0} )/ C* , where C* acts by multiplication on C"**
= (C"™ —{0})/ ~ ,where z ~ w iff 3)\ € C*=C — {0}
such that w = Az . Two points of C"*! — {0} are equivalent iff they are complex
linearly dependent, i.e. they lie on the same line. Only the origin [0,...,0] does not
define a point in CP" . Denote [z] = the equivalence class of z. Write
z = (29..,2") e CHL,
The standard open covering of CP" is given by the n+1 open subsets
U = {[z]=["..,2"]]|2#0} c CP"
= the space of all lines not contained in the complex hyperplane {z* = 0}
If CP" is endowed with the quotient topology via
m: CI{0} — (C"I\{0})/C
then the U; ’s are indeed open and we obtain a bijection
¢ + U —C"
0i ([2%.,2"]) = (&, 5,002 = (W), ., w") € CP
Thus, CP™ becomes a C'*° manifold since the transition maps are diffeomorphisms
gjo¢;  di(UinUj) = {z=(2"..,2") € C" | £ 0} — ¢;(UNT;)
Gjo ¢ (2, 2 = di( [2Y, 0, 2 L2 L) = (B B L L B
They are also holomorphic : indeed, write z* = z* + iy* , then for
o = 5o —igw) and g = §(50 + izx) wehave
2 giop (2t .., 2") =0, fork=1,..,n.

This shows that CP™ is a complex manifold [32] .



Consider the (n+1)-tuple

satisfying the restriction that not all z’ vanish identically; as homogeneous coor-
dinates [z] = [2°,...,2"]. These are not coordinates in the usual sense because a
point in an n-dimensional manifold here is described by (n+1) complex numbers.
The coordinates are defined only up to muliplication with an arbitrary nonvanishing
complex number A
[20,...,2"] = [AZY, ..., A2"]

This fact is expressed by the adjective “homogeneous”. The coordinates (2!, ..., z")
defined by the charts ¢; are Euclidean coordinates.

The vector space structure of C"™! induces an analogous structure on CP" by
homogenization : each linear inclusion C*¥*! C C"*! induces an inclusion CP* C
CP™ . The image of such an iclusion is called a linear subspace. The image of a
hyperplane in C™"*! is again called a hyperplane and the image of a 2-dimesional

space C? is a line.

Instead of considering CP" as a quotient of C"*! — {0} we may also view it
as a compactification of C™ . We say that the hyperplane H at infinity is added to
C™ : the inclusion

C* — CP" is given by
(2',..,2") — [1,2',...,2"] := H := ahyperplane CP"!
Thus, we have a disjoint union of complex Euclidean spaces :

(*) CpPr = C"UCP"! = CruCrtu...ucC®

Topologically,

CP™ = the union of (n+1) cells of real dimension 0, 2, ..., 2n .
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By the Mayer-Vietoris sequence, we may easily compute the cohomology of
CP™ from (*) . In order to represent CP™ as the union of 2 open sets as required
for the application of this sequence, we put

u==¢aCr
V ={zeC"| ||z|® = #zZ >1} U CP"!
Then V has CP" ! as a deformation retract, i.e.
re:V—V, r(z) =tz for z€ C" where truns from 1to oo,
riw) = w for we CP" 1|

and U NV is homotopically equivalent to the unit sphere S?"~1 of C™ .

It follows from (*) that CP! is diffeomorphic to S? [32]. Indeed, recall that S?
may be described via stereographic projection from the north and south poles by 2
charts with image C and the transition map

Z— 1
which is actually the transition map

[1,2] — [2,1] of CP'.

To introduce a metric on CP" , let
7w : C""1 — {0} — CP™ be the standard projection
and consider the holomorphic map
Z :UcCCP" — C"™' — {0}  whichisalift of Id cp»
i.e. a holomorphic map with 7o Z = Id ¢cpn . We put
w = £00log||Z||* anddenote = 32 dZ’, = 3% dZ".

If Z' : U— C"™ — {0} is another lift, we have

Z' = ¢ Z , where ¢ is a nowhere vanishing holomorphic function.
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Since 0 log ¢ = 0 = 0 log ¢ with ¢ being holomorphic and nowhere vanishing,

we get

%85[09||Z’||2 = %05(Z09||Z||2 + log ¢ + log @)

= w+ 5(00logp — Dlogd)

= w.

Thus, w does not depend on the choice of charts and defines a 2-form on CP".

Next, we want to represent w in local coordinates : let

Then,

Uo = {12°..,2" | 2°#0}

Z = (1,2%,...,2™) which is alift of 7 over Uy , since 2* = %on U, .

w = 190 log (1+ 2777)

_ 1 2JdzI

2 9 ( 142k zk )

_ 1 [ dZInNdE  2FRE d2IndER ]
T2 L 142kzk (1421242

At [1,0,...,0] , we get

w = %dzj/\dzj

= L[ (da? +idy?) A (da? —idy’) ]

[idy’ A dx? — idx? A dy’ )

[NSIEY

= £ (—2i(da? A dy))

= dal Ndy .

Thus, w is positive definite at the point [1,0,...,0] . Since w is invariant under the

operation of U(n+1) on CP" , it is positive definite everywhere. We generalize the

object w above in the following.

