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Abstract 

 

Excess fluoride concentrations in drinking water negatively impact the health of 

communities living in fluoride affected regions of the world by causing dental and 

skeletal fluorosis and other severe socio-economic problems. Thermally activated cow 

bone (bone char) is among the various adsorbents studied for removal of excess fluoride 

from drinking water. However, the fluoride removal capacity of bone char is low and 

needs to be enhanced. The goal of this study was to improve the fluoride adsorption 

capacity of cow bone using chemical activation in place of thermal activation, and to 

understand the mechanisms responsible for the increased fluoride removal of the 

chemically activated cow bone (CAB). Cow bone exposed to varying concentrations of 

chemical activating agents could achieve a four-fold higher fluoride adsorption than 

bone char both in laboratory batch studies conducted in the University of Oklahoma’s 

WaTER Center and in field–scale column studies in the Ethiopian Rift Valley.  X-ray 

diffraction analysis conducted on CAB media showed bassanite (CaSO4.0.5H2O) and 

monetite (CaHPO4) minerals that were not present in bone char; these minerals were 

thought to be responsible for the high fluoride adsorption capacity of the media.  

Monetite and bassanite samples were synthesized and evaluated for their ability 

to account for the increased fluoride adsorption capacity of the CAB media. A high 

purity (99.6%) monetite was thus prepared in the laboratory. The monetite had a three-

fold higher adsorption capacity than CAB (the fluoride adsorption capacities at an 

equilibrium fluoride concentration of 1.5 mg/L (Q1.5) were 20.26 mg/g and 6.4 mg/g for 

monetite and CAB, respectively), thus, validating that monetite can account for the 

increased capacity of CAB. The EGME specific surface area (SSA) of monetite (Ca/P 
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ratio 1:0.43) is twice that of the CAB media (260 m2/g vs. 134 m2/g) and thus may 

account for a portion of the three-fold higher capacity of monetite versus CAB. The 

monetite’s increased capacity can also be partly attributed to the high surface charge 

(zeta potential) measured on the monetite compared to CAB. In contrast, the bassanite 

prepared in the laboratory had negligible fluoride removal capacity and thus cannot 

account for the high adsorption capacity of the CAB media. Therefore, CAB and 

monetite media have been shown to be superior to bone char for mitigating the negative 

health impacts of excess fluoride concentrations in drinking water. Finally, this paper 

addresses how businesses models inform viability of different fluoride treatment 

technologies for developing countries as well as the pursuit of financial and operational 

sustainability. In this study, the investment cost of producing fluoride safe water, the 

annual revenues generated, and the net benefits obtained from different technologies 

were analyzed.  The business model analysis indicated that access to safe water can lead 

to an average annual cost saving of $67 per person through averted medical costs and 

productivity losses.  The study results validate the use of business models to help 

evaluate different technologies as a means of pursuing sustainable applications for safe 

drinking water. 
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Chapter 1: Introduction 

 

1.1 Statement of problems 

Groundwater constitutes 30.1% of total global freshwater (Gleick 1996) and is 

thus the single largest available supply of drinking water, especially in rural settings 

(WHO 2004). Consuming drinking water with excess fluoride concentrations remains a 

major health hazard and environmental problem in the 21st century. Fluoride in 

groundwater originates from geogenic sources (dissolution of fluoride-containing rock 

minerals and soils with which the groundwater comes into contact) and/or 

anthropogenic sources (application of fluoride containing phosphate fertilizers or 

sewage sludge or pesticides) (Apambire et al. 1997; Cronin et al. 2000; Jha et al. 2011; 

Roy & Dass 2013). High fluoride concentrations can occur in groundwater with long 

residence times in the host aquifers (Jagtap et al. 2012). Fluoride concentrations of up to 

68 mg/L have been detected in groundwater wells located north of Lake Abijata, in the 

Rift Valley of Ethiopia (Rango et al. 2012). Globally, more than 200 million people 

consume water above the World Health Organization’s guideline threshold of 1.5 mg/L 

(Amini et al. 2008) (see Figure 1.1 for global distribution of fluoride in groundwater). 

Therefore, solutions are needed to mitigate the sufferings of people affected by fluoride-

induced health concern.   

Excess fluoride concentration in drinking water is a significant contaminant of 

concern due to its short- and long-term effects on human health. Fluoride concentrations 

above the World Health Organization (WHO) maximum acceptable level of 1.5 mg/L 

threshold are harmful to human health (WHO 2011) causing dental, skeletal and/or 
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crippling fluorosis depending on other factors such as nutritional status (Dissanayaka 

1991; Fawell and Balley 2006). Beyond dental and skeletal concerns, fluorosis has 

significant socio-economic impacts stemming from the fact that persons who develop 

skeletal fluorosis suffer considerable hardship and have reduced productivity (Apambire 

et al. 1997; Frank et al 2011). Moreover, the prevalence of fluorosis and the related 

widespread health problems may stigmatize entire villages (McKnight et al. 1997). 

Although not life-threatening illnesses, dental and skeletal fluorosis often produces 

many adverse effects, including: added health costs, loss of labor, and significant 

psychological stress for affected populations (Apambire et al. 1997). Therefore, it is 

critical to treat excessive fluoride-rich groundwater or provide alternative water sources 

to at-risk communities.  

 

   

Figure 1.1: Modeled global probability of fluoride concentration in groundwater 
(adapted from Journal of Environmental Science and Technology, 
http://pubs.acs.org/doi/full/10.1021/es071958y). 
  



 3

1.2 Literature review 

1.2.1 Fluoride removal technologies  

Various treatment methods such as adsorption, ion-exchange, chemical 

precipitation, membrane processes (reverse osmosis), electrolytic defluoridation and  

Donnan dialysis have been investigated for removal of excess fluoride from drinking 

water (Mohapatra et al. 2004; Durmaz et al. 2005; Ndiaye et al. 2005; Fawell & Balley 

2006; Meenakshi and Viswanathan 2007; Ayoob et al. 2008; Sehn 2008; Brunson and 

Sabatini 2009 and 2015). Of all these methods, the adsorption process has been 

commonly adopted for fluoride removal based on ease of operation, use of locally 

available materials, cost effectiveness of operation and maintenance, and potential for 

regeneration and reuse, and high water quality (Choy et al. 2004; Ho et al. 2004; Jagtap 

et al. 2012).  

 

1.2.2 Fluoride adsorbents 

Recently, adsorbents such as bone char, hydroxyapatite, zeolites and modified 

zeolites, ion exchange resins, and layered double oxides have been investigated for 

fluoride removal (Mohapatra et al. 2009; Tor et al. 2009; Ramdani et al. 2010; Du et al. 

2014). Thermally activated cow bone, commonly known as bone char, is among the 

adsorbents used to remove excess fluoride due to its large surface area and the high 

fluoride affinity of hydroxyapatite, the main constituent of cow bone (Fawell and Balley 

2006; Medellin-Castillo et al. 2007; Ayoob et al. 2008; Osterwalder et al. 2014). It is 

also widely available at low-cost in developing countries, e.g., in the Rift Valley area in 

Ethiopia (Mutheki et al. 2011), and Nakuru area in Kenya (Jacobsen and Muller 2007). 

Thermal activation of bone is a process of heating cow bones in a furnace to high 
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temperature under restricted access of atmospheric oxygen, increases fluoride 

adsorption capacity by decreasing the organic matter content of the bone (Bhargava and 

Killedar 1991).   

In terms of capacity, bone char’s fluoride adsorption capacity at an equilibrium 

dissolved fluoride concentration of 1.5 mg/L (Q1.5) has been shown to be on the order of 

1 to 2 mg/g on average (Abe et al. 2004; Medellin-Castillo et al 2007; Brunson and 

Sabatini 2009). Although this bone char’s Q1.5 is better than the values reported for 

activated alumina (Q1.5 = 0.85 mg/g, Maliyekkal et al. 2008) and wood char (Q1.5 = 0.5 

mg/g, Brunson and Sabatini 2014), respectively, there is still room for further 

improvement. Moreover, thermal activation is energy intensive, requiring carbonization 

temperatures above 400 oC (Lussier et al. 1994).  

The fluoride removal mechanisms of bone char are direct adsorption of fluoride 

and ion exchange, where the fluoride exchanges with hydroxyl ion (Equation 1.1), 

carbonate ion, and phosphate ions (Bregnhøj and Dahi 1995; Abe et al. 2004; Kawasaki 

et al. 2009).   

  

Ca10(PO4)6(OH)2 + 2F- → Ca10(PO4)6(F)2(s) + 2OH- ............................Equation 1.1 

 

Fluoride adsorbents (e.g., bone char) eventually become exhausted (saturated) 

(Mjengera 1988). The exhausted media can either be replaced by virgin material or 

regenerated for reuse. Some of the benefits of regeneration and reuse of spent 

adsorbents include reduced operational cost, since media can be reused multiple times, 

and potentially minimizing negative environmental impacts associated with their 
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manufacture and disposal (Yami et al. 2015). Fluoride saturated bone char has been 

regenerated through surface- coating, precipitation, and sodium hydroxide solutions 

(Christoffersen et al. 1991; Medellin-Castillo et al. 2007).  NaOH regeneration of bone 

char has been performed using 1% - 8% NaOH solution converting fluoroapatite to 

hydroxyapatite (Christoffersen et al. 1991; Jacobsen and Muller 2007; Ayoob et al. 

2008). The fluoride desorption reactions are the reverse of Equation 1.1.  

Additionally, surface amendment, a process of dispersing aluminum salts into 

the matrix of the biomaterials (Tchomgui-Kamga et al. 2010), has been applied on 

thermally activated wood char (Brunson and Sabatini 2014). 	Dispersing	these	metals	

in	 a	 protective	matrix	 can	 provide	 high	 fluoride	 adsorption	 capacity.	 Therefore,	

surface	 amendment	 using	 aluminum	 salts	 was	 evaluated	 for	 its	 impact	 on	 the	

fluoride	adsorption	capacity	of	bone	char.		

	

1.3 Effect of chemical activation  

1.3.1 Chemical activation of carbonaceous materials  

Based on a literature review, chemical activation of carbonaceous materials 

produces activated carbon with higher specific surface areas (SSAs) than thermal 

activation. For example, very large Brunauer-Emmett-Teller (BET) SSAs have been 

reported for chemically activated carbon materials; 2595 m2/g using potassium 

hydroxide for corn cob (Tseng and Tseng 2005), and 2400 m2/g for coconut shell (Hu et 

al. 2001). On the other hand, an SSA value of 1400 m2/g for eucalyptus (Ngernyen et al. 

2006) has been reported via thermal activation.  This shows that higher SSAs can be 

achieved via chemical activation as compared to thermal activation. These high SSAs 
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obtained during chemical activation of a range of different carbonaceous materials 

motivated us to evaluate chemical activation of bone to see if it would increase fluoride 

adsorption capacity of the CAB media.  Another advantage to chemical over thermal 

activation is the small adsorbent mass losses upon activation (Srinivasakannan and 

Balasubramanian 2007; Zhang et al. 2010). The modification of adsorbent surface 

chemistry using chemical activation of carbonaceous materials appears to be a 

promising approach for developing novel cow bone-based adsorbents for defluoridation 

(Alagumuthu and Rajan 2010; Tchomgui-kamaga et al. 2010; Paudyal et al. 2011).  

 

1.3.2 Chemical activation of cow bone 

To our knowledge, chemical activation of cow bone has not been evaluated as 

an alternative to thermal activation for fluoride removal. In this dissertation, the process 

of chemical activation of carbonaceous materials was applied to cow bones to prepare 

chemically activated cow bones (CABs), evaluate its fluoride removal capacity, and 

investigate the mechanisms responsible for its increased fluoride removal capacity. 

Further, fluoride removal efficiency of CAB media produced in the laboratory was 

evaluated in the field and also it was attempted to produce the media in the field using 

locally available materials and field conditions. 

 

1.4 Treated water quality 

When highly fluoride impacted drinking water is treated using adsorbents, it is 

imperative to ensure that the universal drinking water standards are met in the produced 

water, considering not only fluoride but also other constituents. For example, Kawasaki 

et al. (2009) suggested that when using cow bone-based adsorbents for fluoride 
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removal, the produced water should be analyzed for phosphate ion concentrations. 

Furthermore, other drinking water parameters such as taste, odor and color need to be 

assessed when using cow bone-based adsorbents since they may introduce objectionable 

taste and smell to treated water (Ayoob et al. 2008; Dahia 2015). Studies by Crapper et 

al. (1973), Davidson (1982) and Tanne (1983) have shown that animals exposed to 

residual aluminum concentrations have evidenced health effects (e.g., aluminum 

induces neurofibrillary degeneration in neurons of higher mammals). Bhattacharjee et 

al. (2014) investigated aluminum and its potential contribution to Alzheimer disease. 

Feasibility and efficiency of defluoridation systems depends on the level of dissolved 

residual aluminum concentration in treated water (Qureshi and Malmberg 1985; 

Mameri et al. 1998). Therefore, water quality analysis should be undertaken for a new 

adsorbent to prevent unintentional negative health impacts from the adsorbent.  

 

1.5 Sustainability of fluoride treatment systems 

1.5.1 Business model and sustainability of fluoride treatment systems 

Fluoride treatment systems installed in developing countries have not been 

sustainable due to the lack of capacity to manage defluoridation systems, lack of 

chemical supply chains, high cost of chemicals, limited financial management skill, and 

lack of skilled labor to install and operate the treatment systems (Bregnhøj 1997; 

Brunson et al. 2013). This dissertation therefore, additionally aims at using business 

model approach to show how one can assess and compare viability of different fluoride 

treatment methods in the effort to avail safe and sustainable water supply services to the 

communities at- risk of fluoride induced health problems.   
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1.5.2 Environmental sustainability of fluoride treatment systems 

Production of fluoride adsorbents emits contaminants that can affect human 

health and the environment although the extent of these impacts was unknown. In this 

dissertation, the environmental impacts of four low-cost and easy to use adsorbents such 

as activated alumina, aluminum oxide amended wood char, bone char and treated alum 

waste were evaluated. The environmental impacts of these adsorbents were evaluated 

using life cycle assessment (LCA). The life cycle stages considered were raw material 

acquisition, adsorbent manufacturing, and waste management. Eco-indicator and the 

Tool for Reduction and Assessment of Chemicals and other Environmental Impacts 

(TRACI) were used to interpret the environmental impacts.    

The results indicated that the fluoride adsorption capacity of the adsorbent is a 

key determining factor for the impacts. Further, the environmental impacts of the 

adsorbents can be reduced by increasing their fluoride adsorption capacity and/or 

carefully selecting key process components. Regeneration and reuse of spent adsorbents 

has the potential to minimize impacts to ecosystem quality. A detail on the results of life 

cycle assessment of fluoride adsorbents is available in Appendix E1. 

 

1.6 Research objectives 

The specific research objectives of this dissertation were; (1) prepare chemically 

activated cow bones (CABs), and evaluate their fluoride removal capacity (2) Install 

small and large –scale columns in the field and evaluate the fluoride removal capacity 

                                                 
1 This chapter or portions thereof has been published previously in The International Journal of Life 
Cycle Assessment in collaboration with Dr. Junyi Du, Dr. Laura R. Brunson, Dr. Jim F. Chamberlain, Dr. 
David A. Sabatini and Dr. Elizabeth C. Butler under the title “Life Cycle Assessment of Adsorbents for 
Fluoride Removal From Drinking Water”.  Int. J. Life Cycle Assess. (2015), 20 (1277) 
DOI:10.1007/s11367-015-0920-9. The current version has been reformatted for this dissertation. 



 9

of CAB; (3) prepare monetite and bassanite and evaluate their effectiveness at fluoride 

removal; (4) Use business model tools to compare and evaluate sustainability/ viability 

of fluoride treatment systems as a business.  

 

1.7 Outline of the dissertation  

Chapter 2 focuses on production and evaluation of a more efficient (fluoride 

uptake) and effective (mass recovery) cow bone-based fluoride adsorbent using the 

process of chemical activation; a process of exposing cow bones to varying 

concentrations of chemical activating agents with the purpose of increasing the fluoride 

adsorption capacity of cow bones.  In this chapter, the fluoride removal capacity of 

CAB was evaluated and its adsorption capacity was compared to bone char. 

Additionally, the effect of surface amendment (dispersion of aluminum salts onto the 

matrix of bone char) on its fluoride removal capacity was studied, the mechanisms 

responsible for the increased capacity of CAB media was analyzed, the cost of 

production of chemically activated cow bone and bone char along with the mass of 

product versus mass of starting material for each were analyzed.  

To date, our laboratory studies have shown that chemically activated cow bone 

(CAB) using sulfuric acid demonstrated four-fold more effective than bone char for 

removal of excess fluoride concentrations from drinking water (Yami et al., 2016). 

CAB’s high adsorption capacity was attributed to the presence of monetite (CaHPO4) 

and bassanite (CaSO4.0.5H2O) produced during chemical activation of cow bone that 

was not present in thermally activated cow bone (bone char).   
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Based on these encouraging preliminary results, this dissertation next focused on 

conducting additional studies necessary to further evaluate the viability of CAB for field 

deployment.  Chapter 3 therefore, attempts to produce CAB media under field 

conditions, install small and large defluoridation columns in the field to evaluate CAB 

performance/ suitability (feasibility) for fluoride removal using fluoride impacted 

natural groundwater. Further, fluoride adsorption capacity of CAB and bone char using 

field column will be studied, the suitability of water treated using the CAB system in 

the field for public consumption will be assessed and the regeneration potential of CAB/ 

bone char will be evaluated.  With these results the viability of CAB for fluoride 

removal from drinking water can be more fully assessed.  

Chapter 4 focuses on the synthesis of monetite and bassanite shown during 

CAB production and evaluates their ability to account for the increased fluoride 

removal of the CAB media. A reverse micelles method by Wei et al. (2007) which 

produced sphere particles of 50 nm diameters was used to prepare monetite (CaHPO4). 

Further, the effect of Ca/P ratio on the mineralogical composition of resulting monetite 

and its fluoride removal capacity was evaluated.  Bassanite (CaSO4.0.5H2O) was 

prepared by dissolving CaCl2 in methanol solution and adding an equimolar sulfuric 

acid using the method proposed by Tritschler et al. (2015). The mechanisms responsible 

for the increased fluoride removal of monetite and bassanite, and effect of co-existing 

competing anions in natural groundwater on their fluoride adsorption capacity were also 

evaluated.  

Finally, and more broadly, it is becoming increasingly recognized that well 

designed business models have the potential to address prevailing global problems 
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including sustainable development (Wilson & Post 2013).  For example, Wüstenhagen 

& Boehnke (2006) demonstrated that barriers to sustainable energy can be addressed 

with innovative business models. Chapter 5 thus focuses on evaluating the applicability 

of the business model approach as a tool to set up a sustainable market-based scale-up 

of defluoridation (fluoride removal) systems. To address this growing problem of safe 

water supply, this dissertation attempts to show how the use of business models can 

help lead to more sustainable fluoride solutions.  Based on literature study, fluoride 

treatment systems installed in developing countries are not sustainable. Additionally, 

there is in no engagement of private sectors in the defluoridation processes. As a result, 

the fluoride removal technologies developed thus far have not proven sustainable. An 

example of this include that although more than 20 Nalgonda systems have been 

implemented in the Rift Valley of Ethiopia over the past 10 years, more than half are no 

longer functional with some of them have never been used (Osterwalder et al. 2014; 

Datturia et al. 2015). Therefore, the business model approach is evaluated in this study 

to address the fluoride affected water in the Rift Valley of Ethiopia as a pathway for 

considering the viability of such an approach throughout the developing world.  

Chapter 6 summarizes key findings, discussions, and conclusions and 

recommendations drawn from this dissertation to help guide design and installation of 

sustainable fluoride treatment systems in developing countries and beyond.   
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Chapter 2: Chemically Activated Cow Bone for Increased Fluoride 

Removal from Drinking Water2 

 

Abstract 

 

Thermally activated cow bone is widely utilized for treating fluoride impacted 

drinking water to meet the World Health Organization guideline value of 1.5 mg/L. 

However, the fluoride removal capacity of bone char is low, leaving room for further 

improvement. This study, therefore, strives to improve the fluoride adsorption capacity 

of cow bone by using chemical activation in place of thermal activation. Chemically 

activated cow bones (CAB) had, on average, a four-fold higher fluoride adsorption 

capacity than bone char. Characterization of the most effective CAB were made to 

explore potential reasons for the increased fluoride adsorption capacity. The X-ray 

diffraction pattern of the CAB showed formation of bassanite and monetite which may 

be responsible for the higher fluoride adsorption capacity. Chemical activation is also a 

lower-cost production process than the thermal activation of cow bone. Further, a higher 

mass of media was recovered per unit mass of starting material during chemical 

activation. Therefore, this research shows that increased fluoride removal capacity can 

be achieved with chemical activation of cow bone while reducing activation costs and 

greatly increasing product yield per unit mass of starting material, all of which support 

further evaluation and field testing of this material.  
                                                 
2 This chapter or portions thereof has been published previously in Journal of Water, Sanitation and 
Hygiene for Development in collaboration with Dr. Elizabeth C. Butler and Dr. David A. Sabatini under 
the title “Chemically Activated Cow Bone for Increased Fluoride Removal from Drinking Water”.  J. 
Water Sanit. Hyg. Dev. DOI:10.2166/washdev.2016.172. The current version has been reformatted for 
this dissertation.  
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Key words  bassanite, chemical activation, cow bone, fluoride removal, low-cost 

adsorbent, monetite 

 

2.1 Introduction  

 Consuming drinking water with excess fluoride concentrations remains a major 

health hazard and environmental problem in the 21st century. Globally, more than 200 

million people consume water above the World Health Organization’s guideline 

threshold of 1.5 mg/L (Amini et al. 2008). Fluoride concentrations above the 1.5 mg/L 

threshold are harmful to human health (WHO 1984) and can cause dental and skeletal 

fluorosis (Dissanayaka 1991; Fawell and Balley 2006). Although not life-threatening 

illnesses, dental and skeletal fluorosis often produces many adverse effects, including: 

added health costs, loss of labor, and significant psychological stress for affected 

populations (Apambire et al. 1997). Therefore, it is critical to treat excessive fluoride-

rich groundwater or provide alternative water sources to at-risk communities. Various 

treatment methods such as adsorption, membrane processes, and electrolytic 

defluoridation have been investigated for removal of excess fluoride from drinking 

water (Mohapatra et al. 2004; Fawell & Balley 2006; Ayoob et al. 2008). Of all these 

treatment methods, adsorption is often the preferred option for fluoride removal due to 

its high efficiency and its low-cost of operation and maintenance (Jagtap et al. 2012).   

Thermal activation of bone, a process of heating cow bones in a furnace to high 

temperature under restricted access of atmospheric oxygen, increases fluoride 

adsorption capacity by decreasing the organic matter content of the bone (Bhargava and 

Killedar 1991).  Thermally activated cow bone, commonly known as bone char, is 



 20

among the adsorbents used to remove excess fluoride (Fawell and Balley 2006; 

Medellin-Castillo et al. 2007; Ayoob et al. 2008) owing to its large surface area and the 

high fluoride affinity of hydroxyapatite, the main constituent of cow bone. It is also 

widely available at low-cost in developing countries, e.g., in the Rift Valley area in 

Ethiopia (Mutheki et al. 2011), and Nakuru area in Kenya (Jacobsen and Muller 2007). 

Initially, bone char was imported from Kenya to assess technical performance and user 

acceptance (Johnson et al. 2011) and subsequently a production facility was established 

in Ethiopia by Oromo Self Help Organization (OSHO) in 2011 (Osterwalder et al. 

2014).  

