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Abstract 
 

Migratory animals must select suitable habitat in different locations to take 

advantage of abundances of resources and escape harsh climates during seasonal 

changes. Niche tracking occurs when migratory animals fill the same niche space on the 

breeding and wintering grounds. Overlap of niche space is expected to occur because of 

physiological or behavioral needs, even though resources available on native and 

migratory ranges may differ. Neotropical birds migrate to breed where there is an 

abundance of potential mates and nesting sites and to winter where environmental 

conditions are less harsh. My objective was to assess whether Neotrocal migrants 

tracked niche space between the breeding and wintering grounds. I measured 

microclimate and vegetation structure in the Ouachita National Forest (breeding) in 

southeastern Oklahoma and La Milpa Field Station in Orange Walk, Belize (wintering). 

I predicted that microclimate would be tracked by more species than vegetation 

structure. I did not find strong evidence that niche tracking occurred in Neotropical 

migrants for microclimatic conditions or vegetation structure, even though some 

patterns were apparent between microclimate and vegetation structure selection on the 

breeding and wintering grounds. Investigations of niche tracking at finer scales will 

help further our understanding of which physiological constraints and necessary 

resources contribute most to habitat selection in breeding and wintering grounds of 

migratory bird species, and how to predict future distributions in the face of major 

environmental changes.   

 

Keywords: microclimate, vegetation structure, niche tracking, Bayesian analysis, 

habitat selection  
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Chapter 1 

 

Patterns in habitat selection between breeding and wintering grounds of 

Neotropical migrant passerines  

 

Authors: Maryanne E. Dantzler-Kyer 

 

Introduction 

 Environmental conditions are dynamic across time and space. Therefore, 

animals must select habitat within their geographical range that offers suitable 

environmental conditions for their specific physiological and behavioral needs 

(Vandermeer 1972; Root 1988; Piper 2011; Bonebrake & Deutsch 2012; Carroll et al. 

2015; Laube et al. 2015). Environmental conditions influence the availability of 

resources, which may help to determine where animals occupy space (Johnson 1980; 

Parrish 1995; Dawson et al. 2005; Patten et al. 2005; Champlain et al. 2009; Wiens et 

al. 2010; Hollander et al. 2011; Piper 2011; Sam et al. 2014). At times when resources 

are scarce, and environmental conditions are no longer favorable, some animals shift 

their geographical ranges (Gómez et al. 2016). Migratory animals must select suitable 

habitat in different locations to take advantage of abundances of resources and escape 

harsh climates during seasonal changes (Salewski & Bruderer 2007; Zink 2011; Gómez 

et al. 2016).  

 Neotropical birds migrate to breed and winter where environmental conditions 

are favorable (Joseph & Stockwell 2000; Gómez et al. 2016). Migration to the breeding 
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grounds is driven by the need to reproduce where there is an abundance of potential 

mates and nesting sites; however, escape from harsh winter conditions and low food 

availability on the breeding grounds drives migration to the wintering grounds 

(Salewski & Bruderer 2007; Zink 2011; Shaw & Couzin 2013). Because animals have 

specific physiological and behavioral constraints, niche overlap is expected to occur 

between the breeding and wintering grounds of Neotropical migrants, even though 

available resources may differ between breeding and wintering grounds (Laube et al. 

2015). Overlap in climatic niche, or niche space defined by environmental conditions, 

occurs mainly because of the physiological limitations of these animals (Monahan & 

Tingley 2012; Laube et al. 2015). Temperature is considered to be a most important 

factor of climatic niche because so many biological functions are thermally regulated 

(Root 1988; Gómez et al. 2016). Migratory birds are expected to follow a set of climatic 

conditions and settle into a similar climatic niche to their breeding grounds when they 

select habitat in wintering grounds; this is called niche tracking. Neotropical migrant 

species track niche space more often than resident species (Gómez et al. 2016). This is 

probably explained by the wider climatic niche breadth of migrants and their exposure 

to more extreme changes in climate, which forces them to find favorable conditions in 

variable environments more often than resident species. Niche-tracking behavior in 

migrants also may be explained by physiological dependence on specific conditions or 

resources that are closely associated with a particular climate (Nakazawa et al. 2004; 

Monahan & Tingley 2012; Gómez et al. 2016). Current niche-tracking literature 

primarily focuses on broad-scale climate modeling to predict where migrant bird 

species will occur during seasonal shifts. These studies investigated the effects of 
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temperature, precipitation, and vapor pressure at large scales (Joseph & Stockwell, 

2000; Nakazawa et al. 2004; Monahan & Tingley 2012; Laube et al. 2015; Gómez et al. 

