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Abstract

The primary objects of study in this dissertation are semistochastic processes.

The types of semistochastic processes we consider are continuous-time and

continuous-state processes consisting of intervals of deterministic evolution

punctuated by random disturbances of random severity. A natural question

regarding such processes is whether they admit stationary distributions. While

partial answers to this question exist in the literature, the primary aim of

this dissertation is to supplement the criteria for existence with bounds on

convergence rates. This requires careful analysis of the associated Markov

semigroups and infinitesimal generators. We obtain our bounds on convergence

rates by establishing minorization and drift conditions. Specific examples are

considered in cases of bounded and unbounded state spaces. We also discuss a

method of exact computation for the stationary distributions of a certain class

of semistochastic processes. An important example to which we can apply our

work concerns the modelling of the carbon content of an ecosystem.
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Chapter 1

Introduction

1.1 An Ecological Problem

The research contained in this dissertation began due to an ecological prob-

lem: How does the carbon content of an ecosystem evolve due to randomly

occurring catastrophes of random severity? The role of disturbances such as

droughts, forest fires, and insect outbreaks on the dynamics of carbon has

been discussed in [38], [32], [5], and [37]. In the absence of disturbances, the

amount of carbon in an ecosystem increases naturally due to photosynthesis

and eventually approaches the carrying capacity of the ecosystem. On occa-

sion, however, an extreme event results in significant destruction of an ecosys-

tem and consequently a drastic reduction in the amount of carbon stored in

the ecosystem.

In order to model the carbon content of an ecosystem, semistochastic pro-

cesses are studied in [24] and formulae derived for the densities of the corre-

sponding stationary distributions. Given that a stationary distribution exists,

one would like to know the rate at which the process approaches this equi-

1



librium. In this dissertation, we answer this question by establishing bounds

on convergence rates; we also generalize the results from [24] to allow for the

study of the dynamics of a broader range of semistochastic processes. To this

end, we establish a more general notion of semistochastic processes, similar

to what is studied by Gripenberg in [14], and extend the results from [24] in

Chapter 6.

In this dissertation, we utilize purely probabilistic methods to establish

bounds on convergence rates; consequently, our methods for determining con-

vergence rates, are quite different from the methods used in [24] to develop

exact formula for the stationary distributions. The methods we use have their

origin in the study of discrete-time Markov chains and are based on establish-

ing a combination of minorization and drift conditions. These approaches go

back to Doeblin, and appear in various forms in [25], [29], and [36, 34]. While

the problem of modelling the carbon content of an ecosystem is the original in-

spiration for this project, our work can be applied to any problem admitting a

semistochastic model. Examples include problems from population dynamics,

optimal harvesting, and evaluating the risk of developing rabies.

1.2 Semistochastic Processes

What follows is a brief introduction to the concept of a semistochastic process;

a more detailed exposition of the general theory of stochastic processes is pre-

sented in Chapter 2. By semistochastic process we mean a continuous-time,

continuous-state process {Xt} which consists of intervals of deterministic evo-

lution punctuated by random events. The random events we typically consider

occur on time-scales much larger than the typical inter-event time, and can
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be modeled as instantanteous events. These processes are also assumed to be

doubly-stochastic in the sense that there is a random severity associated to

each event as well as the random time at which it occurs. Consequently, these

types of processes are quite different from other types of stochastic processes

and can be used to model dynamical systems that lack conservation laws,

see[13, 35]. Semistochastic processes do share some common features with

what are typically referred to as stochastic clearing processes (see [39]). A

clearing process, however, consists of epochs of random growth punctuated by

instantaneous returns to the initial value once a critical threshhold is reached.

A semistochastic process replaces the random growth in a clearing process with

determnistic growth and replaces the deterministic “clearing” with randomly

occurring disturbances.

The operator-theoretic framework which we set up to study the dynamics

of semistochastic processes applies equally well to both scalar- and vector-

valued stochastic processes, but we restrict our attention to scalar processes

when deriving bounds on convergence rates. In the scalar case we are thus

interested in sample paths that are piecewise continuous, right-continuous,

and have left-hand limits almost surely (càdlàg). We furthermore limit our

attention to disturbances that on average correspond to a diminishing in value.

In the time between two consecutive disturbances {X(t)} evolves deter-

ministically, governed by the autonomous ordinary differential equation

d

dt
x(t) = v(x(t)) . (1.1)

To describe when the disturbances occur, one typically specifies a hazard func-

tion, which is a measure of the instantaneous rate of occurrence of the distur-
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bances. If the disturbances come from a state-independent, time-homogeneous

Poisson process then the resulting hazard function is constant and is equal to

the standard intensity parameter for the underlying Poisson process. To al-

low for greater generality, we consider state-dependent hazard functions in

this dissertation and define the corresponding hazard functions in subseqent

sections.

A simulation of a one-dimensional semistochastic process with logistic de-

terministic growth and exponentially distributed inter-disturbance times can

be seen in Figure 1.1.

t

X

Figure 1.1: Simulation of a semistochastic process.

Our problem gains another element of randomness from the varying severity

of the disturbances. In order to describe this severity, we introduce random

variables Y −n and Yn corresponding to the nth pre- and post- disturbance values,

respectively. If the nth disturbance occurs at time T , then Y −n and Yn are

defined via

Y −n := lim
t↗T

X(t) , Yn := lim
t↘T

X(t) .
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In the simplest case, we can model the severity by stipulating a multiplicative

relation between Y −n and Yn. An additional random variable, An is defined by

setting

Yn = AnY
−
n .

Alternatively, we can model the severity by specifying a function P (x,A),

nth Disturbance

Yn

Yn+ 1

Y−n

Y−n+ 1

x(t)

Figure 1.2: Schematic for pre- and post- disturbance levels.

which we call the jump kernel according to

P (x,A) = P(Yn ∈ A |Y −n = x) .

Having specifed the types of processes we propose to study, we now mention

some works that study similar processes, but usually under different assump-

tions or with different goals. The most common difference is due to the fact

that most of the research on semistochastic processes is concerned with pop-

ulation dynamics, and demographers generally study processes with discrete

state-spaces.
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x

A
P(x,A)

Figure 1.3: Jump kernel.

An interesting application of semistochastic processes is proposed by Bar-

toszyński in [3] to model the development of the rabies virus in an infected host.

In this model, the population of the virus naturally decreases exponentially

due to the immunological response of the host, but also has random upward

jumps due to the viral life cycle. The state space of the model Bartoszyński

constructs is discrete and the occurrence of jumps is allowed to depend on the

current population.

Continuous-time and continuous state space processes subject to random

catastrophes are studied by Gripenberg in [14]. Gripenberg derives an expres-

sion for stationary distributions using a limit theorem from [1] based on the

concept of Harris recurrence. There is a connection between the type of re-

currence condition that is established in [14] and the minorization conditions

that we establish, however the issue of convergence rates is not addressed by

Gripenberg.

Hanson and Ryan in [16] and [17] examine optimal harvesting problems of

populations governed by similar processes with discrete state spaces, though
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they do not allow for the randomization of the intensity of disturbances. They

do, however, consider the possibility of populations experiencing both sud-

den decreases (jumps down) and sudden increases (jumps up). With slight

modifications, the results we present can also be applied in these situations.

Hanson and Tuckwell also study similar processes with discrete state spaces in

[18, 19, 20], though their focus is generally on the computation of extinction

times. The problem of determining extinction times in semistochastic models

is addressed more recently by Cairns in [8].

Our present work builds upon the work of Leite, Petrov, and Weng [24] in

which an integral equation for the stationary post-disturbance distribution of a

continuous-time, continuous state space semistochastic process is presented. A

framework for computing the overall stationary distributions for scalar-valued

semistochastic processes with constant hazard functions is also established in

[24]; we extend this result to state-dependent hazard functions in Chapter 6.

The issue of convergence rates, however, is not addressed in [24], and except

for those of Chapter 6, the methods used in this dissertation are rather distinct

from those of [24].
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Chapter 2

Stochastic Processes

What follows is a review of some of the basic definitions and properties re-

lated to stochastic processes in general, and Markov and Poisson processes in

particular. For additional references see [21] or [31].

2.1 General Stochastic Processes

We start by defining some of the basic terminology from probability theory. A

random experiment is any experiment that could in principle be repeated under

the same conditions and has an uncertain outcome; the set of all elementary

outcomes of the experiment is often called the sample space, typically denoted

Ω. Subsets of the sample space are called events, and for certain events we

can measure the probability of their occurring. Given events A and B, we

denote the probability of A occurring as P(A) and the conditional probability

of A given B as P(A|B). A probabilistic model is based on a triple (Ω,F ,P)

consisting of a sample space Ω, a σ-algebra F , and a probabilty measure P. We

denote the expectation of a random variable, X, by E[X]. Our primary objects
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of study are particular instances of stochastic processes, which we define now.

