
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or “ target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication o f either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

Universi^
Micronlms

international
300 N. Zeeb Road
Ann Arbor, Ml 48106

8306728

Singh, Harvinder

DESIGN MODIFICATIONS IN MICROPROCESSORS TO SIMPLIFY THEIR
TESTING

The University o f Oklahoma Ph.D. 1982

University
Microfilms

Internetionel 300X.zeeb Road. Ann Aibor.MI48106

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DESIGN MODIFICATIONS IN MICROPROCESSORS

TO SIMPLIFY THEIR TESTING

A DISSERTATION

SUBMITTED FOR THE GRADUATE FACULTY

in p a r t ia l fu lf il lm en t of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

By

HARVINDER SINGH

Norman, Oklahoma

1982

DESIGN MODIFICATIONS IN MICROPROCESSORS

TO SIMPLIFY THEIR TESTING

APPROVED FOR THE SCHOOL OF ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

II u y

%
dtHOfi'g

Seun K. Kahnr -

WilTia

ïÿy

iger

Andy/R. Magid

ABSTRACT

Design modifications in microprocessors are recommended to simplify

the task of te s t in g them in the user 's environment. The recomended design

modifications are two additional instructions tha t can easily be incorpo

rated into the architecture of any currently manufactured microprocessor.

A t e s t method is then given th a t makes use of these instructions and also

u t i l iz e s some of the principles of Thatte and Abraham (given in th e ir re

cently published paper). I t is shown th a t the present t e s t method is an

improvement over the t e s t method of Thatte and Abraham in a t le a s t three

ways; the t e s t generation procedures are simpler to use, the fa u lt model

allows the existence of larger number of fa u l ts , and the testing time is

reduced s ign if ican tly . To i l lu s t r a te the application of the method, i t

is used to generate te s t sequences for an Intel 8035 microprocessor.

CONTENTS

Page

ABSTRACT .. i

Chapter

1 INTRODUCTION ... 1

2 LITERATURE REVIEW ... 5

2.1 Introduction ... 5
2.2 Fault Table Method ... 5
2.3 One Dimensional Path Sensitizing 6
2.4 N-Dimensional Path Sensitizing

(D-Al gorithm).. 8
2.5 State Table Analysis ... 8
2.6 The Boolean Difference Method 9
2.7 Testing of Large Scale Integrated

(LSI) C i r c u i t s . .. 10

3 BACKGROUND............................... .. 14

3.1 In tro d u c t io n ... 14
3.2 Test Generation Procedures

of Thatte and Abraham .. 14
3.2.1 Notation and Test Generation

Procedures for Instruction
Decoding Faults 16

3.2.2 Fault Masking of Instruction
Decoding Faults and the Order
of Test Application. 18

3.2.3 Faults in the Register Decoding
F u n c tio n .. 21

3.2.4 Test Generation Procedure for
Data Storage Faults 22

3.2.5 Test Generation for Data Transfer
F a u l t s .. 23

3.2.6 Test Generation for Data
Manipulation Faults. 23

3.3 Length of the Test Sequences 24
3.4 Limitations of the Test Methods of

Thatte and Abraham .. 25
3.5 On the Order of Test Sequences to

Test the Microprocessor for
Instruction Decoding Faults 26

n

Rage

4 DESIGN MODIFICATIONS, FAULT MODEL AND THE
TEST METHODOLOGY .. 27

4.1 In t ro d u c t io n .. 27
4.2 Move Multiple Instructions 28

4.2 .2 . Use of the 'Move Multiple'
Instructions to Detect Data
Storage and Data Transfer
Faults 32

4.2.3 Use of the 'Move Multiple' Instructions
to Detect Instruction Decoding
F a u l t s .. 34

4.3 Fault Model. .. 36
4.3.1 Assumptions and Definitions fo r

Developing the Fault Model 36

4.4 Test Methodology............................ 48
4.4.1 Comprehensive Test Method fo r Testing

Instruction Decoding F au lts 48
4.4.2 Complete Testing Procedure........................ 50

4.5 Hardware Test F ixture.. 54

5 CONCLUDING REMARKS AND SUGGESTIONS
FOR FURTHER RESEARCH .. 60

5.1 Concluding Remarks .. 60
5.2 Future Research.. 63

6 REFERENCES.. 65

APPENDIX A
APPLICATION OF THE TEST METHOD TO THE

INTEL 8085 MICROPROCESSOR ... 69

A.l In tro d u c t io n 69
A.2 Detection of Instruction Decoding Faults . . . 69

A.2.1 Grouping the Total Instruction Set
Into EPI Instruc tions 69

A.2.2 Detection of Faults in Group 1........... 82
A.2.3 Detection of Instruction Decoding

Faults in Group I I 84
A.2.4 Faults in Group I I I - 87
A.2.5 Detection of Faults in Group IV 90
A.2.6 Detection of Decoding Faults

in Group V .. 93
A.2.7 Detection of Decoding Faults

in Group VI.. 107
A.2.8 Detection of Faults in Group VII. . . . 110
A.2.9 Detection of Decoding Faults

in Group V I I .. I l l
A.3 Detection of Data Transfer and Data

Storage Faults .. 114
A.4 Detection of Data Manipulation F au lts 114

m

CHAPTER I

INTRODUCTION

With th e ir low cost and numerous potential applications, micro

processors have revolutionized the design of d ig ita l systems. This

widespread application of microprocessors has prompted the industry to

build more and more sophisticated microprocessor devices on a single

chip. Sixteen b i t microprocessors are already available in the commer

cial market and research is being done fo r building parallel processing

devices also on a single chip.

The re l ia b le manufacture of sophisticated microprocessors on

the commercial scale requires the existence of sa tisfac tory t e s t methods.

The methods currently being used in industry are based on ad hoc tech

niques. These techniques include te s t ing various modules (such as the

arithm etic logic u n i t , or indexing hardware, e tc .) separately, testing

each microprocessor instruction separately , or running application pro

grams. Based on these techniques most manufacturers t e s t microprocessors

using special programs designed to t e s t th e i r individual products.

Their techniques do not rely on any systematic or general t e s t methods

th a t could be extended to a ll types of microprocessors.

This current s ta te of the a r t fo r microprocessor testing points

to the need for developing more general t e s t methods that can be ex

tended to microprocessors with a ll types of architectures. S tarting a t

a conceptual level and knowing the arch itecture of the microprocessor

one should be able to generate the necessary te s ts to t e s t the micro

processor. Not only should these methods be able to generate te s ts for

the microprocessors of today, but they must be capable of extension for

testing the chips of the fu ture. I t is expected tha t the number of

gates on the future Very Large Scale Integrated (VLSI) chips will

grow over a million within the next few years.

A major step forward in th is d irection has been taken by Thatte

and Abraham in th e ir recently published paper [1] . The authors describe

a method th a t is suitable for te s t in g microprocessors in a user 's en

vironment. Starting a t the conceptual level and by u t i l iz in g the data

tha t is normally available in manufacturers' catalogs, one follows a

systematic procedure which resu lts in a t e s t sequence th a t is capable of

testing the given microprocessor. The t e s t sequence consists of in s truc

tions th a t are executed by the microprocessor under t e s t . The operands

used in these instructions are chosen carefu lly . The response of the

microprocessor is monitored by an external te s te r which compares the

observed response to the expected response. Any deviation from the ex

pected response is interpreted as a fa i lu re .

The basic strategy used by Thatte and Abraham was to c la ss ify the

microprocessor functions into various functional categories and then to

consider fau lts in each of the categories. The various microprocessor

functions considered are: instruction decoding function, reg is te r de

coding function, data transfer function, data storage function and data

manipulation function. The te s ts generated by Thatte and Abraham methods

assume th a t the fa u lt can e x is t in only one of the functions. I f more

than one microprocessor function is fau lty then some of the fau lts can be

masked and may go undetected.

The paper by Thatte and Abraham is a major step forward in sys

tematizing the procedure for testing microprocessors with varied archi

tectures. Their method provides a general framework for future work

to develop more refined methods. Their methods can also serve as guide

lines for designing microprocessors from the point of view of t e s ta b i l

i ty . These methods are especially useful in a user environment because

the te s ts can be generated from the data normally available to the user.

However, the methods do suffer from a few drawbacks. As already men

tioned, fau lts are allowed only in one microprocessor function. Some

te s t sequences can be very lengthy and the te s t generation may involve

a detailed knowledge of the microprocessor functions.

The present research e f fo r t was orig inally undertaken to remove

the drawbacks of the methods of Thatte and Abraham and develop t e s t gen

eration methods tha t will be simpler to use, will reduce the testing

time and help in the location of fau lts to a certa in degree. Subsequent

investigation of the problem showed th a t some of these improvements can

be accomplished by making a very small number of design changes in the

current designs of microprocessors. The design changes suggested in th is

d isserta tion are two additional instructions th a t can easily be incor

porated into the design of any microprocessor. An improved methodology

for the te s t generation is then given using these instructions and some

of the principles of Thatte and Abraham. The t e s t method is applied to

an Intel 8085 microprocessor and i t is shown th a t the design changes

considerably cut down the testing task by simplifying the t e s t genera

tion procedures and reducing the length of the sequences.

The d isserta tion is organized in the following manner. Chapter II

contains an exhaustive l i te ra tu re review of a l l the previous work done for

testing microprocessors as well as other d ig ita l c i rc u i ts . Chapter I I I

gives the background material re la ting to the methods of Thatte and Abraham.

Chapter IV gives the description of the design changes and the t e s t method.

In Chapter V, the t e s t methodology is applied to an Intel 8085 microproc

essor in presence of the suggested design changes. Chapter VI contains

conclusions and recommendations for fu rther research.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

The concept of designing d ig ita l systems in order to simplify

testing is f a i r ly old [2] . However, microprocessors have entered the

commercial market more recently , and no effective techniques for design

ing eas ily te s tab le microprocessors ex is t . In f a c t , not many systematic

methods e x is t to t e s t microprocessors of a l l types of architec tures.

Most manufacturers t e s t microprocessors using special programs develop

ed to t e s t th e i r individual products. To gain a proper perspective on

how to design them from the point of view of t e s t a b i l i ty , i t is useful

to be fam iliar with not only the t e s t methods for microprocessors but

also with the t e s t methods for VLSI c irc u i ts and the t e s t methods for

d ig ita l systems in general. A thorough l i te ra tu re search was under

taken to accomplish th is goal. The purpose of the following presenta

tion is two-fold: f i r s t , to lay down in perspective the various fa u lt

detection techniques developed to date for tes ting d ig ita l systems;

second, to discuss the related l i te ra tu r e th a t resulted in the devel

opment of the approach taken in th is d isse r ta tio n . Various methods for

testing d ig ita l c i rc u i ts will be examined.

2.2 Fault Table Method

Fault tab le method is a simple but useful method of arriving a t

a minimal number of te s t s to t e s t an n-input combinational c i rc u i t [3] .

I t is obvious tha t i f the truth table for an n-input combinational c i r

cu it is known, the c i r c u i t can always be tested by providing a ll the

possible 2" inputs and comparing the actual output against the output

indicated by the tru th tab le . However, i f an assumption is made tha t

the given c i rc u i t contains only a single stuck f a u l t , the same c irc u i t

can be tested by a much simpler te s t se t for most practical c ircu its

[3] . The fa u l t table method makes use of th is assumption. Correspond

ing to the given c i r c u i t , a table containing 2" rows and 2m columns is

constructed. Each row corresponds to a possible input to th is c i rc u i t .

Whereas, the columns correspond to stuck-at fau l ts a t the m-modes of

th is c i rc u i t . Since each node can have e i th e r a stuck-at-0 or a stuck-

at-1 fa u l t , the to ta l number of columns is 2m. The table is now com

pleted e ither row wise or column wise. I f a given fa u l t causes an in

correct output to be produced for a given input, a check is placed a t

the corresponding in tersection of the row and column. The minimal t e s t

se t can now be selected from th is tab le , using one of the methods des

cribed in [4] .

2.3 One Dimensional Path Sensitizing

Another c lass ica l method of fau lt detection for d ig ita l c i rc u i ts

is called One Dimensional Path Sensitizing [5 - 8] . I t will be out of

place here to describe the complete method, but a b r ie f description of

i t s application to c irc u i ts is given below:

a) A single stuck-at fa u l t is postulated a t a known location

in the c i r c u i t .

b) The postulated fau lt is propagated to one of the primary

outputs via one of the sensitized paths. This is

called the forward trace phase. Implicit in the forward

trace phase is the se tting up of elemental inputs and

outputs determined by th e ir predecessors and in the lim it

th is determines the primary inputs. This process is term

ed as the backward trace phase, and the final se t of p r i

mary inputs constitutes the necessary t e s t configuration

for the postulated fa u lt .

The main disadvantage of th is method is th a t the presence of re-

convergent fanouts in the given c i rc u i t can obscure the determination of

the required te s t configuration. [Reconvergent fanout is defined by

Armstrong as [6] : Fanout paths tha t reconverge again are referred to

as "reconverging fanout" paths.] In fa c t , Schneider [7] has given a

network containing reconvergent fanout in which a postulated fau lt can

not be detected using one dimensional path sensitiz ing technique.

The problem of reconvergent fanout has been solved in n-dimen-

sional path sensit iz ing method, which is also known as D-algorithm.

D-algorithm is described la te r in th is section.

I t is also useful to mention tha t the one dimensional path sens

i t iz in g method works best for combinational c i rc u i ts although attempts

have been made to apply the method to sequential networks. For example.

Crook and Blythin [8] have extended the method to include bistable e le

ments along the sensitized path. Galey, Norby, Roth [5] have suggested

a way of breaking the feedback loops of sequential c irc u i ts to make one

dimensional path sensitiz ing applicable. However, th e ir method does not

succeed when the network becomes complicated.

8

2.4 N-Dimensional Path Sensitizing (D-Algorithm)

A description of N-Dimensional Path Sensitizing can be found in

[10-11]. N-Dimensional path sensitizing or D-algorithm as i t is common

ly ca lled , arose out of Roth's e ffo rts to solve the problem of reconver-

gent fanout associated with one dimensional path sensitiz ing [lO]. Roth

based his D-algorithm on the calculus of D-cubes. A D-cube is a mathe

matical model of combinational network, not much unlike a tru th tab le ,

but with an extra symbol D (and i t s inverse D). Calculus of D-cubes

gives various combinational rules for D-cubes. Similar to the forward

trace phase in one dimensional path sensitiz ing , is the process of find

ing D-cube of f a i lu re . Also, similar to the backward phase trace of

one dimensional path sensitiz ing is the technique applying "consistency

operation" to the c i r c u i t . The process of finding the D-cube of fa ilu re

as well as the application of consistency operation is fa c i l i ta te d by

the rules of D-calcuius.

The D-algorithm as suggested by Roth is applicable only to com

binational c i r c u i ts . Kubo [11] however, has shown th a t the standard

model for sequential networks can be redrawn as a cascaded connection

of combinational networks called the developed sequential network. He

then has affected a modification to the D-algorithm to produce a Diag

nostic Test Sequence (DTS) for the original sequential network.

2.5 State Table Analysis

State Table Analysis is a method th a t is applicable primarily

to sequential c i r c u i ts . The intention here is to produce a DTS from

the original s ta te tab le of the c i rc u i t . The most widely used version

of th is method is based on a paper by Hennie [12]. His idea was to

derive certain input sequences th a t can be applied to a sequential c i r

cu it in any s ta te and the analysis of the output response id en tif ie s

the in i t i a l s ta r t in g s ta te . The combinations of these Distinguishing

Sequences and certa in s ta te transitional sequences form an overall

checking sequence th a t can be applied to the network. Regardless of

the in i t i a l s ta te , the output sequence follows a predefined pattern i f

there is no f a u l t .

One major academic problem associated with th is technique has

been the study of the theoretical bound on the length of the checking

sequence. Several authors have succeeded in reducing the previous

bounds [13-16].

Another important modification of the method has been due to

Kohavi and Lavallee [14]. They have suggested a method for modifying

the s ta te table M of a machine which does not possess a distinguishing

sequence. The modified s ta te table then possess the distinguishing se

quence. This diagnosis requirement can then be incorporated in the

machine as a design parameter.

2.6 The Boolean Difference Method

The Boolean difference (or derivative) ^ of a switching func

tion f(x) with respect to a variable x is defined as:

| £ = f (x) ® f (x ')

The above defin ition of Boolean derivative has been used by

Amar and Condulmari [17] and S e lle rs , e t a l . [18] to a rrive a t required

te s ts for combinational c i r c u i ts . I ts main advantage is th a t most of

the work done in deriving the sequence is a straightforward Boolean

10

expression minimization and there are excellent algorithms fo r th is .

