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Abstract

Due to their hazardous nature, most thunderstorm observations today come from re-

mote sensing platforms such as radar, satellite, and lightning detection sensors. Ad-

vancements in these sensor networks provide the ability to identify and track thunder-

storms at finer spatial and temporal scales than ever before. Thunderstorms, however,

are products of interactions between the land and atmosphere with certain land use and

land cover (LULC) types augmenting the frequency and intensity of thunderstorms.

Yet, these LULC effects may not be directly apparent when examining the remote

sensing fields in isolation. This dissertation represents three research endeavors, each

containing a multi-year climatology of a unique remote sensing dataset, to examine

how the addition of LULC information affects the identification of thunderstorms and

their attendant hazards and the interpretation of remote sensing products.

First, a 20-year climatology of cloud-to-ground (CG) lightning data at 500 m spa-

tial resolution quantifies an increase in isolated regions of high CG lightning frequen-

cies in concert with the construction of antenna towers to accommodate the expansion

of broadcasting and telecommunications technologies across the United States. CG

lightning occurrence is correlated with antenna height and 96% of towers examined

had a higher lightning density with 1 km of a tower compared to 2 km to 5 km away.

Comparing tower strikes in the northern Great Plains reveals that shorter towers are

more likely to observe larger CG lightning densities in the meteorological winter/fall

months compared to the spring/summer months.

Second, a five-year multi-radar/multi-sensor retrospective examining the effects

of city size on thunderstorm initiation and longevity reveals an increase in thunder-

xi



storm frequency downwind of both cities larger than 1100 km2 on convective days

with ingredients historically shown to be conducive for urban-enhancement (i.e., sum-

mer months, afternoon initiation, synoptically weak days, non-supercell modes). As

a result, downwind regions experienced a higher frequency of more intense compos-

ite reflectivity, vertically integrated liquid, and maximum expected size of hail val-

ues compared to equivalent distances upwind. Such effects were not observed in the

smaller two cities and were not observed in any of the cities when examining the full

five-year dataset.

Finally, Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper

Plus surface reflectance data were acquired to examine how tornadoes alter the spec-

tral behavior of grassland, forest, and urban land cover. Generally, independent of

land cover type, tornadoes tend to increase the surface reflectance in the visible and

shortwave-infrared spectral bands and decrease surface reflectance as measured within

the near-infrared (NIR) spectral band. This results in a higher tasseled cap brightness,

lower tasseled cap greenness and wetness, and a lower Normalized Difference Veg-

etation Index (NDVI) values. With tornado damaged forests providing an analogous

signature to forest clearing, a five-year climatology of Landsat imagery was acquired

to compare NDVI, a common damage identification metric derived from the red and

NIR spectral bands, to a disturbance index (DI) derived from the tasseled cap indices

to examine tornado damage in forests. DI is more resilient to seasonal variability as its

coefficients are derived on an image-by-image basis, making it an optimal metric for a

pixel-based identification and tracking of damage and subsequent recovery.
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Chapter 1

Introduction

1.1 A Brief History of Thunderstorm Observation & Remote

Sensing

Thunderstorms are a byproduct of instability in Earth’s atmosphere and result in the

generation of lightning and precipitation with stronger thunderstorms capable of pro-

ducing damaging winds, hail, and tornadoes (American Meteorological Society 2017).

These phenomena likely occurred long before humans existed on Earth (Harland and

Hacker 1966) and, due to the optical spectacle thunderstorms produce in the form of

lightning, subsequently became integrated into religious texts of many ancient civi-

lizations (Prinz 1977; Gary 1994; Rakov and Uman 2003). Beyond its use in stories,

the ancient Greeks documented where weather occurred in both space and time for

both agricultural planning and nautical exploration. These needs led to one of the

first known sources of coordinated weather observation (Taub 2003). Further stan-

dardization of these observations would be driven by advancements in technology and

instrumentation as meteorological phenomena such as thunderstorms do not respect

geopolitical boundaries, time of year, or land use corresponding to visible aspects of

place (Richards 2011).

In the United States, knowledge of how thunderstorms form has its roots in coor-

dinated field observations over seasons and years (Galway 1992). Davis (1886) de-

scribed one such field campaign occurring across New England in 1885. From this
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campaign, descriptions of how thunderstorms propagate and theories on how indi-

vidual smaller-scale storms are bounded by larger-scale synoptic circulations were

formed. The execution of this field project required around 500 volunteers to build

an observation network for data collection and communication. The limited scale at

which observations were measured opened up questions as to their relevance in other

parts of the United States. Regardless of these shortfalls, human collection of ob-

servations for transmission via telegraph would remain the standard method for data

collection for several decades.

The study of thunderstorm hazards is not solely a meteorological problem as the

damage left in its wake has multidisciplinary impacts (i.e., economic, social, physical),

leading geographers during this time period to document where these hazards occurred

(Montz and Tobin 2011). For example, Lemons (1942) describes a multi-year hail cli-

matology describing occurrences by state/territory and examines the economic impacts

on different crop types. However, studies like Lemons (1942) could only use in situ

observations of these phenomena, assembling an incomplete picture of the hazardous-

ness of place.

The concept of remote sensing, that is measuring attributes of a target without being

in direct contact with said target, achieved widespread adoption once the technologi-

cal developments occurring up to and during World War II became public knowledge

(National Academies of Sciences, Engineering, and Medicine 2015). Photography had

been commercially available for around a century, and while initially used to observe

phenomena from the ground, cameras attached to balloons and kites showed its rele-

vance at viewing the Earth’s surface over wider areas. Photography is an example of

passive remote sensing, which collect radiation emitted or reflected by an object. By

World War I, cameras were mounted on airplanes as part of military reconnaissance

missions (Campbell and Wynne 2011). In World War II, the need to track enemy

movements at long ranges precipitated advancements in existing radio detection and
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ranging (hereafter referred to as radar) technologies (Whiton et al. 1998a). Radar is

an active remote sensing system that emits energy and measures the backscattered

energy from the target to discriminate its attributes (e.g., distance, speed, size). In ad-

dition to returns from aircraft, echoes from thunderstorms were also being measured

on radar (Whiton et al. 1998a). Concerns over the potential of weather contaminating

the signal from military aircraft resulted in initial studies post-World War II related to

how precipitation echoes affect the backscatter and attenuation characteristics of radar

(Maynard 1945; Ryde 1946; Bent 1946; Probert-Jones 1990). These studies laid the

foundation for the formation of ground-based networks of Doppler weather radars in

the United States and abroad (Whiton et al. 1998a,b). Subsequent advancements in

signal/image processing techniques and the portability of radar allowed for detailed

examination of thunderstorm processes (e.g., Stout and Huff 1953; Atlas 1963; Brown

et al. 1971; Ray et al. 1975; Davies-Jones et al. 1978). Spatiotemporal and intensity

patterns documented in thunderstorms using Doppler radar over the decades provided

the ability to create conceptual models for how thunderstorms form (e.g., Lemon and

III 1979; Markowski 2002) and persist in different environments.

Since many of these radar/thunderstorm relationships occurred after World War

II, another system was extensively used to identify the locations of thunderstorms.

Lightning is not only visible to our eyes but also emits a broadband radio frequency

pulse (i.e., sferic) that spans from the very low frequency (VLF, 3 kHz) to the very high

frequency (VHF, 300 MHz) ranges of the electromagnetic spectrum (Rakov and Uman

2003). The Watson-Watt and Herd cathode ray direction finder (DF) used two antennas

listening at 10 kHz to detect the magnetic field produced by lightning (Watson-Watt

and Herd 1926; Cummins et al. 1998a). One DF could take this information and

determine the direction of the lightning discharge. Taking the direction vectors from

two DFs allowed for the identification of lightning location. The DF technique was

the common way to detect lightning until Lewis et al. (1960) introduced an alternative
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approach called time-of-arrival (TOA). By setting up a network of time-synchronized

instruments and knowing when the sferic signal reaches each sensor, lightning location

could be derived by examining the arrival time differences within the sensor network.

Improvements in direction finding hardware and software (Krider et al. 1976) lead

to the implementation of regional lightning detection networks across the United States

(Krider et al. 1980; Orville et al. 1983; Mach et al. 1986). In a similar fashion to the

problems of scale faced in early observations of thunderstorms, there was an increased

demand to merge these regional networks together to form a national observation net-

work. From 1984 – 1988, these regional networks were combined, creating the Na-

tional Lightning Detection Network (NLDN; Cummins et al. 1998a; Orville 2008).

Since its inception, this network has been a cornerstone in developing seasonal and

temporal relationships to lightning occurrence (Holle et al. 2016), establishing rela-

tionships with thunderstorm hazards (Schultz et al. 2011), and environmental condi-

tions for different lightning polarities (Carey and Buffalo 2007).

Advancements in processing and dissemination technology not only aided in the

assembly of radar and lightning remote sensing networks, but also the creation of

satellite constellations that provide synoptic views of the Earth from space. As early

as 1946, the U.S. military gathered information on how to design and launch an earth-

observing satellite (RAND Corporation 1946; Lauer et al. 1997). The launch of Sput-

nik 1 in 1957 served as an impetus for rapid resource allocation to develop such satel-

lites. In response to Sputnik, the 1958 National Aeronautics and Space Act created the

National Aeronautics and Space Administration (NASA) and identified parallel mili-

tary and civilian space exploration and exploitation endeavors (Mark 1988). This en-

deavor led to the construction and launch of satellites to monitor Earth’s radiation bud-

get (e.g., Explorer 6), take pictures of clouds and other meteorological phenomenon

(e.g., Television and Infrared Observational Satellite (TIROS)), and examine land and

water ecosystems on the Earth’s surface (e.g., Landsat) (House et al. 1986; Lauer et al.
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1997).

These initial satellites provided a ubiquitous view of meteorological features that

could be compared to other radar and lightning systems. (Whitney Jr. 1963) docu-

mented cloud attributes from severe thunderstorms using TIROS-I satellite imagery

and compared the signatures to terrestrial remote sensing systems. These initial obser-

vations laid the framework for future research endeavors identifying new thunderstorm

features from initial case studies to long-term climatologies (Boucher 1967; Adler

and Fenn 1979; McCann 1983; Heymsfield et al. 1991; Roberts and Rutledge 2003;

Dworak et al. 2012). What TIROS did for atmospheric observations, Landsat did for

land observations. The ability to examine human feedback on the Earth system through

multispectral bands led to significant advancements in land cover identification, eco-

logical modeling, and the launch of additional earth observation satellites (Cohen and

Goward 2004). Satellite-derived land cover classification has greatly improved model

parameterizations of land surface processes (i.e., heat fluxes, moisture) for forecasting

meteorological phenomena, particularly around cities (e.g., Chen et al. 2011). In 2008,

after 35 years of data acquisition, the Landsat archive became freely accessible (Wood-

cock et al. 2008; Wulder et al. 2012) opening the door for a greater integration within

the meteorology community in the years ahead (e.g., Jedlovec et al. 2006). In addition

to understanding the morphology of thunderstorms, these terrestrial and spaceborne

technologies propelled the geographical study of natural hazard occurrence, leading to

advances in analyses of risk, vulnerability, and disaster mitigation policy (Tobin and

Montz 2004; Montz and Tobin 2011).

1.2 Research Overview

Much of what we know about thunderstorms today comes from multi-year observa-

tional retrospectives using remote sensing systems, a tool with a genealogy tracing
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back to geography (Sheng 2011 and references therein). These data represent thunder-

storms and their associated hazards in a form of absolute space (i.e., via mathemati-

cal/geospatial grids); however, thunderstorms are a product of relative space with both

atmospheric (e.g., pressure systems, planetary waves) and terrestrial (e.g., heat fluxes,

moisture transport) feedbacks on various scales affecting its timing and intensity.

Terrestrial features are comprised of physical (i.e., rock, soil), biological (i.e.,

plants, ecosystems), and cultural (i.e., land use, human modification) layers that com-

bine to form a landscape; a key concept through the lens of physical geography (Antrop

2000; Gray 2009; Friess and Jazeel 2017). For many centuries, land use and land

cover (LULC) change have substantially altered the natural landscape to accommo-

date human migration and socioeconomic demands (Foley et al. 2005). Examples of

these changes include deforestation for infrastructure, expansion of agricultural out-

put, and the creation/expansion of urbanized areas. These changing landscapes affect

several surface characteristics (e.g., albedo, imperviousness, heat capacity) that alter

Earth/atmospheric feedbacks at various scales (Pielke et al. 1991; Bonan 2001; Arn-

field 2003; McPherson and Stensrud 2005; Pielke et al. 2007).

In concert with advancements in computing technology, numerical modeling sys-

tems used to forecast thunderstorms are able to capture information at spatial resolu-

tions ≤ 1 km, allowing for the transfer of energy and momentum between the Earth’s

surface and lower atmosphere to be simulated (Trusilova et al. 2015). Since these

feedbacks are dependent on LULC type, recent studies examine how to best repre-

sent these data in model simulations (e.g., Nemunaitis-Berry et al. 2017; Reames and

Stensrud 2017). Remote sensing systems also have the ability to resolve information

at resolutions ≤ 1 km; however, the role LULC plays in data capture and interpreta-

tion from these systems is dependent on the system employed and is an underexplored

topic. This dissertation examines how prerequisite knowledge of LULC affects the

collection and interpretation of remotely sensed observations of thunderstorms and
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their attendant hazards. Each chapter corresponds to a multi-year retrospective us-

ing a unique remote sensing system and LULC dataset and is formatted as individual

research articles for entry into peer-reviewed journals.

Chapter 2 examines lightning, the hazard that defines a thunderstorm. Around

1.4 billion lightning flashes occur across the earth each year (Christian et al. 2003).

Lightning flashes take on two forms, those that remain in the cloud (i.e., intracloud or

IC) and those that strike the ground (i.e., cloud-to-ground or CG). There generally are

more IC flashes than CG strikes and this ratio is geographically dependent (Boccippio

et al. 2001). Yet, CG lightning is more dangerous to life and property than IC flashes,

resulting in a greater demand to detect its occurrence (Curran et al. 2000). Since

1995, the NLDN has been collecting observations of CG lightning occurrence with a

median locational accuracy of around 500 m (Cummins and Murphy 2009). However,

most studies map CG lightning occurrence at a coarser spatial resolution (~20 km; see

review by Holle et al. 2016). At this coarse resolution, many different LULC types

could be in a grid cell. This raised my initial question; do specific LULC types attract

more lightning than others?

The initial hypothesis was that cities observe a higher frequency of lightning than

non-city areas. However, in performing an exploratory analysis, it was discovered that

a majority of grid cells with high lightning counts were displaced from cities. This

led to a manual examination of these grid cells where it was subsequently observed

that an antenna tower existed at most of these locations. Due to the coarse resolution

chosen by past researchers studying the climatological distribution of lightning, these

tower-based effects were being smoothed out. It is common knowledge that lightning

has a propensity to strike tall artificial structures over natural elevation of equivalent

height (McEachron 1939; Berger and Vogelsanger 1969), however, many analyses of

tower-triggered lightning are focused in a fixed geographic location or encompass a

single lightning producing event (Wang et al. 2008; Warner et al. 2012, 2014). With
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20-years of NLDN lightning data, chapter 2 represents the highest spatial and tem-

poral resolution analysis and largest climatology of tower-induced lightning to date.

This chapter was accepted for publication in Geophysical Research Letters pending

additional revisions.

Chapter 3 examines the role of city size in the augmentation of thunderstorms that

pass over a city. The conversion from natural to urban land cover is an extreme case of

LULC change (Shepherd 2005) dramatically altering the (1) heat capacity and causing

urban heat islands (UHIs; Oke 1987); (2) percentage of impervious surfaces and sur-

face roughness (e.g., Thielen et al. 2000); and (3) composition of atmospheric aerosols

(e.g., van den Heever and Cotton 2007). Many of these variables are correlated with

urban size (Oke 1973; Schmid and Niyogi 2013) with larger cities generally having

higher temperatures compared to rural areas. Given that over half of the global pop-

ulation resides in urban areas, there is a precedent to continue studying these urban

influences on the Earth/atmosphere system (see review by Mitra and Shepherd 2016).

This chapter describes an innovative set of methods to blend information from 19

Weather Service Radar 1988 Doppler (WSR-88D) sites, NLDN lightning, and model

analysis data, into a 3D cube of data at least 1 km spatial and 1 min. temporal reso-

lution. Thunderstorms were automatically defined and tracked through four cities of

variable size located in the United States Great Plains. Values of composite reflectivity,

a common radar-derived metric used in other studies (e.g. Ashley et al. 2012; Haber-

lie et al. 2015) in addition to two vertically integrated products novel to this field of

study were quantified upwind and downwind of each city. This chapter was accepted

for publication in the Journal of Applied Meteorology and Climatology pending addi-

tional revisions.

Chapter 4 migrates from hazard identification to response. Knowing where thun-

derstorm hazards (i.e., wind, hail, tornadoes) occur is valuable in determining a cli-

matological frequency of such events for forecasting; however, there tends to be a
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population bias with hazard reporting (King 1997; Doswell III et al. 2005). After tor-

nadoes, National Weather Service (NWS) employees will perform a damage survey

to document the damage that occurred; however, they tend to focus in urban areas as

a majority of the Enhanced Fujita (EF; Wind Science and Engineering Center 2006)

scale guidance is focused on human-made structures. In addition, urban areas gen-

erally consist of a higher population density, allowing more opportunities to report a

hazard occurrence in contrast to rural areas with a lower population density. This has

led to several papers recommending the use of multispectral satellite imagery to pro-

vide a synoptic view of the tornado damage track (e.g., Yuan et al. 2002; Jedlovec et al.

2006; Molthan et al. 2014) by using image-processing techniques.

Granted, image-processing techniques can highlight where damage occurred, how-

ever heretofore, a comprehensive study examining how tornadoes alter the spectral

response of different LULC types has not been performed. Chapter 4 first examines

how tornadoes alter the spectral behavior of the visible, near-infrared, and shortwave

infrared wavelength regions captured by the Landsat 5 Thematic Mapper and Land-

sat 7 Enhanced Thematic Mapper Plus for urban, grassland, and forest land cover.

These individual bands are used to calculate common image-transformation products

such as the Normalized Difference Vegetation Index (NDVI; Rouse Jr. et al. 1973;

Tucker 1979) and Tasseled Cap Indices (Kauth and Thomas 1976). Focusing on for-

est damage, an area not typically examined in ground-based damage surveys, Chapter

4 examines five years of Landsat imagery around one tornado outbreak to evaluate

a Disturbance Index (DI; Healey et al. 2005), commonly used in ecological studies,

to NDVI in both identifying initial tornado damage and monitoring damage recovery.

This chapter was published in the Journal of Applied Meteorology and Climatology in

April 2017. Additionally, the American Meteorological Society named this article a

"Paper of Note", allowing for an expedited version of this paper to be published in the

April 2017 issue of the Bulletin of the American Meteorological Society.
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Chapter 2

Antenna Structures and Cloud-to-Ground Lightning

Location: 1995–2015

Abstract

Spatial analyses of cloud-to-ground (CG) lightning occurrence due to a rapid expan-

sion in the number of antenna towers across the country are explored by gridding

20-years of National Lightning Detection Network (NLDN) data at 500 m spatial res-

olution. 99.8% of grid cells with > 100 CGs were within 1 km of an antenna tower

registered with the Federal Communications Commission. Tower height is positively

correlated with CG occurrence; towers taller than 400 m AGL experience a median

increase of 150% in CG lightning density compared to a region 2 km to 5 km away.

In the northern Great Plains, the cumulative CG lightning density near the tower was

around 138% (117%) higher than a region 2 to 5 km away in the September – February

(March – August) months. Enhanced CG frequencies typically also occur in the first

full year following new tower construction, creating new hot spots.

2.1 Introduction

For over 80 years, tall structures have facilitated analyses on lightning production and

its electrical characteristics (McEachron 1939; Rakov and Uman 2003). In the last

30 years, humankind has observed an expansion in digital technologies and broad-
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casting capabilities (Hilbert and López 2011). Concomitant to this expansion is the

construction of antenna towers across the continental United States (CONUS) with the

number of Federal Communications Commission (FCC) antenna registrations increas-

ing from 38,514 before 1995 to 130,883 after 2015. In 1995, the National Lightning

Detection Network (NLDN), a lightning location system covering North America, was

renovated with updated sensors to improve cloud-to-ground (CG) detection efficiency

(80%–90% for flashes ≥ 5 kA) and location accuracy (median error ~500 m) (Cum-

mins et al. 1998b). Continued investment through the turn of the century has further

improved these detection metrics with a uniform CG detection efficiency of 95% and

a variable detection efficiency for cloud flashes (~16%–40%) (Cummins and Murphy

2009).

The performance of the NLDN has made it an essential tool in documenting the

spatiotemporal distribution of lightning into maps, as reviewed by Holle et al. (2016).

Due to the wide spatial area examined, many climatological studies rely on coarse

gridding techniques (≥ 20 km) to summarize CG occurrence, disregarding smaller-

scale features (e.g., antenna towers) that could alter the frequency of lightning. Berger

and Vogelsanger (1969) observed that lightning initiation was more prevalent from

towers compared to mountain peaks of equal elevation, resulting in isolated regions

of elevated lightning occurrence. The type of lightning occurring near a human-made

structure can be either downward or upward (Rakov and Uman 2003) with upward

lightning documented to occur with either the presence or lack of nearby flash activity

(Wang et al. 2008; Mazur and Ruhnke 2011; Warner et al. 2012; Zhou et al. 2012).

Contemporary studies have examined this human-made modification in lightning using

NLDN in the CONUS (Stanley and Heavner 2003; Warner et al. 2012, 2014), Canada

(Lafkovici et al. 2008), with analogous evaluations in Europe (Diendorfer et al. 2009;

Azadifar et al. 2016) and Asia (Wang et al. 2008; Chen et al. 2012). These studies have

encompassed a limited geographic domain and/or a particular season; however, both
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geographic and seasonal mechanisms drive where lightning occurs (Holle et al. 2016).

