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Abstract 

Natural disasters have both severe negative short-term consequences on community 

structures, inhabitants, and long-term impacts on economic growth. In response to the 

rising costs and magnitude of such disasters to communities, a characteristic of modern 

community development is the aspiration towards resilience. An effective and well-studied 

mitigation measure, structural interventions reduce the value lost in buildings in earthquake 

scenarios. Both structural loss and socioeconomic characteristics are indicators for whether 

a household will dislocate from their residence. Therefore, this social vulnerability can be 

mitigated by structural interventions and should be minimized as it is also indicator of 

indirect economic loss. This research presents a model for mitigating direct economic loss 

and population dislocation through decisions regarding the selection of community 

structures to retrofit to higher code levels. In particular, the model allows for detailed 

analysis of the tradeoffs between budget, direct economic loss, population dislocation, and 

the disparity of dislocation across socioeconomic classes given a heterogeneous residential 

and commercial structure set. The mathematical model is informed by extensive 

earthquake simulation and as well as recent dislocation modeling from the field of social 

science. The non-dominated sorting genetic algorithm II (NSGA-II) is adapted to solve to 

model, as the dislocation model component is non-linear. Use of the mitigation model is 

demonstrated through a case study using Centerville, a test bed community designed by a 

multidisciplinary team of experts.  Details of the retrofit strategies are interpreted from the 

estimated Pareto front.  
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Chapter 1.0 Introduction 

Natural disasters have both severe negative short-term consequences on a communities 

and long-term impacts on economic growth. In 2016, 15 different United States 

communities were affected by natural disasters resulting in losses exceeding $1 billion each. 

Further, both the magnitude and effect of natural disasters on communities have increased 

in the last few decades (NOAA, 2017).  In response to the outlook urgency, a characteristic 

of modern community development is the aspiration towards resilience. Community 

resilience is the ability of a community to return its physical, social institutions, and its 

people to return to a level of normalcy in a reasonable amount of time (Ellingwood, 2016) 

(Mileti,1999) (Bruneau,2003) (Godschalk,2003). The timeframe in which a community 

resumes normal function impacts the loss, economic or otherwise, experienced. 

Communities with low resilience experience limited capacities to function which results in 

prolonged recovery. In addition to economic loss, the individuals in the affected 

community are more at risk for dislocating from their home, health and mental problems, 

and loss of property (Sherrieb, Norris, Galea, 2010). Due to the increasingly 

interdependent nature of communities, resilience is not only critical to the sustainability of 

individual communities, but to nations as well. To reduce the nation's vulnerability, the 

resilience of its communities must increase as to limit economic disruption and its impact 

on inhabitants. For this reason, resilience improvement tools that may be adapted to any 

modern community are needed. 

 International governments and organizations have recognized the importance of 

community resilience through their investment in sustainable development (Benson & 

Clay, 2003). The United Nations background paper on natural disasters clearly states that 

building resilience into communities is the only way to sustain development efforts in light 
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of increasing cost and threats of natural disasters (United Nations, 2017). Because of the 

fairly unpredictable and unchangeable nature of natural disasters, the cornerstone of the 

nation's emergency management's approach is limiting community vulnerability through 

mitigation (FEMA 2000b). Disaster mitigation is action taken prior to the onset of a 

disaster to reduce or limit the long-term damage felt by inhabitants and physical 

infrastructure from natural hazards (Godschalk,2003). Mitigation is different from other 

activities enveloped in disaster preparedness, response, and recovery due to its long 

planning horizon and proactive nature. One of the most successful mitigation approaches 

has been of strengthening buildings and public facilities against the effects of earthquake 

damage. A study on the Northridge Earthquake of 1994 showed the greatest physical loss 

was sustained by buildings built prior to 1976, demonstrating the potential improvement to 

resiliency by improving the structural integrity of physical structures (FEMA 2002). In 

addition to being a proven method, the predicted improvements of structural 

reinforcement can be estimated for any range of earthquake severity (Lin & Wang, 2016). 

Supported by this capability, this research addresses the problem of disaster mitigation for 

earthquake disasters through the investment in structural reinforcements.  

 Certainly, the more immediate and visible effects of earthquakes have been well 

established and recorded.  In 2002, FEMA estimated annual earthquake loss for the United 

States to be $4.4 billion, with by far the most serious damage being structural (FEMA 

2002).  Building collapse from structural damage is the leading cause of human death from 

earthquakes (Ara, 2013). However, disasters have other impacts on social components of 

communities that have proven more difficult to predict. One such impact is the tendency 

of households to leave their homes following a disaster. Population dislocation is 

considered a significant indicator of the indirect loss experienced by an economy (Lin, 
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2009). This is because dislocation results in a disruption of money flow due to the sudden 

loss of people, reducing the overall financial resources available to local governments from 

loss in sales, tax, property and personal income (Lindell & Prater, 2003; Lindell et al., 

2006). While there are many factors that influence this human behavior, it is known that 

the extent of housing damage is a significant indictor of whether or not a family leaves 

their home (MAEviz, 2008). Therefore, one way to mitigate the effects of any disaster on 

population dislocation is to reduce the damage to residential structures. In this research, 

resilience is measured not only by overall direct economic loss, but also through population 

dislocation in order to also capture the impact on inhabitants of the community.  

 While resilience is usually used to characterize a community as a whole, particular 

households and zones experience different levels of vulnerability to disasters. Structures at 

lower building code levels, for example, are inherently more susceptible to damage and will 

reach a "not livable" state at lower levels of seismic exposure than those at higher code 

levels. A characteristic of the physical infrastructure, dislocation behavior differs depending 

on building code (Higheld et al., 2014). Using population dislocation as an indicator of 

household vulnerability, other factors besides code level have been shown to affect 

dislocation behavior. These factors include race of the household and whether the 

residence houses multiple families, such as an apartment complex (Lin, 2009).  

Vulnerability inequality between households may be exacerbated by a disaster. According 

to the United Nations Commission on Sustainable Development, resiliency development 

efforts must not increase vulnerability of a society (Godschalk, 2003). While structural 

intervention efforts would logically not increase the vulnerability of a community, it will 

likely increase the vulnerability disparity between subsets of the community. Following this 
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principle, population dislocation disparity must not exceed its current level across income 

levels in this research.    

      The goal of this research is to identify near-Pareto optimal solutions for building 

retrofit strategies to study the tradeoffs of direct economic loss and population dislocation 

in an earthquake scenario. Simultaneously, all retrofit strategies considered must have a 

limited effect on dislocation disparity. This work extends the work by Zhang and 

Nicholson (2016) with a refined dislocation model, modified problem formulation, and an 

extensive analysis of the results. As previously discussed, structural reinforcement can 

reduce both economic loss and population dislocation. However, retrofit interventions for 

commercial structures have different effects on economic loss than those on residential 

structures. Due to their size and role in the local economy, commercial structure damage 

results in significantly greater economic loss than residential structure damage. Thus, by the 

criteria of economic loss, the best policy would include reinforcing mainly commercial 

structures. But reinforcing commercial structures offers no improvement to population 

dislocation, thus the two objectives for the policy are competing. Beyond the policy 

objectives, there is much more complexity in the mitigation resource allocation model; a 

portion of which will be introduced in the exploration of previous approaches the 

problem.  
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Chapter 2.0 Literature Review 

While much research has been done in resilience based community planning in the last 

several years, many gaps exist between works due not only to the large-scale of the topic, 

but also because of the complex nature of the factors and components existing in the 

problem space. An example of such work is the model developed by Cimellaro et al. 

(2010). In this work, a model is proposed for determining a retrofit strategy specifically for 

a set of six hospitals within a city in light of four potential hazard levels. Four retrofit 

actions were considered: "no action", retrofit to life safety level, retrofit to immediate 

occupancy level, and rebuild. Used to evaluate the impact of such decisions were four 

primary metrics that both capture both direct and indirect costs. The metrics used were 

content loss, casualties directly resultant from the event, casualties resultant from structure 

dysfunction or inaccessibility, and direct economic loss from relocation or business 

interruption. The scope of the model, including six structures of a specific type with similar 

construction, represents the aspiration towards resiliency driven decision making but is 

lacking the critical ability to represent any community as a complete set of structures. The 

scope and robustness of mitigation resource allocation models must allow for the capturing 

of the community as a whole, diverse, set of structures such that damage estimates that 

occur at the community level, such as dislocation disparity, are accounted for.  

