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Abstract 
 

The emerging area of network science studies structural characteristics of networks and 

dynamical processes on networks such as spread of epidemics, vulnerability of power 

grids to cascading failures etc. In this area, several measures of network performance 

have been introduced and studied. In this dissertation, we study two measures, namely, 

resistance distance and Kirchhoff index. 

Treating each element of a graph as a resistance, resistance distance between 

two nodes u and v is the effective resistance across u and v. Kirchhoff index defined by 

the chemistry community is the sum of the effective resistances across all pairs of nodes 

of the graph. Kirchhoff index, also called network criticality, has been studied by the 

communication network community. Kirchhoff index has been studied using the graph 

Laplacian matrix which is the same as the indefinite admittance matrix of a resistance 

network. 

 Our research is on reducing the computational effort in calculating the Kirchhoff 

index in networks. First a simpler formula for Kirchhoff index based on the properties 

of node-to-datum resistance matrix is presented. To avoid computational complexity 

and extraneous efforts of Moore-Penrose pseudoinverse, Kirchhoff index is calculated 

in terms of the inverse of the reduced Laplacian matrix. 

The notion of Laplacian matrix is then generalized using the fundamental cutset 

matrix of a graph. Two approaches to compute Kirchhoff index are presented: The first 

approach is based on a matrix transformation, and the second approach uses the concept 

of Kirchhoff polynomial of a graph. Kirchhoff polynomial of a graph introduced in this 

work is defined for each spanning tree of the graph. 



xii 

In 1949 and 1961 Foster established two theorems that give identities involving 

resistance distances. We introduce the concept of Weighted Kirchhoff index of a graph 

and study its relationship to Foster’s theorems. We present a generalization of Foster’s 

theorems that retains the circuit-theoretic flavor and elegance of Foster’s theorems, and 

develop a dual form of this theorem. 

 Kirchhoff index captures the effect of topological structure on the performance 

of networks. It also captures the path diversity between nodes in a network. Kirchhoff 

index can be used to determine node betweenness in networks that are of interest in 

network vulnerability studies. In view of this, an efficient methodology to compute 

Kirchhoff index is required. For this purpose, we propose sequential and parallel 

algorithms. In addition, we introduce a novel 3-step approximation algorithm for 

calculation of resistance distance and Kirchhoff index.  
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Chapter 1 

Introduction 

 

 1.1   Introduction to Network Science 

Complex systems are pervasive in our society. Some examples are the Internet System 

that interconnects computer networks globally, the World Wide Web System that links 

the information networks to each other, the electrical power system, the biological 

system that relates the networks of biologically relevant entities, the communication 

system that integrates billions of cell phones with satellites and computers, the social 

system that interrelate the individuals, groups, institutions, organizations etc. There are 

three aspects to study the complex systems. The first is the study of the nature of the 

individual components of the systems, the second is the study of the nature of 

connections or interactions and the third is the study of the pattern of connections 

between components.  

Networks represent the pattern of connections in a system. The science of 

networks is called network science. This is not a new concept, and it has roots as far 

back as 1736. Network science has roots in many subfields, for example, in social 

network analysis, electrical circuits and systems, synthetic emergent systems (i.e. the 

Internet, power grid), biological science etc. 

Network science is defined in many ways by the National Research Council 

(NRC) of the National Academies. The most direct definition given by NRC is (Lewis, 

2009): 
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Definition 1.1.  Network science is an organized knowledge of networks based on their 

study using the scientific methods. 

In simple language, a network is a collection of points that are joined together 

by lines. Each subfield has a different working definition of a network. For 

communication engineers the network is a system of routers and switches and for 

marketing business people it is a population of buyers. According to sociologists a 

network is an influence diagram that represents the social interaction among humans 

and for physicists it is a model of phase transition and magnetism. Biologists use 

network analogy to understand the epidemics and metabolic system within a cell but for 

power engineers a network is a system of electrical power grids.  

The operational definition of network science has two main components 

(Newman, 2010): 

(i) Network science is the study of the structure of a collection of nodes and 

links that represent something real. 

(ii) Network science is the study of the dynamic behavior of the aggregation of 

nodes and links. 

The nodes might be molecules or genes for biological systems, humans for social 

systems, routers or switches for communication systems, transformers for electrical 

systems. The links might be contagions or synapses for biological system, friendships or 

other relationships for social systems, physical wires or wireless for communication 

systems, cables for electrical systems, etc. 
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1.2   Why are we Interested in Networks 

To understand complex systems, we have to acquire a deep understanding of the 

networks behind the systems. A network reduces a complex system to an abstract 

structure representing the connection patterns in the system. A network can be 

described by a graph structure (i.e. nodes and links) and by its behavior (i.e. the 

interaction among the nodes and links). Over the years, scientists have developed a 

pervasive set of mathematical, computational, and statistical tools for analyzing, 

modeling and understanding networks. These tools work with networks in their abstract 

form and help in finding some crucial and useful information about networks, for 

example, the critical node or edge in a network, length of a path from one node to 

another in a network, flow of traffic over the network, clusters or communities in a 

network, etc. These tools can be applied to any systems that can be represented as 

networks.  

 

1.3   A Brief History of Network Science 

Network science is not only a single field, but it is a result of convergence of many 

other subfields. The two major evolutions in network science are: (i) from mathematical 

theory to graph theory and (ii) from graph theory to collections of generalization about 

the things that are connected.  

The history of network science can be divided into three periods (Newman, 2010) as 

shown in Figure 1.1. 
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    Figure 1.1: History of network science 
 

1.3.1   Early pre-network period (1736 – 1966) 

Early pre-network period is the period when network science was really the 

mathematics of graphs. The very first known application of network science was 

Euler’s treatment of Bridges of Kӧnigsberg (Euler, 1736). This application established 

graph theory and demonstrated that many real-world problems can be solved by 

abstractions as graphs. Euler called a graph a mathematical object consisting of points 

(or nodes) and lines (or edges). In his study, Euler represented the four land masses as 

four vertices and joined them by seven edges in the pattern of the Kӧnigsberg bridges 

(Figure 1. 2). The problem is to start at one vertex, traverse all the edges exactly once 

and return to the starting vertex. 

In network science, the next major turning point was in 1925, when Yule first 

observed preferential attachment in evolution (Yule, 1925). Preferential attachment 

describes an emergent process and it explains the existence of scale-free networks in 

natural and synthetic systems. In 1927, Kermack and McKendrick discovered a 

mathematical epidemic model of the spread of a disease in biological networks. Their 

idea of epidemics was first applied by Solomonoff and Rappaport in 1951 to random 

networks. 

Early pre-network period (1736 – 1966) 

      The meso-network period (1967 – 1998) 

        The modern period (1998 – present) 
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Figure 1.2 (Anon., 2003): Kӧnigsberg bridge problem. (a) A map of eighteenth century 
Kӧnigsberg with its seven bridges. (b) Simplified illustration of the rivers and bridges in 
the Kӧnigsberg bridge problem. (c) the corresponding network of nodes and edges. 
 
 

By the mid-twentieth century, network science figured out that the nature and 

real objects could be modeled as random processes or as random graphs. In 1959, 

Gilbert built a random graph in two steps, the first step was to construct a complete 

graph and the second step was to delete the randomly selected links from the graph until 

it reached the desired number of links (Gilbert, 1959). But very soon in 1960, Erdos and 

Renyi, surpassed Gilbert’s algorithm and came up with an elegant and simple algorithm 

which is widely used today.  Erods-Renyi (ER) algorithm constructs a network of n 

nodes by inserting a link between randomly selected pair of nodes and this process is 

repeated until m links have been inserted (Erdos & Renyi, 1960). By late 1960s the seed 

of network science was planted in seemingly unrelated disciplines. 