This study provides a geographic perspective on the prevalence of tower-initiated

lightning by first examining lightning occurrence across the CONUS through a 20-

year, 500 m spatial gridding of NLDN data. The spatial association of elevated CG

lightning locations to FCC towers and the effects of tower height, age, and season

have in modifying the local lightning density are addressed herein.

2.2 Data & Methods

2.2.1 NLDN

The National Severe Storms Laboratory maintains an archive of quality-controlled

NLDN data back to the first full operational year in 1989. Information regarding the

detection time, location, polarity, and multiplicity were recorded for each CG strike.

Our study period starts in 1995 following the first network upgrade (Cummins et al.

1998b) However, this upgrade also increased the detection efficiency of lower ampli-

tude events, which several studies reveal to be intracloud (IC) flashes (e.g., Cummins

et al. 1998b; Biagi et al. 2007; Cummins and Murphy 2009; Fleenor et al. 2009; Emer-

sic et al. 2011). Following their suggestions and to increase the confidence in the

NLDN detections being CGs, all positive CGs (+CGs) and negative CGs (–CGs) with

a peak current less than 15 kA and 10 kA respectively were discarded. This removed

46.5% (23.7%) of +CGs (–CGs) detected over the 20-year period. With a focused in-

terest in FCC-registered towers, the 29,196,768 +CGs and 316,893,494 –CGs detected

over the CONUS were gridded at 500 m spatial resolution (Fig. 2.1a).
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2.2.2 Antenna Tower Locations

The FCC Antenna Structure Registration database contains records of construction

history, location, and heights for all new and proposed structures that require notifica-

tion to the Federal Aviation Administration. This database is updated daily and when

queried had 130,883 records with a construction date before 1 January 2016. From

these records, 1,725 towers had a height above ground level (AGL) exceeding 200 m.

The spatiotemporal accuracy of these towers were evaluated using satellite imagery

within Google Earth. In 77 cases, a tower was missing or was located within 500 m

of another tower. In cases where two towers were collocated, the taller tower was re-

tained and the smaller tower was removed. In 45 cases where towers were demolished

and replaced, these records were combined with the mean of the two tower heights

recorded. Querying the tower proposal applications revealed seven cases where con-

struction occurred but no FCC paperwork was filed. These towers were included and

had their construction dates estimated by finding the first satellite image date where

the tower existed. After quality control, 1,610 towers exceeding 200 m remained in

the database. In order to examine the effects of tower height on lightning frequency

while normalizing for thunderstorm occurrence, we first applied a 10 km spatial buffer

to each of the towers exceeding 200 m and removed towers that overlapped spatially.

This reduced the number of towers to 675. To maintain a consistent 20-year study pe-

riod around each tower, only the 443 towers built before 1995 were examined (Fig. 2.3

b,c). These towers had their lightning density calculated within 1 km (inner domain)

and between 2 km to 5 km away (outer domain). Finally, locations with a low thunder-

storm occurrence could produce outliers when comparing the flash densities between

these domains. This was mitigated by removing eight towers where the outer domain

flash density was fewer than two flashes per km2.
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2.3 Results

The 20-year CG lightning climatology spatially reveals an increase in lightning occur-

rence from the northwest to southeast regions of the CONUS (Fig. 2.1a), comparable

to observations in Holle et al. (2016). A spatially continuous region of enhanced light-

ning frequencies were observed along the coastline of the Gulf Coast states and ex-

tending northward up to North Carolina. A primary driver for this enhancement is the

creation of land and sea breeze driven moisture convergence zones creating favorable

thunderstorm updraft environments (e.g., Hill et al. 2010). The high spatial resolu-

tion of this climatology reveals an exponential decline in the percentage of CONUS

area with higher lightning frequencies (Fig. 2.1b). The number of grid cells with 40+

CGs only makes up around 1% of the CONUS area but corresponds to approximately

4.25% of the cumulative 20-year lightning frequency (N=346,090,262).

While the southeast CONUS, particularly near the coastline, provides a conducive

environment for enhanced lightning production, grid cells exceeding progressively

higher CG counts are located away from this region (Fig. 2.2) At 75+ CGs (N=1,412;

not shown), only 52.2% of grid cells were located >100 km from the southeastern

coastline (gray shading; Fig. 2.2). At 100+ CGs (N=613) and 200+ CGs (N=154),

76.2% and 81.2% of the grid cells were located >100 km away from the coasts. Lo-

calized cells of higher CG counts are prevalent across the Great Plains, Midwest, and

Ohio Valley regions. The highest CG count in a single grid cell (619) was located at

35.81◦N/94.03◦W, around 19 mi (30.5 km) southeast of Fayetteville, Arkansas.

Overlaying the entire FCC database reveals that 99.8% of grid cells with 100+

CGs also had a tower located within 1 km of its center (Fig. 2.3a) The single location

with no FCC tower was located in Georgia where visual examination reveals a naval

communications tower that likely contributed to the 105 CGs registered in this area.

98.2% (24.8%) of matches were associated with a tower height exceeding 200 (500)
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m. Tower height is correlated with lightning occurrence with towers exceeding 500 m

having a median frequency of 173 CGs compared to 138 CGs around shorter towers.

In 76.6% of cases, the tallest tower existed prior to 1996 (Fig. 2.3b). Towers built

before 1996 had a wider range of CG counts (100 to 619) compared to towers built

after 1996 (100 to 465).

Departing from fixed CG frequency thresholds and examining modifications in

lightning density around towers again reveals a positive correlation with height (Fig.

2.4a). Around 96% of the 435 isolated towers had a higher lightning density within

1 km from the tower (inner domain) compared to the density measured 2 km to 5 km

away (outer domain). The median increase was 29% for towers between 200 m to

300 m tall and up to around 150% for towers > 400 m tall. A comparison of peak

currents by domain shows a larger overall percentage of –CGs and +CGs registered

a higher peak current within the inner domain (Fig. 2.4b). This separation is more

defined for –CGs with approximately 30% (22%) of inner (outer) domain –CGs hav-

ing a peak current > 30 kA. For +CGs, the separation in the distributions is smaller

with the difference between the two probabilities never exceeding 2%. Yet, the +CG

distribution in the inner domain yields a higher probability of occurrence between 16

kA and 84 kA. Thus, there is a strong likelihood that ground flashes either initiated by

or interacting with these towers typically have higher peak amplitudes than non-tower

flashes.

Mapping the percent change in the inner region (Fig. 2.4c) reveals that much of

the CONUS experiences up to a 100% increase in the inner domain lightning density

compared to the outer domain, particularly through the south-central and southeast

CONUS. The northern Great Plains and upper Midwest (i.e., Nebraska northward and

eastward to Michigan) measure larger departures with 47% of towers in these states

having an inner domain CG density at least 100% higher over the outer domain. In

87% of these cases, these towers were > 300 m. The highest percentage change of
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631% occurred near a 512 m tower in Wisconsin (45.66◦N/89.21◦W) where 159 (22)

CGs/km2 occurred within the inner (outer) domains.

This region is also prone to experiencing both rain and snowfall regimes compared

to southern latitudes (e.g., Groisman and Easterling 1994). Segmenting lightning oc-

currence into either the cold season (meteorological fall/winter; Fig. 2.5a) or warm

season (meteorological spring/summer; Fig. 2.5b) reveals that 94% (98%) of cold

(warm) season towers (N=100) had an elevated CG density in the inner domain. While

a greater percentage of towers had an overall increase in CG density during the warm

season, more towers exhibited a greater positive increase in CG density in the inner

domain during the cold season. Eight towers (343 m to 609 m) had a 400%+ increase

in CG density in the cold season compared to three warm season towers (457 m to 609

m). Accumulating these densities by season reveals that the inner domain had a 138%

(117%) higher lightning density in the cold (warm) season. Segmenting by polarity

yields that around 94% (86%) of CGs in the inner (outer) domain were –CGs in both

seasons. The percentage of –CGs is correlated with tower height and reaches 95% in

regions where the tower height exceeds 400 m.

Heretofore the tower dataset has been constrained to construction dates prior to

1995. For the 236 towers > 200 m tall and built after 1 January 1995, approximately

74% had a higher inner domain CG density the year following construction. For the

ten towers taller than 500 m, nine measured a higher inner domain CG density in the

next full year. This elevated CG density persists and is observable across different

CONUS regions (Fig. 2.6) For example, in Colorado, the inner domain saw a four-

fold increase in lightning density (~10 CGs/km2) in 2004 after construction of a 608

m tower. Similar trends are seen in other states where many of the yearly CG densities

in the outer domain are < 7.5 CGs/km2 while towered locations frequently see higher

densities, up to 27.5 CGs/km2 as measured near a 609 m tower in Oklahoma in 2015.
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2.4 Discussion

While it has long been understood that lightning is attracted to and initiated by tall ob-

jects (e.g., Mazur and Ruhnke 2011), the change in CG density (e.g., median ~150%

increase for towers > 400 m) near towers throughout the CONUS is more than a nat-

ural occurrence. Some flashes are likely the result of natural terminations; however,

it is highly likely that others were either lightning-triggered or self-initiated upward

lightning (e.g., Wang et al. 2008; Mazur and Ruhnke 2011; Warner et al. 2014). Thus,

a majority of flashes would not have occurred in the absence of a tower.

Supporting evidence of upward lightning is seen with a greater percentage of –CGs

occurring near the tower (95%) compared to further away (84%). As noted by both

Mazur and Ruhnke (2011) and Warner et al. (2012), initial positive upward leaders

from towers are unlikely to be recorded by the NLDN due to their low continuing

current. Once an attachment happens, connecting with either a preceding IC flash or

following a subsequent initiation within the storm charge center, the recoil streamers

and/or return strokes will be recorded as a –CG or potentially multiple –CGs. This is

likely why the overall percentage of –CGs is correlated with tower height.

The peak currents of flashes interacting with towers or other tall objects have so

far only been evaluated in limited case studies (e.g., Garolera et al. 2015). Within

this study, the population of –CGs and +CGs near a tower generally had a higher

peak current than the population of flashes in the outer region. These differences were

larger with –CGs (~8% more > 30 kA) than +CGs. Overall, this could infer that tower-

initiated lightning may provoke a larger charge transfer compared to natural lightning,

noting, however, the caveats outlined in Warner et al. (2012) on the accuracy and

polarity NLDN assigns to certain tower-initiated strikes.

As expected, CG lightning is less common during the colder months (September

– February). In the northern Great Plains, there were 84% fewer CGs during this
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period. Uniquely, however, shorter towers (> 340 m) in this region registered higher

CG densities (i.e., eight towers > 400%) compared to their outer domains in the cold

season. Furthermore, 56% of towers also registered a higher percentage change in the

cold season over the warm season. This is indicative of towers being more susceptible

to lightning due in part to generally lower altitude cloud bases and charging regions

observed in winter convective modes (Schultz and Vavrek 2009).

This study is limited to isolated towers (> 10 km), therefore we cannot examine

more complex relationships such as concurrent return strokes by multiple towers (e.g.,

Kitterman 1981; Lu et al. 2009; Warner et al. 2012). Additionally, studies comparing

video capture with NLDN reports note that many discharges are missed by the NLDN,

possibly due to their low peak current (e.g., Warner et al. 2012). In addition to these

flashes not detected by the NLDN, many more may be discarded in our study due to

the thresholding of NLDN data to > 10 kA (–CGs) and 15 kA (+CGs). Thus, there is

likely an even higher percentage increase in lightning occurrence near towers than is

reflected here.

In the future, the strong relationship between amplified CG rates and towers may

allow for the use of CG lightning records to determine the construction dates of tall

structures in the absence of formal records. The examples in Fig. 2.6 all denote an ele-

vated lightning density by more than 100% in the year following construction. Though

these flashes represent a small percentage of the overall NLDN record, continued con-

struction of new structures could increase the number of lightning hot spots across the

CONUS.

2.5 Summary

A 20-year, high-resolution (500 m) climatology of NLDN CG lightning reveals that

while enhanced lightning occurrence is more prevalent along the coastline in the south-
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eastern CONUS, isolated spatial peaks in lightning frequency (> 100 CGs) could be

observed in locations extending throughout the central CONUS. Subsequently, this

study is the first to document and quantify the spatial distribution of highly localized

lightning enhancements caused by human-made structures across the CONUS. Given

the close spatial associations between towers and lightning maxima, we feel NLDN

serves as a beneficial tool not only in broad mapping analyses of lightning occurrence,

but also in documenting and examining these smaller-scale influences.

A majority of pixels with > 100 CGs were located at least 100 km inland. Spatial

comparisons with FCC towers reveal that all grid cells exceeding 105 CGs had a reg-

istered tower within 1 km. Additionally, 76.7% of matching towers were constructed

before 1995, allowing for two decades of thunderstorm opportunities and tower in-

teractions. CG frequency was positively correlated with tower height with 98.2% of

matching towers having a height > 200 m.

This positive correlation was corroborated when comparing the lightning densities

within 1 km from a tower to an area 2 km to 5 km away. 96% of towers had a higher

density closer to the tower with the median percentage increase being around 29%

for towers between 200 m to 300 m and increasing to around 150% for towers above

400 m. These departures are amplified in the north-central CONUS where towers

are generally struck by a higher percentage of less-frequent thunderstorm events com-

pared to the southeast CONUS where thunderstorm events are more prevalent. This

departure in CG density is even more disparate in the fall/winter months with towered

locations seeing a higher overall percentage of lightning compared to events in the

spring/summer months. Additionally, a four-fold increase in CG densities were mea-

sured around shorter tower heights during the cold season. Finally, these trends were

also observed around new tower constructions. In the five towers examined, there was

a three-fold increase in the lightning density within 1 km of the tower in the first year

post-construction, even in regions with fewer thunderstorm opportunities. This is a
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notable concern as additional communications and wind power turbines (e.g., Hitaj

2013) fill the skyline in the future.

Acknowledgements

The authors thank Patrick Marsh for his guidance on gridding the lightning data. Fund-

ing was provided by the NOAA/Office of Oceanic and Atmospheric Research un-

der the NOAA-University of Oklahoma Cooperative Agreement #NA11OAR4320072,

U.S. Department of Commerce and the NASA Interdisciplinary Science Program

project NNX12AM89G. The views expressed here are those of the authors and do

not necessarily represent those of the NOAA, NSSL, or CIMMS.

20



Figure 2.1: (a) A 20-year 500 m spatial resolution map of lightning frequency and
associated CDF plots summarizing (b) the accumulated percentage of total CGs (blue
line) and CONUS area (red line) exceeding a specified CG threshold. Around 10% of
the CONUS area had no CGs and 1% had 40+ CGs.
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Figure 2.3: At locations where an FCC tower was within 1 km of a grid cell in Figure
2.2, the tallest tower had its (a) maximum height (AGL) and (b) construction date
plotted. Cells with no FCC-registered tower are marked with an ’X’ in (a)
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Figure 2.4: (a) Scatterplot of the percent departure in CG density measured within the
inner and outer domains and segmented by tower height. The median percent change
at 100 m intervals is annotated in each region. (b) CDF plots of peak current measured
in the inner and outer domains by polarity. (c) A map of the percent change for the
435 FCC towers that were ≥ 200 m AGL and further than 10 km from another FCC
tower ≥ 200 m AGL.
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Figure 2.5: The percent change in CG density within 1 km of an antenna tower (in-
ner domain) compared to 2–5 km away (outer domain) associated with CG producing
events in the meteorological fall/winter months (top) and spring/summer months (bot-
tom). The plots on the right correspond to the percentage of –CGs and +CGs measured
in both domains as a function of tower height.
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Figure 2.6: Google Earth imagery before (left column) and after (middle column) the
construction of antenna towers along with a 20-year time-series of the yearly CG den-
sities in the inner (blue line) and outer (red line) domains (right column). Construction
years are marked with a black line in each time-series plot and clearly show an elevated
CG density near each tower after construction.
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Chapter 3

Effects of City Size on Thunderstorm Evolution

Revealed through a Multi-Radar Climatology of the

Central United States

Abstract

Five years of 0.01◦-by-0.01◦ multi-radar multi-sensor grids were assembled using

radar, model, and cloud-to-ground lightning data to examine how city size augments

thunderstorms around four cities: Dallas/Ft. Worth, TX; Minneapolis/St. Paul, MN;

Oklahoma City, OK; and Omaha, NE. Thunderstorms were identified every minute

using an automated storm tracking algorithm to collect values of composite reflectiv-

ity, vertically integrated liquid (VIL), and maximum expected size of hail (MESH).

These fields were analyzed by independently sampling the maximum every 10 min.,

and accumulating its spatial footprint. Upwind and downwind regions were defined on

a case-by-case basis using the mean storm motion. In addition to examining the full

climatology of events, an urban favorable (UF) subset of non-supercells occurring in

the late afternoon/evening in the meteorological summer on weak synoptically forced

days were also examined.

In the full climatology, regions at variable ranges upwind of each city generally had

stronger signatures and higher areal mean values of reflectivity, VIL, and MESH. In the

UF subset, the larger two cities (Dallas/Ft. Worth and Minneapolis/St. Paul) had a 24%
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- 50% increase in the number of downwind thunderstorms, resulting in an increase in

the frequency of stronger radar-based values and a higher overall downwind areal mean

reflectivity, VIL, and MESH. The two smaller cities - Oklahoma City and Omaha - do

not show a uniform change in these radar parameters in the UF subset. This pattern

suggests that larger cities could increase thunderstorm occurrence and their intensity

downwind of the prevailing flow under appropriate environmental conditions.

3.1 Introduction

The rate of urbanization by the global population is on an upward trend, from 30% in

1950 to 54% today, with two-thirds of the world projected to be living in urban areas

by 2050 (United Nations 2014). Population redistribution concomitant with economic

development have resulted in many cities across the world experiencing an urban area

expansion at more than double the rate of their respective urban population growth in

the latter portion of the 20th century (Angel et al. 2011). Expanding urban landscapes

reduce local biodiversity and enhance surface roughness due to the spatial distribution

of impervious surfaces (Thielen et al. 2000; Seto et al. 2012), modify the atmospheric

contributions of aerosols (van den Heever and Cotton 2007; Rosenfeld et al. 2008;

Ntelekos et al. 2009), and alter surface energy budgets to generate Urban Heat Islands

(UHIs; Oke 1973, 1987) As a result, there is a continued demand to study the meteo-

rological impacts, among other topics, caused by these urban-induced environmental

feedbacks (Melillo et al. 2014).

Studies investigating the effects of urban environments on precipitation modifica-

tion have been occurring for nearly a century (see reviews by Lowry 1998; Shepherd

2005; Souch and Grimmond 2006; Shepherd 2013; Mitra and Shepherd 2016). One

notable observational study, as summarized in Changnon Jr. (1968, 1980), suggested

that Chicago is increasing both rainfall and hail hazards in La Porte, Indiana. This
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study led to a seminal coordinated field program, the Metropolitan Meteorological

Experiment (METROMEX), which explored inadvertent modification of precipitation

patterns by the city of St. Louis, MO (Changnon Jr. et al. 1971). Results from this

campaign revealed a 4%–25% increase in rainfall downwind, around 50 km to 75 km

from the city, during the warm season (Changnon Jr. 1979; Changnon Jr. et al. 1991).

METROMEX not only validated prior urban thunderstorm studies, it also served as

the impetus for continued urban meteorological modification studies across the United

States (e.g., Westcott 1995; Bornstein and Lin 2000; Shepherd et al. 2002; Dixon and

Mote 2003; Burian and Shepherd 2005; Mote et al. 2007; Ntelekos et al. 2007; Rose

et al. 2008; Hand and Shepherd 2009; Niyogi et al. 2011; Ashley et al. 2012; Smith

et al. 2012b; Haberlie et al. 2015) and around the world (e.g., Jauregui and Romales

1996; Tayanc and Toros 1997; Robaa 2003; Kishtawal et al. 2010; Mitra et al. 2012;

Zhang et al. 2014; Dou et al. 2015).

Contemporary observational studies use a variety of tools and datasets to docu-

ment inadvertent precipitation modification by urban areas. Many past approaches

have relied on the measurement of precipitation at a single point or assembly of obser-

vational points into a contour map (Huff and Changnon Jr. 1972; Jauregui and Romales

1996; Bornstein and Lin 2000; Burian and Shepherd 2005; Diem and Mote 2005). Us-

ing 19 rain gauges around the Houston, TX metro area, Burian and Shepherd (2005)

found an increase in rainfall totals ranging from 59% within the urban footprint to

30% downwind of Houston compared to an upwind control area between noon and

midnight. Diem and Mote (2005) found an increase in the number of summertime

heavy-precipitation days at a station 30 km downwind of Atlanta, GA, which they

postulate is due to increased urbanization of the metropolitan area. While gauge net-

works serve as a direct measurement of the amount of rainfall, thunderstorms and their

associated precipitation magnitudes can be highly variable, causing an underestimate

in precipitation totals with a sparse observation network (Smith et al. 1994; Souch and
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Grimmond 2006).

Hand and Shepherd (2009) compared satellite-based radar from the Tropical Rain-

fall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) to rain

gauges around Oklahoma City, OK. Not only did they observe a strong relationship

between prevailing wind and a rainfall enhancement in a 25 km area NE of OKC;

they also found that the satellite-based precipitation estimates were relatively accurate

when compared to gauge networks. The global ubiquity of satellite data allows for the

use of TRMM/TMPA data to explore the positive correlation between rapid urbaniza-

tion and precipitation enhancement in India (Kishtawal et al. 2010; Mitra et al. 2012)

and a measured decline in the number of precipitation days in Beijing (Zhang et al.