Let M be a complex manifold with local coordinates z = (2, ..., 2"). A Hermitian

metric on M is given by an expression of the form
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where h;z(z) depends smoothly on z and is positive definite and Hermitian for
every z . The expression
L hg(z) d2? A dZ

is called the Kahler form of the Hermitian metric.
A hermitian metric h,z(2) dz? ® dz* is called a Kahler metric, if V2 € M , 3 a
neigborhood U of 2z and a functionu : U — R such that

L hiz(2) dzi NdZF = d0u.
Then OOu is called the Kahler form. The 2-form w above defines a Kahler metric
on CP" called the Fubini-Study metric [36], which has many special properties.
To obtain the Fubini-Study metric, we consider the homogeneous coordinate system
{2° 21, ...,2"}. Forevery j , let U; be an open subset of CP" defined by 27 # 0.
Set

k

th =%, jk=01..,n
On each U, , take { t?, s tA;'., s U7 } as alocal coordinate system and consider the
function
fi= Yottt = >t () it = fithth on U;NUy . Then
log f; = log fr + logt;” + @j
Since té? is holomorphic in U; N Uy, , we have
élogtf =0 , 0@? = 5@? =0
From 00 = — 00 , we obtain on U; N Uy
00 logf; = 90 logfy
On each U; , setting
w = —4i 00 logf;
gives a globally defined closed (1,1)-form w on CP™ .

On the other hand,
fo= Yo thty =1+ X0t
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w = —41 305 gjf’—%{gdta/\dt_ﬁ , wheret® = t§, a=1,..,n. Thus

[ ZAOADE 4 S S dI AT — TN 1 dE”
R (1+ St

w =
The metric tensor g associated with this Kahler form w is indeed the Fubini-Study

metric given by

9 (SR (S dedE) — (3 ) (3 ¢4 dEY)
ds® = 4 (Tr-eie)? .

Example 3. The complex Euclidean space C" with metric ds* = Z’;:

| dZ7dz
The fundamental 2-form w is given by w = —iy . dJ NdF
which is clearly closed and so the metric defines a Kahler structure on C" . Thus,

C™ is a complete, simply connected flat Kahler manifold.

Example 4. Any complex 1-dimensional manifold > i.e. any Riemann surface
is automatically a Kahler manifold since dw is a 3-form and therefore vanishes on
the real 2-dimensional manifold > . Any complex submanifold N of a Kahler
manifold M is a Kahler manifold. In particular, all complex projective manifolds,
i.e. those that admit a holomorphic embedding into some complex projective space,

are Kahler manifolds.
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3.3 Noncompact Kahler manifolds

Definition 3.14. [57] A differential form w satisfying

liminf,_, T% fB(xw) lw|P dv, < oo,
for some real number p , for some point o € M is said to be 2-balanced. In partic-
ular, every L? form is 2-balanced. In particular, a differential form w satisfying the
above inquality is 2-finite and every L” form is 2-finite ([56]). More importantly,

2-finite implies 2-balanced.

Remark 3.15. [55] Every 2-balanced, q> 0, holomorphic functionf: M — C on

a complete noncompact Kahler manifold is constant.

Remark 3.16.  The case f being 2-finite, > 0 and the case f being 2-moderate, q

> 0 with F € F being nondecreasing are due to Karp [34].

Theorem 3.17. [57] Let M be a complete noncompact manifold of nonnegative
Ricci curvature. Then every harmonic I-form or harmonic (n-1) form on M satisfy-
ing

liminf,_, 7%2 fB($07T) lwlPdvy, < 00, p > 2
forsome xy € M is parallel. If the Ricci curvature is positive at a point, then every
harmonic 1-form or harmonic (n-1) form satisfying the above condition vanishes
identically. Furthermore, forp > 1, every L harmonic 1-form or harmonic (n-1)

form on M vanishes.
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Theorem 3.18. Let (M", g, J) be a complete noncompact Kahler manifold. If at
each point of M the sum of any q eigenvalues of the Ricci tensor is nonnegative then
any 2-finite harmonic form of type (0,q) or (q,0) is parallel. In addition, if M has
infinite volume or the sums of any q eigenvalues of the Ricci tensor are all positive

at some point of M then any such form vanishes.

Proof : Let x¢ M and « be a 2-finite, p > 1, harmonic form of type (0, ¢),
where 0 < ¢ < n. Choose an orthonormal frame field {Vi, ..., V;,, Vi, ..., V,,} and
its dual orthonormal coframe field {w!,...,w™ w!,...,w"} whereV; are complex
vector fields of type (1,0). Since the calculation is local and does not depend on
the choice of frames, we can choose these frames to be normal at x. Furthermore,
at everypoint of a Kahler manifold, there exists a local complex coordinate system
which is normal at the given point [36], i.e. let 2 = (2%, ..., 2™) be the local complex
coordinate system normal at a given point X € M. Then we have

z2(z) =0
9ij(x) = 0y
dgz‘j () =0

where D is the Levi-Civita connection on M.

i.e. DV, =Duw'=0,

The complex structure J on M induces the following decompositions :
d=0+0 where 9= w'ADy, , 9= w ADy
d* = 0" + 0 o =-=>1uVi)Dy. , 0" =->uV;)Dy,

and ¢(V};) is the interior multiplication (i.e. contraction) with the vector V; .