 

1.3.2   The meso-network period (1967 – 1998) 

This is the period when applications of networks started emerging. In 1967, a major 

turning point in network science was marked by Stanley Milgram by his “six degrees of 

separation” experiment. Milgram called this network a small-world network because he 

concludes that the social world is smaller than the real world and it took only six hops 
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to connect a pair of strangers, regardless of where they lived. Milgram’s small-world 

idea is based on the “weak ties” theory. Later in 1973, Granoveter (Granovetter, 1973) 

gave his theory that social networks contain both “strong ties” and “weak ties”. Strong 

ties are the direct connection between two nodes and weak ties are the long-distance 

connections that bind social world. In 1978, Pool and Kochen determined the 

theoretical analysis of small-world networks. Bonacich was the first social scientist 

who postulated the mathematical representation of the social networks by using the 

connection matrix (Bonacich, 1972). The Marketing gurus remark that the highly-

connected people are superspreaders, while on the other hand the social scientists note 

that the middle-person or intermediary person is powerful and called it betweenesss. 

Betweenness is the number of paths that must run through a node to connect to other 

nodes. 

Kuramoto’s work in 1984 on synchronization in coupled linear systems has had 

a major impact on convergence between network science and control theory 

(Kuramoto, 1984). The fundamentals of network science had been established by 1998. 

This was the time when Internet was at rapid rise and Waxman proposed a static graph 

theory model of Internet (Waxman, 1988). 

 

1.3.3   The modern period (1998 – present) 

Emergence plays a very crucial role in the study of networks. In 1998, Holland defined 

emergence as “a major change in global properties of networks coming from small 

changes at the local level” (Holland, 1998). Watts and Strognatz showed their interest in 

small-world networks and generated arbitrarily small world networks that fall between a 
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random network and non-random network (Watts & Strogatz, 1998; Watts, 1999; 

Watts, 1999a). After this, the small world networks were not restricted to social 

networks only. The year 1999 turns out to be a milestone for the modern period, as this 

year was full of discoveries. M. Faloutsos, P. Faloutos and C. Faloutos observed a 

power law in their Internet graph model (Faloutsos, et al., 1999), and similarly Albert, 

Jeong, and Barbasi observed power law in their WWW model (Albert, et al., 1999). In 

(Barbasi, et al., 1999) Barbasi and Albert determined a generative procedure to produce 

scale-free networks. 

  Dorogovstsev, Mendes, Samukhim, Krapivsky, and Redner introduced the 

concept of power law of purely scale-free networks in many biological systems 

(Dorogovtsev, et al., 2000; Dorogovtsev, et al., 2002; Dorogovtsev & Mendes, 2002; 

Dorogovtsev & Mendes, 2003). In 2000, Kleinberg showed that it takes O (n) steps to 

search a small world using “Manhattan distance” (Kleinberg, 2000). Albert, Jeong, and 

Barbasi observed that the scale-free networks are resilient for protected hubs (Albert, et 

al., 2000). 

  Wang, Chen, Barahona, Pecora, Liu, Hong, Choi, Jost, Joy and others showed 

the stability of any network as a function of the network’s topology (Wang & Chen, 

2002; Wang & Chen, 2002a; Wang & Chen, 2002b; Barahona & Pecora, 2002; Liu, et 

al., 2002; Liu, 2003; Liu, et al., 2004; Liu, et al., 2004a; Hong & Kim, 2002; Jost & Joy, 

2002). 

  Wang, Chakrabarti, Wang, and Faloutsos determined the spread of epidemics by 

using the largest eigenvalue of connection matrix and network’s spectral radius (Wang, 

et al., 2003). 
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  Atay et al. (Atay, et al., 2006) studied synchronization in networks with the 

degree sequence distribution. Lewis (Lewis, 2009) extended the topological results of 

networks to several classes of Atay’s network and to a new class of networks called 

Kirchhoff newtorks. Atay’s network uses a local averaging algorithm to compute the 

state of nodes (Atay, et al., 2006), while the new class of Kirchhoff Networks stabilizes 

the value of nodes by maintaining the Kirchhoff’s first law. Recently network science 

has contributed to many results in many fields such as marketing, electrical engineering, 

biology, communication systems, etc. 

 

1.4   Key Aspects of Network Science 

To investigate the topology and dynamics of several systems, network science uses 

different tools such as graph theory, social network analysis, market competition 

modeling, epidemic modeling, etc. Network science is distinguished by the subject of 

study as well as by its methodology. Some key aspects of Network Science are given in 

Table 1. 

 

1.5   Networks 

1.5.1   Definition of network 

In simplest form, a network is a collection of points joined together in pairs by lines. 

The points are called nodes or vertices and the lines are called links or edges.  

A complete definition of network must include both structural and behavioral 

information (Lewis, 2009).  
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Aspects  Description 

Structure 

 

Networks are not just a random collection of nodes and 

links, but networks have structure. For example, social 

networks are not just a collection of people connected 

randomly, but instead, the networks have a distinct format 

or topology.  The nodes of a network, unite in a distinct 

format to form a structure. 

Topology 

 

The pattern in which the nodes of a network are connected 

is called topology. In dynamic networks, the topology 

changes as a function of time. Topology is a consequence 

of Darwinian forces that shape the network.  

Emergence 

 

Network science is the study of both static and dynamic 

properties of networks. The emergent property helps a 

dynamic network in achieving stability. Emergence is a 

network synchronization issue. A dynamic network 

transits from one state to another state until either cycling 

back or reaching a fixed point. The evolution of a network 

from initial state to future state is a called emergence. 

Power 

 

The power of a node is proportional to its degree i.e., the 

number of links connecting to the network of the power of 

a network is proportional to the strength of its nodes and 

links. 

Stability 

 

A network is dynamically stable if the rate of change in the 

state of its topology diminishes as time passes. 

Bottom-up evaluation 

 

Networks evolve from local level to the global level. They 

are designed and implemented by using bottom-up 

strategy.  

 

Table 1: Key aspects of network science 
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The structural information of a network is modeled by the corresponding graph. 

The behavioral information about networks is defined by a set of microrules governing 

the behavior of nodes and links. 

Definition 1.5.1:  For a given network G, 

(ݐ)ܩ = :(ݐ)݂,(ݐ)ܧ,(ݐ)ܸ}  ,{(ݐ)ܬ

where, 

 is a function of time t (ݐ)ܩ            

            t = time, simulated or real 

  V = nodes or vertices 

      E = links or Edges 

  ݂:ܰ×ܰ = mapping function that connects nodepairs, yielding topology 

  J = “ microrules” or algorithm for describing behaviors of nodes and  

         links versus time. 

 

1.5.2   Types of networks 

Networks are divided into four general classes (Newman, 2010): 

(i) Technological networks 

(ii)  Social networks 

(iii)  Information networks 

(iv)   Biological networks 

 

The list of some of the most important examples in each class and their description is 

given in Table 2. 
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Classes Examples Nodes and Edges Description 

 

 

 

 

Technological 

Networks 

The Internet Nodes: Computers or 

other devices 

Edges: wires or 

wireless 

The Internet is a network of 

physical data connections 

between computers and related 

devices. 

The 

Telephone 

network 

Nodes: Telephones or 

mobile phones 

Edges: Wires or 

wireless 

The telephone network is a 

network of landlines and 

wireless links that transmit 

telephone calls. 

Power Grids Nodes: Generating 

stations and 

switching substations 

Edges: High-voltage 

lines 

A power grid is a network of 

high-voltage transmission lines 

that provide long-distance 

transport of electric power 

within and between countries. 

Transportation 

Networks 

Nodes: Geographic 

locations 

Edges: Routes 

between geographic 

locations 

Transportation networks 

describe the flow of some 

commodity or vehicular 

movement between geographic 

locations. Some examples of 

transportation networks are 

airline route networks, road 

networks and rail networks. 

 

Social 

Networks  

Facebook, 

Twitter, 

MySpace.  

Nodes: People or 

groups of people 

Edges: social 

interaction, such as 

friendship. 

A social network is a network of 

people (such as friends, 

coworkers) connected by some 

social relationships (such as 

friendship). Sociologists call 

vertices (or people) as actors and 

the edges as ties. 

 

 

Information 

Networks 

The World 

Wide Web 

Nodes: Web pages 

consisting of text, 

pictures or other 

information. 