Definition 2.1. A stochastic process paramaterized by T with state space

X is a collection

{X(t) : t ∈ T}

of X -valued random variables on a sample space Ω. If T is the real line, or an

interval on the real line, then it is said to be a continuous-time process. If T

is a sequence of integers, it is called a discrete-time process.

An element of a stochastic processes can be written as either X(t) or Xt

and is a random variable for any fixed value of t. As a random variable X(t) is

a function on the sample space Ω, however, the convention is to suppress the

dependence on ω. For a fixed outcome ω, the function t 7→ X(t) is referred

to as a realization of the stochastic process. The semistochastic processes

studied in this dissertation can be thought of as a special case of continuous-

time stochastic processes with parameter T = [0,∞); we furthermore assume

the state-space is topological. A probability measure π on (Ω,F) is said to

be an invariant measure or stationary distribution for the stochastic process

{X(t)} if π is invariant under the dynamics induced by {X(t)}. It is convenient

to use the standard shorthand for conditional expectations,

Ex[Xt] = E[Xt|X0 = x] .

For any initial probabilty distribution µ, Eµ[Xt] is defined in an analagous

manner.
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2.2 Markov Processes and Martingales

In order to define a Markov process, we first introduce the concept of a filtra-

tion. Given a probability space (Ω,F ,P), a filtration is a family {Ft : t ∈ T}

of σ-algebras such that Fs ⊆ Ft for all s, t ∈ T with s ≤ t. A filtra-

tion is adapted to a stochastic process {X(t)|t ∈ T} if each X(t) is Ft-

measurable. The natural filtration with respect to {Xt} is defined by setting

Ft = σ {X−1
s (B) : s ≤ t, B ∈ B}, with B being the standard Borel σ-algebra

on the state space. We are now ready to define the Markov property.

Definition 2.2. Let (X ,B) be a measure space and X(t) an X -valued stochas-

tic process with filtration {Ft}. The process {X(t)} is said to have the Markov

property if for any B ∈ B and for each s, t ∈ T with s ≤ t, we have

P(Xt ∈ B | Fs) = P(Xt ∈ B |Xs) .

A Markov process can be defined as a stochastic process possessing the

Markov property with respect to its natural filtration. This property is com-

monly referred to as memorylessness due to the interpretation that the prob-

abilty of arriving at some future state only depends on the current state. In

case the parameter space T is discrete such a process is called a Markov chain.

To describe the evolution of a Markov process, one can specify its transition

kernel.

Definition 2.3. Given a Markov process {Xt} with state space (X ,A), a map

Q : X ×A 7→ [0, 1] is a transition kernel if

(i) for each fixed x ∈ X , the map A 7→ Q(x,A) is a probability measure on

(X,A), and
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(ii) for each fixed A ∈ A, the map x 7→ Q(x,A) is A-measurable.

In the discrete-time case, the transistion kernel has the natural interpreta-

tion that Q(x,A) is the probability of moving from initial state X0 = x into A

in one step. It is also important to understand the way in which Q interacts

with real-valued functions and distributions on X . We refer to a real-valued

function f(x) on X as an observable and define the action of Q on observables

via

[Qf ](x) =

∫
Q(x, dy)f(y) .

We also define the left-action of Q on distributions via

[µQ](A) =

∫
µ(dx)Q(x,A)

One can describe a stationary distribution π as one for which πQ = π. For

Markov chains which are aperiodic and irreducible, stationary distributions

are also limiting distributions, that is

lim
n→∞

P (Xn ∈ A) = π(A)

for all measurable sets A. The types of stationary distributions we study in

this dissertation are also limiting distributions in the above sense.

Another distinguished type of stochastic process is a martingale.

Definition 2.4. A stochastic process {Xt} is called a martingale relative to

a filtration {Ft} if

(i) {Xt} is adapted to {Ft},

(ii) E[|Xt|] <∞ for all t,
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(iii) P (E [Xt|Fs) = Xs]) = 1 for all s < t.

Loosely speaking, martingales are models of fair games, where the expected

value E[Xt] at any time t is always equal to the initial expected value E[X0].

We use a basic martingale to help establish drift conditions in Chapter 5.

2.3 Poisson Processes

A Poisson process is a type of stochastic process that is useful for modeling

the times at which an event of interest occurs; we use properties of Poisson

processes to derive an expression for the infinitesimal generator of a semis-

tochastic process. Before defining a Poisson process, we introduce the more

general notions of arrival and renewal processes.

An arrival process is an increasing sequence of random variables, 0 < Θ1 <

Θ2 < ... < Θn, where Θi < Θj is meant to indicate that the random variable

Θj − Θi obtains only positive values. The random variables Xi are called

arrival epochs and are meant to represent the times at which some repeating

event occurs (arrives). Arrival processes are specifed by the corresponding

interarrival time process {Tn : n ∈ N} or alternatively by a counting process

{N(t)|t ∈ [0,∞)} where each N(t) measures the number of arrivals in the

interval [0, t).

A general renewal process is defined as an arrival process for which the

interarrival times are independent and identically distributed random vari-

ables. A Poisson process is a special case of a renewal process that can be

defined by either specifying the corresponding interarrival time distribution or

by specifying the underlying counting process.
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Definition 2.5. A Poisson process with rate parameter λ is a renewal

process with interarrival times Tn that are independently and exponentially

distributed with common density given by

fT (t) = λe−λt

for t ≥ 0.

What distinguishes the Poisson process from arbitrary renewal processes

is the memoryless property of the interarrival time random variables. A non-

negative, non-deterministic random variable T is said to be memoryless if

P(T > s+ t |T > s) = P(T > t) ,

For Poisson processes this is a simple consequence of the arithmetic of expo-

nential distributions. An alternative characterization of a Poisson process as

a counting process relies on the concepts of stationary and independent incre-

ments. In order to facilitate their defintions, let Ñ(s, t) denote the random

variable N(t) − N(s) which for s < t counts the number of arrivals in the

interval (s, t].

Definition 2.6. A counting process {N(t)} is said to have independent in-

crements if for any finite sequence of times t1 < t2 < t3... < tn the random

variables N(t1), Ñ(t1, t2), ..., Ñ(tn−1, tn) are independent.

A counting process {N(t)} is said to have stationary increments if for ev-

ery s, t ∈ (0,∞) with s < t, the random variables Ñ(s, t) and N(t − s) have

the same distribution.

We are now ready to present the definition of a Poisson counting process.

13



Definition 2.7. A Poisson counting process {N(t)} with rate parameter

λ is a counting process with independent and stationary increments that has a

probability mass function of the form

pN(t)(n) =
(λt)ne−λt

n!
. (2.1)

For each fixed t, the distribution in (2.1) is called a Poisson distribution and

has mean value E[Nt] = λt. For a Poisson counting process with constant rate

λ, we have the following estimates of arrival probabilites over a time interval

∆t that is sufficiently close to zero.

P(one arrival) = λ∆t+ o(∆t)

P(no arrivals) = 1− λ∆t+ o(∆t)

P(more than one arrival) = o(∆t)

One can also define a non-homogeneous Poisson process with time-varying rate

parameter Λ(t).

Definition 2.8. A non-homogeneous Poisson counting process, {N(t)}

with intensity λ(t) is a counting process with independent increments that

satisifes the conditions:

(i) N(0) = 0 ,

(ii) For each t > 0, N(t) has a Poisson distribution with mean

m(t) =

∫ t

0

λ(s) ds .
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To faciliate the handling of non-homogeneous Poisson proccesses, we intro-

duce concepts from Survival Analysis in the next chapter.
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Chapter 3

Survival and Hazard Functions

In this chapter we review concepts from the field of Survival Analysis and

define semistochastic versions of survival and hazard functions.

3.1 Introduction to Survival Analysis

Surivival Analysis (or Reliablity Analysis) is concerned with the time dura-

tion of some process before a random event (perhaps death or failure) occurs.

Standard references include [11] and [27]. In the context of our semistochas-

tic problem, we are concerned with the determination of the distribution of

inter-disturbance times. First, we review some of the terminology commonly

used in Survival Analysis and the corresponding mathematical definitions. We

begin by considering a real-valued random variable, T , that records the time

of occurence of some event of interest.

Definition 3.1. Given a random variable T with corresponding cumulative

distribution function FT , the survival function, S(t), is defined as the prob-
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ablisitic complement of FT ,

S(t) = P (T > t) = 1− FT (t) .

If T is a continuous random variable with density fT , then S(t) is given by

S(t) =

∫ ∞
t

ft(s) ds . (3.1)

The survival function thus measures the probability of arriving at time t

with no occurence of an event corresponding to the random variable T . We

are also interested in the hazard function.

Definition 3.2. Given a random variable T that records the time of occurence

of some event of interest, the corresponding hazard function, λ(t), is often

defined as

λ(t) = lim
∆t→0

P (t < T ≤ t+ ∆t)

∆t
.

The hazard function is thus a measure of the instantaneous rate of oc-

curence of the events described by the random variable T . If T is a continuous

random variable with density fT , then we can give an alternative, and equiv-

alent, though somewhat less transparent, representation of the λ(t):

λ(t) =
fT (t)

S(t)
.