The complex Laplacian is then given by two equivalent formulas via conjugation :

Oy = 00 +00 — 90 +00 = O
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Thus, we get
90" = Yo' ADy(-Xu(V)Dy) = ¥, uwt (V) DyDy,
00 = — Y u(Vy)Dy,(Swi ADy) = — X, u(Vy)lw' A Dy, Dy
= — > UV))w' A Dy Dy, + 32w Au(Vj)Dy, Dy,
Since Y Ry = —>. Dy, Dy. + > Dy, weobtain
Oo = =3 DyDv. + >;w Au(V))Ryy,
= =2 DvDy, — ¥ Ryp + Xyw AuVi) Ry,
On the other hand,
00" = 3 w' A Dy (= uVj)Dy,) = —3,;@ AuV;)Dy Dy,
59 = — Y uV)Dy, (S ADy)
— — 5, WV)[Dya@ A Dy, + @ A Dy,Dy]

=~ DDy, + S A oV;)Dy, Dy,

and

05 = ~XDvDy, — Yl AuV))Ryr,
To show that [0y = [z , we a pply conjugation :

Op = =X DvDy, — X AuV))Ryy,

= =2 DyDv, — X, w AuV)) Ry,
= - Zz Dy, Dy, — Zz Ryy, + Zij w' A L(Vj)RViVj
= Oy
here we have used the skew- symmetric property and the definition of the curvature

tensor.

Remark 1: Let f=< a,a >, where «isasmooth 1-form on M.
We want to show that f 3is subharmonic, i.e. to show that

Ofz >0.
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However, the function f 2 may not be C*> at the zeros of the differential form o
and thus we will show that CJ(f + €)2 > 0 instead. Once we have shown that the
function (f + e)% is subharmonic for each ¢ > 0 then we can conclude that f2 is
also subharmonic since f 2 is the limit of subharmonic functions (f+ 6)% uniformly

on compact sets.

Remark 2: If a C* positive function h is subharmonic then so is 2? forp > 1.
Indeed,
OhP = div(Vh?) = div(ph?~'Vh) = ph*~'0Oh + p(p — 1)hP72|VhA|*> > 0.

We compute

O(< a,a > +€)2

N

=" ViVi(< a,a > +e)

1=

-1

=y, V [%(< a,a>~4€)2 (< Dyo,a > + < o, Dy, >)]

-3

= > (F)< a,a > +€)2 (< Dyo,a > + < a,Dypa >)(< Dya,a >
+ <o, Dya>)+ > (< a,a> +e)z [< Dy, Dy.o,0 > + < Dy, Dyx >
+ < Dy,a, Dy,a0 > + < a, Dy, Dy, o0 >]

= <o a> +6)? [ < Dyo, a0 >< Dy, o, o0 >
—<a,Dya><a,Dya>—<a Djpa><Dya,a>
— < Dy,a,a >< a, Dy,a > +2 (< o, > +€)( || Dy || + || Dy,||* )]
+Y s(< o a> +e)7 (< Dy, Dy.or,a > + < o, Dy Dy, >)

Thus, if the expression inside the square brackets in the last equality is nonneg-
ative then

O(< a, o0 > +¢€)2

> f(<oa> o)z (Y < Dy, Dy.o,a >+ < o, Dy Dy, >)

59



Next we will show that this expression inside the square brackets is indeed nonneg-
ative. Recall that for a complex number z = x + iy , we have

22 = |22 where |2| = /22 + 42

and Re z < |Rez| < |z|.

Applying these properties of complex numbers yields

<a,Dypa><Dya,a>=<a,Dypa><aDypa> = |<a Dypa>|?
< Dya,a><a,Dya> = | < Dya,a > |?
Furthermore,

— < Dy,a,a >< Dyo,a0 > — < a, Dy,ae >< «, Dy > + ||| |*(|| Dy, | |* + || Dy, )

= — < Dy,a,a >< Dy.o,0 > —< Dy,a, @ >< Dy, >+ ||a|[*(|| Dy, e||* + || Dv;x|]?)
= —2Re < Dy,a,a >< Dy, a > + ||o|]*(|| Dy,al|* + || Dy, | [*)
> | < Dyo,a> || < Dya,a>|+ [|o(][Dyall* + || Dv.el?)

> =2|([Dyel| lel[ [|Dyall [laf] + |lal ([ Dy;el* + | Dv,al?)

= [lal*(I1Dy,all* + [[Dyv,e|*) = 2 || Dyl [[ Dy, )

= [lelPP([|Dyall = [ Dvall)?

v

0

where we have used the Cauchy-Schwarz inequality
—<vw> 2+ ol 2 0

to obtain the following inequalities

— | <Dva,a> > + |[Dyal [laf]*

Y
o

—|<a, Dpa> + |laff?[|Dyalf = 0

Thus, we can rewrite the expression inside the square brackets as follows
[— < Dy,a,a >< Dy,a,a > — < a, Dy,a >< a0, Dy« > + ||at||*(|| Dy, | |* + || Dy; )

— <a,Dya><Dya,a>— < Dya,a ><a,Dya >+ ||a|]? || Dy« [?
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+ [[Dv.all* llal]® + 2¢ ([[Dy,all* + | Dyel)] = 0
Hence, we have proved that

O(< o,a > +€)2 > H<a,a> +6)7 (< > Dy Dyo,a>+ <o,y DyDya>)

The next step is to show that the right hand side of this inequality is nonnegative.
Since Ry, « preserves type and t(V;)ae = 0, for al form « of type (0,q), we get
> w AUV Rypa = 0

Thus, from previous calcululation and the above observation we obtain

Oa = =) Dy Dya — Y Ryjo
which implies
> DyDyoa = —0Oa — ) Ryya
> DyDyao = —0Oa, since Ryy = — Dy, Dy + Dy, Dy,.