 Few approaches to the this mitigation problem have exhibited the community-

based perspective required to evaluate decisions using community-wide social vulnerability 

metrics. Jennings et al. (2015) developed a model for community-wide retrofit decisions for 

wood-framed structures that minimized cost, economic loss, casualties, as well as recovery 

time. So, while the scope is appropriate for the damage perspective addressed in this 

research, it does not include the diversity of structures that any community could have. 



 

6 

Meaning, this model does not fit the need for a retrofit decision framework that has 

nation-wide applicability. In response, the research presented in this paper is robust to 

building diversity in its ability to model based on structural characteristics (type, age, value, 

etc.) and purpose (e.g., residential, commercial, government). An interesting characteristic 

of the work by Jennings et al. (2015), though, was its investigation of how retrofit policy 

can reduce the probability of an individual to develop post traumatic stress disorder 

(PTSD). This work acknowledged the complexity of human nature,  which provides 

challenges for incorporating what is known from social science in the decision frameworks 

being developed for community resilience. To further develop the existing capability of 

planning communities in light of social vulnerability, the research presented in this paper 

accounts for population impacts by minimizing the probability that a household will 

dislocate. 

 A model developed by Zhang and Nicholson (2016) addresses the same gaps in 

current models by mitigating economic loss as well as population dislocation using a 

community scale retrofit policy. Their model allows for a detailed analysis of the tradeoffs 

between economic loss, budget level, and population dislocation given a heterogeneous set 

of residential and commercial structures. Population dislocation was included as the linear 

regression model developed by the Mid-America Earthquake Center Seismic Loss 

Assessment System as proposed in MAEviz (2008). The work predicts dislocation at the 

zone level as a function of structural damage, non-structural damage, median household 

income, percentage of vacant housing, and percentage of the population that is Black. 

However, a study based on data collected following the 1992 Hurricane Andrew by Lin 

(2009) showed that dislocation is more accurately predicted by a model developed using 

logistic regression. Zhang and Nicholson (2016) acknowledged the limitations of the linear 
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approach.  In their work, the linear regression model predicted more dislocation in certain 

zones than the original population in the same zone.  This problem was ameliorated by 

truncating dislocation percentages to a maximum of 100% per zone.  This is obviously less 

than ideal.  Not only did Lin (2009) show that the probability of dislocation is not linear 

with respect to the predictors, but the significant predictors also differ between the two 

models as well.  

 The improved population dislocation model developed by Lin (2009) was found 

using an empirical approach supported by several data sources describing the damage 

incurred from Hurricane Andrew in Miami-Dade County, Florida. The first data source, 

the South Dade Population Impact Survey, documented the dislocation decision and 

ethnic/racial information for the nearly 3,000 households sampled. In all, 17 remaining 

potential predictors, including loss, were compiled from the 1990 Census and the Housing 

Tax Appraisal Database for 1992. The result of testing various logit models, the final 

prediction tool with a Nagelkerke R-square of 0.205 is a logistic function of a particular 

structure's percent value loss, whether or not the residence is a single-family detached 

home, the percentage of population in the surrounding block group that are Black, and 

then the percentage that are Hispanic. As two of the variables exist at the structure level, it 

follows that the model predicts dislocation at the household level, which may be aggregated 

to suite various planning needs. Because the model indicates the predictive power of loss in 

determining dislocation, the influence of retrofit policy in mitigating the behavior remains.  

 Despite the valuable contribution to knowledge of population dislocation, there are 

two limitations already seen with the model developed by Lin (2009). It is important to 

present that being located along the coastline appears in one study as a significant indicator 

of population dislocation, a factor that could not be studied when sampling from only one 
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county (Esnard, Sapat, & Mitsoca, 2011). Miami-Dade being a coastline county, an 

implication of using the logit model in Lin (2009) is that dislocation is likely overestimated 

for inland communities. An additional concern with nation-wide model applicability is the 

severity of the disaster from which behavior was observed. The defense of using this 

model, in light of stated limitations, is that both the coastline and severity factors would 

most likely influence coefficients of the logistic regression coefficients and perhaps change 

the selection of significant factors. It is highly unlikely that further expansions of 

dislocation studies would find it to exhibit something other than logistic behavior. Further, 

is it even more unlikely that the true dislocation model is linear. Thus, the mitigation model 

and non-linear solution tool developed in this research will remain applicable in light of 

new discoveries in dislocation behavior.  

 By integrating the new predictor function for population dislocation into the model 

as an objective, the entire problem then becomes non-linear. Where Zhang and Nicholson 

(2016) were able to use linear optimization to efficiently and thoroughly determine exact 

solutions, the model in this research is too complex to be solved through an exhaustive 

method. As such, a heuristic method is used to estimate the Pareto front through an 

archive of all non-dominated solutions closely resembling the decision trade-off tool in the 

previous model. There exists a range of heuristic approaches that could be applied to the 

multi-objective problem, one of which being the non-dominated sorting genetic algorithm 

II (NSGA-II) developed in Deb et al. (2002). The specific motivation to adapt NSGA-II in 

this research was its intuitive behavior, existing documentation through existing research 

applications, and existing packages available for adaptation to reduce implementation time 

and ease in customization. One implication of this approach is the significant adaptation of 

both the problem model and algorithm required to make computation relatively efficient. A 
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thorough explanation of these adaptations are provided in later sections to uphold the 

validity of the solver development.  

 In summary, the research community recognizes the need for robust community-

wide development plans, but still, barriers limit the ability of policy models to meet the 

requirements of corresponding decision tools. The large scale and number of factors that 

influence and measure resilience provide a challenge to defining research questions. 

Human nature, as exhibited by population dislocation, is difficult to predict and lack of 

data with earthquakes specifically requires that new models be readily developed in light of 

new findings. By not only building a model to address the current gap between the 

mitigation model and dislocation findings, but also the adapted solver, this research 

anticipates new developments in the research area and will shorten their implementation 

time. Because the solver can be used regardless of problem complexity and can be quickly 

adapted to include additional objectives, its value spans beyond the application presented in 

this particular variation.  
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Chapter 3.0 Problem Formulation 

This work integrates what is now known about dislocation behavior into the existing 

resource allocation model as an objective. The resulting decision variables are affected by 

altering the behavior of one of the two model objectives, the measures of solution quality. 

This change not only affects the results of the model, but also the method by which it is 

solved. In the original model (Zhang & Nicholson, 2016), population dislocation, in 

addition to all other components, are expressed by linear functions and relations. Because 

the model outlined in this research incorporates a logistic regression model for dislocation, 

a non-linear solution approach was implemented to replace the previously used linear 

programming solver. The development of the updated model and approach is outlined first 

by a description of the data, then through the formulation of the model, and finally by the 

development of the evaluation algorithm.  

3.1 Mitigation Based Resource Allocation Model 

The scope of the mitigation based resource allocation model can be described through the 

data that support it. The community referred to in this model has one or more distinct 

zones, group of structures associated by geographic region, type (e.g., residential, non-

residential, government) and a subset socioeconomic demographics for the residential 

zones (e.g., median income, housing age and value, etc.) For the purpose of this analysis, 

the zones of a community are based on relative homogeneity of structure types or 

purposes. Zones may be categorized, for example, as commercial zones for their density of 

consumer retail outlets or high income residential zones as characterized by the 

demographics of inhabitants. Additionally, information associated with each structure in 

the community is required. Information denoting structure types, building code level, 

occupancy type, and estimated value must be available for every structure in each zone. 
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Using the aforementioned information, loss mitigation estimates can be generated using a 

functional relationship between retrofit strategies and experienced loss (Lin & Wang, 

2016). It should be noted that this estimation process is unique for earthquake scenarios.   