2014). However, due to its non-geostationary orbit, the TMPA system was unable to

do sub-hourly analyses, limiting its ability to collect precipitation information at an

event specific timescale (Shepherd and Burian 2003).

The integration of lightning detection networks partially addresses these temporal

limitations by allowing for the identification of predominantly cloud-to-ground (CG)

strikes across widespread areas at sub-minute resolution (see review by Stallins and

Rose 2008). Urban aerosols can modify the microphysical processes associated the

strength and duration of updrafts (van den Heever and Cotton 2007; Rosenfeld et al.

2008) and updraft strength is strongly correlated to total lightning production (Deier-

ling and Petersen 2008). In the United States, Steiger et al. (2002) and Stallins et al.

(2006) found enhanced CG lightning densities over and downwind of Houston, TX

and Atlanta, GA respectively. Yet, CG lightning occurrence can be discontinuous in

time and space, leading to challenges in spatial association with specific thunderstorms

(Boussaton et al. 2007; Stallins and Rose 2008).

Ground-based radar provides a spatially continuous view of precipitation echoes

and is a valuable tool to examine the urban feedbacks on thunderstorms (e.g. Matyas

2010). Atkinson (1971) used radar to track echo position and intensity of a single
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thunderstorm and observed rapid cloud growth followed by a local precipitation max-

imum within the city limits of London, England. Bornstein and LeRoy (1990) used

radar reflectivity to show echo maxima over New York City, NY associated with urban-

initiated thunderstorms and highlight a propensity for storms that initiated upwind of

the city to bifurcate after interacting with the city. In recent years, Doppler radar data,

particularly from the Weather Service Radar-1988 Doppler (WSR-88D) network, have

been used to develop climatologies of urban-induced thunderstorm initiation and in-

tensity tracking (Mote et al. 2007; Niyogi et al. 2011; Ashley et al. 2012; Haberlie

et al. 2015). Leveraging hourly precipitation data from the WSR-88D site co-located

with Atlanta, GA, Mote et al. (2007) observed precipitation enhancement downwind

of the city that is most evident in the early evening hours through the summer months

of 2002-2006. Niyogi et al. (2011) evaluated 91 unique summertime thunderstorm

events around Indianapolis, IN and found that 60% of storms interacting with the city

changed structure (i.e., shape and size) with these changes occurring more frequently

in daytime over nighttime convection. Ashley et al. (2012) evaluated 10 summers of 5

min. composite reflectivity data alongside CG lightning data to examine the influence

of five urban and two rural areas in the Southeast United States have on thunderstorm

activity occurring on synoptically benign days. Their observations suggest that major

cities have a positive correlation to thunderstorm frequency and intensity while mid-

size cities provide a more muted signal that is difficult to decouple from other local or

regions physiographical processes. Furthermore, lightning was much more common

around the urban environments compared to the rural areas. Haberlie et al. (2015) used

an extended version of the composite reflectivity dataset from Bentley et al. (2010)

and Ashley et al. (2012) to examine how the urban environment around Atlanta, GA

affects the rate of isolated convective initiation (ICI) events. After segmenting to sum-

mer months and synoptically benign days, they found that ICI occurrence was most

pronounced in the late afternoon/early evening hours (2100 UTC – 0300 UTC), partic-
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ularly during weekdays compared to a rural control region west of the city. In addition,

ICI occurrence tended to occur over and downwind of the city area, particularly for 700

hPa flows with a northerly component.

In general, most investigations using radar to understand urban-induced feedbacks

have focused on summertime months when urban and rural temperature differences are

the highest, however, these temperature differences exist year-round (Gallo and Owen

1999). The few multi-radar WSR-88D studies have focused on the southeastern United

States (Bentley et al. 2010; Ashley et al. 2012; Haberlie et al. 2015) while observa-

tional studies outside this region have focused on single-radar analyses of reflectivity

(Bornstein and LeRoy 1990; Niyogi et al. 2011) or rainfall (Smith et al. 2012b) for one

metropolitan area. Huff and Changnon Jr. (1973) found inadvertent precipitation mod-

ification around six cities, three of which (Cleveland, Chicago, St. Louis) were located

in the Central United States and displaced from the eastern seaboard where a majority

of observational WSR-88D studies have occurred. Furthermore, several studies sug-

gest that thunderstorm modification can lead to taller convective clouds, allowing for

greater amounts of supercooled water to enter the -10◦C to -20◦C isothermal region,

enhancing the potential for lightning and hail hazards (Shepherd 2005; van den Heever

and Cotton 2007). Yet, the ability to observe and calculate the vertically-integrated sig-

nal of a radar echo is underexplored to date.

This study fills in some of the knowledge gaps above by first introducing a strategy

to generate a multiple-radar multiple-sensor (MRMS; Smith et al. 2016) 3D reflec-

tivity cube as well as 2D vertically-integrated fields for precipitation volume and hail

growth. Second, this workflow is used to create a five-year (2010–2014), all season,

radar dataset to quantify storm-based thunderstorm modification effects around four

cities of variable size in the Central United States: Dallas/Fort-Worth, TX (DFW), Ok-

lahoma City, OK (OKC), Omaha, NE (OAX), and Minneapolis/St. Paul, MN (MSP).

This region is not only underexplored in contemporary studies, but represents an area
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sharing a common ecological setting while being relatively sheltered from major phys-

iographic factors (i.e., oceans and mountain ranges) that can influence thunderstorm

activity and be difficult to decouple from urban influences (Ashley et al. 2012; Walker

et al. 2015).

In addition to generating the MRMS framework, this study uses an automated thun-

derstorm identification and tracking system to identify thunderstorm areas (hereafter

referred to as objects) and quantify several radar-based attributes over time. Using

these event-specific objects, this study will expand upon past observational hypotheses

in pursuit of answers to the following questions:

1. What role does city size play in the modification of a thunderstorm echo, ex-

pressed in terms of composite reflectivity, downwind of an urban area?

2. How are vertically-derived products, expressed using calculations of Vertically

Integrated Liquid (VIL; Greene and Clark 1972), and Maximum Expected Size

of Hail (MESH; Witt et al. 1998b) modified in proximity to an urban area?

One of the primary benefits to use a multi-radar blending approach over a single-radar

analysis is because many WSR-88D radars are near urban areas and can underestimate

intensity when a thunderstorm is nearby. On 24 May 2012, a convective cell passed

directly over the KOAX WSR-88D site near OAX (Fig. 3.1). Tracking intensity by

the 55 dBZ echo area shows a rapid decline as the storm passes near and over the

radar site before increasing again. MRMS, due to its ability to blend information from

multiple radars, does not show this rapid decline and maintains better continuity on

overall storm intensity over time. This improvement is quite important considering a

WSR-88D site exists within the urban footprint for two of the study cities (DFW and

MSP), within 7 km from OAX, and 10 km from OKC.
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3.2 Study Domain

The study domain expands from 49.6◦N 102.5◦W in the northwest corner down to

28.0◦N 84.9◦W in the southeast corner and encompasses a region commonly referred

to as the United States Great Plains (Rossum and Lavin 2000) (Fig. 3.2). Four cities

with different spatial urban footprints (Table 3.1) were chosen for analysis with ur-

ban size ranging from 702.4 km2 in OAX to 4,607.9 km2 in DFW. According to the

2011 version of the National Land Cover Database (NLCD; Homer et al. 2015), four

categories – shrub/scrub (52), grassland (71), pasture/hay (81), and cultivated crops

(82) – constitute the majority of the land cover within 25 km of each city. These

categories constitute 70.4% of the land cover surrounding DFW, 62.6% around MSP,

69.6% around OKC, and 83.7% around OAX. As described in Walker et al. (2015),

mean annual precipitation rates decline westward towards the Rockies and along a

northwest-southeast gradient across the Great Plains. As a result, the northern two

cities see around a 150 mm decline in average precipitation compared to the OKC

and DFW domains. From 2010 through 2014, the SPC severe thunderstorm events

database (Schaefer and Edwards 1999) shows at least 400 reports of significant severe

hazards (i.e., hail ≥ 2 in., wind gusts ≥ 65 kts, or tornado) occurring within 200 km of

each city. Thunderstorms occur more frequently in the southern latitudes and serves as

a primary driver for the increased number of severe reports in the southern two cities

(e.g., Brooks et al. 2003; Smith et al. 2012a; Cintineo et al. 2012).

3.3 Data

3.3.1 Radar Data

The WSR–88D Next-Generation Radar (NEXRAD) network, consisting of 160 S-

band radars across the United States and outlying territories, was implemented as part
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of the National Oceanic and Atmospheric Administration’s (NOAA) National Weather

Service (NWS) modernization and restructuring initiative in the 1990’s with the goal

of improving hazardous weather awareness and warning performance (Crum and Al-

berty 1993; Polger et al. 1994). Since its initial inception, numerous improvements in

data quality control and resolution have been operationally implemented (Crum et al.

1998). This five-year study period represents one such era of improvement with the

availability of "super-resolution" products for all NEXRAD radars of interest (Tor-

res and Curtis 2007). Super-resolution enhances the quality of base radar variables

by reducing the effective scanning beamwidth from 1.38◦ to 1.02◦. This allows for

vortex and other storm-scale features to be resolved at longer ranges from any single

WSR-88D (Brown et al. 2002, 2005).

A Level-II archive of these data, containing at least three Doppler radar moments

(i.e., reflectivity, velocity, and spectrum width) along with system status and inter-

pretation information (Crum et al. 1993), are available for download by the National

Centers for Environmental Information (NCEI). All available Level-II data between 1

January 2010 and 31 December 2014 for each of the 19 WSR-88D sites, amounting to

7,107,005 volume scans, were utilized in this study.

3.3.2 Lightning Data

The NLDN is a system of ground-based lightning sensors that detects electromag-

netic radiation emitted by CG flashes and strokes as well as a small percentage of in-

cloud pulses across the continental United States (CONUS) (Cummins et al. 1998b).

Major network upgrades in 2003 provide uniform continental coverage with a high

detection efficiency (~95%) for CG flashes and geographically variable detection ef-

ficiency for cloud flashes (16-40%, Cummins and Murphy 2009). Using the National

Severe Storms Laboratory (NSSL) NLDN archive, 1,234,625 one-minute time-steps
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were downloaded to identify the 39,664,548 CGs that occurred in the study domain.

3.3.3 Environmental Data

The Rapid Update Cycle (RUC; Benjamin et al. 2004) was the first operational Nu-

merical Weather Prediction system to assimilate multi-sensor observations and provide

both hourly analysis (i.e., current conditions) and short-range forecast grids to enhance

situational awareness on near-term hazardous weather. In 2012, the improvements to

the RUC assimilation framework were implemented and the system was re-branded

as Rapid Refresh (RAP; Benjamin et al. 2016). This study uses the hourly analysis

fields produced by the RUC and RAP (hereafter referred to as model) to improve the

quality control of radar velocity data (e.g., Miller et al. 2013), create blended radar

and environmental fields (e.g., Smith et al. 2016), and assist in the classification of

thunderstorm convective modes (e.g., Hobson et al. 2012). Five years of the highest

resolution model analysis data (either 20 km or 13 km), amounting to 43,613 hours,

were downloaded from the NCEI National Model Archive and Distribution System. If

an hourly analysis grid is missing, another grid up to three hours old was used to fill

in the missing values, otherwise, that hour was excluded from the dataset. This was

mainly an issue between 1 May 2012 and 8 May 2012 during the initial operational

transition from RUC to RAP.

3.3.4 Urban Boundaries

There is a non-standardized process to define an urban area in the past literature. Urban

areas have been defined by population (Kishtawal et al. 2010), uniform buffered areas

extending from the city center (Hand and Shepherd 2009; Haberlie et al. 2015), the

U.S. Census Bureau (Mote et al. 2007; Walker et al. 2015), and Landsat-classified land

cover datasets (Ashley et al. 2012). In this study, two methods of urban identification
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were used to create an urban boundary. The first method used the urban boundary

coordinates from the United States Census Bureau (2010). The definition of an urban

area consists of a spatially dense region of urban land use that contains greater than

50,000 people. The second method involved manually contouring an urban boundary

from the urban/built-up categories (21-24) from the 2011 NLCD Database (Homer

et al. 2015). Both methods provided very similar latitudinal and longitudinal distances

for the city (< 5 km) and fundamentally did not alter the overall results of the study.

3.4 Methods

3.4.1 Product Generation & Thunderstorm Tracking

All radar, model, and lightning outputs were processed using the Warning Decision

Support System – Integrated Information (WDSS-II; Lakshmanan et al. 2007b) soft-

ware platform. The processing steps (flowchart in Fig. 3.3) for each of the products

are described below.

3.4.1.1 CG Lightning Grids

The CG strike location and time information from the NLDN dataset were binned into

1 min. time-steps and gridded onto a 0.01◦ x 0.01◦ Cartesian grid (w2ltgcount). To

account for the increased detection efficiency of lower amplitude events that may not

actually be CGs (Cummins and Murphy 2009), all CGs with a peak amplitude less

than 5 kA were excluded from the gridding process.

3.4.1.2 Model Analysis Grids

Hourly model analysis data were ingested to re-project the basic meteorological fields

(i.e., temperature, height, pressure, wind) at all vertical levels onto a common Cartesian
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grid. These fields served as inputs into the near-storm environment (nse) algorithm

to generate 2D convective instability fields, isothermal heights, and sounding profile

products. These output fields were used to quality control the single-radar data (sub-

section 3.4.1.3) and generate several multi-radar and tracking products (sub-sections

3.4.1.4 and 3.4.1.5).

3.4.1.3 Single-Radar Product Generation & Quality Control

Level-II radar data at all 19 WSR-88D sites were ingested to generate the base products

of reflectivity, aliased velocity, and spectrum width (ldm2netcdf). Previous studies

have mitigated the impact of non-meteorological targets (e.g., birds/insects, ground

clutter, electronic interference) and blockage by using a higher reflectivity minimum

of 40 dBZ (Ashley et al. 2012; Haberlie et al. 2015). For this analysis, a neural network

framework of Lakshmanan et al. (2007a) was used to identify and remove these sources

of error while retaining lower reflectivity precipitation returns in a new ReflectivityQC

field (w2qcnn). ReflectivityQC was used in conjunction with the NWS operational

dealiasing algorithm from Jing and Wiener (1993) to mitigate measurement errors in

the true radial projection of the environmental wind and generate a quality-controlled

velocity field (dealias2d). Both of these fields were inputs in the generation of single

and vertically integrated azimuthal shear (w2circ; Smith and Elmore 1994).

3.4.1.4 Multi-Radar Grid Generation

The ReflectivityQC and vertically-derived azimuthal shear from the individual radar

sites along with the model data were inputs into an intelligent agent framework of

Lakshmanan et al. (2006) to generate 3D Cartesian grids for reflectivity (azimuthal

shear) of at 0.01◦-by-0.01◦ (0.005◦-by-0.005◦) spatial resolution, one min. temporal

resolution, at 33 vertical levels (w2merger). These levels have 250 m vertical spacing
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from 0.5 km AGL to 3 km AGL, 500 m vertical spacing from 3 km AGL to 9 km

AGL, and 1 km vertical spacing from 9 km AGL to 20 km AGL. To calculate VIL at a

grid cell, the 3D reflectivity field is vertically-interpolated using the Greene and Clark

(1972) method. To exclude contamination from ice, interpolated reflectivity values

exceeding 56 dBZ were capped at 56 dBZ. MESH was calculated using the method

of Witt et al. (1998b) and uses both a vertical integration of reflectivity along with the

0◦C and -20◦C isothermal heights to estimate the maximum diameter of a hailstone.

3.4.1.5 Automated Thunderstorm Tracking

The w2segmotionll algorithm in WDSS-II combines a watershed segmentation model

(Lakshmanan et al. 2009) with K-means clustering (Bishop 2006) to identify thunder-

storm objects based on a single observational variable (e.g., radar reflectivity) and cal-

culate summary statistics of other MRMS gridded attributes (e.g., maximum MESH,

lightning count, etc.) throughout the tracking lifetime. This algorithm was used to

identify and track thunderstorm attributes in two stages. The first stage follows the

methods outlined in Hobson et al. (2012) by identifying and tracking objects based

on a minimum composite reflectivity of 20 dBZ (i.e., the maximum reflectivity mea-

sured in the vertical column). In addition to thunderstorm object creation, this method

also classifies the convective mode of each thunderstorm object as either a supercell

(Browning 1962) or non-supercell. This classification information and the MRMS

gridded outputs were tracked a second time using the reflectivity at the -10◦C isother-

mal level with a minimum reflectivity threshold of 20 dBZ as this field is less suscep-

tible to dramatic change across time-steps that can prematurely break thunderstorm

tracks (Herzog et al. 2014).

Many automated tracking systems make decisions based on the current information

available. Quality control or hardware failures from a radar site can temporarily alter
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the magnitude and extent of a thunderstorm, causing a tracking algorithm to re-classify

it as a new object and prematurely break an existing thunderstorm track. To assess the

integrity of the thunderstorm tracks, a post-event track attachment strategy similar to

Lakshmanan et al. (2015) was used to validate that the end of tracking corresponds to

the end of the storm lifecycle. This was accomplished by geometrically simplifying the

thunderstorm object boundaries using a convex hull (Devadoss and O’Rourke 2011),

buffering this hull (i.e., having its perimeter spatially expanded outward) by a radius of

5 km, and projecting this new object forward along the tracking propagation angle for

an additional radar volume update interval (~5 min.). If a second storm object begins

within the projected buffer, this second object track was appended to the end of the

first object track. If more than one additional object appears within this post-tracking

search domain, a selection was prioritized based on the (1) maximum storm lifetime,

(2) closest start time, and (3) maximum spatial storm overlap with the search buffer.

3.4.2 Thunderstorm Case Selection

The spatial and attribute information from the thunderstorm objects were evaluated

using two distinct methods. The first method examines how the maximum values of

composite reflectivity, MESH, and VIL change using independent temporal samples

of thunderstorms upwind and downwind of each city. The second method examines

the spatial distribution of the three radar fields within these two regions. In order to

provide a consistent dataset across the two methods, criteria to constrain the number of

thunderstorm objects were applied. First, a thunderstorm object had to be tracked for at

least 30 min. to remove tracks that could be classified as noise or failed thunderstorms

(Haberlie et al. 2015). Second, the object centroid (i.e., the geographic center of the

object area) had to pass within the urban boundary. This removed many cases where

only a small fraction of larger, more organized storm system generally displaced from
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the city from being included in the dataset. Finally, the storm had to achieve a 35 dBZ

composite reflectivity value and 1 CG strike anywhere in its object area for at least

one time-step. This threshold eliminated non-convective snow systems and stationary

sources of noise that passed through radar quality control.

As noted in previous studies (e.g., Huff and Changnon Jr. 1972; Lowry 1998; Dixon

and Mote 2003), examining thunderstorm days without any segmentation by season,

synoptic regime, or diurnal limits could mask the effect urban areas have on thunder-

storms. In addition to examining the full set of thunderstorm objects, a case subset was

created using seasonal, diurnal, and synoptic conditions with an elevated likelihood of

influence from urban effects. This "urban favorable" (hereafter referred to as UF)

subset consisted of thunderstorm tracks that (1) occurred in the meteorological sum-

mer months (June–August) where the greatest urban-rural temperature differences are

likely to occur (Gallo and Owen 1999); (2) initiated around the urban area in the mid-

afternoon/evening hours, identified as the central half of a convective day (18 UTC –

06 UTC), to capitalize on this temperature difference and encase the time period where

enhanced convective activity has been shown to occur (e.g., Mote et al. 2007; Haberlie

et al. 2015); (3) occurred on days classified with a moist tropical (MT) airmass via

the Spatial Synoptic Classification dataset of Sheridan (2002) as these days have been

shown to yield greater UHI-induced precipitation events than dry airmass days (Dixon

and Mote 2003; Hand and Shepherd 2009; Ashley et al. 2012); and (4) with < 10%

of the storm track classified as a supercell per the Hobson et al. (2012) method as a

second indicator of days with minimal vertical shear and meteorological forcing.

3.4.2.1 Storm-Based Maximum Sampling

Due to the 1 min. sampling interval on these thunderstorm objects, there is a degree

of dependence between successive observations. Herzog et al. (2014) found the opti-
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mal de-correlation timescale is at least 9 min. when sampling individual thunderstorm

attributes (i.e., maximum reflectivity). At every time-step, each thunderstorm object

was categorized as either upwind (A), over the city (B), or downwind (C). For all ob-

jects meeting the above criteria, the maximum composite reflectivity, VIL, and MESH

were sampled beginning at the 5 min. time-step and re-sampled every 10 min. after-

wards. For instance, a storm lifetime of 30 min. would be sampled at 5, 15, and 25

min. respectively. This initial 5 min. time step (i.e., the average radar volume update

time) was chosen to mitigate potentially sampling the initial or late stages of the thun-

derstorm. Additionally, previous studies have shown that city size and orientation can

vary the magnitude of precipitation modification (Huff and Changnon Jr. 1973; Shep-

herd and Burian 2003; Schmid and Niyogi 2013). To account for this, a city-dependent

buffer amounting to the larger of either the latitudinal or longitudinal distance was used

to constrain the maximum distance a thunderstorm observation could be sampled from

each city. The amounted to 127 km from DFW, 85 km from MSP, 56 km from OKC,

and 47 km from OAX. Other permutations amounting to 50% and 150% of this initial

distance were also examined but did little to change the overall narrative. Compar-

isons in the distributions of upwind and downwind observations were evaluated using

a two-sample Kolmogorov-Smirnov test (Wilks 2006).

