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Abstract 

The increase in seismicity in Oklahoma since 2009 has been primarily attributed 

to wastewater disposal, however, the extent and nature of the relationship is not clear. 

On the state level, there is no statistically significant relationship between injection 

volume and nearby seismic activity for individual wells. However, there is a clear trend 

between combined regional injection volumes and seismicity. This relationship requires 

a minimum association distance of 25 km to emerge and 40 km to stabilize. Analysis of 

the temporal relationship seen between injection and seismicity shows a clear 215-day 

delay at the state level and time delay between 0 and 180 days at a 20 km spatial scale. 

The time delay exhibits spatial variability, which may suggests spatial heterogeneity in 

the hydraulic fluid properties.  

Furthermore, clusters of seismicity are used to understand the underlying 

triggering processes and fluid movement in Oklahoma. Around 52% of the seismic 

clusters in Oklahoma show statistically significant diffusive migration , which is an 

indicator of pore pressure triggering, with a mean diffusivity around 0.05 m2/s. At the 

regional scale, there are also signs of diffusive migration away from areas with high 

injection rates with an average diffusivity of 1.8 m2/s. The large-scale diffusion likely 

reflects the pressure front propagation within the Arbuckle Group, compared to the 

cluster based diffusion showing pressure movement in the crystalline basement within a 

single fault system. Finally, the individual clusters show the majority of earthquakes 

occur along steeply dipping seismogenic faults that have strike directions between 30° 

and 120° E. Many of these seismogenic faults occur on sub-optimal fault orientations 
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based on fault hazard maps, suggesting current fault hazard assessment may not 

properly represent the actual hazard.  
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Chapter 1: Introduction and Background of Induced Seismicity 

Oklahoma has experienced a substantial increase in the number of M3+ 

earthquakes since 2009. In the first years of the seismic increase the cause was largely 

unknown, with natural causes being put forward as a likely reason for events such as the 

2011 M5.7 Prague earthquake (Keller and Holland, 2013). Increasingly, research 

scientists have multiple lines of evidence that it is not natural seismicity but tied to the 

disposal of wastewater in the state. The first evidence came from the close proximity of 

the 2011 Prague sequence to the injection site of actively injecting wastewater disposal 

wells (Keranen et al., 2013). At a state scale, this is also clearly evident, where in 

general, the location of densest disposal activity is the location of the densest seismic 

activity (Figure 1).  Further support came from similar cases of induced seismicity 

being documented elsewhere in the mid-continent (Horton, 2012; Kim, 2013). In both 

Youngstown, Ohio, and Guy-Greenbrier, Arkansas, there was a clear time dependency 

where injection activity started or increased followed shortly after by an increase in 

seismicity. This time dependency is also visible at the state level, the increase and 

decrease of disposal rates has been paralleled by seismic activity (Figure 1). More 

recent studies involving pressure modeling (Keranen et al., 2014) or spatiotemporal 

analysis (Walsh and Zoback, 2015; Weingarten et al., 2015; Yeck et al., 2016) indicate 

that wastewater disposal in Oklahoma is a major contributing factor for the increase in 

seismicity. 

There is also often a distinction made between triggered and induced seismicity. 

Triggered seismicity is seismicity resulting from activity causing a stress change that “is 

only a small fraction of the ambient level” acting on the fault; while induced seismicity 
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is activity causing “a stress change that is comparable in magnitude to the ambient shear 

stress acting on a fault” (McGarr, 2002). Although the distinction is worthwhile, it is 

extremely difficult to show if seismicity is triggered or induced, so in this study the two 

terms are used interchangeably and the results could be representing either triggered or 

induced seismicity. 

Historically, seismicity was first considered human induced from mining 

activity in the early 20th century (McGarr, 2002). Since then, seismologists have found 

cases of induced seismicity tied to petroleum production, reservoir impoundment, high 

pressure fluid injection, and natural gas production (McGarr, 2002). The first 

documented case of fluid injection induced seismicity was in the 1960’s at Rocky 

Mountain Arsenal (RMA), Colorado, where an isolated disposal well was drilled into 

the Precambrian basement (Healy et al., 1968). At RMA seismic activity began 

approximately seven weeks after injection started and occurred within kilometers of the 

well (Healy et al., 1968). The level of seismic activity closely followed the bottom hole 

pressure of the disposal well throughout the five-year period the well was active (Healy 

et al., 1968). In addition to establishing that fluid injection can induce earthquakes, 

RMA also showed that events can occur after fluid injection has ceased. The largest 

three events at RMA, ranging from M5 to M5.5, occurred after the well was shut-in 

(Healy et al., 1968).  

Before 2008, Oklahoma had only low seismic activity, with only eleven M3 or 

larger earthquakes between 1995 and 2005. This can be compared to an average of 

thirteen M3+ earthquakes occurring per week in 2015. In the 100 years prior to 2011, 

the 1952 M5.5 El Reno earthquake (Keller and Holland, 2013) was the largest on 
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record. However, paleoseismicity has shown Oklahoma has had extremely large 

earthquakes in the recent past. In 1990 two trench studies were carried out on the Meers 

fault. Located in southwestern Oklahoma, the Meers fault scarp is approximately 26 km 

in length and has about 3 meters of vertical throw (Crone and Luza, 1990). The studies 

found the fault last ruptured between 800 and 1600 years ago with an estimated 

magnitude of slightly greater than Mw 7 (Crone and Luza, 1990; Kelson and Swan, 

1990). There was also a wide range of possible recurrence intervals, with anywhere 

from 1,300 (Kelson and Swan, 1990) to 100,000 years (Crone and Luza, 1990). The 

potential of damaging natural earthquakes from the Meers fault has been the main 

reason Oklahoma has had moderate damage potential in natural earthquake hazard 

assessments (Petersen et al., 2014). Although it is extremely unlikely that (induced) 

Coloumb stress changes would be sufficient to trigger the Meers fault, the presence of 

the fault and the hazard associated with the fault’s size makes it pertinent to the study of 

seismicity in Oklahoma.  

The majority of recent earthquakes occurring in Oklahoma are along reactivated 

faults at shallow (~6 km) depths (McNamara et al., 2015a). Most of these earthquakes 

are in the crystalline basement but some events occur in the basal sedimentary 

formations (McNamara et al., 2015a). For most of the state, the Arbuckle Group makes 

up the majority of sediments directly overlying the crystalline basement. The Arbuckle 

is also the primary reservoir for wastewater in the state, with about 70% of the disposed 

fluid in the state going into the Arbuckle (Murray, 2015). Based on its proximity and 

the volumes of wastewater disposed into it, injection into the Arbuckle and 
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corresponding communication with the basement is considered a major contributing 

factor for induced seismicity in Oklahoma (Walsh and Zoback, 2015; OCC, 2015). 

The Arbuckle Group is late Cambrian to early Ordovician in age and is 

primarily comprised of carbonates with a few laterally consistent sandstones (Fritz et 

al., 2012). The Arbuckle overlies the comparatively thin Timbered Hills Group, which 

contains the basal Reagan Sandstone and Honey Creek Limestone and sits on top of the 

Precambrian basement (Fritz et al., 2012). The Arbuckle in ascending order contains six 

formations: the Fort Sill, Signal Mountain, McKenzie Hill, Cool Creek, Kindblade, and 

West Spring Creek (Fritz et al., 2012). The carbonates that make up the bulk of the 

group are restricted, shallow water marine carbonates and contain multiple upward-

shoaling sequences (Fritz et al., 2012). The Arbuckle thickness varies greatly, with 

wells in the northern part of the state near Pawnee County placing the Arbuckle at 

approximately 1000 feet thick (Brizendine, 2017). While in the southern Oklahoma 

Ardmore basin, the Arbuckle Group thickens to over 8000 feet (Fritz et al., 2012). The 

formations in the Arbuckle also show a wide range of porosity and permeability. 

Arbuckle permeabilities measured in Oklahoma range from 0.16 to over 3,000 

millidarcys (mD) (Morgan and Murray, 2015). Well-based porosity estimates show the 

Arbuckle section having from 4% to 12% porosity in northcentral Oklahoma 

(Brizendine, 2017). At the state scale, the Arbuckle exhibits a broad range in vertical 

thickness, fluid capacity, and hydraulic properties, which makes it extremely 

challenging to accurately model fluid behavior in the Arbuckle. 
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Figure 1. The location of M3+ earthquakes that have occurred in the last 22 years and 

Arbuckle disposal wells (top). The daily injection volume and number of events above 

M3 (bottom). The locations of disposal wells and seismicity roughly coincide. The 

daily volume of fluid disposed in the state has been steadily increasing since 1995, 

with a rapid increase beginning in 2012 that peaked in 2015. The number of daily 

events follows a similar pattern with a growth, peak, and decline between 2009 and 

2017.  
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Chapter 2: Spatial Relationship Between Disposal Volume and 

Seismicity 

Introduction 

Although the increase in seismicity in Oklahoma is likely due to wastewater 

disposal, much of the details in the relationship are still uncertain and under debate 

(Keranen et al., 2014; Weingarten et al., 2015; Walsh and Zoback, 2015). Notably, 

whether limiting volumes for individual high-rate disposal wells would be more 

effective versus groups of clustered disposal wells is an open question (Weingarten et 

al., 2015; Walsh and Zoback, 2015). Although growing evidence shows that clusters of 

disposal wells have much greater spatial regions of influence (Yeck et al., 2016; Goebel 

et al., 2017,), the spatial influence region’s size has not been systematically quantified.  

The OCC originally took a reactionary approach to seismicity, with a traffic 

light system where disposal wells within 6 miles of an earthquake swarm or 3 miles of a 

known fault had to have their injection practices reviewed and possibly reduced or 

halted (OCC, 2015). After the continuation of seismicity, the OCC carried out more 

wide-spread volume reductions where wells within large ‘Areas of Interest’ had 

reductions based on their injection volume, with the goal of reducing the yearly volume 

to 40% below the 2014 total (OCC, 2016a; OCC, 2016b). These actions reflect the large 

uncertainty in the spatial scale of the well-earthquake relationship in the state. Accounts 

of induced seismicity outside of Oklahoma have shown earthquakes occurring up 16 km 

away from a single injection well (Yeck et al., 2015), while other documented cases 

either have a maximum distance of less than 15 km (Healy et al., 1968) or involve 

multiple wells and cannot assume a single distance (Davis and Frohlich, 1993; Horton, 
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2012; Kim, 2013). With over 850 Arbuckle disposal wells in the state, determining a 

definitive spatial influence of a single well or even a group of wells is challenging. 

Multiple studies have shown that seismicity in Oklahoma is associated with 

nearby disposal well activities. The 2011 M5.7 Prague sequence may be associated with 

low-volume disposal wells less than 5 km away (Keranen et al., 2013), although the 

debate is ongoing (McGarr, 2014; Walsh and Zoback, 2016). A hydrogeologic model of 

central Oklahoma suggests that four high-rate wells triggered events up to 35 km away 

(Keranen et al., 2014). In a study of the mid-continent, high-rate disposal wells were 

found to be significantly more likely to be associated with seismicity within 15 km than 

low-rate wells (Weingarten et al. 2015). The micro-seismicity rate of the October 2014 

Cushing OK earthquake sequence showed a high correlation to the injection rate of 

three Arbuckle disposal wells located within 10 km of the sequence (McNamara, 

2015b). The 2016 M5.1 Fairview earthquake sequence, was likely triggered by multiple 

high-rate wells located 12–20 km away (Yeck et al. 2016). All of these findings depict a 

wide range of possible triggering distances. 

Recent work has derived theoretical relationships between the volume of fluid 

disposal and the associated seismicity. McGarr (2014) demonstrated a theoretical 

maximum moment cap that scaled linearly with the volume disposed and agrees well 

with historic cases of induced seismicity. Dieterich et al. (2015) found the same scaling 

as the moment cap model from simulated earthquake catalogs. Using the same data as 

McGarr (2014), van der Elst et al. (2016) presented a different theory, where the 

number of events scales with volume, and the maximum expected magnitude is 

consistent with the extrapolation from Gutenberg-Richter distribution. Hereby these two 
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models will be referred to as the “moment-cap model” and “sample-size model”, 

respectively. Although similar, the two theories have important implications to hazard 

assessment. Putting a cap on the maximum moment possible, without taking into 

account the regions stress field and seismic potential, has the potential to underestimate 

the hazard of induced seismicity.  

The goals of this chapter is to first determine a spatial scale for the relationship 

between injection and seismicity; then obtain the empirical relationships between 

injection operation parameters and earthquake parameters; finally, the empirical 

observations with model predictions will be compared. With an improved 

understanding of the spatial influence window and governing equations of the injection-

seismicity relationship in Oklahoma, regulators can better shape their reduction 

guidelines and have a justification for their regulations, which will ultimately reduce the 

earthquake hazard in Oklahoma and beyond. 

Data 

The disposal well database used in this thesis is compiled from OCC monthly 

and daily volume reports. Only the 865 disposal wells that are injecting into the 

Arbuckle Group are used in this study. Unless otherwise noted, data before 2005 was 

trimmed due to poor data quality. Disposal data after 2016 is incomplete at the state 

scale, because disposal wells outside the OCC mandated “Areas of Interest” are not 

required to report daily injection volume. Based on the 2015 injection rates of wells 

without reports in 2016, not having the 2016 volumes for wells outside the areas of 

interest is underestimating 2016 volumes by approximately 7% of the true volume. 

Because of this, the 2016 data is excluded for the majority of the analysis but it is 
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included in the discussion to understand the statewide relationships with inclusion of the 

three M5+ events in 2016 (February M5.1 Fairview, November M5 Cushing, September 

M5.8 Pawnee). Inconsistencies that appear to be keystroke errors were removed from 

the volume database by replacing volume entries that were greater than 10 times the 

mean injection rate of the well with the injection rate just prior to the anomalous rate. 

The Oklahoma Geological Survey earthquake catalog was used in this study and events 

below the Mc = 2.5 removed. A synthetic earthquake catalog and well database was 

also generated to test the statistical significance of the results. The synthetic well 

database is created by randomly distributing the wells locations within the study area, 

while keeping the original injection history for each well. The synthetic earthquake 

catalog is made by randomly distributing the event locations and resampling the 

magnitude of events following a Gutenberg-Richter distribution. The synthetic datasets 

remove any spatial dependence of injection and earthquakes in the original datasets.   

Oklahoma’s seismicity demonstrates a two-step Gutenberg-Richter distribution 

that is challenging to fit with a single b-value for both small and large earthquakes 

(Figure 2). This may be due to the different magnitudes reported in the catalog, with 

moment magnitude (Mw) primarily used for larger earthquakes and local magnitude 

(ML) for small earthquakes. For smaller events ML typically gives larger magnitudes 

than Mw, with ML ∝ 1.5 Mw (Deichmann, 2017). The two-step Gutenberg-Richter 

distribution could also be due to the underlying physical processes governing small and 

large earthquake occurrences. The Mc is calculated using zmap software (Wiemer and 

Wyss, 2000), with a minimum Mc = 3.1 for a 95% goodness of fit, Mc = 2.2 for a 90% 

goodness of fit, and a Mc = 2.3 from maximum curvature. A Mc of 3.1 would make the 
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analysis difficult due to low sample size, so a Mc of 2.5 that is 0.2 magnitude above the 

maximum curvature is used (Figure 2). For a b-value estimate the maximum likelihood 

method was first tested, resulting in a b-value of 1.18, which fits the low magnitude 

distribution of events well (Aki, 1965). As an alternative estimate, a bootstrapped least-

squares fitting method resulted in a b-value of 1.52 that has an improved fit of the 

higher magnitude events. Due to this wide range between methods, both b-values were 

used in the comparisons to theoretical equations. 