 To structure the data for the optimization problem, let 𝑍 denote the set of 

community zones, 𝑆 denote the set of structure types, and 𝐾 denote the set of ordered 

code levels. The current number of buildings before retrofit interventions in zone 𝑖 ∈ 𝑍 of 

structural type 𝑗 ∈ 𝑆 at building code level 𝑘 ∈ 𝐾 is represented as parameter 𝑏𝑖𝑗𝑘. The 

estimated direct economic loss experienced in zone 𝑖 ∈ 𝑍 by structure type 𝑗 ∈ 𝑆 at code 

level 𝑘 ∈ 𝐾 is denoted as parameter  𝑙𝑖𝑗𝑘. Direct economic loss estimation is a function of 

the appraised value of the structure and its sustained damage. The damage sustained by a 

structure is split into four distinct categories: structural damage (SD), nonstructural drift-

sensitive damage (ND), nonstructural acceleration-sensitive damage (NA), and content loss 

(CL). The economic loss function is adapted from analysis completed by the Mid-America 

Earthquake Center (Steelman et al. 2007). 

𝒍𝒊𝒋𝒌 = 𝑴𝒊𝒋𝒌(𝜶𝒊𝒋𝒌
𝑺𝑫𝝁𝒊𝒋𝒌

𝑺𝑫 + 𝜶𝒊𝒋𝒌
𝑵𝑫𝝁𝒊𝒋𝒌

𝑵𝑫 + 𝜶𝒊𝒋𝒌
𝑵𝑨𝝁𝒊𝒋𝒌

𝑵𝑨 + 𝜶𝒊𝒋𝒌
𝑪𝑳 𝝁𝒊𝒋𝒌

𝑪𝑳 ) (1) 

 In the economic loss function, parameter 𝑀𝑖𝑗𝑘 denotes the total appraised value of 

the associated building. The parameters 𝛼𝑖𝑗𝑘
𝑆𝐷 , 𝛼𝑖𝑗𝑘

𝑁𝐷 , 𝛼𝑖𝑗𝑘
𝑁𝐴 represent the proportion of value 

associated with the respective category of damage. The parameter 𝛼𝑖𝑗𝑘
𝐶𝑙  reflects the value 

ratio of a buildings' contents to its appraised value. The final values in the loss function 

represent the mean damage ratio associated with each type of damage for each building. 

The mean damage ratios are shown as 𝜇𝑖𝑗𝑘
𝑆𝐷  , 𝜇𝑖𝑗𝑘

𝑁𝐷 , 𝜇𝑖𝑗𝑘
𝑁𝐴 , and 𝜇𝑖𝑗𝑘

𝐶𝐿 . More specifically, mean 

damage ratio is the proportion of repair cost to the total replacement cost as estimated by 

simulation.  
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 If 𝑏𝑖𝑗𝑘 represents the baseline building set prior to retrofit interventions, let the 

decision variable 𝑥𝑖𝑗𝑘 represent the building set after structural improvements have been 

made. With this formulation, the difference between 𝑥𝑖𝑗𝑘 and 𝑏𝑖𝑗𝑘 may be interpreted as 

the interventions made by the resultant mitigation policy. With the decision variable 

defined, the first objective of the model, to minimize direct economic loss, is provided in 

Eq(2). 

𝐦𝐢𝐧 ∑ ∑ ∑ 𝒍𝒊𝒋𝒌𝒙𝒊𝒋𝒌

𝒌∈𝑲𝒋∈𝑺𝒊∈𝒁

 
(2) 

Direct economic loss is determined as the sum of the loss experienced by every structure 

category multiplied by the number of structures in the associated category.  

The population dislocation behavior evaluated by the second objective is more 

complex, depending on both the loss experienced, structure characteristics, and select 

population demographic data. Logically, population dislocation is only experienced in 

residential zones. Thus, let 𝑅 ⊂ 𝑍 denote the set of residential zones in the community. 

For each residential zone 𝑖 ∈ 𝑅, the number of households dislocated as a result of 

earthquake damage is estimated by a model adapted from work by Lin (2009). The logistic 

regression model predicts dislocation as a function of experienced loss, structure type, the 

proportion of Black residents in each zone, and the proportion of Hispanic residents in 

each zone. Let the parameter 𝑙𝑜𝑠𝑠𝑖𝑗𝑘 represent the ratio of damage experienced, 

discounting content loss, to total appraised value of the structures in zone 𝑖 ∈ 𝑅 for 

structure type 𝑗 ∈ 𝑆 of code level 𝑘 ∈ 𝐾. This parameter, as calculated in Eq. (2), 

represents the percent of structural value lost from a residential structure. The parameter 

𝑀𝑖𝑗𝑘 denotes the appraised value of the structure while 𝑙𝑖𝑗𝑘
−𝑐 represents the value loss not 

including contents.  
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𝒍𝒐𝒔𝒔𝒊𝒋𝒌 =
𝒍𝒊𝒋𝒌

−𝒄

𝑴𝒊𝒋𝒌

∗ 𝟏𝟎𝟎 
(3) 

 Let 𝑑𝑖 denote the number of households dislocated in each zone 𝑖 ∈ 𝑅, 

recognizing this as an aggregated result of the dislocation behavior computed for each 

structure type 𝑗 ∈ 𝑆 at each code level 𝑘 ∈ 𝐾. Eq. (4) yields the estimated probability of 

dislocation dependent on the damage level, the loss parameter exhibiting the variation 

resulting from decision variable manipulation. 

𝒑(𝒅𝒊𝒋𝒌) =
𝟏

𝟏 + 𝒆−(𝜷𝟎+ 𝜷𝟏𝒍𝒐𝒔𝒔𝒊𝒋𝒌+ 𝜷𝟐𝒔𝒊+ 𝜷𝟑𝑩𝒊+𝜷𝟒𝑯𝒊)
 

(4) 

After loss, the next parameter in the probability dislocation function, 𝑠𝑖 represents the 

proportion of structures in zone 𝑖 ∈ 𝑅 that are single-family detached structures, a subset 

of structure types 𝑗 ∈ 𝑆. The last two parameters, 𝐵𝑖 and 𝐻𝑖 represent the percentage of 

the population that is Black and Hispanic, respectively. The regression coefficients 

𝛽0, … , 𝛽4 provided by Lin (2009) are -0.42523, 0.02480,-0.50166,-.01826, and -0.01198, 

respectively.  

 The probability of dislocation for each zone 𝑖 ∈ 𝑅 for each structure type 𝑗 ∈ 𝑆 is 

then used to determine the total dislocation for each zone as shown in Eq. (5).  Let the 

parameter 𝐻𝑖𝑗 denote the number of households in each structure type 𝑗 ∈ 𝑆 in each zone 

𝑖 ∈ 𝑅. Thus, multiplying the probability of dislocation by the number of potential 

households dislocated yields the dislocation associated with a certain set of decision 

variables.  

𝒅𝒊 =  ∑ ∑ 𝑯𝒊𝒋 ∗ 𝒙𝒊𝒋𝒌 ∗  𝒑(𝒅𝒊𝒋𝒌)

𝒌𝒋

 

 

(5) 

Thus, the second objective, in competition with the first, is represented by Eq. (6) as the 

total dislocation in the community as influenced by the retrofit strategy. 
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min ∑ 𝑑𝑖

𝑖

 
(6) 

To limit the solutions such that the dislocation disparity among income levels must 

not exceed the baseline values, the following constraint is formulated. To denote residential 

zones of different income level, let 𝑅𝑙 , 𝑅𝑚, 𝑅ℎ with  𝑅 = 𝑅𝑙 ∪ 𝑅𝑚 ∪ 𝑅ℎ define the zones 

of low, medium, and high income. The baseline dislocation disparity �̅� is thus calculated as 

the sum of the differences among the baseline dislocation in each income level, denoted by 

𝑑�̅�. 

�̅� = |∑ 𝒅�̅� −  ∑ 𝒅�̅�

𝒊∈𝑹𝒉

|  

𝒊∈𝑹𝒍

+ |∑ 𝒅�̅� − ∑ 𝒅�̅�

𝒊∈𝑹𝒎

|  

𝒊∈𝑹𝒍

+ | ∑ 𝒅�̅� − ∑ 𝒅�̅�

𝒊∈𝑹𝒉

|  

𝒊∈𝑹𝒎

 

(7) 

 

After the retrofit actions are implemented, the constraint on inequity limits the resultant 

disparity to be less than or equal to the baseline.  

|∑ 𝑑𝑖 −  ∑ 𝑑𝑖

𝑖∈𝑅ℎ

|  

𝑖∈𝑅𝑙

+ |∑ 𝑑𝑖 − ∑ 𝑑𝑖

𝑖∈𝑅𝑚

|  

𝑖∈𝑅𝑙

+ | ∑ 𝑑𝑖 − ∑ 𝑑𝑖

𝑖∈𝑅ℎ

|  

𝑖∈𝑅𝑚

≤  �̅� 

(8) 

 The retrofit policy is also subject to limited financial resources. Let 𝐵 denote the 

maximum allowable budget for the policy. The cost of retrofitting a structure to a higher 

code level is estimated as the difference in assessed structural value between the two levels. 