Marinos [19] has extended th is technique to sequential networks. Carroll,

e t a l . [20] and Kajitani [21] have also used Boolean difference for a r

riving a t the diagnostic t e s t sequences.

2.7 Testing of Large Scale Integrated (LSI) Circuits

The e a r l i e r approaches to develop te s t s for LSIs attempted to

extend the c lassica l techniques described above to LSI te s t in g . For

example, Lewis [22] proposed an algorithm based on path sensitiz ing

techniques th a t produces acceptance te s ts for certa in types of chips.

Also, a paper by Jones and Mayes [23] combines the elements of p a r t i

tioning and State Table approaches to produce an integrated Diagnostic

Test Sequence procedure applicable to e i th e r combinational or sequen

t i a l networks. Hillman [24] has also described a programmable t e s t sys

tem for LSI chips.

However, the problems of LSI testing are manifold and the paper

by De Atley [25] contains an appraisal of these. Extension of classical

techniques to LSI tes t ing is c learly not possible. As the complexity of

LSI chips grows, th e ir functional testing is receiving more and more

a tten tion . Two LSI (or VLSI) chips tha t are in wide use today are

memories and microprocessors. In the remaining part of th is section,

l i te ra tu re re la tin g to the testing of these two types of VLSI chips is

examined.

Many excellent papers have been published re la ting to the t e s t

ing of memories [26-36]. Several algorithms to detect d iffe ren t c lass

es of fau lts are given in [30-36]. A major problem related to fa u lt

diagnosis is th a t re lated to the pattern sensitive fau lts [30-32]. The

complexity of the problem of attempting to detect unrestric ted pattern

11

sensitive fau lts in large semi-conducter random access read/write memories

has been adequately pointed out in [27]. However, recently , Reddy and Suk

[36] have developed a re s t r ic te d model for a class of pattern sensitive

fau lts .

Perhaps the most complex problem related to the tes t ing of a LSI

(and VLSI) chips is the testing of microprocessors. As mentioned e a r l ie r ,

the methods in industry use ad hoc techniques, such as "testing" each in

struction for many operands, "exercising" various modules in the micro

processor, or running application programs [37-39]. These techniques do

not rely on any systematic or general t e s t method th a t could be extended to

all microprocessors.

As the in te re s t in VLSI chips continues to grow, th e i r testing is

receiving increased a tten t io n . References [40-46] contain very recent

l i te ra tu re published in th is area. These range from papers on t e s t equipment

to functional level tes t ing of d ig ita l chips and th e i r design for te s ta b i l i ty .

For example in [40] a unique diagnostic t e s t chip and apparatus for testing

microprocessors is described. In [4 l] , the techniques to model LSI devices

a t a functional level using General Simulation Program (GSP) are described.

Su and Hsieh have given a method for modeling the behavior of d ig ited sys

tems using the re g is te r t ra n sfe r language [42]. However th e i r method is not

easily applicable to complex chips such as microprocessors. An approach for

high speed testing of c i r c u i t boards is given in [43]. The paper presents

the design ra tiona le and technical approach used in the development of a

high speed functional board t e s t system tha t is targeted fo r testing and

isolating a t the native operating speed of the c i r c u i t board under te s t .

The problem of designing microprocessors has been addressed by Buckroyd in

[44]. The author assesses the problem and offers general guidelines. How

ever no specific method is described.

12

A model su itab le for testing the control units of d ig ita l computers

has been proposed by Robach and Saucier [45]. I t overcomes some of the d i f

f ic u l t ie s in the c lass ica l methods because instead of testing the gates and

f l i p flops separately i t considers the control commands and the control s ta tes

as the basic t e s t elements. I t thus uses the concept of functional tes ting .

Their approach, therefore is suitable for developing te s t methods for micro

processors.

Using the approach of functional te s t in g , a methodology for te s t

generation fo r a "typical" microprocessor has also been given by Thatte and

Abraham [46]. They have la te r modified th e ir method in a recently published

paper Cl] to extend the method to microprocessors with a ll architec tures. I t

is f e l t th a t the approach suggested by Thatte and Abraham is an excellent

way of te s t ing microprocessors with varied architectures. Their approach is

also su itab le fo r te s t in g microprocessors in the user environment. Further,

i t is not re s t r ic te d to stuck-at fau lts only but can also detect certain other

fau lts such as those resu lting from metalization, e tc . However, a ll possible

types of fa u l ts are not covered in the ir model. Multiple fau l ts may ex is t in

several types of microprocessor functions, but th e ir model assumes tha t only

one function may be fau lty a t a given time. Furthermore, some of the te s t

sequences can be very lengthy. This not only takes a longer time to te s t the

microprocessor, but also makes the task of generation of these t e s t sequences

more cumbersome. This d isserta tion resulted from the need to extend the

work done by Thatte and Abraham. I t is shown tha t the t e s t generation pro

cedures can be systematized and greatly simplified by making very few simple

modifications in the current designs of microprocessors. The design modif

ications suggested are few, simple, easy to implement and are applicable

to microprocessors with a l l architectures. They reduce the te s t task con

13

siderably by simplifying the t e s t generation prodedures, and cutting down

the testing time.

CHAPTER III

BACKGROUND

3.1 Introduction

The motivation behind the solution presented in th is d is se r ta

tion becomes obvious once the t e s t methods of Thatte and Abraham are

known. Their t e s t methods and the drawbacks in th e i r t e s t methods are

b r ie f ly discussed in the following sections. However, the discussion

presented here is by no means complete. I t is provided only to give a

proper perspective on the proposed t e s t methodology given la te r in Chap

te r IV. For a complete description of th e ir t e s t methods the reader is

referred to [42].

3.2 Test Generation Procedures of Thatte and Abraham

Thatte and Abraham [1] have developed methods which are s u i t

able for tes t ing microprocessors in the user environment. From the prod

uct information available to the user (such as knowledge of the in s truc

tion reperto ire of the microprocessor and i t s various r e g is te r s) , one

develops the required t e s t s . These t e s t s actually consis t of instruc

tion sequences which are executed by the microprocessors under t e s t .

The operands used for these instructions are chosen carefu lly . The re

sponse of the microprocessor under t e s t , is monitored by an external

t e s t e r , which compares the observed response to the expected response.

Any deviation from the expected response is in terpreted as a fa i lu re .

14

15

To generate the required t e s t sequences, Thatte and Abraham have

divided the fau lts in a microprocessor into the following five cate

gories: Instruction Decoding Faults, Register Decoding Faults, Data

Transfer Faults, Data Storage Faults and Data Manipulation Faults. These

fa u l t categories are b r ie f ly described below.

a) Instruction Decoding and Faults in the Control Function

Faults: These fau lts re fe r to the fau l ts in the instruction

decoding and control function of the microprocessor. Since

th is function is carried out by the decoder and control c i r

cu itry in the microprocessor, fau lts in th is function will

also indicate fau l ts in the instruction control and decoder

c ircu itry . Under these types of f a u l ts , incorrect instruc

tions may get executed. For example, i f the microprocessor

is required to execute an instruction I j , under a fau lt

instruction Iĵ may be executed.

b) Register Decoding Faults: These fau lts re fe r to the reg is

t e r decoding function in the microprocessor. Since th is

function is also carried out by the decoding c ircu itry in

the microprocessor, fau l ts in th is function will also ind i

cate fau l ts in the re g is te r decoding c irc u itry . Under these

f a u l ts , data may be loaded in or read out of the wrong reg

i s t e r s , in response to the execution of an instruction . For

example, i f the contents of reg is te r R̂ are required to be

read, the ANDed or ORed contents of reg is te rs R-j and Rg may

be read instead.

c) Data Transfer Faults: These fau lts re fe r to the fau lts in

the microprocessor buses. The lines of a bus may get

16

connected (bridged) together due to metallization of some

other form of coupling. The connected lines cannot t ran s

mit d ifferen t logic values. Thus, the bus can transmit

d iffe ren t logic values on the two bridged l in es . In the

same manner stuck-at fau lts can cause incorrect data values

to be transmitted.

d) Data Storage Faults : These fau lts re fe r to the fau lts in

the microprocessor reg is te rs . Certain ce lls in the micro

processor may be stuck-at-1 or stuck-at-0 and th is may cause

incorrect data to be stored in the reg is te rs .

e) Data Manipulation Fau lts ; These re fe r mainly to the fau lts

in the arithmetic logic unit of the microprocessor. Faults

in the in terrupt handling hardware, hardware used for incre

menting (or decrementing) the stack pointer, e t c . , are also

included in these.

3.2.1 Notation and Test Generation Procedures for Instruction

Decoding Faults

The t e s t model of Thatte and Abraham assumes th a t the Instruc

tion Decoder is realized without any reconvergent fanout. Further, the

decoder is allowed to have only a single s tu ck -a t- fau lt . Under the

presence of such fau lts , when a microprocessor is required to execute a

valid instruction I j , any one of the following can happen.

(i) Instead of the instruction I j , some other instruction

I| ̂ is executed. This fa u l t is denoted by

(i i) In addition to instruction I . , some other instruction
V

I(̂ is also activated. This fa u l t is denoted by

fC j/ ' j " ’k)-

17

(i i i) No instruction is executed. This fa u lt is denoted by

Now assume th a t the te s ts are required to be generated for a

fa u l t denoted by f f l . / I ^) and the instruction I . is such tha t i t trans-J K J
fers the contents from i t s source reg is te r S (Ij) to i t s destination

reg is te r D (Ij) . Also assume th a t instruction Iĵ is a transfer in s truc

tion which transfe rs the contents of i t s source reg is te r S(I^) into i t s

destination re g is te r D(I^). The procedure described below generates the

required t e s t sequences.

Procedure

(i) Generate instructions for storing operand 1 (operand 2

may be 000...000 or 111. . . I l l or 101...010 or any other

predetermined operand) in S (I j) .

(i i) Generate instructions for storing operand 2 (operand 2

is also a predetermined operand such th a t operand 1 f

operand 2) in S(I^).

(i i i) I j i s executed.

(iv) Generate instructions to read D (I.). 0(1.) is read.
J J

Expected output is operand 1.

(v) I ^ i s executed.

(vi) Generate instructions to read D(I^). D(I^) is read.

Expected output is operand 2.

I t is c lea r tha t i f the output in step (iv) is operand 2 or in

step (vi) is operand 1 , fa u l t (or fa u l ts) will be indicated.

The procedure above was discussed by the way of an example. De

ta i led procedures and th e ir proofs are given in £42]. However,

18

i t should be clear th a t t e s t procedures for detecting fau lts

such as f (I j / I j + I|^) and f(Ij/<f>) are very s im ilar.

3.2.2 Fault Masking of Instruction Decoding Faults and the

Order of Test Application

In order to ensure tha t a given microprocessor has been tested

fo r a l l the possible Instruction Decoding Faults, te s ts must be applied

in a specific order. I f not, some Instruction Decoding Faults can go

undetected. The need to avoid fa u l t masking also makes some t e s t se

quences more complicated.

Thatte and Abraham have approached the problem of fa u l t masking

by dividing the to ta l microprocessor instructions into three categories;

Class T in s truc tions . Class M instructions and Class B instructions.

Basically, Class T instructions are those instructions th a t carry out

some so rt of data transfe r within the microprocessor; Class M ins truc

tions are the instructions which perform the function of data manipula

tion in a microprocessor; whereas Class B refers to branch instructions.

Further, a labeling algorithm assigns appropriate labels to a ll the in

s truc tions in the microprocessor (regardless of th e i r c lass) . In gen

e r a l , a label of an instruction refers to the ease with which data can

be transferred from the destination reg is te r (of the instruction in

question) to the outside world. Instructions th a t d irec tly t ransfe r

data to the devices (such as memory) in the outside world are assigned

to label 1. Instructions th a t call fo r the execution of one or more

additional instructions to t ra n sfe r the data from th e i r destination

reg is te rs to the outside world are assigned higher labels. As an exam

ple consider the instruction ADD R, also of the Intel 8085. This in

s truction adds the contents of the re g is te r R to the Accumulator and

19

stores the re su lts in the Accumulator, i . e . , t h e destination re g is te r

of th is instruc tion is the Accumulator. Transferring the contents of

the Accumulator to the memory requires the execution of one additional

instruc tion . ADD R is therefore assigned a label 2.

In order to detect instruction decoding fau lts in a micropro

cessor, the instructions are c la ss if ie d and labeled in the above manner.

Next, each instruc tion I . must be te s ted for fau lts f (I ^ I j) , f (I j / I j

+ I|^) and f (I j / *) . The to ta l task of tes t ing these fau l ts is divided

into subtasks. Each subtask consists of testing a portion of the fau lts

depending upon the labeling and c la s s i f ic a t io n of and I j . The number

of subtasks into which the instruction decoding fau lts are divided is a

function of the d is tr ibu tion of the labels within the instruction reper

to i re of the microprocessor. Corresponding to each subtask, there ex is ts

a well-defined t e s t procedure. The subtasks are carried out in an order

th a t depends upon the c la s s if ic a t io n and labeling of fau lts to which sub

task is applicable. The execution of tasks in the specified order en

sures th a t f a u l t masking will not occur.

Given below is an example of application of one of the procedures

of Thatte and Abraham to a hypothetical microprocessor. The example will

i l l u s t r a t e two important points: f i r s t , th a t the order of application of

various t e s t sequences is important i f fa u l t masking is to be avoided;

second, the t e s t generation procedures can become complicated while a t

tempting to avoid fa u l t masking.

Example 3 .2 .1 : Consider a microprocessor with the following

instructions (among others) in i t s instruction reperto ire .

I.| — Complement the Accumulator

20

I 2 — Subtract the contents of the memory location LOG X (next
to the one storing the OP CODE of Instruction Ig) from
the contents of the Accumulator and store the re su lt in
the Accumulator.

Ig — Store Accumulator in memory using d ire c t addressing.

Assume th a t t e s t s are to be generated fo r the fa u l t f (I] / l 2).

I t is c lear tha t both I^ and I2 are class M instructions whereas Ig is

a class T ins truc tion . Also, I3 must be assigned a label 1 whereas I ̂

and Ig must both be assigned a label 2. An appropriate te s t procedure

selected from [42], consists of the following steps.

Step 1: Store proper operands in S(I-i) and Sfl?) such that
when I] i s executed RESULT 1 is produced and when I2
is executed RESULT 2 is produced in the Accumulator,
and RESULT 1 f RESULT 2. (Note th a t in th is case S(Ii)
is the Accumulator and S (l2) = LOG X in the memory.)

Step 2; Read out the Accumulator by executing I3 to ensure tha t
the Accumulator does in fac t contain the operands that
were to be stored in i t in Step 1.

Step 3

Step 4

Step 5

Repeat Step 2.

Execute I-j.

Read Accumulator by executing Ig.

The above procedure detects the fau l ts of the type f (i y i g) pro

vided fau l ts of the type f (I . / I) do not e x is t in the given microprocessor.
J H

(Iq is an instruction in the microprocessor reperto ire) The procedure

therefore assumes th a t the microprocessor has already been tested for

f d j / I q) .

Step 2 is necessary to ensure tha t the Accumulator contains the

proper operand to be stored in i t in Step 1, otherwise Ig could produce

RESULT 1 instead of RESULT 2 and fa u l t masking could occur.

Step 3 is necessary to ensure against f a u l t masking due to fau lts

such as f (Ig /Iq + Iq) where D(I) = Accumulator. In presence of th is

21

fa u l t , the contents of the Accumulator can change a f te r the execution of

Ig (in Step 2), they will not change a f te r the second execution of Ig

(in Step 3) e i th e r .

In step 4, I-j i s executed. I f f (I ^ / l2) is present, RESULT 2 will

be produced in the Accumulator in Step 4, and i t will be detected in Step

5.

3.2.3 Faults in the Register Decoding Function

Register decoding refers to the task of decoding the address of

a reg is te r which may be stored as a specific b i t pattern in the instruc

tions involving th a t re g is te r . Under such a f a u l t , a l l the instructions

of the microprocessor which involve a reg is te r R̂ will now manipulate the

contents of se t of reg is ters {R-j, Rg Rj}. This se t:

(i) May include only R .̂ In th is case, no fa u l t is indicated,

(i i) May be empty. This fa u l t is denoted by f^IR^} = (<j)).

(i i i) May consist of se t (R-j, Rg..............Rj} which may or may not

include R^. This fa u l t is denoted by f j(R j) = {R-|, Rg,

. . . , Rj}.