The world-wide web is a 

network of web pages that are 

connected to each other by 

means of hyperlinks. Hyperlinks 
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Edges: hyperlinks or 

hypertexts. 

allow us to navigate from one 

web page to another.  

Citation 

Networks 

Nodes: papers 

Edges: citation  

In citation networks, there is a 

direct edge from paper A to 

paper B if paper A cites paper B 

in its bibliography. 

 

 

 

 

Biological 

Networks 

Biochemical 

networks 

Nodes: molecules 

(genes, proteins, 

metabolites, cells 

etc.) 

Edges: interaction 

(reactions, molecular 

interaction, 

regulatory interaction 

etc.) 

Biochemical networks represent 

the molecular level patterns of 

interaction and mechanisms of 

control in the biological cell. 

Examples of Biological 

networks are metabolic 

networks, protein-protein 

interaction networks, and genetic 

regulatory networks. 

Neural 

networks 

Nodes: neurons 

Edges: excitatory 

inputs, inhibiting 

inputs. 

A neural network is a network 

that models the brain and central 

nervous system in animals. The 

neurons are connected by two 

types of directed edges, one for 

excitatory inputs and one for 

inhibiting inputs. 

Ecological 

Networks 

Nodes: species, 

individuals 

Edges: interaction 

between species. 

Ecological network is a network 

of ecological interactions 

between species. Examples of 

ecological networks are Food 

web networks, host-parasite 

networks, mutualistic networks, 

etc. 

 
Table 2: Types of networks 
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1.6   Overview of Resistance Distance and Kirchhoff Index 

As discussed in the previous sections, graphs and networks have been used 

extensively in many applications (Newman, 2010; Easley & Kleinberg, 2010; Barabasi, 

2013; Chiang, 2012).  In these works, several network measures have been defined and 

studied. Of these measures, closeness and betweenness measures of nodes and edges 

that capture their criticality have received a great deal of attention. In defining these 

measures, paths between nodes play an important role. Though, in general, all paths 

must be used in assessing the centrality of a node, shortest paths are used because they 

are easy to compute.  To mitigate the effect of the approximation of criticality by 

considering only shortest paths, other measures that capture both the lengths of paths 

and the number of these paths between nodes need to be investigated.  Resistance 

distance and Kirchhoff Index are two such exemplary measures. To capture accurately 

the impact of paths, resistance distance can be used in place of shortest distances and 

Kirchhoff index can be used in place of the sum of all shortest distances. This motivates 

our study in this dissertation 

 Resistance distance is based on the electrical network theory and it was first 

introduced by Klein and Randiܿ́ (Klein & Randic, 1993). The concept of resistance 

distance has been much studied in the chemical studies (Klein & Randic, 1993; Xiao & 

Gutman, 2003). Resistance distance implies many dynamic properties of a graph or 

network. The properties of resistance distances were proved using the Laplacian matrix 

(Xiao & Gutman, 2003; Xiao & Gutman, 2003a). Resistance distance and Kirchhoff 

index have wide applications in complex networks, chemistry, physics, electric circuit, 
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graph theory and others. The concept of the Kirchhoff analysis was first introduced by 

G. Kirchhoff (Kirchhoff, 1847) in 1847 for the graph-theoretic study of electric circuits.  

Resistance distance across a pair of nodes is the same as the effective resistance 

across that pair, treating each edge as a 1 ohm resistance. A special case of this 

restricted to only the edges of a graph was studied by Foster (Foster, 1949). A further 

generalization of this was given by Foster in (Foster, 1961). In (Tetali, 1994) Tetali 

proved Foster’s first theorem using certain results from the theory of Markov chains, 

then Palacios gave an extension of Foster’s second theorem in (Palacios, 2004). 

Generalization of all of the Foster’s theorems are given by Cinkir in (Cinkir, 2011). The 

connection between resistance distance and random walks on graphs have been 

discussed in (Thulasiraman, et al., 2015; Doyle & Snell, 1984). 

Kirchhoff index is the sum of the resistance distances across all pairs of nodes 

in the network. Kirchhoff index has also been studied using the graph Laplacian. The 

Laplacian of a graph is the same as the indefinite admittance matrix of a resistance 

network that has been studied by electrical circuit theorists extensively in the 

development of several results (Swamy & Thulasiraman, 1981). See (Molitierno, 2012) 

for detailed study of the Laplacian from a graph-theoretic perspective.  

 

1.7   Organization of the Dissertation 

The rest of the dissertation is organized as follows. Chapter 2 discusses the relationship 

between resistance distance and Kirchhoff index. A new formula for Kirchhoff index is 

presented in this chapter. The generalization of Laplacian matrix using the fundamental 

cutset matrix is introduced in Chapter 3. Two approaches to compute Kirchhoff index 
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are presented in this chapter. Chapter 4 generalizes the notion of Kirchhoff index and 

studies its relationship to Foster’s theorems. A dual form of Foster’s first theorem is 

developed in this chapter. We propose sequential and parallel algorithms for resistance 

distance in Chapter 5. A novel approximation algorithm for resistance distance and 

Kirchhoff index is introduced in this chapter. Conclusion and future work is given in 

Chapter 6. 
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Chapter 2 

Resistance Distance and Kirchhoff Index in Networks 

 

Over the past several years a variety of graph measures have been proposed to reveal 

the behavior of networks based on topological and dynamical characteristics. Resistance 

distance and Kirchhoff index are highly valuable graph measures in the study of various 

network problems. These measures were first studied in the chemical literature. In 

recent years, they have also attracted the attention of researchers in electrical 

engineering, mathematics, computer science and social networks. 

In 1993, Klein and Randić (Klein & Randic, 1993) introduced the concept of 

resistance distance. The resistance distance concept is the convergence of resistive 

electrical network theory and the graph theory.  An electrical resistance network can be 

viewed as a connected graph, with the junctions in the electrical network as the vertices 

of the graph and the unit resistors of one ohm as the edges of the graph. The effective 

resistance between pairs of vertices is called the resistance distance between these 

vertices. Kirchhoff index of a graph is the sum of resistance distances between all pairs 

of vertices. The Laplacian matrix of a graph plays an important role in the computation 

of resistance distance and Kirchhoff index. The standard method to obtain resistance 

distance is via Moore-Penrose pseudoinverse ܮା of the Laplacian matrix L of a 

connected graph G (Klein & Randic, 1993; Zhu, et al., 1996).  

This chapter is concerned with the study of relationship between resistance 

distance and Kirchhoff index. In the following section, we briefly present certain basic 
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definitions in graph theory. For other graph theory concepts not covered in section 2.1 

(Kirchhoff, 1847) may be consulted. 

 

2.1   Basic Definitions 

Let ܩ = (ܩ)ܸ be a connected graph with the vertex set ((ܩ)ܧ,(ܩ)ܸ) = ,ଵݒ} ,ଶݒ 

,ଷݒ . . . . . . , ௡ݒ  } and the edge set ܸ(ܩ) = {݁ଵ,  ݁ଶ, ݁ଷ, . . . . . . , ݁௠}, where ݊ is the number 

of vertices and ݉ is the number of edges. Let ܰ be an electrical network obtained from 

the connected graph  ܩ. To obtain an electrical network from the graph ܩ, replace each 

edge of G with a unit resistor. 

The resistance distance ݎ௜௝ between vertices ݒ௜ and ݒ௝ of graph G is defined as 

the effective resistance between vertices ݒ௜ and ݒ௝ of the electrical network N.  The 

effective resistance ݎ௜௝ is the potential difference between vertices ݒ௜ and  ݒ௝ when unit 

current is injected into ݒ௜ and drawn from ݒ௝. 

The effective resistance between two vertices of an electrical circuit can easily 

be calculated by the well-known series and parallel manipulation and star-delta 

transformation. Figure 2.1 (a) illustrates the series and parallel manipulation method to 

calculate the effective resistance distance ݎ௔௕ between vertices ݒ௔ and ݒ௕. Figure 2.1 (b) 

illustrates the start-delta transformation to calculate the effective resistance distance by 

using conductance ݃௜ , which is the reciprocal of conductance ݃௜ , i.e., ݎ௜ = ଵ
௚೔

 . 