Indeed, from (3.1) we have that d
dt
S(t) = −fT (t), which leads to the differential

equation

λ(t) = − d

dt
log(S(t)) .
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Solving for S(t) and using the implied initial data S(0) = 1 yields

S(t) = exp

(
−
∫ t

0

λ(s)ds

)
. (3.2)

This integral representation of the surivival function is useful when studying

a semistochastic process with a non-homogenous Poisson process driving the

disturbances.

3.2 Semistochastic Survival Function and Mem-

orylessness

For use in later sections, we define and investigate the relationships between

semistochastic hazard functions, survival functions, and inter-dsturbance time

distributions for the semistochastic process {Xt}. In particular, we establish

the memorylessness of the inter-disturbance time random variables Tn. For a

semistochastic process, we have a determinstic flow φt(x) as well as a state-

dependent rate parameter Λ(x) that can be recast as a hazard function by

composing with the flow,

λ(t, x0) := Λ(φt(x0)) .

For fixed initial value x0 we have a time-dependent hazard function as in the

previous section. Referring to (3.2) and emphasizing the dependence on the

inital value x0, our survival function is given by

S(t, x0) = exp

(
−
∫ t

0

Λ (φs(x0)) ds

)
(3.3)

18



Let T denote the random variable recording the amount of time until the next

disturbance. To show that T is memoryless requires the verification of

P(T > t+ s |T > s) = P(T > t) for all t, s > 0 .

Using the definition of conditional probability and the fact that t+ s > t, this

is equivalent to verifying that

P(T > t+ s) = P(T > t)P(T > s).

In terms of the semistochastic survival function S(t, x) this is equivalent to

S(t+ s, x0) = S
(
s, φt(x0)

)
S(t, x0) .

Indeed,

S(s, φt(x0))S(t, x0) = exp

(
−
∫ s

0

Λ
(
φu(φt(x0))

)
du

)
exp

(
−
∫ t

0

Λ
(
φτ (x0)

)
dτ

)
= exp

(
−
∫ s

0

Λ
(
φu+t(x0)

)
dτ

)
exp

(
−
∫ t

0

Λ
(
φτ (x0)

)
dτ

)
= exp

(
−
∫ t

s

Λ
(
φτ (x0)

)
dτ

)
exp

(
−
∫ t

0

Λ
(
φτ (x0)

)
dτ

)
= exp

(
−
∫ t

s

Λ
(
φτ (xt)

)
dτ −

∫ t

0

Λ
(
φτ (x0)

)
dτ

)
= exp

(
−
∫ t+s

0

Λ
(
φτ (x0)

)
dτ

)
= S(t+ s, x0).

Thus the fact that the semistochastic survival function is memoryless is es-

sentially a consquence of semigroup property of the deterministic flow. The
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significance of the memorylessness is that it allows us to study semistochastic

process using tools designed for Markov processes.
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Chapter 4

Generators and Semigroups

In this chapter we introduce the concepts of Markov semigroups and their

associated infinitesimal generators. We develop a description of semistochas-

tic processes in terms of their infinitesimal generators and establish a useful

expansion formula for their semigroups.

4.1 Markov Semigroups and Infinitesimal Gen-

erators

In this section, we establish an operator-theoretic framework for studying a

wide class of semistochastic processes. To understand the dynamics of a time-

homogeneous Markov process, {Xt}, we study the associated Markov semi-

group which we denote by U t.

Definition 4.1. Let {Xt} be a time-homogeneous Markov process with state

space X . The corresponding Markov semigroup, U t, is determined by its
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action on observables,

[U tf ](x) = E[f(Xt)|X0 = x] ,

where f is any continuous and bounded function on X that vanishes at infinity,

we denote this function space by C0(X ).

We can also specify the left-action of U t on a distribution µ by

[µU t](f) =

∫
[U tf ](x)dµ(x)

for all observables f . In this context, stationary distributions of a Markov

process {Xt} are characterized by their invariance under U t . Consequently,

π being a stationary distribution is equivalent to πU t = π. If the Markov

semigroup, U t, is strongly continuous on C0(X ) (where we view C0(X ) as

a Banach space endowed with the supremum norm), then we can describe

its infinitesimal generator, which we denote by L, through its action on an

appropriate subset of observables.

Definition 4.2. Let {Xt} be a Markov process with state space X and semi-

group, U t. The action of the infinitesimal generator of U t on observables is

given by

[Lf ](x) = lim
t↘0

U tf(x)− f(x)

t
,

where the domain of L consists of all f ∈ C0(X ) such that limt↘0
Utf(x)−f(x)

t
∈

C0(X ) .

Under reasonable assumptions, the semistochastic processes which we con-
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sider are actuallyFeller processes, and thus their associated semigroups is

strongly continuous and hence has a corresponding infinitesimal generator.

With regard to the potential restrictions on the domain of L, these will be

suppressed and the term obsverable is used both to represent an arbitrary

element from the appropriate domain of either L or U t as is appropriate.

Once one has access to the infinitesimal generator of a Markov process,

then for any function f in the domain of L, one can form a martingale with

respect to the natural filtration for {Xt} by defining

Mt := f(Xt)− f(X0)−
∫ t

0

[Lf ](Xs)ds (4.1)

for t ≥ 0. For this particular martingale, we have E[Mt | X0] = 0 for all t ≥ 0.

We make use of this basic martingale in the next chapter.

Further analysis of the infinitesimal generator and its adjoint gives rise to

partial differential equations that provide another perspective for studying the

underlying Markov process. Given U t and L, if we fix an observable f and

denote [U tf ](x) by u(t, x), then u(0, x) = f(x), and u(t, x) must satisfy

∂

∂t
u(t, x) = lim

∆t↘0

[U t + ∆tf ](x)− [U tf ](x)

∆t
= [LU tf ](x) .

In other words, once the infinitesimal generator is known, one can in principle

compute the action of the Markov semigroup on observables by solving the

partial differential equation

∂tu = Lu u(0, x) = f(x) . (4.2)

On the other hand, once we compute the adjoint of the infinitesimal generator,

23



L∗, we arrive at the partial differential equation

∂tρ = L∗ρ ρ(0, x) = ρ0(x) . (4.3)

If ρ0(x) is the density for an initial probabilty distribution on the state space,

then solving (4.3), one obtains the time-dependent density ρt. While solving

either (4.3) or (4.2) would answer many of our questions regarding semis-

tochastic processes, this is difficult to do in practice.

4.2 Generator of the Semistochastic Process

Before proceeding with the specification of the Markov semigroup and infinites-

imal generator of interest, let us revisit the properties that characterize the

semistochastic process {X(t)}, with corresponding state space X . In the time

between two consecutive disturbances X(t) evolves deterministically, governed

by the autonomous ordinary differential equation

d

dt
x(t) = v(x(t)) . (4.4)

We assume existence and uniqueness of solutions to (4.4), for example, by

requiring that v be Lipschitz. For future reference, we now set up notation to

refer to the solutions of the differential equation (4.4). The flow of (4.4) with

initial condition x(0) = x0 we denote by φt(x0) , and the time duration needed

to deterministically evolve from x0 to x1 we denote by ψ(x0, x1). Thus, in the

absence of disturbances, we have

x1 = φt(x0) ⇐⇒ t = ψ(x0, x1) . (4.5)
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We assume that the occurrences of disturbances come from a state-dependent

Poisson process with rate parameter Λ(x); equivalently, for sufficiently small

∆t

P (disturbance occurs in (t, t+ ∆t]) = ∆tΛ(Xt) .

Furthermore, to determine the severity of individual disturbances, we define a

transition kernel, P (x, dy), with the property that for any measurable subset

of the state space B,

P(Yn ∈ B |Y −n = x) =

∫
B

P (x, dy) , (4.6)

where Yn is the nth post-disturbance random variable and Y −n is the nth pre-

disturbance random variable. For the semistochastic problem, we refer to

the transition kernel P as a jump kernel. While it is difficult to develop an

explicit formula for the semistochastic Markov semigroup, U t, there is a natural

representation of the infinitesimal generator L. To develop the expression for

L, we observe that for any fixed time duration ∆t

U∆tf(x)− f(x) = E[f(X∆t) |X0 = x]− f(x) .

If we let τ1 denote the time of the first disturbance after time t = 0, and split

the above equality into pre- and post- disaster time intervals, then

U∆tf(x)− f(x) = E[f(X∆t)1{∆t < τ1} |X0 = x]

+ E[f(X∆t)1{∆t ≥ τ1} |X0 = x]− f(x) .

25



We split the above equation into deterministic and random parts and approx-

imate each separately. If ∆t is sufficiently small, we can use the first-order

Taylor expansion for the deterministic flow combined with the estimates for

Poisson processes to arrive at

E[f(X∆t)1{∆t < τ1} |X0 = x] = f(φ∆t(x))[1−∆tΛ(x) + o(∆t)]

= ∆t∇f(x) · v(x)−∆tf(x)Λ(x) + o(∆t) .