In this analysis all units are converted to SI units: the injection volumes are 

converted to cubic-meter, and the seismic moment are in the unit of Nm, simply using 

catalog magnitudes as moment magnitude, as the moment magnitudes for small 

earthquakes are unavailable. There are often systematic difference in ML and Mw, so 

further studies based on more careful moment scaling are required. However, for the 

purpose of this study, if the difference is systematic for all areas, it should not affect the 

first-order relationships for the entire state that are being estimated here.  

Methods and Results 

Relationship between total injected volume and seismicity – individual wells 

McGarr (2014) compiled cases of induced seismicity and derived an upper limit 

on the seismic moment of induced seismicity. He showed that there is a reasonably 

linear relationship between the two variables where the disposed volume (𝑉) controls 

the maximum moment (𝑀0𝑚𝑎𝑥), with maximum moment falling under the line: 

𝑀0𝑚𝑎𝑥 = 𝐺∆𝑉     1) 

where 𝐺 is the shear modulus (~30 GPa). Part of this derivation was the relationship 

between total moment (∑𝑀0) and 𝑉: 
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∑𝑀0 = 2𝐺𝑉      2) 

When (1) and (2) are viewed on a logarithmic plot, both 𝑀0𝑚𝑎𝑥 and ∑𝑀0 have a slope 

of one, while the shear modulus dictates the y-intercept. An alternative theory put 

forward by van der Elst et al. (2016) showed that the volume controlled the total 

number of events, but the maximum magnitude is expected from the Gutenberg-Richter 

distribution. They show the most likely maximum magnitude follows:  

𝑀𝑚𝑎𝑥 =
1

𝑏
(𝛴 + 𝑙𝑜𝑔10𝑉)    3) 

where the maximum magnitude depends on the b-value 𝑏, the seismogenic index 𝛴, and 

the volume. Because of the scaling relationship between seismic moment and moment 

magnitude, the maximum moment would follow a slope of 1.5/b on logarithmic plot, 

with a b-value of 1.5 resulting in a linear scaling like equation (1). Both arguments, 

which will be referred to as the moment cap and sample size hypotheses, show that 

there is a clear trend between the injected volume and the maximum moment of 

corresponding events.  

First to check if the relationships of equations (1) – (3) can be seen on an 

individual well scale, the volume 𝑉 for each individual well was compared to the 

𝑀0𝑚𝑎𝑥 of all events within 10 km (Figure 3). Next the 𝑉 versus 𝑀0𝑚𝑎𝑥 data wee 

cross-plotted and a linear regression is fit to the log10 of both variables. The same steps 

were also taken to compare 𝑉 versus ∑𝑀0. The goodness of fit to the linear regression 

was quantified using the adjusted coefficient of determination (referred as R2):  

𝑅𝑎𝑑𝑗
2 = 1 − (

𝑛−1

𝑛−𝑝
)

𝑆𝑆𝐸

𝑆𝑆𝑇
      4) 

where the adjusted coefficient of determination 𝑅𝑎𝑑𝑗
2 , is similar to the normal coefficient 

of determination (one minus the sum of squared error 𝑆𝑆𝐸 divided by the sum of 
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squared total 𝑆𝑆𝑇) except for the modifying factor of the number of observations (𝑛) 

and the number of regression coefficients (𝑝). The adjusted coefficient of determination 

takes into account the spurious increase in the coefficient when the number of 

regression coefficients (in this case two), is of similar order of magnitude to the number 

of samples (Figure 4).  

As seen in Figure 5, there is a very poor relationship between volume and 

seismicity at the individual well scale, with both 𝑉 versus 𝑀0𝑚𝑎𝑥 and 𝑉 versus 𝑀0 

showing a poor R2 fit of the linear regression. There are similar low correlations 

between the average injection rate and seismicity rate. The low correlation is also 

persistent with further distances (e.g., up to 30 km). This result suggests that 

relationship between individual wells and seismicity is statistically insignificant at the 

state level. 

Individual clusters relationship to nearby volume 

As the next test of the effect of injection volume, the size of individual clusters 

was compared to regional volume. For this test, events are first clustered using nearest 

neighbor rescaled distance after the method of Zaliapin and Ben-Zion (2013). A more 

detailed explanation of this method is explained in Chapter 4. The clustering resulted in 

82 clusters with over 20 events. Next, for each cluster, the total volume of wells within 

5 km of the cluster was summed. The log10 of the ∑𝑀0 for each cluster and log10 of 

the 𝑉 of nearby wells was fit with a linear regression and the R2 and slope was 

calculated following equation (4). This process was repeated from 5 km to 100 km 

radial distances in 5 km increments. The same steps were also carried out to compare 

the number of earthquakes (𝑁𝑒𝑞) of a cluster against the 𝑉 near each cluster. As seen in 
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Figure 6, there is no statistically significant relationships between the 𝑁𝑒𝑞 or ∑𝑀0 of an 

individual cluster and the nearby 𝑉 at any distance. The lack of correlation for both 

individual cluster analysis and individual well analysis suggest that it is difficult to 

establish robust relationship at individual level for the entire state. However, this could 

also suggest that not all Arbuckle wells contribute to induced seismicity, and there 

could be cases where individual relationships can be established, but it may require 

detailed local-scale analysis to establish clear spatial-temporal correlation. 

Gridded spatial binning of volume and seismicity 

Walsh and Zoback (2016) suggested that it is likely that wells within wider areas 

contributed to the seismicity (e.g., at the spatial scale for individual counties). In order 

to quantitatively determine if a relationship becomes apparent at larger scale 

quantitatively, the relationship between total injection volume and seismicity was 

examined with increasing spatial windows. The study area (34 to 37 degrees latitude 

and -100 to -95 degrees longitude) was divided into different grid cells, with the grid 

sizes ranging from 0.1 degree (approximately 14 km) to 1.2 degree (approximately 172 

km) in 0.01 degree increments. Below 0.1 degree the grid size was too small to 

encompass entire clusters of seismicity (Figure 7), while above 1.2 degree grid size 

there were too few samples for a statistically significant result. Then, for each fixed grid 

size, the injection volumes and earthquake data in each cell were summed (Figure 8). 

Next the relationship was examined for four sets of gridded data: a) 𝑉 versus 𝑁𝑒𝑞, b) 𝑉 

versus ∑𝑀0, c) 𝑉 versus 𝑀0𝑚𝑎𝑥, and d) volume disposed before maximum moment 

(𝑉𝑀0𝑚𝑎𝑥) versus 𝑀0𝑚𝑎𝑥. For each dataset, the following equation was examined: 𝐷 =

𝐴𝑉𝑆, where D is the observational data related to earthquakes, and V is the 
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corresponding injection volume. To determine the parameters A and S, a linear 

regression wass fit to the log10 of both variables (log10 𝐷 = log10 𝐴 + 𝑆 log10 𝑉), and 

the results were saved for the adjusted R2, the p-value (to determine if the linear 

regression model is statistically significant, typically, p-value <0.05 is required to 

declare a significant relationship), and the slope (=S) and y-intercept (=log10A) of the 

linear regression. The same steps were also carried out for the synthetic well database 

and earthquake catalog.  

The results show a clear volume-seismicity relationship across all four sets of 

variables. In all datasets, there is a gradual increase in the R2 with increasing grid size 

until around 0.6 degree, where the R2 plateaus (Figure 9). A similar pattern is apparent 

in the variation of the slope of the best-fit line with increasing grid size, where the slope 

of all four datasets rapidly increases to around 0.3 degrees (~ 43 km) grid size (Figure 

10). At increasing grid sizes, the slope slowly increases up to around 0.6 degrees (~ 86 

km), where the slope no longer changes. The fact that a stable slope to the best fit line 

occurs above 0.3 degrees suggests 0.3 degrees is the minimum grid size possible to 

observe the volume – event relationship with this method. Above 0.6 degrees both the 

R2 and slope have only minor fluctuations, representing a minimum grid size for a 

consistent volume-seismicity relationship. The variation in y-intercept with grid sizes is 

also similar to the variation in slope (Figure 11). The synthetic tests show low R2 

(Figure 9), near zero slope (Figure 10) and high p-values (Figure 11) for all data pairs, 

confirming the high correlation of the observed data is unlikely to randomly occur. The 

increase in 95th percentile of the R2 for large grid sizes using synthetic datasets is almost 
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entirely due to the reduction in sample points, resulting in a wider distribution of results 

between iterations (Figure 4).  

Unsupervised clustering of wells and spatially binning seismicity 

Although the gridded method shows minimum spatial scale to the observed 

well-seismicity relationship, the square-shaped cells may artificially truncate clustered 

wells, and are not consistent with the typically assumed radial diffusion model. To 

circumvent this, a second statistical test was developed to quantify the relationship. 

Volume-weighted random partition k-means clustering was used to group the disposal 

wells and examine the relationship between injection volumes for each group with 

nearby earthquake data. K-means clustering is a way of naturally grouping data based 

on mean distances (Hamerly and Elkan, 2002). The method used employs the following 

steps: 

1. Randomly place 𝑛𝑠 initial seed points, ranging from 5 seeds to 100 seeds in 5 

seed increments, throughout the study area.  

2. Each well is associated with the seed point closest to it, and seeds that have no 

associated wells are removed.  

3. Each seed point is relocated based on the injection rate weighted average 

location of its associated wells by:  

𝑆𝑥 =
∑ 𝑊𝑥𝑖∗𝑊𝑣𝑖

𝑁
𝑖

∑ 𝑊𝑣𝑖
𝑁
𝑖

  𝑆𝑦 =
∑ 𝑊𝑦𝑖∗𝑊𝑣𝑖

𝑁
𝑖

∑ 𝑊𝑣𝑖
𝑁
𝑖

   4) 

where 𝑆 is the seed point, 𝑁 is the number of wells associated with a given seed 

point, 𝑊𝑥 and 𝑊𝑦 are the location of each well, and 𝑊𝑣 is the average nonzero 

injection rate of each well.  
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4. Steps 2 and 3 are iterated until the seed locations no longer change, then the seed 

is assigned with the summation of volumes from the associated wells. 

5. The number of events and total moment of events within a distance 𝑑𝑟 of each 

final seed point is calculated for distances of 5 km to 100 km in 5 km 

increments.  

6. A linear regression is fitted to the log10(𝑉) vs log10(𝑁𝑒𝑞) and the log10(𝑉) vs 

log10(∑𝑀0) of each seed 𝑛𝑠.  

7. For each linear regression model, the adjusted R2, slope, y-intercept, and p-value 

are calculated for each possible combination of 𝑛𝑠 and 𝑑𝑟.  

8. Steps 1–7 are repeated 100 times to test the sensitivity of the outcome to the 

initial seed placement, and obtain the 5, 50, and 95 percentiles for each 

combination of 𝑛𝑠 and 𝑑𝑟. 

9. Steps 1–8 are repeated for the synthetic datasets to test the statistical 

significance of the observations. 

The final position of the seed points represents the volume weighted center location of 

similarly located wells. For a small 𝑛𝑠, the seeds represent very large regional injection 

zones, for a large 𝑛𝑠, the seeds represent local groups of tens of wells. An example of 

the clustering of wells and spatial summing of events can be seen in Figure 12. It is 

worth noting that in contrast to the gridded method, this method can count events 

multiple times if they fall within the radii of multiple final seed locations.  

The 100 iterations of the observed dataset show a peak in both the median R2 

and median slope of the linear regression between 35 and 55 km radii for both 𝑉 versus 

∑𝑀0 and 𝑉 versus 𝑁𝑒𝑞 (Figure 13). The max slope of both datasets is within the same 
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range as the ‘stable slopes’ reached by large grid sizes in the gridded method. Also 

observable is the low coefficient of determination (R2 < 0.4) and rapidly decreasing 

slope for radii below 25 km, again showing a minimum area of influence is required to 

define the volume-earthquake relationship (Figure 14).  The statistical results show low 

p-values for radii above 10 km for the observed data, suggesting the resulted parameters 

are significant, however, the synthetic tests have high p-values and a near zero R2 for all 

seed number and radii, confirming the observed results are unlikely to occur at random 

chance (Figure 15). 

Empirical relationships 

Both the gridded and k-means methods demonstrate a clear volume-seismicity 

relationship: for the gridded method, the slope stabilizes at 0.3 degrees (or 43 km), 

while the R2 and slope plateaus at 0.6 degrees (or 86 km); for the k-means method the 

R2 and slope rapidly increases until approximately 25 km, then both stabilize until peak 

values at about 45 km radius. To compare these results to the “moment cap” and 

“sample size” hypotheses, the four datasets were again examined: a) 𝑉 versus 𝑁𝑒𝑞, b) 𝑉 

versus ∑𝑀0, c) 𝑉 versus 𝑀0𝑚𝑎𝑥, and d) 𝑉𝑀0𝑚𝑎𝑥 versus 𝑀0𝑚𝑎𝑥 (Figure 16). For each 

dataset, a best-fitting relationship was derived based on the average of the parameters 

for all grids greater than 0.6 degrees from the gridded method, and a standard deviation 

was also estimated based on these grids. The range of standard deviations for both the 

slope and y-intercept (Table 1) were used to create lines of estimated uncertainty. The 

data of 0.5 and 1 degree grids were used as examples to demonstrate the relationship.  

For 𝑉 versus ∑𝑀0, the theoretical relationship of equation (2) was added for 

comparison. For 𝑉 versus 𝑀0𝑚𝑎𝑥, the compiled data of McGarr (2014) as well as the 
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theoretical relationships of equations (1) and (3) were added for comparison. For 

equation (3), which has two additional independent variables, the higher b-value from 

the statewide observation - 1.52, and seismogenic indexes (𝛴) of -1.0 from least squares 

fit were used, to generate the theoretical relationship, which is closer to observation 

than the lower b-value of 1.18 from maximum-likelihood fit.  