2016). It is important to understand niche space occupancy during seasonal movements 

at finer scales, too. Investigations of niche tracking at finer scales will help further our 

understanding of the physiological constraints and necessary resources that contribute 

most to habitat selection in breeding and wintering grounds of migratory bird species 

(Levey & Stiles 1992; Taylor & Norris 2007), and how to predict future distributions in 

the face of major environmental change (Whitbeck et al. 2016). Climate variables and 

vegetation characteristics are important predictors of habitat selection for birds at finer 

scales (Patten & Smith-Patten 2012; Sam et al. 2014; Zellweger et al. 2016).  

 Microclimate, or climate at small scales, allows animals to occupy space with 

favorable conditions within an otherwise highly variable environment (Ewers & Banks-

Leite 2013; Carroll et al. 2015). Microclimate is distinctive within patches across a 

geographical landscape, and these differences in microclimate determine species 

distributions within any given habitat (Chen et al. 1999). In forest habitats, 

environmental gradients occur with the presence of forest edges or gaps. Edge effects, 

or the measurable differences in microclimate due to the creation of a forest edge, are 

detectable 15–184 m into forests worldwide, depending on which microclimate variable 

is being measured (Carmago & Kapos 1995; Chen et al. 1995; Murcia 1995; Didham & 

Lawton 1999; Davies-Colley et al. 2000; Gehlhausen et al. 2000; Ewers & Banks-Leite 

2013). Based on the needs of individuals, microclimate selection allows for better 

survival because it offers climate buffers from extreme conditions (Francis 1968; 

Gloutney & Clark 1997; Patten & Smith-Patten 2012; Carroll et al. 2015; Pollock et al. 
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2015; González del Pliego et al. 2016). For example, shaded, cooler habitats are often 

selected for when ambient temperatures are extremely warm, while less shaded, warmer 

habitats are selected for when temperatures are cold (Bell et al. 2010; Krijgsveld et al. 

2003; Larsson et al. 2013; Lee-Yaw et al. 2015). Selection of a specific microclimate 

reduces energetic costs of thermoregulation and foraging (Gloutney & Clark 1997; 

Chaplin et al. 2002; Krijgsveld et al. 2003; Dawson et al. 2005; Bell et al., 2010; du 

Plessis et al. 2012; Gruebler et al. 2014; Pollock et al. 2015). Birds are sensitive to 

changes in microclimate and experience unfavorable consequences due to these changes 

(Sam et al. 2014; Zellweger et al. 2016). Any change in temperature, humidity, or light 

intensity could be detrimental to fitness (Francis 1968; Root 1988; Dawson et al. 2005; 

Carroll et al. 2015). Temperature and humidity have especially important effects on nest 

success and nestling development (Francis 1968; Calder 1973; Rahn et al. 1977; Cooper 

1999; Chaplin et al. 2002; Dawson et al. 2005). Tropical bird species usually prefer 

habitat that is under a closed canopy with low-light conditions (Patten & Smith-Patten 

2012; Pollock et al. 2015). In fact, tropical residents may select habitat conditional on 

the light environment (Patten & Smith-Patten 2012). Although microclimate in forested 

areas is affected by edge orientation, time of day, and seasonal weather changes, 

microclimate depends primarily on vegetation and can become drastically altered with 

changes in vegetation structure (Francis 1968; Chazdon & Fetcher 1984; Swaine & 

Whitmore 1988; Matlack 1993; Chen et al. 1999; Gehlhausen et al. 2000; Champlin et 

al. 2009; Carroll et al. 2015).  

 Numerous studies have found that vegetation structure is the most important 

variable in determining habitat selection of birds, including Neotropical migrants (Karr 
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& Roth 1971; Karr & Freemark 1983; Parrish 1995; Kearney et al. 2007; Champlain et 

al. 2009; Seavy & Alexander 2011; Besnard et al. 2015; Zellweger et al. 2016). 

Vegetation provides many resources including food, nest sites, and refuge from 

predators and extreme environmental conditions (Anderson & Shugart Jr. 1974; Levey 

& Stiles 1992; Parrish 1995; Haby et al. 2013; Besnard et al. 2015; Zellweger et al. 

2016). Vegetation directly affects microclimate, which provides favorable 

environmental conditions for animal species (Adolph 1990; Chen et al. 1993; Chen et 

al. 1995; Chen et al. 1999; Dawson et al. 2005; Carroll et al. 2015). Forest plant species 

richness depends on macroclimate, and vegetation height and density are often related 

to successional stage. Available light contributes to the growth and maintenance of 

understory vegetation (Chazdon & Fetcher 1984; Chazdon & Pearcy 1991; 

Montgomery & Chazdon 2001; Zellweger et al. 2016). Canopy density directly affects 

light penetration into the canopy, which leads to a highly variable light environment 

throughout forests (Chazdon & Pearcy 1991).  

 Regardless of species composition, dense forest provides more stable 

temperatures than clear-cut forest (Chen et al. 1993; Ewers & Banks-Leite 2013). 