To approximate the random part we take advantage of the fact that that for

small time intervals there is unlikely to be more than a single disturbance. Let-

ting τ2 denote the time at which the second disturbance occurs and using the

standard errors for approximating solutions to ordinary differential equations

we have

E[f(X∆t)1{∆t ≥ τ1} |X0 = x]

= E[f(X∆t)1{τ1 ≤ ∆t < τ2} |X0 = x] + E[f(X∆t)1{∆t ≥ τ2} |X0 = x]

= E[f(X∆t)1{τ1 ≤ ∆t < τ2} |X0 = x] + o(∆t)

= E[f(φ∆t−τ1(y))1{τ1 ≤ ∆t ≤ τ2} |X0 = x,X(τ1) = y] + o(∆t)

= E
[(∫

P (x, dy)f(y) + o(1)

)
1{∆t ≥ τ2} |X0 = x

]
= ∆tΛ(x)

∫
P (x, dy)f(y) + o(∆t) .

Combining everything, we have

U∆tf(x)−f(x) = ∆t

(
∇f(x) · v(x)− Λ(x)f(x) + Λ(x)

∫
P (x, dy)f(y) + o(∆t)

)
.
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Dividing by ∆t and taking the limit as ∆t approaches zero yields the equation

for the infinitesimal generator:

[Lf ](x) = ∇f(x) · v(x)− Λ(x)f(x) + Λ(x)

∫
P (x, dy) f(y) . (4.7)

This can be rewritten by integrating the Λ(x)f(x) term against the jump

kernel P (x, dy) to arrive at the standard form for the sum of a deterministic

and pure jump process,

[Lf ](x) = ∇f(x) · v(x) + Λ(x)

∫
P (x, dy) [f(y)− f(x)] .

We note for future use that if the state-space is one-dimensional and we have

a multiplicative relationship between the pre- and post- disturbance values,

then we can provide a slightly simpler representation for L. If the multipliers

are supported on the interval [0, a] with common density ρ(x, α) for each fixed

x ∈ X , then
∫
P (x, dy)f(y) =

∫
[0,a]

ρ(x, α)f(αx)dα, and we have

[Lf ](x) = f ′(x)v(x) + Λ(x)

∫ a

0

ρ(x, α)[f(αx)− f(x)]dα . (4.8)

In general, if we assume that the the jump kernel P (x, dy) has a density p(x, y),

P (x, dy) = p(x, y)dy ,

then we can determine the adjoint of the generator. We skip the computation

here, but record the result for completeness. The action of the adjoint of the

infinitesimal generator on densities, %, of absolutely continuous measures is
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given by

[L∗%](x) = −div (%(x)v(x)) +

∫
p(x, y)dy [%(y)Λ(y)− %(x)Λ(x)] .

While we will not pursue this further in this dissertation, it is possible that by

studying L∗ in specific cases, one could determine the time-dependent density

for the semistochastic process by solving (4.3).

4.3 Dissection of the Generator and Expan-

sion of the Semigroup

In this section we develop a useful representation for the Markov semigroup of

our stochastic process and from this derive an inequality which is used in our

construction of minorizing measures. To achieve this, we start by separating

the infinitesimal generator into the following components

[L0f ](x) = ∇f(x)v(x)− Λ(x)f(x)

[L1f ](x) = Λ(x)

∫
P (x, dy)f(y) .

Then L = L0 + L1 where L0 corresponds to deterministic evolution plus a

loss term and L1 corresponds to a gain term. In what follows, we denote the

sub-Markov semigroup generated by L0 as U0. Recalling that φt(x) denotes

the deterministic flow for the solution to the differential equation x′(t) = v(x)

with initial condition x(0) = x, we can readily compute

[U t0f ](x) = exp

(
−
∫ t

0

Λ(φs(x)) ds

)
f(φt(x)) .
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This can be verified directly:

∂

∂t
[U t0f ](x) =

∂

∂t

(
exp

(
−
∫ t

0

Λ(φs(x)) ds

)
f(φt(x))

)
= v(φt(x)) · ∇f(φt(x) exp

(
−
∫ t

0

Λ(φs(x)) ds

)
− Λ(φt(x))f(φt(x)) exp

(
−
∫ t

0

Λ(φs(x)) ds

)
= [L0 U t0f ](x)

To streamline the exposition and to allow a more natural interpretation of

U0 we remind the reader of the semistochastic survival function,

S(t, x) = exp

(
−
∫ t

0

Λ (φs(x)) ds

)
,

which represents the conditional probability of starting at x and evolving de-

terministically for t units of time with no occurrence of a disturbance. With

this in mind, the action of U0 on observables can be rewritten as

[U t0f ](x) = S(t, x)f(φt(x)) .

In order to facilitate future estimates on the Markov semigroup, we develop

an iterative scheme for computing U t.

Proposition 4.3. Let U t be a strongly continuous Markov semigroup with

infinitesimal generator L and assume that L can be decomposed as L = L0+L1,

with L0 generating the sub-Markov semigroup U t0. Then the action of U t on
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an observable f can be decomposed into

[U tf ](x) = [U t0f ](x) +

∫ t

0

[
U t−s0

(
L − L0

)
U sf

]
(x) ds .

Proof. Let 0 ≤ s ≤ t, and recall that U0 and U0
0 are both identity operators.

Then for any observable f ,

∫ t

0

[
U t−s0

(
L − L0

)
U sf

]
(x)ds =

∫ t

0

[(
U t−s0 LU s − U t−s0 L0U s

)
f
]

(x)ds

=

∫ t

0

[
d

ds

(
U t−s0 U s

)
f

]
(x)ds

=
[(
U0

0U t − U t0U0
)
f
]

(x)

= [U tf ](x)− [U t0f ](x)

Solving for U t above yields the result.

Applying this expansion to the semistochastic generator given by (4.7) and

recalling that L − L0 = L1, we have

[U tf ](x) = [U t0f ](x) +

∫ t

0

[
U t−s0

(
L − L0

)
U sf

]
(x)ds

= S(t, x)f(φt(x))

+

∫ t

0

ds S(t− s, x)Λ
(
φt−s(x)

) ∫
P
(
φt−s(x), dy

)
[U sf ](y) .

We use this expansion to arrive at a useful inequality, which is the content of

the following corollary

Corollary 4.4. Let U t be a Markov semigroup with infinitesimal generator
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given by (4.7), then

[U tf ](x) ≥
∫ t

0

ds S(t− s, x)Λ
(
φt−s(x)

) ∫
P
(
φt−s(x), dy

)
S(s, x)f(φs(y)) .

Proof. We discard the leading U t0 term from the expansion of the semigroup

(which is positive) and replace the nested U s term with the smaller U s0 .

Corollary 4.4 is one of the key tools for establishing minorizations for semis-

tochastic processes in the next section.
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Chapter 5

Minorization and Convergence

Rates

We begin this chapter by establishing a relationship between convergence rates

for continuous-time Markov processes and their discretizations. We then inves-

tigate minorization and drift conditions for the purpose of estimating the rate

of convergence of a semistochastic process towards its limiting distribution.

The methods we use are purely probabilistic and are rooted in coupling or

split-chain arguments (see [2], [28] , [36], and [34]). We conclude this chapter

by presenting our main result, which establishes lower bounds on the rates of

convergence for both bounded and unbounded state semistochastic processes

.

5.1 Discretization of Continuous Processes

We begin the discussion by describing a simple method for transforming continuous-

time into discrete-time processes. We also establish an inequality for compar-
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ing the rates of convergence of the discretized process to the original. To

measure the distance between distributions, we use the total variation metric.

Definition 5.1. Let µ1 and µ2 be distributions, then the total variation

distance between µ1 and µ2 is given by

dTV (µ1, µ2) := sup
A
|µ1(A)− µ2(A)| ,

where the supremum is taken over all measurable subsets A ⊂ X .

It is also common to define the total variation distance between distribu-

tions to be sup|f |∞≤1 |µ1(f) − µ2(f)|, which differs from our definition by a

factor of 2. Our definition is, however, equivalent to

dTV (µ1, µ2) = sup
0≤f(x)≤1

|µ1(f)− µ2(f)| .

Before constructing our discretization we review the action of the transi-

tion kernels of (discrete-time) Markov chains on observables. To this end, let

Q(x, dy) denote the one-step transition kernel for a Markov chain {Xn}, and

let f be an observable, then

[Qf ](x) := E[f(X1) |X0 = x] =

∫
Q(x, dy)f(y) .

And similarly for the n-step transition kernels,

[Qnf ](x) := E[f(Xn) |X0 = x] =

∫
Qn(x, dy)f(y) .

In the context of the continuous time processes studied in the previous chapter,

we can form a discrete-time Markov chain by sampling at a fixed time interval,
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∆t, and defining a discrete-time transition kernel by

Q = U∆t .