The four empirical equations relate volume and seismicity from the average of 

grid sizes of 0.6 degrees and larger are: 

A) 𝑁𝑒𝑞 = 10−2.46𝑉0.62     6) 

B) ∑𝑀0 = 109.64𝑉0.83     7) 

C) 𝑀0𝑚𝑎𝑥 = 1010.09𝑉0.68     8) 

D) 𝑀0𝑚𝑎𝑥 = 1010.54𝑉𝑀0𝑚𝑎𝑥
0.64      9) 

Most notable from these empirical equations is that, in Oklahoma, neither 𝑁𝑒𝑞, ∑𝑀0, 

nor 𝑀0𝑚𝑎𝑥 scales linearly with volume. It is also notable that the best-fit relationship 

of 𝑉 versus 𝑀0𝑚𝑎𝑥 has a shallower slope than the theoretical equations (1) and (2) 

(Figure 16). In Figure 16(c) and (d), the most notable outlier is the grid containing the 

M5.7 2011 Prague earthquake for both 0.5 and 1.0 degree grid sizes. With the addition 

of 2016 data (Figure 17), both the M5.8 Pawnee and M5.1 Fairview earthquakes also 

represent as outliers for the 0.5-degree grids, while the M5.1 Fairview earthquake 

moves closer to state average with 1-degree grids. Although these larger earthquakes 

appear as outliers compared to empirical observations in Oklahoma, they are shifted 

closer to the compilation of the McGarr (2014) study, and closer to theoretical 

predictions. However, none of these earthquakes appear as significant outliers in the 𝑉 

versus 𝑁𝑒𝑞 and 𝑉 versus ∑𝑀0 datasets compared to state average. So what is 
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happening? If a uniform b-value for the entire state is assumed, then all grids should 

follow the same relationship as predicted. Therefore, it seems possible that b-value 

varies significantly in Oklahoma. 

b-value map and location of large magnitude events 

To assess the spatial variability of b-value, the nearest 150 events for each 

earthquake were selected, which were used to estimate a local Mc and b-value using a 

least-squares fitting method (Figure 18). The results using maximum likelihood method 

were also examined (Aki, 1965), which exhibit similar spatial patterns of low and high 

b-values (Figure 19). Next, the b-value distributions with spatial density of earthquakes 

of different magnitudes is compared. To do so, the earthquake data was spatially 

gridded for the state on a grid of 0.02-degree (approximately 3 km). For each cell, the 

number of events above a given magnitude were counted (i.e., M2.5, M3, M3.5, M4, 

M4.5). The data was smoothed with a Gaussian spatial filter using 3 adjacent cells 

(approximately 9 km). The data for cells with density greater than the mean of all cells 

was then contoured (Figure 18 and 19). For example, the M4+ contour lines represent 

where, after smoothing, the density of M4+ events is greater than the mean of all other 

cells. Because there are so few M4+ events, these contours center on the epicenters of 

all M4+ events. The resulting map shows that areas of large magnitude events have 

lower b-values than areas with only smaller magnitude events, and there exists wide 

range of b-values for Oklahoma (ranging from 0.8 to 1.8). It is noteworthy that the 

present analysis maybe affected by the inconsistent magnitude in the catalog as noted 

before, however, the systematic spatial variation suggests that there likely exists some 

physical control of the spatial distributions of earthquakes with different sizes. If b-
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value is a representation of differential stress (Schorlemmer et al., 2005), then this 

suggests that large earthquakes tend to occur within areas of high differential stress.  

Discussion 

Observations at different scales 

The individual well analysis shows no statistically significant relationship in the 

data, and high-volume wells do not tend to have higher levels of seismicity. This 

suggests that a single well’s injection, whether high or low, is likely not solely 

responsible for inducing seismicity. This is not too surprising: the Arbuckle has high 

end-member permeability between 3–30 darcys and the average vertical height that 

disposal wells are injecting into the Arbuckle is 380-meters, implying wells have the 

potential to rapidly communicate disposed fluids (Carr et al., 1986; Franseen and 

Byrnes, 2012; Morgan and Murray, 2015). If rapid fluid transport is occurring between 

wells then the summed injection of a regional groups of wells, whether multiple smaller 

injectors or a group of large injectors, will be the controlling factor of triggering. 

These results seemingly contradict the findings of Weingarten et al. (2015), who 

found high-rate injection wells are more likely to be spatiotemporally associated with 

nearby seismicity in the mid-continent. However, in Oklahoma high-rate wells are more 

often located in areas of dense injection activities. The Arbuckle disposal well catalog 

shows that wells with average injection rate below 10,000 bbl/month and above 300,000 

bbl/month have an average distance to the five nearest wells of 11.8 km and 4.8 km 

respectively. Furthermore, the 10,000 bbl/month wells have had on average 2.1 x 107 

m3 of total fluid disposed within 15 km, compared to an average of 5.4 x 107 m3 for 

wells with an average rate above 300,000 bbl/month. It seems likely the greater 
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association of high-rate wells to seismicity could be due to these wells are preferentially 

located in areas of denser disposal well spacing and higher overall regional injection.  

Similarly, the cluster based method shows no statistically significant relationship 

between nearby total injection volume and the seismic activity within each individual 

cluster at distances from 5 km to 100 km. This would be consistent with the modeling 

observations from Dieterich et al., (2015). They inject into a single fault zone, but with 

the embedded stress heterogeneity and rate-state evolution, spatio-temporal clustering 

naturally occurs within the pressurized fault zone. When considering individual clusters 

from the same pressurized region, which is essentially the individual cluster analysis 

presented here, one would not expect statistically significant observations between the 

activity within each cluster and the total injection volume for the whole fault. On the 

other hand, the large-scale analysis combines both injection volumes and seismic 

activities over multiple clusters within the same spatial window, and the minimum 

required spatial window to observe clear relationship would be analogous to the 

dimension of the pressurized zone to some degree.  

Both the gridded and k-means methods yield similar results: a minimum spatial 

window of about 25 km to start to see a R2 greater than 0.5 and a slope to start to 

stabilize; and a 43 km radial window and 86 km square window for the methods to 

reach the maximum R2. However, both methods have obvious drawbacks: the gridded 

method has the potential to split apart regions of potentially related disposal wells and 

seismicity; while the k-means method handles this association problem better, but 

events can be counted multiple times, so it can’t be directly compared to the theoretical 

equations.  
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The observation of large association distance between disposal volume and 

events is consistent with the pressure modeling of the Jones Swarm, where the majority 

of events where between 15 km and 30 km of the high-rate disposal wells that likely 

triggered the seismicity and the potential far-field triggering of the 2015 Fairview 

seismicity from 12 to 20 km away (Keranen et al., 2014; Yeck et al., 2016). As a 

conflicting example, Keranen et al. (2013) attributed the Prague sequence to a pair of 

wells within 5km of the sequences initiation point. However as pointed out by McGarr 

(2014), this would require very small volume wells to have triggered the M5 foreshock 

believed to initiate the Prague sequence (Sumy et al., 2014), and the data point would be 

substantially above the theoretical lines of both the moment cap and sample size 

hypotheses. Accordingly, it seems possible the Prague sequence was triggered by 

numerous wells further afield in the region.  

That the M5.7 Prague event was likely triggered by Coulomb stress changes 

generated by the M5 foreshock has interesting implications to the 2016 M5.8 Pawnee 

event. The Pawnee event is similarly an outlier in the statewide relationship between 𝑉 

versus 𝑀0𝑚𝑎𝑥 and 𝑉𝑀0𝑚𝑎𝑥 versus 𝑀0𝑚𝑎𝑥 (Figure 17). For both events the amount of 

fluid injected generated an unexpectedly large event relative to the rest of the state, 

although still under the theoretical line of the moment cap model. Furthermore, the 

Pawnee event had multiple M3+ foreshocks prior to the mainshock that likely played a 

role in the triggering of the mainshock (Pennington and Chen, 2017). It seems possible 

the Pawnee event was also triggered by Coulomb stress changes, which would explain 

its high moment relative to the regional volume.  
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Empirical relationship and theoretical relationship 

To facilitate the discussion, theoretical relationships between the slopes for 

different datasets were derived (details in Appendix A). In Dieterich et al. (2015), 

similar to McGarr (2014), they suggest that the slope between V and 𝑀0𝑚𝑎𝑥 (𝑆𝑀0𝑚𝑎𝑥 ) 

should be 1 (i.e. would match equation (3) if b-value = 1.5), based on the logic that the 

earthquake rupture is limited to the pressurized volume when the initial stress is 

subcritical. However, they also acknowledge that if the pressure is dominated by 

fracture permeability along the faults, the same argument would predict 𝑆𝑀0𝑚𝑎𝑥 =1.5, 

which would match equation (3) if b-value = 1.  

Among all the studies focused on the maximum seismic moment, only McGarr 

(1976, 2014) derived relationship between volume and total seismic moment. If the 

earthquake magnitude-frequency distributions follow Gutenberg-Richter law, then there 

should be an identical slope between 𝑉 and ∑𝑀0 (𝑆𝑀0 ) and 𝑆𝑀0𝑚𝑎𝑥 , while the slope 

between 𝑉 and 𝑁𝑒𝑞 (𝑆𝑁𝑒𝑞 ) should be equal to 
𝑏

1.5
∗ 𝑆𝑀0𝑚𝑎𝑥 . Next these theoretical 

relationships are compared with the observed data.  

First, there is a notable discrepancy between the observed and theoretical lines 

of Figure 16. The observed data shows best-fitting 𝑆𝑀0𝑚𝑎𝑥  of 0.83, which is shallower 

than both the 3D volume pressurization, and 2D fault pressurization would predict. To 

match the shallow slope, it would require a b-value of 1.8 for equation (3), which is on 

the higher end of the spatial varying b-value, so this is not unrealistic. However, if only 

data from 2005 to 2015 is used, the slopes are 𝑆𝑀0 = 0.83 ± 0.07 and 𝑆𝑀0𝑚𝑎𝑥 =

0.68 ± 0.07, while including the 2016 data with all three M5 earthquakes in 2016, the 

slopes are 𝑆𝑀0 = 0.9 ± 0.08, and 𝑆𝑀0𝑚𝑎𝑥 = 0.83 ± 0.08. The inclusion of 2016 data 
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results in both 𝑆𝑀0  and 𝑆𝑀0𝑚𝑎𝑥  shifting closer to the theoretical predictions, and closer 

to each other. A way to explain the discrepancy is that all the theoretical relationships, 

and observations in Dieterich et al. (2015), are based on earthquake sequences and 

injections that have been somewhat completed and the largest earthquakes have 

occurred. However, the Oklahoma activities are still ongoing. So the results in 2015 

could be incomplete due to the delayed response to injection, which lead to a slightly 

better match with theoretical scaling by including the 2016 data.  

Second, for the 2016 data, the best-fitting observed relationship is almost 

parallel to the prediction in McGarr (2014), but systematically shifted lower. The 

McGarr (2014) predicts scale factor between 𝑉 and ∑𝑀0 of 2G (G is the shear modulus, 

typically assumed as 30 GPa), and McGarr (1976) predicts a scale factor of G. The 

difference comes from the assumptions whether the injection changes the pressure 

(McGarr 2014) or modifies the deviatoric stress field (McGarr, 1976). Either way, the 

scale factor is about an order of magnitude larger than the scale factor observed here: 

109.64 (~4.4 GPa). Given the uncertainties in the measurement of the y-intercept, the 

relationship in McGarr (1976) would be closer to the upper bound of the observation 

here (Figure 17b), which could suggest that some degree of elastic stress responses on 

the state level should be considered. There are several possible reasons for this: (1) The 

shear modulus where the earthquakes occur in Oklahoma is lower – this could be true 

given the overall shallow depth focus compared to other intraplate earthquakes. Given 

the uncertainties in the measurement, the scale factor can vary between 1.3 GPa and 

15.3 GPa, and the higher-end of the scale factor is close to the typical shear modulus. 

This possibility could be validated with detailed 3D velocity model and density 
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structure. (2) Not all wells or not all the volume injected contributed to the induced 

seismicity. That not all wells contribute would be possible given that only a small 

percentage of hydraulic fracturing wells are associated with seismicity (Ghofrani and 

Atkinson, 2016), and that there is a lack of relationship at individual well scale. 

However, this would require detailed efforts to find out wells that probably do not 

contribute to seismicity, which is difficult to validate in Oklahoma since high-rate wells 

are often clustered. The fact that the upper end of permeabilities in the Arbuckle Group, 

with a 75th percentile and maximum horizontal permeability measurements of 18.83 mD 

and 3088.61 mD for the upper Arbuckle Group and 55.86 and 171.62 mD for the lower 

Arbuckle Group (Morgan and Murray, 2015), range above what is considered 

seismogenic permeabilities, 0.5 mD to 50 mD (Talwani et al., 2007), suggest a portion 

of disposed fluid is propagating through more permeable formations without causing 

seismogenic pore pressure changes. (3) The Oklahoma earthquakes are not over yet, and 

the total seismic moment would continue to increase – this is very likely. There are 

volume reductions requested, and the injection volume to Arbuckle Group has been 

significantly reduced (Langenbruch and Zoback, 2016). However, as observed in 

Dieterich et al., (2015), continuing seismicity can occur after the shut-in (or reduction) 

of injection activities. In addition, there is often time-delay associated with induced 

seismicity due to both the diffusion process and delayed nucleation of earthquakes 

(Segall and Lu, 2015). For example, combining poroelastic modeling and rate-and-state 

friction, Barbour et al., (2017) demonstrated a good match between predicted seismicity 

rate and observed seismicity rate. This possibility can be validated, but requires 

continuing seismic monitoring for much longer time period.  
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The third observation, the M5 earthquakes (M5.7 Prague, M5.8 Pawnee, M5.1 

Fairview) appear as outliers on the 𝑉𝑀0𝑚𝑎𝑥 versus 𝑀0𝑚𝑎𝑥 plot, but there are no clear 

outliers for the 𝑉 versus ∑𝑀0 and 𝑉 versus 𝑁𝑒𝑞 plots (Figure 16 and 17). The slope 

𝑆𝑀0 is nearly sub-parallel to the theoretical predicted slope of 1 (McGarr, 2014). 

However, the 𝑆𝑁𝑒𝑞 is much lower than the seismogenic index model used in Van der 

Elst (2015), which predicts 𝑆𝑁𝑒𝑞 = 1, based on the assumption of homogeneous 

medium with uniformly distributed cracks (Shapiro et al., 2010). Because of the inherit 

scaling between magnitude and seismic moment, 𝑆𝑁𝑒𝑞 =
𝑏

1.5
𝑆𝑀𝑜, they cannot both equal 

to 1, unless b=1.5.  The shallower slope for 𝑆𝑁𝑒𝑞 could be due to that the magnitude 

completeness is actually much higher than 2.5, which could result in the systematic shift 

observed here. The magnitude of completeness is less an issue for the total seismic 

moment, as this will be dominated by larger earthquakes. However, this does not affect 

the key observation here, which is both 𝑁𝑒𝑞 and ∑𝑀0 are closely related to volume, 

including cells with M5 earthquakes.  

 The overall agreement between 𝑆𝑀0  and the theoretical prediction suggesting 

consistency with the moment-cap theory. The maximum seismic moment relationship in 

McGarr (2014) was derived based on homogeneous Gutenberg-Richter distribution, 

which contradicts with the observation here (see the strong spatial variability of b-value 

in Figure 18 and 19). Taking this into account, the sample-size hypothesis proposed by 

van der Elst et al. (2016) can plausibly be incorporated. With the 𝑁𝑒𝑞 and ∑𝑀0 

constrained, the re-distribution of seismic moment onto individual earthquakes would 

depend on the local magnitude distributions. The M5.7 Prague and M5.8 Pawnee 

earthquakes are the two most robust outliers in the maximum seismic moment plots (the 
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M5 Fairview earthquake merges with the other cells with 1.0 degree bins), and both 

have lower b-value. Following equation (3), the effect of spatial variability is tested by 

plotting the ‘local slope’ that should be present for an area based on the b-value of the 

maximum moment event in each cell (Figure 20). In Figure 20, there are apparently two 

populations of the slopes – steeper slopes with lower b-values for relatively larger 

earthquakes, and shallower slopes with higher b-values for relatively smaller 

earthquakes. Combining them, a shallow slope is obtained from the least squares fitting 

to all the data. The steeper slope is consistent with the scenario of pressurization of fault 

surface suggested by Dieterich et al., (2015), and also consistent with observations of 

low b-value during fault activation stage (e.g. Shelly et al., 2016).   