Thatte and Abraham again give detailed methods with proofs for

the detection of these fa u lts . An example will be su ff ic ien t here. Con

sider a fa u lt denoted by f^(Rg) = (Rp Rg). To detect the f a u l t , R̂ is

written with operand 1 and subsequent to tha t Rg is written with operand

2. R̂ and Rg are now read. Under the fa u l t , reg is te r R̂ will read op

erand 2 instead of operand 1.

Although th is scheme looks simple a t f i r s t , the writing and read

ing of operands into various reg isters of a microprocessor may not be so

straightforward. Consider a reg is te r Rj in a microprocessor which saves

22

the contents of the address of a program sequence when a 'jump to sub

routine' instruction is executed. Also l e t

I j = jump to subroutine instruction

LOG = address of I j in the main program

When Ij is executed, the updated contents (LOG + 1) of the program count

er will be saved in R.. Hence, to load a given operand 1 (say) in R.

the address LOG of I.

LOG + 1 = operand 1.

the address LOG of I j in the main program must be chosen such tha t

3.2.4 Test Generation Procedure fo r Data Storage Faults

These fa u l ts can be eas ily detected by writing in and reading

out various data in the microprocessor reg is te rs . Gonsider the 4 -b it

reg is te r shown in Figure 3.1. One of i t s ce lls is stuck-at-1. Suppose

a data value of 1100 is written into the fau lty re g is te r , on reading out

the same re g is te r a value of 1110 would be read out, as is also ind ica t

ed in the same figure. This also i l lu s t r a te s the principle tha t data

storage fau lts can be detected by writing and reading d ifferen t values

of data into the microprocessor reg is te rs . This principle is used to

arrive a t the design modifications given in Ghapter IV.

S-A-1

Write
1
1
0
Q

Read
1

1
1
0

Register buffer

Figure 3.1 A Four-Bit Register with One Gell Stuck-at-1.

23

3.2.5 Test Generation for Data Transfer Faults

Data t ra n sfe r fau lts can be detected in a manner s im ilar to the

data storage fa u l ts . Figure 3.2 shows two lines of a 4 -line bus, coupled

(bridged) together. As shown in the figure , i f a data value of 1100 is

transmitted a t the l e f t end of the l ine then a value of 1110 will be

received a t the r igh t hand end. This again shows th a t fa u l ts in the

microprocessor buses can be detected by transmitting properly chosen

values of data over the fau lty bus. This principle was again used to

arrive a t a design modification given in Chapter IV.

— Two lines

0
A

Figure 3.2 A Four-Line Bus Having Two of i t s Lines Coupled.

3.2.6 Test Generation for Data Manipulation Faults

I f a logic level description of functional units is availab le ,

t e s t sets can be generated for them using classical fa u l t detection a l

gorithms based on s tuck -a t- fau lt model.

24

3.3 Length of the Test Sequences

Thatte and Abraham have obtained estimates for the lengths of

t e s t sequences required to t e s t various types of microprocessor fa u lts .

For example, i t can be shown th a t the number of instructions in the t e s t

sequence to detect the reg is te r decoding fau lts is of the order of n^

(where nĵ denotes the to ta l number of reg is te rs in the microprocessor).

The length of the t e s t sequences to detect Data Storage or Data Trans

fe r Faults depends upon the widths of the microprocessor buses and reg is

te r s ; whereas the length of the sequences to detect data manipulation

functions depends upon the nature of the operation performed by "o" in

instructions of the type "R^o Rj" -> "Rj^".

I t is of special in te re s t to obtain an estimate of the length

of t e s t sequences to detect Instruction Decoding Faults since i t will be

shown th a t these t e s t sequences constitu te a major portion of the to ta l

t e s t s e t . Assume th a t a given microprocessor is to be tested for a ll

fau lts of the type:

f(I^ ./I j) for l < i < n j

1 < j < nj

where

Pj = to ta l number of instructions in the instruction

reperto ire of the microprocessor under t e s t .

I t is obvious th a t the possible number of fau lts of the type

f (I ^ / I j) in a given microprocessor is n j . The to ta l number of instruc

tions th a t would be needed to t e s t a given fa u l t f (I ^ / I j) will depend

upon the c la s s i f ic a t io n and labels of 1̂ and I j . (These can be generat

ed using methods given in [47]). I t may be concluded th a t the length of

25

the instruction sequence to t e s t for a l l possible Instruction Decoding
2

Faults must be of the order of n j . In the same way, i t can also be

shown tha t the length of the instruction sequence to detect a l l fau lts

of the type f (I ^ / I . + I j) must also be of the order of n^.

For today's microprocessor n^ typ ica lly ranges from 4 to 32,

while nj ranges from 30 to 512. Therefore usually the t e s t sequences

to detect Instruction Decoding Faults form the dominant portion of the

complete t e s t sequence for the microprocessor under te s t .

3.4 Limitations of the Test Methods of Thatte and Abraham

Some lim itations of the Thatte-Abraham methods are given below.

1. Multiple fau lts are not considered. In th e ir t e s t model i t

is assumed tha t only one function can be fau lty a t a time,

although any number of fau lts may e x is t in the fau lty func

tion . This is a serious lim itation since in practice fau lts

occur a t random and can ex is t in more than one function.

2. Methods of Thatte and Abraham do not locate the f a u l ts . By

th e i r methods i t is not possible to t e l l which component in

the microprocessor is fau lty .

3. Errors in the control sequence are not considered.

4. Some t e s t sequences generated by the methods of Thatte and

Abraham can be very lengthy. Consider for example, the

Intel 8085 microprocessor. The to ta l number of instructions

in i t s instruction reperto ire is 248. The order of the t e s t

sequences to locate Instruction Decoding Faults must be of

the order of (248) . This is a large number and the task c

generating the t e s t sequence will be quite cumbersome.

26

3.5 On the Order of Test Sequences to Test the Microprocessor for

Instruction Decoding Faults

I t is of in te re s t to compare the number of instructions required

to t e s t a microprocessor by the methods of Thatte and Abraham to the number

of instructions required when using the present method. I t was shown

e a r l ie r th a t the number of instructions required to t e s t the microprocessor
2

for instruction decoding fau lts is of the order of n% - when the methods

of Thatte and Abraham are used. I t is shown below tha t th is number is

reduced to the order of nj by the present method.

To t e s t fo r instruction decoding fau lts in each group of EPI

instruc tions, each instruction by an MVMI instruction and followed by an

MVMO instruc tion , i .e . the to ta l number of instructions required to te s t

instruction decoding fau lts in the i^^ group of EPI instructions is 3ng^.

I t follows th a t the to ta l number of instructions to t e s t for a l l possible

fau lts in the m EPI instruction groups is :

= 3ngj + 3ng2 + Sn^g + 3ng^

= 3 { n g j + ngg + ngjj,)

= 3nj

where nj = to ta l number of instructions in the instruction

reperto ire of the microprocessor

i . e . the number of instructions is now of the order of n j .

CHAPTER IV

DESIGN MODIFICATIONS, FAULT MODEL AND THE TEST METHODOLOGY

4.1 Introduction

As was discussed in the previous chapter, the t e s t sequences gen

erated by the methods of Thatte and Abraham can be lengthy because of two

reasons. F irs t , some reg is te rs in most commercially available micropro

cessors cannot be read out (or read in) e x p lic i t ly . These reg is te rs can

only be read out (or read in) im plic itly by using se ts of instructions

rather than only one instruction . There is another reason why the t e s t

sequences generated by Thatte and Abraham are lengthy. In order to te s t

fau lts of the type f t l j / I ^) or f (I j / I j + I^) , t e s t sequences must be care

fu lly generated in order to avoid fa u l t masking (the concept of f a u l t mask

ing was described in section 3.2.2), As a re su l t the to ta l number of in

s tructions to t e s t the above mentioned fau lts by the methods of Thatte and

Abraham is of the order of n^ (where n^ = to ta l number of instructions in

the given microprocessor). This is a large number and since the se t of

instructions to t e s t the instruction decoding fau lts forms a large portion

of the to ta l t e s t s e t , the to ta l t e s t se t must also be large.

I t follows th a t the number of instructions in the testing sequence

can be reduced s ign if ican tly by reducing the instructions to t e s t the in

struction decoding fau lts and by providing means to read in or write out

microprocessor reg is te rs ex p lic i t ly . Both these objectives can be accom

plished by introducing two new instructions in the currently manufactured

27

28

microprocessors. We will term these instructions as MOVE MULTIPLE instruc

tions. A description of these instructions is given below.

4.2 MOVE MULTIPLE Instructions and Their Application to Simplify the

Testing of Microprocessors

Most currently manufactured microprocessors do not use a l l the pos

s ib le available b i t patterns in the instruction reg is te r to implement the

instructions. For example, in the Intel 8085 microprocessor only 246 b i t

patterns out of the available 256 b i t pattern combinations are used to

implement d is t in c t instructions. Two of the remaining 10 b i t pattern com

binations can be used to implement the MOVE MULTIPLE instructions. Even

in microprocessors tha t use a ll the b i t pattern combinations, we can s t i l l

introduce the MOVE MULTIPLE instructions by removing instructions th a t do

not have extensive use.

Consider the Intel 8085. The b i t patterns corresponding to the fo l

lowing hexadecimal numbers are unused: 08, 10, 18, 28, 38, CB, 09, DO, ED,

FD. Two of these b i t patterns 08 and 10 can be used to implement the in

structions whose description is given below.

MVMI (MOVE MULTIPLE IN)

This is a three byte instruction that inputs the contents

of the consecutive memory locations of the external memory, in

to the various microprocessor registers. The registers involv

ed are; all the work registers A through L, the stack pointer

(SP), the program counter (PC), status register (SR), and the

instruction register (IR). The contents of the memory location

pointed to by the address byte of MVMI are transferred to Register

29

A (accumulator). The contents transferred into register B

are from a memory location having an address LOG + 1 (LOG =

address stored in the address byte of the instruction MVMI).

Gontents transferred in registers C, D, E, H, L, SP, PG, SR and

IR are from locations with addresses LOG + 2, LOG + 3, LOG + 5,

LOG + 12.

OP Gode Operand

MVMI dbl. addr.

0 0 0 0 1 0 0 0

low-order addr.

high-order addr.

Gycles: 16
States; 49

Addressing: Indirect
Flags: None

I t is anticipated th a t the execution of the above instruction on

Intel 8085 will require 49 clock periods. This is arrived a t using the

following considerations. In Intel 8085, every machine cycle involving

memory reference must take 3 clock periods, except for the instruction

fetch cycle. Instruction fetch takes 4 clock periods to complete. Since

MVMI requires 16 memory reference operations, i t can be executed in

4 + 15 X 3 = 49 clock periods.

I t is also clear th a t th is instruction will involve 16 machine cy

c le s , one for each memory reference operation.

30

Example 4.2.1

Assume that at a certain stage in the program execution, the micro

processor registers and the external memory have the stored contents as shown

in Figure 4.1.
Memory
Word

Address of
the Memory Word (Hexadecimal)

9C
OA
30
40
31
BD
FI
10
2B
C3
B1
AC
AB

(a)

ACCUMULATOR
2A

INSTRUCTION REGISTER
92

STATUS REGISTER
95

40
41
42
43
44
45
46
47
48
49
50
51
52

B C
D5 OF

D E
FF 01

H L
5C 36

STACK POINTER
3CCB

PROGRAM COUNTER
9C89

(b)

Figure 4.1 Contents of Various Microprocessor Registers and Memory Loca
tions Before the Move Multiple Instructions are Executed.

31

We execute the 3-byte MVMI instruction with contents in its three bytes

as given below;

MVMI

low-order addr.

high-order addr.

08

00

04

After the execution of this instruction, the contents stored in various

registers will be as follows:

ACCUMULATOR
9C

INSTRUCTION REGISTER
AB

STATUS REGISTER
AC

B C
OA 30
D E
40 31
H L
BD FI

STACK POINTER
102B

PROGRAM COUNTER
C3B1

MVMO (MOVE MULTIPLE OUT)

This instruction performs the function opposite to that of

MVMI. It transfers the contents of various microprocessor regis

ters into consecutive memory locations in the external memory.

The microprocessor registers involved are: all the microprocessor

registers A through E plus the status register. The contents of

the accumulator A are transferred to the memory location address

ed by the address byte of MVMO. Contents of registers B, C, D,

E, H, L, PC, SR and IR are transferred to locations LOC, LOC + 1,

..., LOC + 12. (LOC is the address stored in the address bytes

of the MVMO instruction.)

32

OP Code

MVMO

Operand

dbl.addr.

0 0 0 0 1 0 1 0

low-order addr.

high-order addr.

Cycles ; 16
States : 49

Addressing; Indirect
Flags: None

As in the case of the instruction MVMI, we anticipate that MVMO

will also require 49 clock periods. This is a reasonable exe

cution time to assume, since the instruction requires 16 memory

reference operations. Also, we assume that the instruction has

16 machine cycles, one cycle for each memory reference operation.

Example 4.2.2

Again assume that the microprocessor registers and the external

memory have the contents shown in Figures 4.1 (a) and (b) of Example

4.2.1. Assume further that the instruction MVMO is now executed, with the

three instruction bytes having the following contents:

MVMO

low order addr

high order addr

10

00

04

33

A fte r th e execu tion o f MVMO, th e e x te rn a l memory w il l have th e f o l

lowing co n ten ts s to red in i t ;

Memory
Word

2A
D5
OF
FF
01
5C
36
3C
CB
9C
89
95
92

Address of
the Memory Word (Hexadécimal)

40
41
42
43
44
45
46
47
48
49
50
51
52

4.4.2 Use of the 'MOVE MULTIPLE' Instructions to Detect Data

Storage and Data Transfer Faults

Since data storage fau lts re fe r to the stuck-at fau lts within the

microprocessor re g is te rs , these fa u lts can be easily detected by writing

in and reading out various data in the microprocessor re g is te rs . Similar

ly , data transfe r fau lts can be detected by transmitting d if fe ren t values

of data over the microprocessor bus. I t follows th a t i f the microprocessor

34

has only one bus then the fau lts in tha t bus can be detected by trans

mitting a ll possible values of data over tha t bus. Also, the fau lts in

the various microprocessor reg is ters can be detected by writing in and

reading out a l l the possible values of data in each of these reg is te rs .

Therefore, the following t e s t procedure te s t s a ll the Data Transfer and

Data Storage fa u lts .

Test Algorithm 4.2.1

1. Let K = 0

2. MVMI LOC 1/ Execute th is instruction with the binary value
of K stored in each of the memory locations
LOC 1 through LOC L + 12/

3. MVMO LOC 2.

4. Increment K.

5. I f K = 2®, Stop

6. I f K < 2®, Go to 1.

Since the procedure above reads in and writes out every possible

b i t pattern in each re g is te r of the microprocessor, i t is obvious tha t i t

te s ts a l l the data storage fa u l ts . Also, since a l l the possible b i t pat

terns are also transmitted over the bus, the procedure also te s ts a ll the

data transfer f a u l ts . I t i s assumed th a t the 'MOVE MULTIPLE' instructions

th a t appear in the above t e s t procedure have been checked and found to be

fa u l t free,

4.2.2 Use of the 'MOVE MULTIPLE' Instructions to Detect

Instruction Decoding Faults

In general, any fa u l t of the type f (I , / I .) can be detected by exe-
* J

cuting the following t e s t sequence and monitoring the signals produced at

the external microprocessor pins.

35

Test Sequence 4.2.1

1. MVMI LOC/ Memory locations LOC through LOC + 12 contain data
th a t is chosen, using the methods explained in
Appendix A./

2. I,

3. MVMO LOC

I t is assumed th a t data input by the above MVMI instruction can be

chosen such tha t no two instructions operating on th is data produce id e n ti

cal resu lts in the microprocessor reg is te rs . I t is easy to see why the above

procedure detects a l l fau lts of the type f (I . / I j) . I f instead of instruc

tion I . any other instruction I . is executed in Step 2, i t will produce
* J

d ifferen t resu lts in microprocessor reg is te rs than those tha t would be

produced by 1^. This data is output in Step 3 of the above sequence by

instruction MVMO and stored in memory location LOC 1 through LOC 1 + 12.

When th is data is compared to the reference expected output data, any

fa u l t of the type f (I . / I j) would be detected.

This principle is used la te r in Section 4.4.1 to develop a compre

hensive te s t generation procedure for instruction decoding fau lts .

4.3 Fault Model

Before we describe complete testing procedures used in testing the

microprocessors i t is necessary to develop a f a u l t model for microprocessors.