Specifically, if a particular structure assessed at a value of 𝑀𝑖𝑗𝑘 and is of type 𝑗 in zone 𝑖 is 

raised to code level 𝑘′ > 𝑘, then the cost of the intervention is calculated as 𝑀𝑖𝑗𝑘
′ −  𝑀𝑖𝑗𝑘 . 

As shown in Eq. (9), the cost of a candidate policy is given as the difference between the 

decision  𝑥𝑖𝑗𝑘 and the current state before retrofits are applied.  

∑ ∑ ∑ 𝑀𝑖𝑗𝑘(𝑥𝑖𝑗𝑘 − 𝑏𝑖𝑗𝑘) ≤ 𝐵

𝑘∈𝐾𝑗∈𝑆𝑖∈𝑍

 
(9) 
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 In addition to the social vulnerability and budget constraints, there are several other 

logical constraints in the model. Given that the only change to the community structures is 

code level, the quantity of buildings in every zone 𝑖 of type 𝑗 must remain the same. This is 

formulated in Eq. (10) and is referred to from this point on as the building count 

constraint.  

∑ 𝑥𝑖𝑗𝑘 =  ∑ 𝑏𝑖𝑗𝑘

𝑘∈𝐾𝑘∈𝐾

 
(10) 

 The next set of constraints force the model to only consider retrofit policies that 

represent an improvement in code level for each structure. Beginning with code level one, 

the resultant policy must not add structures to this level as it would imply bringing 

buildings from other levels down. Expanding on that, the quantity of structures at code 

one and two together must not increase. Constraining code level two independently of 

level one would improperly and overly constrain the problem, as the number of structures 

at code level two must be allowed to increase. Also as not to overly constrain the problem, 

the only constraint on the decision with code level three is non-negativity. Because all other 

code levels are constrained, the building count constraint bounds this decision already. The 

last code level, four, must contain at least the same quantity of structures than the baseline. 

Together, these constraints define the solution space with respect to the improvement 

constraint and simultaneously represent non-negativity requirements. 

𝟎 ≤ 𝒙𝒊𝒋𝟏 ≤ 𝒃𝒊𝒋𝟏   ∀𝒊 ∈ 𝒁, ∀𝒋 ∈ 𝑺 (11) 

𝟎 ≤ 𝒙𝒊𝒋𝟏 + 𝒙𝒊𝒋𝟐 ≤ 𝒃𝒊𝒋𝟏 + 𝒃𝒊𝒋𝟐  ∀𝒊 ∈ 𝒁, ∀𝒋 ∈ 𝑺 (12) 

𝒙𝒊𝒋𝟑 ≥ 𝟎  ∀𝒊 ∈ 𝒁, ∀𝒋 ∈ 𝑺 (13) 

𝟎 ≤ 𝒃𝒊𝒋𝟒 ≤ 𝒙𝒊𝒋𝟒  ∀𝒊 ∈ 𝒁, ∀𝒋 ∈ 𝑺 (14) 

 As a summary, the allocation model describes the outcome of the community in 

the event of the earthquake. The damage from the event is measured by three attributes. 
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Total economic loss is the result of structural loss in addition to the loss experienced by 

surrounding businesses as a result of the damage. Also, population dislocation is defined as 

the total number of households in the community that leave their home after the disaster. 

In the model, total economic loss and total population dislocation are minimized as 

competing objectives. As such, multiple Pareto solutions will be identified that satisfy the 

budget, disparity, and logical constraints.   

 
3.2 Model Verification 

After defining the mathematical model, it was verified by analyzing preliminary objective 

behavior. This was done by supporting the non-linear model with the optimal solutions 

from the previous, linear model to compare the resultant economic loss for each policy. By 

ensuring economic loss values, whose calculations in this model are the same as in Zhang 

and Nicholson (2016), the behavior of that objective was verified. Next, the behavior for 

dislocation was analyzed. This was done by plotting the dislocation probability distribution 

for two structure categories to look specifically for sensitivity to value loss, which implies 

relation to the decision variables, and also for the range between distributions. From the 

model, the structure category with the highest probability of dislocation is one comprised 

of  0% single-family detached homes, and no proportion of either Black or Hispanic 

residents. The lowest probability category contains no single-family structures and Black 

residents account for 100% of the population. These are not intended to describe the most 

probable building zone, but instead show the extremes of the dislocation behavior model 

developed in Lin (2009). Though these extremes can be computed with the model, it does 

not guarantee accurate prediction outside the bounds of the data the model was developed 

with. Figure 1 shows this probability distribution range.  
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Figure 1: Sensitivity range of dislocation behavior 

  

A few characteristics of the probability distributions are worth noting. The first 

being that even at a 0% loss in value, 40% of the highest, or "most mobile" residents will 

dislocate. This implies that regardless of what structural interventions are made for these 

residences, there is a limit to the dislocation that can be prevented. Alternatively, even 

when those same residences are 100% damaged, roughly 10% of the population is modeled 

as remaining in the structure, which intuitively seems like an underestimate. Looking at the 

"least mobile" structure category, the positive slope of the distribution between losses of 0 

to 50% is lower than that of the curve about it. This means that it requires a greater 
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reduction in loss to prevent a household from leaving if they are on the lower curve than if 

they were closer to the higher. In determining which residential structures are the best 

investment, the model will select the higher curve given that the costs are the same. While 

no function is expected to exactly describe human behavior, the limitations of such 

functions are critical to the interpretation and implementation of models driven by them.  
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Chapter 4.0 Algorithm Development 

The ECsPy package was used to implement NSGA-II for the allocation problem. ECsPy is 

a free open-source Python package for evolutionary computation. To adapt the solver for 

the allocation problem, significant changes were made to the formulation of the problem as 

well as to the NSGA-II algorithm in the solution approach. One of which was changing 

the encoding of the decision variable and constraints to meet the evolutionary 

requirements of the solver design. Additionally, the generator, variator, mutator, and 

evaluator of NSGA-II were customized to fit the problem model. In the presentation of 

each modeling adaptation, the corresponding algorithm design change will be presented 

alongside.   

4.1 Candidate Solutions 

The final state of a retrofit intervention strategy is represented in the problem model as the 

decision variable  𝑋𝑖𝑗𝑘 , a quantity of structures . However, candidate solutions are coded 

for each structure type 𝑗 in each zone 𝑖 as the proportion of structures at each code level 

such that through generation, crossover, and mutation, the candidate remains independent 

of the structure volume in any given zone 𝑖 ∈ 𝑍 of type 𝑗 ∈ 𝑆. This maximizes 

computational efficiency with respect to candidate manipulation. Candidate solutions are 

encoded as a list whose length is dependent on the number of zones (𝑍) and the number of 

structure types (𝑆), the code levels remaining at a length of 4. In the candidate list, each 

proportion of structures from zone 𝑖 of type 𝑗  at code level 𝑘 is represented as its own 

element. The advantages of this encoding are apparent through the discussion of the model 

constraints.     
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 The building count constraint dictates that the count of structures of type 𝑗 in zone 

𝑖 in a feasible solution must remain the same as the baseline count. Thus, an efficient way 

to ensure that this constraint is met in the generation and evolution of candidates is by 

making the solution independent of building count. This is the main motivation for the 

encoding method. In order to satisfy the improvement constraint, stating buildings must 

only remain at the current or improve in level, the candidate solution generator was 

customized in the following way. For each set of buildings in zone 𝑖 of structure 𝑗 ,the 

proportion in each code level is generated through a uniform random distribution, each 

level having specific minimum and maximum potential values.  