Fourth, another notable result is the only minor differences between the R2 and 

best-fit lines of  𝑉 versus 𝑀0𝑚𝑎𝑥 and 𝑉𝑀0𝑚𝑎𝑥 versus 𝑀0𝑚𝑎𝑥 (Figure 9, 16). The 

𝑉𝑀0𝑚𝑎𝑥 versus 𝑀0𝑚𝑎𝑥 test is performed to see if size of the largest event is controlled 

by the amount of fluid injected before it occurs (moment cap hypothesis), while the 𝑉 

versus 𝑀0𝑚𝑎𝑥 test does not consider the timing of the largest earthquake in each cell 

(sample-size hypothesis). If the sample size hypothesis is true, then there should be a 

weaker correlation between 𝑉𝑀0𝑚𝑎𝑥 versus 𝑀0𝑚𝑎𝑥, which is not observed here (Figure 

16 and 17). This could be affected by two reasons: First, the volume after maximum 

moment is being influenced by OCC regulations. Regional injection activity is often 

halted or reduced after a large magnitude event, and this is reflected in the data, at a 1 

degree grid cell, on average only 31% of a region’s volume is injected after peak 

seismicity (considering 2005–2015 data). As seen in Figure 21, the relative change in 

volume for each grid cell from 𝑉𝑀0𝑚𝑎𝑥 to 𝑉 is small, and 𝑉𝑀0𝑚𝑎𝑥 and 𝑉 are clearly 
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correlated. This suggests that in Oklahoma, it would be difficult to solely distinguish 

these two hypotheses based on the timing of largest earthquakes observed on individual 

clusters.  

Finally, combining all the observations, it is proposed that the on average, the 

moment-cap theory seems to be consistent with the upper bound of the total seismic 

moment from injected volume, but the observations are systematically below the 

prediction. The sample size model would provide a good overall constraint for the 

number of earthquakes, but the relationship requires some modifications to match the 

observed slope. The maximum seismic moment would depend on local magnitude 

distribution, which would need to incorporate the sample-size theory, and fully consider 

the spatial heterogeneity in b-value, which likely reflects fault dimension (Shelly et al., 

2015) or differential stress (Schorlemmer et al., 2005) distributions – further studies 

may be needed to distinguish the two. Some of the steeper slopes are consistent with the 

fault-facilitated permeability suggested by Dieterich et al., (2015).  

As cautious notes, the dataset is subject to location uncertainties – there exist 

some relocated catalogs, but they either applies a lower magnitude cut-off to only retain 

best-recorded earthquakes, or discard earthquakes that are non-clustered (e.g, double-

difference), so the original full catalog was used. However, this should not significantly 

affect the results, as the minimum spatial window of 25 km is much larger than the 

location uncertainty. The shallower slope of  𝑆𝑁𝑒𝑞 could be due to systematically higher 

Mc than the 2.5 used here, or the delayed responses of seismicity, but could also due to 

a physical mechanism: if the seismic moment is more relevant to the physical processes 
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and stress tensors, and is more reliable, then the slope 𝑆𝑁𝑒𝑞 would depends on the b-

value, and is not necessarily equal to 1.  

Conclusions 

Oklahoma shows a clear relationship between injection volume and seismicity. 

The relationship is statistically significant on the scale of individual wells or individual 

clusters. This does not preclude cases where individual relationships can be established 

with local-scale analysis, but suggest that at the state level, groups of wells are often 

associated with groups of clusters. This contradicts with previous observations that 

individual high-rate disposal wells are more likely to be associated with seismicity, 

which is likely due to the fact that high-rate wells are preferentially grouped within 

high-volume zones.  

On the state level, two different approaches both suggest that a minimum 

association distance over 20 km is required to define clear relationships between 

injection and seismicity, and a distance of 40 km to stabilize the relationship. These 

distances are larger than most documented cases of non-Oklahoma induced seismicity, 

which typically report induced triggering to a maximum distance of 10–15 km. These 

support the notion of far-field triggering from fluid injection, likely due to high 

permeability within the Arbuckle Group.  

Empirical equations relating volume to earthquake numbers and seismic 

moment in Oklahoma are also derived. The maximum seismic moment shows overall 

consistency with moment cap hypothesis, but the M5 earthquakes show as outliers 

compared to the rest of the state. However, the total seismic moment show stronger 

correlation with total injection volume, including the M5 earthquakes, consistent with 



30 

 

the moment cap hypothesis. The scale factor is systematically lower than a shear 

modulus of 30 GPa, this could be due to lower shear modulus at hypocenters for 

Oklahoma earthquakes, which could be inferred from high-resolution 3D velocity 

models, or because the delayed response of seismicity, which requires long-term 

continuous monitoring. The delayed response is also evident in the higher slope when 

the 2016 is included (compared to only 2005–2015 data). When considering 

heterogeneity in b-value distributions, the sample-size hypothesis provides two groups 

of scaling between maximum seismic moment and total injection volume, suggesting 

the necessity in incorporating spatial variability. The clear demonstration of a statewide 

correlation between seismicity and fluid injection into the Arbuckle, and a nearly 1:1 

relation for volume versus moment (with scaling factor of a few GPa), is a compelling 

argument for regulators reducing not just rate, but the total volume into the Arbuckle 

Group. Reducing injection rates to pre-2014 levels may reduce the seismicity rate, but 

may not prevent continued seismicity due to the delayed pressure diffusion and 

nucleation of earthquakes.  
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Figure 2. Cumulative frequency versus magnitude plot of Oklahoma seismicity 

between 2005-2016. The magnitude of completeness markers of Mc 90th and Mc 95th 

represent 90% and 95% of the data can be modeled by a power law fit (Wiemer and 

Wyss, 2000). The Mc used in this study, Mc = 2.5, represents a choice between the 

two estimates and two magnitude bins above the max curvature of 2.3. Also depicted 

is two b-value fits to the data, the maximum likelihood method which fits the small 

magnitude data well, and a bootstrapped least-squares fitting method which fits the 

high magnitude distribution wells except for the M5.7 Prague earthquake.  
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Figure 3. Example of the circular grouping of events within 10 km of an Arbuckle 

disposal well. 
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Figure 4. Visualization of R2 (top) and adjusted R2 (bottom) for small sample counts. 

Both plots depict the R2 fit of a linear regression for 100 iterations of randomly 

distributing n = (1:100) number of samples between x = (0,1) and y = (0,1). The solid 

red and dashed red lines depict the median and 95th percentile of the 100 iterations 

for each sample count n. Both plots show a small spread and low R2 for large sample 

counts. As the number of samples gets closer to the number of variables (in this case 

2 variables, slope and y-intercept of a linear regression) the median R2 increases 

despite no trend in the data. The adjusted R2 still has an increase in the 95th percentile 

with small sample counts but maintains the median R2 at around zero. 
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Figure 5. The total volume disposed of a given well against the maximum moment of 

events within 10 km of each well (left) and against the total moment of events within 

10 km of each well (right). The black line on each plot depicts a best-fit linear 

regression to the log10 of both variables. Both cross-plots demonstrate no trend in the 

data. Also noticeable is the high moment release near the two wells within 10 km of 

the M5.7 Prague event. 
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Figure 6. Cluster based spatial relationship testing between volume and seismicity. 

The variation in R2 for the linear regression fit to 𝑽 versus 𝑵𝒆𝒒 (a), 𝑽 versus ∑𝑴𝟎 (b) 

of clusters at various distances (top). The variation in slope for 𝑽 versus 𝑵𝒆𝒒 (c), 𝑽 

versus ∑𝑴𝟎 (d) of clusters at various distances (bottom). The results show there is 

little trend in the data, with extremely small R2 and no positive relationship in the 

slope.  
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Figure 7. Approximate length of the 82 seismic clusters. The 0.1 degree grid size 

(approximately 14 km) is the smallest size tested to still capture the entire length of a 

fault.  
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Figure 8. Example of the spatial summing of seismic and well data into a 1.0 degree 

grid.  
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Figure 9. Coefficient of determination (R2) for observed and synthetic data, as well 

as the p-value for the observed data, for grid sizes from 0.1 to 1.2 degrees for the 

datasets 𝑽 versus 𝑵𝒆𝒒 (a), 𝑽 versus ∑𝑴𝟎 (b), 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c), and 𝑽𝑴𝟎𝒎𝒂𝒙 

versus 𝑴𝟎𝒎𝒂𝒙 (d).  All datasets show increasing coefficient of determination with 

increasing bin size and low p-values above 0.2 degrees. The synthetic dataset shows a 

low R2 regardless of grid size.  
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Figure 10. The slope of a linear regression fit to 𝑽 versus 𝑵𝒆𝒒 (a), 𝑽 versus ∑𝑴𝟎 

(b), 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c), and 𝑽𝑴𝟎𝒎𝒂𝒙 versus 𝑴𝟎𝒎𝒂𝒙 (d) at various grid sizes. 

Also represented is the slope of the synthetic test and the rate of change of the 

smoothed slope of the observed data. All datasets show the slopes increasing from 

small bin sizes until around 0.3 degrees, when the rate of change becomes close to 

zero. From 0.3 degrees the slope gradually increases until around 0.6 degrees, after 

which the slope has only minor fluctuations. 
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Figure 11. Variation in p-value (left) and y-intercept (right) for the linear regression 

fit to 𝑽 versus 𝑵𝒆𝒒 (a,e), 𝑽 versus ∑𝑴𝟎 (b,f), 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c,g), 𝑽𝑴𝟎𝒎𝒂𝒙 versus 

𝑴𝟎𝒎𝒂𝒙 (d,h) at various bin sizes. All observed datasets show a low p-value (below 

0.05) at around 0.19 grid size, while synthetic datasets show a high p-value for all 

grid sizes. Plots (e,f,g) show a sharp decline in y0 until around 0.3 grid size, after 

which a gradual decline until a stable value is found at around 0.6 degrees.  
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Figure 12. Example of the k-means method showing Arbuckle disposal wells in the 

same color as the seed they are associated with after convergence has been reached in 

the relocation of the seeds. Also depicted is the circular bin of 50 km that events will 

be tallied and cross-plotted against the seed’s associated wells’ volumes.  
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Figure 13. 2D map results of linear regression fit of k-means method. (Top) Median 

R2 for 100 runs for each combination of initial seed count and bin radius for 𝑽 versus 

𝑵𝒆𝒒 (left) and 𝑽 versus ∑𝑴𝟎 (right). Median slope of best-fit line for 100 runs for 

each seed and radius combination for 𝑽 versus 𝑵𝒆𝒒 (left) and 𝑽 versus ∑𝑴𝟎 (right). 

All four cross-plots show a local max between 35 km and 55 km and require a 

minimum distance of about 25 km to show consistent results. 
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Figure 14. For the 100 iterations of all initial seed numbers, colored lines represent the 

median R2 (top) and slope (bottom) of a linear regression fit to the data for each initial 

seed count, as well as the average of the median and average of the 90% confidence 

intervals between initial seed counts for 𝑽 versus 𝑵𝒆𝒒 (a,c) and 𝑽 versus ∑𝑴𝟎 (b,d). 

All plots show a sharp increase until about 25 km where the R2 and slope gradually 

increase to a local max between 40 – 45 km. 
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Figure 15. (Top) P-value variation with bin radius for observed and synthetic data for 

𝑽 versus 𝑵𝒆𝒒(left) and 𝑽 versus ∑𝑴𝟎 (right). (Bottom) 2D map of median coefficient 

of determination for 100 synthetic well and earthquake datasets for 𝑽 versus 𝑵𝒆𝒒(left) 

and 𝑽 versus ∑𝑴𝟎 (right). 
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Figure 16. Plots of  𝑽 versus 𝑵𝒆𝒒 (a), 𝑽 versus ∑𝑴𝟎 (b), 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c), and 

𝑽𝑴𝟎𝒎𝒂𝒙 versus 𝑴𝟎𝒎𝒂𝒙 (d). All cross-plots have the data points of 1 and 0.5 degree 

bins and the average best-fit lines. 𝑽 versus ∑𝑴𝟎 (b) has the theoretical line of 

equation (2). 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c) has the data points of McGarr (2014) as well as 

the theoretical lines of equation (1) and (3). Grid cells with events M5+ are outline in 

black. The pronounced outlier in (b), (c) and, (d) is the 2011 M5.7 Prague event.  
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Table 1. The mean and standard deviation for the slope and y-intercept of bins above 

0.6 degrees both excluding and including 2016 data. 

 

2005–2016 2005–2017 

SNeq 0.617 ± 0.055  0.634 ± 0.054 

SM0 0.834 ± 0.072 0.909 ± 0.078 

SM0max 0.682 ± 0.071 0.827 ± 0.076 

SM0max_volume 0.643 ± 0.056 0.81 ± 0.068 

   

y0Neq -2.456 ± 0.440 -2.487 ± 0.438 

y0M0 9.644 ± 0.542 9.306 ± 0.593 

y0M0max 10.091 ± 0.493 9.346 ± 0.549 

y0M0max_volume 10.537 ± 0.387 9.664 ± 0.490 
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Figure 17. . Plots of 𝑽 versus 𝑵𝒆𝒒 (a), 𝑽 versus ∑𝑴𝟎 (b), 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c), and 

𝑽𝑴𝟎𝒎𝒂𝒙 versus 𝑴𝟎𝒎𝒂𝒙 (d) including 2016 data. All cross-plots have the data points 

of 1 and 0.5 degree bins and average best-fit lines. 𝑽 versus ∑𝑴𝟎 (b) has the 

theoretical line of equation (2). 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 (c) has the data points of McGarr 

(2014) as well as the theoretical lines of equation (1) and (3). Grid cells with events 

M5+ are outline in black. The 2011 M5.7 Prague event is joined by the M5.8 Pawnee 

and M5.1 Fairview events as outliers in (b), (c) and, (d). The violation of equation (1) 

by the Fairview 0.5 grid size point is due to the small grid size not including the high-

volume wells to the northeast of the Fairview cluster.  
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Figure 20. 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 for a 1 degree grid with the addition of local slope 

lines both excluding (top) and including (bottom) 2016 data. The color-coded 

lines represent the expected slope of the 𝑽 versus 𝑴𝟎𝒎𝒂𝒙 line based on the 

sample size hypothesis of equation (3) using each maximum moment events local 

maximum likelihood b-value (colors) from Figure 19.  

excluding 2016 data 

including 2016 data 
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Figure 21. For a 1 degree grid cell, the volume before the maximum magnitude event 

(𝑽𝑴𝟎𝒎𝒂𝒙) versus 𝑴𝟎𝒎𝒂𝒙 compared to the total volume in each grid cell (𝑽) versus 

𝑴𝟎𝒎𝒂𝒙. Although large volume injection may occur in high volume regions after 

the maximum magnitude event, it is not a significant change when compared to the 

previous volume injected. 
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Chapter 3: Temporal Relationship Between Disposal Volume and 

Seismicity 

Introduction 

The expected time between when injection occurs and when seismicity is likely 

to occur is largely unknown in Oklahoma. On the state scale, injection began rapidly 

increasing during 2012, followed by rapid increase in seismicity rate about one year 

later (Figure 22). However, the decline of the injection rate and seismicity that began in 

2015 has been near simultaneous. The volume restrictions of the OCC and reduction in 

oil and gas prices have both led to the decrease in disposal volume, which is the most 

likely reason that led to the decrease in seismicity. A statewide model of the volume-

seismicity relationship based on modified Gutenberg-Richter equation suggests near 

historic seismicity levels will be reached in a few years (Langenbruch and Zoback, 

2016). On a smaller scale however, there is substantial uncertainty. As Langenbruch 

and Zoback (2016) point out, the 2011 M5.7 Prague event occurred at rates below the 

currently mandated volume reductions. Furthermore, Oklahoma contains multiple 

structural terranes and varied basement geology (Shah and Keller, 2017), which can be 

easily broken into different pressure regions that likely have different fluid properties. 