With this in mind, we now establish a useful lemma relating the convergence

of a continuous-time process to the convergence of an associated discretization

for a fixed value of ∆t.

Lemma 5.2. Let π denote the stationary distribution for a continuous-time

Markov process {Xt} with Markov semigroup U t and let ∆t be some fixed

positive time increment. If we set Q = U∆t, then for any initial distribution

µ0 of X0,

dTV
(
µ0U t, π

)
≤ dTV (µ0Q

n, π) ,

where n = bt/∆tc is the greatest integer less than or equal to t/∆t .

Proof. Since n = bt/∆tc, we can represent t as

t = n∆t+ τ

for some 0 ≤ τ < ∆t. Then for any observable f with 0 ≤ f(x) ≤ 1 ,

|µ0U tf − πf | = |µ0Un∆tU τf − πf |

= |µ0Un∆tU τf − πU τf |

≤ sup{ |µ0Un∆tg − πg| : |g|∞ ≤ 1}

= dTV (µ0Q
n, π) ,
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where we have made use of the invariance of π, and the fact that if 0 ≤ f(x) ≤

1 then 0 ≤ U tf ≤ 1 as well. Since the inequality holds for any f with

0 ≤ f(x) ≤ 1, we conclude that

dTV
(
µ0U t, π

)
≤ dTV (µ0Q

n, π) .

5.2 Minorization, Drift, and Coupling

In this section we define both minorization and drift conditions for discrete-

time Markov chains. We also present conditions whereby discretizations of

semistochastic processes admit minorizations and satisfy drift conditions.

Definition 5.3. A Markov chain with transition kernel Q on a state space X

is said to satisfy a minorization condition on a subset A ⊆ X if there is

a probability measure η on X , a positive integer n0, and a number ε > 0 such

that

Qn0(x,B) ≥ εη(B)

for all x ∈ A and for any measurable set B.

This is equivalent to requiring for any nonnegative observable f , and for

all x ∈ A,

[Qn0f ](x) :=

∫
Qn0(x, dy) f(y) ≥ ε

∫
f(y)dη(y) .

We also need the concept of a drift condition.
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Definition 5.4. A Markov chain {Xn} with transition kernel, Q on a state

space X is said to satisfy a drift condition if there is a nonnegative function

V : X 7→ R≥0, a number β < 1, and some finite b such that

E [V (X1)|X0 = x] ≤ βV (x) + b

for all x ∈ X .

To simplify the remaining exposition, we now assume that our state space

is one-dimensional (though most of the arguments work for vector-valued state

spaces as well). We first establish uniform minorization conditions for a class

of semistochastic processes with bounded state spaces, and then establish mi-

norization and drift conditions for semistochastic processes with unbounded

state spaces.

Theorem 5.5. Let {X(t)} be a scalar semistochastic process with bounded

state space X = [0, k] for some k <∞ and with infinitesimal generator given

by (4.8) with a = 1 (disturbances only result in jumps down) so that the action

of L is given by

[Lf ](x) = f ′(x)v(x) + Λ(x)

∫ 1

0

ρ(x, α)[f(αx)− f(x)]dα .

Fix a time interval ∆t and let Q := U∆t denote the discrete-time transition

kernel for the corresponding uniform discretization of {X(t)}. Suppose more-

over that the following conditions are met:

(i) 0 < λ∗ ≤ Λ(x) ≤ λ∗ <∞ for all x ∈ X , for some constants λ∗ and λ∗,

(ii) ρ(x, α) ≥ ρ∗ for all x ∈ X and α ∈ [0, 1], for some constant ρ∗ > 0,
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(iii) the function v is non-negative, Lipschitz, and v(0) 6= 0 with v(x) = 0 for

at most finitely many x.

then Q can be uniformly minorized. Specifically, for all x ∈ X and any non-

negative observable f :

[Qf ](x) ≥ ε

∫
f(z) dη(z) ,

with

ε =
ρ∗Φλ∗ exp(−λ∗∆t)

k
,

where we define Φ as

Φ =

∫ φ∆t(0)

0

[∆t− ψ(0, z)]dz , (5.1)

with φ and ψ defined as in (4.5), and η an absolutely continuous measure with

Radon-Nikodym derivative given by

dη

dz
=

∆t− ψ(0, z)

Φ
1{0 ≤ z ≤ φ∆t(0)} .

Proof. Let φ and ψ be defined as in (4.5) and let f be a nonnegative observable,

then applying the result from Corollary 4.4, we have

[Qf ](x) ≥
∫ ∆t

0

ds S(∆t− s, x)Λ
(
φ∆t−s(x)

)
×
∫ 1

0

dα ρ(x, α)S(s, αφs(x))f(αφs(x)) ,

where

S(t, x) = exp

(
−
∫ t

0

Λ (φs(x)) ds

)
.
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Using the assumption that 0 < Λ(x) ≤ λ∗, we have

S(t, x) ≥ exp(−λ∗t) for allx ∈ [0, k) .

Combining the above inequalities with the assumed bounds on ρ(x, α) and

Λ(x), we arrive at

[Qf ](x) ≥ ρ∗λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds

∫ 1

0

dα f(αφs(x)) .

Changing variables according to

z = αφs(x) dz = φs(x)dα

and interchanging the order of integration, we have

[Qf ](x) ≥ ρ∗λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds

∫ 1

0

dα f(αφs(x))

= ρ∗λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds (φs(x))−1

∫ φs(x)

0

dz f(z)

≥ ρ∗λ∗ exp(−λ∗∆t)
∫ ∆t

0

ds k−1

∫ φs(0)

0

dzf(z)

=
ρ∗λ∗
k

exp(−λ∗∆t)

∫ φ∆t(0)

0

dz f(z)

∫ ∆t

ψ(0,z)

ds

=
ρ∗λ∗
k

exp(−λ∗∆t)
∫ φ∆t(0)

0

f(z)[∆t− ψ(0, z)] dz

> 0 .

We have made use of both the monotonicity of φt(x), the boundedness of the

state space (so that k < ∞), and the fact that v(0) > 0 in the preceding

arguments to arrive at a positive lower bound for [Qf ](x) for all x ∈ X . Thus,
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we have established the uniform minorization

[Qf ](x) ≥ ε

∫
f(z)dη(z) ,

with ε and η defined as in the statement of the theorem.

0 ∆t

x

φ∆t(0)

φ∆t(x)

Figure 5.1: On the construction of the minorizing measure in Theorem 5.5.

While the restriction v(0) > 0 may seem unusual for biological models,

it is a reasonable assumption for the carbon content problem since even in

the event of a complete catastrophe, there is regrowth. The specific case of

v(x) = 1 − x with state space X = [0, 1] is considered in [24] as a model for

carbon content in an ecosystem and meets all conditions of the theorem. If

v(0) = 0 then one could determine a drift condition in a manner similar to

what will be done in Theorem 5.8.

The significance of establishing a uniform minorization for a Markov chain

is that this entails the uniform ergodicity of the process. Moreover, it can

be proved that uniformly ergodic Markov chains possess unique stationary
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distributions and converge to them exponentially fast; these results go back to

Doeblin and can be found in Doob [12]; for additional discussion see [29, 36, 26].

One approach to proving these results is based on the idea of coupling, which

we now explore in more detail. Given two random variables X and Y with

respective distributions µX and µY , then we have the inequality

dTV (µX , µY ) ≤ P(X 6= Y ) . (5.2)

The significance of this inequality is that it bounds the total variation distance

between the distributions of two random variables by the probabilty that they

are not equal. To make use of this fact, consider a Markov chain {Xn} on X

with transition kernel Q, initial distribution µ0, and stationary distribution π.

We can construct a new Markov chain {Xn, Yn} on the product space X × X

with the following properties

(i) X0 ∼ µ0

(ii) Y0 ∼ π

(iii) P(Xn+1 ∈ A |Xn) = Q(Xn, A)

(iv) P(Yn+1 ∈ A |Yn) = Q(Yn, A)

(v) There exists a random time T for which Xn = Yn for all n ≥ T .

The time T is called the coupling time and represents a time after which the

parallel processes {Xn} and {Yn} “couple” and henceforth are equal. The

significance of such a construction is that combined with (5.2) it produces a

bound on the total variation distance between the n-step evolved distribution
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µn and the stationary distribution π in terms of coupling times,

dTV (µn, π) ≤ P(T > n)

We will use the idea of coupling to present a simple proof of the following

theorem.

Theorem 5.6. If there exists an n0 ∈ N such that the transition kernel Q of

the Markov chain {Xn} with state space X satisfies

Qn0(x,A) ≥ εη(A)

for all x ∈ X and any measurable set A, then {Xn} has a unique stationary

distribution π, and for any initial distribution µ0

dTV (µ0Q
n, π) ≤ (1− ε)bn/n0c

Proof. By appropriately redefining Q, it suffices to consider the particular case

n0 = 1. Let {Xn} and {Yn} be independent Markov chains on X with X0 ∼ µ0

and Y0 ∼ π. We can use the minorization to define the distributions for Xn+1

and Yn+1 for all n > 0 according to the following scheme:

1. Flip an independent coin that has probability ε of landing heads.

2. If heads, then choose x ∈ X independently according to the distribution

η and set Xn+1 = Yn+1 = x.