Temperatures, wind speeds, and light levels are higher at the forest edges and clear-cut 

areas than the interior forest. Temperature and light are inherently correlated, such that 

temperature increases with light (Matlack 1993; Chen et al. 1995; Chen et al. 1993; 

Chen et al. 1999; Didham & Lawton 1999; Davies-Colley, et al. 2000; Pollock et al. 

2015; González del Pliego et al. 2016). Relative humidity and vapor pressure deficit are 

also dependent on light availability and temperature (Chen et al. 1993; Matlack 1993). 

During the day, when light availability and temperatures are high, interior forests 
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experience higher relative humidity than open areas; the opposite is true at night (Chen 

et al. 1993). Wind speed decreases with distance from forest edges (Chen et al. 1993; 

Chen et al. 1995; Patten & Smith Patten 2012). Vegetation provides climate-buffering 

zones that protect relatively stable interior forest microclimate from exposure to the 

variable climatic conditions of open areas surrounding forests (Matlack 1993; Ewers & 

Banks-Leite 2013; Pollock et al. 2015). Vegetation height may be an important factor 

for predicting bird species richness in forest habitats (Zellweger et al. 2016), yet 

vegetation structure is dynamic. Changes in vegetation can lead to decreased resource 

availability, fewer microhabitats, and altered microclimate, which ultimately leads to 

less suitable habitat and decreased animal species richness (Chazdon & Fetcher 1984; 

Chen et al. 1995; Murcia 1995; Gehlhausen et al. 2000; Champlain et al. 2009; 

González del Pliego et al. 2016). 

 The purpose of this study was to determine if niche-tracking behavior occurred 

in Neotropical migrant birds between their breeding and wintering grounds. I measured 

microclimate and vegetation structure at occupied sites to determine habitat 

characteristics of five migrant species. I predicted that niche tracking would occur in 

Neotropical migrants, and migrants would occur in habitats with the same microclimate 

and vegetation structure in both the breeding and wintering grounds. Specifically, I 

predicted that microclimate would be more predictive for migratory species occurrence 

than vegetation structure on the breeding and wintering grounds. The results of this 

study will provide insight to conservation managers on which environmental conditions 

and resources are most important for migratory bird species in breeding and wintering 

habitats.  
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Methods 

Study sites 

 Breeding-ground habitat was studied at the Ouachita National Forest located in 

Le Flore and McCurtain Counties of southeastern Oklahoma (~34.7° N, 94.6° W). The 

forest is dominated by loblolly pine (Pinus taeda) and oak-hickory mixed hardwood 

forest and occupies approximately 10,702 ha. Elevations varies from 150 to 820 m. 

Common management practices include prescribed fire and timber harvest.  

 Wintering-ground habitat selection was studied at La Milpa Field Station, 

Orange Walk, Belize (~17.8° N, 89° W). The field station is located within the Rio 

Bravo Conservation and Management area and is managed by the Programme for 

Belize. The semi-moist, lowland forest has elevation upwards of 150 m. Forested area 

within this reserve is approximately 54,154 ha, and the surrounding land is primarily 

used for agriculture.  

 

Field methods 

 Birds were surveyed on their breeding grounds in June–August 2016 and April 

2017 (n = 60 points; 14–16 Jun, 24–26 Jun, 23–24 Jul, 30–31 Jul, 16–17 Aug, 8–9 Apr), 

while they were surveyed on their wintering grounds in January 2017 (n = 63 points; 4–

18 Jan). No surveys took place on overly hot, windy, or wet days. Five species of 

migrants were used to represent the Neotropical migrant community present in both 

Oklahoma and Belize. These birds represented three families and occupied different 

parts of the forest canopy. Focal species included the Black-and-white Warbler 
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(Mniotilta varia), Kentucky Warbler (Geothlypis formosa), Hooded Warbler 

(Setophaga citrina), White-eyed Vireo (Vireo griseus), and Summer Tanager (Piranga 

rubra). Neotropical migrants were recorded if seen or heard while traveling along forest 

roads or trails in both forests. Data were collected at a center point, or the area within 

closest proximity to the focal bird. All focal Neotropical migrants were recorded if 

present within a 25-m radius of the center point, and all points were at least 50-m apart 

to avoid recounting any particular individual. A Garmin GPSMAP 64 unit was used to 

determine the location of each point.  

 Three environmental variables and five microclimate variables were measured at 

each point. Environmental variables included rainfall (none or light), ambient wind 

(Beaufort scale), and percent cloud cover (%). Microclimate variables included 

temperature (°C), heat index (°C), relative humidity (%), wind speed (m/s), and light 

intensity (kLux). All microclimate variables were measured at ground level using a 

Kestrel 3500 Pocket Weather Meter (temperature, heat index, wind speed, and 

humidity) and an Extech EasyView EA30 digital light meter (light).  