Understanding the time delay is important for multiple reasons. First, the time 

delay provides information about the fluid properties of the subsurface, e.g.. average 

permeability differences in the Arbuckle and basement, and spatial heterogeneity. 

Second, the time delay could provide some information about the triggering 

mechanism, i.e., if the triggering occurs ahead of the expected time scale of pressure 
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diffusion processes and if poroelastic stress transfer is required (Ellsworth, 2013; Chang 

and Segall, 2016). Furthermore, having a better understanding of the time delay can 

help regulators better understand the expected seismicity rate changes following fluid 

injection.  

There are multiple cases of induced seismicity with a clear time delay between 

injection activity and seismicity, however historic examples show a wide range of 

delays. In the classic example of Rocky Mountain Arsenal, Healy et al., (1968) noted a 

similar pattern in the bottom hole pressure of the injection well and the seismicity rate 

with a 10-day delay. The Dallas-Fort Worth earthquake occurred at a time delay of 

approximately 90 days following the onset of injection from a disposal well within 0.5 

km (Frohlich et al., 2011). Similarly, induced seismicity in central Arkansas had a peak 

correlation around 105 days between injection activity and seismicity (Horton, 2012). 

Another example comes from Oklahoma, where McNamara et al. (2015b) found a peak 

correlation at 17 days between injection rates from nearby wells and the earthquake rate 

of the November 2014 Cushing sequence. However, sometimes there is no clear time 

delay between injection and seismicity increases, such as the 2011 Prague sequence 

(Keranen et al., 2013).  

The goal of this chapter is to test the hypothesis that there is a clear statewide 

time delay between injection increase and seismicity in Oklahoma. I will also quantify 

the variability of the time delay and determine if there is spatial coherency within 

different pressure regions that are defined by geological boundaries.  
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Method 

Separating seismically active parts of the state into pressure regions 

Three pressure regions, the western, northern, and eastern region, were defined 

based on the basement geology and possible fluid barriers (e.g., large regional faults) 

(Figure 23). There are five possible fluid barriers resulting in the spatial clustering of 

seismicity in the central and northwestern Oklahoma. The Cleveland anomaly, an area 

of regional magnetic and gravimetric anomaly, has a lower rate of seismicity, which is 

attributed to a decrease in the fracture intensity of the intrusive body (Shah and Keller, 

2017). The Nemaha uplift is a similar area of low seismicity, likely because the faults 

surrounding the uplift are acting as fluid barriers (Shah and Keller, 2017). In central 

Oklahoma. the two large regional fault systems, the Wilzetta and Nemaha fault systems, 

are also possible fluid barriers based on the patterns of seismicity relative to these faults 

(Shah and Keller, 2017).  Finally, the Anadarko basin, which deepens to the southwest 

of central Oklahoma, has almost no seismicity below 3 km basement depth (Shah and 

Keller, 2017). These possible fluid boundaries were used to define the three pressure 

regions (Figure 23).  

Determining time lag between injection and seismicity 

Assuming seismicity is triggered by the diffusion of pore pressure to critically 

stressed faults, a time delay between injection and seismicity is usually expected due to 

the time scale required for the pressure diffusion process. Sometimes shorter time 

delays are observed at relatively far distance, which is attributed to poroelastic stress 

transfer through rock matrix (e.g. Deng et al. 2016). To quantify a time delay between 

the two time-series across the state, the data was again spatially summed in grid cells. 
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Based on the results of the previous spatial analysis, 0.3 and 0.6 degree grid sizes were 

used for demonstration. The 0.3-degree grid is the minimum grid size required to 

demonstrate a relationship between injection volume and seismicity, while the 0.6-

degree is required for the relationship to stabilize. To test the sensitivity of the results, 

grid sizes between 0.3 and 1.2 degrees were also tested.  

For each fixed grid size, the data was processed as follows: 

(1) For each grid cell, the daily number of events and volume disposed were 

summed and then smoothed with a 1-year running time window. The smoothing acts to 

reduce the effect of short-term spikes in seismic rate changes.  

(2) For a time lag from 0 to 1000 days, the volume series was shifted forward 

and the correlation coefficient, or Pearson’s r, of the two series was calculated. The 

Pearson’s r correlation coefficient is a measure of the linear correlation between two 

time series: 

𝑟(𝐴, 𝐵) =
𝑐𝑜𝑣(𝐴,𝐵)

𝜎𝐴𝜎𝐵
     10) 

where the correlation of times series 𝐴 and 𝐵 is based on the covariance of the two time 

series and their standard deviations 𝜎𝐴 and 𝜎𝐵. The time lag for the maximum 

correlation was saved for each grid.  

(3) The grid increment was set to half of the grid size. This was done to prevent 

representing an area only with potentially divided associated events and wells (Figure 

24). As additional conditioning of the data, bins that did not contain at least 15 events 

and 3 wells were rejected due to the lack of data points for the correlation calculation.  

(4) Two time periods were tested: 2005 to 2016, and 2012 to 2016. The first 

time period often produces misaligned peaks for the maximum correlation due to the 
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tail of low volume and low seismicity from 2005 to 2012 for most regions. For the 

second time period, the peaks of the two time series are often aligned more consistently.  

(5) To determine spatial variability, individual results for the eastern and 

western pressure regions were also calculated. The northern pressure region was too 

small to apply this analysis. Because of the longer injection history in the eastern 

pressure region both 2005 and 2012 start dates were tested, however for the western 

pressure region only the 2012 start date was tested. 

(6) Finally, a synthetic dataset was tested, where the event time was randomized, 

but the event and well location and the injection rate are held unchanged. This removes 

the temporal dependence between the two time series and tests the robustness of the 

observed datasets results. 

Results 

With grid size of 0.3 degrees, high correlation is observed in the western 

pressure region and the northern part of the eastern pressure region (Figure 25), with 

most time lags within 400 days. Poor correlation is often observed in areas along the 

edges of these regions, or areas with low injection and seismicity. Grid size of 0.6 

degrees shows the same general trends, suggesting that the spatial variability is relative 

robust (Figure 26). Based on visual inspection of individual cells (Figure 27 and 28), a 

coefficient threshold of 0.75 is adopted to declare significant correlations between the 

two time series. As a general observation, cells have longer time lags tend to have lower 

maximum correlation. For all cells with significant correlation, the time lags are mostly 

under 500 days (Figure 29). The synthetic catalog shows significantly lower 

correlations than the observed result, confirming the robustness of the observed results, 
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however, the synthetic still data still exhibits the trend of decreasing correlation with 

increasing lag time at max correlation (Figure 30). A portion of the trend of decreasing 

correlation with increasing time lag is an artifact of the correlation calculation that is not 

extremely significant and is addressed in depth in Appendix B. 

When comparing results for all grid sizes from 0.3 to 1.2 degrees, larger grid 

size tends to have narrower range of time lags from cells with significant correlation. 

The median time lags for all grid sizes range between 75 and 200 days (Figure 31). 

When looking at only the western pressure region, the same trend is observed, and the 

median time lags range between 150 and 200 day lags (Figure 31). A similar trend is 

apparent in the eastern pressure region for both 2005–2016 and 2012–2016 time periods 

(Figure 31). However, the longer time period (2005–2016) exhibits a wider range for 

lag times compared to the shorter time period, which is likely due to the lack of 

temporal correlation between 2005 and 2012.  

Discussion 

Both empirically and theoretically, the level of seismic activity scales with 

injected volume (McGarr, 2014; van der Elst et al., 2016); therefore, a temporal 

correlation between injection rate and seismicity rate is often expected. The calculation 

of the time delay works under the assumption of a time-dependent growth of the 

pressurized zone due to pressure front propagation, which is related to the diffusivity of 

the subsurface.  With a larger grid size, the maximum distance tested in the volume-

seismicity relationship increases, but it may likely average the time delay between 

smaller groups of associated wells and earthquakes.  



58 

 

Statewide observation clearly demonstrates that an increase in injection rate 

corresponds to an increase in seismicity rate, while a decrease in injection rate 

corresponds to a decrease in seismicity rate (Figure 22). What is being observed is not 

the effect of injection from a combined well triggering all combined seismicity with a 

fixed day lag, but the averaged effect of tens to hundreds of associated groups with a 

range of time delays. This trend is also visible in the spatial mapping of time lags for 

cells with high correlation for different grid sizes (Figure 31). At smaller grid sizes, the 

spatial distribution is more heterogeneous than larger grid sizes. 

The 0.3-degree grid represents the smallest scale at which the volume seismicity 

relationship is observable (see chapter 2), therefore, it also represents the smallest scale 

to view the small-scale heterogeneity of time-lags. If events in a given grid cell are 

being triggered by well activity further than 0.3 degree, then there should be a low 

correlation between the two time series in that cell. As such, only the high correlation 

cells are used to infer the inter quartiles and median of time lags. For the whole state, 

western region, and eastern region the 25th-50th-75th percentiles from the 0.3-degree grid 

are 0-90-178, 19-160-343, and 2-128-174 days, respectively. For the entire state, entire 

western region, and entire eastern region the max correlation occurs at a time lag of 

215, 242, and 127 days respectively. All of these values have substantial uncertainty 

that could affect the time lag. A large source of error is the distance between wells and 

the associated seismicity likely varies among cells. Another reason is that the time lag 

represents combination of lateral diffusion through the Arbuckle with relatively higher 

diffusivity, and lower diffusivity within basement faults through downward diffusion 
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(Shapiro et al., 1997). However, the range of time delays provides an empirical range 

for regulators to consider.  

There is clear spatial variability both between the two major pressure regions 

and within individual pressure regions. Overall, the western region has longer time 

delay than the eastern region, which could be an indicator of lower Arbuckle or fault 

diffusivity in the western region. Along the southern edge of the eastern pressure 

region, there are low correlations at both 0.3 and 0.6-degree grid sizes (Figure 25 and 

26). This area includes the earliest likely induced seismicity in the state that began in 

2009 (Keranen et al., 2014). The seismicity in the region, labeled as the “Jones swarm”, 

was likely triggered by a group of high volume wells along the southern edge of the 

Nemaha fault (Keranen et al., 2014). The low correlation is partially due to the lack of 

wells in the middle of the swarm area (Figure 32), but also the narrower time series 

(2012–2016 used for Figure 25 and 26). When the high-volume wells likely tied to the 

Jones swarm are compared to nearby seismicity with a longer time period of 2000–2016 

data, there is still only a 50% correlation but the time dependency between the two 

series with a 180 day time lag is evident (Figure 33). The low correlation is likely due to 

the injection between 2005 and 2009, which isn’t mirrored by seismicity, acted to build 

pressure near the well and it wasn’t until 2009 onward that the pressure perturbation 

could migrate northeast up the structural dip (Keranen et al., 2014) and into the Jones 

swarm. This concept agrees well with the pressure modeling results of the region 

(Keranen et al., 2014).  

Another interesting result are the handful of cells that show very small or zero-

day time lags yet still have extremely similar time series (Figure 29). If the seismicity 
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was happening directly next to the disposal well in the subsurface, such short time 

delays could be due to pore pressure triggering, however, the majority of Oklahoma 

earthquakes have occurred in the crystalline basement (McNamara et al., 2015a), which 

indicates this seismicity could be due to rapid elastic stress triggering (e.g., Deng et al., 

2016).  

Conclusions 

 The time lag calculation gives a useful estimate of the time delay between 

injection and seismicity, as well as a general indicator of spatial variations of time 

delays across the state. At the state level there is a clear 215-day time lag between the 

peak in injection and seismicity. When the small scale is looked at an interquartile range 

between 0 and 179 days represents the likely range of possible time delays in a region 

around 40 km in diameter. The spatial variations show both large and small spatial 

scale’s time delay in the western region are longer than in the eastern region. This could 

be showing a higher fault or Arbuckle permeability in the eastern region or could be 

caused by some other factor. Finally, there are a few areas where there are extremely 

small delays between injection and seismicity, which could be indicating poroelastic 

triggering. 
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Figure 22. Statewide variation in Arbuckle disposal volume and earthquakes greater 

than M2.5 over time. (Top) Unsmoothed original data, (bottom) time series smoothed 

with a 180-day mean smoother. A time delay of about a year and a half is present 

between the increase in volume and the increase in seismicity. The two times series 

decline near simultaneously after the peak in volume in early 2015.   



62 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Map of Oklahoma depicting known faults (grey lines), earthquakes, 

Arbuckle disposal wells, and three pressure regions and their bounding structures. 

Faults from Holland (2015). 
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Figure 24. Example of the grid cell shifting and representation on the map of Figure 

25 and Figure 26. At time (a) that volume and seismicity time series within the grid 

cell (yellow) is shifted for various lag times until the max correlation is found. A 

visualization cell half the dimension of the actual grid cell is placed to represent the 

magnitude of the correlation. At time (b) the grid cell is shifted half the length of the 

cell and the time series are again compared and the magnitude of the correlation is 

represented by the inner cell. This is repeated (c) until the edge of the study area is 

reached, in which case a new row is scanned. This also prevents potentially high 

correlations from being misrepresented by a well and associated seismicity being split 

between cells, for example the high (red) correlation at step (b) would be missed if 

overlapping cells were not used.  
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Figure 25. Map view of events (black) and wells (grey) on top of the max Pearson’s 

r correlation coefficient (top) and the time lag at max correlation (bottom) for the 

daily volume and number of events time series with a 0.3 degree grid size. Most 

areas with high correlation are located where there is both dense wells and 

seismicity. As seen in Figure 24, the colored grid cells are half the actual grid 

dimension, so in this case 0.15 degrees. 
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Figure 26. Map view of events (black) and wells (grey) on top of the Max Pearson’s 

r correlation coefficient (Top) and the time lag at max correlation (Bottom) for the 

daily volume and number of events time series with a 0.6 degree grid size. Like the 

0.3 degree grid, low correlation occurs along the edges of the main seismic regions 

where there is fewer wells and seismicity.  
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Figure 27. Example of four different grid cells that show a range of max correlations 

at long time lags. Each quadrant shows the original smoothed time series (top) and 

the volume shifted time series with the maximum correlation. The number of daily 

events is very low due to the one year smoothing of the time series. 
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Figure 28. Example of four different grid cells that show a range of max correlations 

at short time lags. Each quadrant shows the original smoothed time series (top) and 

the volume shifted time series with the maximum correlation.  
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Figure 29. Max Pearson’s r correlation coefficient against the corresponding time lag 

for the daily volume and daily number of events time-series with a 0.3 (left) and 0.6 

(right) degree grid size. The dashed line represents the 75% r value, used as a cutoff to 

group high correlation grid cells. Both the 0.3 and 0.6 degree grids show a decrease in 

correlation coefficient with increasing lag time and several cells with max correlation at 

a zero day time lag.  