The goal is to provide a sound theoretical footing for our fau lt defec

tion techniques. Further, i f the fa u l t detection methods are

to be useful to microprocessor users, the fa u l t model should be applic

able to various commercially available microprocessors and yet be indepen

dent of th e ir implementation de ta ils . The design of microprocessors does

not easily lend i t s e l f to any theoretical analysis. The features found in

36

commercially available microprocessors have evolved to f u l f i l l the needs

of the applications for which microprocessors are used. This makes the

task of developing a comprehensive fa u l t model very complicated. I t is

clear tha t generalizations and assumptions would have to be made. Two

types of assumptions are necessary to develop the fa u lt model: 1) assump

tions regarding the architectures of the microprocessors, and 2) assump

tions regarding the types of fau lts to be allowed in these microprocessors.

The assumptions should f i t the real world as closely as possible and

should s t i l l simplify the testing .

4.3.1 Assumptions and Definitions for Developing the Fault Model

Assumption 4.3.1: To execute a valid instruction, every micro
processor must put out sig,nals at its ex
ternal pins.

Since a microprocessor is a general purpose chip i t is d i f f i c u l t to

form hard and fa s t rules as to what features are common to a l l . However,

i t is reasonable to say tha t every microprocessor is a programmable device

tha t has i t s future s ta tes determined by a se t of instructions stored in

the external memory. In order to access these instructions or in order to

store or re tr iev e data from the external memory or in order to in terface

with the external logic , a microprocessor must output signals on i t s pins

which e i th e r indicate the s ta te of the microprocessor or i t s response to

an instruction execution. I f a known sequence of instructions is stored

in the external memory of a microprocessor then the response of the micro

processor to these instructions can be monitored by an external t e s te r to

provide clues to any fau lts within the microprocessor.

Consider a STA (STORE ACCUMULATOR DIRECT) of an 8085 microprocessor.

This instruction transfers the contents of the accumulator to an external

37

memory locations whose address is a part of the instruc tion . Since th is

reg is te r i s located anywhere in the 64K memory space th a t the 8085 can

d ire c t ly address, 16 b i ts are required fo r the address. Thus the STA in

struction contains 3 bytes: a 1-byte OP code and a 2-byte address. The

instruction is stored in the memory as follows:

OP CODE

low order addr

high order addr

Figure 4.2 The Three Byte STA Instruction.

Three machine cycles are required to fetch th is instruc tion .

OPCODE FETCH transfe rs the OP code from memory to the instruction reg is

te r . The 2-byte address is then transferred , 1 byte a t a t time, from

memory into a temporary storage within the microprocessor. This ca lls for

two MEMORY READ machine cycles. When the en tire instruction is in the

microprocessor i t gets executed. Execution of th is instruction en ta ils

data tran sfe r from the microprocessor to the memory.

The CPU timing fo r . th e STA instruction is i l lu s t r a te d in Figure 4.3.

Each machine cycle is divided by the system clock into a number of s ta te

t ra n s i t io n s , or T s ta te s , which correspond to the period between two nega

t iv e going tran s it io n s of th a t clock. Each machine cycle for th is instruc

tion consists of 3 or 4 s ta te s as is also shown in Figure 4.3. Each s ta te

38

r - - Ml
'"'3 ; M r

I I I
I I I

I T : ! : ;

I I
I

I I I i ' 1

■Jin
1^2 I 3̂ |T, 1 T2 IT3 1

l i l t
L ill
I I

Memory Read j Memory Read 1 Memory Writel Memory Write I

S K c " i s s o T . ‘ '® '" S tr u c t ,o n o f ao 8085

39

is one clock period in duration. The instruction STA has a to ta l of 13

s ta tes .

The timing diagram for an OPCODE FETCH machine cycle is shown in

Figure 4.3. As is shown in the figure, a t the beginning of s ta te T, the

lO/A, Sl, ̂ and SO status and control signal indicate the type of machine

cycle which has been in i t ia te d . For the OPCODE FETCH, lO/R = 0, SI = 1,

and SO = 1. This s ta tus information remains constant for the duration of

the machine cycle. The 16-bit address A0-A15 of the memory location con

taining the OP code is obtained from the program counter and placed in the

address and address/data latches. The high order byte of the address ap

pears on the address bus, A8-A15.and remains constant until the end of

s ta te Tg. During the s ta te T^ the data on the address bus is unspecified.

The low order byte of the address is placed on the address/data bus at

the beginning of Ty This data, however, remains valid only until the

beginning of s ta te Tg at which time the address/data bus is floated. The

address la tch enable, ALE, clocks an external reg is te r which latches the

low order address byte on i t s fa lling edge.

During the s ta te T, the RD control signal goes low, and the OP

code to be fetched is placed on the data bus by the addressed memory loca

tion . On the r is ing edge of the RD control signal in T^, the OP code ob

tained from the memory is transferred to the microprocessor's instruction

re g is te r . During T^ the 8085 decodes the instruction.

The next machine cycle for th is instruction is a MEMORY READ cycle.

MEMORY READ cycle is otherwise similar to the OPCODE FETCH cycle except

tha t only the s ta tes T̂ to T ̂ are used. Also, s ta tus signals correspond

ing to memory read are output a t the s ta tus pins (i . e . , = 1, Sg = 0).

Also, the address output at the address pins is the address of the

40

previous byte fetched + 1.

The next machine cycle fo r the STA instruction is again a MEMORY

READ cycle in which the high order byte from the memory is transferred to

the microprocessor. The only difference between th is MEMORY READ cycle

and the previous cycle is tha t contents output a t the address are the

previous value + 1.

The next cycle is the MEMORY WRITE cycle and is similar to the

previous MEMORY READ cycles except th a t the WR contro l, instead of the RD

goes low during Tg.

I t is thus seen tha t the execution of STA instruction is accompa

nied by appearance of predetermined signals a t specified time in terva ls .

These signals can be monitored to give indication of the fau lts within

the microprocessor. Any deviation in the appearance of the output a t the

microprocessor pin indicates a fa u l t .

Similarly, the microprocessor pins can be monitored in response

to other instruction execution cycles to detect f a u l ts .

Assumption 4.3.2; Any detectable fault within a microprocessor
must either result in incorrect data being
stored in various microprocessor registers
(including registers like program counter,
stack pointer, etc.) or must result in in
correct signals being output at various ex
ternal microprocessor pins.

Most fau lts in a microprocessor are detectable fau lts . That i s ,

most fau lts i f present in a microprocessor w ill a l t e r the normal function

ing of a microprocessor. For example, two coupled lines in a micropro

cessor bus may cause erroneous data to be stored in tha t reg is te r . How

ever, there can ex is t fau lts within a microprocessor th a t do not a l te r

the functioning of the microprocessor in any way. We will term these

Instruction Decoder

From the
Data bus

Instruction
Regi ster Register

Decoder

Microprocessor
Regi s te rs

Control
Unit

Figure 4.4 Schematic Diagram Showing the
A Through E,

P ar tia l C ircu itry to Implement Instruc tions Involved Registers

42

fau lts as undetectable fa u l ts . We will give an example of an undetectable

fau lt .

Consider the schematic diagram shown in Figure 4.4. I t shows c i r

cu itry to implement some of the instructions th a t involve the work reg is

te rs A through E of a hypothetical microprocessor. Suppose th is micro

processor has an instruction with the following MNEMONIC

MOV r , M

Assume fu rther th a t the OPCODE th a t rea lizes th is instruction is given by:

0 1 1 1 0 S S S

where the values of SSS depend upon which re g is te r is involved. Depending

upon the value of the l a s t 3 b its in th is OPCODE, the appropriate re g is te r

gets decoded and i t s contents are stored in memory. Assume further th a t

the binary d ig i ts th a t correspond to each of the reg is te rs A through F in

Figure 2 are as follows:

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0
F 1 1 1

This scheme implies tha t the OPCODE 0 1 1 1 0 0 1 0 transfers the

contents of re g is te r C to memory, whereas the OPCODE 0 1 1 1 0 1 0 0 tra n s

fers the contents of E to memory, and so on.

Assuming th a t due to a stuck-at f a u l t or fau lts in the module marked

as the re g is te r decoder, whenever re g is te r C is required to be decoded,

reg is te r E gets decoded and vice versa. I f we further assume tha t th is

fa u l t is found in every instruction th a t the microprocessor executes, and

43

th a t the reg is ters C and E are otherwise identical in every respect, the

fa u l t will not be detected by executing any in s truc tion . Hence, i t is

possible for stuck-at fau l ts to be present in a microprocessor but s t i l l

go undetected. Our te s t in g procedure will only concentrate on detecting

the detectable f a u l ts .

Further, a l l the detectable fau lts in a microprocessor must re su l t

in e i th e r an incorrect execution of a given instruc tion or an undesired

response to activation of pins. We i l lu s t r a te below how a detectable

fa u l t may re su lt in the storage of incorrect data in various microprocessor

reg is te rs . Consider the hardware shown in Figure 4.5. The figure shows

hardware capable of executing a t lea s t two in s tru c tio n s , and l 2« As

sume tha t Ig is an instruction th a t transfers the contents of reg iste r A

into reg is te r C, whereas I-j transfers the contents of re g is te r B in reg

i s t e r C.

The figure also i l lu s t r a te s 3 re g is te rs . A, B, and C, connected to

the system bus via buffers B^, Bg, Bg. Whenever the lines Cq, Cg, and

are enabled, the contents of the reg is te r are output to the system bus,

whereas activating the lines C^, Cg and Cg re su l ts in data from the system

bus being input to the microprocessor reg is te rs . Thus the execution of I-|

ca lls for activating control outputs Cg and Cg, and the data is clocked

onto C. Similarly the execution of Ig ca lls for the activation of the

signals Cg and Cg, and the data is clocked into re g is te r C. Assume tha t

under a fau lt in the control unit or the instruction decoder, whenever in

struction I-j is executed, an additional line Cg is also activated. I t is

c lear th a t the activation of th is additional l ine will cause the ORed con

ten ts of reg is te rs B and C to be stored in re g is te r C. Thus i t is seen

how certain fau lts in microprocessors can re su lt in incorrect data being

44

stored in various microprocessor reg is te rs . Further, we note th a t th is

fa u l t will be detected i f the contents reg is ters A and B sa tis fy the in

equality:

Contents of A + Contents of B f Contents of A

Assumption 4.3.3: If due to a fault in the instruction decoder
of a micro processor an incorrect instruction
gets executed, and if the incorrect instruc
tion that is executed:

(i) has different instruction timing,

or, (ii) has different number of bytes,

or,(iii) has same number of bytes and execution
time, but produces different signals at
the external pins,

then this fault can be detected solely by
monitoring the response at the external pins
(i.e. the incorrect data stored in the vari
ous registers need not be examined).

F irs t , i t w ill be explained how an incorrect instruction can get

executed in a fau lty microprocessor. Consider the schematic diagram of

Figure 4.5. The diagram shows tha t the output from the instruction decoder

is applied to the control unit. Assume that the decoder develops a stuck

a t fa u l t such tha t whenever the contents corresponding to instruction l-j

are stored in the instruction reg is te r the output line corresponding to Ig

gets activated instead. The presence of such a fa u l t will cause Ig to be

executed whenever is called for.

Further assume th a t a faulty 8085 microprocessor has a fa u l t in i t s

instruction decoder such that instruction Ig = XTHL gets executed in

stead of I-| = MOV reg 1, reg 2. The documentation for 8085 shows th a t the

instruction I-j = MOV reg 1, reg 2 has only 4 s ta te s , whereas Ig = XTHL

has 16 s ta te s . Therefore, th is fau lt will be readily detected by monitoring

45

4 ,
12 ;

Instruc 3 rtion la ^

Decoder
I7
ia ;

Control
Unit

3̂ C4

Figure 4,5 Hardware to implement instructions and Ig,

46

the external pins of the microprocessor since under th is f a u l t the address

of the next instruction in the program sequence will appear on the address

pins a f te r an interval of 16 s ta te s instead of 4 s ta te s (OPCODE Timing).

Thus, i f due to fau lts in the instruction decoder, the microproc

essor executes incorrect instruc tions then i f the incorrect instruc tion

so executed has d iffe ren t instruc tion timing, then the f a u l t can be deter

mined solely by monitoring the response a t the external pins. In order to

f a c i l i t a t e the presentation of the remainder of the theory we introduce two

new defin itions .

Definition 4.3.1:

External Pin Distinguishable (EPD) Instructions:

If the signals produced at the external microprocessor pins in
response to the execution of two instructions Ii and l2 are
different regardless of data, and Ig are said to be external
pin distinguishable.

Example 4.3.2

Consider the following two instructions I^ and I^ in Motorola

MC6800 and having the following descriptions.

Execution time
Operation MNEMONIC Byte (s ta te s)

I . Complement Ac- COM A 1 2
ccumulator A

I« Decrement Stack DES 1 4
Pointer

These instructions are EPD instructions because o f th e i r d iffe ren t

execution times. I f 1 ̂ appears in a sequence followed by other instruc tions,

then the next instruction in sequence will be fetched l a t e r i f Ig was being

executed instead of I^.

Definition 4.3.2:
External Pin Indistinguishable (EPI) Instructions:

47

If the signals produced at the external microprocessor pins
in response to execution of two instructions I]̂ and I2 are
the same, regardless of data, and I2 are said to be ex
ternal pin indistinguishable.

Example 4.3.2

Consider the following two instructions and Ig in Intel 8085

having the following descriptions.

h

ACI ADD IMMEDIATE WITH CARRY

No. of Bytes: 2
No. of States: 7

ADI ADD IMMEDIATE

No. of Bytes: 2
No. of States: 7

Once the OP code for ACI or ADI has been fetched, it is impossible to tell

which of the two instructions has been executed from the signals produced

at the external pins alone. Hence, these instructions are EPI instructions.

Assumption 4.3.4: Only the following type of instruction decoding
faults are allowed:

(i) fClj/*)

(ii) f(I./l,). Ij and I can be either EPD
or EPI instructions

(ill) fdi/li+ Ij), fCli/Ii + Ij + Ifc),
f(Ii/Ii + Ij + I]j + ... Ijj) etc.
Instructions Ij, I^, ..., 1% do not
belong to the same group of EPI
insturctions to which I^ belongs.

(iv) Any other faults in the instruction decod
ing or control sequence that can alter the
microprocessor signals put out at the ex
ternal pins.

48

Assumption 4.3.4 implies tha t data values in the t e s t sequence can

be chosen to detect the fau lts indicated by the above assumption. In real

world s itua tions , th is data will usually not mask most other types of in

struction decoding fa u l ts . Therefore, the assumption does not severely

lim it the capacity of the fa u l t detection procedures.

However, i t should be noted th a t the fa u l t model presented here

allows a much larger number of fau lts than those allowed by the fa u l t model

of Thatte and Abraham. Thatte and Abraham methods allow the existence of

only one stuck a t f a u l t in the instruction decoder. This resu lts in de

coding fau lts of the type f (I / *) , f(I^ ./I j) and f (I j / I ^ + I j) . Clearly the

present model is much broader in scope.

4.4 Test Methodology

Having given the description of the two new instructions and develop

ed an adequate fa u l t model we are now in a position to develop a comprehen

sive t e s t methodology for te s t in g microprocessors. As we shall see, a

large part of the present t e s t method is comprised of testing the micro

processor for the instruction decoding fa u l ts . Therefore, before giving

the complete te s t method, we give below the method fo r testing the micro

processor for instruction decoding fa u lts .

4.4.1 Comprehensive Test Method fo r Testing Instruction

Decoding Faults

The testing for the Instruction Decoding fau l ts can be simplified

by making use of the MOVE MULTIPLE instructions and by using a t e s te r tha t

can monitor the signals put out by the microprocessor a t i t s external pins.

Consider, for example, a hypothetical microprocessor tha t puts out d iffe ren t

signals a t i t s pins fo r d iffe ren t instructions in i t s instruction se t such

49

th a t the signals put out by no two instructions are the same. This micro

processor can be tested for a ll possible instruction decoding fau lts by

monitoring the external signals alone. To t e s t th is processor for in s truc

tion decoding fau lts each instruction in i t s instruction se t will have to

be executed once and the signals a t the external pins monitored. I f an

incorrect instruction is being executed i t will be detected by the signals

put out a t the external pins.

Unfortunately, currently available microprocessors contain se ts of in

structions th a t put out identical signals a t the external pins. Instruction

decoding fau lts for these instructions cannot be detected by the above

described method. However, the t e s t s tra tegy th a t was described in sec

tion 4.4.2 can s t i l l be employed. We give below a testing procedure th a t

is applicable to currently available microprocessors. The procedure will

be developed to t e s t instruction decoding fau l ts covered by the Assumption

4 .3 .4 . For convenience, we res ta te th is assumption below:

Assumption 4.3.4; Only following type of instruction decoding
faults are allowed.

(i) f(Ij/4)

(ii) f(Ij/Ik). Ij and Ik can either be EPD
instructions or EPI instructions.