 Vegetation structure was measured at each point a with 1x1 m quadrat used to 

determine percent cover of live vegetation, leaf litter, and bare ground at each center 

point. Ground vegetation cover was estimated only at the center point. The vegetation 

cover at the center point was found to represent the entire 25-m radial plot by surveying 

random plots in all four cardinal directions of the center point in the breeding grounds; 

random plots did not differ significantly from vegetation cover found at the center point. 

Percent canopy cover was measured using a manual GRS densitometer. Canopy height 

was estimated from the center point, and digital photographs were taken of understory 
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vegetation in all four cardinal directions as a proxy for understory density. Photos of 

understory vegetation were later assigned a category to describe density, 1 – 5 (1 = very 

sparse, 0-10% cover; 2 = sparse, 10-30% cover; 3 = moderate, 30-60% cover; 4 = 

dense, 60-80% cover; 5 = very dense, 80-100% cover). To assign one density 

measurement to each point the harmonic mean was taken from all density scores. 

Harmonic mean was used to account for gaps in forest vegetation. 

 

Data Analysis 

 To address the effects of microclimate and vegetation structure on the presence 

of Neotropical migrant birds on their breeding and wintering grounds, I built logistic 

regression models in the Bayesian framework. The effects of microclimate and 

vegetation structure on habitat selection were considered separately. The response 

variable was presence/absence of a given focal species. To assess effects of 

microclimate on habitat selection, I used temperature, light, and humidity as predictor 

variables. Although vapor pressure deficit (VPD) is a more biologically relevant 

variable (Anderson 1936), the correlation between temperature and VPD was high (r = 

0.92) on the breeding grounds, which resulted in poor Markov Chain Monte Carlo 

sampling due to correlation between the two variables. To assess the effects of 

vegetation on habitat selection, I used percent canopy cover, canopy height, live 

vegetation cover, and understory density as predictor variables. Again, correlation 

between live and dead vegetation cover on the breeding grounds was high (r = 0.89), so 

only live vegetation cover was included as a predictor variable in the vegetation models. 

All variables were converted to z-scores to standardize and center the data, and 
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arithmetic means were assigned to missing data values (breeding n = 19; wintering n = 

13).  

 Presence of Neotropical migrants, as influenced by microclimate and vegetation 

structure, was considered in both the breeding and wintering grounds. The Bayesian 

models were set as yi ~ dbern(ϕ), where dbern is a Bernoulli distribution with parameter 

ϕ (the probability of occurrence). The probability of occurrence was modeled using a 

logit transformation, so that logit(ϕ) = β0 + β1 * x1…βk * xk. I first assumed flat priors, 

set as β ~ dnorm(0, 1.0E-8), where dnorm is a normal distribution with the parameters 

mean, μ, and precision, τ (1/σ
2
). Posterior parameter estimates (β) and credibility 

intervals for each data set were generated for each species individually in OpenBUGS 

3.2.3 rev. 2011 using three Markov chains and 100,000 iterations, thinned ten times, 

with a burn-in of 500,000 iterations to guarantee convergence at a stable point. All 

parameter initial values were set at zero. Estimates of the slope parameters were 

considered significant if the 95% Bayesian credibility intervals around the mean did not 

overlap zero. To draw inference from the classically non-significant slope parameters, 

the step function (1 if e ≥ 0; 0 otherwise) was used.  

 Posterior parameter estimates generated from the breeding-ground models were 

then used as “informative” priors for the wintering microclimate and vegetation models, 

whereas posterior parameter estimates generated from the wintering ground models 

were used as “informative” priors for the breeding grounds. A Bayesian model 

comparison technique, Deviance Information Criterion (DIC), was used to compare the 

“uninformed” and “informed” models. DIC is a Bayesian likelihood-based model 

comparison method similar to Akaike’s Information Criterion (AIC). If the “informed” 
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models were more predictive (i.e., had a lower DIC score) of species occurrence than 

the “uninformed” models, then I inferred that niche tracking occurred between the 

breeding and wintering grounds. DIC scores were used to compare microclimate and 

vegetation models to determine which was more predicative of Neotropical migrant 

presence in the breeding and wintering grounds. Models were considered to be different 

when DIC scores differed by five or more points (Lunn et al. 2013). 