The Kirchhoff index is a structure descriptor (Xiao & Gutman, 2003a) based on 

the resistance distance. The Kirchhoff index (ܩ)݂ܭ of the graph G is defined as 

(ܩ)݂ܭ =  ෍ݎ௜௝
௜ழ௝

 .                                                                     (2.1)  
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Figure 2.1: Effective resistance using (a) series-parallel method (b) star-delta 
transformation. 
 
 

The resistance distance and Kirchhoff index have been extensively studied in 

chemical literature. Kirchhoff index appears in several applications: electrical networks, 

Markov chain, averaging networks, and experiment design (Klein & Randic, 1993; 

Kirchhoff, 1847; Bonchev, et al., 1994; Hu, et al., 2013; Hu, et al., 2013a). The  formula 
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(i) Resistors in Series 
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(ii) Resistors in Parallel 

(a) Effective resistance using series and parallel manipulation method. 
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(b) Effective resistance using star-delta transformation (removing  ݒௗvertex) 
method. 
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               ݃஺ =  ௚భ௚య
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for Kirchhoff index has been computed for some classes of graphs such as cycle-

containing graphs (Klein, et al., 1995; Lukovits, et al., 1999), complete graphs 

(Lukovits, et al., 1999), circulant graphs (Zhang & Yang, 2007) and distance transitive 

graphs (Palacios, 2001). Bapat (Bapat, 2004) obtained a formula for the inverse and 

determinant of resistance distance for weighted graphs by using the properties of 

resistance distance and Kirchhoff index defined by Xiao and Gutman (Xiao & Gutman, 

2003a). Several properties of the Kirchhoff index related to the normalized Laplacian 

eigen values of a connected graph are presented by Zhou and Trinajstic (Zhou & 

Trinajstic, 2009).  

In 1993, Kunz (Kunz, 1993) studied the properties of the Laplacian matrix for 

finding the topological distances in the graph. In 1949, Foster (Foster, 1949) discussed 

the concept of the effective resistance distance and recently in 2004 this concept was 

again studied by Palacios (Palacios, 2004). Palacios used effective resistance distance to 

extend the Foster’s first and second formulas and then used Foster’s third formula to 

compute the Kirchhoff index of a class of graphs with diameter 3. Further review of 

literature on Foster’s theorems will be given in Chapter 4. 

In this chapter, we study the relationship between resistance distance, Kirchhoff 

index and the Laplacian matrix of a graph. Section 2.2 discusses the incidence, 

adjacency and Laplacian matrices of a graph, Section 2.3 discusses the topological 

formulas for resistance network functions. Section 2.4 describes the basic facts and 

notations of Laplacian graph spectral theory. A new formula for the Kirchhoff index of 

a graph is presented in section 2.4. Three proofs of this formula based on the properties 
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of the pseudo-inverse of the Laplacian matrix, topological formula for network 

functions and basic concepts of electrical circuit theory are presented. 

 

2.2   Matrices of a Graph 

In this section, we introduce the incidence, adjacency and Laplacian matrices of a graph 

and establish several properties of these matrices that help to reveal the structure of a 

graph (Swamy & Thulasiraman, 1981). The incidence, adjacency and Laplacian 

matrices arise in the study of electrical network because these matrices are the 

coefficient matrices of the Kirchhoff’s equation that describes a network. Thus, the 

properties of these matrices form the basis of graph-theoretic study of electrical 

networks and systems, in particular, resistance distance and Kirchhoff index. 

 

2.2.1   Incidence matrix 

Consider a graph G with n vertices and m edges and having no self-loops. The all-vertex 

incidence matrix ܣ௖ = [ܽ௜௝] of G has n rows, one for each vertex, and m columns, one 

for each edge. The element ܽ௜௝ of ܣ௖ is defined as follows: 

     G is undirected 

            ܽ௜௝ = ൜1,      If the ݆the edge is incident on the ݅the vertex;
0,      otherwise                                                                                 (2.2) 

      G is directed 

              ܽ௜௝ =

⎩
⎪
⎨

⎪
⎧

1,       if the ݆th edge is incident on the ݅th vertex and        
    oriented  away from it;                                              

−1,    if the ݆th edge is incident on the ݅th vertex and            
  oriented  toward it ;                                                        

0,      otherwise                                                                                  

        (2.3) 
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A row of ܣ௖ will be referred to as an incidence vector of G. Two graphs and their all-

vertex incidence matrices are shown in Figures 2.2a and 2.2b. 

It should be clear from the preceding definition that each column of  ܣ௖ contains 

exactly two non-zero entries, one +1 and one -1. Therefore, we can obtain any row of 

݊ ௖ from the remainingܣ − 1 rows. Thus, any ݊ − 1 rows of ܣ௖ contain all the 

information about ܣ௖ . In other words the rows of ܣ௖ are lineraly dependent. 

An (n −1)-rowed submatrix A of ܣ௖ will be referred to as an incidence matrix of 

G. The vertex which corresponds to the row of ܣ௖ which is not in A will be called the 

reference vertex or datum vertex of A. 

 

 

        
 

             
   (a)     (b) 

Figure 2.2: Incidence matrix. (a) An undirected graph G and its all-vertex incidence 
matrix. (b) A directed graph G and it’s all vertex incidence matrix. 
 
 



22 

Note that 

rank(ܣ) = rank(ܣ௖) ≤ ݊ − 1 

In the case of a connected graph, the rank of ܣ௖ is in fact equal to ݊ − 1. This result is 

based on the following theorem.  

Theorem 2.1 The determinant of any incidence matrix of a tree is equal to ±1.  

See (Swamy & Thulasiraman, 1981) for a proof of the above theorem. 

Since a connected graph has at least one spanning tree, it follows from Theorem 

2.1 that in any incidence matrix A of a connected graph with n vertices there exists a 

nonsingular submatrix of order ݊ − 1. Thus, for a connected graph A, 

rank(ܣ) = ݊ − 1. 

 

Since  rank(ܣ௖) = rank(ܣ), we get the following theorem. 

 

Theorem 2.2. The rank of the all-vertex incidence matrix of an n-vertex connected 

graph G is equal to n-1, the rank of G. 

 

An immediate consequence of Theorem 2.2 is the following. 

Corollary 2.2.1. If an n-vertex graph has p components, then the rank of its all-vertex 

incidence matrix is equal to n – p, the rank of G. 

 

2.2.2   Adjacency matrix 

Let  ܩ = ܸ be a directed graph with no parallel edges. Let (ܧ,ܸ) = ,ଵݒ} ⋯,ଶݒ  ௡}. Theݒ,

adjacency matrix ܯ = [݉௜௝] of G is an ݊×݊ matrix with ݉௜௝ define as follows: 

݉௜௝ = ൜1,      if ൫ݒ௜ ௝൯ݒ, ∈ .ܧ
0,     otherwise.      

         (2.4) 
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In the case of an undirected graph, ݉௜௝ = 1 only if there is an edge connecting ݒ௜ and ݒ௝. 

For example, the undirected graph of Figure 2.2(a)  has the following adjacency matrix: 

 

and the directed graph of Figure 2.2(b) has the following adjacency matrix: 

 

Clearly, for undirected graphs, the adjacency matrix M  is a symmetric matrix with 

zeros on the diagonal. 

 

2.2.3   Laplacian matrix 

Let ܩ = (ܩ)ܸ be a weigthed graph with vertex set (ܧ,ܸ) = ,ଶݒ,ଵݒ} . . . . ,  ௡} and edgeݒ

set (ܩ)ܧ. Let  ݓ௜௝  denote the weight of edge (݅, ݆). The adjacency matrix (ܩ)ܯ is as 

defined in (2.4). Then the degree matrix (ܩ)ܦ is defined as 

௜,௝ܦ = ቄ sum of the weights of the edges incident on ݅             ݂݅ ݅ = ݆        
   ݁ݏ݅ݓݎℎ݁ݐ݋                                                                                               0

           (2.5) 

Note that if each ݓ௜௝ = 1, then ܦ௜,௜ is equal to the degree of i. 