3. If tails, then choose Xn+1 and Yn+1 independently according to

P(Xn+1 ∈ A |Xn) =
Q(Xn, A)− εη(A)

1− ε
,
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P(Yn+1 ∈ A |Yn) =
Q(Yn, A)− εη(A)

1− ε
.

The probabilities above are the residual probabilities from decomposing Q into

Q = εη + (1− ε)
(
Q− εη
1− ε

)
.

The construction furthermore guarantees that

P(Xn+1 ∈ A |Xn) = Q(Xn, A) and P(Yn+1 ∈ A |Yn) = Q(Yn, A) .

The utility of this construction comes from the fact that we can use it to

determine a bound on the coupling time. If we let T denote the time at which

the first heads lands (which depends only on the minorization parameter ε),

and define a new Markov chain {Zn} according to

Zn =


Yn for n ≤ T ,

Xn for n > T .

Then {Zn} and {Xn} will couple with coupling time T . Moreover, due to the

coin flip probabilities depending only on ε, we have

P(T > n) = (1− ε)n ,

and hence

dTV (µ0Q
n, π) ≤ (1− ε)n
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If a uniform minorization cannot be achieved, then a combination of mi-

norization and drift conditions can be used to compute convergence rates. One

specific result is given below.

Theorem 5.7 (Theorem 12 in [36]). Suppose a Markov chain {Xn} with tran-

sition kernel Q and state space X satisfies a drift condition, so that there exists

a function V : X 7→ R≥0 for which

E [V (X1) | X0 = x)] ≤ βV (x) + b , x ∈ X

for some β < 1 and some b <∞; and also satisfies the minorization condition

Q(x,A) ≥ εη(A) ,

for some ε > 0, some κ > 2b
1−β , and for all x ∈ V −1[0, κ] and any measurable

set A . Then the Markov chain has a unique stationary distribution π and for

any 0 < r < 1 and any n ∈ N, we have for any initial distribution µ0

dTV (µ0Q
n, π) ≤ (1− ε)nr +

(
θ1−rΘr

)n(
1 +

b

1− β
+ Eµ0 [V (X0)]

)
, (5.3)

with

θ =
1 + 2b+ κβ

1 + κ
and Θ = 1 + 2(βκ+ b) . (5.4)

With this in mind, we now establish conditions under which an unbounded

semistochastic process both satisifes a drift condition and can be minorized

on an appropriate subset of its state space. If the jump kernel of our semis-

tochastic process has the multiplicative form of (4.8) with a = 1, it will be

convenient to introduce the quantity ζ(x) to denote the expected fractional
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loss resulting from a single disturbance,

ζ(x) :=

∫ 1

0

ρ(x, α) (1− α) dα ∈ (0, 1) . (5.5)

Thus larger values of ζ(x) correspond to an expectation of more severe distur-

bances and the limiting value ζ(x) = 0 would result in purely deterministic

growth.

Theorem 5.8. Let {X(t)} be a scalar semistochastic process with state space

R≥0 and with infinitesimal generator given by (4.8) with a = 1 (disturbances

only result in jumps down) so that the action of L is given by

[Lf ](x) = f ′(x)v(x) + Λ(x)

∫ 1

0

ρ(x, α)[f(αx)− f(x)]dα .

Fix a time interval ∆t > 0 and let Q := U∆t denote the discrete-time tran-

sition kernel for the corresponding uniform discretization of {X(t)}. Suppose

moreover that the following conditions are met:

(i) 0 < λ∗ ≤ Λ(x) ≤ λ∗ <∞ for all x ∈ X , for some constants λ∗ and λ∗,

(ii) ρ(x, α) ≥ ρ∗ for all x ∈ X and α ∈ [0, 1], for some constant ρ∗ > 0,

(iii) ζ(x) ≥ ζ∗ for all x ∈ X , for some constant ζ∗ > 0,

(iv) the function v is Lipschitz, satisfies

0 ≤ v(x) ≤ v∗ = const , v(0) 6= 0 , (5.6)

and vanishes for at most finitely many x.
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then Q satisfies a drift condition with respect to the identity map,

E [X1 |X0 = x] ≤ βV (x) + b ,

for all x ∈ X , with

β = e−λ∗ζ∗∆t , b =
v∗

λ∗ζ∗

(
1 − e−λ∗ζ∗∆t

)
,

Moreover, for any κ <∞, Q admits the minorization

Q(x,B) ≥ εη(B) ,

for any x ∈ [0, κ] and all measurable B ∈ X , with

η(B) =

∫ φ∆t(0)

0

∆t− ψ(0, z)

Φ
dz 1{z ∈ B} , ε =

ρ∗Φλ∗ exp(−λ∗∆t)
κ

,

where Φ is defined by (5.1), and φ and ψ defined as in (4.5).

Proof. To establish the general drift condition, we will use the identity map

I : x 7→ x for our drift function. The action of L on I can be represented in

terms of ζ(x),

[LI](x) = v(x) + Λ(x)

∫ 1

0

ρ(x, α)[αx− x] dα

= v(x)− Λ(x)ζ(x)x .

From the conditions on v and Λ, we thus have for all x ∈ X ,

[LI](x) ≤ v∗ − λ∗ζ∗x . (5.7)
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In order to establish bounds on E[I(X∆t)|X0 = x], we will use the martin-

gale introduced in (4.1) along with a standard Gronwall argument. From the

martingale, we have for any 0 ≤ t,

E
[
Xt −X0 −

∫ t

0

[LI](Xs)ds
∣∣X0 = x

]
= 0

Setting u(t) = E[I(Xt)|X0 = x] = E[(Xt)|X0 = x] and writing [LI](Xs)

explicitly, we can rewrite the above equation for expectations as an integral

equation

u(t) = u(0) +

∫ t

0

E [v(Xs)− Λ(Xs)ζ(Xs)Xsds | X0 = x] . (5.8)

Our sample paths are all right continuous, and thus the right hand side of (5.8)

can be differentiated with respect to t. Differentiating the integral equation

and referencing (5.7) , we have

u′(t) = E [v(Xt)− Λ(Xt)ζ(Xt)Xt| X0 = x]

≤ v∗ − λ∗ζ∗u(t) .

Rearranging the above inequality and multipying by the integrating factor

eλ∗ζ∗t gives

d

dt

(
eλ∗ζ∗tu(t)

)
≤ v∗eλ∗ζ∗t ,

which is equivalent to

d

dt

(
eλ∗ζ∗tu(t)− v∗eλ∗ζ∗t

λ∗ζ∗

)
≤ 0 .

46



Since the expression in parentheses above is decreasing with t, it must obtain

its minimum on [0,∞) at t = 0; recalling that u(0) = x, we have

eλ∗ζ∗tu(t)− v∗

λ∗ζ∗
eλ∗ζ∗t ≤ x− v∗

λ∗ζ∗
.

Solving for u(t), simplifying, and setting t = ∆t produces the desired drift

condition,

E[X∆t |X0 = x] ≤ e−λ∗ζ∗∆tx+
v∗

λ∗ζ∗

(
1− e−λ∗ζ∗∆t

)
The last thing to do is to minorize Q on [0, κ] for any κ <∞; but this can be

done as in Theorem 5.5 for the bounded state-space.

5.3 Convergence Rates for Semistochastic Pro-

cesses

We now report our results on convergence rates for two classes of semistochastic

processes, one with bounded state space and one with unbounded.

Theorem 5.9. Let {Xt} be a semistochastic process with generator (4.8) on

the state space X = [0, k], satisfying

(i) 0 < λ∗ ≤ Λ(x) ≤ λ∗ <∞ for all x ∈ X , for some constants λ∗ and λ∗,

(ii) ρ(x, α) ≥ ρ∗ for all x ∈ X and α ∈ [0, 1], for some constant ρ∗ > 0,

(iii) the function v is non-negative, Lipschitz, and v(0) 6= 0 with v(x) = 0 for

at most finitely many x.
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Then {Xt} converges exponentially fast to its unique stationary distribution π.

Namely, for any time increment ∆t > 0, and any initial distribution µ0,

dTV (µt, π) ≤ (1− ε∆t)bt/∆tc , (5.9)

where

ε∆t :=
ρ∗Φλ∗ exp(−λ∗∆t)

k
, (5.10)

Φ :=

∫ φ∆t(0)

0

[∆t− ψ(0, z)] dz ,

φ and ψ defined in (4.5), and η an absolutely continuous measure with Radon-

Nikodym derivative given by

dη

dz
=

∆t− ψ(0, z)

Φ
1{0 ≤ z ≤ φ∆t(0)} . (5.11)

Proof. First, we discretize the process by setting Q = U∆t, and apply Theorem

5.5 to obtain the uniform minorization

[Qf ](x) ≥ ε∆t

∫
f(y)dη(y)

for any observable f and all x ∈ X with ε∆t with the measure η as in the

statement of theorem. Next we apply Theorem 5.6 in conjunction with Lemma

5.2 to obtain

dTV (µt, π) ≤ dTV
(
µ0Q

bt/∆tc, π
)

≤ (1− ε∆t)bt/∆tc ,

where µ0 is an arbitrary initial distribution.
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In a similar manner, we arrive at bounds on the convergence rates for

processes with unbounded states.