 

Results 

Microclimate 

 On the breeding grounds, microclimate significantly affected the presence of 

three species, the Hooded Warbler, Summer Tanager, and Black-and-white Warbler. All 

three microclimate variables, temperature, light, and relative humidity, were significant 

predictors for presence of Hooded Warblers. The relationships between temperature 

(mean = 27.75; SD = 30.02; 2.5% BCI = 27.39; 97.5% BCI =, 28.48) light (mean = 

6.2436; SD = 18.83; 2.5% BCI = 6.2435; 97.5% BCI = 6.99), and relative humidity 

(mean = 68.32; SD = 77.31; 2.5% BCI = 67.80; 97.5% BCI = 70.1549) and the presence 

of Hooded Warblers were negative (Figure 1). The relationship between light (mean = 

7.68; SD = 16.33; 2.5% BCI = 6.30; 97.5% BCI = 12.49) and the presence of Summer 

Tanagers was also negative (Figure 2). Relative humidity (mean = 77.41; SD = 75.99; 

2.5% BCI = 74.71; 97.5% = 79.49) significantly and positively affected the presence of 

Black-and-white Warblers (Figure 3). Although not classically significant, parameter 

estimates suggest that temperature was positively related to the presence of Summer 

Tanagers, and humidity was positively related to Summer Tanager presence (Figure 2). 
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The presence of Black-and-white Warblers was also negatively related to temperature, 

and negatively related to light (Figure 3). White-eyed vireo occurrence was positively 

related to light, and positively related to humidity. The effects of temperature on White-

eyed Vireo occurrence were negligible (Figure 4). The presence of Kentucky Warblers 

was positively related to temperature, negatively related to light, and positively related 

to relative humidity (Figure 5) (Table 1). 

 On the wintering grounds, microclimate only significantly impacted the 

presence of White-eyed Vireos (Table 2). Temperature (mean = 25.33; SD = 26.46; 

2.5% BCI = 24.94; 97.5% BCI= 25.84) had a significant negative effect on White-eyed 

Vireo occurrence. Although not classically significant, parameter estimates suggest that 

White-eyed Vireo occurrence was also negatively related to light and negatively related 

to humidity (Figure 4). Black-and-white Warbler presence was positively related to 

temperature, positively related to light, and positively related to relative humidity 

(Figure 3). Hooded Warbler occurrence was positively related to temperature and 

negatively related to light. Relative humidity had negligible effects on the presence of 

Hooded Warblers (Figure 1). Kentucky Warbler occurrence was positively related to 

temperature and negatively related to humidity. The effects of light on the occurrence of 

Kentucky Warblers were negligible (Figure 5). The presence of Summer Tanagers was 

positively related to temperature, negatively related to light, and positively related to 

humidity (Figure 2) (Table 1). 
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Vegetation 

On the breeding grounds, three species were significantly affected by vegetation 

variables. The presence of Black-and-white warblers was significantly and positively 

affected by canopy height (mean = 23.09; SD = 22.59; 2.5% BCI = 22.0; 97.5% BCI = 

23.94), the presence of Hooded Warblers was significantly and negatively affected by 

live ground vegetation cover (mean = 59.07; SD = 69.36; 2.5% BCI = 54.05; 97.5% 

BCI = 65.39), and the presence of White-eyed Vireos was significantly and positively 

affected by live ground vegetation cover (mean = 73.58; SD = 68.96; 2.5% BCI = 

68.24; 97.5% BCI = 77.69). Although not classically significant, parameter estimates 

suggest that Black-and-white Warbler presence was also negatively related to canopy 

cover, negatively related to live ground vegetation cover, and positively related to 

vegetation density (Figure 6). The presence of Hooded Warblers was also positively 

related to canopy cover, negatively related to canopy height, and positively related to 

vegetation density (Figure 7). White-eyed Vireo occurrence was also positively affected 

by canopy cover, negatively related to canopy height, and negatively related to 

vegetation density (Figure 8). The presence of Summer Tanagers was negatively related 

to canopy cover, positively related to canopy height, negatively related to live 

vegetation cover, and negatively related to vegetation density (Figure 9). The presence 

of Kentucky Warblers was positively related to canopy cover, positively related to 

canopy height, positively related to live vegetation ground cover, and positively related 

to vegetation density (Figure 10) (Table 2). 

 On the wintering grounds, three species were significantly affected by 

vegetation variables. The presence of Hooded Warblers was significantly and positively 
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affected by canopy cover (mean = 91.76; SD = 85.62; 2.5% BCI = 85.32; 97.5% BCI = 

94.81). Both Kentucky Warblers (mean = 3.29; SD = 3.20; 2.5% BCI = 3.06; 97.5% 

BCI = 3.42) and White-eyed Vireos (mean = 3.24; SD = 3.14; 2.5% BCI = 3.10; 97.5% 

= 3.35) were significantly and positively affected by vegetation density. Although not 

classically significant, posterior parameter estimates suggest that the presence of 

Hooded Warblers was negatively related to canopy height, negatively related to live 

ground cover, and positively related to vegetation density (Figure 7). The occurrence of 

Kentucky Warblers was negatively related to canopy cover, negatively related to 

canopy height, and negatively related to live ground cover (Figure 10). White-eyed 

vireo occurrence was negatively related to canopy cover, negatively related to canopy 

height, and negatively related to live vegetation ground cover (Figure 8). Presence of 

Black-and-white Warblers was positively related to canopy cover, positively related to 

canopy height, negatively related to live vegetation ground cover, and negatively related 

to vegetation density (Figure 6). Summer Tanager occurrence was negatively related to 

canopy cover, positively affected by canopy height, positively related to live vegetation 

ground cover, and negatively affected by vegetation density (Figure 9) (Table 2).  