If o is harmonic then

<Y DyDypoa,a> + <o,y DypDya> = — <> Rypo,a>

Recall that the pointwise Hermitian inner product <, > on forms is defined as folllows :
for the multi-index I= (i1, ...,%,) such thati; < ... < i, , we write

wl = wh A LA wh

By the property of complex inner product [36],

<wlhw' >=0=<w", 0w/ > and <w!’,w’ >= §"

Extend <, > to act on forms and define the corresponding norm as follows :

<¢,0>= ]9, 6 € A
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We claim that R = ) Ry, is a Hermitian operator. To see this, let £,7) be
covectors of type (0,q) and write

£ = Zm:q Erat o = Z|J|:q 1y o’
Then,

<EN> = Do &1

Since Ry.y.f = f Ryy1 = 0 for any function f, it follows that
0 = Ryy, <& n>=<Ryypé&n>+ <& Ryyn>
which implies
<Rypé&i>= — <&Rypi>=<E& Rypyil>=<E Rypn>
This show that R is a Hermitian operator and hence it can be diagonalized by some
orthonormal basis of eigenvectors of type (0,1), say {W7, ..., W, } relative to which
the eigenvalues \; are real, i.e.

Let {0, ...,6m 0%, ...,0"} be the coframe field dual to

(W, o, Wy, Wi, o, W b
Then duality gives

0 = ROW,) = REW; + BROV;) = REW; + A 0 W,
which gives

R(é]) - - )\j éj

For the (0,q)-form a = 7,_, a;6’, wehave
RO A o A G) =50 070 Ao A R(OF) Ao A G
= — (N, + .. +};,) 0 andthus
R(a) = — Zm:q ay (o Ag) 07
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Atagiven point x € M, if > 7_ A\, > 0 then forall j; < ... < j,, it follows
that
- <Ra,a>=<y 0 (70, A) 07 X067 >
= 205 (i i)
> 0
We have proved that
O(< o, 0 > —1—6)% > 0 and hence < a, « >7 is subharmonic .

Moreover, ifa # 0 and Y ;_, Aj, > 0 then O(< a,a > +6)z > 0.

To prove the first assertion we apply Yau’s Theorem 1 in [64] as follows:
if [, <a,a>%: < oo forsomep, 1 <p < oo, then

< a,a > = constant forl < p < oo.

It follows that
0=0O<aa>=> ViVi<a,a>= Y Vi[< Dpa,a>+ < a, Dya >
= > (< Dy Dy,o,a >+ < Dy, Dy > + < Dy, a0, Dy, >
+ < o, Dy, Dy a0 >)
— ¥ (< DyDya,a > + < a,DyDya >) + ¥ (IDyall +|Dyal )

which means Da = 0 or « is parallel.

To prove the second assertion we observe that if the volume is infinite then since

a is 2-finite < o, & > must be zero. Thus a = 0.

Now, regardless of the volume of M, if

< Dy Dya,a> + <a,DyDypa> > 0
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then o = 0 at any point where  _, A;, > 0 forall j; < ... <j,.
Finally,we observe that the calculations for forms of type (q,0) would follow

readily on the same line from those for forms of type (0,q) because conjugation is

an isometry and conjugate of forms of type (0,q) are forms of type (q,0). U
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Chapter 4

Applications

The beauty of Mathematics lies in its complexity : indeed, one must
be willing and able to traverve a rabid river of intricate logics and
abstruse abstractions and to trek through rugged mountains and
deep gorges of convoluted calculi to arrive at a surreal valley of
truth ; and whence, the beauty of an ordinary mathematical writing
transcends, permeates and enlightens one’s soul to the greatest of

all possible human intellectual satisfaction. H. T. Nguyen

4.1 F-Harmonic maps from a complete Kahler
manifold with a pole

Let M be a complete simply-connected Kahler manifold. A pole is a point z, € M

such that the exponential map

exp : Ty, M — M 1is a diffeomorphism.
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The radial curvature /K of a manifold with a pole is the restriction of the holomor-

phic sectional curvature to all the radial planes which contain the unit vector

Or(z) = 7()
in T, M tangent to the unique geodesic joining z, to x and pointing away from .

Denote r(z) = dist(x,,z) the distance from z, and define the tensor

0 onthe radial direction O,
g—dr®dr =

g on the orthogonal complement 0.

Lemma 4.1. /23] (Hessian Comparison Theorems in Riemannian Geometry)
Let (M, g) be a complete Riemannian manifold with a pole x, with its radial
curvature K, .
(i) If —a®>< K, <—-b*, a,b>0, then
b coth(br) [g — dr ® dr] < Hess(r) < acoth(ar) [g — dr ® dr].
(ii) If K, = 0, then
Llg—dr®dr] = Hess(r).