3.4.2.2 Spatial Distribution of Radar and Lightning Data

In order to examine the spatial augmentation of thunderstorms, an upwind and down-

wind region needs to be defined. In the absence of the tracking individual objects,

several past studies have used the 700 hPa prevailing flow from a local NWS office

(Hand and Shepherd 2009; Haberlie et al. 2015) In this study, the upwind and down-

wind regions were defined on a case-by-case basis by using the direction of motion

from the tracked thunderstorm object (Fig. 3.4). Once defined, the maximum value
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of composite reflectivity, VIL, and MESH was spatially accumulated over the object

lifetime. Hand and Shepherd (2009) noted the potential for variable magnitudes of

precipitation modification to occur depending on the direction of the prevailing wind.

Complex shapes and appendages of urban sprawl are associated with each city; these

result in an inconsistent start (end) to the upwind (downwind) region. To standardize

these zones, each city was geometrically simplified using a convex hull operation and

the upwind and downwind regions were started an additional 10 km away from this

convex boundary. From 10 km onward, radar values were binned in 1 km intervals

and the amount of area covered in each bin was calculated. From this information, the

areal mean value of each parameter was calculated and tested for significance using a

non-parametric two-sample permutation test of the mean (Wilks 2006).

3.5 Results

3.5.1 Dataset Overview

The number of storms analyzed was dependent on city area with 718 storms around

DFW, 644 around MSP, 460 around OKC, and 391 around OAX (Fig. 3.5). At the

northern latitudes, MSP and OAX had the most thunderstorms occurring during the

meteorological summer accounting for 56.5% and 45.5% of all observations. DFW

and OKC had the most thunderstorms during meteorological spring (March – May)

with 40.9% and 37.8% of the respective storms. Summertime was the second most

active with 22.3% and 33.5% respectively. Southern latitudes also had more storm

opportunities in the fall and winter months accounting for 36.7% of storms in DFW,

28.7% in OKC, 26.1% in OAX, and 11% in MSP.

Grouping thunderstorm occurrence relative to the city reveals that all cities had

the highest number of thunderstorm objects occurring upwind and decaying below
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the spatiotemporal thresholds for tracking over the city (AB). Storm object centroids

initially tracking over the city and moving downwind (BC) account for the second most

number of samples for all cities. Finally, the smallest percentage of storms were those

that formed upwind of the city and were tracked through and downwind of the city

(ABC). These tracks accounted for 10% of DFW storms, 18% of MSP storms, 30%

of OKC storms, and 26% of OAX storms, inversely related to city size. The primary

storm motion based on the centroid position for most events was from southwest to

northeast in all cities, comparable to observations by Changnon Jr. and Huff (1961).

The number of storms occurring within the UF subset accounts for 5.7% of DFW

storms, 14.5% of MSP storms, 6.1% of OKC storms, and 6.9% of OAX storms. In this

UF subset, a higher percentage of storms formed over the city than upwind for DFW

and MSP. Around OKC, there were 12 AB storms and 12 BC storms. OAX was the

only city to have more AB storms (11) than BC storms (9). Thunderstorm direction

on these synoptically weak days is not as uniform compared to tracks from the full

climatology. 41% of DFW storms propagated from the north or northwest, MSP and

OKC observed 40% and 46% of storms propagating from the west, and 66% of OAX

storms moved from the northwest or southwest (Fig. 3.5).

3.5.2 Object–Based Maximum Sampling

Drawing independent samples of maximum composite reflectivity (hereafter referred

to as reflectivity; Fig. 3.6a), VIL (Fig. 3.6b), and MESH (Fig. 3.6c) for all days (solid

lines) and the UF subset (dashed lines) reveals similar results across all cities in the full

climatology but variable results in the UF subset. In the full climatology, there were

more independent reflectivity and VIL samples from storms downwind of DFW and

MSP and upwind of OKC and OAX (see number of samples, N, in Fig. 3.6). Addi-

tionally, all four cities had a lower number of MESH samples in the downwind region.
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In the UF subset, there were 35% more MESH observations downwind of DFW and

one additional reflectivity/VIL observation downwind of OKC. The remaining cities

and radar variables showed similar sampling trends as in the full climatology.

For DFW, all three distributions of reflectivity, VIL, and MESH from the full cli-

matology and UF subset are significantly different (p < 0.05, left column of Fig. 3.6)

between the upwind and downwind distributions. In the full climatology, there was a

higher overall percentage and frequency of stronger storms upwind revealed through

the number of reflectivity samples > 40 dBZ, VIL > 2 kgm−2, and MESH > 1 mm. In

the UF subset, the downwind region had 106% more reflectivity/VIL samples and 36%

more in MESH samples than the upwind region. Additionally, 70% of downwind (66)

and 100% of upwind (46) samples were > 50 dBZ within the UF subset. A similar

pattern emerges within the UF subset using VIL with a lower overall percentage but

higher frequency of downwind samples > 23 kgm−2 and > 45 kgm−2. The MESH

distributions, while still significantly different, were much closer together compared to

the other radar variables. Five downwind samples exceeded the criteria for severe hail

(25 mm or 1 in.) compared to one upwind sample.

Around MSP (second column – Fig. 3.6), both the full climatology and UF sub-

set had a greater number of downwind composite reflectivity/VIL samples and fewer

MESH storm samples. In the full climatology, there were fewer reflectivity observa-

tions > 40 dBZ, VIL samples > 2 kgm−2, and MESH observations > 1 mm occurring

in the downwind region. However, downwind reflectivity samples in the UF subset

had a wider spread of values with 71% of samples > 50 dBZ compared to 83% of

upwind samples. When the sample area is constrained to 50% of the city diameter

(42 km) instead of 100% (83 km), the differences between the two distributions are no

longer statistically significant. Contrary to observations in the full climatology, VIL

and MESH samples from the UF subset were generally higher in the downwind region

with more samples of VIL > 8 kgm−2 and MESH > 2 mm. Six downwind samples
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of MESH in the UF subset met the severe hail criteria while no observations of this

magnitude were observed upwind of MSP.

The downwind region of OKC had approximately 7% fewer reflectivity/VIL sam-

ples and 21% fewer MESH samples than the upwind area in the full climatology. In

the UF subset, the downwind region had 2% more reflectivity/VIL samples 53% fewer

MESH samples compared to the upwind region. Unlike the larger two cities, OKC

shows a more consistent trend across both datasets. The distributions are significantly

different from each other with a greater percentage and frequency of stronger samples

of all parameters in the upwind region. In the full climatology, around 80% (70%) of

reflectivity samples were > 50 dBZ, 40% (23%) of VIL samples were > 20 kgm−2,

and 43% (31%) of MESH samples were > 10 mm in the upwind (downwind) region.

The difference between these two distributions is more pronounced in the UF sub-

set. 60% (10%) of upwind (downwind) VIL samples were above 20 kgm−2. Similar

percentages were also observed for MESH > 10 mm.

OAX, due to its size, has the lowest number of overall samples compared to other

cities in this study and a higher number of upwind samples in both the full climatol-

ogy and UF subset. In the full climatology, the overall percentage of max reflectivity

values in the upwind and downwind region converges between 55 dBZ to 60 dBZ

with 186 (142) upwind (downwind) samples > 60 dBZ. A similar pattern emerges in

the full VIL dataset between 15 and 25 kgm−2 with 189 (174) samples from the up-

wind (downwind) > 25 kgm−2 threshold. The differences between the upwind and

downwind regions for all radar parameters for the UF subset and MESH in the full

climatology are not statistically significant around OAX.
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3.5.3 Storm–Based Gridded Climatology

Analyses incorporating the gridded object area and accumulating the composite re-

flectivity (Fig. 3.7), VIL (Fig. 3.8), and MESH (Fig. 3.9) across variable upwind and

downwind distances ranging from 50% – 150% of the maximum city diameter reveal

common trends across all parameters in both datasets around DFW and MSP, and some

variable trends around OKC and OAX. Four ways to summarize these data within each

range interval upwind and downwind are shown in Figs. 3.7–3.9 and include: (a) the

total number of thunderstorm objects at each 1 km bin; (b) the areal sum of the radar

parameter; (c) the overall area covered by a meteorological echo; and (d) the areal

mean value, which is the value in (b) divided by the value in (c) to give the mean value

experienced at any given 1 km2 grid cell.

DFW experiences roughly an equal number of thunderstorm objects in the full cli-

matology from 10 km to 64 km (i.e., 50% city diameter) (Fig. 3.7a), yet the downwind

region sees a 9% increase in total reflectivity (Fig. 3.7b) and a 10% increase in areal

coverage (Fig. 3.7c). A larger areal echo coverage occurring in the downwind region

coupled with the lack of an equivalent increase in total reflectivity results in a lower

areal mean reflectivity in this region that decreases at further ranges from the city

(Fig. 3.7d). MSP experiences 10% more thunderstorm objects out to 43 km (50% city

diameter) and 15% more thunderstorm objects out to 128 km (150% city diameter).

Like DFW however, the areal mean reflectivity is lower in the downwind region (~40

dBZ/km2) at all ranges compared to the upwind region (~42 dBZ/km2)(Fig. 3.7d). The

difference in the thunderstorm occurrence in the downwind region around OKC and

OAX ranges from -3% to 3% at various ranges from the city and yields a lower overall

areal mean reflectivity in the downwind region for both of these cities as well.

During UF time windows (Fig. 3.7 – right column), there are up to 51% and 33%

more thunderstorm observations downwind of DFW and MSP respectively. This re-
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sults in around a 153% (132%) and 73% (68%) increase in cumulative reflectivity

(areal coverage) in these downwind regions and provides a 3 dBZ/km2 and 1 dBZ/km2

increase in downwind areal mean reflectivity around these two cities. OKC showed

a 2% decline in the number of downwind storms out to 28 km (50% city diameter),

however, the cumulative reflectivity was around 0.3% higher and covered an area 1.7%

smaller than the upwind region, resulting in a statistically significant areal mean of

34.5 dBZ/km2 in the downwind region compared to a 33.8 dBZ/km2 mean in the up-

wind region. At 42 km (75% city diameter) and beyond, there are a higher number

of thunderstorm objects in the downwind region, but the upwind region experiences

a higher cumulative reflectivity over a larger area that results in a higher areal mean

reflectivity at these further range windows. This means that the upwind region encom-

passing ranges greater than 42 km away from OKC experiences larger, stronger storms

on average than the downwind area of equal distance, even in the UF subset. At all

range intervals downwind of OAX in the UF subset, there were fewer thunderstorm

observations in the downwind region, resulting in 9% to 19% decline in cumulative

reflectivity over a 14% to 20% smaller area. From 10 – 28 km (50% city diameter),

the percentage decline in cumulative reflectivity was slightly lower than the percentage

decline in affected area, resulting in a marginally higher mean areal reflectivity in the

upwind region (~0.1 dBZ). At subsequent ranges from OAX, there was a higher areal

mean reflectivity in the downwind region.

A VIL value exists at every reflectivity pixel, resulting in an equal ratio of upwind

and downwind observations that were summarized for reflectivity (Fig. 3.8 – left col-

umn). In the full thunderstorm climatology, cumulative VIL downwind of DFW is

around 3% to 5% higher and occurs over a 10% to 21% larger area. This results in a

lower areal mean VIL in the downwind region at all ranges. Around MSP, not only is

there a lower cumulative VIL in the downwind region, the VIL area is around 16% to

24% larger than the VIL area in the upwind region. This results in a smaller areal mean
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VIL that is at least 1 kgm−2/km2 lower in the downwind region. OKC experienced the

same trend as MSP at ranges beyond 42 km with a 23% to 29% lower areal mean VIL

in the downwind region. OAX was the only area to have a higher areal mean VIL in

the downwind region within the full climatology resulting from a 7% to 9% increase

in cumulative VIL over only a 2% to 3% increase in area.

In the UF subset (Fig. 3.8 – right column), similar patterns in VIL were seen around

DFW and MSP as were identified with reflectivity. There was up to a 239% (132%)

and 143% (68%) increase in total VIL (area affected) in the downwind region during

these periods, resulting in a higher downwind areal mean VIL at all ranges from DFW

and MSP respectively. Downwind of OKC, cumulative VIL values were 41% lower

out to 84 km (150% city diameter) but only encompassed an area 5.5% smaller than

the upwind region. This resulted in a lower mean VIL of 2.4 kgm−2/km2 compared to

3.9 kgm−2/km2 in the upwind region. Both the number of thunderstorm objects and

the total affected area were lower in the downwind region at all ranges surrounding

OAX, however, cumulative VIL increased with at ranges beyond 47 km (i.e., the OAX

city diameter). From 10 km out to 71 km (150% city diameter), the cumulative VIL

was 26% higher in the downwind area compared to the upwind area. As a result,

areal mean VIL values downwind of OAX were 18% to 46% higher in the downwind

region, comparable to observations from the full climatology. All differences in mean

VIL were statistically significant in both datasets.

Unlike VIL, MESH values are not calculated at every pixel, particularly if there is

no reflectivity signal at temperatures <0◦C. This constrains the sample sizes of "hail

producing" thunderstorms around all four cities. In the full climatology, all four cities

had a lower number of MESH samples in the downwind region (Fig. 3.9 – left column).

All range intervals downwind of DFW experienced a lower cumulative MESH but

saw increase in the total MESH area, yielding a lower overall areal mean MESH.

Areas downwind of MSP and OKC also had a lower cumulative MESH, like DFW, but
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measured a smaller area affected by MESH. This resulted in an 8% to 32% decrease in

downwind areal mean MESH for both of these cities. OAX had the opposite behavior

with an increase in cumulative MESH and area affected at all range intervals. This

resulted in around a 1% decline in the downwind areal mean MESH at most ranges.

In the UF subset (Fig. 3.9 – right column), both DFW and MSP show an increased

number of thunderstorm objects, a higher cumulative MESH, and a larger downwind

area affected, similar to observations of VIL. The highest areal mean MESH values

were captured within 64 km from both DFW (50% city diameter) and MSP (75% city

diameter). At ranges beyond 127 km from DFW, the difference in areal mean MESH

was not statistically significant and was the only occurrence of such a result. Areas

downwind of OKC had fewer thunderstorm objects, resulting in a lower cumulative

MESH that affected a smaller total area. This resulted in mean MESH values at least

2 mm smaller in the downwind region. Similar to OKC, areas downwind of OAX

had a lower number of thunderstorm observations. However, the areal coverage of

MESH in this region was much larger, covering 14% - 55% more area than the upwind

region. Cumulative MESH values also tended to be higher from 47 km (100% city

diameter) and beyond, but not large enough to compensate for the increases in overall

areal coverage. As a result, mean MESH was lower at all downwind ranges evaluated.

3.6 Discussion

This study incorporates the techniques from the MRMS framework to process over

100 terabytes of radar, lightning, and near-storm environmental fields to create grids

of reflectivity, MESH, and VIL at the highest spatial (≤ 1 km) and temporal (one-min.)

resolution. The methods employed in this study address two main assumptions used

in prior initiatives using fixed observational gauges (Huff and Changnon Jr. 1972; Jau-

regui and Romales 1996; Diem and Mote 2005) and remote sensing systems (Shepherd
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et al. 2002; Dixon and Mote 2003; Mote et al. 2007; Hand and Shepherd 2009; Bentley

et al. 2010).

First, many of these studies cannot quantify the number of storms that directly

interacted with a city. Mote et al. (2007) examined hourly precipitation patterns near

Atlanta and observed instances where precipitation downwind of Atlanta were actually

initiated in the mountains. Our criteria that the thunderstorm object centroid passes

within our defined urban domain provides a spatial constant that is shared across all

cases. Second, prevailing wind not identified by manual analyses (e.g., Niyogi et al.

2011) has predominantly been estimated in past studies by using 700 hPa flow from

NWS radiosonde observations Hand and Shepherd (2009); Haberlie et al. (2015) or

model reanalysis data (e.g., Burian and Shepherd 2005). For this study, using the

one-min thunderstorm centroid track as a guide allows for an upwind and downwind

region to be defined uniquely for each case. Furthermore, these upwind and downwind

regions can be standardized by its relative position from the city, allowing for the

calculation of bulk statistics independent of geographic location at set ranges around

each city.

Nonetheless, our analyses are not free from limitations. Thunderstorms do not al-

ways follow an ordinary lifecycle (i.e., growth, maturity, decay) in isolation, and are

subject to interactions such as splitting and merging (Lakshmanan et al. 2009). While

these features can be documented by smaller-scale and often time-consuming manual

analyses of thunderstorms (e.g., Niyogi et al. 2011), we assume these impacts are min-

imized in larger-scale initiatives such as this study. Our criteria that each thunderstorm

object’s centroid passes within our defined urban domain and be tracked for at least 30

min. were essential to ensuring some form of an urban interaction and allowing radar

attributes to be independently sampled at least three times per thunderstorm. Lower-

ing this tracking threshold to 10 min. only increases the number of total cases by 7%

around all cities. Regardless, thunderstorms with shorter lifetimes or thunderstorms
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that form downwind of the city as a result of the role of potential urban-induced con-

vergent zones (e.g., Bornstein and Lin 2000) are not included in this study. These

kinds of thunderstorms are underexplored in this study, but merit future attention.

Both analysis methods, particularly the spatial gridding method, revealed similar

patterns of enhanced reflectivity, VIL, and MESH magnitude and extent downwind

of DFW (~4600 km2) and MSP (~2650 km2), the two larger cities in this study and

were more evident on UF days compared to the full climatology. This pattern would

imply that larger cities could alter thunderstorms sooner and at a greater magnitude

than smaller cities given the appropriate conditions. Additionally, a higher number of

thunderstorm objects occurred over the city and propagated downwind on these days,

similar to the results of Haberlie et al. (2015) around Atlanta.

Around OKC, a city 40% the size of MSP, an increase in downwind areal mean

reflectivity did occur when examining an area from 10 km – 28 km, but not within

progressively larger areas around the city. Areal means of MESH and VIL as well as

independent samples of the maximum reflectivity, MESH, and VIL tended to be higher

in the upwind region around OKC on UF days. Hand and Shepherd (2009) identify

the N-NE region downwind of OKC to be the climatologically wettest region, how-

ever, this region only aligns with six of the 28 thunderstorm objects evaluated in our

UF subset and limits any sort of comparison that can be made given the constraints

associated with this study. Regardless, any downwind augmentation is not as prevalent

as was observed around DFW and MSP. Around OAX, an even smaller city that is

26% the size of MSP, there was no statistically significant difference between the in-

dependent upwind and downwind samples of maximum reflectivity, VIL, and MESH

in the UF subset. Furthermore, unlike what was observed around DFW or MSP, there

was no immediate downwind enhancement in areal mean reflectivity, VIL, or MESH

on UF days. This, coupled with it being the smallest city in the study, introduces

some uncertainty as to how OAX can augment thunderstorms over other geographi-
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cally collocated factors such as the relatively homogeneous amount of cultivated crops

surrounding this urban area. Clark and Arritt (1995) found that surfaces with moist

soil and vegetation cover were most conducive to convective development. Gero and

Pitman (2006) observed through numerical model simulations that the replacement of

agricultural land with shrubland hindered storm development upwind from Sydney,

AU. Additional numerical modeling and observational studies are needed to delineate

the role of homogeneous versus heterogeneous land cover on storm initiation compa-

rable to studies of the effects of topography (e.g., Lowry 1998; Niyogi et al. 2006).

Given that DFW (~4600 km2) and MSP (~2650 km2) both showed a downwind en-

hancement in composite reflectivity, MESH, and VIL from both analysis methods on

UF days compared to OKC (~1060 km2) and OAX (~700 km2) indicates the contribut-

ing role city size can play in precipitation modification. Schmid and Niyogi (2013)

modeled the effects of city size and found that both the maximum average heat island

and the amount of precipitation modification increased linearly with city radii ranging

from 5 km to 20 km with fairly constant effects observed beyond this threshold. While

a definitive size threshold cannot be defined here, size is only one factor contributing

to magnitude of urban modification. Other contributing factors such as the regional

climate (Roth 2007), the variable influence of urban-induced aerosols on precipitation

timing and magnitude (Rosenfeld et al. 2008; Lebo 2014; Schmid and Niyogi 2017),

and surrounding regional landscape species variability (Rabin et al. 1990) coupled with

urban size/shape could provide a geographically dependent alteration to the extent of

precipitation modification.

3.7 Conclusions

Using the MRMS framework to create and spatially track thunderstorm objects, five

years of composite reflectivity, MESH, and VIL grids were examined around four
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cities of varying sizes (DFW, MSP, OKC, and OAX) to examine how city size aug-

ments thunderstorms. Overall, city size seems to be a contributing factor in enhancing

the coverage and magnitude of these radar variables in the downwind region, however,

these effects were not as clearly observed when examining objects across all seasons

and synoptic regimes. Taking independent samples of each thunderstorm object ev-

ery 10 min. reveals that a greater overall percentage and frequency of thunderstorm

objects had a higher composite reflectivity, MESH, and VIL occurring upwind of all

four cities. Spatially accumulating these fields revealed a higher areal mean of all three

parameters occurring upwind of all four cities, with the exception of VIL around OAX.