(iii) f di/li + Ij), f di/li + Ij + Ik),
f(Ii/Ii + Ij + Ijj Ijj), etc.
Instructions Ij, Iĵ , ... 1% do not belong
to the same group of EPI instructions
to which belongs.

(iv) Any other faults in the instructions
decoding or the control sequence that
can alter the microprocessor signals
put out at the external pins.

The tes ting begins by dividing the to ta l microprocessor instruction se t in

to groups of EPI instructions. In order to t e s t instruction decoding fau l ts

50

in a given EPI instruction group {I-j, Ig I^} the microprocessor

under t e s t executes the following sequence:

1. MVMI addr,

2. I,

3. MVMO addrg

4. MVMI addrg

5. Ig

6. MVMO addr^

X. MOVMI addr^g^i)

z. MOVMO addr^g^j

addr-,, ad d r , addr/g -.x = addresses of the memory location
' ' in which operands are stored.

addr?, addr,, addr,? \ = addresses of the memory locations
' ' where output operands from MVMO

instructions may be stored.

while the response of the microprocessor a t i t s external pins is monitored.

I t is c lea r th a t i f any fau lts covered by Assumption 4.3.4 (i i) and (i i i)

are present they will be detected by monitoring the external signals

whereas any fa u l ts covered by Assumption 4 .3.4 (i) and (i i) will be de

tected when the data output by the MVMO instructions in the above sequence

is compared with the 'expected output d a ta ' . I f th is t e s t procedure i f

followed fo r a l l the groups of EPI instructions in the microprocessor in

s truction s e t , a l l the instruction decoding fau l ts covered by our fa u l t

model can be tes ted .

4 .4.2 Complete Testing Procedure

Complete testing of the microprocessor requires th a t te s ts be

applied to t e s t a ll the microprocessor functions, namely, instruction

51

decoding,register decoding, data storage, data t ra n sfe r and data manipula

tion functions. I t should be noted th a t in the t e s t algorithm presented

below, the fau lts in the reg is te r decoding function are considered to be

a part of the ins truc tion decoding fa u l ts . In p rac tice , the information

about a p a r t icu la r r t i g s t e r involved in a given instruc tion is contained

in OP CODE for th a t instruction i t s e l f . The treatment of reg is te r decod

ing fau lts separate from the instruction decoding fau l ts therefore seems

unnecessary. The following procedure is recommended for complete te s t in g .

Test Procedure 4.4.1

Step 1.

Check the given microprocessor for a l l the possible data

tra n s fe r and data storage fau lts using t e s t algorithm . . ,

while monitoring the signal put out by the external pins. I f

no fa u l t is indicated in e i th e r the expected output or the

external s igna ls , the microprocessor is assumed to have no data

t ra n sfe r or data storage fau lts or fau lts in the execution of

MVMI or MVMO instruc tions.

Step 2 .

Divide the to ta l microprocessor functions into groups of

External Pin Indistinguishable (EPI) instruc tions . This can be

done by re fe rr ing to the instruction se t descrip tion in the User's

Manual for the given microprocessor (fo r groups of EPI instruc

tions for the Intel 8085 microprocessor, see Appendix A.).

Step 3 .

In each group of EPI in s truc tions , the microprocessor is

tes ted for a l l fau l ts covered by Assumption 4 .3 .4 . The operands

needed for the MVMI instructions are determined using the methods

52

given in Chapter V. The external pins are monitored during

the en t ire t e s t period while the tes t ing is carried out using

the hardware fix ture described in Section 4.6. Any deviation

from the expected behavior e i th e r in terms of the operands out

put by MVMO instructions or the signals output a t the external

pins can be interpreted as f a u l t .

Step 4 .

Sequences to t e s t the Data Manipulation Faults must next

be generated. Assuming tha t a logic level description of the

functional units is available , data to t e s t the units can be

generated using c lassica l f a u l t detection methods using stuck-

a t f a u l t models. The c lass ica l f a u l t detection methods include

such methods as the State Table or Boolean Difference method,

e tc . (The l i te ra tu re related to these methods was surveyed in

Chapter I I I .) Once the binary t e s t data is obtained in th is

manner i t can be input to the various functional units using a

sequence of instructions of c lass T. Similarly, the re su l t

produced by a functional unit can be read out using a sequence

of instructions of class T.

I t must also be noted tha t although some fau lts in the data manip

ulation function appear to resemble the fau lts in the instruction decoding

and control sequence, and vice versa, the se t of fau lts in one function is

not a subset or superset of the fa u l ts in the other function. Test se

quences to generate each function therefore must be generated separately.

Consider for example, a hypothetical microprocessor having a fa u l t in i t s

in struction decoding c ircu itry such th a t the "Add" instruction fo r th is

53

ROM 2
Expected Output

Data
address

TESTER

• I - C o
S <0 UMicroprocessor

Pins Comparator

Input 2

Memory Output
ROM 1

Test Sequences
Micro
proc
essor

AddressUnder
Test

Figure 4 ,6 A Set Up for Testing Microprocessors.

54

microprocessor gets decoded as a 'Subtract' instruction . I t is also

possible tha t another fa u l t in the data manipulation function causes

certain data values to be added instead of subtracted. I t is c lear tha t

fau lts such as these can eas ily go undetected when tes ting the micro

processor for the instruction decoding fa u l ts . However, the proper exe

cution of the te s t s fo r the Data Manipulation Function will detect th is

fau l t .

4.5 Hardware Test Fixture

The te s t algorithm given above can be used to t e s t the micropro

cessors with the setup shown in the schematic of Figure 4.6. The perti-.

nent components of th is setup are the te s te r , microprocessor under t e s t ,

two Read Only Memories (ROMs), and a comparator. The t e s te r contains the

control and the timing logic necessary to carry out the te s t in g . In ROM 1

are stored the t e s t sequences necessary to carry out the tes ting (these

sequences were mentioned in Section 4 .5). ROM 2 contains the data (ex

pected output data) th a t will be output by a fa u l t- f re e microprocessor in

response to the t e s t sequences. The comparator c i r c u i t contains c i r c u i t

ry capable of comparing the output from the microprocessor under t e s t to

the expected output stored in ROM 2. The various components in the c i r

cu i t are synchronized by an external clock (not shown).

The pins of various components are interconnected as shown in

Figure 4.6. All the pins of the microprocessor under t e s t are monitored

by the te s te r . The address pins of the microprocessor are connected to

the address pins of the ROM 1. The address of ROM 2 is supplied by the

te s te r . The outputs from both the ROMs are applied to the comparator.

The output from the comparator in turn goes back to the te s te r . The flow

55

of data is controlled by various buffers A, B, C, D, E connected a t the

points shown in the figure. The buffers can e i th e r allow the flow of

data or r e s t r i c t i t . They are controlled by control and timing signals

generated by the te s te r . As was mentioned in the t e s t algorithm, the

tes t ing is divided into two parts; 1) testing fo r Data Storage and Data

Transfer Faults, and 2) testing for Instruction Decoding Faults.

As was mentioned in the t e s t algorithm, the data storage and data

t ran sfe r fau lts may be detected by a sequence of the type:

1

2

3

4

5

6

1. MVMI addr-

2. MVMO addr.

3. MVMO addr.

4. MVMI addr,

5. MVMO addr.

6. MVMO addr.

X. MVMI addr(n_2)

y. MVMO addr^^_.jj

z. MVMO addr^

where addr^, addr^ addr(^_2) e tc . denote the in i t i a l address

es for the blocks of operands needed for MVMI instructions tha t are stored

in the memory ROM 1. Also addresses addrg, addrg, addrg.............addr^^_^j,

addr^^_2) are dummy addresses stored in the second and th ird bytes of the

MVMO instruc tions. They can have any values, and as we will shortly see,

th e i r values are not c r i t ic a l to the tes t ing .

56

The testing begins by the t e s te r issuing a rese t signal to the

microprocessor under t e s t . Simultaneously, the buffers A and B are also

probed by the t e s te r . The microprocessor responds to the activation of

the re se t signal by fetching an instruction from the ROM 1 and executing

i t . This must be the f i r s t instruction in the above noted sequence, i . e .

MVMI addr^ is executed. The operands needed for i t s execution are r e t r ie v

ed from addresses addr^ through addr^ in the ROM 1. After the execution

of MVMI addr^ is complete, the next instruction in the sequence, i . e . , t h e

the instruction MVMO addrg, is fetched and executed. While MVMO addrg is

being executed by the microprocessor the te s te r strobes buffer A into cut

o ff s ta te while strobing buffers B and C into s ta te s th a t allow data to

flow in the directions indicated by arrows (Figure 4 .6). While the MVMO

addrg is being executed, the t e s te r also applies the expected output from

the ROM 2 to one of the comparator inputs. I t accomplishes th is by s trob

ing t r i s t a t e buffers into proper s ta te s , applying appropriate address to

ROM 2 and issuing a read signal to ROM 2. The system is so synchronized

th a t a t those instants when a byte output by the MVMO addrg appears a t

the input of the comparator, a corresponding byte of 'expected output' is

applied a t the input 2 of the comparator by the t e s te r . I t should also

be noted tha t while MVMO is being executed, the buffer A remains in the

cu toff s ta te . This implies th a t the addresses appearing a t the address

bus of the microprocessor during the execution of MVMO addrg are not

used to store data in any memory locations. However, they must be moni

tored by the t e s te r throughout the te s t in g .

Whenever the input 1 of the comparator matches the input 2 of the

comparator, the output from the comparator is a 0. This is also clear

57

n h 4̂ 4̂Input

Output from
the micro
processor
under te s t

Input 2

From the output lines of ROM 2

Figure 4.7 Circuit Diagram for a Comparator.

58

from c i rc u i t of the comparator as shown in Figure 4.7. The outputs from

the array of EXCLUSIVE OR gates will be zeros i f a ll the corresponding

b its in inputs 1 and 2 have same values (i .e . , they are both binary Is or

binary Os). However, i f there is a t leas t one pair with non-matching

values, then the output of the OR gate must be a binary 1. This value is

fed back into the te s te r and can be used to stop the tes t ing whenever

such a condition occurs.

I f the data output by the instruction MVMO addrg matches the ex

pected output from ROM 2, the testing continues. The next instruction in

the t e s t sequence, i .e . , in s t ru c t io n MVMO addrg,is fetched and executed in

the same way. I f s t i l l no fau lt is indicated, MVMI addr^ is fetched and

executed in a manner sim ilar to MVMI addr-j. Subsequent instructions are

fetched and executed in a sim ilar manner, until the t e s t sequence is ex

hausted.

As mentioned e a r l ie r the t e s t sequence to t e s t the fau lts in the

instruction decoder can be written down as follows:

1. MVMI addr^

2. Î

3. MVMO addr

4. MVMI addrg

5. Ig

6. MVMO addr

MVMI addr

MVMO addr

59

where

I , , I j, I = Instructions in the instruction se t of the
' ^ microprocessor

addr , addr = in i t i a l address values fo r the blocks of
operands needed fo r the MVMI instructions
tha t are stored in the memory ROM 1.

addr = dummy address values stored in the 2nd and
3rd bytes of the MVMI instructions.

The value addr appearing in the second and th ird bytes of the MVMI

instructions is only a dummy value and as we shall shortly see, i t does,

not a l t e r the tes ting in any way. The above sequence is stored immediately

a f te r the t e s t sequence 1. Thus, i f no fa u l t in the microprocessor is

found while executing sequence 1, the testing automatically continues

with the f i r s t instruction in sequence 2.

All instructions in the microprocessor instruction se t {I^, I2»

. . . , I^} must belong to e i th e r of the two categories: 1) those in s truc

tions th a t are external pin distinguishable when compared to any other

instruction in the microprocessor, or 2) those instructions th a t are ex

ternal pin indistinguishable when compared to a t le a s t one other instruc

tion in the microprocessor.

I f there is a f a u l t in the instruction decoder such tha t the fa u l t

is exhibited whenever I^ belonging to the former category is executed,

then the fa u l t can be detected simply by monitoring the response a t ex

ternal microprocessor pins. However, i f 1̂ belongs to the l a t t e r cate

gory, then the data output by MVMO addr instruction following the I^ must

also be compared to the expected output data. Otherwise, the tes t ing pro

cedure for the instruction decoding fau lts is s im ilar to the tes t ing pro

cedure for the data tran sfe r and data storage fa u l ts .

CHAPTER V

CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Concluding Remarks

The purpose of th is research has been to simplify the task of t e s t

ing microprocessors in a u ser 's environment by suggesting simple design

modifications in currently available microprocessors and developing an

appropriate t e s t method. Although the fa u l t model was developed under a

s ta ted se t of assumptions, the model is broad enough to cover most types

of fau lts tha t can occur in real world s itua tions . There is a s l ig h t

chance tha t two fau l ts in d iffe ren t microprocessor functions may mask each

other in such a way tha t they may go undetected by the present method.

For example, i t i s possible fo r a f a u l t to ex is t in the data t ra n sfe r func

tion and for another to e x is t in the instruction decoding function in such

a way th a t both of them mask each other and may go undetected. However,

i t is f e l t th a t the chance of th is occurring is extremely small and usually

one of these fau lts will be detected when the microprocessor is tested for

e i th e r of the functions. Since the method is meant to be used in a u se r 's

environment only, i t should not cause severe problems i f such fau l ts do go

undetected on rare occasions.

I t is also f e l t tha t the t e s t method suggested here is an improve

ment over the methods of Thatte and Abraham in a t le a s t three ways, (a)

F irs t , the te s ts are eas ier to generate, (b) second, the fa u lt model is

60

61

less re s t r ic te d and covers a larger number of f a u l ts , (c) th ird , the t e s t

ing time is considerably reduced.

(a) Ease of Test Generation. The t e s t method given here is simp

l e r to use than the methods of Thatte and Abraham for the de

tec tion of Data Transfer, Data Storage or Instruction Decoding

Faults. For example, i f the methods of Thatte and Abraham are

used to detect Data Transfer or Data Storage fau lts then se

quences must be carefu lly generated fo r storing appropriate

data in various microprocessor re g is te rs . Since some micro

processor reg is te rs cannot be read in e x p l ic i t ly , th is task

can be cumbersome. However, by using the MOVE MULTIPLE in

structions Data Transfer and Data Storage fau lts are detected

very simply by using the procedures given in Section 4.2.1.

The detection of the Instruction Decoding fau lts by the

methods of Thatte and Abraham requires labelling and c l a s s i f i

cation of the various microprocessor instructions before the

te s t s can be generated. However, the method given in Section

4.4.1 is straightforward and can be applied once the ins truc

tions are grouped in groups of External Pin Indistinguishable

Instructions .

(b) Fault Model. The f a u l t model assumed by Thatte and Abraham is

very re s t r ic te d since i t allows for the existence of only those

fa u l ts th a t are caused by a single stuck a t fa u l t in the in

s truction decoder. However, the f a u l t model presented here

allows for the detection of a l l those fau l ts tha t e i th e r a l t e r

the signals output a t the external microprocessor pins or

62

cause incorrect data to be stored in the microprocessor

re g is te rs .

(c) Testing Time. The testing time fo r microprocessors is con

siderably reduced by using the method described here. This

is so because the present method considerably reduces the

length of the t e s t sequences to detect the instruction decod

ing f a u l ts , which form the major portion of the to ta l t e s t

sequence. This reduction in the testing time is best i l l u s

tra te d by the t e s t sequences for the Intel 8085 microprocessor.

We f i r s t evaluate the time taken to t e s t the Intel 8085 microproc

essor using the method of th is th es is . This can be done very simply by

counting the sequences tha t are generated in Appendix A. The to ta l t e s t

sequence for detecting the Instruction Decoding fau lts consists of 248

MVMI in s tru c tio n s , 248 MVMO instructions and every instruction in the in

struction reperto ire of the microprocessor executed a t leas t once. A

count of th is t e s t sequence yields a to ta l time of clock periods.

I t is not possible to calculate the exact time required to t e s t the

Intel 8085 microprocessor by the methods of Thatte and Abraham without

actually generating the t e s t sequences. However, the minimum time tha t

would be needed can be estimated. This is done using the following rea

soning. The to ta l number i f IDFs of the type and f (I j / I j + Ij)̂
2

in a given microprocessor is 2n^. The length of the te s t sequence to t e s t

each fa u l t depends upon the nature of I^ and I j . This sequence may be long

or short. I f we look a t the methods of Thatte and Abraham closely, one of

the shortest t e s t sequence needed is to t e s t fau lts of the type f (I j / l ^)

in which l (I j) = 1 (read as label of I j is 1) and 1(1^,) > 2 . In the Intel

8085, the instruction MOV B,C (MOVE Register) has a label 2, whereas MOVE

63

M,D (Move to Memory) has a label 1, Therefore, in order to detect f(MOVE

M,D/MOV B,C) the following procedure adapted from £42] is applicable.