(iii) If gy < K < oy where € >0, A >0, 0< B < 2¢ then

EYES

1_Tg[g—dr@)dr] < Hess(r) < &

= [g—dr®dr].
(iv) If —Ar?® < K, < — Br?® where A>B >0 and q> 0, then
B,r? [g—dr®dr] < Hess(r) < (VA coth/A) i [g—dr®dr]

for r>1, where B, = min{1, —q+1 (B+(q+12)%}

Definition 4.2. The F-degree d is defined as

dp = sup >0 t}f(f)t) .
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Lemma 4.3. [13] Let (M, g) be a complete Riemannian manifold with a pole x,, .
If there exist positive functions hi(r), he(r) on M — {x,} such that
(i) hi(r)[g—dr®dr] < Hess(r) < hy(r)lg—dr®dr] and
(ii)) 1 < rhy(r),
then for X =r 0, =r Vr , we have
< Sp(u),Vox > > F5) (14 (0= D)rhy(r) — 2pde rho(r) .

Theorem 4.4. [13] Let (M, g) be a complete Riemannian manifold with a pole
x, and E — M a Riemannian vector bundle. Let w € AP(FE) be a differential
p-form with value in the vector bundle E. Assume that the radial curvature K,
satisfies one of the following three conditions:

(i) —a? < K, < —b where a,b >0 and (n—1)b—2padpr >0

(ii) K.=0 where n —2pdp >0

(iii) 1+T2 — < K, < ﬁ where ¢ >0, A>0, 0< B <2 and

n—(n—1)§—2p6£ dp .

If w satisfies an F-conservation law, then forany 0 < Ry < Rs,

|dul? |dul®
RL@ fB(RQ) F(55-) dvg > R%A fB(Rl) F(55-) dug,
where
n —2pgdp if K, satisfies (i)
A= n — 2pdr if K, satisfies (ii)

n—(n-1%2 - opeiedy if K, satisfies (131),

Proposition 4.5. (c¢f. [13]) Let (M, g) be a complete Riemannian manifold with a

pole x, . Assume that the radial curvature K, satisfies one of the following three
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conditions:

(i) a’> < K, < —1? where a,b>0 and (n—1)b—2padp >0
(ii) K,.=0 where n —2pdp > 0
(m) KTSW where ¢ >0, A>0, 0< B <2 and

n—(n—1)§—2pe% dp .
Let F : [0,00) — [0, 00) be a strictly increasing C* function such that F(0) = 0.

Ifu: (M"™ g) — (N*, h) is an F-harmonic map, then forany 0 < R, < Ry,

1 |du|? |dul|?
R} fB(Rg) F(5-) dvy = R% fB(Rl) F(5-) dug,

where

n — 2pidp if K, satisfies (i)
A= n—2pdp if K, satisfies (ii)

n—(n— 1)2% — 2pe£dp if K, satisfies (iii),

Proof : By Corollary 2.9, the differential du of an F-harmonic map u, con-
sidered as a 1-form with value in the induced bundle, satisfies an F-conservation
law, i.e. Sp(u) is divergence-free. Thus, Lemma 4.1, Lemma 4.3 and Theorem 4.4

yield the monotonicity formula for an F-harmonic map. [J

Theorem 4.6. (cf. [13]) Let (M",qg) be a complete Kahler manifold with a pole
x, and (N*,h) be any Kahler manifold. Assume that the radial curvature K,
satisfies one of the following three conditions:
(i) —a’< K, <-b? where a,b >0 and (n—1)b—2padr >0
(ii) K. =0 where n —2pdrp >0

(iii) e < K <

(1+£)1+5 where ¢ >0, A>0, 0< B <2 and

n—(n—l)%—Qpe?edp.
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Let F' : [0,00) — [0, 00) be a strictly increasing C™ function such that F'(0) = 0.
Ifu: (M, g) — (N* h) is an F-harmonic map with the growth condition
du|?
J FOSEYdv, = o (") as p— oo,

where

n — 2pYdp if K, satisfies (i)
A= 4 n—2pdp if K, satisfies (ii)

n—(n-1=2 - dpesedr if K, satisfies (4d1),
then u is constant.

Proof : By Proposition 4.6, for any 0 < R; < R, , we obtain the mono-

tonicity formula for F-harmonic maps

1 |dul? |dul?
) fB(RQ) F(55) dvy, > R% B(R1) F(55-) dug
where
n—2ptdp if K, satisfies (i)
A= n—2pdp if K, satisfies (ii)

n—(n—-1=2 - opescdr if K, satisfies (4di).

By assumption on growth, for all R > R; > 0, we have
. dul|? du?
0 = limpoo 7 fB(R) F(%) dvg 2 R% fB(Rl)F(%) dvg .
This limit is zero because F is a non-negative smooth function. Furthermore, the
integral on the right-hand side of the inequality is also non-negative which implies

that F(%) = 0. Thus, |du| = 0 and hence u is constant .  [J

Remark 4.7. (cf. [13]) Since Sg,, isdivergence-free, du satisfies an F-conservation

law. Thus, we can always obtain a monotonicity formula for an F-harmonic map re-
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gardless how the radial curvature varies, provided we have the Hessian comparison
estimates with bounds and some positive constant
¢ < 14 (n—1)rhi(r) — 2pdp rhy(r)

as in Lemma 4.3.

Lemma4.8. [13] Let (M",g) be a complete Kahler manifold with a pole x,. If M
has constant holomorphic sectional curvature — a® ,a > 0, where n—1—2pdp >
0 when a # 0, andn — 2pdr > 0 when a = 0, then

1 |dul? 1 |dul?
W fB(Rl) F(T) dvg < R;*%dp fB(Rg) F( 2 )dvg

for Ry > Ry > 0.