69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Result of 10 bootstrapped iterations of randomly distributing the 

event times between 2012 and 2017 while keeping locations of events and wells 

and injection rate of wells constant. There is still a trend of decreasing maximum 

correlation with increasing lag in that data. 
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Figure 31. Box and whisker plot of the distribution of time lags for high correlations 

at a range of grid sizes. The red plus sign represents outliers, the whiskers represent 

the 99.3% coverage of the data assuming a normal distribution. The outer box edges 

are the 25th and 75th percentiles of the data and the red line is the median. Each 

increase in grid size represents fewer cells that are representing the data. At the state 

level, the distribution stays consistently under a 200 day time lag (a). The eastern 

pressure region shows longer time lags when the 2005-2011 data is included (b), but 

both time series show a consistent median, for the 2005-2016 time series it is around 

200 days (b), for the 2012-2016 time series it is around 125 days (d). The western 

pressure region also has a consistent median around 200 days and a narrower range of 

lags with increasing grid size.  

2012-2016 2012-2016 

2005-2016 2012-2016 
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Figure 32. Map of the central Oklahoma disposal wells, scaled by volume, 

seismicity, and faults (grey lines). The high volume wells located at the southeastern 

edge of the eastern pressure region and nearby seismicity encircled in red are 

compared in Figure 27. The structural dip of the basement is to the southwest. 
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Figure 33. Daily injection and number of events over time for the southwestern edge 

of the eastern pressure region (top). The volume time series had a max correlation 

with a 180 day shift (bottom). Both time series are smoothed with a 90 day mean 

operator. While the correlation is low, there is still a clear delay and buildup in both 

injection and seismicity. 
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Chapter 4: Pore-Pressure Diffusion Triggering of Seismicity 

Introduction 

An important aspect of Oklahoma induced seismicity is the triggering 

mechanism. If the triggering mechanism is well understood, then a plan can be taken to 

reduce seismicity if it is human triggered. Since Oklahoma first began experiencing an 

increase in seismicity, different seismic episodes have been attributed to natural causes 

(Keller and Holland, 2013), pore pressure triggering from nearby well activity (Keranen 

et al., 2013), hydraulic fracture triggering (Holland, 2013a), and remote earthquake 

triggering (van der Elst et al., 2013). Although the majority of Oklahoma case studies 

hypothesize that pore pressure diffusion triggering is the most likely mechanism, a 

statewide analysis supporting pore pressure diffusion triggering has not been carried 

out. 

If the seismicity is being directly caused by disposal fluid, there are two main 

triggering mechanisms. The first is the diffusion of pore pressure into a critically 

stressed fault. As the fluid pressure increases in a fault, it lowers the normal stress and 

allows shear failure by: 

𝜏𝑐𝑟𝑖𝑡 = 𝜏0 + 𝜇(𝜎𝑛 − 𝑃)     11) 

where the critical shear stress 𝜏𝑐𝑟𝑖𝑡 is equal to the cohesion 𝜏0 plus the product of the 

frictional coefficient 𝜇, and the difference between the normal stress 𝜎𝑛and the pore 

pressure 𝑃 (McGarr, 2002). When fluid enters a fault zone there is also a secondary 

chemical effect that reduces the frictional coefficient 𝜇 (Shapiro et al., 1997). The 

second mechanism is through elastic stress transfer. As pore pressure increases or 

decreases, deformation occurs in the host rock that results in an elastic stress change 
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(McGarr, 2002; Chang and Segall, 2016). Furthermore, there is a change in mass after 

injection, resulting in an increase in the vertical load and corresponding stress (McGarr, 

2002; Ellsworth, 2013). The elastic and pore pressure mechanisms can be simultaneous, 

i.e. poroelasticity. When fluid pressure is increasing in a fault there will be both a 

decreasing normal stress as well as changes in the normal and shear stresses caused by 

elastic stress changes in the host rock. However, if the fault is not in communication 

with the fluid source, there will only be stress changes due to elastic stress transfer.   

 Typical examples of elastic stress transfer induced seismicity are cases of 

reservoir-induced seismicity, such as the M5.8 Kariba dam earthquake that occurred 

shortly after the reservoir reach maximum depth (Simpson et al., 1988). However, 

poroelastic models show it is a possibility for elastic stress due to a fluid injection 

generated pore pressure increase to trigger earthquakes on faults not hydraulically 

connected to the fluid source (Chang and Segall, 2016).  

 Most cases of fluid-injection induced seismicity are believed to be related to 

pore-pressure perturbations (McGarr, 2002; Ellsworth, 2013). Seismicity and pore-

pressure diffusion generally are related by three lines of evidence. First, the events are 

spatially located close to the injection sources, such as the classic example of Rocky 

Mountain Arsenal, where all seismicity occurred within 10 km of the disposal well in a 

previously nascent area (Healy et al., 1968). Second, unlike instantaneous stress 

transfers, diffusion triggered events occur after some time delay, as the fluid pressure 

must first build up and propagate to the critically stressed fault (Simpson et al., 1988). 

Third, triggering by pore-pressure perturbations can result in the spatial migration of 

earthquakes. This spatial migration usually takes the form of a diffusion curve, where 
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events with increasing distance from the fluid source will only occur behind a 

spherically diffusing pressure front (Shapiro et al., 1997). This spatial migration has 

been used to approximate the crustal permeability through estimating the hydraulic 

diffusivity (Talwani and Acree, 1984; Shapiro et al., 1997; Chen and Shearer, 2011; 

Llenos and Michael, 2013) and is not observed in typical mainshock-aftershock 

sequences (Vidale and Shearer, 2006). In this chapter, I will be testing the hypothesis 

that Oklahoma seismicity shows signs of pore pressure diffusion in the spatial migration 

of seismicity. I will attempt to determine the scale of the migration, the rate of 

diffusivity, and how often the signature of pore-pressure diffusion is present in 

Oklahoma. 

Method 

Pre-processing earthquake catalog – clustering and aftershock removal 

A hypoDD relocated OGS catalog containing 2010–2016 seismicity that 

employed an improved 3D velocity model was used for the diffusion analysis (Chen, 

2016). A relocated catalog is important in diffusion analysis because the relative 

location of events dictates the strength of the diffusion pattern. Using the zmap software 

to calculate the Mc of the relocated catalog resulted in a minimum magnitude of Mc = 

2.5 for a 90% goodness of fit (Wiemer and Wyss, 2000). The b-value was calculated as 

1.11 using the maximum likelihood method (Aki, 1965), and 1.34 using a bootstrapped 

least-square fitting method (Figure 34). These values are different than the b-values 

estimated in chapter 2, due to the different catalog time range and magnitude 

distribution. Despite a low-end Mc of 2.5, only events below M2 were removed from 

the catalog. This was done to increase the number of events grouped into each cluster, 
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without which the diffusion fitting would be extremely limited. Next, the relocated 

catalog was clustered using nearest neighbor rescaled distance after the method of 

Zaliapin and Ben-Zion (2013). This method finds each event’s distance and time to its 

closest neighbor scaled by the magnitude of the parent event. The rescaled space and 

time distances are: 

𝑇𝑖𝑗 = 𝑡𝑖𝑗10−𝑞𝑏𝑚𝑖  ;  𝑅𝑖𝑗 = (𝑟𝑖𝑗)𝑑𝑓10−(1−𝑞)𝑏𝑚𝑖  12) 

where 𝑇𝑖𝑗 and 𝑅𝑖𝑗 is the rescaled time and distance between event j, and its parent i, 𝑡𝑖𝑗 

and 𝑟𝑖𝑗is the original interevent time and distance, q is 0.5, 𝑚𝑖is the magnitude of the 

parent event, b is an average b-value of 1.2,  𝑑𝑓 represents the dimension of the 

earthquake hypocenter distribution, 1.6 was used in this study. From that scaled space-

time distance it identifies unusually close events that can be categorized as clusters. 

When applied to southern California seismicity, distinct groupings of clustered versus 

background seismicity was apparent (Zaliapin and Ben-Zion, 2013). In Oklahoma, there 

is not nearly as clear groupings of background and clustered events (Figure 35). Instead, 

visual examination of a range of possible space-time thresholds was performed to select 

the optimal thresholds that best group the clusters (Figure 36). The final thresholds 

employed are 𝑇 = 5, 𝑅 = 0.009, where interevent distances below those thresholds were 

identified as clusters. The clustering resulted in 74 clusters with over 20 events.  

Some clusters contained clearly separated delineated faults within them. To 

prevent overlapping diffusion signals in such clusters, these faults were manually 

separated, resulting in 89 total clusters. Next, aftershocks were removed within each 

cluster with the space-time windowing method of Gardner and Knopoff (1974). This is 

done to remove the space-time imprint of aftershock triggering from the diffusion 
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curves. The narrower windows suggested by Urhammer (1986) were used in this 

method, which agree better to this dataset than the Gardner and Knopoff (1974) window 

size. This method designs a magnitude-scaled spatial and temporal window after a 

mainshock, in which events are considered aftershocks. For example, a M5 event will 

have any event that occurs within 27 days and 20 km after it be considered an 

aftershock and removed, while for M3 it is only 2.3 days and 4 km. Aftershock removal 

eliminated 5,207 events, resulting in 81 clusters containing at least 20 events. The 20 

events requirement was established as a threshold for minimum number of events for 

the diffusion migration analysis.  

Cluster-based diffusion curve fitting 

Seismicity that demonstrates diffusion triggering can be detected by fitting the 

migration of events with a diffusion curve. A spherical diffusion of increased pore 

pressure will radiate out based on the properties of the formation. The diffusion front 

can be approximated by: 

𝑟 = √4𝜋𝐷𝑡     13) 

where r is the distance the pressure change has traveled by time t for a given hydraulic 

diffusivity D (Shapiro et al., 1997). The method of Chen and Shearer (2011) was used, 

that employs weighted windows to find a best-fit diffusion curve for seismicity away 

from the first event in the cluster. The fundamental premise of the method is the first 

event in a cluster is a proxy for the fluid source, and as time progresses events will 

occur away from the first event within the space-time window of the pressure front of 

equation (13). By varying the diffusivity value, a best-fitting diffusion rate can be found 

for each cluster (Figure 37).  
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The method allows a measure of confidence, where the total misfit between the 

observation and the diffusion curve prediction are calculated based on a residual-based 

weighting scheme (Figure 37). To test the statistical significance of the migration, a 

resampled dataset was generated for each cluster, where the spatial locations are held 

constant, but the occurrence times are randomly shuffled for all events. This discards 

any time-dependent spatial migration information in the original database. This process 

was repeated 1000 times, and the misfits from the 1000-resampled datasets were 

compared with the original dataset. This tests how likely the misfit of the observed data 

was if the events had happened in a random order. The percent of the resampled 

datasets with misfit greater than the original data represents the confidence in the 

diffusion trend. Like Chen and Shearer (2011), I find a confidence threshold of 85% 

agrees well with clusters that show a clear diffusion pattern from visual examination, 

while clusters with confidence below 85% show weaker signs of diffusion migration. 

An additional step carried out in this study not done by Chen and Shearer (2011) was 

the removal of events that occurred in the first 10% of each clusters time series. This 

helps prevent false-positives caused by the weighting method applied on early events. 

The diffusion curve fitting was carried out to all clusters that have over 20 events after 

aftershock removal. Due to inherent inaccuracy in the depth location of events, the 

diffusion curve fitting was tested with both 2-D and 3-D distance. A grid search over 50 

diffusivities that are equally logarithmic spaced from 0.0001 (10-4) to 1 (100) m2/s was 

performed to find the best-fitting diffusivity.  
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Cluster fluid migration direction 

An additional part of recognizing pore pressure diffusion was identifying the 

direction of the fluids migration. First the strike vector of each seismic cluster was 

calculated by determining the primary eigenvector of the covariance matrix of 

demeaned earthquake locations after the methodology of Vidale and Shearer (2006). 

Events were then binned into 20 time bins spanning the cluster’s duration. Each time 

bin’s average location was calculated and projected onto the strike vector, with the first 

event set as the origin. Clusters were then categorized as unilateral versus bilateral by 

how many time bins were located on either side of the origin. If over two thirds of the 

bins were on one side of the origin, then the average location of events is migrating in 

that direction, i.e. unilateral. An example of the time binning and diffusion vector can 

be seen in (Figure 38). This method gives the direction that pressure migrates along the 

fault, however, it does not give information on the direction the pressure came from 

outside the fault. For example, if the fluid came from a source in a direction near 

perpendicular to the strike of a fault, then the migration arrows, be it unilateral or 

bilateral, will point perpendicular to the actual fluid source direction. 

Contour mapping of disposal volumes 

To represent the disposal well data, the injection data was binned on a grid of 

0.02 degree bins (approximately 3 km) and in each bin the total volume injected 

between 2005 and 2017 was summed. Next, the binned data was smoothed by a circular 

filter out to three adjacent cells (approximately 9 km). Contours were fit to the data, 

representing the 50th, 75th, 95th, and 99th percentile of smoothed total injection volume. 

In this case, the 95th percentile contour line represents bins where more fluid has been 
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disposed than 95% of the bins in the state, represents approximately 40% of the total 

smoothed volume, and represents areas that have had over 99,000 barrels of fluid 

injected/km2.  

Large scale diffusion patterns 

 The 2008–2013 Jones swarm in central Oklahoma showed a high likelihood of 

being triggered by far-field pore-pressure diffusion (Keranen et al., 2014). If triggered 

from a single source, this regional scale diffusion should show a pore-pressure diffusion 

curve. To test this hypothesis, a similar diffusion curve fitting algorithm was used to 

automatically detect a diffusion pattern for a larger scale. The OGS catalog from 2005 

to 2016 is used for this portion of the study because of its lower magnitude of 

completeness compared to the relocated catalog. Events outside the three main pressure 

regions (Figure 23) were removed to prevent likely non-related seismicity affecting the 

curve fitting. The Woodward cluster was also removed due to its potential complication 

in higher probability of far-range poroelastic triggering (Goebel et al., 2017). Instead of 

looking at individual clusters and testing from the first event, seven large regional 

injection highs, each representing the 95th percentile of injection volume, were used as 

fluid-source points. Events were associated with the nearest fluid-source or ‘seed’ point 

and the diffusion misfit was calculated with start dates from 2005 to when 10% of the 

associated events have occurred in 3 month increments. A wide range of diffusivities, 

from 0.25 to 2.5 m2/s in 0.25 m2/s increments were examined and the start date and 

diffusivity with the lowest misfit was saved for each fluid-source point. 
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Results and Discussion 

Cluster-based diffusion curve fitting 

Fitting the 2-D distance results in 33/81 clusters with a fit confidence above 

85% while the 3-D distance had 30/81 clusters with a high fit (Figure 39). This resulted 

in a total of 42/81 clusters above 85% confidence between the two methods and an 

average diffusivity of 0.03 ± 0.04 m2/s. The statistics between 2-D, 3-D, and joined 

results can be found in Table 1. The data shows a narrow range of diffusivities, where 

even the majority of low confidence fits have diffusion rates below 0.1 m2/s (Figure 39). 