 

Model comparisons 

 When posterior estimates of breeding ground microclimate parameters were 

used to inform wintering ground microclimate models, the informed models were not 

more predictive of presence for any species, or the uninformed model was a better fit. 

Similarly, when posterior estimates of wintering ground microclimate parameters were 

used to inform the breeding ground microclimate models, the informed models were not 
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more predictive of presence for any species, or the uninformed model was a better fit 

(Table 3). When posterior estimates of breeding ground vegetation parameters were 

used to inform wintering ground vegetation models, the informed models were not more 

predictive of presence than the uninformed models for any species. When posterior 

estimates of wintering ground vegetation parameters were used to inform breeding 

ground vegetation models, the informed models were not more predictive of presence 

than uninformed models for any species (Table 4). DIC scores of informed vegetation 

models were slightly better than those of uninformed vegetation models for both the 

breeding and wintering grounds; however, the differences in scores were always less 

than five, so there is no strong support for either the uninformed or informed models 

being more predictive than the other (Lunn et al. 2013).  

 Because uninformed and informed models did not differ, or the uniformed 

model was more predictive of species presence, comparisons between microclimate and 

vegetation on the breeding and wintering grounds were made using DIC scores of the 

uninformed models. Microclimate models were more predictive of species presence 

than vegetation models for the Hooded Warbler and Summer Tanager on the breeding 

grounds. On the wintering grounds, however, neither microclimate or vegetation models 

were more predictive of species presence. Hooded Warblers were an exception to this; 

the vegetation model was more predictive than the microclimate model on the wintering 

grounds.  
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Discussion 

 The purpose of this study was to determine if overlap in niche space occurred 

between breeding and wintering grounds of migratory birds. Although, patterns between 

preferred microclimate and vegetation structure are apparent between the breeding and 

wintering grounds, the results of this study do not indicate that niche-tracking behavior 

at fine ecological scales occurs in Neotropical migrant passerines (Tables 1&2). This 

result was somewhat unexpected because other studies suggest that niche-tracking 

behavior does occur in Neotropical migrants (Monahan & Tingley 2012; Gómez et al. 

2016). For example, Gómez et al. (2016) found that 49 species of Neotropical migrants 

consistently tracked broad-scale climate niche space. Instead, the results of this study 

indicate migratory birds probably choose habitat based on physiological and behavioral 

needs that are most important during each season.  

 Generally, microclimate seems to be most important to breeding birds, whereas 

vegetation and microclimate are equally important to wintering birds. The importance 

of microclimate in the breeding grounds is almost certainly related to reproductive and 

nesting behaviors that are necessary for species fitness. In a climatically heterogenic 

environment (i.e., temperate forests), birds must select habitat that provides conditions 

that promote reproductive success (Carroll et al. 2015). Light conditions affect the way 

that animals perceive visual signals within their environment, and mating behaviors are 

an important form of visual communication that is affected by light conditions. Female 

birds often choose mates that have bright feathers because they correspond with overall 

health. Ambient light conditions may be important to mate selection because males 

appear brighter when there is a greater amount of contrast between the environment and 
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their feathers. Some birds, such as the White-throated Manakin (Corapipo gutturalis), 

manipulate the light environment at the site of mating behaviors to appear more 

attractive to females (Endler & Théry 1996). The effects of light on migrant presence 

were important (i.e., at least 80% of posterior estimates suggested same relationship) 

probably because light has such an important effect on mate selection. The results of 

this study are in agreement with the results of a previous study that found that 

Neotropical residents select habitat conditional on the light environment (Patten & 

Smith-Patten 2012).  

 Temperature and relative humidity are especially important for nest success and 

chick growth and development. Chicks mature much faster in at optimal temperatures 

than they do in environments that are too warm or cool because the costs of 

thermoregulation are greatly reduced (Chaplin et al. 2002; Dawson et al. 2005). 

Temperature is important to survival of adult birds during the incubation period because 

females are constantly exposed to the environmental conditions present at the nest site 

for a long period of time, and optimal temperatures provide reduced thermoregulation 

costs, which is important because it is energetically costly to provision offspring 

(Gloutney & Clark 1997; Cooper 1999; Dawson et al. 2005). Not surprisingly, the 

effects of temperature on migrant presence were important at least 90% of the time for 

all focal species in this study, except White-eyed Vireos. Relative humidity has an 

affect on nest success, as well (Francis 1968; Rahn et al. 1977). Nest sites exposed to 

high temperatures and low relative humidity experience decreased egg viability (Francis 

1968). Relative humidity is important for proper egg development because some water 

inside of the egg must be replaced with air for breathing before the chick is exposed to 
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the outside environment; if relative humidity conditions are not optimal, water transport 

systems are impaired and eggs are likely to fail (Rahn et al. 1977). Again the effects of 

humidity were important to migrant presence at least 88% of the time. Interestingly, 

relationships between microclimate and migrant presence were most often opposite in 

the wintering grounds for at least one microclimate variable; Summer Tanagers 

maintained the same relationships with microclimate variables on the wintering 

grounds. These results may suggest that habitat selection on the breeding and wintering 

grounds are driven by different physiological or behavioral needs.  