Proposition 4.9. (cf. [13]) Let (M, g) be a complete Riemannian manifold with a

pole x,. Assume that the radial curvature K, satisfies the following condition:
(iv) —Ar* < K, < —Br?® where A>B>0and ¢>0.

Denote § := (n—1)B, — 2pdp VA coth/A >0 where

B, = min{l,—% + (B+ (1))},

I fopy [F(455) = F/(%E) < ioduiodu >]ds > 0 then

|dul?

1 1
RIFS fB(Rl)fB(l) F(55-) dvg < RIS fB(Rg)fB(l) F(5-) du,
forany Ry > Ry > 1.

Proof : Take X = rVr. By Lemmas 4.2 and 4.4, we have

< Sp(u),Vox > > F(2L) (1 4 grat))

Sr(u)(X, 2) = F(%E) — F/(14E) <isduiodu> on 0B(1),

Sr(u)(X, 2) = RF(4E) — RF/(4E) <ioduiodu> on OB(R)
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By Corollary 2.9, Sp(u) is divergence-free. Thus, by Corollary 2.11 we have
Jop Sr(w)(X,v)dS, = [, <Sp(u),Vox > dv,.

It follows that

R faB(R) [F(Id;F) - F’(@) < iodu,iodu > ] ds

~ Jopy [FUSE) — F/(4E) < ioduyipdu >]ds

>

n 2
Jocry—py (L4677 F(I4E) do, .

2
dul? dul?
R [y FU%SE) ds > (146) [y pay FI%) d,

forany R > 1.

Therefore, if [, 5, [Py — F’(@) < ioduyiodu >]ds > 0 then

The coarea formula gives

du|?
de(R)fB(l) F(%)dvg > 144 dR

2 -
F(l(i;\ ) dvg R

fB(R)—B(l)
forae. R>1.

Integrating over [R;, Ry] proves the proposition. [

Theorem 4.10. (c¢f. [13]) Let (M™,g) be a complete Kahler manifold with a
pole x, and (N* h) be any Kahler manifold. Assume that the radial curvature K,
satisfies the following condition:
(iv) —Ar* < K, < — Br?® where A>B>0 and ¢>0.
Denote § := (n—1)B, — 2pdp /A coth/A >0 where
B, = min{l,—% + (B+ (%41)?)2}.

2
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Let F' : [0,00) — [0, 00) be a strictly increasing C™ function such that F'(0) = 0.
Ifu: (M, g) — (N* h) is an F-harmonic map with the growth condition
du|?
Ju FO42) du, = 0(p) as p— oo,

then uis constant on M \ B(1).

Proof : This follows immediately from Proposition 4.9 . [

Definition 4.11. (cf. [30]) For a smooth map u : M — N , the F-energy is slowly
divergent if there exists a positive function ¢(r) on M satisfying

0o 1 o
le Wd?” = OO,

for some R; > 0 , such that

. F(Id;‘Q)
hmR_mo fB(R) B2 d’Ug < o0,

where r(x) is the distance function from a fixed point z, € M and B(R) is the

geodesic ball of radius R centered at x,, .

Theorem 4.12. [13] Suppose du has slowly divergent F-energy. Then

(i) Forany A > 0, lim,_,, ¢7~(§) # 00.

(ii) If lim, % exists for some A > 0, then

Jsr) F(@) dv, = o(R)) as R— oo.

Remark 4.13.  Inlight of this theorem, the growth of order A and of order (1+0)

are weaker than the slowly divergent growth and finite growth.
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4.2 F-harmonic maps from a complex space form

An n-dimensional complex manifold of constant holomorphic sectional curva-
ture is called a complex space form and it must be locally isometric to one of the fol-
lowing complete simply connected universal covering spaces [65] : CP™(4k?), C",
CH™(—4k?) , where —4k* means that the holomorphic sectional curvature of the

complex hyperbolic space CH™ lies in [—4k?, —k?] and 4k* means that the holo-

morphic sectional curvature of the complex projective space CP™ liesin [k?, 4k?].

Theorem 4.14. Let u : (C", g) — (N*, h) be a C° map into a Kahler manifold
and q < 0 be a constant satisfying 2 —q = n , where g is the standard metric
on C" andn > 3. Let F : [0,00) —> [0, 00) be a strictly increasing C* function
such that

F(t) < 2tF'(t) < nF(t) , for t € (0,00).
If u is an F-harmonic map satisfying the above conditions then u is constant, pro-

vided u has slowly divergent enegy.

Proof :  We apply the method used in [40]. Let x, be a point in C" and
B(R) an open geodesic ball with radius R and center =, . Let r = r(z) be the
distance from z, and % the unit radial vector field pointing away from z, . Let
{Ui }+er+ be a 1-parameter family of C'*° maps

U :C"— N : Ufx) = u(te), x € C". Set
(%) ERt) = [pp F(“5E5) dv,

where dv, is the volume element.

Applying Green’s theorem yields
dU¢ |2
2 ER1) im1 = [pp F'I5E) < dU, £(d0) > |1y du,
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= fB(R) < F/(Id;\ )dU,@(du(r%)) > dv,

= [y <d (F/(E) du), du(r2) > dv,
+ R [ypm F'(1%E0) < du(2),du(r2) > dS,,

where % is the unit normal and dS, is the volume element with respect to the

induced Kahler metric on 0B(R) .