The clusters with high fit show a good match to the normalized diffusion curve (Figure 

39). Also noteworthy the best-fitting diffusivities for all clusters follow a normal 

distribution in log space (Figure 40). Examples of some large, notable clusters that 

show diffusion are the Guthrie cluster, the Fairview cluster, the Prague cluster, and the 

Logan County cluster (Figure 41). As seen in Figure 36, 28 of the high confidence 

diffusion clusters show unilateral migration while 14 show bilateral migration.  

About 52% of the large clusters in the state show strong signs of pore pressure 

diffusion triggering. Although other factors could be affecting the seismicity rate in 

these clusters, for example Coulomb stress changes from previous events or poroelastic 

effects. In cases such as the Fairview (2D example) and Guthrie (3D example) clusters, 

numerous events are outside the diffusion front despite an apparent overall diffusion 

pattern (Figure 41). These events take the form of vertical spikes in the diffusion curve 

and likely represent embedded mainshock/aftershock sequences that were not removed 

by the aftershock filtering, or due to larger depth errors. These spikes likely represent 

combined aftershock triggering. As the fluid diffuses, events are triggered within the 
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pressure front, but larger triggered events can generate aftershocks sequences that will 

rapidly propagate through the fault. The clusters that do not show clear diffusion are 

either still diffusion triggered but are dominated by mainshock/aftershock sequences, 

clusters composed of multiple faults with their own diffusion signature, or, represent 

mainshock/aftershock sequences triggered by alternative mechanisms such as 

poroelastic stress changes from nearby injection or Coulomb stress changes from 

nearby earthquakes. However, the average diffusivities of all clusters is consistently 

around 0.05 m2/s (Table 1), which suggests that despite a low confidence there is 

consistency in the likely migration rate of seismicity away from the first event.   

 The range of diffusion rates are lower than typical cases of induced-seismicity.  

A review of 22 case histories of reservoir induced seismicity found diffusivities ranging 

from 0.5 to 50 m2/s (Talwani and Acree, 1984). Case studies of fluid injection induced 

seismicity have shown diffusion between 0.2 and 1 m2/s (Shapiro et al., 1997; Chen and 

Shearer, 2011). In the case of the Guy-Greenbrier Arkansas swarm, events migrated 

away from nearby disposal wells within a diffusivity range of 0.01 to 0.1 m2/s (Llenos 

and Michael, 2013). The Guy-Greenbrier swarm shows similar diffusivities to 

Oklahoma clusters, which show a range between 0.01 – 0.29 m2/s, where 87% of the 

high confidence clusters are below 0.1 m2/s. Due the majority of earthquakes being 

located in the crystalline basement (McNamara et al., 2015a), the diffusion is likely 

showing fluid pressure movement through basement faults and fractures. 

The interquartile range of high confidence diffusivities, D25th=0.018 m2/s and , 

D75th=0.067 m2/s, can be used to estimate the fracture permeability of the basement fault 
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zones. Using the method of Talwani et al. (2007) the fracture permeability (𝑘 ) can be 

approximated by:  

𝑘 = 𝐷𝜇[Φ𝛽𝑓 + (1 − 𝛽𝑟)Φ]     14) 

where 𝐷 is the hydraulic diffusivity, 𝜇 is the viscosity of the water, Φ is the porosity of 

the host rock, and 𝛽𝑓 and 𝛽𝑟 are the compressibilities of the fluid and host rock, 

respectively (Bodvarsson, 1970). The average earthquake depth in Oklahoma is 

approximately 5 km. Assuming a geothermal gradient of 25.5 ºC/km, or 1.4º F/100 feet 

(Harrison et al., 1983), and a surface temperature of 20 ºC results in a temperature 

around 145 ºC for the average location of earthquakes. This corresponds to a viscosity 

of 0.190 x 10-3 Pa*s (TET, 2017) and a density of approximately 1000 kg/m3. The 

remaining parameters were based on published estimates from Talwani et al. (1999) of 

Φ = 3 x 10-3, 𝛽𝑓 = 10-10 Pa-1, and 𝛽𝑟 = 2 x 10-11 Pa-1. The 25th and 75th percentile of high 

confidence diffusion rates, D25th=0.018 m2/s and , D75th=0.067 m2/s, results in 

permeability range of 0.08–0.29 mD (or 0.785–2.920 x 10-14 m2). This range is an order 

of magnitude lower than the range of compiled ‘seismogenic permeabilities’, a range of 

permeabilities in which most documented cases of fluid pressure diffusion triggering 

seismicity occur (Talwani et al., 2007), but still within the range of estimated crystalline 

basement permeabilities (Clauser, 1991). These diffusion rates support the notion of 

uncharacteristically low permeability basement faults exhibiting pore pressure diffusion 

triggering in Oklahoma. This could potentially be due to the scale of injected fluid and 

corresponding fluid pressures in these basement fractures being larger than in other 

studies of induced seismicity. However, in the analysis of seismogenic permeabilities in 

Talwani et al. (2007), it was hypothesized that if there were greater pressures 
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permeating permeabilities below the range of seismogenic permeabilities, like observed 

here, then the pressure should open the fractures and increase the permeability into the 

range of seismogenic permeabilities.  

 The direction of unilateral migration vectors shows spatial variations in 

migration orientations. Although many of the clusters appear to migrate away from 

regions of greater volume injection, the trend is not consistent across the state. At the 

Prague cluster the migration is moving to the north, seemingly away from the nearby 

injection high (Figure 42). In the western seismic region, the majority of clusters have 

migration to the west, despite for some clusters this being in the direction of the main 

injection high in the region (Figure 42). The variability is possibly tied to the structural 

dip of the basement, which dips to the southwest part of the state, and faults acting as 

fluid conduits and barriers, preventing a homogenous diffusion. It is also possible the 

discrepancy is due to triggering from smaller volume wells that are near the clusters but 

are not highlighted by the contours.  

Large scale diffusion patterns 

 The large scale diffusion fitting associates events with seven high volume 

injection sites, regions a, b, c, d, e, f, and g, and determines the start date and diffusivity 

to best fit the migration pattern from each fluid-source points (Figure 43). Of the seven 

regions, five of the regions (a, c, e, f, and g) show large scale diffusion above 85% 

confidence (Figure 44, 45). Because the original diffusion curve fitting method was 

made for single clusters that spanned relatively short time periods, the application at this 

large scale is less stable. The locations chosen, although restricted to the 95th percent 

contour interval, represent the best locations that visually showed a diffusion pattern 
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and the confidence is relatively unstable for two of the five high confidence regions 

(regions c and e) while the other three high confidence regions (a, f, and g) consistently 

show a high confidence diffusion pattern. 

The high confidence fits were matched with diffusivities between 0.75 m2/s and 

2.25 m2/s, which are an order of magnitude greater than the cluster-based diffusion. The 

low confidence diffusion regions show no trend in the data, this is likely due to multiple 

large fluid sources in the area, implying smaller scale diffusion triggering, or the 

location of the seeds are not representing the actual fluid source. Not all the high 

confidence fluid-sources diffusion fits have events close in both space and time with the 

start point (Figure 44 a, 45 e and f). This is likely because the method treats diffusion of 

fluid pressure from a region of high injection as a single point source for spherical 

diffusion, while in reality the diffusion front would be significantly more complex. 

Despite this lack of early events near the fluid source, the large scale diffusion pattern is 

quite apparent in those five regions. 

 Support for large-scale fluid pressure diffusion comes from the previous 

analysis. Each fluid-source point is associated to events up to 50 km away, which is 

close to the spatial analysis results of 40 km minimum distance to observe a stable 

volume-seismicity scaling relationship. The earlier temporal analysis saw high 

correlations with association distances around 20 km (0.3 degree grids) for the central 

parts of the pressure regions, represented primarily by Figure 44 b and d. However, the 

edges of the seismic regions, such as around the Fairview, Pawnee, and Prague clusters, 

showed low correlations at the small grid size but not at the large grid size, supporting 

the idea that the edges of the pressure regions are being triggered by far field 
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pressurization. Similar findings also come from pressure modeling of the Jones swarm 

(Keranen et al., 2014) and the western seismic region (Goebel et al., 2017) where both 

studies found large-scale pressure diffusion triggering from areas of high injection.  

 The higher diffusion rates of the large-scale diffusion are also more in line with 

the permeability range of the Arbuckle Group. Following the methods of Goebel et al. 

(2017), the permeability 𝑘 can be estimated from the diffusivity 𝐷 by: 

𝑘 =
µ𝐷𝑆𝑠

𝜌𝑓𝑔
      15) 

where µ and 𝜌𝑓 are the viscosity and density of the fluid, 𝑔 is the acceleration due to 

gravity, and 𝑆𝑠 is the specific storage (Wang, 2000). This equation estimates 

permeability based on radial diffusion through a porous medium, while equation (14) 

was based on diffusion through fractures. To test the magnitude of possible 

permeabilities, typical values for water-filled sandstone/limestone makeup like the 

Arbuckle are used. The average Arbuckle disposal well reaches depths of approximately 

2 km. Again, assuming a geothermal gradient of 25.5 ºC/km, or 1.4º F/100 feet for 

Oklahoma (Harrison et al., 1983), and a surface temperature of 20 ºC results in an 

average temperature around 70 ºC in the Arbuckle. This corresponds to a viscosity of 

0.404 x 10-3 Pa*s (TET, 2017) and a density of approximately 1000 kg/m3. A typical 

specific storage for a sandstone/limestone formation is around 𝑆𝑠 = 10-6 m-1 (Wang, 

2000). Testing the average diffusivity of the regional diffusion, 1.8 m2/s, results in 

permeability of 74 mD (or 7.4 x 10-14 m2). This value is in good agreement with the 

median and 75th percentile horizontal permeabilities of 6.62 and 18.83 mD for core 

measurements of the upper Arbuckle and median and 75th percentile horizontal 
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permeabilities of 20.34 and 55.86 mD for the lower Arbuckle (Morgan and Murray, 

2015).  

Conclusions 

About 52% of large seismic clusters show the signature of pore pressure being 

the dominant triggering mechanism with at least 85% confidence. Clusters that don’t 

have high confidence either don’t have a clear diffusion pattern due to 

mainshock/aftershock, or maybe triggered by an alternative mechanism. However, the 

majority of both diffusive-migration clusters and all clusters have diffusivities under 0.1 

m2/s and similar diffusivity distributions, supporting consistent heterogeneities in the 

basement diffusivities. The large scale diffusion curve fitting shows five high volume 

regions that are potential fluid sources for far field triggering. These five injection highs 

are located near the edges of seismically active regions, while seismicity within the 

seismic regions shows no clear large scale diffusion trend and is likely associated with 

multiple, smaller scale high volume regions. The large scale diffusion has best fitting 

diffusivities between 0.75 and 2.25 m2/s. Assuming some simple Arbuckle fluid 

properties this equates to a permeability around 74 mD. Because the commonly high 

permeabilities in the Arbuckle and extensive injection interval of disposal wells it seems 

likely the large scale diffusion is showing the movement of fluid pressure through the 

Arbuckle, while the cluster diffusion is showing the movement of fluid pressure within 

the basement fractures and faults.  
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Figure 34. Cumulative magnitude frequency plot of the relocated OGS catalog. The 

90th and 95th percentile goodness of fit Mc estimates are larger than the maximum 

curvature of about M = 2.1. An Mc of 2.5 is used in this study, despite being clearly 

too low to accurately represent a Gutenberg-Richter distribution across the state, to 

increase the number of viable events for the diffusion fitting.  
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Rescaled distance and time to nearest event 

Figure 35. Heat map of rescaled nearest neighbor time and distance. A weak 

grouping of further distance nearest neighbors may represent background 

seismicity. The time and distance thresholds dictate the interevent distances that are 

considered a clustering relationship. 
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Figure 37. Example of a range of diffusivity curves applied to a diffusion pattern of 

events spatial migrating away from the first event over time (a). For the same cluster, 

the best fitting diffusion curve with events color coded by the weights applied to each 

event to calculate the total misfit (b). The width of the high weight curve is based on 

the number of events with negative misfit (to the left of the curve) and becomes larger 

if the diffusivity is too low. The weighting scheme results in the tightest fitting curve 

that allows a maximum of around 10% of the events to have negative misfit.  
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Figure 38. Example of migration vector calculation. Events (circles) and the average 

location of time bins (squares) are color coded by their time after the first event (star). 

If over 2/3 of the time bins are on one side of the strike vector, it is unilateral 

migration. In this case there are 7 time bins on one side and 11 time bins on the other, 

so the cluster is categorized as bilateral migration. 
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Figure 39. Diffusivity and fit confidence of the 2D distance, 3D distance, and 

joined runs (top). The majority of high and low fitting clusters have a best fitting 

diffusivity below 0.1 m2/s. Normalized diffusion fit of all clusters above 85% fit 

(bottom). Events in the first 10% of each clusters time period was removed to 

prevent false-positive fits. The overall fits are good, with some 

mainshock/aftershock spikes present in the data appearing outside the diffusion 

curve. 
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Figure 40. Histogram of best fitting diffusion rates for all cluster and high 

confidence clusters. The histogram is plotted along a logarithmic scale and shows 

a normal distribution to both the high confidence and all clusters diffusion rates. 
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Table 1. Statistics of diffusion curve fitting for 2-D, 3-D, and joined runs 

 

 

 

 

 

 

 

 

 

 

 

Above 85% All 

 

Mean Std Range Mean Std Range 

2-D 0.02 0.02 0.09 0.03 0.05 0.33 

3-D 0.05 0.07 0.29 0.08 0.11 0.62 

Joined 0.03 0.04 0.20 0.04 0.07 0.47 
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Figure 44. Diffusion pattern for the events associated with four of the seven seed 

points (continues on next page). The axis color corresponds to the seed point color. For 

each plot there are the best fitting diffusivity starting from the start time with the least 

misfit, as well as a 1 and 2 m2/s diffusion curve for consistency across plots. Also on 

each plot is the daily disposal volume injected within 30 km of each seed point. The 

high confidence fits (a,c) appear to show large scale diffusion out to 50 km. Many of 

the high confidence fits have minimum misfit start dates very close to periods of 

increased injection volumes.  

 



100 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 45. Diffusion pattern for the events associated with three of the seven seed 

points (continues on previous page). The axis color corresponds to the seed point color. 