To our knowledge, chemical activation of cow bone has not been evaluated as 

an alternative to thermal activation for fluoride removal. Results in the literature 

indicate that thermally activated bone can achieve an average fluoride adsorption 

capacity (Q1.5) of 1.5 mg/g at an equilibrium dissolved fluoride concentration of 1.5 

mg/L (Abe et al. 2004; Brunson and Sabatini 2009). Although, the bone char’s Q1.5 is 

better than that of activated alumina (Q1.5 = 0.5 mg/g) and wood char (Q1.5 = 0.2 mg/g) 

(Brunson and Sabatini 2014), there is still room for further improvement. Moreover, 

thermal activation is energy intensive, requiring carbonization temperatures above 400 

oC (Lussier et al. 1994).  

Based on a literature review, chemical activation of carbonaceous materials 

produces activated carbon with higher specific surface areas (SSAs) than thermal 

activation. For example, very large Brunauer-Emmett-Teller (BET) SSAs have been 

reported for chemically activated carbon materials; 2595 m2/g using potassium 

hydroxide for corn cob (Tseng and Tseng 2005), and 2400 m2/g for coconut shell (Hu et 
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al. 2001). On the other hand, an SSA value of 1400 m2/g for eucalyptus (Ngernyen et al. 

2006) has been reported via thermal activation.  This shows that higher SSAs can be 

achieved via chemical activation as compared to thermal activation. These high SSAs 

obtained during chemical activation of a range of different carbonaceous materials 

motivated us to evaluate chemical activation of bone to see if it would increase fluoride 

adsorption capacity of the CAB media.  Another advantage to chemical over thermal 

activation is the small adsorbent mass losses upon activation (Srinivasakannan and 

Balasubramanian 2007; Zhang et al. 2010).  

Additionally, surface amendment, a process of dispersing aluminum salts into 

the matrix of the biomaterials (Tchomgui-Kamga et al. 2010), has been applied on 

thermally activated wood char (Brunson and Sabatini 2014). 	Dispersing	these	metals	

in	 a	 protective	matrix	 can	 provide	 high	 fluoride	 adsorption	 capacity.	 Therefore,	

surface	 amendment	 using	 aluminum	 salts	 was	 evaluated	 for	 its	 impact	 on	 the	

fluoride	adsorption	capacity	of	bone	char.	 

The overall goal of this work was to produce a more efficient (fluoride uptake) 

and effective (mass recovery) cow bone-based fluoride adsorbent.  The research 

questions evaluated in this work were: (1) does the chemical activation process, which 

has proven to be effective in increasing the SSA of activated carbon and thereby 

increase its adsorption capacity, result in similar increase in fluoride uptake in cow-

bone based adsorbents?  and (2) does the chemical activation of cow bone lead to 

improved mass recovery of the starting materials as compared to thermal activation?  

To our knowledge, this research is the first to evaluate chemical activation of bone as an 

alternative to thermal activation for fluoride removal. The specific objectives of this 
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study were (1) to investigate the fluoride adsorption capacity of CAB, (2) to compare 

the fluoride adsorption capacity of chemically activated and thermally activated cow 

bone, (3) to investigate the effect of surface amendment (dispersion of aluminum salts 

onto the matrix of bone char) on its fluoride removal capacity, (4) To investigate 

mechanisms for improved fluoride adsorption by assessing the chemical and structural 

properties of the CABs which proved most effective for fluoride removal, (5) to 

compare cost of production of chemically activated cow bone and bone char along with 

the mass of product versus mass of starting material for each.  

 

2.2 Materials and methods 

2.2.1 Preparation of chemically activated cow bone  

Cow bone was obtained from a ranch in LaRue, Texas, cut into smaller pieces 

and soaked in 12% NaOCl solution for 24 hours to remove impurities (Brunson and 

Sabatini 2009). The soaked cow bone was washed with deionized water to further 

remove organic matter, dried in an oven for 24 hours, and crushed manually using a 

metal mortar and pestle. The crushed bone was sieved using number 40/80 mesh sizes 

(180–425 μm).  The fine powders were removed by rinsing with deionized water, oven 

dried again for 24 hours and stored for subsequent chemical activation.  

The chemicals used for activation of cow bone were H2SO4 (Fisher scientific, 

660 BAUME, Technical grade), H3PO4 (Fisher scientific, 85%, Certified ACS), KOH 

(EM science, pellets, solid), and ZnCl2 (Fisher scientific, Technical grade, powder). The 

chemicals were chosen based on previous applications of chemical activation on 

carbonaceous materials which yielded high SSAs (see introduction section). AlCl3 and 
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Al2(SO4)3 were chosen for surface amendment of bone char based on their use in 

amending other biomaterials such as spruce wood (Tchomgui-Kamga et al. 2010).   

 

2.2.2 Chemical activation of cow bone  

The crushed, rinsed and oven-dried cow bones were chemically activated using 

H3PO4, H2SO4, ZnCl2 and KOH solutions, each at 20, 30, and 50 wt %. The chemically 

activated cow bones are represented as HSCB, HPCB, ZnCB and KCB for H2SO4, 

H3PO4, ZnCl2, and KOH activated cow bones, respectively. The experimental flow chart 

and procedures for chemical activation are shown in (Appendix A, Figure A.1.1). The 

preliminary screening tests conducted to identify parameters to be used in chemical 

activation indicated that a heating temperature of 50 oC, a heating duration of 3 hours, 

and a 1:1 media to activating agent ratio produced both a good quality and quantity of 

chemically activated cow bone. Activation parameters exceeding these values, i.e., 

heating temperatures higher than 50 oC, heating durations longer than 3 hours, and 

media to activating agent ratio lower than 1:1 dissolved the cow bones. The impact of 

activating agent concentration on mass recovery during activation was also evaluated. 

High mass recovery i.e., mass of media recovered per unit mass of starting material 

during chemical activation of bone was achieved for 20-30% HSCB and HPCB, and for 

30-50% KCB activations.  

After chemical activation, one sample from each kind of chemically activated 

cow bone was selected for further thermal treatment to study its effect on fluoride 

adsorption capacity. The effect of combined chemical and thermal activation of cow 

bone was investigated by heating the HSCB, KCB and ZnCB activated cow bones at 

540 oC for 3 hours (referred to, for example, as HSCB-540). The CAB samples with the 
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best adsorption capacity (HSCB and KCB), and the lowest adsorption capacity (ZnCB) 

were selected for characterization (i.e., to measure values of SSA and points of zero 

charge (PZC)); to identify morphology using scanning electron microscopy (SEM); to 

determine average elemental composition using energy dispersive X-ray spectroscopy 

(EDS); and to analyze structure using X-ray diffraction (XRD).    

 

2.2.3 Surface amendment of bone char with aluminum salts 

Bone char was amended using 1,000 and 2,000 ppm AlCl3 and 500, 1,000 and 

2,000 ppm Al2(SO4)3 solutions in order to promote formation of an adsorbent aluminum 

(hydr)oxide phase. The amendment concentrations were created by adding the 

necessary quantities of AlCl3 and Al2(SO4)3 to a screw cap glass bottles and filling them 

with 200 mL Nano pure water (18.1 MΩ-cm) and adjusting the pH to 3.5 using 50 mM 

2-(N-morpholino) ethanesulfonic acid (MES) and MES salt. Next, 12 g of bone char 

was added to the 200 mL glass bottle and the mixture was put on a shaker at 200 

revolutions per minute for 5 days.  The solution was then filtered, washed with 

deionized water, and oven dried overnight at 85 oC. The aluminum salts used for the 

amendment of bone char are soluble due to the low pH (i.e., pH 3.5) used in the 

amendment process.  

 

2.3 Batch experiments  

Chemically activated cow bone (0.5 g) was added to 50 mL polyethylene bottles 

containing initial fluoride concentrations ranging from 0 to 150 mg/L. The reactors 

were agitated on a shaker (Ping-Pong TM # 51504-00) at 200 revolutions per minute 

(rpm) for 24 hours (Brunson and Sabatini 2009). The pH of the adsorption experiment 
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was fixed at 7.0 and confirmed by measurement, which is the pH of common natural 

water, by addition of 50 mM 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid 

(HEPES) acid and salt. HEPES was utilized because it does not interfere with fluoride 

adsorption (Du et al. 2016). Furthermore, HEPES does not tend to complex with cations 

like Ca2+ (Good et al. 1966). After equilibration, each sample was filtered and the 

fluoride concentration was determined by ion selective electrode. Prior to analysis, both 

standards and samples were diluted with total ionic strength adjustment buffer (TISAB) 

on a 1:1 basis to reduce hydroxide interferences and the formation of HF, and maintain 

a constant pH and ionic strength during analysis (Larsen and Widdowson 1971). 

Calibration of the fluoride electrode and measurements of the fluoride concentrations 

were performed in triplicate. Experimental errors associated with the measurement of 

Qe values were calculated using error propagation methods.  

 

2.4 Adsorbent characterization  

2.4.1 Measurement of specific surface area and point of zero charge 

Specific surface area of the adsorbents was determined using the BET method. 

Additionally, the ethylene glycol monoethyl ether (EGME) method (Heilman et al. 

1965) was employed for determining the SSAs of the chemically activated cow bones. 

The difference in the weight of samples before and after EGME coverage was used to 

calculate surface area. EGME analysis gives a more complete assessment of adsorbent 

surface area, because the BET method may measure only the external surface area of 

certain minerals (Yukselen and Kaya 2006), and because the aqueous medium in the 

EGME method may preserve pores that could collapse under the vacuum conditions 

applied during the BET method.  The PZC of the chemically activated cow bone was 
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determined using methods reported by Milonjić and Ilić (1983), Noh and Shwarz 

(1989), and Brunson and Sabatini (2009) (see Appendix A for measurement of PZC).   

 

2.4.2 SEM/EDS and XRD analysis 

SEM analysis was performed using a Zeiss NEON instrument operating at an 

accelerating voltage of 10 kV with an Iridium sputter coating. EDS analysis was 

performed to identify the average elemental composition of the chemically activated 

cow bone. Powdered X-ray diffraction was employed for structural characterization of 

the chemically activated cow bone using a Rigaku Ultima IV diffractometer and fitting 

with reference mineral patterns using materials data (MDI) JADE 2010 analytical 

software.   

 

2.5 Results and discussion 

2.5.1 Fluoride adsorption capacity of chemically activated cow bone 

The HSCB and HPCB activated cow bone had much higher fluoride adsorption 

capacities than the thermally activated cow bone (Figure 2.1). The HSCB and HPCB 

equilibrium fluoride adsorption capacities (Q1.5 fitted with the Freundlich isotherm) 

were four times higher than that of bone char (Table 2.1). Additionally, 30% and 50% 

KCB had higher adsorption capacities than bone chars (Figure 2.2) although their Q1.5 

values were not as high as those of HSCB and HPCB (Table 2.1).  The ZnCB 

activation, on the other hand, led to a lower fluoride adsorption capacity than bone char 

(Figure 2.1, Table 2.1). The Q1.5 obtained for bone char in this study is similar to values 

reported in the literature at pH 7 (Abe et al. 2004; Brunson and Sabatini 2009) (Table 

2.1). Thus, these results clearly demonstrate that chemical activation of cow bone can 
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achieve fluoride adsorption capacities of up to four times greater than those obtained via 

thermal activation.  

 

 

 

Figure 2.1: Fluoride adsorption fitting with Freundlich isotherms for chemically 
activated cow bone using sulfuric acid (30% HSCB), phosphoric acid (30% HPCB) and 
zinc chloride (50% ZnCB), and 30% HSCB and 50% ZnCB activated cow bone 
followed by thermal activation at 540 oC and 500 oC, respectively, and bone char. The 
inset panel indicates the fluoride adsorption at lower equilibrium fluoride 
concentrations. The error bars represent the standard deviations associated with Qe and 
Ce calculated from triplicate measurements.   

 

The effect of combined chemical and thermal activation of cow bone was 

investigated by heating the HSCB and KCB at 540 oC, ZnCB at 500 oC for 3 hours 

(referred to, for example, as HSCB-540). While the combined thermal-chemical 

activation process did significantly increase equilibrium fluoride adsorption capacity 
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versus thermal activation alone (Figures 2.1 and 2.2), the adsorption parameters were 

not statistically different (95% CI) than chemically activated bone alone (see Q1.5 values 

in Table 2.1). This makes a one-step chemical activation of cow bone generally 

preferable to a combined thermal and chemical activation, since thermal activation 

requires higher energy consumption than chemical activation (Lussier et al. 1994).  

   Surface amendment of bone char using AlCl3 and Al2(SO4)3 solutions 

produced lower Q1.5 values than the fluoride removal capacity achieved through 

chemical activation of cow bone (Appendix A, Figure A.2.1) (Table 2.1). This is 

attributed to the already desirable adsorption properties of the bone char, and the 

potential for aluminum (hydr)oxide precipitates to block pores and limit access to 

internal surface area.   

       

 
 

 
 

 
 

 

 

 

 

 

 

 



 29

Table 2.1: Freundlich parameters of chemically activated cow bone and thermally 
activated cow bones. 

The isotherm parameters (kf and n) were obtained from Freundlich isotherm fitting using SigmaPlot 12.0 and the 
uncertainties in Q and 1/n are calculated using error propagation method. 
 

 

 

 

 

Adsorbents 

               Freundlich constants 

         kf ,  

((mg/g)/(

mg/L))1/n  

             

       1/n 

  

Q1.5 
1 (mg/g) 

 

pH 

 

References 

Chemically activated cow bone 

30% HSCB2 4.6 ± 1.2 0.7 ± 0.0 6.1 ± 1.6 7 This study 

30% HPCB3 4.3 ± 1.0 0.5 ± 0.0 5.4 ± 1.3 7 This study 

50% ZnCB 0.4 ±  0.4 0.5 ±  0.4 0.5 ±  0.2 7 This study 

30% KCB4 2.8 ± 0.8 0.4 ± 0.1 3.3 ± 1.4 7 This study 

50% KCB 3.2 ± 0.9 0.4 ± 0.1 3.8 ± 0.3 6.9 This study 

Thermally activated cow bone 

Bone char  1.3 ±  0.4 0.3 ± 0.1 1.4 ±  0.5 7 This study 

Bone char  1.1 0.4      1.2 7 (Abe et al. 2004) 

Bone char  0.8 ± 0.0 0.4 ± 0.0 0.9 ± 0.0 7.3 (Brunson & Sabatini 

2009) 

Bone char  1.8 ± 0.2 0.38 2.10 NR7 (Brunson & Sabatini 

2014) 

Chemical activation followed by thermal activation 

30% HSCB-5405 4.6 ± 0.8   0.7 ± 0.0 6.3 ± 1.1 7 This study 

30% KBC-540 2.8 ± 0.6   0.4 ± 0.1 3.2 ± 0.8 7 This study 

50% KBC-540 3.1 ± 0.7   0.4 ± 0.1 3.6 ± 0.9 7 This study 

50% ZnCB-5006 1.9 ± 0.5   0.3 ± 0.1 2.2 ± 0.7 6.5 This study 

Amended bone char 

1000 ppm AlCl3- BC7 0.9 ± 0.3 0.6 ± 0.3 1.2 ± 0.7 6.9 This study 

2000 ppm AlCl3 - BC 0.9 ± 0.4 0.5 ± 0.4 1.2 ± 0.9 6.9 This study 

500 ppm Al2(SO4)3 -BC 1.3 ± 0.4 0.5 ± 0.3 1.6 ± 1.1 6.5 This study 

1000 ppm  Al2(SO4)3 -BC 0.9 ± 0.3 0.6 ± 0.3 1.2 ± 0.7 6.5 This study 

2000 ppm  Al2(SO4)3 -BC 0.9 ± 0.4 0.6 ± 0.3 1.2 ± 0.7 6.5 This study 

Aluminum Impregnated BC   1.4 ± 0.1 0.42 1.66 NR8 (Brunson & Sabatini 

2014) 

Note:  
1 Q1.5 is Q at Ceq = 1.5 mg/L 
2 Sulfuric acid activated cow bone 
3 Phosphoric acid activated cow bone 
4 Potassium hydroxide activated cow bone 
5 Sulfuric acid activated bone char at 540 oC 
6 Zinc chloride activated bone char at 540 oC 
7 Aluminum chloride amended bone char at 540 oC 
8 Not Reported 
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Figure 2.2: Fluoride adsorption fitting with Freundlich isotherms for chemically 
activated cow bone using potassium hydroxide (30% and 50% KCB), and 30% and 50% 
KCB chemically activated cow bone followed by thermal activation at 540 oC, and bone 
char. The inset panel indicates the fluoride adsorption at lower equilibrium fluoride 
concentrations. The error bars represent the standard deviations associated with Qe and 
Ce calculated from triplicate measurements. 

 
 

 

2.5.2 Characterization of the chemically activated cow bone   

The BET SSAs of chemically and thermally activated cow bones ranged from 9 

to 111 m2/g (Table 2.2). By comparison, the BET SSA of bone char was reported as 104 

m2/g (Medellin-Castillo et al. 2007), and 110 m2/g (Brunson and Sabatini 2009). The 

measured BET SSA of HSCB was a factor of ten lower (9 m2/g) than the SSA measured 

by the EGME method (134 m2/g), while the BET and EGME SSAs for 50% KCB and 

50% ZnCB-500 oC differed by a factor of approximately two. The smaller BET SSA for 
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HSCB compared to the EGME BET may be due to the collapse of the mineral structure 

of the chemically activated cow bone during the vacuum stage of the BET process, 

suggesting that the EGME may be more representative in this case. Both the BET and 

EGME SSAs of the chemically activated cow bones showed an increasing trend of 

HSCB < ZnCB < KCB (Table 2.2), which does not correspond to the trend in 

adsorption capacity (Table 2.1). Generally, there was no clear relationship observed 

between either BET and EGME SSA and fluoride adsorption capacity of the chemically 

activated cow bones.    

While chemical activation has been found to produce a much higher SSA for 

carbonaceous materials than thermal activation, this trend was not observed for 

chemically activated cow bone versus thermally activated bone (bone char).  Rather, the 

BET SSA values were largely the same.  And while the EGME surface area of bone 

char was not measured, the EGME and BET SSAs followed similar trends (Table 2.2). 

Thus, SSA can not account for the four times greater fluoride adsorption capacity of the 

chemically activated cow bone compared to the bone char. Additional characterization 

was therefore conducted to look for other possible explanations.  

The PZC values for 30% HSCB, 50% KCB, and 50% ZnCB-500 are 

summarized in Table 2.2. The PZC value of 50% KCB was 8.4 (Appendix A, Figure 

A.3.1A) which is the same as the PZC value of bone char reported by Medellin-Castillo 

(2007) and Brunson and Sabatini (2009) (Table 2.2), yet the adsorption capacity of 50% 

KCB was significantly higher than that of bone char (Table 2.1). In addition, the PZC of 

30% HSCB (6.6) (Appendix A, Figure A.3.1B and Table 2.2) was the lowest among 

those measured, and indicates a net negative charge at the pH of the experiments (pH 
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7), yet this adsorbent had the highest Q1.5 of the three adsorbents for which PZC was 

measured (Table 2.1). Hence, the PZC also cannot account for four-fold increases in 

fluoride adsorption capacity of the chemically activated cow bone compared to bone 

char.  

 

Table 2.2: Properties of chemically activated cow bone and amended bone char   
 

 

 

Description of the 

adsorbent 

Specific 

surface 

area (m2/g) 

(BET 

method) 

Specific 

surface   area 

(m2/g) 

(EGME  

method) 

 

 

pHPZC 

 

 

Reference  

30% HSCB 9 134 6.6 This study 

50% KCB 111 258 8.4 This study 

50% ZnCB-500oC 106 245 7.2 This study 

Thermal, bone char 104 NRa 8.4 (Medellin-Castillo et 

al. 2007) 

Thermal, bone char  110 NR 8.4 (Abe et al. 2004) 

Thermal, bone char  99.1        NMb NR (Brunson & Sabatini 

2014) 

Aluminum 

impregnated bone 

char (AlBC) 

91.8 NMb  NR (Brunson & Sabatini 

2014) 

 

aNR – not reported 
bNM- not measured 
 
 
XRD analysis of 30% HSCB that exhibited the highest fluoride adsorption 

capacity showed the presence of the minerals bassanite (CaSO4 .0.5 H2O) and monetite 

(CaHPO4) (Figure 2.3A) that were not present in bone char (only hydroxyapatite was 
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found in bone char) (Figure 2.3B). This indicates that the phase change to bassanite and 

monetite occurred as a result of the chemical activation.  The peaks of the chemically 

activated cow bone match the XRD pattern applied to bassanite crystals by Abriel and 

Nesper (1993), and monetite crystals by Frost et al. (2013). The CAB showed a mixture 

of elongated and rod-like crystals that could be bassanite and monetite, respectively 

(Figure 2.3C). The EDS elemental analysis of the CAB revealed the presence of higher 

percentage of calcium, and oxygen peaks (Figure 2.3D) compared to bone char. The 

CAB has additionally showed sulfur, magnesium and sodium peaks which were not 

present in the bone char. Furthermore, it was observed from the EDS analysis that 

chemical activation fully removed volatile and organic materials (no carbon was 

detected by the EDS), which are commonly responsible for bad odors in drinking water. 

Abe et al. (2004), Masamba et al. (2005), and Ayoob et al. (2008) suggest that 

the presence of SO4
2-, Ca2+, and PO4

3- enhances defluoridation capacity. Therefore, the 

presence of sulfate in bassanite and phosphate in monetite minerals may be responsible 

for the high fluoride removal capacity of the chemically activated cow bones versus 

thermally activated cow bone.   The increased fluoride adsorption of the chemically 

activated cow bone may be due to an ion exchange of PO4
3-

, SO4
2-, and OH- by fluoride 

ions from aqueous solution. These concepts and the mechanisms responsible for the 

increased capacity of the chemically activated cow bone were further explored in 

chapter 4 of this dissertation.  
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Figure 2.3: XRD result of sulfuric acid activated cow bone showing bassanite and 
monetite minerals (A) and bone char (B), SEM image (C), the dark arrow in panel 
shows the morphology of chemically activated cow bone (I and II shows bassanite and 
monetite crystals, respectively), and EDS analysis showing phosphorous, sulfur and 
calcium peaks (D). 

 

2.5.3 Mass recovery during chemical activation  

The chemical activation processes did not result in significant loss of the starting 

media as compared to losses measured during the thermal activation process (approx. 

30% material loss versus approx. 80% loss, respectively, Appendix A, Table A.4.1). 

The media loss during chemical activation is negligible as compared to the loss during 

crushing of charred bones due to the significant quantity of fines and dust produced in 

the latter case. Bone charring produced about 45% loss during charring and 35% loss 

 

  

C D 

I II 
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due to crushing. Hence, chemical activation produces higher mass recovery than the 

thermally activated bone char, in agreement with the results of Srinivasakannan and 

Balasubramaniam (2007), and Zhang et al. (2010).  The combined benefits of higher 

adsorption capacity and higher efficiency of material production (mass recovery) makes 

chemically activated cow bone even more attractive than bone char.  

 

2.5.4 Cost comparison of adsorbent production  

The total costs of production of chemically and thermally activated cow bone 

were found to be $0.30/ kg and $0.83/ kg, respectively (Appendix A, Table A.5.1). The 

production of CAB (considering cost of the adsorbents per kg) is about eleven times 

cheaper than the thermal activation of cow bone (see calculations in Appendix A). 

Thus, chemical activation of cow bone is a very low-cost production process compared 

to thermal activation of cow bone.  

 

2.6 Conclusions and recommendations 

Comparison of the fluoride adsorption capacity of chemically activated cow 

bone showed on average about four-fold higher fluoride adsorption capacities than 

thermally activated cow bone. While chemical activation has been shown to produce a 

much higher SSA in carbonaceous materials in the formation of activated carbon, it did 

not likewise produce higher SSA when applied to cow bones. Likewise, the PZC values 

of CAB were found to be similar to those of bone char. Therefore, SSA and PZC were 

not able to explain this four-fold increase in fluoride adsorption capacity. Instead, the 

monetite formed during the process of chemical activation of cow bone was responsible 

for the high fluoride adsorption capacity of chemical activation of cow bone, while 
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bassanite had negligible fluoride removal capacity and thus not deemed responsible for 

the high fluoride removal of the CAB media.   