The Laplacian matrix of a weighted graph ܩ is a square matrix of order n, defined by 

(ܩ)ܮ =  (2.6)                                                                 . (ܩ)ܯ−(ܩ)ܦ
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Note that, the (݅, ݆)- entry of Laplacian matrix ܮ can be written as: 

௜,௝ܮ =

⎩
⎨

⎧
௜௝ݓ−                                                 ݂݅ ݅ ≠ ௜ݒ ݀݊ܽ ݆                   ݐ݆݊݁ܿܽ݀ܽ ݁ݎܽ ௝ݒ ݀݊ܽ 
   0                                                    ݂݅ ݅ ≠ ௜ݒ ݀݊ܽ ݆            ݐ݆݊݁ܿܽ݀ܽ ݐ݋݊ ݁ݎܽ ௝ݒ ݀݊ܽ 
Sum of the weights of the        ݂݅  ݅ = ݆                                                                         
edges incidnet on ݅                                                                                                   (2.7)

 

 

So ܮ = ௖௧ܣ௖ܹܣ   where W is the diagonal matrix with the diagonal entries representing 

the weights on the edges. 

Let ܮ(ଓ)തതതത be a reduced Laplacian matrix which is obtained by removing ith row 

and ith column from L. The reduced Laplacian matrix of a graph G is given by 

തതതത(ଓ)ܮ =  ௧                                       (2.8)ܣܹܣ

The Laplacian matrix and reduced Laplacian matrix of a weighted directed graph G 

(Figure 2.3) is calculated as follows. The diagonal matrix W for given graph is 

ܹ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 0 0
0 3 0
0 0 2

    
0 0 0
0 0 0
0 0 0

    
0
0
0

0 0 0
0 0 0
0 0 0

    
3 0 0
0 1 0
0 0 1

    
0
0
0

0 0 0    0 0    0 3⎦
⎥
⎥
⎥
⎥
⎥
⎤

 . 

We can now calculate Laplacian matrix by using  L = ܣ௖ܹܣ௖௧ . 

ܮ =  

⎣
⎢
⎢
⎢
⎢
⎡

    5 −2    0
−2     5 −3
     0 −3    6

    
−3   0    0
   0    0    0
−2 −1    0

  −3   0  −2
      0    0 −1
      0    0    0

    
  6 −1   0
−1   5 −3
   0 −3    3⎦

⎥
⎥
⎥
⎥
⎤
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Figure 2.3: A weighted directed graph G and its all-vertex incidence matrix. 
 

The reduced Laplacian matrix after deleting the ݊௧௛ row of the incidence matrix ܣ௖  

using (2.8) is 

̅(ଓ)ܮ =  

⎣
⎢
⎢
⎢
⎡
   5 −2     0
−2    5 −3
   0 −3    6

    
−3    0
   0    0
−2  −1

−3    0 −2
   0    0 −1        6 −1

−1  5 ⎦
⎥
⎥
⎥
⎤
 . 

 

2.2.4   Matrix-tree theorem 

2.2.4.1  The number of spanning trees 

A spanning tree of a graph G is a tree of G having all the vertices of G. The spanning 

trees of a connected graph are in one-to-one correspondence with the nonsingular 

submatrices of  matrix A.  

 

Theorem 2.3. A square submatrix of order ݊ − 1 of any incidence matrix A of an n-

vertex connected graph G is nonsingular if and only if the edges that correspond to the 

columns of the submatrix form a spanning tree of G. 
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Given a spanning tree of a graph G, the product of all the weights of edges in the 

spanning tree is called the tree weight product. We denote by ߬(ܩ) the sum of the 

weights product of all spanning tree of G. 

 

Theorem 2.4. Let G be a connected and weighted undirected graph and A be an 

incidence matrix of the directed graph that is obtained by assigning arbitrary 

orientations the edges of G. Then 

(ܩ)߬ = (௧ܣܹܣ)ݐ݁݀ = ݐ݁݀ ̅(ଓ)ܮ  .݅ ݔ݁ݐݎ݁ݒ ݕ݊ܽ ݎ݋݂       ,

 

Thus, from Theorem 2.4 we get the following result, originally due to Kirchhoff 

(Kirchhoff, 1847). 

 

Theorem 2.5. All the cofactors of the degree matrix of a connected undirected graph 

has the same value as the number of spanning trees of  G. 

 

2.2.4.2 The number of spanning 2-trees 

A k-tree is an acyclic graph consisting of k components. If a k-tree is a spanning 

subgraph of a graph G, then it is called a spanning k-tree of G. The spanning 2-trees 

௜ܶ௝௞…,௥௦௧… denotes a 2-tree, in which the vertices ݒ௜, ௞ݒ,௝ݒ , … are required in one 

component and the vertices ݒ௥ , ௧ݒ,௦ݒ , … are required to be in the other component of the 

2-tree. For example,  Figure 2.4(b) shows an example of a spanning 3-tree of the graph 

G shown in Figure 2.4(a). 
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(a)                                                                     (b) 

Figure 2.4: Spanning tree. (a) Graph G  (b) A spanning 3-tree T of G. 
 

 

The sum of weight products of all spanning 2-trees of type ௜ܶ௝…,௥௦… will be 

denoted by ߬௜௝௞…,௥௦௧…. Let ∆௜௝ denote the (i, j) cofactor of ܣܹܣ௧. That is, ∆௜௝ is the (݅, ݆) 

cofactor of ܮ( ത݇) for any ݇. 

 

Theorem 2.6.  For a connected graph G, 

     ∆௜௜=  ߬௜,௡   and 

∆௜௝=  ߬௜௝,௡   

 

2.2.5   Pseudo-inverse of Laplacian matrix 

The sum of elements in each row and the sum of elements in each column of a 

Laplacian matrix is zero, that is,  

෍ܮ௜௝

௡

௜ୀଵ

=  ෍ܮ௜௝  
௡

௝ୀଵ

= 0 .                                                         (2.9) 

So, the determinant of Laplacian matrix is zero, that is,  det (ܩ)ܮ = 0. 

Since the determinant of the Laplacian matrix is zero, it has no inverse. So, the 

Moore-Penrose pseudoinverse of (ܩ)ܮ is used as a substitute for the inverse of (ܩ)ܮ. 
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The Moore-Penrose pseudoinverse of Laplacian matrix (ܩ)ܮ is denoted by ܮା(ܩ) and 

has the following basic properties 

(i) ܮ(ܩ)ܮା(ܩ)(ܩ)ܮ =  (ܩ)ܮ

(ii) ܮା(ܩ)ܮ(ܩ)ܮା(ܩ) =  (ܩ)ାܮ

(iii) [ܮ(ܩ)ܮା(ܩ)]ᇱ =  (ܩ)ାܮ(ܩ)ܮ

(iv) [ܮା(ܩ)(ܩ)ܮ]ᇱ =  (ܩ)ܮ(ܩ)ାܮ

The Moore-Penrose pseudoinverse ܮା(ܩ) can be computed as follows (Gutman & 

Mohar, 1996): 

(ܩ)ାܮ   = ቀ(ܩ)ܮ +  ௃
௡
ቁ
ିଵ
− ௃

௡
                                      (2.10) 

where  ܬ ∈ ܴ௡௫௡ is a matrix of all 1’s and n is the number of vertices of graph  ܩ. 

 

The following properties were established and proved by several authors 

(Gutman & Xiao, 2004) for the Moore-Penrose pseudoinverse of the Laplacian matrix. 

Lemma 2.7 (Klein, et al., 1995). The Moore-Penrose pseudoinverse ܮା(ܩ) of the 

Laplacian matrix (ܩ)ܮ of a connected graph is real and symmetric. 