Procedure 5,1

Step 1; Store proper operand in S(MOV M,D) such th a t when MOV M,D

is executed, the expected output 'd a ta ' is d ifferen t from

the quiescent value on the data or address bus.

Step 2: Execute MOV M,D

Using the above procedure the t e s t sequence is generated

as:

Sequence 5.1

LXI rp

MOV D,M

INX H

MOV M,D

On consulting the "MCS-80/85 Family User's Manual" one concludes

th a t the above t e s t sequence can be executed in 60454 clock periods. Assum

ing tha t the sequences to detect other instruc tion decoding fau lts take no

longer to execute the to ta l t e s t sequence can be completed in

2 X (248)2 X 29 = 3567232 clock periods. We therefore conclude the testing

time to t e s t the Intel 8085 microprocessor for instruction decoding fau lts

is reduced to about l/60th of the Thatte-Abraham method time by the present
method.
5.2 Future Research

Although the method presented is adequate when used in the u ser 's

environment, the fa u l t model presented herein can be expanded to allow

greater number of f a u l ts . For example, in Section 4.3 i t was mentioned

64

tha t our fa u l t model allows those fa u lts th a t e i th e r cause incorrect s ig

nals to be output a t the microprocessor pins or cause incorrect data to be

stored in various microprocessor re g is te rs . However, i t is possible for

two fau l ts to be simultaneously present in the microprocessor and yet have

correct signals to be output a t the microprocessor pins and correct values

to be stored in various re g is te r s . For example, there can be a fau lt pres

ent in the instruction decoder and another in the ALU in a way so th a t the

two fau lts mask the e f fec t of each other. I t needs to be investigated as

to what design changes or data can enhance the chances of detection of

such fa u l ts .

REFERENCES

[1] Thatte, S. M., and J . A. Abraham. "Test Generation for Microprocessor",
IEEE Transactions on Computers, Vol. C-29, pp. 429-441, June 1980.

[2] Mailing, K., and E. L. Allen. "A Computer Organization and Program
ming System fo r Automated Maintenance", IEEE Transactions on
Electronic Computers, Vol. EC-12, 1963, pp. 887-895.

[3] Bruer, M. A., and A. D. Friedman. Diagnosis and Reliable Design of
Digital Systems. New York: Computer Science Press, 1976.

[4] Kohavi, Zvi. Switching and Finite Automata Theory. New York:
McGraw H il l , 1970.

[5] Galey, J . M., R. E. Norby and R. P. Roth. "Techniques for the Diag
nosis of Switching Circuit Failures", IEEE Transactions on
Communications and Electronics. Vol. 83, No. 74, 1964, pp. 95-110.

[6] Armstrong, D. B. "On Finding a Nearly Minimal Set of Fault Detection
Tests fo r Combinational Logic Nets", IEEE Trans, on Electronic
Computers, Vol. EC-15, 1966, pp. 66-73%

[7] Schneider, P. R. ’ "On the Necessity to Examine D-Chains in Diagnostic
Test Generation — An Example", IBM Journal, Jan. 1967, p. 114.

[8] Crook, K. J . and J . Blythin. "A Computer Controlled Tester for Logic
Networks and a Method for Synthesizing Test Patterns", Join t
Conference on Automatic Test Systems, 1ERE Conference Proceed
ings. No. 17, April 1970, pp. 187-200.

[9] Seshu, S. "On An Improved Diagnosis Program", IEEE Transactions on
Electronic Computers. Vol. EC-14, 1965, pp. 69-76.

[10] Roth, J . P. "Diagnosis of Automata Failures: A Calculus and a
Method", IBM Journal R & D, Vol. 10, 1966, pp. 278-291.

[11] Kubo, H. "A Procedure for Generating Test Sequences to Detect Se
quential C ircuit Failures", NEC R & D, No. 12, 1968. pp. 69-78.

[12] Hennie, F. C. "Fault Detecting Experiments for Sequential C ircuits" ,
1964, Proc. of the Fifth Annual Switching Theory and Logical
Design Symposium. S-164, pp. 95-110.

65

66

[13] Kime, C. R. "An Organization for Checking Experiments on Sequential
C ircu its" , IEEE Transactions on Electronic Computers, Vol. EC-15,
1966, pp. 113-115.

[14] Kohavi, Z . , and P. Lavallec. "Design of Sequential Machines with
Fault Detection Capability", IEEE Transactions on Electronic
Computers, Vol. EC-16, 1967, pp. 473-484.

[15] Kohavi, I . , and Z. Kohavi. "Variable Length Distinguishing Sequences
and Their Application to the Design of Fault-Detection Experi
ments", IEEE Transactions on Computers. Vol. C-17, 1968, pp.
792-795.

[16] Gonenc, G. "A Method for the Design of Fault Detection Experiments",
IEEE Computer Group Repository. R-69-134.

[17] Amar, V., and V. Condulmari. "Diagnosis of Large Combinational Net
works", IEEE Trans, on Electronic Computers, Vol. EC-16, 1967,
pp. 675-680.

[18] S e lle rs , F, F. J r . , M. Y. Hsia and L. W. Bearnson. "Analyzing Errors
with the Boolean Difference", IEEE Trans, on Computers, Vol.
C-17, 1968, pp. 676-683.

[19] Marinox, P. N. "A Method of Deriving Minimal Complete Sets of Test
Input Sequences Using Boolean Difference", IEEE Computer Group
Repository. R-70-22.

[20] Carroll, A. B., M. Kato, Y. Koga and K. Naemura. "A Method of Diag
nostic Test Generation", Proc. AFIPS, SJCC, 1969, pp. 221-228.

[21] Kajitani, K., Y. Tezuka and Y. Kasahara. "Diagnosis of Multiple
Faults in Combinational C ircu its" , Electronics and Communica
tions in Japan. Vol. 52-C, 1969, pp. 123-131.

[22] Lewis, R. S. J r . "An Approach to Test Pattern Generation for Syn
chronous C ircu its" , Ph.D. Thesis, Southern Methodist University,
1967.

[23] Jones, P. R. and C. H. Mays. "Automatic Test Generation Methods for
Large Scale Integration Logic", IEEE Journal of Solid-State Cir
c u i t s . Vol. SC-2, 1967, pp. 221-^26:

[24] Hillman, L. "An Automatic Dynamic Digital Logic Circuit Test System",
Computer Design, Vol. 8, Aug. 1969, pp. 58-62.

[25] De Atley, E. "LSI Testing is a Large Scale Headache!", Electronic
Design, 16, Aug. 2nd, 1969, pp. 24-34.

[26] Brown, J . R. J r . "Pattern Sensitiv ity in MOS Memories", Dig. Symp.
Testing to Integrate Semiconductor Memories into Computer
Mainframes. Oct. 1972, pp. 33-46.

67

[27] Hayes, J . P. "Detection of Pattern-Sensitive Faults in Random Access
Memories", IEEE Trans. Coiiiput., Vol. C-34, Feb. 1975, pp. 150-
157.

[28] Boonstra, D., P. Lock, A. Lambrechtse, W. Cees and R. H. W. S alte rs .
"A 4096-b One-Transistor Per B it Random-Access Memory With
Internal Timing and Low D issipation", IEEE J . Solid-State Cir
c u i ts , Vol. SC-8, Oct. 1973, pp. 305-3TÜ^

[29] Abbott, R. A., W. M. Regitz and J . A. Kapr. "A 4K MOS Dynamic Ran-
dom-Access-Memory", IEEE J . Solid-State C ircu its , Vol. SC-8,
Oct. 1973, pp. 292-298.

[30] Thatte, S. M. "Fault Diagnosis of Semiconductor Random Access
Memories", Coordinated Sci. Lab. Rep. R-759, May 1977.

[31] Thatte, S. M. and J . A. Abraham. "Testing of Semiconductor Random
Access Memories", Proc. 7th Annual In t. Conf. Fault-Tolerant
Computing, IEEE Comp. Soc., June 1977, pp. 81-87.

[32] Nair, R ., S. M. Thatte, and J . A. Abraham. "E ffic ien t Algorithms for
Testing Semiconductor Random-Access Memories", IEEE Trans. Com-
p u t . , Vol. C-26, June 1978, pp. 572-576.

[33] Nair, R. "Comments on 'An Optimal Algorithm fo r Testing Stuck-At
Faults in Random-Access Memories'," IEEE Trans. Comput., to be
published.

[34] Knaizuk, J . J r . , and C. R. P. Hartmann. "An Optimal Algorithm for
Testing Stuck-At Faults in Random-Access Memories", IEEE Trans.
Comput., Vol. C-25, Nov. 1977, pp. 1141-1144.

[35] Cocking, J . "RAM Test Patterns and Test S trategy", Dig. Papers,
1975, Symp. Semiconductor Memory Testing, IEEE Comput. Soc.,
Oct. 1975, pp. 1-8.

[36] Suk, D. S. and S. M. Reddy. "Test Procedures fo r a Class of Pattern
Sensitive Faults in Semiconductor Random Access Memories", IEEE
Transactions on Computers. Vol. C-29, June 1980, pp. 419-429.

[37] Chiang, A. C. L. and R. McCaskill. "Two New Approaches to Simplify
Testing of Microprocessors", E lectronics, Jan. 22, 1976, pp.
100-105.

[38] Fee, W. G. Turotiral LSI Testing, 2nd, ed ., IEEE Comput. Soc., 1978,
IEEE Catalog EHO-122-2.

[39] Sridhar, T. and J . P. Hayes. "Testing B it Sliced Microprocessors",
Proceedings 9th In t. Conf. Fault Tolerant Computing, Madison,
WI, IEEE Comput. Soc., June 1979, pp. 211-218.

68

[40] Kenish, J.C . "Test Equipment fo r Microprocessors"
IBM Tech. Disclosure Bull. (USA), Vol 24, no. 3, P. 1676 (Aug. 1981)

[41] Puthenpurayil, V. and J.R . Armstrong," Functional Level Modelling of
LSI devices" Proceedings o f the Fourteenth Southeastern Symposium on
System Theory", Blacksburg, VA, 15-16 April 1982.

[42] Su, S.Y.H and Hsieh, Yu.I." Testing Functional Faults in Digital
Systems Described by Register Transfer Language" 1981 In ternational
Test Conference. Testing in the 1980’s , Philadelphia, PA, 27-29
Oct. 1981.

[43] Sacher, E. "High-speed Functional Testing of Microprocessor Based C ir
cu it Board" 1981 International Test Conference. Testing in the 1980's .
Philedelphia, PA, 27-29 Oct. 1981.

[44] Buckroyd, A. "Designing Microprocessors fo r T estab ility " Electron.
Technol. (GB) Vol. 16, no- 3 P.. 48-51 (March 1982)

[45] Robach, C. and G. Saucier. "D iversified Test Methods fo r Local Con
tro l U nits", IEEE Trans. Comput., Vol. C-24, May 1975, P. 3-10.

[46] Thatte, S. M. and J . A. Abraham. "A Methodology for Functional Level
Testing", Proc. 8th In t. Conf. Fault-Tolerant Computing, Toulouse,
France; IEEE Comput. Soc., June 1978, P. 90-95.

[47] Thatte, S. M. "Test Generation fo r M icroprocessors", Coordinated
Sci. Lab., Univ. of I l l in o is , Urbana, IL, Rep. R-842, May 1979.

APPENDIX A

APPLICATION OF THE TEST METHOD TO THE INTEL 8085 MICROPROCESSOR

A.l Introduction

In th is sec tion , the t e s t methodology of Chapter IV is applied to

the In te l 8085 microprocessor. The methodology is followed step by step

to generate the t e s t sequences fo r the microprocessor. The in struction

names and other notation re la tin g to the 8085 microprocessor are taken

from the 'MCS-80/85 Family U ser's Manual' — a document published by In te l.

The te s tin g has been divided in to three parts: the te s tin g of the Instruc

tion Decoding fa u lts , te s tin g of Data Storage and Data Transfer fau lts and

the te s tin g of Data Manipulation fa u lts .

A.2 Detection of Instruction Decoding Faults

A.2.1 Grouping the Total Instruction Set in to EPI Instructions

The task before us is to detect a ll fa u lts covered under Assumption

4 .3 .4 in the in stru c tio n s e t of the Intel 8085 microprocessor. This re

quires grouping the to ta l in stru c tio n s e t of the Intel 8085 microprocessor

in to groups containing External Pin Indistinguishable in s tru c tio n s . I t is

obvious the in struc tions th a t have d iffe re n t number of bytes or take d if

fe ren t number of clock periods fo r th e ir execution, must be External Pin

D istinguishable. In add ition , the in struc tion timing of the 8085 micro

processor is divided into 'Machine C ycles'. Instructions with d iffe ren t

Machine Cycles are also External Pin D istinguishable. Consider fo r example.

69

70

MCI / MC2 MC3 MC4 MC5

T l ^2 T3 '.4 TS ^6 ^1^2^3 T 1T 2T 3 '’’1 V 3 ^1^2^3

Figure A.l Machine Cycles fo r the 8085 Microprocessor.

71

the timing of a typical instruction cycle of 8085 microprocessor in Fig

ure 5 .1 . As shown in th a t fig u re , the machine cycle of the 8085 consists

of three to s ix clock periods. The f i r s t machine cycle (known as the in

s truc tion fetch cycle) has four or six clock periods. Subsequent machine

cycles have three clock periods only. This is i l lu s tra te d in Figure A.l

by shading the appropriate areas. When MC is shaded, the en tire Machine

Cycle is op tional. When T is shaded the clock period is optional within

i t s machine cycle. The microprocessor signals the s ta r t of a new cycle

to the outside world by pulsing the ALE pin (see MCS-80/85 Family User's

Manual fo r descrip tion of the ALE pin and other microprocessor pins) high

during the f i r s t clock period of every Machine Cycle. In addition, the

pins Sq and Ŝ are both output high during an "instruction fetch" machine

cycle. I t follows th a t the signals put out on pins ALE, Sg and S-j, can be

monitored to get an indication as to which microprocessor cycle is being

executed.

Complete information about the number of cycles, number of clock

periods and number o f machine cycles fo r each instruction in the in stru c

tion se t of the 8085 microprocessor is availab le in the MCS-80/85 Family

U ser's Manual. Using th is information, the to ta l number of in structions

in the in stru c tio n se t of the 8085 can be divided in to following groups

of External Pin Indistinguishable in s tru c tio n s.

Group I ; Instructions with 2 bytes, 7 clock periods and 2 cycles.

ACI data ADD IMMEDIATE WITH CARRY

ACI data ADD IMMEDIATE

ANI data ADD IMMEDIATE WITH ACCUMULATOR

CPI data COMPARE IMMEDIATE

72

MVI r,d a ta MOVE IMMEDIATE

ORI data INCLUSIVE OR IMMEDIATE

XRI data EXCLUSIVE OR IMMEDIATE

SBI data SUBTRACT IMMEDIATE WITH BORROW

STAX rp STORE ACCUMULATOR INDIRECT

SUI data SUBTRACT IMMEDIATE

XRI data EXCLUSIVE OR IMMEDIATE

Group I I : Instructions with 1 byte, 10 clock periods and 3 cycles.

This group can fu rther be divided in to five subgroups.

Subgroup A; In the following subgroup of instructions the f i r s t

cycle in an instruction fetch cycle, the second cycle is a memory

read cycle and the th ird cycle is also a memory read cycle.

POP rp POP

RET RETURN FROM SUBROUTINE

Subgroup B; In the following subgroup of in s tru c tio n s, the f i r s t

cycle is an instruction fetch cycle, the second cycle is a memory

read cycle and the th ird cycle is a memory w rite cycle.

INR M INCREMENT MEMORY

OCR M DECREMENT MEMORY

Subgroup C; In the following subgroup of instructions the f i r s t

cycle is an instruction fetch cycle and the second and th ird cycles

are bus id le cycles.

DAD hp DOUBLE REGISTER ADD

73

Group I I I : Instructions with 1 byte, 7 clock periods and 2 cycles.

This group can fu rth e r be divided into two subgroups.

Subgroup A: In the following subgroup of in structions the f i r s t

cycle is an in struc tion fetch cycle whereas the second cycle is a

memory read cycle.

ANA M LOGICAL AND WITH ACCUMULATOR

CMP M COMPARE WITH ACCUMULATOR

LDAX rp LOAD ACCUMULATOR INDIRECT

MOV r,M MOVE

ADC M ADD MEMORY WITH CARRY

STAX rp STORE ACCUMULATOR INDIRECT

SBB M SUBTRACT REGISTER WITH BORROW

ORA M INCLUSIVE OR WITH ACCUMULATOR

SUB M SUBTRACT

SUI data SUBTRACT

XRA M EXCLUSIVE OR WITH ACCUMULATOR

Subgroup B: In the following in stru c tio n , the f i r s t cycle is an

instruction fetch cycle whereas the second cycle is a memory w rite

cycle.