Compared to thermally activated cow bone, chemically activated cow bone 

achieved a higher mass recovery value than bone char due to fines lost during thermal 

activation. Chemical activation of cow bone was also found to be a more cost-effective 

production process than thermal activation. Therefore, chemically activated cow bone 

has proved to be a highly efficient and effective adsorbent in the laboratory. This shows 

that it has great potential to mitigate the negative health effects of fluoride impacted 

drinking water. The next chapter takes this research further by evaluating the 

effectiveness of chemically activated cow bone produced both in the laboratory and 

field through installation of small and large-scale field columns in the field.  
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Chapter 3: Using a High-Capacity Chemically Activated Cow Bone to 

Remove Fluoride:   Field-Scale Column Tests and Laboratory 

Regeneration Studies3 

 

Abstract 

In this study, a novel material, chemically activated cow bone (CAB), was 

further evaluated for fluoride removal via laboratory batch and field column studies 

using fluoride impacted ground waters in the Rift Valley of Ethiopia.  Regeneration of 

the exhausted CAB was evaluated using 0.05 M NaOH and 0.01 M Ca(OH)2 solutions. 

Water quality parameters were analyzed to ensure that the CAB treated water is safe for 

human consumption. The study indicated that the CAB produced in the laboratory and 

field showed four-fold improvement in fluoride removal capacity versus bone char.  

The study also showed that more than 92% adsorption capacity of the exhausted CAB 

media can be regained using 0.05 M NaOH and 0.01 M Ca(OH)2. The water quality 

analysis conducted on the highly fluoride impacted drinking waters treated using CAB 

media were found to be safe for public consumption.  Therefore, these results reinforce 

that CAB media can be used to provide access to safe drinking water for communities 

living in the highly fluoride impacted areas in developing countries and beyond.  

 

Key words: Chemical activation; Cow bone; Fluoride removal; Regeneration; Water 

quality 

                                                 
3 This chapter or portions thereof has been published previously in Journal of Environmental Engineering 
in collaboration with Dr. Jim F. Chamberlain, Dr. Elizabeth C. Butler and Dr. David A. Sabatini under 
the title “Using a High-Capacity Chemically Activated Cow Bone to Remove Fluoride: Field Scale 
Column Tests and Laboratory Regeneration Studies”. J. Environ. Eng., DOI: 10.1061/(ASCE)/EE.1943-
7870.0001169. The current version has been reformatted for this dissertation. 
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3.1 Introduction 

Fluoride in groundwater occurs mainly from dissolution of natural minerals in 

the rocks and soils with which the groundwater comes into contact. Fluoride 

concentrations of up to 68 mg/L have been detected in groundwater wells located north 

of Lake Abijata, in the Rift Valley of Ethiopia (Rango et al. 2012). High fluoride 

concentrations can occur in groundwater with long residence times in the host aquifers 

(Jagtap et al. 2012). Fluoride concentrations above the World Health Organization 

(WHO) maximum acceptable level of 1.5 mg/L causes dental, skeletal and/or crippling 

fluorosis depending on other factors such as nutritional status. It is therefore of 

paramount importance to remove excess fluoride concentrations from drinking water.  

Adsorption, ion exchange, chemical precipitation, Donnan dialysis, and reverse 

osmosis are among the various methods that have been investigated to remove excess 

fluoride concentrations from drinking water (Durmaz et al. 2005; Ndiaye et al. 2005; 

Meenakshi and Viswanathan 2007; Ayoob et al. 2008; Sehn 2008; Brunson and 

Sabatini 2009 and 2015). The adsorption process has been commonly adopted for 

fluoride removal based on ease of operation, use of locally available materials, cost 

effectiveness, and potential for regeneration and reuse. Recently, adsorbents such as 

bone char, hydroxyapatite, zeolites and modified zeolites, ion exchange resins, and 

layered double oxides have been investigated for fluoride removal (Mohapatra et al. 

2009; Du et al. 2014).  

Adsorbent-based fluoride removal is generally implemented in packed-bed 

column systems. These systems are flexible and convenient in terms of design and 

operation (Bhargava and Killedar 1991; Ghorai and Pant 2004; Chen et al. 2011). 
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Furthermore, Brunson and Sabatini (2014) indicated the Rapid Small-Scale Column 

Tests (RSSCTs) scaling equations developed for activated carbon (Crittenden et al. 

1991) are applicable for bone char removal for fluoride. The benefit of RSSCTs are the 

breakthrough curves can be obtained in a fraction of the time with a small volume of 

water, and costs are lower compared to pilot-scale studies (Crittenden et al. 2005). The 

bed-depth/service time analysis (BDST) model (Goel et al. 2005) and Thomas model 

(Thomas 1994) can also be used to analyze column performance.  

Thermally activated cow bone (commonly known as bone char) has been widely 

used as an adsorbent for removal of excess fluoride although its fluoride removal 

capacity is low and thus need further enhancement. The fluoride removal mechanisms 

of bone char are direct adsorption of fluoride and ion exchange, where the fluoride 

exchanges with hydroxyl ion (Equation 3.1), carbonate ion, and phosphate ions 

(Bregnhøj and Dahi 1995; Abe et al. 2004; Kawasaki et al. 2009).   

 

Ca10(PO4)6(OH)2 + 2F- → Ca10(PO4)6(F)2(s) + 2OH- ..........................Equation 3.1 

 

Fluoride adsorbents (e.g., bone char) eventually become exhausted (saturated) 

(Mjengera 1988). The exhausted media can either be replaced by virgin material or 

regenerated for reuse. Some of the benefits of regeneration and reuse of spent 

adsorbents include reduced operational cost, since media can be reused multiple times, 

and potentially minimizing negative environmental impacts associated with their 

manufacture and disposal (Yami et al. 2015). Fluoride saturated bone char has been 

regenerated through surface- coating, precipitation, and sodium hydroxide solutions 
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(Christoffersen et al. 1991; Medellin-Castillo et al. 2007).  NaOH regeneration of bone 

char has been performed using 1% - 8% NaOH solution converting fluoroapatite to 

hydroxyapatite (Christoffersen et al. 1991; Jacobsen and Muller 2007; Ayoob et al. 

2008). The fluoride desorption reactions are the reverse of Equation 3.1.  

When highly fluoride impacted drinking water is treated using adsorbents, it is 

imperative to ensure that the universal drinking water standards are met in the produced 

water, considering not only fluoride but also other constituents. For example, Kawasaki 

et al. (2009) suggested that when using cow bone-based adsorbents for fluoride 

removal, the produced water should be analyzed for phosphate ion concentrations. 

Furthermore, other drinking water parameters such as taste, odor and color need to be 

assessed when using cow bone-based adsorbents since they may introduce objectionable 

taste and smell to treated water (Dahia 2015; Ayoob et al. 2008). Studies by Crapper et 

al. (1973), Davidson (1982) and Tanne (1983) have shown that animals exposed to 

residual aluminum concentrations have evidenced health effects (e.g., aluminum 

induces neurofibrillary degeneration in neurons of higher mammals). Bhattacharjee et 

al. (2014) investigated aluminum and its potential contribution to Alzheimer disease. 

Feasibility and efficiency of defluoridation systems depends on the level of dissolved 

residual aluminum concentration in treated water (Qureshi and Malmberg 1985; 

Mameri et al. 1998). Therefore, water quality analysis should be undertaken for a new 

adsorbent to prevent unintentional negative health impacts from the adsorbent.  

The modification of adsorbent surface chemistry using chemical activation of 

carbonaceous materials appears to be a promising approach for developing novel cow 

bone-based adsorbents for defluoridation (Paudyal et al. 2011; Alagumuthu and Rajan 
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2010; Tchomgui-kamaga et al. 2010). Chemical activation is an alternative to thermal 

activation for producing activated carbon; we recently reported a study showing the 

effectiveness of chemical activation of cow bones for fluoride removal as an alternative 

to bone char in chapter 2 of this dissertation and Yami et al. (2016).  Therefore, 

chemical activation of cow bones, a process of exposing cow bones to varying 

concentrations of chemical activating agents, was performed by Yami et al. (2016) (see 

chapter 2 above) with the purpose of increasing the fluoride adsorption capacity of cow 

bones. The high fluoride removal capacity of chemically activated cow bone (CAB) 

was developed in the laboratory under controlled conditions where the activation 

temperature was maintained constant using an electrical heater, high purity chemicals, 

and the CAB media was rinsed using deionized water. In this research, we produced 

CAB media under field conditions i.e., using wood as an energy source, rinsing the 

media using the local water supply, and using locally available chemicals and skilled 

personnel. Furthermore, in this research we used small and large columns in the field 

and conducted the defluoridation work using natural groundwater in the Rift Valley of 

Ethiopia. The small column was installed to provide preliminary evaluation of the 

performance of the CAB media produced in the laboratory and guide design and 

installation of the larger column in the field.  

To date, our laboratory studies have shown that CAB is four times more 

effective than bone char for removal of excess fluoride concentrations from drinking 

water (Yami et al., 2016). Based on these encouraging preliminary results, the overall 

goal of this work is to conduct additional studies necessary to further evaluate the 

viability of CAB for field deployment. The Rift Valley of Ethiopia was selected for 
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production and field testing of the CAB media due to the ongoing collaboration with 

Ethiopian Universities, government offices, and Non-Governmental Organizations 

working in fluoride removal from drinking water.   

The specific objectives of this study are  (1) to produce chemically activated 

cow bone  in the laboratory and the field and install small and large defluoridation 

columns in the field to evaluate CAB performance/ suitability (feasibility) for fluoride 

removal using fluoride impacted natural groundwater in the Rift Valley of Ethiopia, (2) 

to compare the fluoride adsorption capacity of CAB and bone char using field column 

studies, (3) to assess the suitability of water treated using the CAB system in the field 

for public consumption, (4) to investigate the regeneration potential of CAB/ bone char 

and evaluate the fluoride removal capacity of the regenerated adsorbent. With these 

results the viability of CAB for fluoride removal from drinking water can be more fully 

assessed.  

 

3.2 Materials and methods 

3.2.1 Adsorbent media 

For small-scale field columns, CAB was prepared in the University of 

Oklahoma’s Water Technologies for Emerging Regions (WaTER) Center using cow 

bones obtained from La Ruhe, Texas, using varying concentrations of potassium 

hydroxide (30 % and 50%) solutions (details on preparation of CAB can be found in 

chapter 2 of this dissertation). For the large-scale field columns, CAB was produced at 

Oromo Self Help Organization (OSHO) in the town of Modjo in the Rift valley of 

Ethiopia using cow bones obtained from a slaughter house in Addis Ababa, Ethiopia. 

The crushed cow bone was rinsed using water from Modjo town water supply system, 
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sun dried for two days, and sieved to remove organic matter and fine particles. The 

chemical activation of cow bones in the field was conducted using 50% potassium 

hydroxide (KOH) solutions and the resulting media is termed as CAB in this 

manuscript. The 50% KOH solution was selected for chemical activation in the field 

due to its effectiveness during the laboratory screening tests (Yami et al. 2016) and its 

local availability. The chemical (KOH) was purchased from Uni-Chem Chemicals and 

Reagents company in Addis Ababa (pellets and solid). The CAB produced in laboratory 

was used in batch studies (laboratory), and small-scale column studies in the field. The 

CAB produced in the field was used for large field column experiments, and batch 

studies in the laboratory. The laboratory and field column dimensions, and other 

parameters are provided in Table 3.1.  

 

3.2.2 Water samples  

For small-scale column studies conducted in the Rift Valley of Ethiopia, raw 

ground waters were collected from two existing fluoride impacted wells, namely Dodo 

Wadera and Woyo Gabriel -2 which are located 7 km north of Alemtena town and 12 

km south of Meki town, respectively. They are designated as RW-1 and RW-2 in Table 

3.2. For the large-scale column study, water from an existing raw water tanker (10,000 

L capacity) filled from a groundwater well located 3 km north of Meki town was 

utilized and designated as RW-3 in Table 3.2.  For the preparation of CAB media in the 

field, raw water from Modjo town water supply service with a fluoride concentration of 

1.9 mg/L was used.  

To undertake laboratory batch adsorption and regeneration studies, a 1000 mg/L 

fluoride stock solution was prepared by putting 4.42 g NaF (Fisher Scientific) into 2 L 
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glass container and then filling it with 2 L of [4-(2-hydroxyethyl)-1-1 

piperazineethanesulfonic acid (HEPES) acid and salt solution (50 mM) prepared using 

deionized water, and 36.21 g and 12.51 g HEPES acid and HEPES salt, respectively. 

Fluoride solutions of concentrations ranging from 0 to 150 mg/L were prepared by 

diluting the stock solution with the HEPES solution. The fluoride solutions prepared in 

the laboratory were also used to conduct the adsorption study of the bone char and CAB 

media after regeneration.    

 

3.3 Experiments  

3.3.1 Small- scale field column tests  

The small-scale field columns were 1 cm diameter and 30.5 cm in length made 

of glass with Teflon end caps. Glass wool was packed into the bottom of the column to 

support the CAB media and 5 mm borosilicate glass beads were placed at the top of the 

glass wool to disperse the influent flow (Westerhoff et al. 2005). The CAB was sieved 

using number 40/80 mesh sizes (180–425 μm) and added to the column using funnel 

and DI water to flush down into the packed bed height (H) of 10 cm. The empty bed 

contact time (EBCT) of 7.9 minute was obtained from Equation 3. 2 with a flow rate of 

1 mL/min:   

 EBCT = 
Q

V
 ……………….. Equation 3.2 

where V is the empty bed volume in the column (mL), and Q is the flow rate through 

the column (mL/min). The glass beads and glass wool were packed at the top of the 

CAB media to prevent migration with the effluent flow.  The small-scale column tests 

were performed in the Meki- Catholic Secretariat guest house in Meki town in the Rift 
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Valley of Ethiopia using natural groundwater from Dodo Wadera and Woyo Gabriel-2 

wells.   

A mini-peristaltic pump with variable flow (Fisher scientific) was used to pump 

the raw water by operating the column in up flow mode. The amount of water treated, 

effluent fluoride concentration, and pH were measured every hour and recorded. The 

small-scale column parameters are summarized in Table 3.1.   

 

3.3.2 Large- scale column study  

 A large column (23 cm diameter and 115 cm height) was produced locally in 

Modjo town in the Rift Valley of Ethiopia by manually rolling and welding the iron 

sheet into a cylindrical column shape (Figure B.2.1). The iron sheet was used in this 

study due to its local availability. The CAB column was installed next to the existing 

bone char based defluoridation system (Giraba Fila site, RW-3) to allow easy access to 

the raw water from the feed reservoir of 10,000 L capacity. Crushed stone aggregate 

was washed three times and packed at the bottom of the column and then the CAB 

media (0.4 mm mean diameter) was packed into the column. The column was sealed 

with a rubber washer and bolted metal cover at the top to prevent leakage. The column 

was backwashed to remove fine particles by operating the column in upflow mode. The 

column was operated during day light hours (10 hours a day) and stopped at dusk and 

overnight for security reasons. The outlet flow rates were controlled by a gate valve 

installed at the entrance to the column. The inflow and outflow from the column were 

operated using a 2 cm diameter orifice welded to the column. The treated water 

quantity, effluent water fluoride concentration, and pH were measured daily using 

standard procedures outlined by Hall et al. (1972).  The column parameters and raw 
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water characteristics for the large field column are summarized in Table 3.1 and Table 

3.2.  

 

3.3.3 Batch fluoride adsorption study  

Batch fluoride adsorption studies were conducted in the laboratory using CAB 

media prepared both in the laboratory, and field (in the Rift Valley of Ethiopia) to 

compare batch and column results with the same media.  A 0.5 g CAB media was added 

to 50 mL polyethylene bottles containing initial fluoride concentrations ranging from 0 

to 150 mg/L. HEPES buffer (acid and salt) were used to control the pH to the common 

natural water of pH 7. The reactors were agitated on a shaker (Ping-Pong TM # 51504-

00) at 200 revolutions per minute (rpm) for 24 hours, and the samples were filtered. The 

batch experimental parameters such as adsorbent dose and contact time were selected 

based on preliminary tests in the laboratory. The fluoride concentrations were 

determined using ion selective electrode (Orion, Thermo Scientific). The samples were 

diluted with total ionic strength adjustment buffer (TISAB) on a 1:1 basis to reduce 

hydroxide interferences and the formation of hydrogen fluoride, and to maintain a 

constant pH and ionic strength during analysis according to Larsen and Widdowson 

(1971). 

 

3.3.4 Water quality  

Water samples were collected from the CAB treated water (RW-1 and RW-2 for 

small-scale column study, and RW-3 for large column study) to evaluate for other 

potential chemicals of concern. Polyethylene containers (0.5 L) were used to collect the 

treated water samples.  Nitric acid was used to adjust the pH to 2 and preserve the 



 50

samples during shipment to Ana-Lab Corporation in Kilgore, TX, U.S.A for analysis. 

The water quality parameters tested were selected based on human health (primary 

standards), aesthetic (secondary standards) concerns, and their compositions of the 

adsorbent used in this study. Water quality parameters were analyzed using standard 

procedures.   

 

3.3.5 Regeneration.  

CAB produced in the laboratory was used to undertake studies on the 

regeneration potential of the media. CAB media (0.5 g) was added into a 50 mL 

polypropylene graduated centrifuge tube with an initial fluoride concentration of 100 

mg/L which produces equilibrium fluoride concentration (Ce) values in the range of 10 - 

25 mg/L which is in the range of typical fluoride levels in groundwater in the region. 

The solution pH was adjusted to 7 by addition of 50 mM 2-[4-(2-hydroxyethyl) 

piperazin-1-yl] ethanesulfonic acid (HEPES) acid and salt to undertake adsorption 

study. After equilibration for 24 hours, each sample was filtered and the fluoride 

concentration and pH were determined using an ion selective electrode (Orion, Thermo 

Scientific) and pH meter (Orion, 3 star). Regeneration studies of CAB and bone char 

were performed using varying concentrations; 0.025 M - 1 M NaOH and 0.001 – 0.01 

M Ca(OH)2 to evaluate the potential for reusability of these media.   The adsorption 

cycle was followed by regeneration study after decanting the saturated fluoride solution 

and adding 50 mL NaOH and Ca(OH)2 solutions. Both the adsorption and desorption 

process were performed by agitating it on a shaker (Ping-Pong TM # 51504-00) at 200 

revolutions per minute (rpm) for 24 hours.   
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3.4 Results and discussion 

 3.4.1 Small- scale column studies  

Figure 3.1 shows the fluoride concentrations exiting the column as a function of 

the number of bed volumes in small-scale column studies conducted using CAB and 

bone char adsorbents.  Initially, most of the fluoride ions were adsorbed on to the CAB 

media; hence the fluoride concentration in the effluent water sample was negligible. As 

the fluoride adsorption continues, the adsorptive front (mass transfer zone) moves 

through the column and eventually the effluent fluoride concentration of CAB begins to 

rise until it reaches a breakthrough point i.e., reaches the WHO guideline value fluoride 

concentrations of 1.5 mg/L. The residence time for the small column (EBCTsc) of 7.9 

minute was obtained from Equation 3.2 with a flow rate of 1 mL/min, and the empty 

bed volume in this small-scale column was 7.9 mL. Beyond the breakthrough point, the 

effluent fluoride concentrations continue to rise until it exceeds 90% of the initial 

fluoride concentration, known as exhaustion.  For bone char, the fluoride concentrations 

reached breakthrough sooner than the CAB media. For RW-1, breakthrough was 

experienced at 117 bed volumes for bone char and 400 for CAB, while for RW-2, bone 

char breakthrough was experienced at 125 bed volumes while for CAB it was 600 bed 

volumes. Thus, both ground waters demonstrated a four-fold increased fluoride 

adsorption capacity of CAB media versus bone char (Figure 3.1 and Table 3.2). The 

bone char’s breakthrough (117 to 125 bed volumes) obtained in these column studies is 

similar to the 100 bed volumes reported by Dahi (1997).  

 

 

 



 52

 

       

 
 
 
 

 

 

 

 

 

 

 
 
 
Figure 3.1: Small-scale column studies of chemically activated cow bone (potassium  
hydroxide, 50% KCB) and bone char (BC) using fluoride impacted natural water from 
Wells in the Rift Valley of Ethiopia (summer 2014) (RW- 1 and RW- 2 represents raw 
water from Well number 1 and 2, respectively). The column parameters are summarized 
in Table 3.1 and raw water characteristics are reported in Table 3.2.  
 
 

The raw water sample from Well 2 (RW-2) with lower initial fluoride 

concentration of (C0 = 4.3 mg/L) achieved  a larger number of bed volumes prior to the 

breakthrough point as compared to the RW-1 with the higher initial fluoride 

concentration (C0 = 9.3 mg/L) for the same CAB media. This is attributed to the fact 

that the specific capacity (Q1.5) is more rapidly achieved with higher initial fluoride 

concentrations. During the column operation, the pH entering and exiting the column 

was monitored for both the CAB media and bone char for the raw waters (RW-1 and 

 

WHO guideline value 
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RW-2) considered in the small-scale column studies.  For RW-1 the inlet pH of 8.3 was 

reduced and reached 6.2 as the number of bed volumes of treated water increased until a 

breakthrough point is attained and the average pH during column operation was about 

7.5. The pH of the column operated using RW-2 also showed a similar decreasing 

pattern as RW-1 i.e., the pH gradually decreased from 7.8 to about 7.0. The decrease in 

pH during column operation might be due to the buffering capacity of the media during 

continuous column operation or could also be due to equilibration with atmospheric 

CO2.  The CAB packed in the small-scale column study on average produced about four 

times higher bed volumes to breakthrough compared to bone char which is similar to 

the batch adsorption study results conducted in the laboratory using the CAB media. 

These results further demonstrate that the CAB adsorbent is more suitable for the 

practical application in the field as compared to bone char.  
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3.4.2 Field (large) column studies  

Figure 3.2 shows the effluent fluoride concentrations versus bed volumes of the 

large column (23 cm diameter) using CAB produced in the Rift Valley of Ethiopia. The 

field column design parameters, such as the EBCT, column length, and particle size, are 

summarized in Table 3.1. The field column reached a breakthrough at 360 bed volumes 

(Figure 3.2) which was similar to the small-scale column result (400 bed volumes) for  

CAB (laboratory produced media) presented in Figure 3.1 and Table 3.2. The column 

was run for 10 hr per day and the influent water was discontinued overnight due to 

safety reasons of field operation. This mode of operation is similar to a typical village 

operation where the system would be operated by an individual operator (i.e., one shift 

per day). Resting the column at night allowed longer contact time which increased the 

extent of fluoride removal by the media. The pH variation at the start of the column run 

may have been due to the buffering capacity of the media and/ or the equilibration with 

atmospheric CO2, as discussed above.  The production cost of CAB media was 

estimated at $0.30/kg, compared to $0.83/kg for bone char (Yami et al. 2016) (see 

chapter 2 of this dissertation).  A more comprehensive cost analysis for water treatment 

by CAB in the field was undertaken and provided in chapter 2, Appendix A.  
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Figure 3.2: Large (23 cm diameter) field column study of potassium hydroxide 
activated cow bone (50 % KCB) produced in the Rift Valley of Ethiopia 
(summer 2015) using Giraba Fila Well (RW-3). The step function (inflection 
points) in this figure are because the system was not operated at night due to 
security reasons in the field i.e., longer contact time decreased the effluent 
fluoride concentration.  Column parameters are summarized in Table 3.1. 
 

 

 

 

 

 

 

 

WHO Guideline value of 1.5 mg/L 



 57

Table 3.2: Raw water characteristics and results of column study using CAB media and 
bone char. Small-scale column study and large-scale column tests were conducted using 
natural water in the Rift Valley of Ethiopia (summer 2014 and 2015). 
 