 The specific generation of the proportions guarantees each candidate is feasible, 

while allowing the entire solution region to be searched. Specifically, the proportion of 

structures in code level one must be less than or equal to the baseline proportion in level 

one. The proportion in code level two must be less than or equal to the minimum between 

the remaining buildings and the baseline count and the baseline proportion at and below 

level two. Then, the remaining proportion is split among levels three and four, beginning 

with level four to ensure a feasible candidate. The proportion in level four is then set 

between the level four base and the proportion that has been allocated. The remaining 

proportion is allocated to code level 3. While retaining an exploratory property, this 

generation technique limits the solution space to only feasible candidates. 

4.2 NSGA-II Parameters 

The parameters used in NSGA-II impact how candidate solutions are manipulated in the 

search for non-dominated solutions. Population size, number of generations, and mutation 

rate can, thus, influence the solution quality and the computation time. This was observed 

in the tuning of such parameters in the case study. It was seen that the most important 
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parameter for determining the number of solutions in the Pareto front was number of 

generations, which is set to 1,000. While having a high population size is preferred in terms 

of exploration, population size was set to 50 in order to balance problem size and 

computation time. The final parameter, mutation rate, is set to the algorithm default to 

introduce a mutated element at a probability of 0.1. Once the maximum number of 

generations is reached, the current Pareto front is archived and used as the decision curve.  
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5.0 Case Study: Centerville 

5.1 Baseline Scenario 

In order to demonstrate the application an interpretation of the allocation model, an 

earthquake disaster was simulated in the virtual city of Centerville. Centerville is a virtual 

city that was created as a testbed for collaborators to the Center of Risk-based Community 

Resilience Planning. It exists to provide a fundamental problem with which to initiate and 

develop assessment algorithms, such as the allocation model, in preliminary form. As the 

Centerville Virtual Community Testbed was developed by a team of engineering, social 

science, and economic professionals, it has both diverse infrastructure and population 

demographics necessary to asses potential post-disaster impacts on the local economy, the 

inhabitants, and public services (Ellingwood, 2016). The layout of Centerville is depicted in 

Figure 2. 

 

Figure 2: Centerville zoning map 

 Centerville contains roughly 20,000 households spread among a diverse building set 

of over 15,000 structures. The residential structures include single family units, apartment 
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complexes, and mobile home units. Of the 21 total zones, 7 are residential (𝑍1-𝑍7), 2 are 

commercial (𝑍8 , 𝑍9), and 2 are industrial (𝑍10, 𝑍11). There is 1 hospital (𝐻𝐶), 2 fire 

stations (𝐹𝑖𝑟𝑒1, 𝐹𝑖𝑟𝑒2), and 7 schools (𝐸𝑆1-𝐸𝑆4, 𝑀𝑆1, 𝑀𝑆2, 𝐻𝑆). The residents of 

Centerville have a median income reflective of the US population, however, income level 

ranges from low to high across the residential zones. There are 16 different structure types 

to classify buildings which can be seen in Table 1.  

Table 1: Description of Centerville structure types 

Structure Type Description 

W1 -W6 Wood 

S1 - S4 steel braced frame 
RC1 - RC3 Concrete 
RM1 - RM3 reinforced masonry 

 

Using the building code levels defined in HAZUS (1997), each structure type is assigned a 

code level. Table 2 summarizes the number of buildings of each structure type, in which 

zones they exist, and the corresponding appraised structure value for Centerville. Table 3 

contains the demographic parameters used in the logistic dislocation prediction model.  

Table 2: Summary of Centerville building inventory 

Type Building Quantity Zones Code Appraised Value ($) 

W1 6190 Z2,Z3,Z4,Z5,Z6 pre-code W2 139,426 
W2 4000 Z1,Z2,Z3,Z4 low-code W1 239,016 
W3 50 Z1 moderate-code W1 318,816 
W4 3196 Z1,Z2,Z3 pre-code W1 239,016 
W5 102 Z4,Z6 low-code W2 3,918,960 
W6 1352 Z7 low-code MH 61,800 
S1 45 Z8,Z9 low-code S2L 5,134,500 

RC1 32 Z8,Govt low-code CIL 4,948,000 
RM1 76 Z8,Z10 pre-code RMIL 2,205,250 

S2 6 Z9 low-code S3 7,738,750 
S3 25 Z10 pre-code S2L 7,382,000 
S4 45 Z11 moderate-code S2L 39,305,000 

RC2 1 HC low-code CIM 17,352,000 
RM2 2 Fire1,Fire2 low-code RMIL 1,103,400 
RC3 4 MS1,MS2mHS moderate-code CIL 9,022,000 
RM3 4 ES1,ES2,ES3,ES4 moderate-code RMIL 9,521,000 
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Table 3: Logistic regression parameters 

Zone % Black % Hispanic %Single-family Detached Income Level 

Z1 1 1 100 High 
Z2 16 10 100 Medium 
Z3 10 12 100 Medium 
Z4 15 20 75 Medium 
Z5 19 14 100 Low 
Z6 37 25 16 Low 
Z7 20 15 0 Low 

  

 The final key information needed from Centerville is a set of loss estimates for 

every structure in inventory. Rather than being a characteristic of the community itself, loss 

estimates require the study of the interaction between the infrastructure and seismic activity 

exposure. A scenario of a 7.8 magnitude earthquake was simulated distance 35 kilometers 

southwest from the center of Centerville.  The detailed calculation of structural loss and 

direct economic loss is found in Lin and Wang (2016). In the baseline scenario, the direct 

economic loss is $856M. It should be noted that losses from commercial and industrial 

stock, comprising just 2% of the inventory, account for over half of the overall loss 

($434M). Further, following the discussion of the dislocation-loss tradeoff between 

commercial and residential buildings, it is clear that the model would favor investment in 

commercial structures to minimize economic loss. Introducing the competing objective, a 

summary of households that dislocate by zone before any retrofits are applied is shown in 

Table 4.  
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Table 4: Baseline dislocation summary 

Zone Income Level % Loss Households Dislocated % Dislocated 

Z1 High  9.29 4,246 1,384 32.6 
Z2 Medium 8.38 2,267 557 24.6 
Z3 Medium 7.8 800 207 25.9 
Z4 Medium 12.42 4,767 1,673 35.1 
Z5 Low 12.05 1,856 449 24.2 
Z6 Low 10.81 4,396 1,067 24.3 
Z7 Low 12.43 1,352 460 34.0 

  

 It is interesting that zone 1 has the third highest proportion dislocated though it 

experienced the third lowest damage losses. This is attributed to the demographic 

parameters and structure type, but not the code level, as all are code level 1. Additionally, 

the distinction between voluntary and involuntary dislocation is not made. Thus, 

dislocation from zone 1 has the same priority as zones with more damage, whose 

structures may not be livable. The implication of this will be discussed in a later section. 

While dislocation behavior is summarized by zone level, the dislocation model is actually 

dependent on loss at the zone, structure type, and building code level. The significance of 

this is that there exists more variability in dislocation distribution than what may be 

represented at the aggregate zone level. This is visualized in Figure 2 which shows how 

dislocation increases with loss for the two Centerville zones representing the highest and 

lowest dislocation.  
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Figure 3: Baseline dislocation sensitivity bounds 

 

 At the functional level, the lowest dislocation (20.5%) occurs in the zone 5 

structures of type W1 at code level 4. It is expected that the lowest dislocation occur at 

structures at code level 4, the most structurally sound. The highest (35.7%) is found in the 

zone 4 structures of type W1 at code level 1. Similarly, the highest dislocation is associated 

with a structure category describing code level 1. Integrating these findings on Figure 2, the 

shaded area represents the earthquake scenario in this case study.  As there are several 

other factors that influence dislocation and their behavior is complex, this level of detail 

will not be discussed further. Rather, understanding how the model behavior functions is 

more valuable than discrete values for a specific scenario.   
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The highest number of households dislocated is 1,384 in zones with high income level, 

compared to 1,673 for medium income, and 1,067 for low level zones. Thus, the absolute 

difference of dislocated households between different income levels should be less than or 

equal to 606 for any candidate mitigation policy.  