 

Lemma 2.8 (Klein, et al., 1995).  The Laplacian matrix and its pseudoinverse satisfy 

the following relations 

ܬ(ܩ)ܮ              = (ܩ)ܮܬ = 0  

ܬ(ܩ)ାܮ                                                          = (ܩ)ାܮܬ = 0       

 

Lemma 2.9 (Klein, et al., 1995).  If (ܩ)ܮ and ܮା(ܩ) pertain to a connected graph on n 

vertices, then 

(ܩ)ାܮ(ܩ)ܮ = (ܩ)ܮ(ܩ)ାܮ = ܫ −  
ܬ
݊ 
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Theorem 2.10 (Klein, et al., 1995).  If ܩ is a connected graph, then the inverse of the 

matrix (ܩ)ܮ + ௃
௡
 exists and is equal to ܮା(ܩ) + ௃

௡
. 

Proof.  Using Lemma 2.8 and Lemma 2.9, and the fact that ܬଶ =  we have ,ܬ݊

൬(ܩ)ܮ +  
ܬ
݊൰ ൬ܮ

ା(ܩ) +
ܬ
݊൰ = (ܩ)ାܮ(ܩ)ܮ +

ܬ
݊ ܮ

ା(ܩ) +
1
݊ ܮ

ܬ(ܩ) +
1
݊ଶ ܬ

ଶ 

                         = ቀܫ − ௃
௡
ቁ + ܱ + ܱ + ௃

௡
=                        .ܫ

 

2.3   Topological Formulas for Electrical Resistance Networks 

2.3.1   Resistance networks 

      An electrical network is an interconnection of electrical network elements such as 

resistances, capacitances, inductances and voltage and current sources. We will assume 

that all the network elements in the networks to be considered are resistances. Each 

network element is associated with two variables, the voltage variable (ݐ)ݒ and the 

current variable ݅(ݐ). We need to specify reference directions for these variables 

because they are functions of time and may take on positive and negative values in the 

course of time. This is done by assigning an arrow, called orientation, to each network 

element (Figure 2.5). This arrow means that ݅(ݐ) is positive whenever the current is in 

the direction of the arrow. Further we assume that the positive polarity of the voltage 

 is positive whenever the voltage drop in  (ݐ)ݒ is at the tail end of the arrow. Thus  (ݐ)ݒ

a network element is in the direction of the arrow.  

 

   

 

Figure 2.5: A network element (representation). 

 (ݐ)݅

 (ݐ)ݒ + -
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Network elements are characterized by the physical relationships between the 

associated voltage and current variables. Ohm’s law specifies the relationship between 

  as (ݐ)݅ and (ݐ)ݒ

(ݐ)ݒ =  (2.11)           (ݐ)݅ ܴ

where R is the resistance (in ohms) of the network element.  

Note that for some of the network elements the voltage variables may be 

required to have specified values and for some others the current variables may be 

specified. Such elements are called, respectively, the voltage and current sources.  

Two fundamental laws of network theory are Kirchhoff’s laws, that are stated as 

follows: 

Kirchhoff’s Current Law (KCL): The algebraic sum of the currents flowing out of a 

vertex is equal to zero. 

 

Kirchhoff’s Voltage Law (KVL): The algebraic sum of the voltages around any 

circuit is equal to zero. 

 

         
Figure 2.6: Directed graph representation of an electrical network. (a) Electrical 
Network G. (b) Directed graph of G 
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For instance, for the network shown in Figure 2.6(a) the KCL and KVL equations are as 

given below. In this figure element 5 is a voltage source and element 4 is a current 

source. 

KCL equations: 

vertex a = ݅ଵ − ݅ହ + ݅଺ = 0, 

vertex c = −݅ଶ + ݅ସ − ݅଺ = 0, 

vertex b = −݅ଵ + ݅ଶ + ݅ଷ = 0. 

KVL equations: 

circuit {1, 3, + 1ݒ               {5 + 3ݒ = 5ݒ  0  

circuit {2, 4, + 2ݒ                {3 − 4ݒ = 3ݒ  0 

 circuit {1, 6, 2}            − + 1ݒ − 6ݒ = 2ݒ  0 

 

Given an electrical network G, the problem of network analysis is to determine 

the element voltages and currents that satisfy Kirchhoff’s laws and the Ohm’s law.  

Notice that the equations which arise from an application of Kirchhoff’s laws 

are algebraic in nature, and they depend only on the way the network elements are 

interconnected and not on the nature of the network elements. There are several 

properties of an electrical network which depend on the structure of the network. In 

studying such properties, it will be convenient to treat each network element as a 

directed edge associated with the two variables (ݐ)ݒ and ݅(ݐ) . Thus, we may consider 

an electrical network as a directed graph in which each edge is associated with the two 

variables (ݐ)ݒ and ݅(ݐ), which are required to satisfy Kirchhoff’s laws and the Ohm’s 
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law. For example, the directed graph corresponding to the network of Figure 2.6(a) is 

shown in Figure 2.6(b).  

It is now easy to see that KCL and KVL equations for a network G can be 

written, respectively, as  

    ܳ௖ܫ௘ = 0                (2.12) 

and 

௖ܤ     ௘ܸ = 0                (2.13) 

where ܳ௖and  ܤ௖ are the cut and circuit matrices of the directed graph associated with 

G, and  ܫ௘ and  ௘ܸ  are, respectively, the column vectors of element currents and voltages 

of N.  

Since the all-vertex incidence matrix  ܣ௖ is a submatrix of  ܳ௖ and has the same 

rank as  ܳ௖, we can use in equation (2.3) the matrix ܣ௖  in place of ܳ௖. Thus, KCL 

equations can be written as 

௘ܫ௖ܣ     = 0                (2.14) 

 Since the rank of ܣ௖ is n−1, we can remove any row from ܣ௖  and use the 

resulting matrix A called the incidence matrix. The vertex corresponding to the removed 

row is called the reference or datum vertex. 

 

2.3.2  Topological formulas for resistance network functions 

Consider first a 1-port resistance network G. Each port is defined by a pair of nodes. 

The network is available for connection through the ports to the other parts of a system. 

Let the network G have ݊ + 1 nodes denoted by 0, 1, 2, ..., n, and let the nodes 1 and 0 

be, respectively, the positive and negative reference terminals of the port (Figure 2.7).  
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Let us now excite the network by connecting a current source of value ܫଵ across 

the port. Let ଵܸ, ଵܸ , ଶܸ, … , ௡ܸ   denote the voltages of the nodes 1, 2, ..., n with respect to 

node 0. This means  ଴ܸ = 0 and  ௜ܸ is the voltage between the nodes i and 0 (that is  ௜ܸ =

  ௜ܸ −  ଴ܸ ) for ݅ ≠ 0. Also, the A matrix does not contain the row corresponding to the 

vertex 0.  

 

 
Figure 2.7: A 1-port network. 

 

Then we have  

௘ܫ ܣ − ܫ = 0, 

that is 

௘ܫ ܣ =  (2.15)               ܫ

where, 

ܫ =  

⎣
⎢
⎢
⎢
⎡
ଵܫ
0
0
⋮
0 ⎦
⎥
⎥
⎥
⎤
. 

Note that in the graph representation of a port, the corresponding edge will be 

oriented from the positive terminal to the negative terminal. So, the current flowing 

through this in the direction of the orientation is −ܫଵ where the voltage from positive 

terminal to negative terminal of the port is ݒଵ. 

G 
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Let the network elements be labeled as ݁ଵ, ݁ଶ, . . . , ݁௠   with ݎ௜ denoting the 

resistance value of element ݁௜. Then the conductance of ݁௜ is given by ݓ௜ =  ଵ
௥೔

 . Let W 

be the diagonal matrix with its (i, i) entry equal to ݓ௜. Then we can write 

௘ܫ  = ܹ ௘ܸ               (2.16) 

Suppose the end vertices of ݁௜ are k and l. Then the voltage across this element (voltage 

drop from node k to node l) is given by ௞ܸ − ௟ܸ , assuming that the element is oriented 

from vertex k to vertex l. So, we can write 

௘ܸ =  ௧ܸ              (2.17)ܣ

where V is the vector of voltages ଵܸ , ଶܸ , … , ௡ܸ. Combining (2.15), (2.16) and (2.17) we 

get the node equations 

௧ܸܣܹܣ =  (2.18)              ܫ

where 

ܸ =  

⎣
⎢
⎢
⎢
⎡ ଵܸ

ଶܸ

ଷܸ
⋮
௡ܸ ⎦
⎥
⎥
⎥
⎤

 

Let  

ܻ =  ௧ܣܹܣ

so, that  

ܻ ܸ =  (2.19)              ܫ

Note that the matrix Y is the same as the reduced Laplacian ܮ(0ത) defined in section 

2.2.3. 