 

Description 

Small columns Large column  

CAB media1  Bone char CAB media 2 

RW13 RW23 RW13 RW23 RW33 

 

Initial fluoride 

concentration, C0 (mg/L) 

 

9.3 

 

4.3 

 

9.3 

 

4.3 

 

8.9 

pH (raw water) 8.3 7.8 8.3 7.8 7.8 

Average pH (treated water) 7.5 7.6 7.5 7.6 7.7 

Bed volume at Ce = 1.5 

mg/L 

400 600 117 125 360 

Bed volume at Ce = C0 

(mg/L) 

1247 1321 331 218 NA4 

Qe column (mg/g) mass 

balance (Cin = Ceff) 

4.6 2.5 1.2 1.14 NA4 

 

Note: 1 CAB media developed in the lab  
          2 CAB media developed in the field 
         3 RW-1, RW-2 and RW-3- raw water from Well 1 (Dodo Wadera), Well 2 (Woyo Gabriel-  
            2), and Well 3 (Giraba Fila) 
          4 NA- parameters not analyzed (column was not run to exhaustion)  

 

3.4.3 Batch adsorption studies (field media)  

Figure 3.3 shows laboratory fluoride adsorption isotherms of CABs produced 

both in the laboratory and field, and bone char. These batch adsorption studies were 

conducted to compare the fluoride removal capacities of CAB media produced in the 

field versus the media produced in the laboratory.  The CAB media prepared in the field 

(in the Rift Valley of Ethiopia) had higher fluoride adsorption capacity (Q1.5 = 3.4 mg/g) 
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than bone char adsorbent (Figure 3.3). The batch equilibrium fluoride adsorption 

capacity of CAB media produced in the field (Q1.5 fitted with the Langmuir isotherm) 

was statistically indistinguishable from the laboratory material (Table 3.3). This is quite 

encouraging as the field conditions of the media production were not yet optimal (e.g., 

maintaining constant activation temperature was difficult since heating to remove 

organic matter was accomplished with a wood fire, and the activation temperature 

varied from 40 – 70 oC). With further development of field process, improved fluoride 

adsorbent materials close to laboratory conditions can be produced. Nonetheless, the 

column studies showed similar bed volumes to breakthrough for small-scale column 

and large-scale field column studies (higher fluoride adsorption capacity compared to 

bone char was attained in both cases). Additionally, the comparison of the fluoride 

removal of CAB versus other adsorbents such as bone char and Aluminum amended 

bone char can be found in Yami et al. (2016). The raw water from Modjo town, with a 

fluoride concentration of 1.9 mg/L, was used to rinse the media.  While this level of 

fluoride could potentially affect the fluoride uptake, the bed volumes of 400 (lab media) 

and 360 (field media) obtained in this study are similar suggesting that any impact 

on the column performance was minor. Thus, the results clearly show that CAB can be 

produced in the field and can achieve an increase in fluoride adsorption capacity 

compared to bone char. The next chapter further evaluates the reason for the high 

fluoride removal of CAB media via preparation of monetite and bassanite minerals 

shown during the chemical activation of cow bone.  
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Figure 3.3: Fluoride adsorption data and Langmuir isotherms for potassium hydroxide 
(50% KCB) activated cow bone and bone char tested in the Rift Valley of Ethiopia. The 
error bars represent the standard deviations associated with Qe and Ce calculated from 
triplicate measurements (If not visible error bars are same size as symbols). The vertical 
dashed line on inset panel indicates fluoride adsorption capacity (Qe) at an equilibrium 
fluoride concentration (Ce) of 1.5 mg/L. 
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Table 3.3: Comparison of laboratory and field produced CAB media based on 
laboratory fluoride adsorption capacity (Qe) (fitted with Langmuir isotherm) using batch 
isotherm studies of media developed in the laboratory and field. The uncertainties in 
Qmax and k are calculated using the error propagation method (see Figure 3.3). 
 

 

Adsorbent 

 

Qmax 

(mg/g) 

 

k  

(L/mg) 

Q1.5 (mg/g) 

at   Ce = 1.5 

mg/L F- 

 

Remark  

CAB media (lab produced) 12.3 + 1.2 0.4 + 0.2 4.5 + 1.8 Yami et al. (2016) 

CAB media (field produced) 8.8 +  0.9 0.4 + 0.2 3.4 + 1.9 This study 

 

 

3.4.4 Water quality  

Table 3.4 presents the results of water quality analysis conducted on treated 

water of the field scale column. The water quality parameters tested were selected based 

on human health (primary standards), aesthetic (secondary standards) concerns, and the 

composition of the adsorbent used in this study. The high fluoride concentration water 

in the Rift Valley of Ethiopia that was treated using CAB complied with the WHO 

(2011) drinking water guideline values (see results in Table 3.4).  The potassium level 

of 24.6 mg/L in treated water is approximately equal to the average background 

concentration of 22.7 mg/L in the natural groundwater in the Rift Valley of Ethiopia 

reported by Rango et al. (2010). The CAB media was rinsed three times before being 

packed into the column to reduce leaching during the column operation. Therefore, the 

high fluoride impacted water in the Rift Valley of Ethiopia treated using CAB was 

found to be safe for human consumption and this adsorbent can thus be used to expand 

installation of CAB-based defluoridation systems in place of bone char which has low 
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adsorption capacity. It should be noted that aluminum was not analyzed since bone’s 

main constituent (hydroxyapatite) does not contain aluminum, and aluminum was not 

present in the regeneration solutions. Furthermore, energy dispersive X-ray 

spectroscopy (EDS) conducted on CAB did not show aluminum in its elemental 

composition (Yami et al. 2016). 
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Table 3.4: Treated1 and raw water quality parameters (water samples collected from the 
pilot project sites in the Ethiopian Rift Valley and tested in Ana-Lab Corp., Kilgore, 
TX, U.S.A) 
 

 

Water Quality 

Parameters 

 

Unit 

Raw water 

quality of  the 

study area2 

Treated water Guide-

line 

values 

RW1- 

(Dodo 

Wadera) 

RW- 2 

(Woyo 

Gabriel -

2) 

RW3- 

(Giraba 

Fila) 

pH - 8.0 7.5 7.6 7.7 6.5 – 8.5 

Fluoride mg/L 9.2 1.5 1.5 1.5 1.53 

Arsenic, Total mg/L 0.021 0.0016 0.0101 <0.0005 0.01 

MCL3 

Chloride mg/L 170 65 230 150 2503 

Sulfate mg/L 94.4 9.0 32 <1.5 5003 

Phosphate mg/L NA4 <0.301 <0.100 3.98 No limit 

listed 

Potassium mg/L 22.7 NA4 NA4 24.6 825 

Calcium mg/L 25.7 19.4 26.5 6.85 506 

Magnesium mg/L 69.8 2.13 12.9 7.12 506 

Total Hardness  as 

CaCO3 

mg/L 352 57.3 119.0 46.4 5006 

 
Note:  1 The anion concentrations seem higher than the cations since only parameters of potential health 
concerns in connection with the use of cow bone and the chemical activating agent are considered.  
 2 The data in this column were from Rango et al. (2010), except for fluoride and pH which were 
measured as part of this study.  
3 WHO (2011), 4 Parameters not analyzed  
5 http://apps.who.int/iris/bitstream/10665/70171/1/WHO_HSE_WSH_09.01_7_eng.pdf 
6 Canadian Health act safe drinking water regulation BC Reg 230/92, & 390, Sch 120, 2001 
 
 
3.4.5 Regeneration study 

Thermally activated cow bone (bone char). The regeneration potential of bone 

char was investigated to establish a baseline for comparison with CAB regeneration and 

also for screening of the concentrations of regeneration solutions to be used. The 

regeneration was conducted using varying concentrations of NaOH and Ca(OH)2 
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solutions. From Figure 3.4, it is observed that of the studied solutions, 0.1 M NaOH 

produced, on average, 73% effluent fluoride concentration (desorption) of the 

previously adsorbed fluoride over three regeneration/adsorption cycles. In this study, 

the subsequent regeneration processes are called R1, R2 and R3, the corresponding 

adsorption processes are called A1, A2 and A3, and the sequence of events is A1, R1, 

A2, R2, A3, R3. Using 0.1 M NaOH, the amount of fluoride adsorbed during cycles A2 

and A3 (Figure 3.4, panel A) corresponding to the previous desorption cycles (R1 and 

R2) (Figure 3.4, panel B) was 93% on average (i.e., the Qe for A2 (4.3 mg/g), after the 

first regeneration cycle, was 93% of the Qe for A1 of 4.6 mg/g, see Table B.1.1). This 

adsorption capacity after regeneration is higher than the 71% and 89% adsorption 

capacity recoveries reported for bone char by (Kaseva 2006) and (Kanyora et al. 2015), 

respectively. This shows high regeneration capacity of bone char was achieved using 

0.1 M NaOH solution in this study.  

Regeneration of bone char by 0.01 M Ca(OH)2 desorbed, on average, about 40% 

of the fluoride adsorbed in each cycle (Figure 3.4, panel B).  However, for the 0.01 M 

Ca(OH)2 regeneration solution, on average more than 92% of the fluoride adsorption 

capacity was regained (i.e., Qe for A2 (4.2 mg/g) was 92% of the A1 Qe value of 4.5 

mg/g) which is in excess of the average desorbed amount of 40%. The increase in 

adsorption capacity upon regeneration may have been because the addition of Ca(OH)2 

resulted in supersaturation of the solution with respect to the mineral fluorapatite 

(Ca5(PO4)3F), and thereby appreciably increasing the fluoride removal capacity, as 

highlighted by Ayoob et al. (2008). Furthermore, the extra fluoride uptake capacity 

could be due to reactive sites of the adsorbent exposed after each regeneration cycle. 
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The quantitative amount of fluoride adsorbed/desorbed (Qe values) at each adsorption/ 

regeneration cycle is summarized in Table B.1.1 and the comprehensive regeneration 

test results, which illustrate the effectiveness of additional concentrations of NaOH and 

Ca(OH)2, are shown in Figure B.2.2. Therefore, the study indicated that 0.1 M NaOH 

and 0.01 M Ca(OH)2 solutions are promising for regeneration of the exhausted bone 

char media.   
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Figure 3.4: Regeneration of saturated bone char (BC) using 0.1 M NaOH and 0.01 M 
Ca(OH)2 solutions. Panels A and B show the adsorption and regeneration cycles, 
respectively.   
 

Chemically activated cow bone (CAB). Figure 3.5 shows regeneration results of 

CAB media. The CAB media regenerated using 0.05 M NaOH solution led to removal 

of at least 40% of the fluoride adsorbed in cycle 1 (Figure 3.5, panel B). Specifically, 

the amounts of fluoride desorbed in R1, R2, and R3 were 40%, 60% and 75% of the 
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fluoride adsorbed in A1, A2, and A3, respectively.  For example, the Qe for A2 was 7.0 

mg/g, which is 82% of the Qe for A1, which was 8.5 mg/g (Table B.1.1). When using 

0.01 M Ca(OH)2 as a regenerant for CAB, a smaller amount of fluoride desorption was 

observed at all the three regeneration cycles compared to 0.05 M NaOH (Figure 3.5 

panel B). However, a high adsorption capacity recovery (94%) (i.e., Qe of 8.4 mg/g for 

A2 compared to 8.9 mg/g for A1 (Table B.1.1) was obtained for A2 (Figure 3.5, panel 

A) despite the corresponding low desorption amount in R1. This high adsorption 

capacity can be attributed to exposure of adsorbent reactive sites during multiple 

regenerations, and formation of fluoroapatite when Ca(OH)2 was added. The average 

adsorption capacity regained for CAB media using 0.1 M Ca(OH)2 is 92% of the Qe for 

A1 (Table B.1.1).  From these results, it is suggested that the CAB media can be 

regenerated and reused for at least three cycles without significant loss of fluoride 

removal capacity. The regeneration of the CAB media can be conducted at water 

treatment site by suitably trained technicians by removing the exhausted CAB media 

from the column, soaking it in 0.05 M NaOH or 0.01 M Ca(OH)2 solutions and sun 

drying the media. Comparison of the regeneration of CAB media could not be made 

since no similar studies had been conducted by other researchers. Thus, this study 

showed that CAB has the potential for regeneration using 0.05 M NaOH and 0.01 M 

Ca(OH)2, which when coupled with its higher fluoride adsorption capacity compared to 

bone char makes it even more viable for fluoride treatment. Future research should 

build on this initial work and further develop the regeneration of CAB media.  
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Figure 3.5: Regeneration of potassium hydroxide (50% KCB) activated cow bone using 
0.05 M NaOH and 0.01 M Ca(OH)2  solutions. Panels A and B show the adsorption and 
regeneration cycles, respectively. 
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3.5 Conclusions  

Results of the research demonstrate that chemically activated cow bone (CAB) 

can be produced in the field using locally available raw materials and equipment. 

Laboratory batch adsorption studies conducted on CAB produced both in the laboratory 

(Yami et al., 2016) and the field (this work) had four-fold higher fluoride removal 

capacities compared to bone char. Likewise, small-scale and large-scale column studies 

conducted using CAB produced both in the laboratory and field, using natural water in 

the Rift Valley of Ethiopia, achieved approximately 400 bed volumes prior to 

breakthrough (versus approximately 100 bed volumes for bone char). Again, this is 

four-fold fluoride removal capacity compared to bone char both in batch and column 

(small-scale and large column) studies.  The water quality analysis conducted on 

samples collected from CAB treated water meets the WHO guidelines for drinking-

water quality (WHO 2011). The 0.01 M Ca(OH)2 is found to be a better regenerant 

since it produced higher adsorption capacity (on average 92% of the Qe at A1) 

compared to 0.01 M NaOH which was 80% on average. Therefore, this research further 

validates CAB as a potential media for the removal of high fluoride concentrations from 

drinking water in developing countries and beyond. 
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Chapter 4: Preparation and Evaluation of Monetite as a High-

Capacity Adsorbent for Fluoride Removal from Drinking Water4 

 

Abstract 

 

Chemically activated cow bone (CAB) had four-fold higher fluoride removal 

capacity compared to bone char both in laboratory batch studies and field–scale column 

studies in the Ethiopian Rift Valley. The CAB media showed bassanite (CaSO4.0.5H2O) 

and monetite (CaHPO4) minerals that were not present in bone char; these minerals 

were thought to be responsible for the high fluoride adsorption capacity of the media. 

The overall objective of this study was to investigate the fluoride adsorption capacity of 

monetite and bassanite to see if they are effective at fluoride adsorption. High purity 

(99.6%) monetite was prepared in the laboratory and showed a three-fold higher 

adsorption capacity than CAB (the fluoride adsorption capacities at an equilibrium 

fluoride concentration of 1.5 mg/L (Q1.5) were 20.0 mg/g and 6.4 mg/g for monetite and 

CAB, respectively), which illustrates the significant adsorption capacity of monetite.  

The EGME specific surface area (SSA) of monetite (Ca/P 1:0.43) was twice that of the 

CAB media (260 m2/g vs 134 m2/g) and thus may account for a portion of the three-fold 

higher capacity of monetite versus CAB. The increased capacity of monetite (Ca/P ratio 

1:0.43) can also be partly attributed to the high surface charge (zeta potential) on the 

monetite compared to CAB (27.1 mV and 7.5 mV, respectively, measured at pH 7). In 

contrast to monetite, bassanite had negligible fluoride removal capacity. Therefore, 
                                                 
4 This chapter or portions thereof has been submitted to Journal of Environmental Engineering in 
collaboration with Dr. Elizabeth C. Butler and Dr. David A. Sabatini under the title “Preparation and 
Evaluation of Monetite as a High-Capacity Adsorbent for Fluoride Removal from Drinking Water”. It is 
currently in review.  
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monetite is found to be promising for fluoride removal to mitigate the negative health 

impacts of excess fluoride concentrations in drinking water.   

 

Key words: adsorption; bassanite; chemically activated cow bone; cow bone; fluoride; 

monetite 

 

4.1 Introduction  

Groundwater constitutes 30.1% of total global freshwater (Gleick 1996) as the 

single largest available supply of drinking water, especially in rural settings (WHO 

2004). Fluoride in groundwater originates from geogenic sources (dissolution of 

fluoride-containing minerals) and/or anthropogenic sources (e.g., application of 

pesticides) (Apambire et al. 1997; Jha et al. 2011; Roy & Dass 2013).  The dominant 

factor controlling the levels of fluoride in water are the amount of clay minerals present, 

pH, the concentration of calcium and phosphate, and the levels of exchangeable sodium 

(Chhabra et al. 1980). Furthermore, anions like SO4
2- and PO4

3- positively affect 

fluoride removal since they react with Ca2+ to form precipitates of CaSO4, CaHPO4 and 

Ca3(PO4)2, depending on solution pH (YangM et al. 1999). Fluorite (CaF2) precipitation 

in the presence of Ca2+ ion provides new adsorption sites and thereby enhances the 

fluoride removal (Fan et al. 2003).  

Excess fluoride in drinking water is a significant concern primarily because it 

has both short- and long-term effects on human health. Fluoride concentrations above 

the 1.5 mg/L threshold are harmful to human health (WHO 2011). Beyond dental and 

skeletal concerns, fluorosis has significant socio-economic impacts stemming from the 
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fact that persons who develop skeletal fluorosis suffer considerable hardship and have 

reduced productivity (Apambire et al. 1997; Frank et al 2011). Moreover, the 

prevalence of fluorosis and the related widespread health problems may stigmatize 

entire villages (McKnight et al. 1997). For instance, more than 8 million people living 

in the Rift Valley of Ethiopia consume groundwater with high fluoride concentrations 

(range: 1.1 to 68 mg/L) (Rango et al. 2012). Therefore, solutions are needed to mitigate 

the suffering of those people affected by fluoride-induced health concerns.   

To date, various treatment methods have been investigated to remove excess 

fluoride from drinking water. For example, bone char, activated alumina, red mud, 

quartz, fly ash, hydroxyapatite, zeolites and modified zeolites, ion exchange resins, and 

layered double hydroxides are among the adsorbents studied for fluoride removal from 

drinking water (Mohapatra et al. 2009; Tor et al. 2009; Ramdani et al. 2010; Du et al. 

2014). Bone char is among the adsorbents widely used to remove excess fluoride from 

drinking water in developing countries such as Ethiopia, Kenya, and Tanzania due to its 

large specific surface area, high affinity for fluoride (Medellin-Castillo et al. 2007; 

Ayoob et al. 2008; Osterwalder et al. 2014), and its local availability at low-cost in 

developing countries (Mutheki et al. 2011). However, bone char has a relatively low 

fluoride removal capacity.   

Chemical activation of carbonaceous materials has been shown to produce very 

high specific surface areas (SSA). Therefore, Yami et al. (2016) evaluated the chemical 

activation process used for carbonaceous materials for chemical activation of cow bone 

in an attempt to increase its fluoride adsorption capacity. Chemically activated cow 

bone (CAB) prepared using sulfuric acid demonstrated four-fold higher fluoride 
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removal capacity versus bone char (Yami et al. 2016), with the high adsorption capacity 

being attributed to the presence of monetite (CaHPO4) and bassanite (CaSO4.0.5H2O) 

produced during chemical activation of cow bone that were not present in bone char, 

which is mainly hydroxyapatite (Ca10(PO4)6(OH)2) (Medellin-Castillo et al. 2007).  

Therefore, in this chapter, monetite and bassanite minerals were prepared in the 

laboratory and their effectiveness at fluoride removal was investigated.   

From the literature, various methods have been utilized to synthesize monetite. 

For example, Sutter et al. (1971), Ball and Casson (1973) and Louati et al. (2005) 

prepared monetite by dehydrating brushite (CaHPO4.2H2O) in H3PO4, in a static air 

atmosphere over a range of temperature of 200-250 oC, and slowly evaporating an 

aqueous solution of Ca(NO3).4H2O and NH4H2PO4 mixture at 80 oC, respectively. 

However, these dehydration techniques yield large particle sizes (15-40 μm), a major 

limitation compared to commercially available monetite (Tas 2009). A reverse micelle 

solution of water, cyclohexane containing cetyltrimethylammonium bromide (CTAB) 

surfactant and n-pentanol as co-surfactant was used by Wei et al. (2007) to produce 

spherical particles of 50 nm diameters.  Well-crystallized monetite nanoparticles with 

various morphologies were obtained in CTAB reverse micelles solution (Wei et al. 

2007). Therefore, the reverse micelle method was used in this study to prepare monetite 

at a Ca/P ratio of 1:0.43, 1:0.68 and 1:1.18. The Ca/P ratios of the components (CaCl2 

and (NH4)2HPO4) affect the composition and crystal phases of the resulting monetite 

(Raynaud et al. 2001). For example, the surface area of the product decreased with 

increase in Ca/P molar ratio, and XRD pattern of synthesized powder showed 

hydroxyapatite at higher Ca/P ratio and monetite at lower Ca/P ratio (Raynaud et al. 
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2001). Therefore, the effect of Ca/P molar ratio on the resulting monetite was 

considered in this study.    

Bassanite (CaSO4.0.5H2O) is commonly formed by dehydration of gypsum 

(CaSO4. 2H2O) (Hunt et al. 1966; Kinsman et al. 1969; Arakel 1980; Mees 1998). A 

mixed phase of gypsum and bassanite was prepared by (Yang et al. 2010) by dissolving 

CaCl2 in ethanol at 35 ºC. Tritschler et al. (2015) prepared pure bassanite by dissolving 

CaCl2 in methanol solution and adding an equimolar sulfuric acid, and this method is 

adopted here to prepare bassanite.  

  

The objectives of this research work are as follows:  

1. To produce monetite and bassanite and investigate their fluoride removal 

capacity as compared to CAB;   

2. To evaluate the effect of Ca/P ratio on the mineralogical composition of 

resulting monetite and its fluoride removal capacity;     

3. To investigate the mechanisms/properties of fluoride removal of monetite 

media;  

4. To study the impact of competing anions present in natural groundwater on the 

fluoride removal capacity of monetite. 

 

4.2 Materials and methods  

 4.2.1 Materials 

The starting materials used in the preparation of monetite (CaHPO4) were CaCl2  

(anhydrous) (Fisher Scientific, Fair lawn, NJ), (NH4)2HPO4 (98% grade) (Strem 

Chemicals, Newburyport, MA), cetyltrimethylammonium bromide (CTAB) (MP 
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Biomedicals, LLC, Solon, OH), cyclohexane (99+% grade) as a continuous oil phase  

(Across Organics, Fair Lawn, NJ), and  co-surfactant, n-amyl alcohol (Fisher Scientific, 

Nazareth, PA). All the starting chemicals used in this study are reagent grade.  De-

ionized water (DI) was used in the preparation of the media. The effect of competing 

ions on the fluoride removal of monetite was studied using potassium salts: K2SO4 

(Across Organics, Fair Lawn, NJ), KHCO3 (Alfa Aaeser, Ward Hill, MA), KCl (EM 

Science, Darmsadt, Germany), and KNO3 (EMD, Gibbstown, NJ).   