 
5.2 Retrofit Decisions 

It would cost $347M to retrofit all structures in Centerville to code level 4, representing the 

strategy that would not only minimize economic loss, but dislocation as well. Without any 

competition of resources, the Pareto front for a budget level of 100% consists of one 

single point. In this case, direct economic loss is reduced from $865M to $365M and 

dislocation is reduced from 5,797 to 5,152. Interestingly, the estimated loss avoidance for 

just one earthquake is greater than the cost of the mitigation policy itself, which could 

partially withstand the event. The purpose of this model, however is to provide a decision 

tool for investigating the tradeoff between the two objectives given limited resources. 

Given a budget set at 60%, the decision becomes where to use the available $208M to 

minimize both loss and dislocation. The estimated Pareto front is shown in Figure 4. 



 

28 

 

Figure 4: Pareto front: economic loss and dislocation (B=$208M) 

Interpreting the results, the minimum direct economic loss that can be achieved with 60% 

of the maximum budget is $458M. The maximum economic loss, when more resources are 

spent retrofitting residential structures, is $540M. Similarly, the dislocation for this budget 

level drops from 5,301 to 5,193 as loss is sacrificed. Comparing the range of direct 

economic loss to dislocation, it takes a tradeoff of $82M to prevent 108 households from 

dislocating. For this particular scenario, there appears to be a large tradeoff for relatively 

small subset of the city. Intuitively, the tradeoff behavior is subject to differences in 

infrastructures, demographics, and earthquakes depending on the model community. To 

demonstrate use of the tradeoff surface, three policies were selected along the Pareto 

frontier to discuss in detail. The performance summary of these three policies is shown in 

relation to the baseline behavior in Table 5.  
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Table 5: Direct retrofit effects 

Policy Loss Dislocation Cost ($) 
base 856M 5797 -- 

I 458M 5301 207.6M 
II 474M 5267 207.9M 
III 503M 5203 207.9M 

 

Table 6: Residential retrofit summary 

Residential  % Code 3 % Code 4 Quantity 
Policy I 68% 32% 10,859 
Policy II 53% 47% 11,365 
Policy III 53% 47% 13,100 

 

 A summary of the residential retrofits is shown in Table 6 to demonstrate how the 

tradeoffs in Table 5 manifest through investments in the housing sector. Policy I, with low 

dislocation priority, has close to 500 less retrofits than policy II. Additionally, the quality of 

the retrofits is the lowest by 15%. Between policies I and II, the distribution between code 

levels 3 and 4 remained the same, however there is a significant change in the number of 

retrofits. Policy III calls for 1,735 retrofits more than policy II, preventing 64 predicted 

household from dislocating (Table 5).  
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Table 7: Detailed residential retrofit policy 

Zone Type Policy I Policy II Policy III 

Z1 W2 1241 (2 →3) 937 (2 →3) 706(2 →3) 

  
759 (2 →4) 1063 (2 →4) 1294 (2 →4) 

Z1 W3 23 (3 →4) 23 (3 →4) 37 (3 →4) 
Z1 W4 511 (1 →3) 574 (1 →3) 1795 (1 →3) 

  
10 (1 →4) 203 (1 →4) 86 (1 →4) 

Z2 W1 572 (1 →3) 241 (1 →3) 716 (1 →3) 

  
129 (1 →4) 525 (1 →4) 44(1 →4) 

Z2 W2 425 (2 →3) 672 (2 →3) 635 (2 →3) 

  
275 (2 →4) 28 (2 →4) 65 (2 →4) 

Z2 W4 7 (1 →3) 159(1 →3) 526(1 →3) 

  
17 (1 →4) 7 (1 →4) 274(1 →4) 

Z3 W1 219 (1 →3) 161 (1 →3) 101 (1 →3) 

  
2 (1 →4) 132 (1 →4) 154 (1 →4) 

Z3 W2 137 (2 →3) 240 (2 →3) 58 (2 →3) 

  
163(2 →4) 60(2 →4) 242(2 →4) 

Z3 W4 125 (1 →3) 95 (1 →3) 72 (1 →3) 

  
75 (1 →4) 105 (1 →4) 126 (1 →4) 

Z4 W1 2118 (1 →3) 1080 (1 →3) 84 (1 →3) 

  
449(1 →4) 1487(1 →4) 2483(1 →4) 

Z4 W2 294 (2 →3) 924 (2 →3) 680 (2 →3) 

  
706(2 →4) 76(2 →4) 320(2 →4) 

Z4 W5 16(2 →3) 10(2 →3) 15(2 →3) 

  
9(2 →4) 15(2 →4) 10(2 →4) 

Z5 W1 1433(1 →3) 416(1 →3) 1325(1 →3) 

  
423(1 →4) 1440(1 →4) 531(1 →4) 

Z6 W1 274(1 →3) 456(1 →3) 274(1 →3) 

  
370(3 →4) 159(3 →4) 370(3 →4) 

Z6 W5 41(2 →3) 18(2 →3) 16(2 →3) 
    36(2 →4) 59(2 →4) 61(2 →4) 
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Table 8: Detailed non-residential retrofit policy comparison 

Building Class Zone Type Policy I Policy II Policy III 

 
Z8 S1 15(2 →3) 9(2 →3) 15(2 →3) 

   
1(2 →4) 7(2 →4) 1(2 →4) 

Commercial Z8 RC1 3(2 →3) 6(2 →3) 3(2 →3) 

   
8(2 →4) 5(2 →4) 8(2 →4) 

 
Z8 RM1 30(1 →3) 27(1 →3) 24(1 →3) 

      6(2 →3) 3(2 →4) 6(2 →4) 

 
Z9 S1 

 
16(2 →3) 

 
   

23(2 →4) 13(2 →4) 29(2 →4) 

 
Z9 RC1 3(2 →3) 3(2 →3) 7(2 →3) 

   
10(2 →4) 10(2 →4) 6(2 →4) 

 
Z9 RM1 8(1 →3) 35(1 →3) 1(1 →3) 

   
38(1 →4) 11(1 →4) 45(1 →4) 

 
Z9 S2 6(2 →4) 6(2 →4) 3(2 →3) 

     
3(2 →4) 

Industrial Z10 S3 1(1 →3) 3(1 →3) 3(1 →3) 

   
24(1 →4) 22(1 →4) 22(1 →4) 

  Z11 S4 41(3 →4) 30(3 →4) 7(3 →4) 

 
Fire1 RM2 1(2 →4) 1(2 →3) 1(2 →4) 

Government Fire2 RM2 1(2 →4) 1(2 →4) 1(2 →4) 

 
Govt RC1 3(2 →3) 3(2 →3) 3(2 →3) 

      5(2 →4) 5(2 →4) 5(2 →4) 
 

Table 9: Non-residential retrofit policy summary 

Non-residential  % Code 3 % Code 4 Quantity 

Policy I 30% 70% 230 
Policy II 48% 52% 216 
Policy III 30% 70% 193 

 

 The detailed retrofit policies associated with each can be compared in Tables 7 and 

8, showing where and how many structures are retrofitted. Noting that policies I through 

III progress through the tradeoff of economic loss for reducing dislocation, it is 

immediately apparent in Table 6 how that manifests in the investment decisions. In policy 

I, commercial, industrial, and government structures are raised to code level 4 while most 

residential decisions involve level 3. Progressing to policy III, there are significantly more 

investments in residential structures, with a great proportion raised to level 4 as well. As 
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seen in the decrease of level 4 investments in the commercial and industrial structures, the 

investments in decreasing dislocation were at the cost of mitigating economic loss. 
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6.0 Conclusions 

Threatened with the immense cost and damage of natural disasters, community policy 

makers need tools that facilitate the exploration of decision tradeoffs and consequences. 

The purpose of this research is to extend the mitigation resource allocation model of 

Zhang and Nicholson (2016), a solution tool for creating and examining exact optimal 

solutions for building retrofit strategies to study the tradeoffs of direct economic loss and 

population dislocation in an earthquake scenario. Specifically, the prediction of population 

dislocation is updated to reflect the empirical research of Lin (2009), making the model 

more realistic, but also non-linear. The updated model was then evaluated using the 

metaheuristic NSGA-II, which generates near Pareto-optimal solutions. The examination 

of the solution set through tradeoff analysis is demonstrated for the virtual city of 

Centerville. A key finding from the tradeoff analysis is that population dislocation is less 

sensitive to loss than previously modeled, illustrating the gap between what was modeled 

and current knowledge regarding the behavior. In addition to being more accurate, this 

non-linear solution tool is now significantly more adaptable to new modifications. 