MOV M,r MOVE

Group IV; Instructions with 1 byte, 4 clock periods and 1 machine cycle.

ADC r ADD WITH CARRY

ADD r ADD

ANA r LOGICAL AND WITH ACCUMULATOR

CMA COMPLEMENT ACCUMULATOR

74

CMC COMPLEMENT CARRY

CMP r COMPARE WITH ACCUMULATOR

DAA DECIMAL ADJUST ACCUMULATOR

OCR r RECREMENT CONTENTS OF REGISTER

INR r INCREMENT REGISTER

MOV r l , r 2 MOVE

NOP NO OPERATION

ORA r INCLUSIVE OR WITH ACCUMULATOR

RAL ROTATE LEFT THROUGH CARRY

RAR ROTATE RIGHT THROUGH CARRY

RLC ROTATE ACCUMULATOR LEFT

RRC ROTATE ACCUMULATOR RIGHT

SBB r SUBTRACT WITH BORROW

STC SET CARRY

SUB r SUBTRACT

XCHG EXCHANGE

XRA r EXCLUSIVE OR MEMORY

Group V: Instructions with 3 bytes, 9 (18) clock periods, and 2 (5 cycles).

The f i r s t l is te d unconditional CALL instruction of th is group

always takes 18 clock periods and 5 cycles to execute. The re

maining instruc tion of the group are conditional CALL in stru c

tio n s . I f a conditional CALL is executed i t takes the same time

as the unconditional CALL; otherwise, i t is completed in 9 clock

periods and 5 cycles .

CALL UNCONDITIONAL CALL

CC CALL IF CARRY

PLEASE NOTE:

This page not included with
original material. Filmed as
received.

University Microfilms International

76

MVMI

ACI

A
C7

B
6A

C
AA

D
IF

E
BB

Instruc.R egister
54

H
SB

L
AD

Stack Pointer
D6E3

Status Register
AC

Program Counter
AE57

(a)

A
EB B C

D E

Instruc.R egister H L

Stack Pointer

Status Register
80

Program Counter

(b)

Figure A.2 S tored Values in th e M icroprocessor R e g is t e r s A fter
V arious I n s tr u c t io n s o f Group I Are Executed.

77

ADI

ANI

A
EA

B C

D E

Instruc.R egister H L

Stack Pointer

Status Register
84

Program Counter

(c)

A
03 B C

D E

Instruc.R egister H L

Stack Pointer

Status Register
10

Program Counter

(d)

Figure A .2 S tored Values In th e M icroprocessor R e g i s t e r s A f t e r
(C on t'd) Various I n s t r u c t io n s o f Group I are Executed .

78

CPI

A
C7

Instruc .R eg ister

S tatus Register
84

B C

D E

H L

Stack P<îin te r

Program Counter

MVI

(e)

A
23 B C

D E
Instruc.R egister

H L

Stack Pointer

Status Register
D4

Program Counter

(f)

Figure A .2 S tored V alues in th e M icroprocessor R e g is t e r s A fter
(C o n t 'd .) Various I n s t r u c t io n s o f Group I are Executed.

79

ORI

XRI

A
E7

B C

D E

Instruc.R egister H L

Stack Pointer

Status^Register
80 Program Counter

(f)

A
EH B C

D E

Instruc.R egister
H L

Stack Pointer

Status Register
80

Program Counter

(h)

Figure A.2 Stored Values in the Microprocessor Registers After
(Cont'd.) Various Instructions of Group I are Executed.

80

SUI

A
A3

Instruc.R egister

Status Register

B C

D E

H L

Stack Pointer

Program Counter

(i)

Figure A.2 Stored Values in the Microprocessor Registers After
(Cont'd.) Various Instructions of Group I are Executed.

81

1Sequence A.2.1 1. MVMI âddr

2. ACI 23H

3. MVMO addrv

Note: I t is assumed th a t the memory sj

addr contains C7H

addr + 1 contains 6AH

addr + 2 contains AAH

addr + 3 contains IFH

addr 4 contains BBH

addr + 5 contains 5BH

addr + 6 contains ADH

addr + 7 contains D6H

addr + 8 contains E3H

addr -I- 9 contai ns AEH

addr + 10 contains S7H

addr + 11 contains ACH

addr + 12 contains S4H

To show th a t the data used in the above MVMI instruction does not

mask the above mentioned fa u lts (such data would be termed as fa u lt sen si

tiv e) , use w ill be made of the schematics of Figures A.2 (a) through (i) .

These schematics represent the reg is te rs of 8085 as described in the

MCS-80/85 Family U ser's Manual. In Figure A.2 (a) are shown the various

values th a t will be stored in the various microprocessor reg is te rs

a f te r MVMI of step 1 is executed. The actual balues are w ritten

82

Group VII; Instructions with 1 byte, 6 clock periods and 1 cycle.

OCX DECREMENT REGISTER PAIR

INX INCREMENT REGISTER PAIR

PCHL MOVE H & L TO PROGRAM COUNTER

SPHL MOVE H & L TO THE STACK POINTER

Group VIII: Instructions with 1 byte, 6 (12) clock periods and (1) 3 cyles.

RC RETURN

RM RETURN

RNC RETURN

RNZ RETURN

RP RETURN

RPE RETURN

RPO RETURN

RZ RETURN

The next step is to generate t e s t sequences to detect fa u lts of the

type f (I j /*) and f (I j / I ^) in each of the groups of EPI in s tru c tio n . These

fa u lts can be detected by executing the MOVE MULTIPLE in structions as was

mentioned in Chapter IV. The data fo r the MOVE MULTIPLE in structions must

be chosen appropriately .

A.2.2 Detection of Faults in Group 1

I t is e a s ie s t to i l lu s t r a te the generation of t e s t sequences for th is

group of in stru c tio n s by an example. Assume th a t i t is required to gener

a te te s ts fo r in struc tions of the type f(ACI data/I^) and f(ACI data/*)

where I|̂ is an in stru c tio n (o ther than ACI) belonging to Group I . I t is

claimed th a t the following sequence when executed with appropriate data

detected a ll such fa u lts .

83

1

Sequence A.2.2 MVMI addr-j

ADI 23H

MVMO addrg

MVMI addr,

ANI 23H

MVMO addrg

MVMI addr,

CPI 23H

MVMO addr2

MVMI addr,

MVI 23H
COMMENTS: I t is assumed
th a t each MVMI in stru c- MVMO addrg
tion in th is sequence is
executed with the same MVMI addr
operands as the f i r s t
MVMI in stru c tio n of ORI 23H
A.2.1.

MVMO addrg

MVMI addr,

XRI 23H

MVMO addrg

MVMI addr,

SUI 23H

MVMO addr,

MVMI addr,

STAX B

MVMO addrg

MVMI addr,

STAX D

MVMO addr.

84

SBI 23H

MVMO addrg

MVMI addr^

XRI 23H

MVMI addr,

Faults of the type f (I /*) are also detected by the above sequence. I f

such a fa u lt is present fo r any instruction I j belonging to Group I , no

response w ill be produced a t the pins when I , is executed during in s tru c

tions 2, 5, 8, 11, 14, 17 and 20 of the above sequence. This condition is

easily detected by the external monitor.

A.2.3 Detection of Instruction Decoding Faults in Group II

The instruc tion sequence to detect fa u lts in th is group can be gen

erated in the same way as th a t fo r the in struc tions in Group I . However,

we need to w rite down separate t e s t sequences fo r each of the subgroups.

Sequence A.2.3 MVMI addr,

(fo r Subgroup A) POP B

MVMO addrg

MVMI addr,

POP D

MVMO addrg

MVMI addr,

POP H

MVMO addrg

MVMI addr,

POP PSW

85

into the re g is te rs ; whereas the mnemonic MVMI is w ritten to the l e f t of

the schematic.

Figure A.2 (b) represents the values th a t will be stored in v a ri

ous microprocessor reg is te rs a f te r ACI of step 2 is executed. The reg is

te rs th a t are shown blank are assumed to contain the data th a t was stored

in them by the preceding MVMI in stru c tio n , i . e . , they contain the same

stored values as in Figure A.2 (a).

Figure A.2 (c) shows data values th a t would be stored in the v a ri

ous microprocessor reg is te rs i f the in struction ADI were executed in step

2 of sequence A;2.1 instead of ACI. This is denoted by w riting MVMI/ADI to

the l e f t of th is schematic. Once again the reg is te rs shown blank are as

sumed to contain the data values th a t were stored in them by the preceding

MVMI in stru c tio n , i . e . , the data values shown in Figure A.2 (a).

Figures A.2 (d) through A.2 (e) are completed in a sim ilar manner

to Figures A.2 (a) and (b). The figures are a convenient way of determin

ing i f the data used in the MVMI instruction in step 1 of sequence A.2.1 was

fa u lt sen sitiv e . I f the data in any of these Figures A.2 (b) through (e)

is id e n tic a l, the corresponding fa u lt w ill be masked.

However, the examination of Figure A.2 shows th a t the data used in

the MVMI instruction of sequence A.2.1 was indeed fa u lt sen sitiv e . I f a de

coding fa u lt of the type f (I j / I ^) is present, i t w ill be detected when the

MVMO of sequence A.2.1 reads out the data from a ll reg is te rs in step 3.

The same reasoning can be used to detect a ll the possible in stru c

tion decoding fau lts covered by Assumption 4.3.4 in Group 1 of the EPI

in s tru c tio n s. The following sequence w ill detect the remaining fa u lts .

86

COMMENTS: I t is assumed MVMO addr.
th a t each MVMI in stru c
tion in th is sequence is MVMI addr,
executed with the same
operands as the f i r s t RET
MVMI instruction of
a.2.1. MVMO addrg

Sequence A.2.4 MVMI addr^

(fo r Subgroup B) INR M

MVMO addrg

MVMI addr-j

DOR M

MVMO addrg

Sequence A.2.5 MVMI addr,

(fo r Subgroup C) DAD B

MVMO addrg

MVMI addr,

DAO D

MVMO addrg

MVMI addr,

DAD H

MVMO addrg

MVMI addr,

DAD SP

MVMO addrg

The operands used in these in structions were determined to be fa u lt

sen sitiv e . Schematics such as those given in Figure A.2 were used to d e te r

mine the fa u lt sensitiveness. However, those schematics are not presented

here to keep th is discussion b r ie f .

87

A.2.4 Decoding Faults in Group I I I

The in stru c tio n sequence to detect fa u lts in th is group is generated

in exactly the same way as th a t fo r the in struc tions in Group I I . This

sequence can be w ritten down as:

Sequence A.2.6

(fo r Subgroup A)

COMMENTS: I t is assumed
th a t each MVMI in stru c
tion in th is sequence is
executed with the same
operands as the f i r s t
MVMI in stru c tio n of
A.2.1.

MVMI addr^

ANA M

MVMO addrg

MVMI addr^

CMP M

MVMO addrg

MVMI addr^

MOV B,M

MVMO addrg

MVMI addr^

MOV C,M

MVMO addrg

MVMI addr^

MOV D.M

MVMO addrg

MVMI addr^

MOV E,M

MVMI addr^

MVMO addrg

MOV H,M

MVMO addrg

88

MVMI addr^

MOV L,M

MVMO addrg

MVMI addr^

ORA M

MVMO addrg

MVMI addr^

ADC M

MVMO addrg

MVMI addr^

SUB M

MVMO addrg

COMMENTS; I t is assumed MVMI addr,
th a t each MVMI in stru c
tion in th is sequence is SUI M
executed with the same
operands as the f i r s t MVMO addr«
MVMI instruction of
A.-2.1. MVMI addr^

XRA M

MVMO addrg

MVMI addr,

STAX B

MVMO addrg

MVMI addr,

STAX D

MVMO addrg

MVMI addr,

SBB M

MVMO addrg

89

Comments: In the above sequence, a data value of 24H is stored in

the memory location designated by the H & L reg is te rs (i . e . , in memory

location of 5BADH).

Sequence A.2.7

(fo r Subgroup B) MVMI addr^

MOV M,A

MVMO addrg

MVMI addr^

MOV M,R

MVMO addrg

MVMI addr^

MOV M,C

MVMO addrg

COMMENTS: I t is assumed ^VMI addr^
th a t each MVMI in struc- mow m n
tion in th is sequence is

MVMMnstruction of MVMI addr,

MOV M,E

MVMO addrg

MVMI addr^

MOV M,H

MVMO addrg

MVMI addr^

MOV M,L

MVMO addr.

90

A.2.5 Détection of Decoding Faults in Group IV

The te s t sequence to detect fa u lts in th is group is generated in

the same way as th a t fo r the instructions in Groups I , I I , and I I I .

Sequence A.2.8 MVMI addr^

ADC A

MVMO addrg

MVMI addr^

ADC B

MVMO addrg

MVMI addr^

ADC C

MVMO addrg

COMMENTS: I t is assumed ^VMI addr,
th a t each MVMI in s tru c - «
tion in th is sequence is
executed with the same MVMO addr,
operands as the f i r s t 2
MVMI instruction of MVMI addr,
A.2.1. 1

ADC E

MVMO addrg

MVMI addr^

ADC H

MVMO addrg

MVMI addr^

ADC L

MVMO addrg

MVMI addr,

91

Sequence A.2 .8 ADD A

(Continued) MVMO addrg

MVMI addr^

ADD B

MVMO addrg

MVMI addr^

ADD C

MVMO addrg

MVMI addr^

ADD D

MVMO addrg

MVMI addr^

ADD E

MVMO addrg

COMMENTS: I t is assumed MVMI addrL
th a t each MVMI in s tru c
tion in th is sequence is ADD H
executed with the same
operands as the f i r s t MVMO addr,
MVMI instruction of
A .2.1. MVMI addr^

ADD L

MVMO addrg

MVMI addr^

ANA A

MVMO addrg

MVMI addr^

ANA B

MVMO addrg

MVMI addr^

ANA C

92

Sequence A .2 .8

(C ontinued)

COMMENTS: I t is assumed
th a t each MVMI in stru c
tion in th is sequence is
executed with the same
operands as the f i r s t
MVMI in struction of
A.2.1.

MVMO addrg

MVMI addrj

ANA D

MVMO addrg

MVMI addr^

ANA E

MVMO addi^

MVMI addr^

ANA H

MVMO addrg

MVMI addr^

ANA L

MVMO addrg

CMA

MVMI addr^

CMC

MVMO addrg

MVMI addr^

CMP A

MVMO addrg

MVMI addr^

CMP B

MVMO addrg

MVMI addr^

CMP C

MVMO addrg

MVMI addr^

CMP D

MVMO addrg

93
Sequence A.2.8 MVMI addr^

(Continued) CMP E

MVMO addrg

MVMI addr^

CMP H

MVMO addrg

MVMI addr^

CMP L

MVMO addrg

MVMI addrj

XRA B

MVMO addrg

MVMI addr^

XRA C

MVMO addrg
COMMENTS: I t is assumed
th a t each MVMI in stru c- ^VM! addr^
tion in th is sequence is q
executed with the same

A•2.1. MVMI addr^

XRA E

MVMO addrg

MVMI addr^

XRA H

MVMO addrg

MVMI addr^

XRA L

MVMO addrg

MVMI addr^

XRA A

94

Sequence A.2.8 MVMO addy^

(Continued) DAA

MVMO addrg

MVMI addrj

OCR A

MVMO addrg

MVMI addr^

OCR B

MVMO addrg

MVMI addr^

OCR C

MVMO addrg

MVMI addr^

OCR DCOMMENTS: I t is assumed
th a t each MVMI instruc- MVMO addr^
tion in th is sequence is 2
executed with the same MVMI addr
operands as the f i r s t 1
MVMI instruction of nrn p
A.2.1.