 

4.2.2 Preparation of monetite and bassanite 

To prepare monetite two separate reverse micelles containing calcium and 

phosphate were prepared by adding calcium and phosphate solutions into the CTAB 

containing cyclohexane and n-pentanol. The following experimental parameters were 

kept constant throughout the preparation of monetite: 0.1 M CTAB in cyclohexane and 

1 M CaCl2, while the (NH4)2HPO4 concentration was varied as 0.25 M, 0.5 M and 1 M, 

respectively, to prepare monetite at Ca/P ratio of 1:0.43, 1:0.68, 1:1.18 (considering 

0.18 M H3PO4, 85% grade, (Fisher Scientific, Fair Lawn, NJ) added for pH adjustment).  

The molar ratio between n-pentanol and CTAB was 3 and the molar ratio between water 

and CTAB was 5 as per the procedure highlighted in Wei et al. (2007). Both solutions 

(one solution containing calcium and CTAB with cyclohexane and n-pentanol, and 

another containing phosphate and CTAB with cyclohexane and n-pentanol) were placed 

on a magnetic stirrer for 30 minutes, and then the two reverse micelle solutions were 

rapidly mixed and stirred for another 30 minutes. Abbona et al. (1993) suggested that an 

acidic environment can possibly drive the formation of monetite, while the basic 
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aqueous environment can change synthesized monetite into hydroxyapatite with 

sufficient supply of OH- (Da Silva et al. 2001). The pH of maximum formation of 

monetite was thus estimated using computer software, MINEQL+ version 4.6 (A 

Chemical Equilibrium Modeling System- Environmental Research Software, Hallowell, 

ME) for monetite prepared at Ca/P ratio of 1:0.43 (Figure 4.1). Additionally, model 

calculations were done for the other Ca/P ratios (1:0.68 and 1:1.18) and showed the 

same trend in pH of monetite formation.  The input data (component totals and solids) 

considered in MINEQL+ modeling is shown in Table C.1.1. The pH of maximum 

formation of monetite was found to be pH 3, so the pH of the solution containing the 

mixture of the two reverse micelles (containing Ca2+ and PO4
3-) was adjusted to 3 using 

phosphoric acid.  The resulting mixture was aged for two weeks at room temperature, 

centrifuged for 5 minutes at 5,000 revolutions per minute (Thermo Scientific IEC 

centrifuge, CL 10, Waltham, Massachusetts) to remove the supernatant.  The product 

was placed on a glass beaker with a filter (Whatman No. 42 paper) and washed three 

times using ethanol to remove organic components. The sample was subsequently 

washed using 400 mL deionized water and oven dried at 100 oC for 24 hours.  

Bassanite was prepared using the procedure by Tritschler et al. (2015) by 

dissolving 10 mM CaCl2 in 50 mL methanol, adding an equimolar amount of H2SO4, 

and adding 2.11% water (by volume). The resulting product was isolated by 

centrifugation, filtered using Whatman No. 42 paper, washed using 400 mL of 

deionized water and dried at 100 oC for 24 hours.  
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Figure 4.1: Solubility diagram for preparation of monetite based on MINEQL+ 
software. The component totals and solids considered are given in Table C.1.1. 

 
 
4.2.3 Batch study 

Batch studies of fluoride adsorption using monetite and bassanite were 

conducted by preparing a 1,000 mg/L stock solution by adding 4.42 g NaF (Fisher 

Scientific, Fair Lawn, NJ) into 2 L glass container and filling it with 2 L of 2-[4-(2-

hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) acid and salt solution (50 

mM) prepared using deionized water, and 36.21 and 12.51 g HEPES acid and HEPES 

salt, respectively. A total of 0.5 g of the media was added into 50 mL polyethylene 

bottles containing initial fluoride concentration ranging from 0 - 150 mg/L prepared by 

diluting the fluoride stock solution using HEPES (Sigma, Saint Louis, Missouri) to fix 

the solution pH at 7 in the adsorption experiments.  The reactors were agitated for 24 

hours at 200 revolutions per minute on a shaker (Ping-Pong TM # 51540-00, Cole-
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Parmer, Vernon Hills, Illinois).  The samples were then filtered and the fluoride 

concentrations in solution were determined using an ion-selective electrode (Orion, 

Thermo Scientific, Beverly, Massachusetts). Before measurement, samples were diluted 

with an equal volume of total ionic strength buffer (TISAB) to reduce interferences and 

maintain constant pH and ionic strength during the analysis (Larson and Widdowson, 

1971). The fluoride adsorption studies were conducted in triplicate to estimate the errors 

associated with experimental measurements. 

 

4.2.4 Competing ion studies  

The impact of co-existing anions on fluoride adsorption was investigated by 

performing fluoride adsorption experiments with an initial fluoride concentration of 25 

mg/L and solution pH of 7.  The molar concentrations of competing ions were 5 mM 

and 10 mM based on average concentrations of these ions in the Rift Valley of Ethiopia 

(Rango et al. 2010). The mass concentration of monetite in this experiment was 4 g/L 

with initial fluoride concentration of 25 mg/L (in duplicate) and the sample was shaken, 

equilibrated, and measured as described above. 

 

4.3 Sorbent characterization  

The monetite samples prepared in this study were characterized using a Rigaku 

(Tokyo, Japan) Ultima IV powder X-ray diffractometer (XRD) and fitting with 

reference mineral patterns using materials data (MDI) JADE 2010 analytical software. 

Powder samples for the XRD analysis were first pulverized, micronized and sprinkled 

onto a single-crystal sample holder to form a thin layer. The X -ray diffractometer was 
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operated at 40 kV with a 44 mA current by using monochromated CuKα radiation. 

XRD data were collected over a range of 2º - 70º 2θ using counting 2 s per 0.02º 2θ at 

each step.  The scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDS) analyses were performed using a Zeiss NEON instrument 

(Oberkochen, Germany) operating at an accelerating voltage of 10 kV with iridium 

sputter-coating before imaging, to impart surface conductivity to the samples. The SEM 

analysis was performed to determine the surface morphology and EDS analysis was 

performed to identify the average elemental composition of the monetite.  

The specific surface area (SSA) of the monetite was measured according to 

Brunauer-Emmett-Teller (BET) method using Quantachrome Autosorb (Boynton 

Beach, Florida) with a Beckman (Brea, California) Coulter SA -3100 surface area 

analyzer and N2 gas adsorption. Additionally, the ethylene glycol monoethyl ether 

(EGME) method (Heilman et al. 1965; Cerato and Lutenegger 2002) was employed for 

determining the SSA of the monetite. The difference in the weight of samples before 

and after EGME coverage was used to calculate surface area. EGME analysis gives a 

more complete assessment of adsorbent surface area, because the BET method may 

measure only the external surface area of certain minerals (Yukselen and Kaya 2006), 

and because the aqueous medium in the EGME method may preserve pores that could 

collapse under the vacuum conditions applied during the BET method. The monetite 

zeta potential was measured using a ZetaPALS zeta potential analyzer (Brookhaven 

Instruments Corporation, Holtsville, NY). Zeta potentials were measured in triplicate to 

estimate the uncertainties in the experimental measurements.  
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4.4 Results and discussion 

4.4.1 Fluoride adsorption capacity of monetite and bassanite- batch study 

Figure 4.2 shows fluoride adsorption isotherms of monetite prepared under 

several conditions (Ca/P ratios of 1:0.43, 1:0.68, 1:1.18) as well as fluoride adsorption 

on sulfuric acid (30% HSCB) chemically activated cow bone (CAB). The adsorption 

data were well fitted to the Langmuir isotherm. The monetite prepared at Ca/P ratio of 

1:0.43 had higher fluoride removal capacity compared to the Ca/P ratios of 1:0.68 and 

1:1.18. The fluoride adsorption at an equilibrium fluoride concentration of 1.5 mg/L 

(Q1.5) of monetite prepared at Ca/P ratio of 1:0.43 was found to be 2.5 and 10 times 

higher than monetite prepared at Ca/P ratios of 1:0.68 and 1.18, respectively (Figure 4.2 

and Table 4.1). Additionally, monetite prepared at a Ca/P ratio of 1:0.43 had three-fold 

higher fluoride removal capacity compared to CAB (30% HSCB) (Table 4.1).  

The chemically activated cow bone using 30% H2SO4 (termed as 30% HSCB) 

had bassanite in it. In contrast, the bassanite prepared in this study had negligible 

fluoride adsorption capacity compared to monetite (data not shown). Therefore, the 

bassanite mineral produced during the chemical activation of cow bone is deemed not 

be the reason for the fluoride removal capacity of CAB media.   
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Figure 4.2: Fluoride adsorption fitted with Langmuir isotherm for synthesized monetite at 
Ca/P ratio of 1:0.43, 1:0.68 and 1:1.18, and sulfuric acid activated cow bone (30% HSCB, data 
taken from Yami et al. 2016). The inset panel shows the fluoride adsorption at lower equilibrum 
fluoride concentrations. The error bars represent the standared deviation associated with Qe and 
Ce calaculated from triplicate measurements. 
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Table 4.1: Langmuir parameters for synthesized monetite and chemically acid activated 

cow bone (CAB) at pH 7.   

 

 

Adsorbent  

 

Q1.5
a (mg/g) 

 

 Qmax (mg/g) 

 

K (L/mg) 

 

References  

Ca/P ratio 1:0.43 20.0 ± 1.2 30.3 ± 3.4 1.3 ± 0.6 This study 

Ca/P ratio 1:0.68 7.5 ± 2.6 20.1 ±1.7 0.4 ± 0.1 This study 

Ca/P ratio 1:1.18 1.8 ± 0.6 4.2 ± 0.2 0.5 ± 0.2 This Study 

CAB (30% HSCBb) 6.4 ±1.8 17.7 ± 2.9 0.4 ± 0.1 Yami et al. (2016) 

  

The isotherm parameters (K) was obtained from Langmuir isotherm fitting using sigmaplot 13.0 and the 

uncertainties in Qe and Ce are calculated using error propagation method.  
aQ1.5 is Q at Ce = 1.5 mg/L. 
bSulfuric acid activated cow bone 

 

4.4.2 Fundamental properties of monetite 

 In an effort to understand the high fluoride adsorption capacity of monetite, 

several fundamental properties of the media were assessed. The BET specific surface 

areas (SSAs) of the monetite prepared at various Ca/P ratios were all approximately 

equal to 4 m2/g (Table 4.2), which is less than half of the BET SSA of sulfuric acid 

activated cow bone (CAB) (9 m2/g, Yami et al. 2016). Thus, the monetite’s BET SSA is 

not able to account for either the higher fluoride adsorption capacity of monetite versus 

CAB, or the variation in adsorption between the three monetite species. However, the 

EGME SSA of monetite (Ca/P ratio 1:0.43) is twice that of the CAB media (260 m2/g 

vs 134 m2/g) (Table 4.2), and this increased surface area can account for a portion of the 

three-fold increase in fluoride removal capacity of monetite compared to CAB but not 

the variation in fluoride adsorption within the monetite samples. The smaller BET SSA 

values for the monetite samples compared to the EGME SSAs (Table 4.2) may be due 
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to the collapse of monetite pores during the vacuum stage of the BET process; higher 

SSA values have previously been observed using the EGME versus the BET method by 

Yuskelen and Kaya (2006), who reported EGME to BET SSA ratios of 2 to 4 for 

kaolinte and zeolite, and 15 to 35 on average for montmorillonite samples.  In addition, 

the EGME SSAs had a slightly decreasing trend (260 m2/g, 256 m2/g and 247 m2/g for 

monetite prepared at Ca/P ratio of 1:0.43, 1:0.68 and 1:1.18, respectively) (Table 4.2).  

These relatively small differences in EGME SSA, however, do not explain the 

significant difference in fluoride uptake by the three monetite samples with different 

Ca/P ratios. 

Zeta potential, on the other hand, was found to vary significantly between the 

samples (Table 4.2). Thus, the high fluoride adsorption capacity of monetite prepared at 

a Ca/P ratio of 1:0.43 versus the other ratios could be due to its higher positive zeta 

potential of 27.1 mV compared to 8.3 and -8.0 for Ca/P ratios of 1:0.68 and 1:1.18, 

respectively (Table 4.2). The result indicates that the surface of monetite prepared at a 

Ca/P ratio of 1:0.43 achieved higher positive charge density and consequently increased 

the uptake of the negatively charged fluoride ion through electrostatic attraction. The 

decrease in fluoride adsorption capacity of monetite prepared at Ca/P ratios of 1:0.68 

and 1:1.18 compared to that prepared at a Ca/P ratio of 1:0.0.43 (Figure 4.2) could be 

due a greater abundance of phosphate at the sorbent surface, decreasing the surface 

charge and reducing fluoride uptake. This is consistent with Raynaud et al (2001) who 

explained Ca/P ratios affect the composition, crystal phases and characteristic of the 

resulting monetite.  It is also in agreement with Zhou et al. (2015), who indicated that 

when the Ca/P ratio reaches 1/3 during preparation of monetite, excessive PO4
3- can 
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precipitate in the reaction. It is further noted that the monetite sample with a zeta 

potential closest to CAB (Ca/P ratio 1:0.68) also has the most similar Q1.5 value (Table 

4.2). 

Monolayer adsorption of fluoride onto monetite was estimated considering a 

hydrated radius of fluoride ion as 3.5 Å (Conway 1981) and the EGME SSA values for 

monetite reported in Table 4.2. Assuming monolayer coverage, the average maximum 

fluoride adsorption capacity is 21 mg/g, which approaches but is less than the 

experimental Qmax value (30.3 mg/g) for monetite (Ca/P ratio 1:0.43) (Table 4.1). Thus, 

although monolayer coverage can account for a large portion of the fluoride removal 

capacity of the monetite, additional processes (e.g., formation   of calcium and fluoride 

co-precipitates) may also contribute to fluoride removal.  

 

Table 4.2: Properties of synthesized monetite and sulfuric acid activated cow bone 
 

 

aEGME- ethelene glycol monoethyl ether 

bFluoride adsorption capacity at Ce = 1.5 mg/L 
cNM- not measured  
ddata taken from Yami et al. (2016) 

 

Description 

BET 

Specific 

surface 

area (SSA, 

m2/g) 

EGMEa 

(SSA, 

m2/g)  

Zeta 

potential 

(mV) 

% 

monetite 

of  

prepared 

media 

  

(Q1.5, 

mg/g)b 

Monetite (CaHPO4) 

Ca/P ratio 1:0.43 4.0 260  ± 1.8 27.1 ± 2.3 99 20.0 ± 1.2 

Ca/P ratio 1:0.68 4.0 256  ± 2.1 8.3 ± 1.4 94 7.5 ± 2.6 

Ca/P ratio 1:1.18 3.9 247 ± 1.5 -8.0± 1.1 89 1.8 ± 0.6 

Chemically activated cow bone (CAB) 

CAB (30% HSCB)c 9.0 134 7.5 ± 2.1 58 6.4 ± 1.8 
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            The XRD patterns of monetite prepared at various Ca/P ratios and the 

reference patterns are displayed in Figure 4.3. The XRD pattern of the monetite 

prepared in this study matches that of the reference pattern as well as Djošić et al. 

(2009) and Frost et al. (2013).  The XRD pattern acquired for the high fluoride 

adsorption capacity monetite, Ca/P ratio 1:0.43, demonstrated that pure (99.6%) 

monetite (CaHPO4) obtained from whole pattern fitting is the primary phase present, 

with 0.4% being hydroxyapatite (2θ = 33º).  Whole pattern fitting of the XRD patterns 

of the media prepared at Ca/P molar ratios of 1:0.68 and 1:1.18 also showed the 

presence of hydroxyapatite.   The monetite synthesized at Ca/P ratio of 1:1.18 also 

showed biphosphammite peaks (at 2θ = 17º, 24º, 28.6º, 34º, 38º, 40º, 45.5º, 53º) which 

was not present in monetite prepared at Ca/P ratio of 1:0.43 or 1:0.68. The 

biphosphammite may have precipitated at the higher ammonium phosphate 

concentrations used to prepare monetite at Ca/P ratio of 1:1.18.  
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Figure 4.3: XRD pattern of synthesized monetite at Ca/P ratio of 1:0.43, 1:0.68 and 
1:1.18 
 

This excess ammonium phosphate could have affected the surface chemistry of 

the monetite by release of ammonium or phosphate in a way that would hinder the 

fluoride adsorption capacity. To investigate this possibility, excess ammonium 
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phosphate compared to CaCl2 (1.18 M PO4
3-, equivalent to the amount added to prepare 

monetite at Ca/P ratio of 1:1.18) was added to monetite containing fluoride solution and 

the fluoride adsorption capacity was tested. The result indicated that the additional 

PO4
3- significantly reduced the fluoride adsorption capacity of the monetite originally 

prepared at Ca/P ratio of 1:0.43 (Figure 4.4). Therefore, excess phosphate could be the 

reason for the lower fluoride removal capacity of monetite prepared at a Ca/P ratio of 

1:1.18 compared to that prepared at a Ca/P ratio of 1:0.43.  The excess phosphate may 

have sorbed to the surface, reducing the zeta potential (Table 4.2), and hindering 

fluoride removal. 

 

            

 
Figure 4.4: Isotherm showing effect of extra (1.18 M phosphate) added to monetite 
(prepared at Ca/P ratio of 1:0.43) containing fluoride solution. 
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Figure 4.5 shows the morphology of the monetite synthesized at Ca/P ratios of 

1:0.43 (panel A, I and II), 1:1.18 (panel C, I and II) and the monetite after fluoride 

adsorption (Ca/P ratio 1:0.43 panel B, I). For the fluoride adsorbed sample, the initial 

fluoride concentration, equilibrium adsorption capacity (qe), and equilibrium fluoride 

concentration (Ce) were 100 mg/L, 24 mg/g and 3.8 mg/L, respectively. All samples of 

monetite had micrometer-scale crystals.  The monetite synthesized at Ca/P ratios of 

1:0.43 and 1.18 had similar bundles of elongated and tabular crystal shapes (Figure 4.5, 

A and C). The fluoride adsorbed monetite had spikes on the surfaces of the crystals 

(Figure 4.5, panel B).  Thus, Figure 4.5 A and B (monetite prepared at Ca/P ratio of 

1:0.43, before and after fluoride adsorption) demonstrate the morphology changes that 

can occur upon sorption of fluoride.  

Figure 4.5, (panel B') shows EDS spectra of the monetite prepared at Ca/P ratio 

of 1:0.43 after fluoride adsorption. The EDS analysis had shown the presence of 

fluoride, demonstrating that fluoride had been adsorbed on the media.  Additionally, the 

detection of more than 1% by weight fluoride indicates more than monolayer coverage 

i.e., not just adsorption.  

 

 

 

 

 

 

 



 93

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: SEM images for monetite synthesized at Ca/P ratio of 1:0.43 and 1:1.18 (panel A 
and C, respectively) before fluoride adsorption, and panel B for Ca/P 1:0.43 after fluoride 
adsorption. Panel B´ shows Energy Dispersive X-ray Spectroscopy (EDS) for monetite prepared 
at Ca/P ratio of 1:0.43 (after fluoride adsorption). The dark arrows in panels A, B and C show 
the shape and morphology of the synthesized monetite (I and II), and EDS analysis showing N, 
O, Ca, P, S, Na, F, and Cl peaks. 
 

 

4.4.3 Effects of competing ions on fluoride removal capacity of monetite 

Figure 4.6 shows the effect of competing ions on the fluoride removal of 

monetite. The competition study was conducted at pH 7. The major anions reduced the 

fluoride adsorption capacity of monetite in the order of HCO3
-, NO3

-, SO4
2- and Cl-. Of 

all the competing ions considered, HCO3
- completely inhibited the fluoride removal 

capacity of monetite (data not shown). In this study, it was observed that HCO3
- raised 

the pH of the solution during the adsorption process to 7.6, while the pH of the 
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remaining competing ions was 7.02 on average. This phenomenon is in agreement with 

Onyango et al. (2004) who discussed how bicarbonate raises the solution pH and thus 

diminishes the affinity of the active sites for fluoride. Other competing ions such as 

nitrate, sulfate and chloride reduced the fluoride adsorption capacity up to 30% on 

average (Figure 4.6). Chloride (Cl-) had less impact on the fluoride adsorption capacity 

as compared to NO3
- and SO4

2-. Tor et al. (2006) suggested that Cl- forms outer-sphere 

complex, while SO4
2- forms outer-sphere and inner-sphere complexes with surface 

active sites, which could account for the difference in extent of competition of these 

anions for the adsorption site with fluoride.        

                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 4.6: Effect of competing ions on the fluoride removal capacity of synthesized 
monetite. The control shows the monetite’s adsorption capacity without addition of 
competing ions.  The error bars are not seen since their magnitudes are small. 
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4.5 Conclusion and recommendations 

The high-purity (99.6%) monetite (CaHPO4) prepared in this study 

demonstrated a three-fold higher fluoride adsorption capacity than chemically activated 

cow bone, CAB (the fluoride adsorption capacities at an equilibrium fluoride 

concentration of 1.5 mg/L (Q1.5) were 20.0 mg/g and 6.4 mg/g for monetite and CAB, 

respectively). This shows that monetite is an active component of CAB in terms of 

fluoride removal, and is itself a promising fluoride sorbent. In contrast, bassanite had 

negligible fluoride removal capacity and thus does not contribute to the adsorption 

capacity of CAB prepared with sulfuric acid. The Ca/P ratio of the chemical reagents 

was found to significantly affect the fluoride removal capacity of resulting monetite 

(Q1.5 = 20.0 ± 1.2, 7.5 ± 2.6 and 1.8 ± 0.6 for Ca/P ratio of 1:0.43, 1:0.68 and 1:1.18, 

respectively). The EGME specific surface area (SSA) of monetite (Ca/P 1:0.43) is twice 

that of the CAB media (260 m2/g vs 134 m2/g) and thus may account for a portion of the 

three-fold higher capacity of monetite versus CAB, but cannot explain the variation in 

fluoride uptake across the monetite media prepared with different ratios of Ca to P. The 

increased capacity of monetite (Ca/P ratio 1:0.43) compared to CAB can also be partly 

attributed to its higher zeta potential (27.1 mV and 7.5 mV, respectively). The presence 

of potassium bicarbonate completely inhibited the fluoride removal capacity of monetite 

while potassium nitrate, potassium sulfate and potassium chloride reduced the fluoride 

adsorption capacity of monetite up to 30% on average. In summary, monetite shows 

significant fluoride removal capacity and potential for mitigating the negative health 

impacts of excess fluoride in drinking water. The next chapter uses business model tool 

to evaluate the sustainability and viability of fluoride treatment systems as a business.   
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Chapter 5: Using Business Models in Designing Market-Based 

Solutions:  The Case of Fluoride Treatment Systems5 

 

Abstract 

 

This paper addresses how businesses models inform viability of different fluoride 

treatment technologies for developing countries as well as the pursuit of financial and 

operational sustainability. Excess fluoride concentrations in drinking water supplies 

negatively impact the health of communities living in fluoride affected regions of the 

world by causing dental and skeletal fluorosis and other severe socio-economic 

problems. Given that fluoride mitigation solutions have proven elusive, we apply 

business model logic to compare fluoride removal technologies to examine the financial 

sustainability of water service provisions. We analyze the investment cost of producing 

fluoride safe water, the annual revenues generated, and the net benefits obtained from 

different technologies.  Furthermore, the reduced medical costs and productivity losses 

averted due to access to fluoride safe water can lead to an average annual cost saving of 

$67 per person.  Our results validate the use of business models to help evaluate 

different technologies as a means of pursuing sustainable applications for safe drinking 

water.   

Key words: Business models, Technological and economic sustainability, Chemically 

activated cow bone, Electrolytic defluoridation Fluoride, Nalgonda  

                                                 
5 This chapter or portions thereof has been accepted in Journal of Water, Sanitation and Hygiene for 
Development in collaboration with Dr. David A. Sabatini and Dr. Lowell W. Busenitz under the title 
“Using Business Models in Designing Market-Based Solutions: The Case of Fluoride Treatment 
Systems”.  J. Water Sanit. Hyg. 2017 (accepted).  The current version has been reformatted for this 
dissertation.  
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5.1 Introduction  

The global need for sustainable solutions to provide basic human needs (e.g., 

safe drinking water) has never been greater. As human needs mount, it is becoming 

increasingly apparent that entities such as governments, foreign aid and non-

governmental organizations are unable to meet these mounting needs.  Getting to viable 

solutions is increasingly being connected with business models to implement 

sustainable solutions that incentivize key input providers to the final users.  A business 

model describes the system of interdependent activities that are performed by the firm 

and its partners, and the mechanisms that link these activities to each other to deliver 

value (Chesbrough 2010; Zott & Amit 2010). For example, Wüstenhagen & Boehnke 

(2006) demonstrated that barriers to sustainable energy can be addressed with 

innovative business models.  More broadly, it is becoming increasingly recognized that 

well designed business models have the potential to address prevailing global problems 

including sustainable development (Wilson & Post 2013).  