Theorem 5.10. Let {Xt} be a semistochastic process with generator (4.8) on

the state space X = [0,∞), satisfying

(i) 0 < λ∗ ≤ Λ(x) ≤ λ∗ <∞ for all x ∈ X , for some constants λ∗ and λ∗,

(ii) ρ(x, α) ≥ ρ∗ for all x ∈ X and α ∈ [0, 1], for some constant ρ∗ > 0,

(iii) ζ(x) ≥ ζ∗ for all x ∈ X , for some constant ζ∗ > 0,

(iv) the function v is Lipschitz, satisfies

0 ≤ v(x) ≤ v∗ = const , v(0) 6= 0 ,

and vanishes for at most finitely many x.

Then {Xt} has a unique stationary distribution π to which it converges at an

exponential rate. Namely, for any initial distribution µ0 and any ∆t > 0, the

estimate

dTV (µt, π) ≤
(

2 +
b

1− β
+ Eµ0 [X0]

)
(1− ε∆t)rbt/∆tc (5.12)

holds with Φ given by (5.1),

ε∆t,κ :=
ρ∗Φζ∗λ∗ exp(−λ∗∆t)

κ
,

β := e−λ∗ζ∗∆t , b :=
v∗

λ∗ζ∗

(
1 − e−λ∗ζ∗∆t

)
,

θ :=
1 + 2b+ κβ

1 + κ
, Θ := 1 + 2(βκ+ b) ,
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r :=
ln θ

ln θ(1−ε∆t)
Θ

=
ln 1

θ

ln 1
θ

+ ln Θ + ln 1
1−ε∆t

∈ (0, 1) , (5.13)

where κ can be chosen to be any number satisfying

κ >
2b

1− β
. (5.14)

Proof. As in the proof of Theorem 5.9 we begin by discretizing the process by

setting Q = U∆t, and then apply Theorem 5.8 to obtain both a drift condition

with respect to the identity map and a minorization on [0, κ]. Next, we apply

the result of Theorem 5.7 where we choose the value of r in such a way that

the two terms in the right-hand side of (5.3) balance each other, which for

large n gives us (1− ε)r = θ1−rΘr, which gives the expression (5.13) for r. In

particular, with this choice of r,

(1−ε)nr+
(
θ1−rΘr

)n(
1 +

b

1− β
+ Eµ0 [X0]

)
=

(
2 +

b

1− β
+ Eµ0 [X0]

)
(1−ε)nr

for all n. We then apply Lemma 5.2 to obtain the desired bounds on the total

variation distance between π and µt = µ0U t.

Remark 5.11. Note that the rate of convergence in (5.12) depends on the

choice of ∆t and κ. To obtain tight bounds, one can choose values of ∆t and

κ that minimize (1− ε∆t)r/∆t, which can be done numerically as shown in the

second example below.

5.3.1 Examples

In these examples we illustrate how our results can be used in practice. In

both examples we consider a semistochastic process {Xt} with disturbances

50



corresponding only to jumps down. We further assume that the disturbances

are generated by a Poisson process with constant rate parameter λ, and that

the severity of disturbances is uniformly distributed. Equivalently, we are

considering processes with infinitesimal generator given by

[Lf ](x) = f ′(x)v(x) + λ

∫ 1

0

[f(αx)− f(x)]dα .

We also demonstrate how one can optimize the relevant parameters to obtain

tighter bound on rates of convergence.

Example 1. In this example we consider a model of growth with saturation

on X = [0, k]:

x′(t) = k − x , k = const > 0 .

In this case (cf. (4.5)),

φt(x) = k + (x− k)e−t , ψ(x0, x) = ln
k − x0

k − x
.

From Theorem 5.9, for fixed ∆t and arbitrary initial distribution µ0, the fol-

lowing bound holds

dTV

(
µ0 U t, π

)
≤ (1− ε∆t)bt/∆tc

(π is the unique stationary distribution). We have

Φ =

∫ k(1−e−∆t)

0

(
∆t− ln

k

k − z

)
dz = k(∆t + e−∆t − 1) ,

ε∆t =
Φλ e−λ∆t

k
= λ e−λ∆t(∆t + e−∆t − 1) .
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For convergence rates, the quantity of interest is (1− ε∆t)1/∆t (cf. (5.9)). For

concreteness, take λ = 1. In Figure 5.2, we plot (1− ε∆t)1/∆t as a function of

∆t and observe that it exhibits a minimum at ∆t ≈ 0.82, for which ε∆t ≈ 0.115.

Choosing ∆t = 0.82, we obtain that, for any initial distribution µ0,

0 1 2 3 4 5
0.80

0.85

0.90

0.95

1.00

( 1 − ε∆t)
1/∆t

Figure 5.2: Plot of (1− ε∆t)1/∆t vs. ∆t.

dTV(µt, π) ≤ (1− 0.115)bt/0.82c ≤ 1.13 e−0.148 t .

For comparison, in Figure 5.3 we plot (1 − ε∆t)
bt/∆tc as a function of t for

several values of ∆t.

Example 2. Consider the case of constant growth rate on X = [0,∞):

x′(t) = v = const > 0 .
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Figure 5.3: Plots of (1− ε∆t)bt/∆tc vs. t for selected ∆t.

Our flow and time-duration functions are

φt(x) = x+ t , ψ(x0, x) = x− x0 .

From Theorem 5.10, for fixed ∆t > 0, we can first establish a drift condition

using the identity as our drift function. In this case the average fractional loss

ζ(x) = 1
2

does not depend on x, so we can compute the expectation exactly,

E[X∆t|X0 = x] = e−λ∆t/2 +
2v

λ

(
1− e−λ∆t/2

)
,

so the drift parameters are β = e−λ∆t/2, b = 2v
λ

(
1− e−λ∆t/2

)
. To compute

bounds on the convergence rates, we need to select a value κ > 2b
1−β = 4v

λ

for which we minorize the process on [0, κ]. We easily obtain Φ = v(∆t)2 and

ε∆t,κ = v(∆t)2 λ e−λ∆t

κ
, where we are emphasizing the dependence of ε on κ as
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well as ∆t. For θ and Θ (5.4) we obtain

θ =
1 + 4v

λ
+
(
κ− 4v

λ

)
e−λ∆t/2

1 + κ
, Θ = 1 +

4v

λ
+

(
2κ− 4v

λ

)
e−λ∆t/2 ;

in the expression for θ, note that the restriction on κ ensures the positivity

of the exponential term in the numerator. Continuing the example with the

specific values v = 1 and λ = 2, we obtain β ≈ 0.405 and b ≈ 0.595. We can

then make appropriate choices for ∆t and κ by minimizing the expression

(1− ε∆t,κ)
r(∆t,κ)

∆t

as illustrated in Figures 5.4 and 5.5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
∆t

0.990

0.992

0.994

0.996

0.998

1.000

=  2.5
=  3.0
=  4.0
=  5.0
=  7.0

Figure 5.4: Plots of (1− ε∆t)r/∆t vs. ∆t for selected κ.
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∆t=  0.7
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Figure 5.5: Plots of (1− ε∆t)r/∆t vs. κ for selected ∆t.

Consequently, we choose ∆t = 0.904, κ = 3.83, and r as in (5.13) to obtain

dTV (µt, π) ≤ C(1− 0.070)rbt/0.904c

≤ 1.02C e−0.014t ,

with C = 3 + Eµ0 [X0].
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Chapter 6

Carbon Content and other

Scalar Models

In this chapter we will report a formula that can be used to compute exactly

the density for the stationary distribution of the semistochastic model for the

original carbon content problem. Our arguments will be based on those of

Leite, Petrov, and Weng in [24], however, we will generalize their results to

allow for the rate of disturbances to be state-dependent by incorporating the

semistochastic survival and hazard functions. We will also correct a slight

averaging error in [24] and will conclude with a tabulation of the corrected

results of the examples from [24].

Throughout this chapter we will consider a one-dimensional semistochastic

process with infinitesimal generator acting on observables via

[Lf ](x) = f ′(x)v(x) + Λ(x)

∫ 1

0

[f(αx)− f(x)]dρ(α) . (6.1)

Thus we are considering epochs of deterministic growth interrupted by dis-
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turbances that occur with a state-dependent hazard rate Λ(x). Moreover, the

severity of the disturbances is determined by the continuous random variables

An which share the density ρ(α) obtain values in [0, 1]. As in previous chap-

ters, we will denote the deterministic flow with initial condition x(0) = x0 by

φt(x0) , and the time duration needed to deterministically evolve from x0 to

x1 by ψ(x0, x1). Thus, in the absence of disturbances, we have

x1 = φt(x0) ⇐⇒ t = ψ(x0, x1) .