 In addition, microclimate also provides an important buffer from extreme 

environmental climatic conditions (Bell et al. 2010; Carroll et al. 2015). Bell et al. 

(2010) found that Lesser Prairie-Chickens select microclimate dependent on 

environmental conditions. For example, when temperatures were warmer, chickens 

preferred habitat with more shaded areas that provided thermal refuge. Daily ambient 

temperatures on the breeding grounds (Oklahoma) were often much warmer than 

ambient temperatures on the wintering grounds (Belize), while relative humidity was 

often higher on the wintering grounds than on the breeding grounds. Therefore, it is 

possible that Neotropical migrants also select microclimate dependent on environmental 

conditions, and select cooler, moister microclimate on the breeding grounds and 

warmer, dryer conditions on the wintering grounds. Future studies should also consider 

time of day as a source of variation in microclimate selection. Since microclimate 

conditions are dependent on time of day, understanding how microclimate of occupied 

space is affected by ambient conditions throughout the day will help us to better 

understand selection of specific microclimatic conditions.  
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 Vegetation and microclimate were equally important for predicting migrant 

presence in the wintering grounds, suggesting microclimatic conditions are not as 

important on the wintering grounds as the breeding grounds. The Hooded Warbler was 

an exception, and vegetation structure did predict presence better than microclimate on 

the wintering grounds. This suggests that vegetation is more important to the Hooded 

Warbler on the wintering grounds than microclimate. Because of the relatedness 

between microclimate and vegetation structure, however, selection of vegetation 

structure on the wintering grounds probably also provides suitable microclimate 

conditions. Alternatively, Neotropical migrants may not track specific microclimate and 

vegetation structure on the wintering grounds, but instead may spend most of their time 

foraging wherever food is present. Insect abundance is often associated with warmer 

temperatures, and is higher at forest edges where vegetation is less dense. An 

abundance of food resources may partially explain why insectivorous birds spend time 

near such exposed areas (Champlain et al. 2009; Larsson et al. 2013; Jones et al. 2017). 

For example, Black-and-white Warblers were present more often in areas with less 

dense vegetation and warmer temperatures on the wintering grounds than on the 

breeding grounds. In fact, if food resources are the main factor in occurrence of 

Neotropical migrants, it is possible that the effects of microclimate and vegetation 

structure are indirect on the wintering grounds. In other words, migrants may occupy 

space that is characterized by microclimate and vegetation structure that is important to 

their prey items as long as they stay within their physiological limitations. 

 Although, the uninformed and informed vegetation models are not substantially 

different, it is worth mentioning that informed vegetation model DIC scores were lower 
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than uninformed vegetation models for every species in both the breeding and wintering 

grounds. This suggests that niche tracking for vegetation structure may actually occur; 

however, possibly due to small sample sizes, informed models were not substantially 

more predictive of species occurrence than uninformed models.  

 Climate change and anthropogenic land-use are major concerns for 

biodiversity. Because macroclimate and vegetation both significantly impact 

microclimate, breeding birds could experience significant loss of suitable nesting 

habitat (Pringle et al. 2003; Haby et al. 2013; Varner & Dearing 2014). The effects of 

climate change on microclimate stability will need to be continually monitored to 

understand how exactly climate change will alter microclimate and when changes in 

microclimate will occur, as some lag time between macroclimate and microclimate 

change is expected (Chen et al. 1999; Varner & Dearing 2014). Microhabitats may 

buffer the effects of climate change for some time, but continued loss of vegetation will 

lead to fewer of these (Varner & Dearing 2014). Land-use changes occur in forests by 

means of a variety of anthropogenic activities including clear-cutting, logging, hunting, 

burning, and abandoning land used for agriculture (Karr & Freemark 1983; Carmago & 

Kapos 1995; Asner et al. 2009). Natural disturbances, such as lightening, fire, 

windstorms, herbivory, and other animal activities, also contribute to changes in 

vegetation structure (Karr & Freemark 1983; Chazdon & Fetcher 1984; Meyer et al. 