This chapter focuses on the sustainable supply of safe drinking water in 

developing countries. To address this growing problem of high fluoride concentrations 

in drinking water, our purpose is to show how the use of business models can help lead 

to more sustainable fluoride solutions.  More specifically, we address the fluoride 

affected water in the Rift Valley of Ethiopia as a pathway for considering the viability 

of such an approach throughout the developing world.  The business model is used as a 

tool to set up a sustainable market-based scale-up of defluoridation (fluoride removal) 

systems so that safe drinking water can become the norm rather than the exception in 

these areas.  Our objectives are the following:   
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1. To extend the use of business models into social needs where market-based 

solutions and sustainability are becoming increasingly valued; we specifically 

address the safe drinking water issue.   

2. To show the relevance of business models in evaluating alternative approaches 

to a given business activity; specifically to the application of defluoridation of 

drinking water.   

3. To compare viability of fluoride treatment technologies as a business venture.  

 

By using the businesses model approach, we show how one can assess and 

compare viability of different fluoride treatment methods.  This has significant 

implications for financial and operational sustainability. In discussing the business 

model logic and its principal components, we are able to show relevance to the 

operations of safe water supply services where unsafe levels of fluoride are a major 

problem.  We explicitly address fluoride challenges instead of other water contaminants 

because fluoride is one of the most pervasive problems in developing countries.  This 

sets up the viability of business models in addressing fluoride challenged areas as a 

template for many other safe drinking water issues.    

 

5.2 Business model logic  

Business models seek to address fundamental questions such as – who are the 

customers, what do they value, how the business deploy its assets, and how value can be 

delivered to the customer at an appropriate cost (Osterwalder et al. 2005; Zott & Amit 

2010).  Business models consist of both a quantitative assessment of how it makes a 
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financial return and a narrative of how the business works. Business sustainability 

depends on the quality of services it offers to the customers, its focus on addressing the 

unmet needs, value-additions, and the ability to link technical and socio-economic 

issues relevant for delivering value to customers (Chesbrough 2010).   

While business models were first explicitly applied to electronic commerce 

(online shopping), they are now utilized in most industries including markets in 

developing countries (Brown et al. 2009). By extension, our assumption is that applying 

business model logic to safe drinking water needs in developing countries has great 

potential.  The development of business models and the creative thinking that they 

encourage are likely to be critical for the development of sustainable services involving 

basic human needs in developing countries.  The use of business model logic can be 

very instrumental in better articulating how basic human services and needs, such as 

water, can be met in a more sustainable manner.   

 

5.3 Business models for safe water supply services 

Small-scale private water service providers are emerging as a common and 

reliable deliverer of water in areas with significant population.  With the efficient 

utilization of resources, private water treatment systems are able to achieve 

sustainability and make an adequate return to continue with services (Kariuki & 

Schwartz 2005).  However, publicly owned services tend to be intermittent in their 

provisions of water and they usually need subsidies to continue operations (Guidthai 

2008).  The delivery of water purchased from boreholes and water kiosks to end users 

has been documented in places such as Onitisha, Nigeria (Whittington et al. 1991), peri-
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urban areas of South America, urban areas of Sub-Saharan Africa (Solo 1999), and 

Mumbai, India (Angueletou-Marteau 2007).  Private water service providers are 

increasingly proving effective for areas that historically have not had access to safe 

water.  By extension, we assume that suitably designed business models can help 

address existing problems related to safe water supply services, even in the more rural 

areas of developing countries.  

Significant efforts have been made to examine and reform water delivery in 

populated areas of developing countries over the past several decades.  Unfortunately, 

only very limited attention has been focused on rural water supply services and virtually 

no attention has been given to the scaling of the defluoridation of water.  Sustainability 

of safe water supply schemes is constrained by social, technical, financial, institutional 

and environmental issues (Brikké & Bredero 2003). Some of the common problems 

faced by safe water supply services in Ethiopia include availability of spare parts, 

chemicals, operation and management capacity, tariff collection, and water quality 

issues (Israel & Habtamu 2007). As a result, the non-functionality rates of the 

developed safe water supply schemes are high (Abebe & Deneke 2008).  

This paper argues that business models can help identify and correct the 

prevailing sustainability challenges faced by safe-water supply services. More 

specifically, since safe-water technologies are central and the early step in addressing 

this huge need, we address the technology side of business models in seeking 

sustainability socially and economically.  This is foundational to the development of 

sustainability of the safe water supply services.  
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Drinking water fluoride concentrations in the Ethiopian Rift Valley range from 1 

to 33 mg/L with an average value of 5 mg/L (Haimanot et al. 1987). Beyond dental and 

skeletal concerns, fluorosis has significant socio-economic impacts stemming from the 

skeletal fluorosis (Apambire et al. 1997; Frank et al. 2011). Moreover, the prevalence of 

fluorosis and the related health problems is very prevalent and has stigmatized entire 

villages (Mcknight et al. 1997; Frank et al. 2011). One community-based survey 

revealed 65.7% skeletal fluorosis among adults (Tekle-haimanot et al. 2006).  While our 

experience here is connected to the fluoride affected areas in the Rift Valley of 

Ethiopia, the implication of this paper will likely have considerable applicability 

throughout the developing world. The business model concept is used to set up a 

sustainable market-based scale-up of defluoridation systems so that safe drinking water 

can be more widely obtained.  

 

5.4 Defluoridation technologies 

Among various technologies developed and implemented to remove excess 

fluoride concentrations from drinking water supplies, the Nalgonda and bone char 

techniques have most commonly been implemented in developing countries such as 

Kenya, Tanzania, Ethiopia and India (Ayoob et al. 2008; Frank et al. 2011; Osterwalder 

et al. 2014). The Nalgonda technique, the process of aluminum sulfate based 

coagulation-flocculation-sedimentation, was developed and adapted in India for fluoride 

removal. The cow bone-based treatment system uses thermally treated cow bone (bone 

char) for fluoride removal. However, the low fluoride removal capacity of bone char 

needs further enhancement. Recently, a high fluoride removal capacity chemically 
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activated cow bone (CAB) media has been developed by Yami et al. (2016). A pilot 

study conducted in the Rift Valley of Ethiopia by the University of Oklahoma’s Water 

Technology for Emerging Regions (WaTER) Center in summer 2014 and 2015 

indicated that CAB had about four-fold higher fluoride removal compared to bone char. 

Electrolytic defluoridation systems (EDF) use aluminum electrodes that release Al3+ 

ions by an anodic reaction with subsequent aluminum precipitation; the fluoride 

removal occurs at the precipitate surface and settles out of solution with the precipitate.  

In this study the Nalgonda, chemically activated cow bone (CAB), and electrolytic 

defluoridation techniques were considered for comparison using business model tools. 

 

5.4.1 Challenges faced by existing defluoridation systems  

Very limited effort is currently focused on addressing the fluorosis problems in 

developing countries (Frank et al. 2011). For example, defluoridation of drinking water 

in the Ethiopian context has been impractical because it is also expensive, technically 

unattainable by technologies evaluated, and unsustainable for large populations. 

However, defluoridation systems can be considered at the household and small 

community levels. Defluoridation systems in Wonji-Shoa Irrigation scheme in Ethiopia 

used activated alumina which was expensive and had logistical constraints with 

operations and maintenances (Teklehaimanot et al. 2006). Reasons for poor 

sustainability of past fluoride treatment systems include the lack of capacity to manage 

defluoridation systems, lack of chemical supply chains, high cost of chemicals, limited 

financial management skill, and lack of skilled labor to install and operate the treatment 

systems (Bregnhøj 1997; Brunson et al. 2013). In addition, there is no engagement of 
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private sectors in the defluoridation processes. As a result, the fluoride removal 

technologies developed thus far have not proven sustainable.  

 

5.4.2 Business model for defluoridation of drinking water 

The defluoridation technologies considered in this study are the Nalgonda 

system (uses aluminum sulfate and lime), EDF (uses aluminum electrode), and CAB 

(uses cow bone activated using acid and base chemicals). The business models 

proposed for fluoride removal from drinking water supplies (Figure 5.1) is expected to 

help entrepreneurs evaluate where the challenges are with each water technology and 

which ones are the most likely to get to sustainability.   
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 Figure 5.1: Proposed business model for provision of fluoride-safe water services 

Customer value proposition 

 Total medical and 
productivity loss averted 
($349/ HH1/ year) 

o Medical costs 
averted ($34/ HH1/Yr)  
o Productivity losses 
averted ($315/ HH/Yr) 

Key Activities  

 Production of 
adsorbents 

 Installation of 
water treatment  
systems 

 Production of 
treated water 

  Distribution of 
treated water 

Customer Relationships 

 Customers satisfaction  
feedback  

 Point-person to liaison 
between customers and    
safe- water delivery 
services 

 Regular communication 
with customers 

Channels  

 Customers water 
pick-up from 
treatment system 

 Water 
distribution/delivery 
to communities  

Revenue Streams  

 Fee from sale of 
treated water per m3 
($1.5 across  
technologies)  

 Service fees 
(design, installation, 
capacity buildings) 

 Sale of adsorbents/ 
expansion of 
treatment systems  

Cost Structure  

 Production cost of 
fluoride-safe water per 
m3 ($1.72, 1.08 and 
$1.13 for Nalgonda, 
EDF and CAB systems, 
respectively).  

 Capital costs: $41,100, 
$39,250, $39,750 per 
treatment systems for 
Nalgonda, EDF and 
CAB, respectively.  

 Maintenance and 
overhead costs are 2% 
and 5% of the total 
capital cost/year, 
respectively. 

Customer Segments 

 Rural/ peri-urban 
areas: a household to 
800 people living in 
2 km distance from  
the treatment 
system2 

Key Partners   

 Government 
offices at regional 
and local levels 

 International 
NGOs3 and Local 
NGOs operating 
in the fluoride 
impacted areas 

 Local service 
providers 

Note: 
1 HH stands for household 
2The East Shewa Zone (where defluoridation systems are currently installed) average population density of 

181.7 persons/km2s (CSA -2005 National Statistics, Table B.3 & B.4) was used to estimate the 
customers  

3NGOs stands for Non-Governmental Organizations 



 111

In this study, five principal components of business models are considered and 

discussed.  

Customer Value Proposition. Value proposition is the value created or the benefits 

offered to customers (Chesbrough 2007). Fluoride removal technologies in developing 

countries may provide substantial cost saving advantage through averting costs incurred 

due to the negative health impacts associated with excess fluoride concentrations in 

drinking waters. Communities living in developing countries are exposed to dental and 

skeletal fluorosis thereby incurring medical costs despite their meager income. 

Furthermore, crippling skeletal fluorosis exposes communities to wage and productivity 

losses due to restricted mobility.  

The proposed business model thus provides findings from the analysis made on 

cost savings that can be achieved in providing fluoride-safe water to the communities. 

Based on this analysis, the fluoride removal technologies provide an annual average 

cost saving of $349 per household due to averted medical cost and productivity loss 

(Figure 5.1, Table D.1.1).  

 

Customers. The target customers are women, men and children (11 Million people) 

living in the Rift Valley of Ethiopia and beyond. Additionally, public institutions such 

as schools and health posts are among the target customers. The proposed customers for 

the fluoride treatment systems are rural and peri-urban areas with a population ranging 

from one household to 800 persons living within 2 km of the treatment systems.   

 



 112

Cost Structure. Costs include key activities such as manufacturing and installation of 

components of defluoridation systems, production of adsorbents, distribution of 

adsorbents and/or treated water, and other marketing and customers’ capacity building 

costs.   

 

Revenue generation mechanism(s). Revenue refers to how the firms are compensated 

for the value offered sustainably (Lindgardt at al. 2009). The revenue generation 

mechanism in this business model is the fee collected from sale of fluoride-safe water 

and adsorbents to the customers, and expansion of treatment systems into adjacent 

communities.  Additional revenue is expected to be generated from services costs such 

as design, installation, and capacity building training offered to customers and local 

government offices.  

 

Value network and strategy to remain competitive.  A value network analysis is a 

means to evaluate and improve the capability of a business to convert assets into other 

forms of value to realize greater value (Allee 2008). Continuous innovations in a 

business model, considering changing markets, technologies, and legal structures can 

help achieve advantages by creating unique and hard to replicate products and services. 

Further, correct design of business model, implementation and refining are key factors 

in success and sustainability of businesses (Teece 2010).  To remain competitive, the 

business model strategy is framed around offering sustainable services through 

provision of safe- treated water which meets the WHO Standards of 1.5 mg fluoride/L 

guideline value by supporting local government offices and communities to participate 
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in monitoring and evaluation of the water quality. Additionally, creation of a customer 

data base and communicating with them regularly are among the strategies proposed to 

establish a successful fluoride- safe water based business.  A trained point-person will 

be deployed to facilitate communication with customers. 

The planning of the defluoridation systems envisages working and aligning with 

existing government and international and local non-governmental organizations 

(NGOs) plans to expand safe water supply services to the community. Identification of 

additional funding sources besides the government, such as local and international 

NGOs, is important. Suppliers of raw materials/ inputs and key partners including 

private firms will be identified and capacity building trainings will be provided to 

enhance their engagement in the expansion of defluoridation systems. A central 

adsorbent production facility will be established by private firm(s). Local service 

providers participate in supply of raw materials and chemicals. Water distribution will 

be conducted by trained local service providers at the water point/kiosk. Local 

donkey/horse carts, bajaj (three-wheeled motorcycle), and small truck owners 

participates in the distribution of treated water to communities living far from the water 

point/kiosk.  

Figure 5.2 shows details of the processes involved in delivering a fluoride- safe 

water enterprise (FSWE) in partnership with local service providers and local 

government offices to undertake design, production and installation of fluoride 

treatment systems. FWSE additionally undertakes production of treated water and 

capacity building works to local government and local service providers. Local service 

providers participate in supply of raw materials and chemicals, and distribution of 
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treated water. The shaded boxes in Figure 5.2 indicate activities performed by FSWE in 

partnership with local service providers, local NGOs and government offices, and the 

white boxes are the activities performed by FSWE.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Processes involved in production and distribution of fluoride- safe water  

 

Production of 
equipment: (reactors, 
mixers, EDF systems) 

- Technical & 
Vocational Centers / 

Private firms 

Installation of 
treatment systems: 

(FSWE in association 
with trained 
technicians) 

Monitoring & Evaluation: 
Systems performances and 

feedback processes (by local 
NGOs, local Government, 

research and academic 
institutions) 

Fluoride-Safe 
Water 

Enterprise 
(FSWE) 

Supply of raw materials, 
chemicals and equipment: 
(Animal bones, aluminum 
plates, etc)- Technicians / 

local service providers 

Production and 
supply of adsorbents 

(FSWE in 
partnership with 

Local NGOs) 

Production and 
distribution of 
treated water: 

(FSWE in 
association with 

local service 
providers) 

Design of 
equipments & 

treatment systems: 
(Reactors, mixers, 

EDF systems) - 
(FSWE in 

partnership with 
local Government 

offices) 

Capacity building: 
(Local Government 

offices, local technicians, 
service providers) 
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5.5 Building blocks 

The following building blocks and assumptions were made in development of the 

business model: 

 Cost of infrastructure development i.e., well development, installation of 

casing and pump, and electromechanical equipment that are common to the 

Nalgonda, EDF and CAB- based systems were not considered in this 

analysis/comparison.  These costs were assumed to be covered by the 

government and/ or NGOs.  

 Maintenance cost for main systems components such as wells, pumps and 

generators maintenance or replacement were assumed to be covered by the 

government and/ or NGOs. 

 $ 1.5 per m3 of treated water was considered uniformly for all the three 

technologies as a cost of water to determine the total revenue generated from 

the sale of treated water based on the discussion made during summer 2014 

with the communities living in the Rift Valley of Ethiopia on the 

affordability and willingness to pay.  

 Routine maintenance cost was assumed to be 2% of the water treatment 

system cost.  

 Operational costs include chemicals, labor cost (salaries, perdiems and 

systems washing and replacement of chemicals), fuel, and overhead cost of 

firms responsible for operating the safe water supply systems. Overhead 

costs were assumed to be 5% of the total water treatment systems cost. 
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 Dodo Wadera, Woyo Gabriel and Berta Semi communities in the Rift Valley 

of Ethiopia were considered as target communities in this study (Table 

D.1.1), using data from these communities to set up a value proposition, 

analyze costs incurred in the water treatment processes, and corresponding 

revenues generated from the proposed safe water supply systems. 

 

5.6 Results and discussions 

5.6.1 Results 

Figure 5.1 shows the business model developed to address the prevailing 

problems of fluoride treatment systems in developing countries and beyond. Table 5.1 

shows comparison of three fluoride removal technologies namely, Nalgonda, EDF, and 

CAB using economic criteria and the business model concepts.  The Nalgonda, EDF, 

and CAB systems have an average production cost of $1.72, $ 1.08, and $1.13 per m3 of 

treated water, respectively (Table 5.1 and Table D.1.2). It can be observed from Table 

5.1 and Table D.1.3 that the total revenue generated from sale of treated water for each 

system is $ 9,855. Cost of production of treated water per year is $ 11,300, $ 7,100 and 

$ 7,400 for Nalgona, EDF and CAB, respectively (Table 5.1 and Table D.1.3). A total 

cost saving of $349 per household (HH) per year ($34/HH/Yr and $315/ HH/Yr for 

medical and productivity losses averted, respectively) can be achieved due to the use of 

fluoride-safe water (Figure 5.1). Table 5.1 shows a net-profit per year of ($1,445), 

$2,755, and $2,455 for Nalgonda, EDF and CAB, respectively. Table D.1.4 shows a 

comparison of the three fluoride treatment systems: Nalgonda, EDF and CAB using 

technical, economical and operation and management aspects. The comparison of the 
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performance of these treatment technologies are made based on the analysis of the 

information collected from field works in the Rift Valley of Ethiopia and literature 

study. The data used in this comparison are summarized in Tables 5.1 and Table D.1.4.  

 
Table 5.1:  Economic criteria for comparison of defluoridation systems (see 
supplemental data for detailed calculations).  
 

 

 

5.6.2 Discussions 

This study shows that EDF and CAB are more cost effective than Nalgonda 

system due to relatively lower production, installation and operation and management 

costs of these systems. Furthermore, the EDF and CAB offer significantly higher net 

annual benefit (profit) than the Nalgonda system (Table 5.1). The EDF and CAB have 

 

 

Description 

Fluoride removal technologies 

 

Nalgonda 

Electrolytic 

Defluori-

dation  

Chemically 

activated cow 

bone (CAB) 

Production cost of treated water ($/ m3) 1.72 1.08 1.13 

Total cost of production of treated water 

($/year) per treatment system 

 

11, 300 

 

7,100 

 

7,400 

Total revenue generated from sale of 

treated water ($/ year) 

 

9,855 

 

9,855 

 

9,855 

Net profit per treatment system ($/year) (1,445) 2,755 2,455 

Considering 50 treatment systems 

operated per year, net benefit ($/year) 

 

(72,250) 

 

137,750 

 

122,750 
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better fluoride removal capacity, and less daily operational requirements than the 

Nalgonda system. Additionally EDF system produces much lower sludge compared to 

the Nalgonda system, and CAB media does not produce sludge.    

Currently, communities in the Rift Valley of Ethiopia typically pay $ 1 per m3 of 

water at the water point even though the treated water does not meet the WHO 

guideline value of 1.5 mg/L (WaTER center baseline survey, 2014). The baseline 

survey additionally indicated that communities have high demand for fluoride safe-

water and are willing to pay more for fluoride safe water; their ability to do so is 

reflected by the observation that they have been paying up to $ 4 per m3 from distant 

sources when water is not available in their area. The profitability of fluoride-safe water 

system coupled to the averted medical and productivity losses may raise government 

interest to support expansion of fluoride treatment systems and also attract private-firms 

to participate in the adaption of the business model.  

The existing fluoride related health problems and poor sustainability of 

treatment systems highlighted by Bregnhøj (1997) and Brunson et al. (2013) are the 

main drivers for business model entrepreneurship opportunities for defluoridation of 

drinking water identified in this study. Comparisons of defluoridation systems of 

drinking water were performed using the business model as a tool to help identify 

technologies that can be sustainably utilized by the local community. Socio-cultural 

aspects, customer demand, marketing and distribution, and access to financial sources 

were given due consideration in comparing the viability of defluoridation systems to 

deliver value in line with Chesbrough (2010). The business model developed in this 

study clearly stipulated the partners involved, identified key resources leading to 
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success, customer segments and costs associated and the revenue generated from the 

fluoride- safe  water supply services. The comparison of the business models is made 

considering cost savings achieved due to access to fluoride- safe water, cost of water 

treatment, annual revenue and benefits generated.  

Business models focus attention on the potential of ventures that will be 

responsible for the production of treatment systems in partnership with local service 

providers, installation of the system, and treatment of fluoride impacted water, 

distribution of treated water, and over all operation and management of treatment 

systems (Figure 5.1).  Business models bring together a system of interdependent 

activities to deliver value as developed by Chesbrough (2010) and Zott & Amit (2010).  

This study demonstrated that a business model is a useful tool to address the prevailing 

challenges encountered by safe water supply services. Business models can help 

develop and expand safe-water technologies that strive to realize both social and 

financial returns, and thereby ensure sustainability of the safe water supply services.  

Understanding the existing challenges, working with local government, non- 

governmental organization and communities, and involving academic and research 

institutions will help facilitate scaling up of a market-based solutions to the existing 

safe- water supply crisis. The private sector/ local service providers play a significant 

role in the scale up of defluoridation technologies by actively engaging in production 

and installation of treatment systems, and supply of equipment and chemicals. 

Additionally, the private sector/ service providers can produce adsorbents, treat fluoride 

impacted water, and distribute treated water and undertake operation and management 

works. However, incentive mechanisms to private sectors (e.g., provision of tools such 
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as plumbing, masonry and carpentry) need to be put in place to maintain their 

continuous engagement in scale up of the treatment systems. Capacity building to local 

private firms i.e., technical, financial and business management are also key in 

sustaining the business. We also suggest that governments concerned with safe-water 

supply provisions need to develop policies that can enhance participation of private 

sectors in expansion of defluoridation systems e.g. provision of credit mechanisms.    

 

5.7 Conclusions and recommendations  

This study indicates that significant cost savings can be achieved from the 

fluoride- safe water service provision due to the medical costs and productivity losses 

averted amounting up to $349 per household per year. We have shown how the business 

model can be an effective tool in evaluating different technologies for the provision of 

fluoride -safe water supply services by solving the existing constraints of equipments 

and chemicals supply for defluoridation systems.  The inclusion of business model logic 

in this domain also brings attention to technology and economic sustainability issues for 

those involved with getting safe water to end-users.  By comparing the viability of the 

various treatment technologies for fluoride removal, we show how the business model 

can be used as a tool to examine differences. In this study, EDF and CAB- based 

fluoride treatment systems produced fluoride-safe water at lower cost, more manageable 

maintenance and generated higher profit compared to the Nalgonda system.   
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Chapter 6: Conclusions 

 

The purpose of this chapter is to summarize key findings and knowledge gained 

from the individual chapters of this dissertation. Major conclusions from the works 

conducted in each chapter are provided and future recommendations are enumerated at 

the end. The overall goal of this dissertation was to prepare, evaluate and characterize 

the chemically activated cow bone (CAB) and monetite for fluoride removal from 

drinking water. Various chemicals and conditions of preparation of CAB and monetite 

were evaluated in this dissertation to formulate an efficient and effective fluoride 

adsorbent. Additionally, the effectiveness of the CAB media produced in the lab was 

evaluated using natural groundwater in the Rift Valley of Ethiopia.  

In Chapter 2, the CAB media was prepared in the laboratory and the fluoride 

removal capacity was evaluated. The comparison of the fluoride adsorption capacity 

CAB media showed on average about four-fold higher fluoride adsorption capacities 

than thermally activated cow bone (bone char). The formation of the bassanite and 

monetite minerals during chemical activation of cow bone was thought to be 

responsible for the high fluoride adsorption capacity. Further, the CAB media achieved 

a higher mass recovery value than bone char due to fines lost during thermal activation. 