 There are several limitations to the allocation model which should guide future 

extensions of it, the first pertaining to the diversity of the structures included. The 

solutions of the model dictate only the allocation of resources between residential and non-

residential structures. The set of non-residential structures are limited to three categories: 

commercial, industrial, and government. In reality, communities exhibit a much broader 

range of non-residential structures, such as hospitals, schools, and sports stadiums.  As it is 

difficult to quantify their contribution to resilience, applied research is needed to 

appropriately model such structures' performance measures and their relationship with 

intervention strategies. Future work should incorporate the differences among non-
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residential structures depending on how critical they are to community functionality.  

Additional objectives to the present multi-objective model may be necessary to incorporate 

such building classes. 

 The efficiency of the model is another important area for improvement. Resultant 

from the non-linear nature and complexity of the model, the computation time of the 

model is significant compared to the previous, linear, version which completed in one 

millisecond. Depending on the budget restriction, the updated model requires 8 to greater 

than 72 hours to generate a set of non-dominated solutions on the same machine. A 

portion of this time is attributed to the nature of the NSGA-II evolution method, but it is 

highly suspected that most of this time can be reduced through more efficient coding. One 

example of this is the observation of the direct link between computation time and budget 

restriction. Because candidate solutions are generated independently of available budget, a 

decreasing proportion of generated candidates are feasible, prolonging computation time. 

An anticipated use of this tool is to lobby for available funds based on potential disaster 

outcomes. Therefore, it is critical to reduce computation time to allow policy makers to 

efficiently explore the decision atmosphere at various budget levels. 

 Adapting the MRA model to a non-linear solver creates the opportunity to account 

for more complex components. A more robust, sophisticated measure of economic 

performance is needed. Computable general equilibrium (CGE) models are based on actual 

economic data that estimate how an economy might react in the event of an external event, 

such as a natural disaster (Cardenete, 2012). The first objective in the allocation model, 

direct economic loss, is only one main component of a CGE model used to capture the 

broader, cascading impacts resultant from disasters. The value of this solution approach is 

its ability to be quickly modified as those complex factors and relationships are discovered.  
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The present research implicitly assumes that decision makers have an effective method for 

incentivizing the retrofits of privately owned buildings.  However, the effectiveness of such 

incentives will require more investigation.  Additionally, there is a need for population 

dislocation models to diverge based on more granular characteristics of the behavior. The 

ability to distinguish between households that leave voluntarily and involuntary is critical to 

monitoring and controlling the disparity as it indicates social vulnerability. Similarly, it is 

necessary for advancements in social science models to distinguish between permanent and 

short-term dislocation, as they have different impacts on economic performance. 

 Only one component of the MRA model, population dislocation, required the use 

of a non-linear solution method. However, the reality of all other model components, 

current or future, may be highly complex and non-linear. This research not only updates 

the dislocation model but also expands the ability of the solution approach to handle the 

anticipated level of complexity in future research. The CGE model, which is essentially a 

system of non-linear equations which are solved simultaneously, can possibly be integrated 

more directly in the existing mathematical model.  The allocation model should be 

expanded in several ways. Independent from applied research from social science, the 

efficiency of the model should be improved and the decision variables should be made 

integers to reflect real world decisions. An understanding of the functional relationship 

between more diverse structures, economic impacts, and dislocation behavior is required 

from multiple disciplines in order to integrate perspectives of community performance. 

This research being just one step in the aspiration of community resilience, modeling post-

disaster behavior is imperative to the modern world's ability to develop sustainable 

communities in light of urban development and the rising threat of natural disasters.  
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Appendix A.1 ECsPy MRA Custom Modules 

Appendix A.1.1 Generator 

#------------------------------------------------------------ 
#  Generate Code Level Distribution 
#------------------------------------------------------------ 
def distribution(base): 
 
    x = [0,0,0,0] 
 
    #between 0 and current proportion 
    x[0] = random.uniform(0,base[0])   
 
    #between 0 and the min(what's left & the max value it can be) 
    x[1] = random.uniform(0,min(base[3],(base[0]+base[1])))    
     
    x[3] = random.uniform(base[3],(1-x[0]-x[1]))    
     
    x[2] = 1-x[0]-x[1]-x[3]     
  
    total = sum(x)  #equal to 1 
      
    return(x) 
 
#-------------------------------------------------------------- 
#  Create an individual 
#--------------------------------------------- 
    def __init__(self): 
        x = {} 
        IJK = data().dictionary 
        base = data().base 
        building_set = data().building_set 
         
        for i,j,k in IJK: 
            x[i,j,k] = 0 
             
        multiplier = {} 
                        
        for i,j,k in IJK: 
            multiplier[i,j] = 0 
             
        for i,j,k in IJK: 
            if k == 1: 
                multiplier[i,j] = distribution(base[i,j]) 
         
        hold = [] 
        for i,j,k in IJK: 
            if k == 1: 
                hold.append(multiplier[i,j]) 
                 
        dist_list = ([item for sublist in hold for item in sublist])        
        #for i,j,k in IJK: 
                #x[i,j,k] = building_set[i,j] * multiplier[i,j,k]  
                         
        self.x_dict = to_dict(dist_list,IJK)  
        indv_list = dist_list 
        self.indv_list = indv_list   
                          
    def return_individual(self): 
        return(self.indv_list) 
                 
#--------------------------------------------------------- 
# Generate a pool of candidates 
#--------------------------------------------------------- 
def generate_candidates(random, args): 
   #argument for EcsPy 
    candidate =  individual_2().indv_list 
    return candidate 
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 Appendix A.1.2 Mutator 

@mutator 
def custom_mutator1(random, candidate, args): 
     
    candidate = perform.individual_2().indv_list 
     
    candidate = [candidate[i:i+4] for i in range(0, len(candidate), 4)] 
     
    base = perform.data().base 
    base = dict.values(base) 
    #base = [base[i:i+4] for i in range(0, len(base), 4)] 
     
    mut_rate = 0.1 
     
    for i in range(len(candidate)): 
        if random.random() < mut_rate: 
     
            candidate[i] = perform.distribution(base[i]) 
     
    candidate = ([item for sublist in candidate for item in sublist])  
     
    candidate = bounder(candidate, args) 
    return candidate     

 

Appendix A.1.3 Evaluator 

#--------------------------------------------------------- 
# Economic Loss Measure 
#--------------------------------------------------------- 
 
def econ_loss(individual): 
     
    #convert to #buildings from distribution 
    individual = dis_convert(individual)      
    dat = data() 
     
    IJK , building_set , total_loss = dat.dictionary , dat.building_set , 
dat.total_loss 
     
 
    #Convert individual list into dictionary for evaluation  
 
    indiv = to_dict(individual, IJK) 
     
    #number of residential strs * loss of each, aggregated by code level  
    Loss = {} 
    for i,j,k in IJK: 
        Loss[i,j] = 0 
    for i,j,k in IJK: 
        Loss[i,j] = Loss[i,j] + total_loss[i,j,k] * indiv[i,j,k]  
                #Expected loss for each str type and zone  
     
    Total_DEL = sum(Loss.values()) 
     
    return Total_DEL 
#-------------------------------------------------------- 
# Population Dislocation    
#-------------------------------------------------------- 
class dislocation(): 
    def __init__(self,individual): 
        dat = data() 
        IJK = (dat.dictionary) 
 
        residents_list = dat.residents_list 
        B,V,H,s = dat.B, dat.V, dat.H, dat.s 
        building_loss = dat.building_loss 
        value = dat.value 
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        building_count = dat.building_count 
        Count_HH = dat.Count_HH 
         
        individual = dis_convert(individual)       #convert to buildings from 
distribution 
         
        #checking to see where bug is 
 
         
        x = to_dict(individual, IJK) 
        #print("X",x) 
    #PARAMETERS____________________ 
     
    #Percent Value Loss 
            #SUBSET TO ONLY RESIDENTIAL STRS 
     
                
        value_loss = {} 
        num = {} 
        numb = {} 
        deno = {} 
        den = {} 
        loss = {} 
     