Taking a subset of thunderstorm objects matching historical seasonal, temporal,

and synoptic environments shown in the past literature where urban modification

is likely, reveals an increased number of thunderstorm objects forming and moving

downwind of DFW and MSP, the two largest cities examined. This resulted in a higher

areal mean value of composite reflectivity, MESH, and VIL at several ranges down-

wind of both cities compared to the upwind region. This pattern was not as uniformly

observed downwind of OKC and OAX, cities roughly 40% and 26% the size of MSP,

particularly in analyses of the vertically-derived fields of MESH and VIL. This could

be indicative of a lack of influence of small to midsized urban areas (≤~1100 km2

based on our city selection) on the enhancement of radar-derived maximum values

and spatial area affected downwind of these cities. The thresholds used to delineate

UF environments resulted in an 84% to 94% reduction in the number of thunderstorm

cases based on observations of thunderstorm initiation augmentation measured in prior

studies (Diem and Mote 2005; Mote et al. 2007; Haberlie et al. 2015). The contrast be-

tween the full climatology and UF subset reveals that the percentage of storms capable

of being augmented by a city due to seasonal, temporal, and synoptic influences as de-

fined in the literature is a small fraction of the number of storms that affects cities on a

yearly basis. Based on the percentage of UF storms retained from the full climatology,
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MSP (14.5%) compared to DFW (5.7%), OKC (6.1%) and OAX (6.9%) has the high-

est potential for the urban domain to influence storm structure and intensity. However,

the inconsistent nature of these precipitation modification patterns in the lens of the full

climatology of all cities makes us question whether the predictability of these patterns

is achievable, since instantaneous measures of other suspected modification variables

(e.g., spatial aerosol loading, van den Heever and Cotton 2007; Kawecki et al. 2016)

may not be readily observable.
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Figure 3.3: Radar, model, and lightning processing workflow using WDSS-II.
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Figure 3.4: Maximum time-accumulated composite reflectivity in the upwind (blue)
and downwind (orange) region for a tracked object passing over OKC on 31 May 2010.
The gray lines in each region correspond to a 1 km sector to segment the reflectivity
field by distance upwind or downwind from the urban area.
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Figure 3.7: Values of composite reflectivity for the full climatology (left column) and
UF subset (right column) at ranges upwind (solid line) and downwind (dashed line)
50% to 150% the maximum city diameter. These regions are summarized by (a) the
number of thunderstorm objects; (b) the cumulative reflectivity; (c) the cumulative
area affected; and (d) the areal mean composite reflectivity.
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Figure 3.8: Same as Fig. 3.7 but for VIL
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Figure 3.9: Same as Fig. 3.7 but for MESH
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Chapter 4

Landsat Identification of Tornado Damage by Land

Cover and an Evaluation of Damage Recovery in

Forests

Abstract

Multispectral satellite imagery provides a spaceborne perspective on tornado damage

identification, however, few studies have explored how tornadoes alter the spectral

signature of different land cover types. In part one of this study, Landsat surface re-

flectance is used to explore how 17 tornadoes modify the spectral signature, NDVI, and

Tasseled Cap parameters inside forest (N=16), grassland (N=10), and urban (N=17)

land cover. Land cover influences the magnitude of change observed, particularly in

spring/summer imagery, with most tornado-damaged surfaces exhibiting a higher me-

dian reflectance in the visible and shortwave infrared, and a lower median reflectance

in the near-infrared spectral ranges. These changes result in a higher median Tas-

seled Cap brightness, lower Tasseled Cap greenness and wetness, and lower NDVI

compared to unaffected areas. Other factors affecting the magnitude of change in re-

flectance include season, vegetation condition, land cover heterogeneity, and tornado

strength.

While vegetation indices like NDVI provide a quick way to identify damage, they

have limited utility when monitoring recovery due to the cyclical seasonal vegetation
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cycle. Since tornado damage provides an analogous spectral signal to forest clearing,

we compare NDVI to a forest disturbance index (DI) across a five-year Landsat cli-

matology surrounding the 27 April 2011 tornado outbreak in part two of this study.

Pre-outbreak DI values remain relatively stable across seasons. In the five tornado-

damaged areas evaluated, DI values peak within six months followed by a decline

coincident with ongoing recovery. DI-like metrics provide a seasonally independent

mechanism to fill the gap in identifying damage and monitoring recovery.

4.1 Introduction

4.1.1 Tornado Damage Surveys

In the wake of a tornado, ground and aerial surveys conducted by National Weather

Service (NWS) personnel and partners provide a method to document the extent and

intensity of the damage for use within studies regarding infrastructure resiliency (e.g.,

Marshall 2002; Federal Emergency Management Agency 2012), relationships between

radar remote sensing and tornado strength (e.g., Toth et al. 2013; Kingfield and LaDue

2015; Smith et al. 2015), associations with tornado structure and dynamics (e.g.,

Davies-Jones et al. 1978; Fujita 1989; Karstens et al. 2013), and assessments of risk

and vulnerability (e.g., Brooks et al. 2003; Ashley 2007). The enhanced Fujita (EF;

Wind Science and Engineering Center 2006) scale, introduced in 2007 to mitigate

deficiencies with the original Fujita (F; Fujita 1971) scale (e.g., Minor et al. 1977;

Doswell III and Burgess 1988), provides guidance on estimated wind speed and de-

struction relationships for 28 damage categories and is the current standard for tornado

surveys in the United States. While there is a demand to establish evaluation consis-

tency for each survey (Edwards et al. 2013; Burgess et al. 2014), many surveys are

incomplete or rushed due to the time-sensitive and intensive nature of surveying cou-
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pled with workforce, training, and funding limitations (Doswell III and Burgess 1988;

Doswell III et al. 2009). This leads surveyors to determine where the maximum dam-

age occurred (Speheger et al. 2002), focusing on human-made structures that comprise

26 of the 28 EF-scale damage categories and often omitting non-urban or rural areas.

While not a priority for storm surveys, damaged vegetation from natural hazards can

influence radiative energy budgets and temperatures (Parker et al. 2005; Segele et al.

2005; McPherson 2007) and remain visible long after the initial event (Dyer 1988;

Klimowski et al. 1998).

4.1.2 Multispectral Satellite Imagery

The use of spaceborne multispectral imagery has been encouraged (e.g., Bentley et al.

2002; Yuan et al. 2002; Jedlovec et al. 2006; Molthan et al. 2014) to supplement the

information provided by damage surveys. Multispectral remote sensing provides a

synoptic look at the Earth’s surface by measuring radiation emitted or reflected from

the Earth and captured by the satellite’s multiple spectral bands. Each spectral band

corresponds to a range of frequencies located along the electromagnetic spectrum and

can span beyond the visible wavelength region, where human vision is constrained,

into the near-infrared (NIR) and shortwave infrared (SWIR) wavelength regions.

The amount and spectral distribution of energy reflected by the Earth’s surface

is dependent on the surface characteristics with vegetation, soils, and human-made

materials (Fig. 4.1) providing unique spectral signatures received at the sensor. In the

case of healthy vegetation (Fig. 4.1a), plants will absorb more energy in the visible

(0.4 – 0.7 µm) region while reflecting more energy in the NIR (0.75 µm – 1.35 µm) to

aid in photosynthesis. As a plant senescences, the opposite behavior will occur in the

spectral reflectance curve. Soils (Fig. 4.1b) can have a variable spectral signature that

is dependent on their structure, particle size, and organic/mineral composition. Many
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soils are highly reflective in the SWIR region (1.5 µm – 2.5 µm), however, wet soils

tend to be less reflective in this region compared to dry soils (Gao 1996). Manmade

materials (Fig. 4.1c) also provide a distinct spectral reflectance curve that is highly

dependent on its construction composition.

Damaging winds and debris associated with tornadoes will alter the physical and

spectral signature of the Earth’s surface. The damage magnitude is dependent on sev-

eral factors including the tornado strength, size, and makeup of the underlying land

cover within the tornado swath (Jedlovec et al. 2006). For example, the scattering

of human-made materials or scouring of the ground over areas of vegetation could

disrupt the photosynthesis process, altering the difference in reflectance between the

visible and NIR regions as well as enhance reflectance in the SWIR region.

4.1.3 Spaceborne Ratio-Based Analyses of Thunderstorm

Damage

Initial observational studies of thunderstorm damage were often built around cases that

were convenient due to relatively clear imagery received before and after the hazardous

event. Many studies rely on change detection (Singh 1989) and use spectral vegetation

indices, such as the widely adopted Normalized Difference Vegetation Index (NDVI),

to identify the damage extent (Bentley et al. 2002; Yuan et al. 2002; Henebry and

Ratcliffe 2003; Parker et al. 2005; Segele et al. 2005; Jedlovec et al. 2006; Wilkinson

and Crosby 2010; Gallo et al. 2012; Wagner et al. 2012; Molthan et al. 2014). NDVI

(Eq. 1) compares the reflectance of the visible red and NIR spectral ranges (Rouse Jr.

et al. 1973; Tucker 1979).

NDV I =
NIR−Red
NIR+Red

(4.1)
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NDVI exploits the pattern that photosynthetically-active vegetation reflects a higher

fraction of radiation from the NIR and absorbs more radiation from the red wavelength

regions, resulting in a higher NDVI value. During ongoing plant senescence, the re-

flectance values of these two bands will be closer together, resulting in a lower NDVI.

Since NDVI is an optical measurement of vegetation health, this ratio-based index can

be influenced by atmospheric and viewing geometry effects (Bannari et al. 1995) and

is sensitive to the background canopy (Huete and Jackson 1987; Huete 1988). Newer

vegetation indices have been developed to manage these limitations (Bannari et al.

1995) but the spectral ranges required to calculate them may not be available across

different sensor platforms. NDVI is subsequently viewed as a "continuity index" due to

its availability through several generations of satellites and relevance to a collection of

environmental monitoring studies (Huete et al. 2002). While rooted in studies of plant

phenology, NDVI has been uniformly applied to both vegetated and urban/agricultural

cover types in prior analyses of thunderstorm damage (e.g., Yuan et al. 2002; Jedlovec

et al. 2006; Wagner et al. 2012).

For all orbiting multispectral sensors, there is an inverse relationship between spa-

tial and temporal resolution. To assist in post-event response efforts, a few studies

have sacrificed spatial resolution for update frequency by using sensors such as the

Moderate Resolution Imaging Spectroradiometer (MODIS) (e.g., Jedlovec et al. 2006;

Wilkinson and Crosby 2010). Jedlovec et al. (2006) compared 250 m spatial reso-

lution MODIS imager data on-board the NASA Aqua and Terra satellites to higher

spatial resolution imagery and found that MODIS-derived NDVI data may be suffi-

cient at detecting tornado tracks rated F2 or higher, subsequently providing the ability

for a timely assessment of damage extent; however, damage signatures appeared more

clearly in areas of dense or homogeneous vegetation (higher pre-storm NDVI values)

while damage was harder to distinguish in sparse or heterogeneous vegetation (lower

pre-storm NDVI).
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The MODIS red and NIR spectral bands are the only bands with 250 m spatial

resolution, with the other 34 bands at 500 m or 1 km. This limits the creation of other

vegetation indices beyond NDVI at an equivalent resolution. Evaluating all tornadoes

within the Storm Data database from the National Centers for Environmental Informa-

tion (NCEI) since the inception of the EF-scale (2007 through 2015), we found that

17.3% of the tornado records had an estimated maximum width exceeding 250 m. This

is based upon the assumption that all database records are accurate, which may not be

the case (e.g., Witt et al. 1998a). Regardless, a large majority of these tornadoes may

not be observed using MODIS or sensors with similar spatial resolutions.

To address this limitation, other studies have used higher spatial resolution imagery

(≤ 30 m) to discriminate between damage and non-damage areas. Estimating the

amount of agricultural loss due to thunderstorm damage on 12 August 1999, Bentley

et al. (2002) compared NDVI calculated using Landsat 7 Enhanced Thematic Mapper

Plus (ETM+) imagery and observed swaths of lower NDVI values where large hail

occurred. Evaluating multispectral returns across a heterogeneous terrain, Yuan et al.

(2002) used the Linear Imaging Self-Scanning III 23.5 m spatial resolution imagery to

generate NDVI post-event and change products over a damage swath from the 3 May

1999 Oklahoma City, OK F5 tornado. They found spatial collocation between lower

NDVI and F2+ tornado damage rated with some signal corresponding to F1 damage in

rural areas. In another analysis of this tornado, Wagner et al. (2012) used Landsat 5/7

imagery to calculate NDVI alongside other indices and assess damage recovery over a

three-year period. Recovery rates were mainly influenced by the amount and severity

of the initial damage with the hardest hit regions never completely recovering.
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4.1.4 Analyses of Disturbance

In other disciplines, disturbance identification is one of several techniques used to

monitor and model ecosystem attributes (e.g., carbon emissions) within the larger

Earth system (Cohen and Goward 2004). Forests damaged by natural hazards, hu-

man development, insects, and disease emit more carbon into the atmosphere while

new and recovering forests pull carbon from the atmosphere (Odum 1969). Kauth and

Thomas (1976) showed that all four spectral channels on the Landsat 1 Multispec-

tral Scanner (MSS) contained relevant information to monitor vegetation health. By

weighting the sums of the MSS bands, they derived Tasseled Cap indices of brightness

and greenness. With the launch of the Landsat 4 Thematic Mapper (TM), the Tasseled

Cap indices were redefined to use six TM spectral bands and expanded to add wetness

derived from digital numbers (Crist and Cicone 1984) and surface reflectance (here-

after referred to as SR; Crist 1985). Tasseled Cap indices, particularly wetness, are a

valuable predictor of forest structural attributes, and respond to the amount of green

vegetation regardless of the background soil reflectance (Cohen et al. 1995). While the

origin of Tasseled Cap is rooted in agricultural assessment, its utility has been explored

for other land cover regimes, including urban regions (Crist and Cicone 1984; Deng

and Wu 2012). From a data storage standpoint, a reduction in the number of variables

stored from six Landsat spectral bands to three Tasseled Cap parameters have further

promoted its usage for monitoring ecosystem disturbance across longer time scales

(e.g., Cohen et al. 2002).

Capitalizing on the ability of Tasseled Cap to monitor ecosystem changes, particu-

larly in forests, Healey et al. (2005) introduced a disturbance index (DI) technique that

incorporates and reduces the three Tasseled Cap indices down to a single variable that

highlights forest disturbance. Since its inception, DI has been used to describe decadal

change in North American forests (Masek et al. 2008), fused with multi-resolution
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satellite data (Hilker et al. 2009; Tran et al. 2016), and modified to evaluate grazing in

New Zealand grasslands (de Beurs et al. 2016). Related back to thunderstorm hazards,

(Baumann et al. 2014) used DI alongside a set of spectral and Tasseled Cap thresholds

to discriminate, with greater than 75% accuracy, forest pixels that were disturbed by

windfall. Their success with wind damage promotes the applicability of DI in identi-

fying areas of forest damage by tornadoes which tends to be a more localized swath of

defoliation and canopy damage; however, there has been little formal investigation on

the application of DI in the identification of tornado damage to date.

4.1.5 Motivation

In this study, we expand upon the existing knowledge base of tornado damage identi-

fication in two ways. In the first part of this study, we use Landsat 5 TM and Landsat

7 ETM+ imagery to explore how tornadoes change the spectral reflectance curves of

forests, grasslands, and urban environments across different geographic regions in the

United States.

Tree damage by tornadoes, particularly in forested regions, account for two of the

28 damage categories in the EF-scale, yet are a low priority for damage survey teams.

For the second part of this study, we compare the DI technique of Healey et al. (2005)

to NDVI in the immediate and longitudinal identification of tornado damage in forests

through a five-year climatology of Landsat imagery surrounding the 27 April 2011

tornado super outbreak, where over 199 tornadoes occurred across the southeastern

United States in one day (Knupp et al. 2014).
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4.2 Data & Study Region

4.2.1 Landsat Data

We acquired Landsat 5 TM and Landsat 7 ETM+ SR data from the United States Geo-

logical Survey (USGS) EarthExplorer platform. The USGS uses the Landsat Ecosys-

tem Disturbance Adaptive Processing System (LEDAPS; Masek et al. 2006) to atmo-

spherically correct, quality control, and create the SR products. This correction mit-

igates atmospheric effects (i.e., aerosols and other radiative scatterers) and provides

a more accurate estimate of solar radiation reflected by the Earth’s surface compared

to uncorrected, top-of-atmosphere measurements. Furthermore, a new cloud masking

algorithm (CFMask) was added to LEDAPS to identify cloudy, cloud-adjacent, and

cloud shadowed pixels. This algorithm performs better at identifying these features

than the legacy masking algorithm (Zhu and Woodcock 2012) and was used in this

study to remove all pixels not classified as "clear".

4.2.2 Land Cover Data

The National Land Cover Database (NLCD; Homer et al. 2015) provides a 30 m spa-

tial resolution grid of 20 land cover classes derived from the classification system of

Anderson et al. (1976). Since 2001, this database has been updated every five years

with newer versions released for 2006 and 2011. In this study, we applied the most

recent NLCD database prior to each tornado date to classify the land cover. For forest

identification, we selected the deciduous (class 41), evergreen (class 42), and mixed

(class 43) classification categories. For grassland identification, we only used the

grassland/herbaceous (class 71) category as the other three herbaceous categories are

native to Alaska. For urban identification, we used all four developed classifications

(classes 21-24) ranging from open space to high intensity. While NLCD provides clas-
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sification for pasture/hay (class 81) and cultivated crops (class 82), we did not evaluate

these agricultural land cover types due to the inter-season variability of harvest cycles.

4.2.3 Case Selection & Study Domain

NCEI maintains a tornado database dating back to 1950 with most tornado records

containing an estimated start/end time and location of occurrence. In part one of this

study, we selected tornadoes with Landsat TM/ETM+ imagery within 30 days of oc-

currence over a diverse range of geographic regions in the United States. Imagery with

visible ground scouring and previously studied tornadoes were prioritized as they cor-

roborate with the storm event and literature record. In total, we selected 17 tornadoes

(Table 4.1) occurring within 12 Landsat image tiles (black squares; Fig. 4.2).

In part two of this study, we focus on using DI to assess damage recovery in

forested regions. To standardize the image times across the five-year study period,

we selected five tornadoes (purple polygons; Fig. 4.2) with visible ground scouring

from Landsat path 21/row 37 imagery covering portions of west-central Alabama and

eastern Mississippi. For this path/row, we downloaded all Landsat 5/7 SR imagery

from 1 January 2009 to 31 December 2013. Since DI was originally created for forest

damage, we used the 2011 NLCD dataset coupled with the CFMask product to de-

termine the percentage of clear-sky forest pixels in each image. Images with ≥ 10%

cloud cover over forests were discarded. The Landsat 7 scan line corrector (SLC)

failed after May 2003 and results in a 22% reduction in data coverage (Markham et al.

2004). Forest pixels within these missing data regions were treated like cloud-masked

pixels. In total, 19 Landsat 5 and 30 Landsat 7 images were available for data analysis.

Since the Landsat 5 mission ended in November 2011, all remaining images over the

five-year period were from Landsat 7.
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4.3 Methods

4.3.1 Background & Damaged Pixel Identification

We used the tornado record from NCEI alongside methods used in prior studies, such

as the calculation of vegetation indices (Jedlovec et al. 2006; Wagner et al. 2012) and

principal components analysis (Yuan et al. 2002; Molthan et al. 2014), as guidance

to manually contour a damage polygon, as shown in Figure 4.3 for the Jasper County,

MO tornado (tornado J). With many modern tornado records only providing a start/end

location along with a maximum length and width of unknown accuracy, manual con-

touring standardizes the damage identification process and allows for a non-uniform

2D region to be identified.

To assemble a dataset of pixels unaffected by the tornado (hereafter referred to as

background), we calculated a spatial buffer 10 km to 60 km away from the damage

polygon. This buffer size ensures a sufficient number of pixels exists for re-sampling

even if the tornado track was near the edge of an image. To ensure the smaller damage

and larger background regions have the same sample size and land cover distribution,

we randomly sampled the background region without replacement. Imagery with mul-

tiple tornadoes or other thunderstorm hazard damage (e.g., hail streaks) had these other

regions masked out using a 10 km buffer during the background resampling procedure.

4.3.2 Calculation of NDVI and Tasseled Cap Indices

4.3.2.1 Individual Bands & NDVI

The 30 m bands of Landsat TM/ETM+ SR (bands 1-5 and 7) served as six of the

ten inputs evaluated in part one of this study. These six bands, each consisting of

a small spectral range, together provide the spectral reflectance of targets from the
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visible to SWIR wavelength regions (Table 4.2). Due to the commonalities in spectral

range between the sensors, we will hereafter refer to individual Landsat bands by their

center wavelength or band category independent of the sensor. NDVI was calculated

by using the SR values from the red (0.66 µm) and NIR (0.83 µm) bands (Eq. (4.1)).

4.3.2.2 Tasseled Cap Indices

Crist (1985) derived the transformation coefficients (Table 4.3) for the visible to SWIR

reflectance bands using the Landsat 4 TM to calculate Tasseled Cap brightness, green-

ness, and wetness which are the foundation to calculate DI (Healey et al. 2005). These

coefficients were developed with ground measurements to mitigate errors from atmo-

spheric effects. Given the similarities in the spectral ranges between Landsat 5 and 7

(Table 4.2) coupled with the use of LEDAPS to atmospherically-correct all imagery,

we use the coefficients from (Crist 1985) to calculate the Tasseled Cap indices for both

satellite platforms. The interpretation of the Tasseled Cap indices is dependent on the

targets being analyzed (Crist and Cicone 1984). Brightness is the weighted sum across

six input bands and represents the overall reflectance. Greenness is the contrast be-

tween the NIR (0.83 µm) and the visible bands (0.49 µm – 0.66 µm) for vegetation

identification and monitoring. Wetness contrasts the SWIR (1.67 µm – 2.24µm) with

the visible/NIR wavelength regions to quantify soil moisture content and vegetation

density. While the Tasseled Cap has origins in monitoring vegetation response, these

indices have also been used to discriminate vegetation, high albedo, and low albedo

regions in urban areas (Deng and Wu 2012).

4.3.2.3 DI Calculation in Forests

For part two of this study, we use the Tasseled Cap indices above and follow the meth-

ods of Healey et al. (2005) to generate a DI image. The DI calculation uses a lin-
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ear combination of normalized Tasseled Cap indices (Brightnessn, Greennessn, and

Wetnessn) to determine how far, in terms of standard deviation, each individual forest

pixel is from the global mean of forests of the same species (or land cover type). In

our study, we segment each image into one of the three NLCD forest classes (i.e., de-

ciduous, evergreen, and mixed) and calculate an image-wide mean (µ) and standard

deviation (σ ) for each Tasseled Cap parameter and forest class. At each pixel, we then

standardize each local Tasseled Cap parameter by the image-wide µ and σ associated

with its forest class and parameter (e.g., as shown for Brightnessn in Eq. (4.2)). Fi-

nally, these three standardized values are combined to calculate DI (Eq. (4.3)). This

process is repeated for all forest pixels in an image.