The matrix Y is called the node-conductance matrix of the network with vertex 0 

as the reference. Solving (2.19) for ଵܸ, we get 
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ଵܸ =
∆ଵଵ
∆  , ଵܫ

where 

 ∆ = det Y 

and 

∆ଵଵ = (1,1) cofactor of Y. 

So, the driving-point resistance across vertices 1 and 0 is given by 

ݖ =  ௏భ
ூభ

= ∆భభ
∆

 ,                                (2.20) 

and the driving-point conductance across 1 and 0 is given by 

ݕ =  ଵ
௭

= ∆
∆భభ

  .                     (2.21) 

To illustrate certain principles of network analysis, consider next a 2-port 

network G (See Figure 2.8). If the ports of G are excited by current sources of values ܫଵ 

and ܫଶ, then the node equations of G can be written as  

YV = I 

where 

ܫ =

⎣
⎢
⎢
⎢
⎡
ଵܫ
ଶܫ
ଶܫ−
⋮
0 ⎦
⎥
⎥
⎥
⎤
 . 

 

 
Figure 2.8: A 2-port network. 
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Solving for the node voltages ଵܸ, ଶܸ, and ଷܸ, we get 

ଵܸ =  
1
∆

(∆ଵଵܫଵ + ∆ଶଵܫଶ − ∆ଷଵܫଶ ), 

ଶܸ =  
1
∆

(∆ଶଵܫଵ + ∆ଶଶܫଶ − ∆ଷଶܫଶ ), 

ଷܸ =  
1
∆

(∆ଷଵܫଵ + ∆ଷଵܫଶ − ∆ଷଷܫଶ ), 

From the above relations, we get 

൤ ଵܸ

ଶܸ − ଷܸ
൨ = ଵ

∆
൤ ∆ଵଵ
∆ଵଶ − ∆ଶଵଷ

             ∆ଶଵ − ∆ଷଵ
∆ଶଶ + ∆ଷଷ − ∆ଷଶ − ∆ଶଷ

൨  ൤ܫଵܫଶ
൨                   (2.22) 

      = ܼ௢௖ܫ 

Here ܼ௢௖ is called the open circuit resistance matrix of the 2-port network. This 

is because each element of ܼ௢௖ is obtained by setting one of the port currents equal to 

zero (that is, open-circuiting the corresponding port). Thus 

ଵଵݖ = ଵܸ

ଵܫ
 ฬ ଶܫ  = 0 , 

ଵଶݖ = ଵܸ

ଶܫ
 ฬ ଵܫ  = 0 , 

ଶଵݖ = ଶܸ

ଵܫ
 ฬ ଶܫ  = 0 , 

ଶଶݖ = ଶܸ

ଶܫ
 ฬ ଵܫ  = 0 , 

 

Here ݖଵଵ and ݖଶଶ are called driving point resistances across the respective ports 

and ݖଵଶ and ݖଶଵ are called transfer resistances between the ports. Note that since Y is 

symmetric, we have 

∆௜௝=  ∆௝௜ . 
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So 

ܼ௢௖ = ଵ
∆
൤ ∆ଵଵ
∆ଵଶ − ∆ଶଵଷ

             ∆ଶଵ − ∆ଷଵ
∆ଶଶ + ∆ଷଷ − ∆ଷଶ − ∆ଶଷ

൨ .                                 (2.23) 

 

Thus, from Theorem 2.5, we have the following results 

∆=  (ܩ)߬

∆ଵଵ= ߬ଵ,଴ .                                          (2.24) 

Recall that ߬(ܩ) is the sum of the conductance products of all the spanning trees 

in G and ߬ଵ,଴ is the sum of the conductance products of all the spanning 2-trees of the 

type ଵܶ,଴ (with 1 and 0 in separate trees of ଵܶ,଴). So 

∆௜௝= ߬௜௝,଴ 

where ߬௜௝,଴ is the sum of the conductance products of all 2-trees ௜ܶ௝,଴  (i and j in one tree 

and 0 in the other tree). So 

∆ଵଶ − ∆ଵଷ= ߬ଵଶ,଴ − ߬ଵଷ,଴ .                              (2.25) 

Since each spanning 2-tree ଵܶଶ,଴ is either a spanning 2-tree ଵܶଶ,ଷ଴ or a spanning 

2-tree ଵܶଶଷ,଴, we get  

߬ଵଶ,଴ = ߬ଵଶ,ଷ଴ + ߬ଵଶଷ,଴ .                                  (2.26) 

 

Similarly, 

߬ଵଷ,଴ = ߬ଵଷ,ଶ଴ + ߬ଵଶଷ,଴ .                              (2.27) 

Then 

∆ଵଶ − ∆ଵଷ= ߬ଵଶ,଴ − ߬ଵଷ,଴ .                              (2.28)       
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By a similar reasoning, 

∆ଶଶ + ∆ଷଷ − 2∆ଶଷ  = ߬ଶ,଴ + ߬ଷ,଴ − 2߬ଶଷ,଴             

        = ߬ଶଷ,଴ + ߬ଶ,ଷ଴ + ߬ଶଷ,଴ + ߬ଷ,ଶ଴ − 2߬ଶଷ,଴      

        = ߬ଶ,ଷ଴ + ߬ଷ,ଶ଴    

        = ߬ଶ,ଷ                                                      (2.29)

             

So, we can write ܼ௢௖ as 

ܼ௢௖ =  
1

(ܩ)߬
ቂ

߬ଵ,଴ ߬ଵଶ,ଷ଴ − ߬ଵଷ,ଶ଴
߬ଵଶ,ଷ଴ − ߬ଵଷ,ଶ଴ ߬ଶ,ଷ

ቃ . 

 So, the driving point resistance across port 1 is given by 

ܼଵ,଴ =  
߬ଵ,଴

 (ܩ)߬

Similarly, the driving point resistance ݖଶ  across 2 and 3 is given by ఛమ,య
ఛ(ீ)

 . In 

general, the driving point resistance across any pair of nodes i and j is given by ఛ೔,ೕ
ఛ(ீ)

. We 

shall denote by ݎ௜௝ the driving point resistance across any pair of vertices i and j so that 

௜௝ݎ = ఛ೔,ೕ
ఛ(ீ)

                                            (2.30) 

where ݎ௜௝ is also called the effective resistance across i and j. 

We wish to emphasize that the formulas for ݖ௜௝’s in (2.13) are with respect to 

vertex 0 as reference. On the other hand, the formula in (2.22) does not explicitly 

involve the reference vertex. We conclude this subsection with the following facts that 

will be needed in the subsequent sections, where we shall assume that the vertices are 

labeled as 1, 2,⋯ ,݊ 
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1. The degree matrix ܭ = ܩ of a simple undirected graph  [௜௝ܭ] =  is (ܧ,ܸ)

defined as 

݇௜௜ = ∋ ݅ for all            ,(௜ݒ)݀ ܸ 

݇௜௝ = −1,                 if (݅, ݆)  ∈  ܧ

     = 0               otherwise 

where ݀(ݒ௜) is the degree of vertex i. Then K can be written as  

ܭ = ௖௧ܣ௖ܣ  

where ܣ௖ is the all-vertex incidence matrix of G. 