     
    #init dictionaries for numerator and denominator of value loss by zone and 
building type 
        numb = {} 
        deno = {} 
     
        for i,j,k in IJK: 
            if i in residents_list: 
                 
                numb[i,j] = 0 
                deno[i,j] = 0 
     
    #calculation value loss by zone and building type 
        for i,j,k in IJK: 
            if i in residents_list: 
                numb[i,j] = numb[i,j] + building_loss[i,j,k] * x[i,j,k]    
#total building loss excluding content 
                deno[i,j] = deno[i,j] + value[i,j,k] * x[i,j,k]          
#total appraised value 
 
             
        for i,j,k in IJK: 
            if i in residents_list: 
                 
                loss[i,j] = ( numb[i,j] / deno[i,j] ) * 100  
 
             
             
 
        #coefficients in LR from (Lin, 2009) 
        coe = [-0.42523, 0.02480,-0.50166,-.01826,-0.01198]  
     
        prob_dis = {} 
 
        for i,j in loss: 
            prob_dis[i,j] = 1/(1+exp(-
(coe[0]+coe[1]*loss[i,j]+coe[2]*s[i]+coe[3]*B[i]+coe[4]*H[i]))) 
 
     
    #Count the number of buildings in each zone 
        buildings_of_zone = {}   
        for zone in residents_list: 
            buildings_of_zone[zone] = 0 
            for i,j,k in IJK: 
                if i==zone: 
                    buildings_of_zone[zone] += x[i,j,k] 
     
    #Calculate the number of households in the current building selection  
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    #aggregate by level  
        HH_zone_str= {} 
     
    #initialize  
        for i,j,k in IJK: 
            HH_zone_str[i,j] = 0 
         
        for i,j,k in IJK: 
            if i in residents_list: 
                HH_zone_str[i,j] = HH_zone_str[i,j] + x[i,j,k] * Count_HH[i,j] 
         
                 
        self.HH_zone_str = HH_zone_str 
        #print("households[i,j] :",self.HH_zone_str) 
         
         
    #Calculate the number of dislocated households 
    #aggregate by str type 
        Dislocation_zone= {} 
     
    #initialize  
        for i,j,k in IJK: 
            Dislocation_zone[i] = 0 
         
        for i,j,k in IJK: 
            if i in residents_list: 
                Dislocation_zone[i] = Dislocation_zone[i] + (HH_zone_str[i,j] 
* prob_dis[i,j]) 
                 
       
        Total_Dislocation = 0 
        for i,j,k in IJK: 
            if i in residents_list: 
                if k == 1: 
                    Total_Dislocation = Total_Dislocation + 
Dislocation_zone[i] 
     
     
        self.Total_Dislocation = Total_Dislocation 
         
        self.Dislocation_Zone = Dislocation_zone 
    
    def return_values(self): 
        x = self.Total_Dislocation 
        return x 
#-------------------------------------------------------- 
# Evaluate Fitness 
#-------------------------------------------------------- 
 
def evaluate(candidates,args): 
    IJK = data().dictionary 
    
     
    fitness = [] 
         
    for cs in candidates: 
         
 
 
        loss = econ_loss(cs)      #change econ_loss ftn when change is made  
        dislo = dislocation(cs).Total_Dislocation 
        fitness.append([loss,dislo]) 
         
    return fitness 
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Appendix A.1.4 Bounder 

             
class Bounder(object): 
         
        def __init__(self, lower_bound=None, upper_bound=None): 
                self.lower_bound = lower_bound 
                self.upper_bound = upper_bound 
                if self.lower_bound is not None and self.upper_bound is not 
None: 
                        try: 
                                iter(self.lower_bound) 
                        except TypeError: 
                                self.lower_bound = 
itertools.repeat(self.lower_bound) 
                        try: 
                                iter(self.upper_bound) 
                        except TypeError: 
                                self.upper_bound = 
itertools.repeat(self.upper_bound)  
 
 
        def __call__(self, candidate, args): 
                 
 
                dat = perform.data() 
                IJK = dat.dictionary  
 
                p = 0 
                while p == 0: 
                        p = perform.feasible(candidate) 
                        if p == 1: 
                                bounded_candidate = candidate 
                        else: 
                                candidate = perform.individual_2().indv_list 
                return bounded_candidate 
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Appendix A.2 ECsPy MRA Interface 

from random import Random 
from time import time 
from ecspy import emo 
from ecspy import observers  
from ecspy import variators 
from ecspy import terminators 
from ecspy import benchmarks 
from ecspy import ec 
import EcspyClasses as perform 
import bounder1 
 
 
 
    
def main(do_plot=False, prng=None): 
    if prng is None: 
        prng = Random() 
        prng.seed(time())  
    
 
    problem = "MRA" 
    ea = emo.NSGA2(prng) 
    ea.variator = [variators.n_point_crossover,variators.gaussian_mutation] 
    ea.observer = observers.default_observer 
    ea.terminator = terminators.generation_termination 
    final_pop = ea.evolve(generator=perform.generate_candidates,  
                          evaluator=perform.evaluate,  
                          pop_size=50, 
                          maximize=False, 
                          bounder= bounder1.Bounder(None,None), 
                          max_generations=1000) 
 
     
    final_arc = ea.archive 
     
     
    if do_plot: 
        final_arc = ea.archive 
        print('%s MRA with logistic dislocation (%s) Best Solutions: \n' % 
(ea.__class__.__name__, problem.__class__.__name__)) 
        for f in final_arc: 
            print(f) 
        import pylab 
        x = [] 
        y = [] 
        for f in final_arc: 
            x.append(f.fitness[0]) 
            y.append(f.fitness[1]) 
        pylab.scatter(x, y, color='b') 
        pylab.savefig('%s Example (%s).pdf' % (ea.__class__.__name__, 
problem.__class__.__name__), format='pdf') 
        pylab.show() 
         
        final_pop.sort(reverse=True) 
        print(final_pop[0]) 
        
         
    return ea 
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Appendix A.3 Solution Interpreter  

from random import Random 
from time import time 
from ecspy import emo 
from ecspy import variators 
from ecspy import terminators 
from ecspy import benchmarks 
import EcspyClasses as ec 
import numpy as np, numpy.random 
import random 
import pandas as pd 
import ast 
from math import exp 
import itertools 
 
def expand(individual):     
    dat = ec.data() 
    IJK = (dat.dictionary) 
    building_set = dat.building_set 
     
    x = {} 
    print("IN",individual) 
 
    for i,j,k in IJK: 
            x[i,j,k] = building_set[i,j] * individual[i,j,k] 
     
    individual = x 
    print("individual",individual) 
     
    return(individual) 
 
 
#input an individual resultant from Ecspyproblem_interface.py 
 
list = list_input 
 
budget = ec.indv_budget(list) 
print("Budget",round(budget)) 
 
dislocation = ec.dislocation(list) 
loss = dislocation.loss 
hold = ec.data().building_set 
 
count = {} 
for i,j in hold: 
    count[i] = 0 
for i,j in hold: 
    count[i] = count[i] + hold[i,j] 
 
 
#Dislocation by zone 
dis = ec.dislocation(list) 
Zone_P = dis.Zone_P 
 
print("Zone dislocation", Zone_P) 
 
dict = ec.data().dictionary  
 
base = ec.data().base_indv 
 
 
individual = ec.to_dict(list,dict) 
 
 
policy = {} 
for i,j,k in dict: 
    policy[i,j,k] = (individual[i,j,k]) - base[i,j,k] 
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policy = expand(policy) 
 
 
Zones = 
['Z1','Z2','Z3','Z4','Z5','Z6','Z8','Z9','Z10','Z11','Fire1','Fire2','Govt'] 
 
print("------------------------------------------------------") 
print("Retrofit Policy") 
print("------------------------------------------------------") 
 
for zone in Zones: 
    for i,j,k in dict: 
        if i == zone: 
            if policy[i,j,k] != 0.0: 
                print(i,j,k, round(policy[i,j,k])) 
 
individual = expand(individual) 
#how many structures are at each zone level  
dist = [0,0,0,0] 
for i,j,k in policy: 
    if k == 1: 
        dist[0] = dist[0] + individual[i,j,k] 
    if k ==2: 
        dist[1] += individual[i,j,k] 
    if k ==3: 
        dist[2] += individual[i,j,k] 
    if k ==4: 
        dist[3] += individual[i,j,k] 
print(dist) 

 

 

 

 