Chemical activation of cow bone was also found to be a more cost-effective production 

process than thermal activation.  

In Chapter 3, the CAB media produced in the laboratory was tested using 

natural groundwater in the Ethiopian Rift Valley. Additionally, CAB media was 

produced in the field using locally available chemicals and equipment and its fluoride 

removal capacity was evaluated using small and large field columns. The results 
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demonstrated that the CAB media can be produced in the field using locally available 

raw materials and equipment. Laboratory batch adsorption studies and small-scale and 

large-scale column studies conducted on CAB produced both in the laboratory and the 

field had four-fold higher fluoride removal capacities compared to bone char. The water 

quality analysis conducted on samples collected from CAB treated water meets the 

WHO guidelines for drinking-water quality. Additionally, it was found out that the 

CAB media can be regenerated using 0.01 M Ca(OH)2  solutions.   

In Chapter 4, as it was discussed in chapter 2 above, the high fluoride removal 

capacity of the CAB media was attributed to bassanite and monetite minerals shown 

during the process of chemical activation of cow bone. In this chapter, monetite 

(CaHPO4) and bassanite (CaSO4.0.5H2O) minerals were prepared in the laboratory and 

their fluoride removal capacity was evaluated.  The high-purity (99.6%) monetite 

(CaHPO4) prepared in this study demonstrated a three-fold higher fluoride adsorption 

capacity than the CAB media. This shows that monetite is an active component of CAB 

in terms of fluoride removal, and is itself a promising fluoride sorbent. In contrast, 

bassanite had negligible fluoride removal capacity and thus does not contribute to the 

adsorption capacity of CAB.  The Ca/P ratio of the chemical reagents used in preparing 

the monetite was found to significantly affect the fluoride removal capacity of resulting 

monetite.  The higher EGME specific surface area and higher zeta potential of the 

monetite prepared at Ca/P ratio of 1:0.43 versus the CAB media may account for a 

portion of the three-fold higher capacity of monetite versus CAB media. The presence 

of potassium bicarbonate completely inhibited the fluoride removal capacity of 

monetite.  
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In Chapter 5, the viability of fluoride treatment systems were evaluated using 

business model tool. Previous studies indicated that fluoride treatment systems installed 

in developing countries have either not been used or are non-functional.  In this 

dissertation, business model tool was used to evaluate the viability of fluoride treatment 

systems. Furthermore, by comparing the viability of the various treatment technologies 

for fluoride removal, it was attempted to show how the business model can be used as a 

tool to examine differences. In this dissertation, electrolytic defluoridation system 

(EDF), CAB, and Nalgonda based fluoride treatment systems were compared using 

business model tool and it was found that the EDF and CAB produced fluoride-safe 

water at lower cost, more manageable maintenance and generated higher profit 

compared to the Nalgonda system.  Additionally, the result indicated that significant 

cost savings can be achieved from the fluoride- safe water service provision due to the 

medical costs and productivity losses averted amounting up to $349 per household per 

year.  

In summary, high capacity chemically activated cow bone and monetite media 

were successfully prepared and evaluated in this dissertation. This highly efficient and 

effective CAB and monetite media have great potential to mitigate the negative health 

effects of fluoride impacted drinking water in developing countries and beyond. 

Additionally, it was learned that the business model can be an effective tool in 

evaluating different technologies for the provision of fluoride-safe water supply services 

by solving the existing constraints of equipments and chemicals supply for 

defluoridation systems.   
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Finally, from these significant findings and knowledge, future recommendations 

and potential applications have been proposed as follows: 

 Chemically activated cow bone has been produced and evaluated for the 

fluoride adsorption capacity both in the laboratory and field. Likewise, 

preparation and evaluation of monetite should be undertaken in the field 

to assess its effectiveness using natural groundwater and local 

conditions.    

 This dissertation demonstrated that chemically activated cow bone and 

monetite had significantly higher fluoride removal capacity compared to 

bone char. It is thus recommended to evaluate the potential of both 

chemically activated cow bone and monetite to remove contaminants 

from wastewater, e.g., removal of phosphate from wastewater and re-

using it as a potential fertilizer.   

 Future research should also focus on further enhancing the fluoride 

removal capacity of the CAB and monetite media, e.g., using metal 

amendment of these media.  

 In this dissertation, it was learned that business model is a very useful 

tool to evaluate the viability of fluoride treatment systems as a business. 

It is recommended that a privately managed pilot fluoride treatment 

system is installed in the field and its practical applicability and 

acceptance by the local communities should be evaluated to pave the 

way to implement a sustainable/viable business model.  
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Appendix A: Supplementary Materials for Chapter 2 

 

A.1 Preliminary screening for chemical activation cow bone (CAB) media  

 
   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure A.1.1: Experimental flow chart for chemical / thermal activation and surface 
amendment of cow bone/ bone char and fluoride adsorption studies. The H3PO4, H2SO4, 
ZnCl2 and KCB activated cow bones are presented as HPCB, HSCB, ZnCB, and KCB, 
respectively in the main manuscript and SI.  
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A.2 The additional results for the metal amendment of bone char 

 
       

 

 
Figure A.2.1: Fluoride adsorption fitting with Freundlich isotherms of aluminum 
chloride (AlCl3) and aluminum sulfate (Al2(SO4)3 amended bone char. The inset panel 
indicates the fluoride adsorption at lower equilibrium fluoride concentrations. The error 
bars represent the standard deviations associated with Qe and Ce calculated from 
triplicate measurements.    
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A.3 The additional results from characterization (pHPZC) of CAB media   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3.1  pH PZC of 50% KCB (A), and 30% HSCB (B) 

 

Measurement of PZC 

The PZC of the chemically activated cow bone was determined using methods 

reported by Noh and Shwarz (1989), Milonjic  et al. (1983), and Brunson and Sabatini 

(2009) where 50 mL solutions of 0.01 and 0.1 KNO3 were poured into a series of vials 

 

A 

B 
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and N2 gas was bubbled into the solution for 10 minutes to avoid the interference of 

CO2. The pH in the vials was adjusted to values ranging from 2.5 to 13 using 0.1 M 

KOH and 0.1 M HNO3.  Then 0.2 g of the chemically activated cow bone was added to 

each vial and samples were put on a shaker at 200 rpm for 24 hours to allow the cow 

bone to equilibrate with the pH adjusted solution. The final pH of the solution in each 

vial was measured and plotted against the initial pH values. The PZC of the cow bone 

adsorbent was taken to be the value at which the final pH plateaued.   

 

A.4  The quantity of materials recovered from chemical activation and raw data for 
calculations of the quantity of materials recovered   

 

Table A.4.1: Quantity of material recovered from chemical and thermal activation of 
cow bone  

 

Adsorbent 

Mass before  

activation (g) 

Mass  recovered 

after activation     

       (g) 

Percentage of 

mass recovered   

       (%) 

Percentage of 

mass lost due to 

activation (%)  

30% HSCB 70 48 69 31 

30% HPCB 20 14.2 71 29 

30% KCB 70 49 70 30 

50% KCB 70 52 74 26 

30% HSCB-540 20 4 20 80 

30% KBC-540 20 3.5 17 83 

50% KBC-540 20 4 20 80 

50% ZnCB-500 18 3 16 84 

Thermal, bone char 70 15.4 22 78 
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A.5  The cost of production of bone char and chemically activated cow bone, 
assumptions and data for production cost calculations 
 

Table A.5.1: Cost summary for production of 1 kg bone char and chemically activated 
cow bone 
 
Description Unit Quantity Unit price ($) Total cost ($) 

A.1  Bone char     

Material and utility cost     

Purchase of cow bone kg 3.5 0.025 0.0875 

Kerosene for ignition Liter 0.007 1.057 0.0074 

Charcoal for facilitation of bone charring kg 0.47 1.195 0.564 

Power cost for bone charring kg 1 0.014 0.014 

Labor costs     

Bone charring kg 1 0.026 0.026 

Supervision of bone charring kg 1 0.029 0.029 

Bone crushing (crusher operator) kg 1 0.0046 0.0046 

Sieving and washing  kg 1 0.013 0.013 

Supervision crushing and sieving  kg 1 0.0069 0.0069 

Sub-total 0.72 

Administration cost at 15% 0.11 

Total cost to produce 1kg bone char 0.83 

A.2  Chemically activated cow bone     

Material and utility cost     

Purchase of cow bone kg 1.46 0.025 0.037 

Sulfuric acid kg 0.552 0.36 0.193 

Power for bone crushing raw bone kg 1 0.006 0.006 

Labor costs     

Labor cost for chemical activation kg 1 0.01 0.01 

Bone crushing (crusher operator) kg 1 0.0005 0.0005 

Sieving and washing (3 persons) kg 1 0.006 0.006 

Supervision cost for crushing and sieving  kg 1 0.0069 0.0069 

Sub-total 0.26 

Administration cost at 15% 0.04 

Total cost to produce 1kg chemically activated cow bone 0.3 
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Calculations   

Cost analysis data 

 The quantity of cow bone needed to produce 1 kg of bone char and chemically 

activated cow bone is considered as 3.5 kg and 1.46 kg, respectively (based on 

our experimental result), 

 Cost of 1 kg cow bone is $0.025 (Personal communication, Esayas 2014).   

 For bone char production, 10 liters of kerosene is required to ignite and burn 

5,000 kg of bone (Jacobson and Műller 2007; Arrenberg 2010). 

 Unit price of sulfuric acid is $280-$350 per ton, (Alibaba.com, sulfuric acid 

2014).   

 Bone crushing machine produces 200-600 kg/hr with a power rating of 11-15 

kW, (Modern Butchery Supply 2014).  

Assumptions  

The following assumptions were made to calculate and compare the production costs of 

bone char and chemically activated cow bones: 

 The adsorbent with the highest fluoride removal capacity, HSCB, was 

considered in this cost analysis. 

 To chemically activate 40 g of cow bone, 40 mL of 30% H2SO4 is needed, 

considering an optimum media to activating agent ratio of 1:1 (wt.%), and 30% 

concentration sulfuric acid, based on our experiments. It was assumed that the 

same recipe as the laboratory is applied in the field and the associated costs were 

calculated. 
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  An average bone crusher capacity of 300 kg/hr and a power rating of 13 kW 

were considered for the cost analysis. 

 Labor cost for charring, crushing, sieving, and supervision works were 

calculated considering the labor rates in the Rift Valley of Ethiopia. 

  An administrative cost of 15% was assumed for salaries of administration, 

finance, procurement, utilities and other project management related expenses. 

 Infrastructure common for production of the adsorbents such as crushing 

machine, sieves, and washing basins were not included in the cost analysis.  

 The average fluoride concentration of groundwater in the Rift Valley of Ethiopia 

is 10 mg/L (Rango et al. 2010). Assuming a per capita treated water demand of 

5 liters per day, and assuming 2,000 users, the total volume of water to be 

treated per day is 10,000 liters. The total mass of adsorbent needed to treat 

10,000 liters (based on Q1.5 values of 30% HSCB and bone char in Table A.5.1, 

and C0 = 10 mg/L and Ce = 1.5 mg/L) was calculated to compare the production 

costs of the adsorbents (see calculations below).  

 

Cost of production of bone char and chemically activated cow bone 

Calculations of production of bone char and chemically activated cow bone was 

made based on the cost data and assumptions above.  Summary of the cost calculation is 

provided in Table A.5.1.  

Masses of adsorbents required were calculated using Equation A.5.1 below: 

 ………..  Equation A.5.1  
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Where, C0 (mg/L) is the initial fluoride concentration and Ci 9mg/L) is the equilibrium 

fluoride concentration,  Qe (mg/g) is the fluoride adsorption capacity at an equilibrium 

fluoride concentration of 1.5 mg/L and M (g) is the mass of the adsorbent.    

Therefore, mass of 30% HSCB needed considering its Q1.5 of 6 mg/g is, 

 = 
gmg

LXLmgLmg

/6

000,10)/5.1/10( 
 = 4.3 kg 

Similarly mass of bone char needed considering Q1.5 of bone char as 1.5 mg/g is, 

            = 
gmg

LXLmgLmg

/5.1

000,10)/5.1/10( 
 = 58.2 kg 

Therefore, multiplying these masses by their respective costs per kg (Table A.5.1) and 

taking their ratios illustrates that chemically activated cow bone is about eleven fold 

cheaper than bone char.   
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Appendix B: Supplementary Materials for Chapter 3 

 

B.1 The additional results of adsorption and desorption data for CAB and bone char 
media 
  
Table B.1.1: Quantitative amount of fluoride adsorbed and desorbed at each 
regeneration cycles 
 

 

 

Adsorbent 

Concentration of 

regeneration 

solution 

 

Amount of fluoride 

adsorbed (mg/g) 

 

Amount of fluoride 

desorbed (mg/g) 

 

CAB 

 

0.05 M NaOH 

0.01 M Ca(OH)2 

A1 A2 A3 R1 R2 R3 

8.50 7.00 6.60 3.30 4.20 4.90 

8.90 8.40 8.00 2.20 2.40 3.80 

 

Bone char 

0.1 M NaOH 4.56 4.30 4.18 3.20 3.30 2.95 

0.01 M Ca(OH)2 4.50 4.20 4.10 1.70 1.90 1.30 

 

Note: 

         A1, A2 & A3 – Adsorption cycles 

         R1, R2, & R3 – Regeneration cycles  
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B.2 The picture showing large field- column installed in the Rift Valley of Ethiopia 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure B.2.1: Large-scale column installed in the Rift Valley of Ethiopia 
(Photo: by Teshome L. Yami). 
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Figure B.2.2: Comprehensive regeneration test results of saturated bone char using 
varying concentrations of NaOH and Ca(OH)2 solutions. Panels A and B show the 
adsorption and regeneration cycles, respectively.   
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Appendix C: Supplementary Materials for Chapter 4 

 
C.1 The additional data used for modeling the solubility of monetites 

Table C.1.1: Input data used for preparation of monetite media at Ca/P ratio of 1:0.43, 
1:0.68 and 1:1.18. 
 
 

Component 
selected  

Concentrations (moles) 

Ca/P ratio 1:0.43b Ca/P ratio 1:0.68b Ca/P ratio 1:1.18b 
   CaCl2 1 1 1 

            Ca2+  1 1 1 
         Cl-  2 2 2 

 (NH4)2HPO3 0.25 0.5 1 
                        
                 NH4+  0.5 1 2 

             PO4
3- 0.25 0.5 1 

H3PO4  (pH adj.)a 0.18 0.18 0.18 
Total (PO4

3-) 0.43 0.68 1.18 
    

 CTAB 0.1 0.1 0.1 
CTA+  0.1 0.1 0.1 

               Br-  0.1 0.1 0.1 
NaOH (pH adj.)c 1 1 1 

Na+  0.0125 0.0125 0.0125 
 

a5 ML, 85% grade H3PO4 
bsolids selected were lime, portlandite, Ca4H(PO4)3.3H2O, CaHPO4.2H2O, Hydroxyapatite, CaHPO4 and 
Ca3(PO4)2 Beta 
c5 mL, 1 M NaOH in 400 mL solution 
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Appendix D: Supplementary Materials for Chapter 5 

 
D.1 The additional data used for cost of fluoride treatment systems calculations 

 

Table D.1.1 Data used for the cost calculations of fluoride treatment systems1 

 

Note:  1The data summarized in Table S1 are based on the household survey conducted by the 

University of Oklahoma (OU) Water Technologies for Emerging Regions (WaTER Center) in 

summer 2014 in the Rift Valley of Ethiopia  

           2HH stands for household 

 

 

 

 

 

Description Unit Quantity 

Number of users per treatment systems per village HH2 60 

Number of villages using the treatment system each 6 

Average number of persons per household each 5 

Total number of persons using one treatment system each 1800 

Population growth rate for the Rift Valley area % 3 

Design period years 15 

Projected number of users Persons  2800 

Treated water demand  for drinking and cooking (liters per 

person per day) 

Liters 6.5 

Total quantity of water treated per day Liters 18,000 
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Calculations 

Cost analysis data 

 The total mass of aluminum sulfate (alum) required to remove 1mg of fluoride is 

150 mg. The mass of lime required is 50% of the mass of the alum. The cost of 

alum and lime were considered as $0.51/ kg and $0.17/ kg, respectively 

(WaTER Center survey data, 2014). 

 The quantity of cow bone needed to produce 1 kg of chemically activated cow 

bone is 1.46 kg (Yami et al. 2016). 

 Cost of 1 kg cow bone is $0.025 (Personal communication, Esayas 2014).   

 The cost of aluminum plate used for the electrolytic defluoridation system is 

$15/ kg (WaTER Center survey data, 2014).  

 Average unit price of sulfuric acid is $285 per ton, (Alibaba.com, sulfuric acid 

2014).   

 Bone crushing machine produces on average 300 kg/hr with an average power 

rating of 13 KW, (Modern Butchery Supply 2014).  

 

Assumptions  

The following assumptions were made to calculate cost of production of treated water 

using the Nalgonda, Electrolytic defluoridation (EDF), and chemically activated cow 

bone (CAB).   

 In this study, three aluminum (Al) plates of 120 cm x 80 cm x 2 mm size with a 

1 mm distance between plates were considered per tanker of the EDF treatment 

system. 
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  Labor cost for charring, crushing, sieving, and supervision works were 

calculated considering the labor rates in the Rift Valley of Ethiopia. 

  The maintenance and overhead costs were considered as 2% and 5% of the 

water treatment system component works, respectively.   

 Infrastructure common for production of the adsorbents such as crushing 

machine, sieves, and washing basins were not included in the cost analysis. 

Additionally, costs associated with the Well development i.e., Well drilling, 

casing, pumps and electromechanical installations were considered to be 

covered by the government or non-governmental organizations and thus 

excluded from this analysis.  

 The average fluoride concentration of groundwater in the Rift Valley of Ethiopia 

is 10 mg/L (Rango et al. 2010). Assuming a per capita treated water demand of 

6.5 liters per day, and assuming an average 2,800 users, the total volume of 

water to be treated per day is 18,000 liters.  

 

1. Cost of treated water:  In this section, the production cost of fluoride safe-water 

using three treatment systems is analyzed; Nalgonda, electrolytic defluoridation and 

chemically activated cow bone.  

 

1.1 Nalgonda based treatment system 

 Volume of the reactor  
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Two reactors with 5000 liter capacity (per batch) were required for the 

production of treated water. A total of four treatment batches are required to 

meet the total daily treated water demand of 18,000 liters (see Table D.1.1). 

 

Chemical dosage 

 

The average raw water fluoride concentration in the Rift Valley of Ethiopia, C0 

= 10 mg/L, (Rango et al. 2010) and an equilibrium fluoride concentration of Ce 

= 1.5 mg/L, (WHO 2011) were used to determine the quantity of chemicals 

required to treat the daily water demand.  

Mass of fluoride removed (mg/L) per day = (C0 - Ce) x Total volume of water 

(L) treated per day (Equation D.1.1)      

 = dayFmgLXLmgLmg /000,153000,18)/5.1/10(   

………Equation D.1.1 
 

The total quantity of alum required to treat the daily water demand is calculated using 

Equation D.1.2,  

= dayalumkg
mg

kg
XFmgalummgXdayFmg /23)

10

1
()/150()/0000,153(

6
  

… Equation D.1.2 

 The mass of lime required is,  

 = dayekgdaykg /lim5.11)/23(%50   ….. Equation D.1.3 

The costs of alum and lime are,  
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      Cost of alum ($/m3) 

)/$,(cos)
)/(

)/(
(

3
kgalumoftX

daymtreatedwaterofVolume

daykgalumofmass
   

  = 3
3

/652.0$)/($51.0)
/18

)/23
( mkgX

daym

dayalumkg
 …. Equation D.1.4 

        Cost of lime ($/m3) 

)/$,lim(cos)
)/(

)/(lim
(

3
kgeoftX

daymtreatedwaterofVolume

daykgeofmass
   

  = 3
3

/109.0$)/($17.0)
/18

)/lim5.11
( mkgX

daym

dayekg
 ….Equation D.1.5 

      Therefore, the total cost of chemicals for the Nalgonda based treatment system is 

sum of cost of alum and lime is,   

333 /769.0$/109.0$/652.0$ mmm  ………………Equation D.1.6 

 

Infrastructure costs 

Water system component works: The water treatment systems considered for the 

cost estimate includes reinforced concrete structure to support the raw water 

tanker, support structure for the reactor (column and slab), support for the 

treated water tanker, fiber glass raw water tanker (10 m3), reactor tankers (iron 

sheet, 5 m3), fiber glass treated water tankers (5 m3), and chemical mixer and 

installation costs. Therefore, the total cost of the water system component works 

is estimated to be $5,300. Considering, the water treatment systems have a life 

span of 10 years, the annual cost of the treatment systems is $530.  
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Therefore, cost of water treatment component systems ($/ m3) is,  

       )
)/365()/(

)/($
(

3 yeardaysXdaymtreatedwaterofVolume

yearsystemstreatmentwaterofCost
  

       3
3

/0806.0$)
)/365()/(18

/530$
( m

yeardaysXdaym

year
  …….. Equation D.1.7  

 

Operational costs 

Personnel costs: Two persons, a tap attendant and a guard, were considered 

sufficient to operate the treatment system at $40 per month per person. The total 

personnel cost is,  

)
)/(

)30/1()/($
(

3 daymtreatedwaterofamount

daysmonthXmonthsalaryXoperatorsofnumber
  

3
3

/148.0$)
/18

)30/1()/40($2
( m

daym

daysmonthXmonthXoperators
 …. 

Equation D.1.8 

 Diesel for water pumping: Based on the data collected by the WaTER Center 

from the Nalgonda based treatment system in the Rift Valley of Ethiopia in 

summer 2014, 14.4 liters of diesel is required to pump 18 m3 of water per day, 

and the cost of diesel is $0.8 per liter. Therefore, the total cost of diesel needed 

to pump the daily water demand is, 

3
3

/64.0$)/8.0($)
/18

/4.14
( mdieselLX

daym

daydieselofL
dieselofCost  …………

Equation D.1.9 
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 Cleaning reactor tanker: Labor cost is calculated considering the labor rates in 

the Rift Valley of Ethiopia. One daily laborer washes the reactor once daily at 

$1.5/day. The total cost for washing the reactor tanker is, 

       3
3

/083.0$
/18

)//5.1$1(
cos m

daym

daypersonXperson
tLabor  ……Equation 

D.1.10 

Therefore, total operational cost of the system is the sum of the costs indicated 

under (Equations D.1.9 –D.1.10).  

3333 /871.0$)/083.0($)/64.0($)/148.0($ mmmm   … Equation D.1.11 

 Maintenance and overhead costs:    The total maintenance cost is, 

  33 /0016.0$)/0806.0$%2( mmX  …………………… Equation D.1.12 

The total overhead cost is,  

  33 /0040.0$)/0806.0$%5( mmX  …………..Equation D.1.13 

The cost summary for the Nalgonda based treatment system is provided in Table 

D.1.2.  
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1.2 Electrolytic Defluoridation (EDF) based treatment system 

 

 Volume of the reactor  

Four reactors each with 1000 liters capacity (per batch) were required for the 

production of treated water. The total daily treated water demand by the EDF 

unit is 18,000 liters (see Table D.1.1). 