2011; Jones et al. 2017). These occurrences have already affected geographical ranges 

of many animals (Varner & Dearning 2014). Since vegetation provides an important 

buffer from extreme macroclimatic conditions, I suggest that conservation management 

focus on maintaining forest vegetation. Sustainable logging practices and replanting 
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native forest species after agricultural abandonment may be viable options for 

protecting microhabitats within temperate and tropical forests.   
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Appendix A: Tables 

 

 

Table 1 – Summary of uninformed relationships between microclimate variables and 

the presence of migrants on the breeding and wintering grounds.  indicates 

a positive relationship, while  indicates a negative relationship. Percent 

value represents the percentage of posterior parameter values that were 

positive or negative (depending on arrow).  

 

 

  



 29 

 

Table 2 – Summary of relationships between vegetation variables and the presence of 

migrants on the breeding and wintering grounds.  indicates a positive 

relationship, while  indicates a negative relationship. Percent value 

represents the percentage of posterior parameter values that were positive or 

negative (depending on arrow).  
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Table 3 – DIC scores for ‘uninformed’ and ‘informed’ breeding ground models. 

Uninformed and informed DIC scores for the microclimate and vegetation 

models of each species are compared. Bolded scores represent models that 

were more predictive.  
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Table 4 – DIC scores for ‘uninformed’ and ‘informed’ wintering ground models. 

Uninformed and informed DIC scores for the microclimate and vegetation 

models of each species are compared. Bolded scores represent models that 

were more predictive. 
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Appendix B: Figure Legend 

 

 

Fig. 1 Relative influence of microclimate variables (temperature, light, relative 

humidity) on standardized means (+ 95% BCI) of β parameters in the breeding 

and wintering grounds of the Hooded Warbler (HOWA). Empty circles 

represent breeding ground parameter means, and filled circles represent 

wintering ground parameter means. 

 

Fig. 2 Relative influence of microclimate variables (temperature, light, relative 

humidity) on standardized means (+ 95% BCI) of β parameters in the breeding 

and wintering grounds of the Summer Tanager (SUTA). Empty circles represent 

breeding ground parameter means, and filled circles represent wintering ground 

parameter means. 

 

Fig. 3 Relative influence of microclimate variables (temperature, light, relative 

humidity) on standardized means (+ 95% BCI) of β parameters in the breeding 

and wintering grounds of the Black-and-whte Warbler. (BAWA) Empty circles 

represent breeding ground parameter means, and filled circles represent 

wintering ground parameter means. 

 

Fig. 4 Relative influence of microclimate variables (temperature, light, relative 

humidity) on standardized means (+ 95% BCI) of β parameters in the breeding 

and wintering grounds of the White-eyed Vireo (WEVI). Empty circles 

represent breeding ground parameter means, and filled circles represent 

wintering ground parameter means. 

 

Fig. 5 Relative influence of microclimate variables (temperature, light, relative 

humidity) on standardized means (+ 95% BCI) of β parameters in the breeding 

and wintering grounds of the Kentucky Warbler (KEWA). Empty circles 

represent breeding ground parameter means, and filled circles represent 

wintering ground parameter means. 

 

Fig. 6 Relative influence of vegetation structure variables (canopy cover, canopy 

height, live ground cover, vegetation density) on standardized means (+ 95% 

BCI) of β parameters in the breeding and wintering grounds of the Black-and-

white Warbler (BAWA). Empty circles represent breeding ground parameter 

means, and filled circles represent wintering ground parameter means. 

 

Fig. 7 Relative influence of vegetation structure variables (canopy cover, canopy 

height, live ground cover, vegetation density) on standardized means (+ 95% 

BCI) of β parameters in the breeding and wintering grounds of the Hooded 

Warbler (HOWA). Empty circles represent breeding ground parameter means, 

and filled circles represent wintering ground parameter means. 
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Fig. 8 Relative influence of vegetation structure variables (canopy cover, canopy 

height, live ground cover, vegetation density) on standardized means (+ 95% 

BCI) of β parameters in the breeding and wintering grounds of the White-eyed 

Vireo (WEVI). Empty circles represent breeding ground parameter means, and 

filled circles represent wintering ground parameter means. 

 

Fig. 9 Relative influence of vegetation structure variables (canopy cover, canopy 

height, live ground cover, vegetation density) on standardized means (+ 95% 

BCI) of β parameters in the breeding and wintering grounds of the Summer 

Tanager (SUTA). Empty circles represent breeding ground parameter means, 

and filled circles represent wintering ground parameter means. 

 

Fig. 10 Relative influence of vegetation structure variables (canopy cover, canopy 

height, live ground cover, vegetation density) on standardized means (+ 95% 

BCI) of β parameters in the breeding and wintering grounds of the Kentucky 

Warbler (KEWA). Empty circles represent breeding ground parameter means, 

and filled circles represent wintering ground parameter means. 
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Appendix C: Figures 
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Figure 2 

SUTA Microclimate
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Figure 3 
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Figure 4 

WEVI Microclimate
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Figure 5 

 

KEWA Microclimate
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Figure 6 
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Figure 7 
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Figure 8 

WEVI Vegetation
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Figure 9 
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Figure 10 
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