By the F-harmonic condition d*(F’ (%)du) = 0 , we obtain

9 B(R,t) =1 > 0 .

On the other hand, reparametrizing the integral (x) gives

E(R,t)=t™" fB(tR) F( 5t hu(u(z)) uf(z) ul(z) ) dz .

By a direct calculation, we have
k

9 B(R,t) = (—n)t! fB(tR) F( 51 h(u(z)) uf(z) ul(z) ) do

7 Jopar) RRE" F( 212 g (u(z)) b
k(0 o/l

F [pmy F(5 8 hia(w(@) uf (2) ui(z) ) b (u(@)) uf (2) ul(z) dz.

If we assume that F(t) < 2tF’(t) <n F(t) , then

PRy < pr(dly | gy 2
— P15 |duf? < — P(1%E)
Thus
o Py 2y g2 < s p(dRy L (e gy 2
— Py

= <0 Lie 1<%
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Note that |dul® = § hy(u(z)) uf (z) ul(z) .

)

So after reparametrization, we have

2 E(R7 t) |t:1

= Jom [—n F(4E) + 2 F/ () |du? T do + R [, B2 F(14E) ds,
— fB (n POy — 2 /(1L |quf? ) do + R Josm R Pl gs,
< ﬂfB(R nF( =
< qu dx""RfaB(R)Rn 2F(|du‘ ) dS,
= qE(R,l) + R@E(R,l).

©) =2 F'(1E) duf? T de + R [, R F(1%E5) dS,

Then ¢ E(R,1) + R E(R,1) > 0,
and thus for all B > 0 , we have
4 [RTE(R,1)] = f%(R") E(R,1) + R? % E(R,1)
= ¢RI E(R,1) + R £ E(R,1)
= Ri™'[¢E(R,1) + R % E(R,1)]
> 0.

So R? E(R,1) is anon-decreasing function of R.

If w is not constant then there exists a point z € C” such that at this point

|du|* # 0 , and so there exists some R, > 0 and C' > 0, such that

oy F(

dg|2)dvg > (.

Since RY E(R,1) is a non-decreasing function of R, forall R > R, , we get
R1E(R,1) > RIE(R,,1) , ie.
E(R,1) > (Z)7 E(R,,1). Thus,

u2 u2
‘dl)dvg > % fBRD |d| ) dvg = C(%)-

75



Furthermore, we also have
R-ALE(R,1) > —qE(R,1) ,ie.
|d’ll,‘2 |du‘2
faB(R) F(5-)dvy 2 — @i fB(R) F(55) dug
> —qC R ()

= —qCRI(%) , since 2—q=n.

Hence, by the coarea formula and the definition of slow divergence we obtain

. P @) ~ 4R du?
limpsoe Jpm —snmn v = Jo s Josw FCZ)0

oo dR
> —qC R} fo R ¢(R)

6o dR
2 —qC RS Jp, mom
> 00,

a contradiction to the slowly divergent condition of the F-energy. [l

Corollary 4.15.  Let u : (C",g) — (N*,h) be a C* map into a Kahler
manifold and q < 0 be a constant satisfying 2 —q = n , where g is the standard
metric on C" andn > 3. Let F : [0,00) — [0, 00) be a strictly increasing C*
function such that

F(t) < 2tF'(t) < nF(t) , for t € (0,00).
If u is an F-harmonic map satisfying the above conditions then u is constant, pro-

vided u has the following enegy growth

S F('dglz)dvg = o(R)) as R— 0.

Proof : Proceeding as in the theorem yields

qE(R,1) + R E(R,1) >0 .
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Thus, we have

R Ry dE(R,2)
R12 % dR > — R12 E(R,1)

q[InRy —InRy] > —In E(Ry, 1) + In E(Ry,1)

R

R} E(R1,1)
R{

E(R2,1)

v

which yields a monotonicity formula

1 \du|2 1 \du|2
Il fB(Rl) F(5-) dvy < R, fB(RQ) F(555) du,

By assumption on growth, for all R > R; > 0 and since ¢ < 0, we have

. dul? dul?
0 = limps 5 [pm F(50) vy 2 75 [y F(15) dug -

This limit is zero because F is a non-negative smooth function. Furthermore, the

integral on the right-hand side of the inequality is also non-negative which implies
2

that F(@) = 0. Thus,

|du|*> = 0 and hence, u is constant.  []

Remark 4.16.  J. Wan proved that ” Any harmonic map from C" to any Kahler

manifold is + holomorphic under an assumption of energy density [53] .”

Remark 4.17. H.C.J. Sealey : ” Forn > 2, any holomorphic map of finite energy

from C" to any Kahler manifold is constant [49] . ”

Theorem 4.18. For n > 1, let M" be a complete simply connected, noncom-

pact Kahler manifold of holomorphic sectional curvature HRM which satisfies
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—a? < HRM < —b% | where a, b are some positive constants. Let N be any Kahler
manifold and F : [0, 00) — [0, 00) be a strictly increasing C* function such that
(n—=10bF(t) — 2ta F'(t) > 0 fort € (0,00).
If u: (Mm, g) — (N* h) is an F-harmonic map with following growth condition
J500) F(@) dv, = o(p) as p— o0,

then u is constant.