Brightnessn =
Brightnesspixel −µBrightness

σBrightness
(4.2)

DI = Brightnessn − (Greennessn +Wetnessn) (4.3)

The DI equation is based upon the assumption that clear cut forests will exhibit an

increase in brightness and decrease in greenness and wetness compared to surrounding

undisturbed forests. The DI value is interpreted as the spectral distance from that pixel

to a mature pixel of the same forest class. Interpreting the change in DI over time

shows that large positive shifts correspond to disturbance while large negative shifts

correspond to regrowth (Healey et al. 2005; Masek et al. 2008; Tran et al. 2016).

Evaluating disturbance in three forests, Healey et al. (2005) observed mean DI

values ≥ 2 in areas affected by disturbance events. de Beurs et al. (2016) notes that

setting a DI ≥ 2 as a threshold for disturbance can misclassify disturbed pixels 25%

of the time. Setting higher DI threshold will lower the misclassification rate, but could

potentially eliminate identification of lower magnitude disturbance events. Baumann
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et al. (2014) found that windfall regions were best identified at a DI threshold between

2.5 and 3. Incorporating the concerns of de Beurs et al. (2016), we have chosen a more

conservative DI threshold of 3 in part two of this study.

In our exploration of DI, we are only interested in disturbance caused by tornadoes.

To mitigate pre-existing forms of disturbance from being misidentified as tornado dam-

age, we identified all pre-disturbed pixels (DI ≥ 3) in the 2 April 2011 Landsat 7 image

prior to the tornado outbreak. All forest pixels failing LEDAPS quality control in the

2 April 2011 image were re-checked in older Landsat images. After identification, all

pre-disturbed pixels were removed from the calculations of DI and NDVI for the entire

five-year period.

4.4 Results - Identifying Tornado Damage by Land Cover

Comparing the sample sizes of urban, forest, and grassland pixels affected by torna-

does (Table 4.4), we found that forests were the most affected land cover type in 13 of

the 17 tornadoes followed by urban areas (three) and grasslands (one). We removed

tornadoes from an individual land cover analysis with fewer than 100 pixels as the poor

sample sizes skewed the distributions of SR, Tasseled Cap indices, and NDVI. After

applying this threshold, we removed one forest case (tornado F), and seven grassland

cases (tornadoes D, F, G, H, J, M, and Q in Table 4.4).

4.4.1 Urban Land Cover

All tornadoes had at least 100 damaged urban pixels ranging from 123 (tornado N) to

5530 (tornado J) corresponding to the EF5 tornado that devastated Joplin, MO on 22

May 2011. Compared to the control background region, all tornado-damaged urban

areas had a higher reflectance in the visible (0.49 – 0.66 µm) and SWIR (1.67 – 2.24

µm) and most areas exhibited a lower reflectance in the NIR region (0.83 µm) (Fig.
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4.4a). In the blue (0.49 µm) and green (0.56 µm) regions, the SR was around 15%

higher while red (0.66 µm) and SWIR (1.67 µm – 2.24 µm) values were around 25%

higher in the damaged region. Changes in NIR (0.83 µm) SR were much smaller with

many tornado-damaged areas having around a 5% lower reflectance compared to the

background region. The general increase in SR measured across most Landsat bands

corresponded to a 25% higher median Tasseled Cap brightness in the damage poly-

gon. With NIR reflectance holding the largest and only positive weighting coefficient

in the greenness calculation (Table 4.3) coupled with many pixels registering a lower

NIR reflectance, median greenness values were around 25% to 60% lower in the dam-

aged areas. The negative weights in the wetness calculation paired with higher SWIR

SR inside the damage polygon results in median wetness being 25% to 75% below

the median wetness values in the background region. The altered spectral signature

in tornado-damaged urban pixels also yields a decline in median NDVI due to higher

reflectance at 0.66 µm and lower reflectance at 0.83 µm. For example, the tornado-

damaged areas associated with tornado P were around 64% more reflective at 0.66 µm

but around 1% less reflective at 0.83 µm. This contraction in the red edge between

the 0.66 µm and 0.83 µm bands yields a median NDVI of 0.26 in the damage region

compared to 0.48 in the background region. This corroborates well with other obser-

vations of decreases in NDVI due to tornadoes (e.g., Yuan et al. 2002; Jedlovec et al.

2006; Molthan et al. 2014).

The spectral reflectance of urban environments is dependent on the infrastructure

density and is a contributing factor in evaluating the magnitude of tornado damage. In

the case of the Jasper, MO tornado (tornado J), pixels classified as open space urban

(Fig. 4.5a) saw a larger decline in median NDVI (-0.18) compared to high density

urban pixels (-0.06, Fig. 4.5b). Open space urban areas are more likely to consist

of a mixture of constructed materials and vegetation while high density regions are

predominantly composed of impervious surfaces (Homer et al. 2015). As expected,
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Landsat TM/ETM+ measures a lower reflectance in the visible wavelengths and higher

reflectance at 0.83 µm in the open space region compared to the high intensity regions

likely corresponding to photosynthetic activity in these vegetated areas. After the tor-

nado occurs, the likely addition of debris covering/shadowing the open space vegeta-

tion coupled with an inconsistent defoliation of the vegetation area and displacement of

dirt/soil increases reflectance in the visible and SWIR and decreases reflectance in the

NIR spectral ranges. In high density urban areas, the increased amount of human-made

material and impervious surfaces (Fig. 4.1c) results in a higher initial reflectance in the

visible and SWIR wavelength regions. After the tornado, only the 0.66 µm and 2.27

µm regions showed increased reflectance between 3% to 5% above the background

field while up to an 8% decline in median reflectance was measured in the other Land-

sat spectral ranges. In the Tasseled Cap space, background high density urban areas

are brighter and have lower greenness and wetness values than open space urban areas.

Tornado-damaged open space urban areas have a higher median brightness (0.07), and

lower median greenness (-0.08) and wetness (-0.11) values whereas high density pixels

do not deviate as far from the background in measures of central tendency. However,

tornado-damaged pixels in both urban land cover types have a smaller interquartile

range (IQR) across the spectral reflectance curve and this corresponds to a lower point

spread in the Tasseled Cap space.

One other observation of note is related to the potential seasonal effects on the spec-

tral signature of cities. The Scott-Newton, MS (tornado N) and Marshall, MS (tornado

Q) events occurred in the fall and winter months. In both events, NIR reflectance in

tornado-affected urban land cover was 15% and 13% higher than the background re-

gion; however, red reflectance also was 38% and 24% higher respectively. While both

cases still resulted in a decline in NDVI, the density distribution of urban environments

and background signal coupled with season can hinder tornado damage identification

using automated techniques trained based on trends observed only in the spring and
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summer.

4.4.2 Forest Land Cover

Forest land cover showed the most consistent change across all parameters evaluated

for the 16 valid tornado events. Comparable to urban area trends, tornado-damaged

forests have a higher visible (0.49 µm – 0.66 µm) and SWIR (1.67 µm – 2.24 µm)

reflectance and a lower NIR (0.83 µm) reflectance (Fig. 4.4b). Comparing damaged

and background SR in tornadoes D (Fig. 4.6a), E (Fig. 4.6b), and G (Fig. 4.6c) shows

these trends are geographically independent with documented occurrences in Wiscon-

sin, Missouri, and Mississippi respectively. In these three cases, the SR of tornado-

damaged forests was around 25% to 69% higher in the blue/green (0.49 – 0.56 µm),

70% to 134% higher in the red (0.66 µm), 17% to 34% lower in the NIR (0.83 µm),

40% to 65% higher in the SWIR (1.67 µm), and 79% to 144% higher in the SWIR

(2.24 µm) spectral regions. Defoliation, broken limbs, and downed trees will reduce

the amount of photosynthetic vegetation and subsequently result in higher reflectance

values in the visible and lower reflectance in the NIR spectral regions; the opposite

spectral behavior of a region with healthy vegetation. Reflectance in the SWIR wave-

length region is inversely related to the amount of moisture in vegetation (Schroeder

et al. 2011) and directly related to the soil background (Cohen and Goward 2004). The

limited amount of healthy vegetation to retain moisture and higher probability of soil

exposure due to canopy defoliation are two of the potential drivers for the increase in

SR observed here.

In the Tasseled Cap space for these three tornadoes we observe an increase in

brightness, and decrease in greenness and wetness in the region damaged by the tor-

nado; this corroborates with other studies of forest damage (e.g., Cohen and Goward

2004; Healey et al. 2005; Baumann et al. 2014). However, these changes can be
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variable depending on the damage extent as downed/stripped trees can leave shadows

across the affected area that lowers brightness and increases wetness when compared

to regions where trees are completely removed (Baumann et al. 2014). A compar-

ison of the IQRs between the two pixel areas reveals a larger spread in the SWIR

wavelength region. This is likely due to contributions of increased visibility of the

soil background coupled with vegetation damage compared to healthy forests in the

same geographic area and also results in a wider range of wetness values measured in

the Tasseled Cap space. The IQRs in the visible and NIR wavelengths between the

damaged and background domains are volatile and ultimately dependent on both the

species of vegetation affected, position in the natural vegetation growth/decay cycle,

and magnitude of damage that can fluctuate across the tornado lifecycle (Holland et al.

2006).

Alongside the disruption of the photosynthesis process and exposure of the soil

background in forests, another factor that can influence SR returns in tornadoes is the

displacement of debris from one land cover region onto another. In both the Cleveland,

OK (tornado P; Fig. 4.7a) and Jasper, MO (tornado J; Fig. 4.7b) tornadoes, forest

pixels are dispersed around expansive urban areas that comprise 94.6% and 76.9%

of the damage polygon area respectively. Median SR values of forests were between

110% to 242% higher in the visible, 88% to 186% higher in the SWIR, and around 6%

lower in the NIR spectral ranges compared to the background. While the reflectance

departures follow the same pattern as other forest analyses (e.g., Fig. 4.6a-c), the

collocation with the urban environment allows for the scattering of human-made debris

and could be an additional factor driving reflectance upwards in the visible and SWIR

wavelengths.
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4.4.3 Grassland Land Cover

Comparable to urban and forested regions in terms of the directional change in

reflectance, most tornado-damaged grasslands registered median reflectance values

around 15% to 25% higher in the visible and SWIR and 5% lower in the NIR (Fig.

4.4c). The Canadian-Kingfisher-Logan, OK (tornado L) event produced damage in

a rural portion of northwest Oklahoma and contained the highest number of dam-

aged grassland pixels (N=11,158). Five days after the tornado, median SR values of

tornado-damaged grasslands are around 24% to 44% higher in the visible (0.49 µm

– 0.66 µm) and SWIR regions (1.67 µm – 2.64 µm) and slightly lower with a 2%

decrease in the NIR region (0.83 µm) compared to the background region (Fig. 4.8a).

The decline in NDVI tends to be more dependent on the red (0.66 µm) SR as this de-

parts further from the background over the NIR reflectance. Comparable to other land

cover types, these spectral signatures from the background resulted in an increase in

median brightness and decrease in greenness and wetness.

Similar to observations of damaged forests collocated within urban areas, grass-

lands around the EF5 tornado affecting Cleveland, OK (tornado P; Fig. 4.8b) had

greater differences in SR between the damaged and background regions. SR values

were 37% to 90% higher in the visible and SWIR and around 1% lower in the NIR

spectral ranges. The increase in red reflectance translates to a lower median NDVI

(0.38) compared to the background (0.62). These larger departures in median re-

flectance between the damaged and background regions also translates to the greatest

differences in the Tasseled Cap indices with an increase in median brightness (0.11)

and a decrease in greenness (-0.07) and wetness (-0.10). Tornado N was the only grass-

land tornado sampled in the fall region and showed a 3% increase in the visible blue

(0.49 µm) and a decline in all remaining bands ranging from 2% to 17% compared

to the background region (Fig. 4.8c). In this case, the Tasseled Cap indices show the
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opposite of most other tornado damage tracks with a decrease in median brightness

(-0.02) and increase in median greenness (0.01) and wetness (0.04). While the me-

dian NIR reflectance is lower than the background region, the distribution of values

is negatively skewed and results in a higher median NDVI measured in the damaged

region. Similar to forests, the IQR of each spectral region does not follow a common

trend across different tornadoes. In the case of tornado L (Fig. 4.8a), the IQR of each

Landsat band is smaller in the damage region while the opposite is true in tornado

N (Fig. 4.8c). The amount/extent of damage produced by the tornado, vegetation

strength, soil type, season, and debris lofting from surrounding land cover are several

factors that can change the spectral behavior of vegetated areas. Furthermore, unlike

forests and urban land cover, spectral signatures of grasslands are more susceptible to

external influences (e.g., drought, grazing, land management practices; Turner et al.

1992; de Beurs et al. 2016) and can hinder the identification of damage. Jedlovec et al.

(2006) observed that manual and automated identification of damage signatures was

easier when evaluating areas of dense vegetation (e.g., standing trees) while regions of

open grassland provided a lower detection efficiency.

4.5 Results - Tracking Damage Over Time: DI vs. NDVI

In part one of this study, forests comprised a majority of the contoured damaged pixels

in 47% of the tornadoes evaluated with most forests exhibiting an increase in median

Tasseled Cap brightness, and a decrease in greenness and wetness. This is analogous

to a disturbance signal that would be visible using DI. The five tornadoes selected for

part two occurred within the April 27, 2011 tornado outbreak with damage lengths

ranging from 20.3 km to 258.6 km, maximum widths from 307.3 m to 2306.6 m, and

forests constituting 41% to 81% of the damaged area (Table 4.5; Fig. 4.2). In a Landsat

7 image acquired on 4 May 2011, seven days after the tornado outbreak, a compari-
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son between the damage and background regions for all tornadoes shows a spectral

signature similar to observations in forests across other locations. The extent of the

damage as related to differences in reflectance between the damage and background

regions is correlated to the intensity of the tornado. In the case of the Wateroak tornado

(Fig. 4.9a), SR values were around 18% to 50% higher in the visible, 11% lower in

the NIR, and 17% to 38% higher in the SWIR region. For the Tuscaloosa-Birmingham

tornado (Fig. 4.9b), the widest tornado in our DI dataset, SR values were between

28% to 115% higher in the visible, 18% lower in the NIR, and between 39% to 78%

higher in the SWIR spectral regions. Accordingly, these SR departures permeate into

the calculations of NDVI and DI. For the Wateroak tornado, the damage region had a

lower median NDVI of 0.81 and a higher median DI of 0.95 compared to the back-

ground region at 0.89 and -0.99 respectively. In the stronger Tuscaloosa-Birmingham

tornado, the median NDVI (DI) inside the damage region was 0.72 (3.40) compared to

the background region at 0.88 (-0.97).

A comparison of DI to NDVI across the entire five-year period for the smallest

(Fig. 4.10a) and largest (Fig. 4.10b) tornadoes reveals two distinct patterns before and

after the tornado outbreak. Before the outbreak, DI remains stable in both the damage

and background regions with the median DI remaining at or below zero and the total

percentage of disturbed pixels remaining below 10% for a majority of images. As ex-

pected, NDVI over the same period varies with the seasons with median NDVI values

peaking around 0.89 in the mid-summer months and reaching a minimum around 0.53

in the winter months. Due to this known variability of NDVI across seasons, employ-

ing change detection techniques can provide very different results depending on the

amount of time between the images. For example, over the period between March and

May 2010, median NDVI across the background region increases from 0.56 to 0.79.

Over this same period, we also observe increases in Tasseled Cap brightness (0.08),

greenness (0.14), and wetness (0.05) in conjunction with more widespread growth and
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coverage of foliage within these forests. However, since a global mean and standard

deviation are calculated within each image, the resulting summary statistics of DI are

seasonally independent. This process of standardizing based on the current global

spectral reflectance is the biggest strength of DI and mitigates several sources of cross-

temporal signal contamination (i.e., vegetation growth cycles, droughts) that would be

observed in standard ratio-based indices such as NDVI.

A comparison of both indices after the tornado outbreak provides additional evi-

dence supporting the usage of DI or the calculation of a DI-like index. For the Wa-

teroak and Tuscaloosa-Birmingham tornadoes, the percentage of disturbed pixels esca-

lates rapidly with 25% and 60% of the respective swaths classified as disturbed within

6 months following the tornado outbreak. Over time, both the percentage of disturbed

pixels and median DI converge towards the background signal. Alternatively, there is a

decline in median NDVI after the tornado outbreak that continues to fluctuate with the

seasons. Similar to DI, NDVI will converge with the background signal, as is observed

with the Wateroak tornado in the latter part of 2013 (Fig. 4.10a).

To bypass the dependence on season with indices like NDVI, prior multi-year stud-

ies of tornado damage have solely used data from within the same season (e.g., Wagner

et al. 2012). DI has utility in allowing for imagery to be pulled from any season and as-

sembled into a time-series, providing a way to track and monitor damage year-round.

For four of the five events (excluding Wateroak), over 45% of the pixels were classified

as disturbed within six months after the tornado outbreak and never returned to pre-

tornado disturbance levels at the end of December 2013 (Fig. 4.11a) whereas NDVI is

unable to provide as clear of a recovery trend. However, the quality of DI is heavily

dependent on the sample size coupled with the accuracy of the land cover classification

of the input imagery. Cloud cover can obscure forest pixels and portions of the dam-

age swath, affecting both the global mean and standard deviation of the Tasseled Cap

indices and summary statistics related to the disturbed pixels. This can be observed
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when relaxing the cloud-free threshold from 90% (Fig. 4.11a) to 50% (Fig. 4.11b).

For example, the percentage of disturbed pixels (median DI) from the Sawyerville-

Eoline tornado varies from 49% (2.89) on 15 January 2012, to 16% (0.81) on 22 May

2012, and back up to 35% (1.79) on 2012 June 23. On 22 May 2012, roughly 31% of

the damage swath was covered in clouds/cloud shadows, removing areas with higher

DI values. Furthermore, our reliance on Landsat 7 ETM+ data with the SLC-failure

reveals/removes certain parts of the tornado swath and background forest pixels within

each successive image and contributes to some of the inter-image variability in DI.

Applying a stricter cloud-free threshold and using an alternate satellite sensor without

the SLC-failure (e.g., Landsat 8) would mitigate these artifacts.

4.6 Discussion & Operational Relevance

Comparing the spectral reflectance across grassland, urban, and forest land cover re-

veals several commonalities in how the spectral behavior changes within tornado-

damaged areas. Most affected areas had a higher SR in the visible and SWIR and

a lower SR in the NIR Landsat spectral bands. In most tornado and land cover combi-

nations evaluated, the smaller difference between the NIR and visible red reflectance

resulted in a decline in the median NDVI in tornado-impacted areas. These land cover

independent observations coupled with the ability to calculate NDVI with relative ease

supports the use of vegetation indices such as NDVI to visualize the extent of tornado

damage.

In this study, we were selective in which tornado swaths were included in our

case dataset. In many instances, the manual contours were smaller than the spatial

extent of tornado damage due to a lack of confidence in discriminating whether or not

damage had occurred due to the spatial constraints of the tornado. In an analysis of

satellite-estimated lengths versus surveyed lengths of tornadoes from the 27 April 2011
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outbreak, Molthan et al. (2014) measured that satellite-based lengths underestimated

survey lengths by around 20 km with Landsat 7 ETM+ data and 23 km with higher-

resolution ASTER data. Regardless, satellite data can aid in identifying regions of

damage potentially missed or unreachable by ground-based damage surveys.

It is worth repeating that attempts to detect tornado damage are dependent on a

multitude of variables. First, the ability to identify a damage signature is subject to the

spatial constraints of the phenomenon observed, be it a tornado, damaging wind, or hail

event. The events in this study and many prior studies (Yuan et al. 2002; Jedlovec et al.

2006; Wilkinson and Crosby 2010; Molthan et al. 2014) showed the clearest damage

signal had visible scouring observed in the SR imagery and were associated with very

intense tornadic circulations. But, tornadoes go through varying levels of organization

throughout their lifecycle, producing inconsistent and oftentimes asymmetric damage

in their wake. Holland et al. (2006) simulated how tornadoes damaged forests and

found variable responses to tree-fall that were dependent on both the radial and tan-

gential components of the vortex and subsequent forward speed. These translational

variables coupled with the geographical location, health, and composition of forests

will affect the extent remotely sensed imagery can detect damage. A comparable argu-

ment could be made on the dependence of building construction quality and quantity

in determining the extent of tornado damage in urban areas. A second factor affecting

damage identification is the scale and contribution of different land cover types in a ge-

ographic domain. Comparing urban densities, we found that high density urban areas

showed a much smaller change in NDVI compared to open space urban areas. Addi-

tionally, vegetated areas collocated or downwind of an urban environment showed a

different pre-tornado spectral reflectance curve and experienced amplified departures

in reflectance compared to analyses of damage further away from urban environments.

The displacement of debris, exposure of soil, and defoliation of trees fundamentally

alters the spectral behavior of the Earth’s surface; however, the exact contributions of
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each factor may not be readily known with spaceborne data in the absence of ancillary

data. Finally, seasonal effects in identifying tornado damage is an underexplored topic.

Many prior studies and this current study have focused on the identification of spring

and summer tornadoes (e.g., Yuan et al. 2002; Jedlovec et al. 2006; Molthan et al.

2014) where the frequency of tornado occurrence is higher (Brooks et al. 2003). In

the case of forest damage associated with tornado Q in Marshall, MS, the only winter

tornado in our study, NIR reflectance was 15% higher and red reflectance was 46%

higher in the tornado damage polygon, resulting in a decline in NDVI by 0.07. The in-

crease in the NIR spectral range was more prevalent in fall/winter events and coupled

with the factors above may limit detection outside of the spring and summer.