We will also need the semistochastic survival function, whose definition we

recall

S(t, x) = exp

(
−
∫ t

0

Λ (φτ (x)) dτ

)
.

Then for Tn the random variable corresponding to the inter-disturbance time

between the (n − 1)st and nth disturbances, we can express its density fTn(t)

in terms of the (n − 1)st post-disturbance value xn−1 and the semistochastic

survival and hazard functions

fTn(t) = S(t, xn−1)Λ(φt(xn−1))

Within this framework, if there exists an absolutely continuous stationary

distribution, then we can express the corresponding density fX in terms of

the density of the asymptotic post-disturbance distribution fY . In Section 6.1

we will first derive an expression for the conditional density fYn+1|Yn and from

this an expression for fY . In Section 6.2 we will then provide a formula for

computing the density of the stationary distribution in terms of fY .
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6.1 Post-Disturbance Distributions

In this section we will study the densities of the post-disturbance distributions

fYn , corresponding to the nth disturbance. If the corresponding random vari-

ables Yn converge to a continuous random variable Y with density fY , then

we can compute fY from the conditional p.d.f. fYn+1|Yn . We use essentially the

same argument as in [24].

Theorem 6.1. Let {Xt} be a semistochastic process with state space [0, k)

and infinitesimal generator given by (6.1). Suppose further that v(x) is non-

negative, Lipschitz, and is zero at at most a countable number of points, then

the conditional p.d.f. of the (n + 1)st post-disturbance level Yn+1 conditioned

on the nth post-disturbance level Yn is given by

fYn+1|Yn(xn+1|xn) =

∫ k

max{xn,xn+1}
dx−n+1

S(ψ(xn, x
−
n+1), xn)Λ(x−n+1)

v(x−n+1)x−n+1

ρ

(
xn+1

x−n+1

)
.

If the post-disturbance levels Yn tend asymptotically to some continuous

random variable Y , then the p.d.f. fY satisfies

fY (y) =

∫ k

0

fYn+1|Yn(y|x) fY (x)dx ,

as well as the non-negativity and normalization conditions:

fY ≥ 0 and

∫ k

0

fY (x)dx = 1 .

Proof. Let ∆x−n+1 be an infinitesimal positive increment, for the computations

below, we will ignore terms higher than linear order in ∆x−n+1. For x−n+1 ∈
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[xn, k) and x−n+1 + ∆x−n+1 ∈ [xn, k), we have

fY −n+1|Yn
(x−n+1|xn) ∆x−n+1

= P
(
Y −n+1 ∈ (x−n+1, x

−
n+1 + ∆x−n+1]

∣∣Yn = xn
)

= P
(
Tn+1 ∈ (ψ(xn, x

−
n+1), ψ(xn, x

−
n+1 + ∆x−n+1)]

∣∣Yn = xn
)

= P
(
Tn+1 ∈ (ψ(xn, x

−
n+1), ψ(xn, x

−
n+1 + ∆x−n+1)]

)
= P

(
Tn+1 ∈

(
ψ(xn, x

−
n+1), ψ(xn, x

−
n+1) +

∂ψ

∂x−n+1

(xn, x
−
n+1) ∆x−n+1

])
= P

(
Tn+1 ∈

(
ψ(xn, x

−
n+1), ψ(xn, x

−
n+1) +

∆x−n+1

v(x−n+1)

])
=
S(ψ(xn, x

−
n+1), xn)Λ(x−n+1

v(x−n+1)
∆x−n+1 ,

hence

fY −n+1|Yn
(x−n+1|xn) =

S(ψ(xn, x
−
n+1), xn)Λ(x−n+1

v(x−n+1)
1[xn,d)(x

−
n+1) . (6.2)

Recalling the definition of the multiplier random variables An, we can also

compute the conditional p.d.f. fYn+1|Y −n+1
,

fYn+1|Y −n+1
(xn+1|x−n+1) ∆xn+1 = P

(
Yn+1 ∈ (xn+1, xn+1 + ∆xn+1]

∣∣Y −n+1 = x−n+1

)
= P

(
An+1Y

−
n+1 ∈ (xn+1, xn+1 + ∆xn+1]

∣∣Y −n+1 = x−n+1

)
= P

(
An+1x

−
n+1 ∈ (xn+1, xn+1 + ∆xn+1])

= P
(
An+1 ∈

(
xn+1

x−n+1

,
xn+1 + ∆xn+1

x−n+1

])
= ρ

(
xn+1

x−n+1

)
∆xn+1

x−n+1

,
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dividing by ∆xn+1 yields

fYn+1|Y −n+1
(xn+1|x−n+1) =

1

x−n+1

ρ

(
xn+1

x−n+1

)
. (6.3)

Combining (6.3) and (6.2) we can obtain the conditional p.d.f. fYn+1|Yn .

fYn+1|Yn(xn+1|xn) =

∫
dx−n+1 fYn+1|Y −n+1

(xn+1|x−n+1) fY −n+1|Yn
(x−n+1|xn)

=

∫ d

max{xn,xn+1}
dx−n+1

S(ψ(xn, x
−
n+1), xn)

v(x−n+1)x−n+1

ρ

(
xn+1

x−n+1

)
.

As for the stationary p.d.f. of the post-disturbance level, we have

fYn+1(xn+1) =

∫ k

0

dxn fYn+1|Yn(xn+1|xn) fYn(xn) ,

which reduces to (6.1) as fYn → fY and fYn+1 → fY .

6.2 Exact Formula for Stationary Distributions

In this section we establish a formula for the stationary p.d.f. fX for {Xt}

in terms of the stationary post-disturbance distribution fY . Our arguments

again follow those of [24], but we arrive at a slightly different result due to an

averaging error in [24].

Theorem 6.2. Under the assumptions of Theorem 6.1, the stationary p.d.f.

fX of {Xt} is given by

fX(x) =
1(0,k)(x)

v(x)

∫ x

0

dxn fY (xn)

∫ ∞
ψ(xn,x)

dτ S(τ, xn)Λ(φτ (xn)
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where fY is the stationary p.d.f. of the post-disturbance levels.

Proof. The strategy is to first compute the conditional p.d.f. fX|Yn,Tn+1 of X

conditioned on the values of both the nth post-disturbance level and the time

interval Tn+1 between the nth and (n + 1)st disturbance. We will set Yn = xn

and Tn+1 = τn+1. We will then consider an arbitrary value x∗ between xn and

x−n+1, and an infinitesimal increment ∆x∗ > 0 be , so that

xn ≤ x∗ < x∗ + ∆x∗ < x−n+1 .

For τ ∗ and τ ∗ + ∆τ ∗ the times between the moment of occurrence of the

nth disturbance and the moment when the level has values x∗ and x∗ + ∆x∗,

respectively we have

0 ≤ τ ∗ < τ ∗ + ∆τ ∗ < τn+1 .

Moreover, we have ∆x∗

∆τ∗
= v(x∗), and consequently

fX|Yn,Tn+1(x∗|xn, τn+1) ∆x∗ = ∆τ ∗ =
∆x∗

v(x∗)
,

equivalently,

fX|Yn,Tn+1(x|xn, τn+1) =
1(xn,φτn+1 (xn)](x)

v(x)
. (6.4)

The stationary p.d.f. fX can then be obtained from the conditional one

(6.4) by averaging over Yn and Tn+1,

fX(x) =
1(0,k)(x)

v(x)

∫ x

0

dxn fY (xn)

∫ ∞
ψ(xn,x)

dτ S(τ, xn)Λ(φτ (xn) .
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6.2.1 Examples

We will now tabulate corrected versions of the calculations presented in [24]. In

the table, fX is the density of the continuous random variable X corresponding

to the stationary distribution of the semistochastic process with infinitesimal

generator given by

[Lf ](x) = f ′(x)v(x) + λ

∫ 1

0

[f(αx)− f(x)]dα .

In particular, we are assuming that the severity of the disturbances is uniformly

distributed, and that the hazard function is constant, which entails that the

inter-disturbance times are exponentially distributed. For the cases of v(x) = 1

and v(x) = 1− x, stationary densities exist for all values of the parameter λ.

On the other hand, when v(x) = x(1−x) (logistic growth), stationary densities

exist only if λ < 1. In the logistic case with λ ≥ 1, the stationary distribution

is a delta distribution concentrated at x = 0 (this is an extinction level event).

v(x) fX E[X] Var[X]

1 λ2xe−λx
2

λ

2

λ2

1− x (λ2 + λ)x(1− x)λ−1 2

λ+ 2

2λ

(λ+ 3)(λ+ 2)2

x(1− x)
sin(πλ)

π

(1− x)λ−1

xλ
−(λ− 1)

−λ(λ− 1)

2

Table 6.1: Statistics for densities of stationary distributions.
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