 

 Materials and chemicals: 

In this study, three Aluminum (Al) plates of 120 cm x 80 cm x 2 mm size with a 1 

mm distance between plates were considered. The volume of the plates is,  

300576.0)002.08.02.1(3 mmXmXmXplates  ……….Equation D. 1.14 

 Weight of Al plates for four tankers is,  

platesofvolumeXplateAlofdensityXsofnumber kertan  

kgmXmkgX 21.6200576.0)/2700(4 33   ………………..Equation D.1.15 

Mass of Al dissolved in one tanker per day is,  

= (C0- Ce) (mg/L) x volume of one tanker (L) x Al/ F- ratio at pH 6.5  

gXLXLmgLmg 3441000)/5.1/10(   F- per tank ……Equation D.1.16  

Mass of Al dissolved in four tankers per day is,  

g
k

Fg
X 136

tan
344 



 ………… …………………….Equation D.1.17 

The total cost of aluminum plate ($) per day = Total weight of Al plate dissolved per 

day (g) per treatment system x cost of plate per kg.  
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dayper
kg

X
g

kg
X

day

g
electrodeAloftThe 04.2$)

15$
()

1000

1
()

136
(cos  ......Equation 

D.1.18 

The cost of Al electrode per volume of water treated daily is,  

)/()/($ 3 daymtreatedwaterofvolumeXdayelectrodeAlofCost    

3
3

3

/113.0$)
10

()
18000

1
()

04.2$
( m

m

L
X

L

day
X

day
 …………………. Equation D.1.19 

 pH adjustment: For pH adjustment, 1mmol H2SO4 is used. The average cost of 

sulfuric acid is $0.285/ kg (Alibaba.com, sulfuric acid 2014).  

The quantity of sulfuric acid needed for the pH adjustment is, 

3
423

/0279.0$
1000

1285.0$981000001.0
m

g

kg
X

kg
XSOHg

M
X

m

L
X

L

M
 ….Equation 

D.1.20 

 Solar panels and accessories: Installation of solar panels of 1500 Watt, 50 A 

and 24 Volt capacities together with its accessories were considered to be 

installed as a power source during electrolysis with an estimated total cost of 

$4,000 including the labor costs.   

 

Therefore, the total cost of solar panels and accessories ($/ m3 of treated water) is,  

3
3

/0406.0$)
18

1
()

365

1
()

15

4000$
( m

m

day
X

day

year
X

year


……………..Equation D.1.21 

The total cost of materials and chemicals required for EDF system per m3 of treated 

water is the sum of costs (Equation D.1.19-21), which is $0.1815/m3.  
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 Infrastructure costs 

 

Water system component works: The water treatment systems considered for the 

cost estimate includes reinforced concrete structure to support the raw water 

tanker, support structure for the reactor (column and slab), support for the 

treated water tanker, fiber glass raw water tanker (10 m3), reactor tankers (iron 

sheet, 5 m3) for fiber glass treated water tankers (4 m3), and installation costs. 

Therefore, the total cost of the system component works is estimated to be 

$2,850. Considering, the water treatment systems to have a life of 15 years, the 

annual cost of the treatment system component works is $190/ year.  

 

Therefore, cost of water treatment component systems ($/ m3) is,  

       )
)/365()/(

)/($
(

3 yeardaysXdaymtreatedwaterofVolume

yearsystemstreatmentwaterofCost
  

       3
3

/0289.0$)
)/365()/(18

/190$
( m

yeardaysXdaym

year
 …..Equation D.1.22  

 Operational costs 

o Personnel costs: The personnel cost to operate the EDF system is the 

same as that of the Nalgonda system ($0.148/m3) (see Equation D.1.8  

o Diesel for pumping water: The total cost of the diesel needed to pump 

the daily water demand for the EDF system is same as that of the 

Nalgonda system ($0.64/m3) (see Equation D.1.9).  
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o Washing reactor tanker: The total labor cost for washing the EDF 

reactor tanker is same as that of the Nalgonda system ($0.083/m3) (see 

Equation D.1.10). 

 

Therefore, total operational cost of the system is the sum of the costs indicated 

above,   

3333 /871.0$)/083.0($)/64.0($)/148.0($ mmmm   ……Equation D.1.23 

Maintenance and overhead costs: The maintenance costs for the EDF system is,   

  33 /00058.0$)/0289.0$%2( mmX  …. ………………….Equation D.1.24 

The total overhead cost is,  

  33 /00145.0$)/0289.0$%5( mmX  …………………….Equation D.1.25 

The cost summary for the EDF based treatment system is provided in Table D.1.2. 

 

1.3. Chemically activated cow bone (CAB) based treatment system 

 Water system component works: The water treatment systems considered for the 

cost estimate includes reinforced concrete structure to support the raw water 

tanker, support structure for the reactor (column and slab), support for the 

treated water tanker, fiber glass raw water tanker (10 m3), chemically activated 

cow bone reactor tankers (Roto tanker 2 m3), for fiber glass treated water tankers 

(5 m3), and installation costs. The total cost of the system component works is 

estimated to be $4,000. Considering the water treatment system to have a life 

span of 10 years, the annual cost of the treatment system component works is 

$400.  
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Therefore, cost of water treatment component systems ($/ m3) is,  

       )
)/365()/(

)/($
(

3 yeardaysXdaymtreatedwaterofVolume

yearsystemstreatmentwaterofCost
  

       3
3

/061.0$)
)/365()/(18

/400$
( m

yeardaysXdaym

year
 …….Equation D.1.26  

 

 Materials and chemicals: 

o In this study, calculation of the various materials and chemicals needed 

for the production of the CAB media is conducted as per the assumptions 

and procedures highlighted by Yami et al. (2016).  Accordingly, 1.46 kg 

of cow bone is needed to produce 1 kg CAB media. The cost of cow 

bone in the Rift Valley of Ethiopia is $0.025 per kg (Personal 

communication, Esayas 2014).  

Therefore, cost of cow bone to produce 1 kg of CAB media is, 

mediaCABofkgper
kg

Xbonecowkg 0365.0$
025.0$

46.1  …Equation 

D.1.27 

Cost of chemicals: To activate 1 kg of cow bone, 200 mL of sulfuric acid (95% 

grade) is needed (Yami et al. 2016). Considering the average cost of sulfuric acid as 

$0.285/ kg (Alibaba.com, sulfuric acid 2014), the cost of H2SO4 required to 

chemically activate 1 kg CAB media is, 

kgper
SOHkg

X
g

kg
X

mL

g
XSOHmL 104.0$)

285.0$
()

1000

1
()

84.1
(200

42
42  ……….

Equation D.1.28 
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 Labor cost for chemical activation: One semi-skilled person is required to 

undertake chemical activation of cow bone for 3 hours per batch. The salary of 

the semi-skilled person is $200 per month. The cost of labor for 3 hours of 

chemical activation  is,  

833.0$3)
24

1
()

30

200$
(  hrX

hr

day
X

days
  …………………………Equation D.1.29 

Assuming one person produces 100 kg CAB media in 3 hrs, the cost of labor per kg 

is,  

mediaCABkg
CABkg

/0083.0$
100

833.0$
 ………………………Equation D.1.30 

 Cost of crushing and washing cow bone: Considering a bone crushing machine 

with an average capacity of 300 kg/ hr and an average power rating  of 13 kW 

(Modern Butchery supply 2014), the time required to crush 1.46 kg of cow bone 

required to prepare 1 kg of CAB media is,   

hr
kg

hr
Xbonecowkg 00487.0

300

1
46.1   ………………..Equation D.1.31 

The cost of crushing 1 kg of cow bone considering the cost of electricity in Ethiopia 

as 8.0 US cents/ hr (WaTER Center’s summer 2014 survey data) is,  

)/(cos)()( hrcentsUSenergyoftXhrdurtaioncrushingXkwpoweraverage
 

kg
centsUS

X
hr

centsUS
X

kg

hr
Xkw /00347.0$)

100

$
(

0.8

46.1

00487.0
13   ….. 

Equation D.1.32 
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 Labor cost for crushing bone: One daily laborer with a monthly salary of $75 is 

required for the crushing the cow bone.  The cost of labor for bone crushing is,  

kg
bonecowkg

hr
X

hr

day
X

days
/00035.0$

46.1

00487.0

24

1

30

75$
    ……….Equation D.1.33 

 Labor cost for sieving and washing cow bone: Considering 2 persons can sieve 

and wash 100 kg cow bone per hour, the cost of sieving and washing cow bone 

is,  

kg
kg

hr
XpersonsX

hr

day
X

days
/002.0$

100

1
2

24

1

30

75$
  …………Equation 

D.1.34 

 Supervision cost: The supervision cost is calculated considering supervisor’s 

monthly salary of $200. The supervision cost is,  

kg
bonecowkg

hr
X

hr

day
X

days
/0028.0$

100

1

24

1

30

200$
  …. Equation D.1.35 

 Therefore, the total cost of chemically activated cow bone (CAB) is the sum of 

cow bone, chemical, energy and labor costs required to produce 1 kg of CAB 

media (eq. 27 -35), which is, $0.157/ kg CAB. 

 

 Cost of CAB media ($/ m3 of treated water): The chemically activated cow 

bone has the fluoride adsorption capacity at an equilibrium fluoride 

concentration of 1.5 mg/L (Q1.5) is 7.0 mg/g (Yami et al. 2016). Thus the mass 

of CAB media required to treat the daily water demand of 18,000 liter based on 

the Q1.5 (mg/g) is determined from expression below, 
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5.1

0 )(

Q

VXCC
M i

 , where M is the mass of CAB media (g), V is the daily volume 

of water treated (liters), (mL) and C0 and Ci are initial and equilibrium fluoride 

concentrations in (mg/L), respectively.  

CABkg
g

kg
X

day

L
X

gmg

LmgLmg
M 857.21

1000

1000,18

/7

)/5.1/10(



  ….Equation 

D.1.36 

The cost of CAB media ($/m3) is, 

3
3

/191.0$
18

1157.0$
857.21 m

m

day
X

CABkg
XCABkg   ………….Equation D.1.37 

         

 Operational costs 

o Personnel costs: The personnel cost to operate the CAB system is same 

as that of the Nalgonda and EDF system ($0.148/m3) (see Equation 

D.1.8).  

o Diesel for pumping water: The total cost of the diesel needed to pump 

the daily water demand for the CAB system is same as that of the 

Nalgonda and EDF system ($0.64/m3) (see Equation D.1.9).  

o Cleaning CAB column: One person cleans CAB column at $1.5 / day.  

 The CAB column cleaning cost is,  

3/083.0$
318

15.1$
1 m

m

day
X

day
personX  ………………….Equation D.1.38 
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Therefore, total operational cost of the system is the sum of the costs indicated 

above,   

3333 /871.0$)/083.0($)/64.0($)/148.0($ mmmm   ……Equation D.1.39 

Maintenance and overhead costs: The maintenance costs for the CAB system is,  

  33 00122.0$)/061.0$%2( mmX  ……………………….Equation D.1.40 

The total overhead cost is,  

  33 /0033.0$)/061.0$%5( mmX  ……………………. Equation D.1.41 

The cost summary for the CAB based treatment system is provided in Table D.1.2. 
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Table D.1.2 Summary of cost analysis for fluoride treatment systems 

 

 

Description 

Total cost ($ per m3 of treated water) 

Nalgonda EDF  CAB 

Water treatment component  

structures 

0.0806 0.0289 0.0610 

Materials and chemicals 0.7607 0.1815 0.1910 

Operational costs 0.8710 0.8710 0.8710 

Maintenance costs (2% of water 

treatment system costs) 

0.0016 0.00058 0.00122 

Overhead cots (5% of water  

treatment costs) 

0.0040 0.00145 0.0033 

Total cost of treated water 

($/m3) 

1.72 1.08 1.13 

 

 

2. Revenue generated from fluoride-safe water 

Based on the WaTER Center’s summer 2014 survey conducted in communities using 

the existing fluoride treatment systems (Nalgonda and bone char) in the Rift Valley of 

Ethiopia, the tariff for treated water is $1.5/ m3.  

 

Therefore, the annual revenue generated from the treated water is,  

year
year

days
X

day

m
X

m
/855,9$

365185.1$ 3

3
    ……………………….Equation D.1.42 
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The total cost annual cost of production of treated water using cost per m3 of treated 

water summarized in Table D.1.2.  

 

The cost of production of treated water and the corresponding revenue generated from 

sale of water is analyzed below.  

 

Nalgonda System:  

year
year

days
X

day

m
X

m
watertreatedofproductionoftannualTotal /300,11$

36531872.1$
cos

3


….Equation D.1.43 

 

Electrolytic defluoridation system:  

year
year

days
X

day

m
X

m
watertreatedofproductionoftannualTotal /100,7$

36531808.1$
cos

3


….. Equation D.1.44 

 

 

Chemically activated cow bone system:  

year
year

days
X

day

m
X

m
watertreatedofproductionoftannualTotal /400,7$

36531813.1$
cos

3


…. Equation D.1.45 

The net revenue generated from the respective fluoride treatment system is summarized 

in Table D.1.3.  
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   Table D.1.3 Net revenue generated from the sale of fluoride treatment systems6 

 

 Description  

Nalgonda 

EDF 

system 

CAB 

system 

Purchase cost of treated water per m3  $1.5 $1.5 $1.5 

Annual revenue from treated water per  

treatment system 

$9,855 $9,855 $9,855 

Annual cost of production of treated water  

(costs include pumping, labor, chemicals  

and equipments and O & M) (see Table  

D.1.2)7.  

$11,300 $7,100 $7,400 

Net annual revenue per treatment system  

(annual revenue – annual cost of treated  

water production)2 

($1,445) $2,755 $2,455 

Net annual revenue considering fifty  

treatment systems operated per year  

($72,250) $137,750 $122,750 

 

 

3. Cost saving achieved using fluoride-safe water 

In this section, the cost saving achieved due to utilization of fluoride safe drinking water 

supply is analyzed. The cost saving considered are medical and productivity losses.  

 

                                                 
6 Additional revenue that can potentially be generated from sale of raw water is not included in the revenue/cost 
calculations since the business model focuses on fluoride treated water.  
7 Cost of well development and associated activities were assumed to be covered by government and NGOs and thus 
not included in this cost analysis. 
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3.1 Medical costs  

The average defluoridation system users of 2800 people in the Rift Valley of Ethiopia 

are considered in this analysis. According to the WaTER Center survey data (2014), 

individuals affected by dental and skeletal fluorosis make about 4 visits per year to seek 

medical help (dental and skeletal check up and treatment) at a cost of $10 per person per 

visit. Thus the total medical check up and treatment cost is, 

 

personper
person

year
XtmedicalAnnual 40$

/10$
4cos   ……….Equation D.1.46 

According to Frank et al. (2011), about 42% of the total number of people (= 42% x 

2800 = 1,176 people) had painful dental and skeletal fluorosis in the Rift Valley of 

Ethiopia. About 40% of those who are suffering from painful dental and skeletal 

fluorosis (i.e., 470 people) seek medical check up and treatment (Tilahun, Dugda 

District water office, Interview, July 17, 2014). 

Therefore, total cost of medical check up and treatment is, 

800,18$
/40$

470cos 
Person

Year
XpersonstmedicalAnnual …….Equation D.1.47 

The averted medical cost due to safe water supply per household per year is,  

yearhouseholdper

persons

household
personsX

//34$

)
5

1
(800,2

800,18$
 …….Equation D.1.48 

 3.2 Productivity loss  

The average household income in the Rift Valley of Ethiopia is $100 per month 

(WaTER Center survey data, 2014). The average income per person per year is,  
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1200$
12

)(

100$
)/($ 

Year

month
X

household

month
householdincomeannualAverage ……….

Equation D.1.49 

Considering an average household size of 5 persons, the average annual income per 

person is,  

240$
5

1200$
)/($ 

household

persons
Xhousehold

personpersonperincomeannualAverage  

…..Equation D.1.50 

According to WaTER Center survey data (2014), the average income loss per person is 

50% of the total income (wage, farm income, and business losses) due to the burden of 

prevailing diseases in the Rift Valley of Ethiopia.  

120$240$%50  XpersonperlossincomeannualAverage  ….. Equation D.1.51 

Teklehaimanot et al. (2006) reported that 65.7% of the communities surveyed in the 

Rift Valley areas face skeletal fluorosis. According to the information obtained from the 

Dugda district water office, about 40% of the people with skeletal fluorosis encounter 

productivity losses.  

Therefore, the total number of people with productivity loss is, 

losstyproductivifacingpeopleofXusersofnumbertotalXfluorosisskeltalwithcommunityof %%

 

736%402800%7.65  XpersonsXlosstyproductivifacingpeopleofNumber  

….. Equation D.1.52 

The total annual productivity loss is,  
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losstyproductivifacingpeopleofnumberXyearpersonperincomeannualAverage

640,176$736
240$

 personsX
Person

losstyproductiviAnnual  …………Equation 

D.1.53 

The annual productivity loss per person of the total number of beneficiaries is,  

yearhousehold
household

persons
X

persons
householdperlosstyproductiviAnnual //315$

5

2800

640,176$
 …

…Equation D.1.54 

  The total annual medical and productivity loss is,  

)53.()47.(cos eqyearperlosstyproductivieqyearpertMedicalyearperlossannualTotal   

440,195$640,176$800,18$ yearperlossannualTotal  ………Equation D.1.55 

Total annual medical and productivity loss per person is,  

yearperpersonper
personsiesbeneficairofnumberTotal

yearperlossannualTotal
70$

2800

440,195$
  

….Equation D.1.56 

The production cost of treated water ($/ person/ year) considering an average 

production cost of water for Nalgonda, EDF and chemically activated cow bone as 

$1.31/m3 is,  

108.3$
365

1000

1

)/(

5.631.1$
cosPr

3

3


year
X

L

m
X

personday

L
X

m
toduction ……Equation 

D.1.57 

Therefore, cost saved due to water defluoridation is the difference of the cost of water 

production ($/ person/ year) and the averted annual medical and productivity losses ($/ 

person/ year), which is, 
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personperwatersafefluoridetoaccesstodueavertedannualTotal )67($70$108.3$cost  .…………

.Equation D.1.588 

 

 

Table D.1.4 Comparison of fluoride treatment systems based on technical and social 
criteria (see supplemental data for more detailed costing information)  
 

Description Nalgonda Electrolytic 
defluoridation (EDF) 

Chemically activated 
cow bone (CAB) 

 
 
System 
components  

 Reactor tank 5 m3 (quantity 1) 
 Reactor tank support (steel) 
 Electrical motor for mixing 

chemicals 
 Power source / Generator 
 Mixer/ stirrer and its shaft 
 Roto plastic treated water tanker 

(5 m3) 

 Reactors (4 
compartment 
concrete structure, 
1mx1mx1m each) 

 Power source/ 
Generator, control 
panel & DC 
current)  

 Roto plastic treated 
water storage (5 
m3) 

 Reactor tanker 2 m3 
(quantity 2) 

 No power source 
needed (Gravity 
system) 

 Concrete 
sandwiched 
masonry treated 
water storage (4 m3) 

 
Treatment 
systems 
installation  

 Large sludge disposal tanker 
(2m wide, 2.5m length, 1.5m 
depth) 

 Skilled labor to install electrical 
motor, chemical mixer & its 
shaft) 

 Cost of treatment system : 
$41,100 

 Small sludge tank 
(1.5 m wide, 1.5 m 
length, 1 m depth) 

 Semi- skilled labor 
to cut aluminum 
plates & place it in 
tanker 

 Cost of treatment 
system: $39,250 

 No sludge tank 
needed 

 Requires semi-
skilled labor for 
system installation 

 Cost of treatment 
system: $39,750 

Input for 
system 
operations 

 Aluminum sulfate, lime 
 Power source for mixing 

 Aluminum plate 
 Power supply / AC 

to DC converter  

 Cow bone  
 Bone charring 
 Regeneration 

chemicals (NaOH, 
Ca(OH)2) 

 
Maintenances: 
simplicity, 
skilled labor 
requirement  

 Daily labor intensive tanker 
sludge removal  

 Daily chemical application & 
mixing is labor intensive (2 
persons needed to clean tanker, 
and mix chemicals)  

  Requires continuous pH 
monitoring 

 Maintenance of electrical motor 
and stirrer requires skilled labor 

 Lubrication of gearbox every 
two weeks 

 Cutting and placing 
aluminum electrode 
requires semi-
skilled labor 

 Easy sludge 
removal (every 
three months) 

 Cleaning and 
replacement of 
aluminum 
electrodes (every 
three months) 

 Chemically 
activated cow bone 
(CAB) packed into 
column (every 6 
months) 

 Replacement of 
CAB (every six 
months) 

 
                                                 
8 The negative sign (bracket) indicates the cost saving achieved due to defluoridation.  
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Table D.1.4 Continued.  

 

Description Nalgonda Electrolytic defluoridation 

(EDF) 

Chemically activated cow 

bone (CAB) 

 

Sustainability 

and quality of 

outputs: 

effectiveness of 

fluoride 

removal 

 Suitable for fluoride 
level <10mg/L 

 Adsorbent not 
produced on site i.e. 
purchased from 
factory 

 Treated water is 
murky and less 
palatable taste 
(Meheshwari, 2006; 
Apparao & 
Karthikeyan, 1986). 

 No regeneration 
potential  

 Suitable for (low-high) 
or >10mg/L F- levels  

 High fluoride removal 
capacity (Andey et al. 
2013) 

 Aluminum plate can be 
cut and installed on site 

 Palatable water taste  
 Spent aluminum plate 

can not be reused 

 Suitable for (low-high) or 
>10mg/L F- levels 

 High fluoride removal 
capacity (Yami et al. 2016) 

 Bone char media can be 
produced locally  

 Palatable water taste due to 
organic materials fully 
removed (Yami et al., 
2016) 

 Easily regenerated using 
0.1 M Ca(OH)2 solution  

 

 

Cost of treated 

water in   USD 

per m3  

1.72 

 Water systems 
component works = 
$0.081 / m3  

 Materials & 
chemicals =$0.7607/ 
m3 

 Maintenance cost = 
0.0016  $/ m3’  

 Overhead cost 0.0041 
$/ m3 

 Operational cost = 
0.871 $/ m3 

 

1.08 

 Water systems 
component works = 
$0.029 / m3 

 Materials & chemicals 
=$0.1815/ m3 

 Maintenance cost = 
$0.0006  / m3 

 Overhead cost  $0.0014 
/ m3 

 Operational cost = 
$0.871 / m3 

 

1.13 

 Water systems component 
works = $0.061 / m3 

 Materials & chemicals 
=$0.1910/ m3 

 Maintenance cost =     
$0.0012  / m3  

 Overhead cost=           
$0.0012 / m3 

 Operational cost =          
$0.871 / m3 

 

 
Note: Components common for the three technologies (water Well, pumps and generator, and 
pipes and fittings and raw water storage tankers) were excluded.  
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Appendix E: Additional Research Publication  

 

E.1. Citations of the manuscript 

Yami, T.L., Du, J., Brunson, L.R., Chamberlain, J. F., Sabatini, D.A., & Butler, E.C., 
(2015). Life Cycle Assessment of Adsorbents for Fluoride Removal from Drinking 
Water in East Africa. The International Journal of Life Cycle Assessment, 20(9), 1277-
1286.  
 

Brief note on the manuscript 9 

The manuscript was prepared as part of the Sustainable Engineering (ENGR 

4510 class project, lectured by Dr. Elizabeth Butler) where I was responsible to 

coordinate and lead the analysis and preparation of the manuscript.      

The study evaluated the environmental impacts of four low-cost and easy to use 

adsorbents: activated alumina, aluminum oxide amended wood char, bone char and 

treated alum waste. The environmental impacts of these adsorbents were evaluated 

using life cycle assessment (LCA).  Eco-indicator and the Tool for Reduction and 

Assessment of Chemicals and other Environmental Impacts (TRACI) were used to 

interpret the environmental impacts. The results indicated that the fluoride adsorption 

capacity of the adsorbent is a key determining factor for the impacts. Further, the 

environmental impacts of the adsorbents can be reduced by increasing their fluoride 

adsorption capacity and/or carefully selecting key process components. Regeneration 

and reuse of spent adsorbents has the potential to minimize impacts to ecosystem 

quality. 

                                                 
9 This manuscript was published in the International Journal of Life Cycle Assessment in collaboration 
with Dr. Junyi Du, Dr. Laura Brunson, Dr. Jim Chamberlain, Dr. David Sabatini & Dr. Elizabeth Butler 
under the title “Life Cycle Assessment of Adsorbents for Fluoride Removal from Drinking Water in East 
Africa”. Doi:	10.1007/s11367‐015‐0920‐9.	 