In the immediate aftermath of a tornado, vegetation indices like NDVI can provide

a cursory look at where tornado damage has occurred; however, the vegetation cycle

associated with the seasons severely limits the application of comparing NDVI on a

pixel-by-pixel basis across multiple images. The application of DI to identify tornado

damage in forests in Section 4.4.2 highlights its resiliency to the shortfalls of NDVI

by providing a seasonally independent technique to initially identify as well as track

damage areas over time. With a relatively stable DI observed in the 28 months prior

to the tornado outbreak, change detection studies using DI or a DI-like analog may

not need a pre-event image in the same season or year to compare to a post-event

image. However, a longer comparison interval opens up the potential for other sources

of disturbance (e.g. wildfire, harvest, land cover change) to enter the image and be

confused with tornado damage. In a similar vein to NDVI, examination of the shape

and extent of the damage will assist in determining the source of the damage.

While DI is beneficial at standardizing images across time, it is similar to NDVI

in terms of missing detections due to either weaker tornadoes or tornado occurrence

in certain geographic areas. (Masek et al. 2008) observed diminished skill in the DI

parameter from samples taken within the Rockies and Intermountain West. An optimal
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initial operating condition for this iteration of DI is a dark, closed-canopy forest that

minimizes the contributions from the low-level vegetation and soils from dominating

the reflectance signal. This issue can be mitigated by incorporating higher-resolution

maps of vegetation type and density, if available. Furthermore, DI was originally de-

veloped to identify stand-replacing clearance (i.e., complete removal of trees). In the

case of tornado damage, the remnants of downed trees and their associated shadows

could cover up a higher fraction of the soil background and subsequently provide a

lower magnitude increase (decrease) in the Tasseled Cap brightness (wetness) values

compared to clear-cut forests (Baumann et al. 2014). As such, adjustments to the forest

coefficients based on the indigenous vegetation of a local geographic region along with

the derivation of DI-like coefficients could provide a greater operational applicability

to this index.

4.7 Conclusions

In the first part of this study, we explored how the spectral behavior of tornado damage

varies within 17 urban, 16 forest, and ten grassland environments across the central

and eastern United States using Landsat 5 TM and Landsat 7 ETM+ imagery. Overall,

we found that most tornadoes exhibited higher reflectance in the visible and SWIR

TM/ETM+ spectral ranges and a lower reflectance in the NIR spectral range, particu-

larly for tornadoes evaluated during the spring and summer months. During these sea-

sons, these spectral signatures correspond to many tornado-damaged regions having

higher Tasseled Cap brightness values due to a general increase in reflectance across

most Landsat bands, lower Tasseled Cap greenness values driven by the decline in NIR

reflectance, and lower Tasseled Cap wetness values due to the larger increases in SWIR

reflectance compared to visible reflectance. Additionally, median NDVI values were

lower in tornado-damaged areas for the three land cover types except for one grassland
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case. While these trends in spectral signatures, Tasseled Cap indices, and NDVI may

provide some initial guidance at developing a damage identification algorithm, the ex-

tent and magnitude of tornado damage is dependent on factors related to the strength

of the tornado, the type and density of land cover it passes over, and time of year.

While NDVI is beneficial at providing a cursory look at localized change caused by

natural hazards, analyses of recovery using NDVI is limited to the acquisition of cloud-

free, intra-season imagery. Even with these constraints, pixel-based NDVI values can

vary within season due to the normal vegetation lifecycle and other external influences

(e.g., drought). Part two of this study explored the applicability of using DI from

Healey et al. (2005) to identify and track tornado damage in forested areas within a

five-year window surrounding the 27 April 2011 tornado outbreak. Before the tornado

outbreak, the median value of DI remained relatively stable compared to NDVI which

increases in the spring and summer months and decreases in the fall and winter months.

After the tornado outbreak, values of DI initially increased dramatically with four of

the five tornadoes registering over 45% of the contoured track as disturbed (DI ≥ 3)

within six months. The percentage of disturbed pixels declined over time as ongoing

recovery occurred in the region. During recovery, NDVI values began to converge

with NDVI values in the background region but continued to vary with the seasons.

While the quality of the DI output is influenced by the accuracy of the land cover

classification and the amount of cloud-free imagery, this seasonal resiliency should

promote the usage of DI and the re-development of new DI-like indices focused on

tornado damage in different land cover regions in future studies of natural hazards.
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Table 4.2: Spectral ranges of the Landsat 5 TM and Landsat 7 ETM+ visible to SWIR
reflectance bands (USGS 2016).

Band Landsat 5 TM
Spectral Range

[µm]

Landsat 7 ETM+
Spectral Range

[µm]

Center
Wavelength

[µm]
Band 1 – Visible Blue 0.45-0.52 0.45-0.52 0.49

Band 2 – Visible Green 0.52-0.60 0.52-0.60 0.56
Band 3 – Visible Red 0.63-0.69 0.63-0.69 0.66

Band 4 – NIR 0.76-0.90 0.77-0.90 0.83
Band 5 – SWIR 1.55-1.75 1.55-1.75 1.67
Band 7 – SWIR 2.08-2.35 2.09-2.35 2.24
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Figure 4.1: Spectral reflectance curves of different (a) vegetation, (b) soils, and (c)
human-made materials from the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) Spectral Library (Baldridge et al. 2009).
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Figure 4.4: Percent departure in median reflectance, Tasseled Cap indices, and NDVI
from the background region for (a) urban, (b) forest, and (c) grassland land cover.
Each horizontal black line indicates an individual tornado track with the gray bar cor-
responding to the data range. The highest and lowest departures have their respective
tornado letter listed. The number of cases with positive (top) and negative (bottom) dif-
ferences are listed in black. The median difference observed across all tornado tracks
is highlighted by the dashed blue line.
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Figure 4.5: Median spectral reflectance and Tasseled Cap parameters for (a) open
space and (b) high intensity urban land cover pixels classified as damaged (red) or
background (blue) for the Jasper, MO tornado (tornado J). The vertical lines in the
spectral reflectance plots correspond to the interquartile range.
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Figure 4.6: Median spectral reflectance and Tasseled Cap parameters for (a) tornado
D in Langlade-Menominee-Shawano-Oconto, WI, (b) tornado E in Ottawa, OK and
Newton, MO, and (c) tornado G in Holmes-Yazoo, MS. The vertical lines in the spec-
tral reflectance plots correspond to the interquartile range.
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Figure 4.8: Median spectral reflectance and Tasseled Cap parameters for (a) tornado L
in Canadian-Kingfisher-Logan, OK (b) tornado P in Cleveland, OK, and (c) tornado N
in Scott-Newton, MS. The vertical lines in the spectral reflectance plots correspond to
the interquartile range.
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Figure 4.9: Damaged (red lines) and background (blue lines) spectral reflectance
curves (top row) and CDF plots of DI (middle row) and NDVI (bottom row) for the (a)
Wateroak, AL and (b) Tuscaloosa-Birmingham, AL tornadoes on 27 April 2011.
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Figure 4.11: Time-series of the percentage of disturbed pixels (top row) and median
NDVI (bottom row) within each of the five damage scour regions using two cloud-
cover thresholds, (a) ≤ 10% and (b) ≤ 50%.
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Chapter 5

Summary & Future Research Endeavors

By continuing to alter Earth’s landscape to accommodate the needs of our civilization,

we will also endure the resulting feedbacks on the earth-environment system that man-

ifests in a multitude of ways. Many of these feedbacks are meteorological in nature

with shifts in temperature and rainfall being two commonly researched variables. Mea-

surements of our land and atmosphere with remote sensing instruments will continue

to report in an absolute space, blind to these complex relationships. As shown in these

three chapters with a research emphasis on thunderstorms and their attendant hazards,

prerequisite knowledge of land use and land cover information can aid in the identi-

fication and interpretation of these phenomena within climatological retrospectives of

remotely sensed data.

Chapter 2 is the first known contiguous United States (CONUS) retrospective us-

ing 20-years of National Lightning Detection Network (NLDN) cloud-to-ground (CG)

lightning data at 500 m spatial resolution. This analysis revealed geographical and sea-

sonal differences in lightning characteristics such as peak current and polarity closer

and further away from antenna towers. At 500 m spatial resolution, all grid cells with

> 105 CGs had a tower registered with the Federal Communications Commissions

(FCC) located within 1 km of each cell centroid. 96% of towers isolated by 10 km

from another tower had a higher CG lightning density within 1 km of a tower location

compared to 2 – 5 km away. Lightning occurrence was correlated to tower height, with

taller towers experiencing a higher frequency of strikes compared to their surround-
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ings. Furthermore, CGs near towers were more likely to transfer negative charges at a

higher peak current than locations further away, validating prior research on how the

NLDN registers certain tower-induced lightning strikes. Towers in the northern Great

Plains were more visible in CG lightning maps due to a generally lower thunderstorm

occurrence within this region compared to parts of the southeastern United States. As

the northern United States is prone to experiencing convective regimes in both the

cool and warm seasons, an interesting result is that a higher percentage of total towers

experienced a four-fold increase in CG lightning density in the cold season months

(September – February) compared to the warm season months (March – August). The

shortest tower experiencing an increase of this magnitude was roughly 343 m in the

cold season compared to 457 m in the warm season. This is expected, but never for-

mally quantified on the scale employed in this study, as charging mechanisms in winter

storms tend to be closer to the ground due to shallower convective structures and colder

vertical temperature profiles compared to warm season events. Finally, a majority of

new tower construction projects have immediate effects on the frequency of CG light-

ning in the following year. These new lightning hot spots can artificially inflate grid-

ded frequencies in coarser CG retrospectives, overestimating lightning risk maps used

in the development of new infrastructure or insurance estimation (e.g., Correa-Henao

et al. 2013).

This study lays the groundwork for future research endeavors by quantifying the

scale of these tower-induced phenomena. Elevated CG frequencies were observed

near towers in 42 of the 48 states evaluated, providing opportunities for local research

groups to add supplemental instrumentation and study additional lightning character-

istics, such as the direction of initiation, that are not as discernible via NLDN. An-

other avenue of exploration is the integration of Lightning Mapping Array (LMA;

Rison et al. 1999) information. While the NLDN provides an estimated location of a

CG strike on the ground, LMAs provide a three-dimensional map of lightning chan-
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nel segments within 100 km of the network center. One lightning flash can contain

thousands of individual segments and these segments can be stitched together to deter-

mine the direction of movement and altitude of both CG and intracloud (IC) lightning.

Currently, there are LMA networks in northern Colorado, New Mexico, central Okla-

homa extending into west Texas, southeast Texas around Houston, northern Alabama,

north-central Georgia around Atlanta, and around the Washington D.C. area. Future

small-scale analyses of tower-triggered lightning with LMAs can address the follow-

ing questions. First, what is the ratio of upward to downward strikes on towers and

does tower height change this ratio? Second, for upward lightning on towers, what

is the ratio of self-initiated upward strikes compared to strikes caused by a preceding

flash? Finally, if a tower is prematurely inducing lightning and temporarily stabilizing

the electric field within a thunderstorm, are there shielding effects from CG lightning

downwind of the tower? This final question could also integrate Doppler radar using

the techniques explained in Chapter 3 to determine the thunderstorm motion vector as

well as delineate certain horizontal and vertical attributes of each lightning-producing

thunderstorm to examine if there are morphological differences in storms producing

tower-triggered lightning compared to storms that do not produce such lightning.

Chapter 3 examined the effects of city size on augmenting thunderstorms through

a five-year, all season climatology covering four cities of variable size in the United

States Great Plains: Dallas/Fort-Worth, TX (DFW), Oklahoma City, OK (OKC), Om-

aha, NE (OAX), and Minneapolis/St. Paul, MN (MSP). The study undertaken in this

chapter is unique from the wealth of past literature in three main aspects. First, it

is the inaugural study using the multiple-radar multiple-sensor (MRMS) framework,

blending over 7.1 million volumes of data from 19 Weather Service Radar – 1988

Doppler (WSR-88D) sites, 39.6 million CG lightning detections from the NLDN, and

over 46,000 hours of Rapid Update Cycle/Rapid Refresh hourly analysis data into a

3D cube comprised of 33 vertical levels from 0.5 to 20 km above ground level (AGL)
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at 0.01◦ spatial resolution and 1-min. temporal resolution. Whereas previous stud-

ies using radar focused on the maximum reflectivity at its standard update time (~5

min.) and resolution (e.g., 2 – 4 km) (e.g, Ashley et al. 2012; Haberlie et al. 2015),

this study allowed for the co-examination of vertically-derived radar parameters ev-

ery minute at around 1 km spatial resolution. The techniques outlined in this chapter

can be replicated as research versions of the algorithms are available, allowing future

endeavors to extend upon this work using other radar fields (i.e., isothermal reflectiv-

ity, echo tops) and investigating other cities. Second, this study used an automated

tracking system that focused on storms moving over the urban environment and de-

fines upwind/downwind regions on a case-by-case basis. Other notable retrospectives

report results within a fixed upwind/downwind sector (e.g., 25 – 75 km west/east of a

city) which is highly dependent on the prevailing flow of a majority of thunderstorms

overlapping a specific geographical area (e.g., Burian and Shepherd 2005; Diem and

Mote 2005). Furthermore, many studies use remote sensing systems that do not have

the temporal resolution to do event-specific analyses (i.e., satellite, rain gauges), intro-

ducing uncertainty as to the extent storms on a specific day interacted with the urban

environment (e.g., Kishtawal et al. 2010; Zhang et al. 2014). Third and finally, this

study reports on both the entire retrospective of data in addition to a seasonal and syn-

optic subset of days historically shown to be most conducive for urban modification

of thunderstorms. This allows for the quantification of how many thunderstorms are

available for potential modification using temporal and synoptic thresholds historically

used in the literature.

The results of this chapter indicate that the size of a city can influence the rate

of thunderstorm initiation as well as thunderstorm strength downwind of that city

given the appropriate ingredients are available. In an examination of all thunderstorm

events across all seasons, the area upwind of all cities tended to have a higher thun-

derstorm occurrence, resulting in a higher areal mean composite reflectivity, maxi-
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mum expected size of hail (MESH), and vertically integrated liquid (VIL). Segmenting

the retrospective to only examine summertime thunderstorms that initiate in the after-

noon/early evening hours on synoptically-benign days and produce non-supercell con-

vective modes reveals that both DFW and MSP, the two larger cities evaluated (> 1100

km2 in area), saw increased thunderstorm occurrence and higher magnitude radar sig-

natures at several downwind range intervals. These patterns were not observed around

OKC and OAX, roughly 40% and 26% the area of MSP. This is indicative of the po-

tential for cities of some minimum size and their associated environmental influences

(i.e., surface roughness, aerosol loading, increased urban-rural temperature gradient)

to increase thunderstorm potential and severity. However, the conditions chosen to

replicate conducive environments for urban modification reduced the number of thun-

derstorm events by 84% to 94%, shining a light on the limited occurrence of such

conditions in the bigger perspective of thunderstorm occurrence.

Given the flexibility the MRMS framework provides in terms of spatiotemporal

resolution and product generation, I am hopeful that future studies will leverage this

powerful framework in urban meteorology endeavors. One avenue ripe for exploration

is the integration of polarimetric radar fields (e.g., Kumjian 2013), available across the

WSR-88D network in May 2013, to diagnose the size and type of precipitation occur-

ring over and downwind of urban areas. In addition, the role of urban-induced aerosols

on the production of precipitation and lighting has received considerable attention in

the last decade (van den Heever and Cotton 2007; Rose et al. 2008; Fan et al. 2016).

Many studies have previously assessed these impacts using numerical models or polar-

orbiting satellites like the Tropical Rainfall Measuring Mission or the Moderate Reso-

lution Imaging Spectroradiometer. The recent launch of the Geostationary Operational

Environmental Satellite – R series in November 2016 puts the 16-channel Advanced

Baseline Imager (ABI; Schmit et al. 2005) into orbit. The ABI has three times the

number of spectral bands and provides data at four times the spatial resolution and five
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times the temporal resolution. This sensor system could be used to estimate aerosol

optical depths on an event-by-event basis as a precursor to MRMS-derived fields of

precipitation and lightning.

Chapter 4 represented the largest, most geographically diverse analysis of tornado

damage using multispectral satellite imagery to date. Furthermore, it is the first study

to report and describe changes in the spectral response of urban, grassland, and forest

land cover at various spectral ranges in the visible, near-infrared (NIR), and shortwave

infrared (SWIR) portions of the electromagnetic spectrum in addition to vegetation

indices and tasseled cap indices commonly reported in the past literature. Finally, it is

the first reported application of a tasseled-cap based disturbance index (DI) to identify

initial tornado damage and quantify recovery in forests.

Independent of geographic region and land cover type, most tornado damaged sur-

faces had a higher reflectance in both the visible and SWIR and a lower reflectance

in the NIR spectral ranges defined within the Landsat-5 Thematic Mapper (TM) and

Landsat-7 Enhanced Thematic Mapper Plus (ETM+). The changes in these individual

Landsat bands corresponded to an increase in tasseled cap brightness and decreases in

tasseled cap greenness and wetness as well as a decrease in the normalized difference

vegetation index (NDVI). These changes were most apparent in regions with wide ar-

eas of homogeneous forest cover. Low-density urban areas tend to have more vegetated

land cover collocated with it, providing an analogous signature to forest damage after

a tornado. Higher-density urban areas naturally have an elevated surface reflectance

in both the visible and SWIR regions, resulting in negligible shifts in these spectral

regions after a tornado and lower amplitude shifts in tasseled cap and NDVI indices.

Grasslands, unlike urban and forest land cover, are more susceptible to external influ-

ences (i.e., drought, land management practices) which can hinder the identification

of damage. In the tornadoes selected for this study, ground scouring resulted in the

complete removal of vegetation, revealing the soil background and providing a similar
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spectral behavior to forest clearing.

Tasseled cap analyses of tornado-damaged forests revealed swaths of increased

brightness and decreased greenness and wetness, a similar signal observed to clear-cut

forests and a foundational assumption of the DI equation. The damage, however, has

to be significant as the remnants of downed trees could cast shadows and continue

to mask the soil background, resulting in a lower-magnitude shift in both brightness

and wetness. When applied to five-years of Landsat imagery surrounding the 27 April

2011 tornado outbreak, DI-values of forests remained relatively stable around zero

before the outbreak, sharply rose after the tornado outbreak, and declined gradually

coincident with vegetation recovery. While NDVI, a commonly-used tornado damage

identification metric, can provide a cursory look at where damage occurred, unaffected

NDVI values fluctuate across the year coincident with the seasonal vegetation cycle.

This limits a pixel-based, intra-season longitudinal assessment of damage recovery.

Since the initial submission of this work, both the Landsat-8 Operational Land Im-

ager (OLI; Irons et al. 2012) and the Sentinel-2 Multispectral Imager (MSI; Drusch

et al. 2012) are in orbit. Both of these sensors provide a wider spectral range of ob-

servations compared to the TM/ETM+ systems and equal or higher spatial resolution

(down to 10 m using some bands of the MSI). Future research endeavors can use these

improved sensor systems to examine changes in surface reflectance in identifying tor-

nadoes of variable size as well as other thunderstorm hazards such as hail streaks.

Given that cloud-cover can be detrimental for data collection using passive remote

sensors, active remote sensors, such as the C-band Synthetic Aperture Radar (CSAR;

Torres et al. 2012) on-board Sentinel-1 provides an all-weather, day-and-night look at

land surfaces. This is a lacuna for new research to determine its utility in providing

supplemental information in support of damage identification and cleanup efforts.

The identified remote sensing systems available to extend upon any of the three

chapters above highlights an impetus to continue to view the world through an in-
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creasingly magnified lens. By embracing technological advancements, geographers

have been able to identify more complex and non-linear spatial patterns than even the

brightest minds could fathom half a century ago (Sui and Morrill 2004). As a re-

sult, it is imperative for future geographers to leverage these systems in conjunction

with other methods and academic disciplines to decode the fingerprint of humanity on

Earth. Only through recognition of a potential problem can we begin to mitigate its

negative effects, from city planning to disaster resiliency.
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American Association of Geographers, 107, 14–21, doi:10.1080/24694452.2016.
1230414.

Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and
intensity. SMRP Technical Report 91, University of Chicago, 42 pp.

Fujita, T. T., 1989: The Teton-Yellowstone Tornado of 21 July 1987. Monthly Weather
Review, 117, 1913–1940, doi:10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.
CO;2.

Gallo, K., T. Smith, K. Jungbluth, and P. Schumacher, 2012: Hail Swaths Observed
from Satellite Data and Their Relation to Radar and Surface-Based Observations:
A Case Study from Iowa in 2009. Weather and Forecasting, 27, 796–802, doi:10.
1175/WAF-D-11-00118.1.

Gallo, K. P., and T. W. Owen, 1999: Satellite-Based Adjustments for the Urban
Heat Island Temperature Bias. Journal of Applied Meteorology, 38, 806–813, doi:
10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2.

Galway, J. O., 1992: Early Severe Thunderstorm Forecasting and Research by the
United States weather Bureau. Weather and Forecasting, 7, 564–587, doi:10.1175/
1520-0434(1992)007<0564:ESTFAR>2.0.CO;2.

Gao, B., 1996: NDWI–A normalized difference water index for remote sensing of
vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266,
doi:10.1016/S0034-4257(96)00067-3.

Garolera, A. C., K. L. Cummins, S. F. Madsen, J. Holboell, and J. D. Myers, 2015:
Multiple Lightning Discharges in Wind Turbines Associated With Nearby Cloud-
to-Ground Lightning. IEEE Transactions on Sustainable Energy, 6, 526–533, doi:
10.1109/TSTE.2015.2391013.