Proof : We use the same technique as in [40]. Let z, be a point in M.
Take X = r2 € T, M , where r = r(x) is the distance from , and 2 is the
unit radial vector field pointing away from z,, . By Corollary 2.11 and the definition

of the stress energy tensor, we have

Joer) (div Sp(u))(X) dvg + [ < Sr(u), VX > dy,
= Jonw FUE)G(X,v) dvg — [ FOSE) h(du(X), du(v)) dv,
= R [y FUSE) dvy, — R [yp FOSE) hdu(2), du(2)) dv,
< R [pm PO du, .

Choose a local Hermitian orthonormal frame field {ey,...,e,_1,¢, = %} on M .
The following local calculations are straightforward
_ 2

Ve X =71V 2 = rHess(r)(e,ej)e;
divX =1+ r Hess(r)(e;,e;), 1<i<n-—1,

where Hess(r)(ei, ej) = Ve, Ver — (Vee) 1.

Thus,
F(E) h(du(e;), du(e;)) g(Ve, X, ;)
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= F(M) [rHess(r)(e;, e5) h(du(e;), du(e;)) + h(du( -), du(ai))] )

2

The Hessian comparison theorem [62] yields

< Sp(u), VX >
- (“W) div X — F'(1%5) h(du(e;), du(e)) g(Ve, X, ¢;)
— P (14rHess(r) (e, ¢;)) — F'(“2)] |du(2) |2 + rHess(r)(e;, e;)h(du(e;), due;))].
> P 14 (n—1) (br)coth(br)] — /(122 |du( )|+ (ar)coth(ar)h(du(e), du(e;))]
> F(%E)[14 (n — 1)(br)coth(br)]
— F'(EY [ (ar)coth(ar)|du(2)[? + (ar)coth(ar)h(du(e;), du(e;))]
— F(L) 11 4 (n = 1)(br)coth(br)] — F/(2LY (ar)coth(ar)|du)?
> F(%E) 4 reoth(br) [ (n = DBF(5%) — aldulF'(455)
> Py
because (n — 1)bF(t) — 2taF' (L) > 0.

Since F-harmonic maps are divergence-free, it follows that

dul? dul|?
R fonm F(2%5y dy, > Jsemy F(%0) do, .

Following Dong and Wei [13], a monotonicity formula could be obtained as fol-
lows: from the proof of Theorem 4.9 since F-harmonic maps are divergence-free,

we have

dul? dul? .
R faB(R) F(! 2‘ ) dvg > fB(R) F(%) dv, , ie.

faB(R) F(ldgF) dug > 1
Jomy PO dv, = B
The coarea formula
d |du? |du|?
dR fB(R) F( ; ) dvy = faB(R) F( g ) dvg



gives

2
% fB(R) F(‘ ) dvg >
u2
Jonr) F55) dv,

> % fora.e. R>0.

Integrating over [Ry, Rs| , Ry > 0, yields the following monotonicity formula

F(' fB |du‘2 ) dv, .

1
Ry fB(RQ) 2

By assumption on growth and the above monotonicity formula, forall R > R; > 0,

we have

0 = limpooo & Sy F5) dvog > g [pp, F(955) dug .

This limit is zero because F is a non-negative smooth function. Furthermore, the

integral on the right-hand side of the inequality is also non-negative which implies
2

that (%) = 0. Thus,

|du* = 0 and hence, u is constant .  [J

Corollary 4.19. For n> 1, let M"™ be a complete simply connected, noncom-

pact Kahler manifold of holomorphic sectional curvature HRM which satisfies

—a? < HRM < —b% | where a, b are some positive constants. Let N be any Kahler

manifold and F : [0, 00) — [0, 00) be a strictly increasing C* function such that
(n—=10b F(t) — 2ta F'(t) > 0 fort € (0,00).

If w: (M", g) — (N* h) is an F-harmonic map with slowly divergent F-energy

then u is constant.

Proof : Dong and Wei proved in [13] that the slowly divergent growth implies
the following growth condition

fB(p) F(@)dvg =o0(p)) as p— 0.
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So the corollary is a consequence of this result.

However, a direct proof can be obtained as follows: proceeding as in the theo-

rem, since F-harmonic maps are divergence-free, it follows that

du du2
R faB(R) F(| 2‘ dvg > fB ‘ l ) dug .

If u is not constant then there is a point z € M such that |du|*> # 0. This means

that there exists some R, > 0 and some positive constant C, such that for all

R>R,,
u2
fB(R) F(%) dv, > G, .
Thus,
du2 A
faB | | ) dv, > %.

The slowly divergent condition then implies that,

. P4 @) _ froan |duf?
limpg 00 fB(R) —n@ Qg = Jy faB(R F(55-) dug
> G, fo R¢(R)
© 4R _
> G, fRO Ro(R) — -

This contradicts the assumption that the F-energy of w is slowly divergent. []

Corollary 4.20. Any F-harmonic map with slowly divergent F-energy from the
complex hyperbolic space CH" to any Kahler manifold must be constant, provided

the condition on the function F as in Theorem 4.22 is satisfied.

Proof : Since CH" is negatively quarter-pinched, the corollary follows imme-

diately from the theorem. [
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Remark 4.21.  H. C. J. Sealey proved that : For n > 2, the complex hyperbolic
spcace CH™ supports no nonconstant harmonic maps of finite energy. In particu-
lar, any nonconstant holomorphic map from CH" to a Kahler manifold must have

infinite energy [49].
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