MVMO addrg

MVMI addr,

OCR H

MVMO addrg

MVMI addr^

OCR L

MVMO addrg

MVMI addr^

INR A

MVMO addrg

95

Sequence A.2.8 MVMI addr^

(Continued) INR B

MVMO addrg

MVMI addr^

INR C

MVMO addrg

MVMI addr^

INR D

MVMO addfg

MVMI addr^

INR E

MVMO addrg

MVMI addr,
COMMENTS: I t is assumed %
th a t each MVMI in stru c -

A.2.1 INR L

MVMO addrg

MVMI addr,

ORA A

MVMO addr2

MVMI addr^

ORA B

MVMO addrg

MVMI addr,

ORA C

96

Sequence A.2.8 MVMO addrg

(Continued) MVMI addr^

ORA D

MVMO addrg

MVMI addr^

ORA E

MVMO addrg

MVMI addr^

ORA H

MVMO addrg

MVMI addr^

ORA L

MVMO addrg

COMMENTS: I t i s assumed *^^^1
th a t each MVMI in struc-
tion in th is sequence is
executed with the same MVMO addr.
operands as the f i r s t 2
MVMI instruc tion of MVMI addr,
A .2.1. 1

RAR

MVMO addrg

MVMI addr,

RLC

MVMO addrg

MVMI addr,

RRC

MVMO addrg

MVMI addr,

97

Sequence A.2.8 SBB B

(Continued) MVMO addrg

MVMI addr^

SBB C

MVMO addrg

MVMI addr^

SBB D

MVMO addrg

MVMI addr^

SBB E

MVMO addrg

MVMI addr,

SBB H

COMMENTS: I t is assumed MVMO addr.
th a t each MVMI in stru c
tion in th is sequence is MVMI addr,
executed with the same
operands as the f i r s t SBB L
MVMI instruction of
a.2.1. MVMO addrg

MVMI addr^

SBB A

MVMO addrg

MVMI addr^

SIC

MVMO addrg

MVMI addr^

SUB A

MVMO addr.

98

Sequence A12.8 MVMI addr^

(Continued) SUB B

MVMO addrg

MVMI addr^

SUB C

MVMO addrg

MVMI addr^

SUB 0

MVMO addrg

MVMI addr^

SUB E

MVMO addrg

MVMI addr^

COMMENTS: I t is assumed "

executed with the same «»»»
operands as the f i r s t 1
MVMI instruction of c,,n ,
A.2.1. L

MVMO addrg

MVMI addr,

MOV A,A

MVMO addrg

MVMI addr,

MOV A,B

MVMO addrg

MVMI addr^

MOV A,C

99

Sequence A.2.8 MVMO addrg

(Continued) MVMI addr^

MOV A,D

MVMO addrg

MVMI addr^

MOV A,E

MVMO addrg

MVMI addr^

MOV A.H

MVMO addrg

MVMI addr^

MOV A,L

MVMO addrg

COMMENTS: I t is assumed MVMI addr,
th a t each MVMI in stru c
tion in th is sequence is MOV B,A
executed with the same
operands as the f i r s t MVMO addr.
MVMI instruction of
A .2.1. MVMI addr^

MOV B,B

MVMO addrg

MVMI addr^

MOV B,C

MVMO addrg

MVMI addr^

MOV B,D

MVMO addrg

MVMI addr^

100

Sequence A.2.8 MOV B,E

(Continued) MVMO addrg

MVMI addr^

MOV B,H

MVMO addrg

MVMI addr^

MOV B,L

MVMO addrg

MVMI addr^

MOV C,A

MVMO addrg

MVMI addr^

MOV C,8

COMMENTS: I t is assumed MVMO addr.
th a t each MVMI in s tru c
tion in th is sequence is MVMI addr,
executed with the same
operands as the f i r s t MOV C,C
MVMI instruc tion of
A.2.1. MVMO addrg

MVMI addr,

MOV C,D

MVMO addrg

MVMI addr^

MOV C,E

MVMO addrg

MVMI addr,

MOV C,H

MVMO addro

101

Sequence A.2.8 MVMI addr^

(Continued) MOV C,L

MVMO addr2

MVMI addr^

MOV D, A

MVMO addrg

MVMI addr^

MOV D,B

MVMO addrg

MVMI addr^

MOV D,E

MVMO addrg

MVMI addr-j

COMMENTS: I t is assumed

MVMI in stru c tio n of MOV D L
A • 2 • 1.

MVMO addrg

MVMI addr-j

MOV E,A

MVMO addrg

MVMI addr-j

MOV E,B

MVMO addrg

MVMI addrj

MOV E,C

102

Sequence A.2.8 MVMO addfg

(Continued) MVMI addr^

MOV E,D

MVMO addfg

MVMI addr^

MOV E,E

MVMO addrg

MVMI addr^

MOV H,A

MVMO addrg

MVMI addr^

MOV H,B

MVMO addfg

MVMI addr^
COMMENTS: I t is assumed u r
th a t each MVMI in stru c -

A'2'1- MOV H,D

MVMO addrg

MVMI addr,

MOV H,E

MVMO addrg

MVMI addr,

MOV H,H

MVMO addrg

MVMI addrj

MOV L,A

MVMO addrg

MVMI addrj

103

Sequence A .2 .8

(C ontinued)

COMMENTS: I t is. assumed
th a t each MVMI in s tru c
tion in th is sequence is
executed with the same
operands as the f i r s t
MVMI instruction of
A.2.1.

MOV L,B

MVMO addrg

MVMI addr^

MOV L,C

MVMO addrg

MVMI addr^

MOV L,D

MVMO addrg

MVMI addr^

MOV L.E

MVMO addrg

MVMI addrj

MOV L,H

MVMO addrg

MVMI addrj

MOV L.L

MVMO addrg

MVMI addrj

XRA A

MVMO addrg

MVMI addrj

XRA B

MVMO addrg

MVMI addrj

XRA C

MVMO addrg

MVMI addrj

104

Sequence A . 2 . 8

(C ontinued)

COMMENTS: I t is assumed
th a t each MVMI in stru c
tion in th is sequence is
executed with the same
operands as the f i r s t
MVMI instruc tion of
A.2.1.

XRA D

MVMO addrg

MVMI addr^

XRA E

MVMO addrg

MVMI addr^

XRA H

MVMO addrg

MVMI addr^

XRA L

MVMO addrg

MVMI addr^

NOP

MVMO addrg

MVMI addr^

XCHG

MVMO addr.

A.2.6 Detection of Decoding Faults in Group V

The te s tin g of the Instruction Decoding Faults in th is group is

sim plified by the fa c t th a t a ll the in struc tions in th is group are condi

tional CALL in s tru c tio n s . Whether a CALL is executed or not depends upon

the condition of the various b its in the s ta tu s re g is te r of the micropro

cessor. For example, in response to in stru c tio n CC, a CALL is executed i f

and only i f the carry b it of the s ta tu s re g is te r is 1. To te s t decoding

fa u lts in th is group, we execute the following sequence:

105

Sequence A.2.9 MVMI addr^

CC

MVMO addr
2

MVMI ad d r,; change the 12th data byte to
56H to complement the carry b it .

CC Data in the remaining byte is
the same.

MVMO addr.
2

MVMI addr^

CM

MVMO addrg

MVMI addr,; change the 12th data byte to
D7H to complement the sign b i t .

CM

COMMENTS: I t is assumed
th a t each MVMI in stru c
tion in th is sequence is
executed with the same
operands as the f i r s t
MVMI instruction of
A.2.1. (except fo r the
changes noted.)

1

MVMO addrj

MVMI addr

CNC

MVMO addr,

MVMI addr

CNZ

MVMO addr.

MVMI addr,; change the 12th data byte to
17H to complement the zero b it .

CNZ

1

MVMO addrg

MVMI addr^

CP

MVMO addrg

MVMI addr,; change the value of the sign b it
in the 12th data byte.

CP

106

Sequence A . 2 . 9

(C ontinued)

COMMENTS: I t is assumed
th a t each MVMI in s tru c
tion in th is sequence is
executed with the same
operands as the f i r s t
MVMI instruction of
A.2.1. (except fo r the
changes noted.)

MVMO addrg

MVMI addr^

CPE

MVMO addrg

MVMI addr-| ;

CPE

MVMO addrg

MVMI add^

CPO

MVMO addrg

MVMI addr-j ;

CPO

MVMO addrg

MVMI addr^

CZ

MVMO addrg

MVMI addr^;

CZ

MVMO addrg

MVMI addr^

CNC

MVMO addrg

MVMI addr-j

CNC

MVMO addrg

change p a rity of b its by chang
ing 1 s t, 3rd, o r 5th b i ts . Note
th a t these b i ts of the flag reg is
te r are unassigned

change p a rity o f b its in the
12th byte

change the zero b i t in the 12th
byte

change the carry b i t in the 12th
byte

107

I t can be shown th a t the sequence above detects a ll the instruction

decoding fau lts in Group V. Consider fo r example, in structions 1 through

6 of the above sequence. I f no fa u lt of the type f{CC/I) is present, then

a CALL would be executed in step 2; whereas no CALL would be executed in

step 5. However, i f fo r example a faultf(CC/CPO) e x is ts , a CALL would not

be executed in e ith e r step 2 or step 5 of the above sequence. (Since the

parity of the b its stored in the accumulator is now even.) This deviation

from the fa u lt free behavior would be read out by the MVMO instruction in

step 6. However, even i f the parity of the b its stored in the accumulator

was odd, the fa u lt would s t i l l be detected because CALL instruction would

be executed, both in step 2 and 5 o f the above sequence. The same reason

ing may be used to show th a t the sequence above detects a ll fa u lts of the

type f (I j / I ^) provided I j and Iĵ both belong to Group V.

A.2.7 Detection of Decoding Faults in Group VI

All the instructions in th is group (except the la s t two) are condi

tional JUMP in stru c tio n s. The nature of these instructions is very sim ilar

to the instructions of Group V, where a ll the instructions were conditional

call' s . Using the reasoning of Group V, i t can be shown th a t the following

sequence detects a ll the in struction decoding fa u lts in Group VI.

Sequence A.2.10 MVMI addr^

JC

MVMO addrg

MVMI addr,; change the carry b i t in the
12th data byte

JC

MVMO addrg

108

Sequence A . 2 . 1 0

(C ontinued)

COMMENTS: I t is assumed
th a t a ll the MVMI in stru c
tion in the sequence is
executed with the same
operands as the f i r s t in
s truction of th is sequence
A.2.1. (except fo r the
changes noted.)

MVMI addr.1
JM

MVMO addrg

MVMI addr,; change sign b i t in the 12th
data byte

JM

MVMO addrg

MVMI addr.1
JNC

MVMO addrg

MVMI addr,; change carry b i t in the 12th
data byte

JNC

MVMO addrg

MVMI addr.1
JNZ

MVMO addrg

MVMI addr,; change zero b i t in the 12th
data byte

JNZ

MVMO addr.

1MVMI addr

JP

MVMO addr.

MVMI addr,; change parity in the 12th data
byte

JP

MVMO addrg

MVMI addr
1

JPE

109

Sequence A. 2 . 1 0

(C ontinued)

COMMENTS: I t is assumed
th a t a ll the MVMI in stru c
tion in the sequence is
executed with the same
operands as the f i r s t in
struc tion of th is sequence
A.2.1. (except fo r the
changes noted.)

MVMO

MVMI

JPE

MVMO

MVMI

JPO

MVMO

MVMI

JPO

■ MVMO

MVMI

JZ

MVMO

MVMI

JZ

MVMO

MVMI

LXI,

MVMO

MVMI

LXI,

MVMO

MVMI

LXI.

MVMO

MVMI

addrg

addr,; change parity of the 12th data
byte

addrg

addr.

addrg

addr,; change parity of the b its in
the 12th data byte

addrg

addr.

addrg

addr,; change zero b i t in the 12th
data byte

addrg

addr.

addrg

addr^

D

addrg

addr

SP

addr,

addr

1

110

Sequence A . 2 . 1 0 OMP

(C on tin u ed) MVMO addrg

MVMI addr,; complement a ll b its of the flag
re g is te r

JMP

MVMO addr 2

A.2.8 Detection of Decoding Faults in Group VII

The te s t sequence to detect fa u lts fo r the f i r s t four in structions

in th is group can be generated using the method th a t was used fo r the in

struc tions in Group I . The r e s t of the instruc tions in th is group are con

d itional RETURN in stru c tio n s . The te s t sequence to detect fa u lts fo r con

d itional RETURN instructions is generated in the same manner as fo r the

instruc tions in Group IV. The te s t sequence may be w ritten as:

Sequence A.2.11 MVMI addr^

DCX B

MVMO addrg

MVMI addr^

DCX D

MVMO addrg
COMMENTS: I t is assumed »VMT addr
th a t a ll the MVMI in stru c- "VMi aaor,
tion in the sequence is nrx H
executed with the same

DCX SP

MVMO addrg

MVMI addr^

I l l

Sequence A . 2 .11

(C ontinued)

COMMENTS: I t is assumed
th a t a ll the MVMI in s tru c
tion in the sequence is
executed with the same
operands as the f i r s t in
struction of sequence
A .2.1. (except fo r the
changes noted.)

INX B

MVMO addrg

MVMI addr^

INX D

MVMO addrg

MVMI addr^

INX H

MVMO addrg

MVMI addr^

INX SP

MVMO addrg

MVMI addr^

PCHL

MVMO addrg

MVMI addr^

SPHL

MVMO addrg

A.2.9 Detection of Decoding Faults in Group VIII

Since a ll the instructions in th is group are conditional RETURN in

s tru c tio n s , the procedure fo r te s t generation is very sim ilar to th a t for

Group V., where a ll the instructions were conditional CALL'S. Therefore,

the te s t sequence is :

Sequence A.2.12 MVMI addr-j

RC

MVMO addrg

112

Sequence A. 2 . 1 2

(C ontinued)

COMMENTS: I t is assumed
th a t a ll the MVMI in struc
tion in the sequence is
executed with the same
operands as the f i r s t . i n
struction of sequence
a.2 .1. (except fo r the
changes noted.)

MVMI

RC

MVMO

MVMI

RM

MVMO

MVMI

RM

MVMO

MVMI

RNC

MVMO

MVMI

RNC

MVMO

MVMI

RNZ

MVMO

MVMI

RNZ

MVMO

MVMI

RP

MVMO

MVMI

RP

ad d n ; change carry b i t in the 12th
byte

addro

addr.

addro

addr,; change sign b i t of the 12th
data byte

addro

addr.

addro

addr,; change carry b i t of the 12th
data byte

addro

addr.

addro

addr^; change zero b i t of the 12th
data byte

addro

addr.

addr.

addr,; change parity of the 12th data
byte

113

Sequence A.2.12 MVMO

(Continued) MVMI

RPE

MVMO

MVMI

COMMENTS: I t is assumed RPE
th a t a l l the MVMI in stru c
tion in the sequence is MVMO
executed with the same
operands as the f i r s t in MVMI
struction of sequence
A.2.1. (except fo r the RPO
changes noted.)

MVMO

MVMI

RPO

MVMO

MVMI addrj ; change p arity o f the 12th data
byte

byte

I t w ill be noted th a t to generate the above te s t sequences, in s tru c

tions RIM, SIM, El, DI and HIT were not considered. In order to detect

fau lts in these in struc tions the program exeuction in the microprocessor

must be in terrup ted . I t is easy to see how the decoding fa u lts fo r these

instructions can be detected. As an example, consider the in stru c tio n SIM

(Set In terrup t Masks). The execution of the SIM instruc tion uses the con

ten ts of the accumulator (which must be previously loaded) to se t or c lea r

the various in te rru p ts on the 8085 microprocessor. In order to detect the

fau lts covered by the Assumption 4 .3 .3 (i) and (i i) in in stru c tio n SIM

(SIM belongs to group of the EPI in s tru c tio n s), only the signals put out

a t the external pins in response to SIM need to be monitored. However, the

114

fa u lts covered by Assumption 4 ,3 .4 can be detected only by executing SIM,

and observing the response of the microprocessor to various in te rru p ts .

A.3 Detection of Data Transfer and Data Storage Faults

Data Storage and Data Transfer fau lts in the 8085 are detected us

ing the Algorithm 4.2.1 given in Chapter IV. Since i t has also been shown

how the MOVE MULTIPLE in stru c tio n s used in th is algorithm can be imple

mented on an 8085 microprocessor, i t is not considered necessary to repeat

the algorithm here. However, i t may be pointed out th a t these fa u lts can

also be detected using the procedures of Thatte and Abraham.

A.4 Detection of Data Manipulation Faults

A deta iled descrip tion of the various functional u n its of the 8085

microprocessor such as the ALU, or the in te rru p t handling hardware is need

ed to generate the te s ts fo r the Data Manipulation Function. During the

course of the present research , several e ffo r ts were made to obtain a gate

level descrip tion of the 8085 microprocessor from the In te l Corporation and

from other companies th a t manufacture th is microprocessor. The gate level

diagrams fo r the microprocessor are regarded as c la s s if ie d information by

the companies and therefore could not be obtained. Actual te s ts fo r t e s t

ing the Data Manipulation Faults fo r the 8085 microprocessor therefore can

not be given here. However, these can be detected using the technique

s ta ted in Algorithm 4 .4 .2 .