125

https://www.fema.gov/media-library-data/20130726-1827-25045-2783/tornado_mat_frontmatter_508.pdf
https://www.fema.gov/media-library-data/20130726-1827-25045-2783/tornado_mat_frontmatter_508.pdf


Gary, C., 1994: La Foundre. Des Mythologies Antiques á la Recherche Moderne. Mas-
son, 208 pp.

Gero, A. F., and A. J. Pitman, 2006: The Impact of Land Cover Change on a Simulated
Storm Event in the Sydney Basin. Journal of Applied Meteorology and Climatology,
45, 283–300, doi:10.1175/JAM2337.1.

Gray, M., 2009: Landscape: The Physical Layer. Key Concepts in Geography, N. J.
Clifford, S. L. Holloway, S. P. Rice, and G. Valentine, Eds., SAGE, 265–299.

Greene, D. R., and R. A. Clark, 1972: Vertically Integrated Liquid Water–A New Anal-
ysis Tool. Monthly Weather Review, 100, 548–552, doi:10.1175/1520-0493(1972)
100<0548:VILWNA>2.3.CO;2.

Groisman, P. Y., and D. R. Easterling, 1994: Variability and Trends of Total Pre-
cipitation and Snowfall over the United States and Canada. Journal of Climate, 7,
184–205, doi:10.1175/1520-0442(1994)007<0184:VATOTP>2.0.CO;2.

Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on
the climatology of thunderstorm initiation. Quarterly Journal of the Royal Meteoro-
logical Society, 141, 663–675, doi:10.1002/qj.2499.

Hand, L. M., and J. M. Shepherd, 2009: An Investigation of Warm-Season Spatial
Rainfall Variability in Oklahoma City: Possible Linkages to Urbanization and Pre-
vailing Wind. Journal of Applied Meteorology and Climatology, 48, 251–269, doi:
10.1175/2008JAMC2036.1.

Harland, W. B., and J. L. F. Hacker, 1966: Fossil lightning strikes 250 million years
ago. Advancement of Science, 22, 663–671.

Healey, S. P., W. B. Cohen, Y. Zhiqiang, and O. N. Krankina, 2005: Comparison of
Tasseled Cap-based Landsat data structures for use in forest disturbance detection.
Remote Sensing of Environment, 97, 301–310, doi:10.1016/j.rse.2005.05.009.

Henebry, G. M., and I. C. Ratcliffe, 2003: Occurrence and persistence of hailstreaks
in the vegetated land surface. Preprints, 17th Conf. on Hydrology, American Mete-
orological Society, Long Beach, California, USA, JP5.3.

Herzog, B. S., K. M. Calhoun, and D. R. MacGorman, 2014: Total lightning informa-
tion in a 5-Year Thunderstorm Climatology. Preprints, XV International Conference
on Atmospheric Electricity, American Meteorological Society, Norman, Oklahoma,
USA, 22pp.

Heymsfield, G. M., R. Fulton, and J. D. Spinhirne, 1991: Aircraft Overflight Measure-
ments of Midwest Severe Storms: Implications an Geosynchronous Satellite Inter-
pretations. Monthly Weather Review, 119, 436–456, doi:10.1175/1520-0493(1991)
119<0436:AOMOMS>2.0.CO;2.

126



Hilbert, M., and P. López, 2011: The World’s Technological Capacity to Store, Com-
municate, and Compute Information. Science, 332, 60–65, doi:10.1126/science.
1200970.

Hilker, T., M. A. Wulder, N. C. Coops, J. Linke, G. McDermid, J. G. Masek, F. Gao,
and J. C. White, 2009: A new data fusion model for high spatial- and temporal-
resolution mapping of forest disturbance based on Landsat and MODIS. Remote
Sensing of Environment, 113, 1613–1627, doi:10.1016/j.rse.2009.03.007.

Hill, C. M., P. J. Fitzpatrick, J. H. Corbin, Y. H. Lau, and S. K. Bhate, 2010: Sum-
mertime Precipitation Regimes Associated with the Sea Breeze and Land Breeze in
Southern Mississippi and Eastern Louisiana. Weather and Forecasting, 25, 1755–
1779, doi:10.1175/2010WAF2222340.1.

Hitaj, C., 2013: Wind power development in the United States. Journal of Environmen-
tal Economics and Management, 65, 394–410, doi:10.1016/j.jeem.2012.10.003.

Hobson, A. G. K., V. Lakshmanan, T. M. Smith, and M. Richman, 2012: An automated
technique to categorize storm type from radar and near-storm environment data.
Atmospheric Research, 111, 104–113, doi:10.1016/j.atmosres.2012.03.004.

Holland, A. P., A. J. Riordan, and E. C. Franklin, 2006: A Simple Model for Simulating
Tornado Damage in Forests. Journal of Applied Meteorology and Climatology, 45,
1597–1611, doi:10.1175/JAM2413.1.

Holle, R. L., K. L. Cummins, and W. A. Brooks, 2016: Seasonal, Monthly, and Weekly
Distributions of NLDN and GLD360 Cloud-to-Ground Lightning. Monthly Weather
Review, 144, 2855–2870, doi:10.1175/MWR-D-16-0051.1.

Homer, C., and Coauthors, 2015: Completion of the 2011 National Land Cover
Database for the conterminous United States-Representing a decade of land cover
change information. Photogrammetric Engineering and Remote Sensing, 81, 345–
354.

House, F. B., A. Gruber, G. E. Hunt, and A. T. Mecherikunnel, 1986: History of
satellite missions and measurements of the Earth Radiation Budget (1957–1984).
Reviews of Geophysics, 24, 357–377, doi:10.1029/RG024i002p00357.

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002:
Overview of the radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sensing of Environment, 83, 195–213, doi:10.1016/S0034-4257(02)
00096-2.

Huete, A. R., 1988: A soil-adjusted vegetation index (SAVI). Remote Sensing of Envi-
ronment, 25, 295–309, doi:10.1016/0034-4257(88)90106-X.

127



Huete, A. R., and R. D. Jackson, 1987: Suitability of spectral indices for evaluating
vegetation characteristics on arid rangelands. Remote Sensing of Environment, 23,
213–232, doi:10.1016/0034-4257(87)90038-1.

Huff, F. A., and S. A. Changnon Jr., 1972: Climatological assessment of urban effects
on precipitation at st. louis. Journal of Applied Meteorology, 11, 823–842, doi:10.
1175/1520-0450(1972)011<0823:CAOUEO>2.0.CO;2.

Huff, F. A., and S. A. Changnon Jr., 1973: Precipitation modification by major ur-
ban areas. Bulletin of the American Meteorological Society, 54, 1220–1232, doi:
10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2.

Irons, J. R., J. L. Dwyer, and J. A. Barsi, 2012: The next Landsat satellite: The Landsat
Data Continuity Mission. Remote Sensing of Environment, 122, 11–21, doi:10.1016/
j.rse.2011.08.026.

Jauregui, E., and E. Romales, 1996: Urban effects on convective precipitation in Mex-
ico city. Atmospheric Environment, 30, 3383–3389, doi:10.1016/1352-2310(96)
00041-6.

Jedlovec, G. J., U. Nair, and S. L. Hainer, 2006: Detection of Storm Damage Tracks
with EOS Data. Weather and Forecasting, 21, 249–267, doi:10.1175/WAF923.1.

Jing, Z., and G. Wiener, 1993: Two-Dimensional Dealiasing of Doppler Veloci-
ties. Journal of Atmospheric and Oceanic Technology, 10, 798–808, doi:10.1175/
1520-0426(1993)010<0798:TDDODV>2.0.CO;2.

Karstens, C. D., W. A. Gallus Jr., B. D. Lee, and C. A. Finley, 2013: Analysis of
Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and
Tuscaloosa–Birmingham, Alabama, Tornadoes of 2011. Journal of Applied Meteo-
rology and Climatology, 52, 1049–1068, doi:10.1175/JAMC-D-12-0206.1.

Kauth, R. J., and G. S. Thomas, 1976: The tasselled cap - A graphic description of
the spectral-temporal development of agricultural crops as seen by Landsat. Con-
ference Proceedings, Symposium on Machine Processing of Remotely Sensed Data,
Environmental Research Institute of Michigan, West Lafayette, Indiana, USA, 1–11.

Kawecki, S., G. M. Henebry, and A. L. Steiner, 2016: Effects of Urban Plume Aerosols
on a Mesoscale Convective System. Journal of the Atmospheric Sciences, 73, 4641–
4660, doi:10.1175/JAS-D-16-0084.1.

King, P., 1997: On the Absence of Population Bias in the Tornado Climatology
of Southwestern Ontario. Weather and Forecasting, 12, 939–946, doi:10.1175/
1520-0434(1997)012<0939:OTAOPB>2.0.CO;2.

Kingfield, D. M., and J. G. LaDue, 2015: The Relationship between Automated Low-
Level Velocity Calculations from the WSR-88D and Maximum Tornado Intensity

128



Determined from Damage Surveys. Weather and Forecasting, 30, 1125–1139, doi:
10.1175/WAF-D-14-00096.1.

Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke, and J. M. Shepherd, 2010:
Urbanization signature in the observed heavy rainfall climatology over India. Inter-
national Journal of Climatology, 30, 1908–1916, doi:10.1002/joc.2044.

Kitterman, C. G., 1981: Concurrent lightning flashes on two television transmission
towers. Journal of Geophysical Research: Oceans, 86, 5378–5380, doi:10.1029/
JC086iC06p05378.

Klimowski, B. A., M. R. Hjelmfelt, M. J. Bunkers, D. Sedlacek, and L. R. John-
son, 1998: Hailstorm Damage Observed from the GOES-8 Satellite: The 5–
6 July 1996 Butte–Meade Storm. Monthly Weather Review, 126, 831–834, doi:
10.1175/1520-0493(1998)126<0831:HDOFTG>2.0.CO;2.

Knupp, K. R., and Coauthors, 2014: Meteorological Overview of the Devastating 27
April 2011 Tornado Outbreak. Bulletin of the American Meteorological Society, 95,
1041–1062, doi:10.1175/BAMS-D-11-00229.1.

Krider, E. P., R. C. Noggle, A. E. Pifer, and D. L. Vance, 1980: Lightning Direction-
Finding Systems for Forest Fire Detection. Bulletin of the American Meteorological
Society, 61, 980–986, doi:10.1175/1520-0477(1980)061<0980:LDFSFF>2.0.CO;2.

Krider, E. P., R. C. Noggle, and M. A. Uman, 1976: A Gated, Wideband Magnetic
Direction Finder for Lightning Return Strokes. Journal of Applied Meteorology, 15,
301–306, doi:10.1175/1520-0450(1976)015<0301:AGWMDF>2.0.CO;2.

Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar.
Part I: Description of the polarimetric radar variables. Journal of Operational Mete-
orology, 1, 226–242, doi:10.15191/nwajom.2013.0119.

Lafkovici, A., A. M. Hussein, W. Janischewskyj, and K. L. Cummins, 2008: Evalua-
tion of the Performance Characteristics of the North American Lightning Detection
Network Based on Tall-Structure Lightnings. IEEE Transactions on Electromag-
netic Compatibility, 50, 630–641, doi:10.1109/TEMC.2008.927922.

Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007a: An Automated
Technique to Quality Control Radar Reflectivity Data. Journal of Applied Meteorol-
ogy and Climatology, 46, 288–305, doi:10.1175/JAM2460.1.

Lakshmanan, V., B. Herzog, and D. Kingfield, 2015: A Method for Extracting
Postevent Storm Tracks. Journal of Applied Meteorology and Climatology, 54, 451–
462, doi:10.1175/JAMC-D-14-0132.1.

Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An Efficient, General-Purpose Tech-
nique for Identifying Storm Cells in Geospatial Images. Journal of Atmospheric and
Oceanic Technology, 26, 523–537, doi:10.1175/2008JTECHA1153.1.

129



Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A Real-Time,
Three-Dimensional, Rapidly Updating, Heterogeneous Radar Merger Technique for
Reflectivity, Velocity, and Derived Products. Weather and Forecasting, 21, 802–823,
doi:10.1175/WAF942.1.

Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007b: The Warning Deci-
sion Support System–Integrated Information. Weather and Forecasting, 22, 596–
612, doi:10.1175/WAF1009.1.

Lauer, D. T., S. A. Morain, and V. V. Salomonson, 1997: The landsat program: Its
origins, evolution, and impacts. Photogrammetric Engineering and Remote Sensing,
63, 831–838.

Lebo, Z. J., 2014: The Sensitivity of a Numerically Simulated Idealized Squall Line
to the Vertical Distribution of Aerosols. Journal of the Atmospheric Sciences, 71,
4581–4596, doi:10.1175/JAS-D-14-0068.1.

Lemon, L. R., and C. A. D. III, 1979: Severe Thunderstorm Evolution and Mesocy-
clone Structure as Related to Tornadogenesis. Monthly Weather Review, 107, 1184–
1197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

Lemons, H., 1942: Hail in American Agriculture. Economic Geography, 18, 363–378,
doi:10.2307/141444.

Lewis, E. A., R. B. Harvey, and J. E. Rasmussen, 1960: Hyperbolic direction finding
with sferics of transatlantic origin. Journal of Geophysical Research, 65, 1879–
1905, doi:10.1029/JZ065i007p01879.

Lowry, W. P., 1998: Urban effects on precipitation amount. Progress in Physical Ge-
ography, 22, 477–520, doi:10.1177/030913339802200403.

Lu, W., D. Wang, Y. Zhang, and N. Takagi, 2009: Two associated upward lightning
flashes that produced opposite polarity electric field changes. Geophysical Research
Letters, 36, L05 801, doi:10.1029/2008GL036598.

Mach, D. M., D. R. MacGorman, W. D. Rust, and R. T. Arnold, 1986: Site Errors and
Detection Efficiency in a Magnetic Direction-Finder Network for Locating Light-
ning Strikes to Ground. Journal of Atmospheric and Oceanic Technology, 3, 67–74,
doi:10.1175/1520-0426(1986)003<0067:SEADEI>2.0.CO;2.

Mark, H., 1988: A forward looking space policy for the USA. Space Policy, 4, 19–23,
doi:10.1016/0265-9646(88)90093-8.

Markham, B. L., J. C. Storey, D. L. Williams, and J. R. Irons, 2004: Landsat sen-
sor performance: history and current status. IEEE Transactions on Geoscience and
Remote Sensing, 42, 2691–2694, doi:10.1109/TGRS.2004.840720.

130



Markowski, P. M., 2002: Hook Echoes and Rear-Flank Downdrafts: A Review.
Monthly Weather Review, 130, 852–876, doi:10.1175/1520-0493(2002)130<0852:
HEARFD>2.0.CO;2.

Marshall, T. P., 2002: Tornado Damage Survey at Moore, Oklahoma. Weather and
Forecasting, 17, 582–598, doi:10.1175/1520-0434(2002)017<0582:TDSAMO>2.
0.CO;2.

Masek, J. G., C. Huang, R. Wolfe, W. Cohen, F. Hall, J. Kutler, and P. Nelson, 2008:
North American forest disturbance mapped from a decadal Landsat record. Remote
Sensing of Environment, 112, 2914–2926, doi:10.1016/j.rse.2008.02.010.

Masek, J. G., and Coauthors, 2006: A Landsat surface reflectance dataset for North
America, 1990-2000. IEEE Geoscience and Remote Sensing Letters, 3, 68–72, doi:
10.1109/LGRS.2005.857030.

Matyas, C. J., 2010: Use of Ground-based Radar for Climate-Scale Studies of Weather
and Rainfall. Geography Compass, 4, 1218–1237, doi:10.1111/j.1749-8198.2010.
00370.x.

Maynard, R. H., 1945: Radar and weather. Journal of Meteorology, 2, 214–226.

Mazur, V., and L. H. Ruhnke, 2011: Physical processes during development of upward
leaders from tall structures. Journal of Electrostatics, 69, 97–110, doi:10.1016/j.
elstat.2011.01.003.

McCann, D. W., 1983: The Enhanced-V: A Satellite Observable Severe Storm Sig-
nature. Monthly Weather Review, 111, 887–894, doi:10.1175/1520-0493(1983)
111<0887:TEVASO>2.0.CO;2.

McEachron, K. B., 1939: Lightning to the empire state building. Journal of the
Franklin Institute, 227, 149–217, doi:10.1016/S0016-0032(39)90397-2.

McPherson, R. A., 2007: A review of vegetation–atmosphere interactions and their
influences on mesoscale phenomena. Progress in Physical Geography, 31, 261–285,
doi:10.1177/0309133307079055.

McPherson, R. A., and D. J. Stensrud, 2005: Influences of a Winter Wheat Belt on
the Evolution of the Boundary Layer. Monthly Weather Review, 133, 2178–2199,
doi:10.1175/MWR2968.1.

Melillo, J. M., T. Richmond, and G. W. Yohe, 2014: Climate Change Impacts in the
United States: The Third National Climate Assessment. Tech. rep., U.S. Global
Change Research Program, 841 pp. doi:10.7930/J0Z31WJ2.

Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An Automated Method for
Depicting Mesocyclone Paths and Intensities. Weather and Forecasting, 28, 570–
585, doi:10.1175/WAF-D-12-00065.1.

131



Minor, J. E., J. R. McDonald, and K. C. Mehta, 1977: The Tornado: An Engineer-
ing Oriented Perspective. NOAA Technical Memorandum ERL NSSL-82, National
Oceanic and Atmospheric Administration, 220 pp.

Mitra, C., and J. M. Shepherd, 2016: Urban Precipitation: A global perspective. The
Routledge Handbook of Urbanization and Global Environmental Change, K. C.
Seto, W. Solecki, and C. A. Griffith, Eds., Routledge, 152–168.

Mitra, C., J. M. Shepherd, and T. Jordan, 2012: On the relationship between the pre-
monsoonal rainfall climatology and urban land cover dynamics in Kolkata city, In-
dia. International Journal of Climatology, 32, 1443–1454, doi:10.1002/joc.2366.

Molthan, A. L., J. R. Bell, T. A. Cole, and J. E. Burks, 2014: Satellite-based identi-
fication of tornado damage tracks from the 27 April 2011 severe weather outbreak.
Journal of Operational Meteorology, 2, 191–208, doi:10.15191/nwajom.2014.0216.

Montz, B. E., and G. A. Tobin, 2011: Natural hazards: An evolving tradition in applied
geography. Applied Geography, 31, 1–4, doi:10.1016/j.apgeog.2010.06.005.

Mote, T. L., M. C. Lacke, and J. M. Shepherd, 2007: Radar signatures of the urban
effect on precipitation distribution: A case study for Atlanta, Georgia. Geophysical
Research Letters, 34, L20 710, doi:10.1029/2007GL031903.

National Academies of Sciences, Engineering, and Medicine, 2015: Fostering Trans-
formative Research in the Geographical Sciences. Tech. rep., National Academies
of Sciences, Engineering, and Medicine, 90 pp.

Nemunaitis-Berry, K. L., P. M. Klein, J. B. Basara, and E. Fedorovich, 2017: Sensitiv-
ity of Predictions of the Urban Surface Energy Balance and Heat Island to Variations
of Urban Canopy Parameters in Simulations with the WRF Model. Journal of Ap-
plied Meteorology and Climatology, 56, 573–595, doi:10.1175/JAMC-D-16-0157.
1.

Niyogi, D., T. Holt, S. Zhong, P. C. Pyle, and J. Basara, 2006: Urban and land sur-
face effects on the 30 July 2003 mesoscale convective system event observed in
the southern Great Plains. Journal of Geophysical Research: Atmospheres, 111,
D19 107, doi:10.1029/2005JD006746.

Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen,
and B. Wolfe, 2011: Urban Modification of Thunderstorms: An Observational
Storm Climatology and Model Case Study for the Indianapolis Urban Region.
Journal of Applied Meteorology and Climatology, 50, 1129–1144, doi:10.1175/
2010JAMC1836.1.

NOAA, 2011: The historic tornadoes of April 2011. NWS service assessment, Na-
tional Oceanic and Atmospheric Administration, 76 pp.

132



NOAA NCEI, 2014: Climatological Rankings. NOAA, URL http://www.ncdc.noaa.
gov/temp-and-precip/ranks.php.

Ntelekos, A. A., J. A. Smith, L. Donner, J. D. Fast, W. I. Gustafson, E. G. Chapman,
and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipita-
tion in the northeastern United States. Quarterly Journal of the Royal Meteorologi-
cal Society, 135, 1367–1391, doi:10.1002/qj.476.

Ntelekos, A. A., J. A. Smith, and W. F. Krajewski, 2007: Climatological Analyses of
Thunderstorms and Flash Floods in the Baltimore Metropolitan Region. Journal of
Hydrometeorology, 8, 88–101, doi:10.1175/JHM558.1.

Odum, E. P., 1969: The Strategy of Ecosystem Development. Science, 164, 262–270,
doi:10.1126/science.164.3877.262.

Oke, T., 1973: City size and the urban heat island. Atmospheric Environment, 7, 769–
779, doi:10.1016/0004-6981(73)90140-6.

Oke, T., 1987: Boundary Layer Climates: 2nd Edition. Routledge, 435 pp.

Orville, R. E., 2008: Development of the National Lightning Detection Network.
Bulletin of the American Meteorological Society, 89, 180–190, doi:10.1175/
BAMS-89-2-180.

Orville, R. E., R. W. Henderson, and L. F. Bosart, 1983: An East Coast Lightning
Detection Network. Bulletin of the American Meteorological Society, 64, 1029–
1037, doi:10.1175/1520-0477(1983)064<1029:AECLDN>2.0.CO;2.

Parker, M. D., I. C. Ratcliffe, and G. M. Henebry, 2005: The July 2003 Dakota Hail-
swaths: Creation, Characteristics, and Possible Impacts. Monthly Weather Review,
133, 1241–1260, doi:10.1175/MWR2914.1.
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