For each plot there are the best fitting diffusivity starting from the start time with the 

least misfit, as well as a 1 and 2 m2/s diffusion curve for consistency across plots. Also 

on each plot is the daily disposal volume injected within 30 km of each seed point. The 

high confidence fits (e,f,g) appear to show large scale diffusion out to 50 km. Many of 

the high confidence fits have minimum misfit start dates very close to periods of 

increased injection volumes.  
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Chapter 5: Seismogenic Fault Analysis 

Introduction 

An important part of reducing the induced seismicity in the state has been 

preventing disposal wells from injecting near known faults. One of the earliest steps in 

the OCC’s actions to reduce seismicity was the traffic light system that went into effect 

in 2013 (OCC, 2015). In that system, any new disposal well required extra review to be 

placed within 3 miles of a stressed fault (OCC, 2015). Information on stressed faults at 

that time came from compiled fault data of the Oklahoma Geological Survey (OGS) and 

the regional state of stress derived from 152 focal mechanism solutions (Holland, 

2013b). Based on the regional stress field, different fault orientations were assigned risk 

levels of failing, with faults striking between 40º–60º and 130º–150º considers 

optimally oriented for failure (Holland, 2013b). An updated optimally oriented fault 

assessment using 688 focal mechanism solutions from 2010–2015 data assigned 

optimally orientation to faults striking 40º–60º, 105º–120º and 135º–150º E and a mean 

and median maximum horizontal stress direction around 84º E (Darold and Holland, 

2015). More recent work has incorporated well bore stress data with focal mechanism 

stress orientations and found a similar range of maximum horizontal stress directions 

between 80º–90º E (Alt and Zoback, 2017). 

Although the fault maps and associated hazard appear valuable to regulators, the 

locations of the vast majority of clustered seismic activity are not aligned with known 

faults. This is partially due to mapped faults being reported are mostly from the 

sedimentary section, while the recent seismicity has been on shallow basement, likely 

re-activated crustal faults that extend into the Arbuckle Group (McNamara et al., 
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2015a). Furthermore, many of the focal mechanism orientations are more similar to 

faulting in southwest Oklahoma than the mapped faults of the seismically active regions 

(Qi, 2016). In this chapter I compare seismogenic faults based on the earlier clustering 

analysis and compare these faults orientations to the known sedimentary faults as well 

as published, optimally orientated fault orientations. I hypothesize that although focal 

mechanisms show consistent orientations in the state, the fault zones represented by 

seismic clusters have different orientations and assigning a hazard level to known faults 

may underestimate the hazard of sub-optimally oriented faults.  

Method 

From the earlier cluster analysis there were 89 clusters with at least 20 events 

after grouping clusters by nearest neighbor rescaled distance and separating clearly 

delineated faults within each cluster. Aftershocks highlight the primary fault plane and 

were kept in this chapter. Next, the three eigenvalues and corresponding eigenvectors 

were calculated for the covariance matrix of each clusters demeaned earthquake 

location after the methodology of Vidale and Shearer (2006). The eigenvector of the 

largest eigenvalue represents the strike direction of the cluster, while the dip and 

planarity can be calculated with the addition of the other two eigenvectors (Vidale and 

Shearer, 2006). The planarity is a measurement of how planar a cluster is, where 

regardless of length, a seismic cluster with a planarity of 0 would have near identical 

width and height (Vidale and Shearer, 2006).  

For each pressure region (Figure 46), the seismogenic fault azimuths represented 

by the clusters’ strikes were compared to the mapped faults near the clusters from the 

OGS preliminary fault map (Holland, 2015). The seismogenic faults were also 
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compared to the Frontal Wichita fault system in southwestern Oklahoma that is related 

to the state scale deformation of the Anadarko Basin and Wichita-Amarillo uplift 

(Crone and Luza, 1990). Each fault group is then linearized and the strikes of individual 

faults were calculated using FracPaQ software (Healy et al., 2017). The FracPaQ 

software uses a Hough transform method to find linear patterns in the fault image and 

also allows the rejection of short fault segments (Healy et al., 2017). An example of the 

original fault geometries and the linearized result of FracPaQ can be seen in Figure 47. 

The strikes of the mapped and seismogenic faults in each pressure region were then 

visualized with an area-weighted rose diagram, which gives a more accurate 

representation of azimuthal data (Nemec, 1988).  

Results and Discussion 

 The seismogenic faults in Oklahoma are primarily oriented east-west with 

strikes ranging between 30° and 120° E (Figure 48). The seismogenic faults are also for 

the most part steeply dipping and planar (Figure 48). The clusters showing low planarity 

are likely multiple faults that were not visually separable and as such likely represent a 

group of synthetic faulting. Although the steep dip of the clusters agrees well with 

moment tensor studies (Darold and Holland, 2015; McNamara et al., 2015a), the strike 

of the seismogenic faults do not. McNamara et al. (2015a) found very few focal 

mechanism solutions with a 75° to 120° E or the reciprocal 225° to 300° E azimuth, 

which is the strike direction of over half of the seismogenic faults. Darold and Holland 

(2015) had a higher probability for events in the 75° and 120° E range but had 

numerous solutions between 135° and 150° E, which does not match any seismogenic 

faults, likely represents secondary nodal planes. Although some of the seismic clusters 
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striking NEE and SEE (the orientations McNamara et al. (2015a) and Darold and 

Holland (2015) show no focal mechanisms) may be aligned synthetic faulting, multiple 

clusters show sharply delineated faults in those orientations (Figure 49). 

 These discrepancies between focal mechanism solutions and seismogenic fault 

orientations likely stems from the over representation of large clusters. Moment tensor 

solutions represent individual earthquakes, and because of this represent larger clusters 

more than small clusters. This is reflected in the fault risk classification ranges of 

Darold and Holland (2015) applied to the seismogenic faults. Using said classification 

there are 12 seismogenic faults with sub-optimal orientations, 42 with moderately 

optimal orientations, and 35 with optimal fault orientations based on the focal 

mechanism solutions. The failure of this risk assessment is also visible in the case of the 

2016 M5.8 Pawnee earthquake. In that case, the mainshock and majority of aftershocks 

resolved a fault striking between 107º E, where the mainshock occurred, to 98º E, where 

the end of the 6km fault depicted by aftershocks ends (Chen et al., 2017, under review). 

This means the largest instrumented earthquake in Oklahoma’s history occurred in only 

a moderately-optimal fault orientation. The problem with assigning a risk to known 

faults based on focal mechanism solutions is that the focal mechanisms preferentially 

represent larger seismic clusters. 

The orientation of the seismogenic faults represented by seismic clusters in the 

western seismic region is fairly dissimilar to the strike of the known faults in the area 

(Figure 50). The mapped faults primarily strike anywhere from 0° and 105° E with a 

dominant orientation of 60° E while a third of the seismogenic faults strike between 

105° and 135° E. Notably, seismogenic faults at this orientation share a similar 
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orientation to the west-northwest faulting in southwest Oklahoma. The eastern pressure 

region shows similar trends (Figure 51). A large percentage of the seismogenic faults 

strike between 105° and 135° E but very few of the mapped faults share that orientation. 

As noted by Qi (2016), this discrepancy is also present in the orientation of mapped 

faults compared to moment tensor solutions. It therefore seems possible that these 

clusters represent reactivated faulting tied to the Frontal Wichita fault system of 

southwestern Oklahoma that formed during Paleozoic tectonism (Crone and Luza, 

1990). This means earthquakes are not only occurring on faults not visible on known 

fault maps, but also they are often occurring on faults that are part of a separate 

structural regime than the mapped faults. 

 

Conclusions 

 The seismogenic faults in Oklahoma strike primarily between 30° and 120° E 

with dominant trends of 60° and 110° E and show significant differences to the 

orientation of focal mechanism solutions in that state. This discrepancy is likely due to 

focal mechanism’s preferential representation of large clusters, which underestimates 

the hazard on faults oriented in the direction of smaller clusters. Furthermore, most of 

the seismicity occurs on seismogenic faults not represented on fault maps. The 

differences in seismogenic fault and mapped fault orientations in the western and 

eastern pressure region suggest many of the re-activated seismogenic faults are tied to 

the Frontal Wichita fault system of southwest Oklahoma. Not only does assigning risk 

to known faults using focal mechanism solutions underestimates the chance of failure 

on sub-optimally oriented faults, it also allows an assumption of safety when avoiding 
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mapped fault even though most seismicity occurs along seismogenic faults and many 

show an orientation of a different structural regime. 
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Figure 46. The western (green) and eastern (blue) pressure regions with seismic 

clusters (black dots) and faults. Faults near the clusters in each region are color 

coded as well as the basement faults in southwestern Oklahoma. 
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Figure 47. Original image of the faults near clusters in the eastern pressure region as 

well as the linearized image after the Hough transform in FracPaQ (Healy et al., 

2017). The output fits straight lines to curved segments and removes faults below a 

certain size.  
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Figure 48. The strike azimuth (left), dip (top right), and planarity (bottom right) of 

the 89 seismogenic faults. The majority of faults are striking between 30° and 120° E, 

and are steeply dipping. The faults with low planarity are likely multiple faults that 

were not well enough resolved to separate.  
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Figure 49. Example of four approximately east west striking clusters with sharply 

delineated faults. All four figures have the same spatial scale of around 15km east 

west and north south.  
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Figure 50. Rose diagram for the seismogenic faults (top) and mapped 

faults (middle) in the western pressure region as well as the basement 

faults located in southwest Oklahoma (bottom). The seismogenic faults 

are between 30° and 120° E while the known faults are primarily within 

0° and 100° E in the western pressure region and 90° and 145° in 

southwest Oklahoma. 
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Figure 51. Rose diagram for the seismogenic faults (top) and mapped 

faults (middle) in the eastern pressure region as well as the basement 

faults located in southwest Oklahoma (bottom). The seismogenic faults 

are between 45° and 120° E while the known faults are primarily within 

0° and 120° E in the eastern pressure region and 90° and 145° in 

southwest Oklahoma. 
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Appendix A: Relationship between slopes of volume versus seismicity  

To verify the empirical volume-seismicity equations follow a Gutenberg-Richter 

distribution the proportionality between the slopes of Figure 14 were derived . 

Equations (6), (7), and (8) take the form of: 

𝐷 = 10𝑐 ∗ ∆𝑉𝑆     A1) 

where D represents either number of earthquakes, maximum moment, or total moment, 

c is some constant, ∆𝑉 is the change in volume, and 𝑆 is the power of ∆𝑉. In the 

logarithmic cross-plots of Figure 14, S dictates the slope of the best-fit lines while 

10𝑐dictates the y-intercept. First to relate max moment to moment, taking the equation 

to relate moment 𝑀0 to magnitude 𝑀 of Hanks and Kanamori (1979) in terms of N*m 

results in: 

𝑙𝑜𝑔10𝑀0 = 1.5𝑀 + 9.05    A2) 

Next, the equation (A2) is combined with: 

𝑀𝑚𝑎𝑥 =  𝑀𝑐 +  
1

𝑏
𝑙𝑜𝑔10𝑁𝑒𝑞     A3) 

which relates the maximum magnitude event 𝑀𝑚𝑎𝑥, to the b-value 𝑏, and the number of 

events 𝑁𝑒𝑞 above a reference magnitude 𝑀𝑐 (van der Elst et al., 2016). This yields: 

𝑀0𝑚𝑎𝑥 =  𝐶 + 𝑁𝑒𝑞

1.5
𝑏⁄
    A4) 

where maximum moment 𝑀0𝑚𝑎𝑥 is equal to a constant 𝐶 plus the number of events to 

the power of 1.5 divided by the b-value. Substituting in equation (A1) for the maximum 

moment and number of events into equation (A4) gives: 

𝑆𝑀0𝑚𝑎𝑥  ∝  𝑆𝑁𝑒𝑞
1.5

𝑏⁄       A5) 
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Next, to relate the slope of maximum moment and total moment, formulation of 

McGarr (2014) is applied: 

∑ 𝑀𝑜 =  
𝐵

1−𝐵
𝑀𝑜(max)     ∶ 𝐵 =

𝑏

1.5
    A6) 

where ∑ 𝑀0 is the total moment, 𝑀0𝑚𝑎𝑥 is the maximum moment. One limitation to 

this formulation is it solves total moment from maximum moment to zero moment, 

while the catalog has a magnitude cutoff of Mc = 2.5. This results in an elevated 

maximum moment estimation by this equation, where the difference would only be 

notable at smaller moment scales. Substituting in equation (A1) for total and maximum 

moment gave: 

𝑆𝑀0
∝  𝑆𝑀0𝑚𝑎𝑥      A7) 

Based on Gutenberg-Richter statistics, the slope of volume versus moment should be 

proportional to the slope of volume versus maximum moment and proportional to the 

slope of volume versus number of earthquakes to the power of 1.5 over b.  
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Appendix B: Data artifacts of Pearson’s r coefficient 

As seen in Figure 29 and 30, both the observed and synthetic datasets contain a 

slope to the upper bound of time lag for maximum correlation. The reason for this stems 

from the Pearson’s r coefficient calculation. The coefficient is calculated using the Fast-

Fourier Transform (FFT) which pads before and after the two times series such that 

each padded time series is the length of the two combined series. This means for larger 

time lags, more and more of the injected volume time series is being compared to the 

zero-pad of the event time series (Figure 52). To circumvent this, the correlation is 

calculated only considering the overlapping portions of the two time series (Figure 52). 

These two differing methods, which I will refer to as the pad and non-pad method, have 

pros and cons.  

The pad method results in better aligned peaks (Figure 53) and on a fundamental 

level assumes the volume fluctuations of a long lag time series will not result in 

additional seismicity (Figure 52). The non-pad method better aligns the increases in 

volume and seismicity (Figure 53) but for long lag time series ignores potentially 

substantial changes in volume that are unlikely, based on Langenbruch and Zoback 

(2016), to result in increases in seismicity. When the two methods are compared for a 

0.6 degree grid, there is a general shift into high correlations and slightly longer lags 

using the non-pad method, with some unstable changes to large lags that is tied to early 

injection activity fitting the tail end of the seismicity time series (Figure 54). Because 

on a fundamental level the non-pad method results in a handful of long, unlikely shifts 

of the volume time series, misaligns peaks between datasets, and results in only slightly 

more grid cells above the 0.75 correlation cutoff, the padded method is used for the 
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analysis. This comes with the understanding that, assuming seismicity will not increase 

back to 2014–2016 levels, longer term lags represent un-correlated time series.  
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Figure 52. Example of the pad and non-pad Pearson’s r calculation. The padded 

version penalized large amounts of the volume time series being past 2017, where 

only zero padded event data is present. The non-padded version only takes the 

overlapping data (yellow window) and does not penalized fluid past 2017. However, 

with this is the implication that any volume can generate seismicity in the near future. 

In this hypothetical for the non-padded method the second fluid peak would be 

expected to generate a similar level of seismicity as the first peak. 
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Figure 53. Two examples of the pad versus non-pad methods applied to 0.6 degree 

grid data. (Left) The padded version better aligns the peaks of the two time series 

while the non-pad shifts the volume data slightly further, as well as showing a higher 

correlation due to the lack of fluid data being compared to zero padded event data. 

(Right) The padded version lines up the nearby peak in the time series and shows a 

low correlation while the non-padded method does a very large shift to align the first 

peak with the event data. Like the example in Figure 52, this has implications that the 

second peak will cause seismicity in the future.  
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Figure 54. Differences between the pad and non-padded method for the 0.6 degree 

grid size. The non-padded method results in higher correlations due only using 

overlapping data and slightly greater time lags due to a better matching of the 

increases between the two times series. It also has noticeably unstable results 

compared to the padded method, where low correlation short time lag cells are 

shifted to high correlation high time lag cells similar to the example in Figure 52. 

 