2. Let N be the resistance network N obtained by associating a 1-ohm 

resistance with each edge of G. Then in electrical engineering literature the 

matrix K is called the indefinite conductance matrix. In graph theory 

literature K is also known as the graph Laplacian. Also, if the conductances 

are defined by ݃௜, with G as the diagonal matrix of edge conductances, then 

the graph Laplacian of the corresponding weighted graph will be ܣ௖ܣܩ௖௧ . 

Here the degree of vertex i is the sum of the conductances incident on i. 

3. Let ܭ௝௝ be the matrix obtained by removing the jth row and the jth column 

from K. Then ܭ௝௝ is the same as the matrix Y defined in (2.18) with vertex j 

as reference if all the resistances have 1 ohm value. 

4. By Theorem 2.5 all cofactors of K are equal to the number of spanning trees 

of N. In particular  

    det ܭ௝௝ = ܹ.                           (2.31) 

5. The (i,i) cofactor of ܭ௝௝ = number of spanning 2-trees of the type 

 ௜ܶ,௝    =  ௜ܹ,௝.                                                         (2.32) 
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6. The (i,k) cofactors of ܭ௝௝ = Number of spanning 2-trees of the type 

 ௜ܶ௞,௝  =  ௜ܹ௞,௝.                                                     (2.33) 

7.   The effective resistance ݎ௜௝ across i and j of N is given by 

௜௝ݎ =
(݅, ݅ ) cofactor of ܻ

determinent  ܻ  

        =
(݅, ݅ ) cofactor of ܭ௝௝

determinent  ܭ௝௝
 

        =
(݅, ݅ ) cofactor of ܭ௝௝

ܹ  

                                                        = ௐ೔,ೕ

ௐ
 .                                                                (2.34) 

 

2.4   Kirchhoff Index of a Graph 

The structural and functional robustness of a network can be measured by the Kirchhoff 

index. The Kirchhoff index (ܩ)݂ܭ  of a connected undirected graph G is defined as  

(ܩ)݂ܭ =  ∑ ௜௝௜ழ௝ݎ  .                                                                (2.35) 

Thus (ܩ)݂ܭ is the sum of the effective resistances across all pairs of vertices of the 1-

ohm resistance network obtained from G. 

 

2.4.1   Computation of the Kirchhoff index using Laplacian pseudo-inverse 

In a network, the resistance distance ݎ௜,௝ between any pair of nodes ݅ and ݆ can be 

computed by using the Kirchhoff Law and Ohm law. The Moore-Penrose pseudoinverse 

 gives the following formula (Klein & Randic, 1993; Xiao & Gutman, 2003) for (ܩ)ାܮ

computing the resistance distance ݎ௜,௝: 

௜௝ݎ = ௜௜ାܮ ௝௝ାܮ + − ௜௝ାܮ  − ௝௜ାܮ   .                                             (2.36) 
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From Lemma 2.7 we know that the Moore-Penrose pseudoinverse is symmetric. 

So now the equation (2.36) can be simplified as 

௜௝ݎ                                                          = ௜,௜ାܮ + ௝௝ାܮ  − ௜௝ାܮ2  . 

Kirchhoff index (ܩ)݂ܭ is the sum of the resistance distance of all pair of vertices of a 

graph ܩ: 

(ܩ)݂ܭ       =  ∑ ௜௝௜ழ௝ݎ = ∑ ൫ܮ௜,௜ା + ௝௝ାܮ  − ௜௝ାܮ2  ൯௜ழ௝  

It was proved by Klein and Randic (Klein & Randic, 1993) that the Kirchhoff Index can 

also be written as  

(ܩ)݂ܭ =  ൯                                                    (2.37)(ܩ)ାܮ൫ݎݐ݊

where ݊ is the number of vertices and ݎݐ(ܮା(ܩ)) denotes the trace function which can 

be calculated by 

൯(ܩ)ାܮ൫ݎݐ                                                            = ෍݈௜௜ା
௡

௜ୀଵ

. 

Gutman and Mohar (Gutman & Mohar, 1996) demonstrated that it is possible to 

calculate the Kirchhoff Index without knowing the Moore-Penrose pseudoinverse of a 

Laplacian matrix. They obtained the Kirchhoff Index from the eigenvalues of the 

Laplacian matrix of a graph ܩ: 

(ܩ)݂ܭ = ݊෍
1
௜ߤ

௡ିଵ

௜ୀଵ

                                                            (2.38) 

where  ߤ௜ is the non-zero eigenvalues of the Laplacian matrix (ܩ)ܮ. 

 To avoid the computational efforts required to calculate the Moore-Penrose 

pseudoinverse of the Laplacian matrix, we next present a new formula for Kf (G). 
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2.4.2   A Simple formula for the Kirchhoff index based on the pseudo-inverse of   

           the Laplacian matrix 

Let L be the Laplacian matrix of a connected graph G and ܮ(ଓ ̅) be a submatrix obtained 

by deleting the ݅௧௛ row and ݅௧௛ column of the Laplacian matrix L. Note that ܮ(ଓ ̅) is the 

same as the node-conductance Y, if vertex i is chosen as reference.  

Let Z be the inverse of ܮ(ଓ ̅), i.e., 

ܼ =  ଵ.                 (2.39)ି(̅ ଓ)ܮ

 

Theorem 2.11 (Molitierno, 2012). Let ܮ be the Laplacian matrix of a connected graph 

 with ݊ vertices. Then ܩ

ାܮ =
݁ܮ்݁
݊ଶ ܬ +

⎣
⎢
⎢
⎢
⎡ ܼ −

1
݊ ܬܼ −

1
݊ −          ܼܬ

1
݊ ܼ݁______________________________________

−
1
݊ ݁

்ܼ                        ܱ ⎦
⎥
⎥
⎥
⎤

                       (2.40) 

where ݁ is the left and right null vector of any Laplacian matrix and matrix  ܼ is the 

inverse of a reduced Laplacian matrix obtained by deleting the last (݊௧௛) row and the 

last (݊௧௛) column, that is, ܼ = )ܮ ത݊)ିଵ = ܻିଵ. 

Proof.    By Lemma 2.9 we know that 

ܮାܮ = ାܮܮ = ܫ −  
ܬ
݊ 

where, L is the Laplacian matrix, ܮା is the pseudoinverse of Laplacian matrix L, I is the 

identity matrix, J is a unit matrix of all 1’s and n is the number of vertices of graph  ܩ. 

 Multiply L on both sides of equation (2.40): 
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ܮାܮ = ൮௘೅௅௘
௡మ

ܬ + ൦
ܼ − ଵ

௡
ܬܼ − ଵ

௡
−          ܼܬ ଵ

௡
݁ݖ

______________________________________
− ଵ

௡
்ܼ݁                        ܱ

൪൲ܮ 

                      = ௘೅௅௘
௡మ

ܮܬ + ൦
ܼ − ଵ

௡
ܬܼ − ଵ

௡
−          ܼܬ ଵ

௡
݁ݖ

______________________________________
− ଵ

௡
்ܼ݁                        ܱ

൪ܮ 

From Lemma 2.8, we know that  

LJ = JL = 0. 

So, we get 

ܮାܮ  = 0 + ൦
ܼ − ଵ

௡
ܬܼ − ଵ

௡
−          ܼܬ ଵ

௡
݁ݖ

______________________________________
− ଵ

௡
்ܼ݁                        ܱ

൪ܮ 

Also, we have 

ܼ = )ܮ ത݊  )ିଵ ,     ݁ = 1   and  ்݁ =  1் 

ܮାܮ        = ൦
)ܮ ത݊  )ିଵ − ଵ

௡
)ܮ ത݊  )ିଵܬ − ଵ

௡
)ܮܬ ത݊  )ିଵ           − ଵ

௡
)ܮ ത݊  )ିଵ1

_________________________________________________________________
− ଵ

௡
)ܮ1் ത݊  )ିଵ                                            ܱ

൪  ܮ

 

               = ൦
)ܮ ത݊  )ିଵܮ( ത݊) − ଵ

௡
)ܮ ത݊  )ିଵܮܬ( ത݊)− ଵ

௡
)ܮܬ ത݊  )ିଵܮ( ത݊)           − ଵ

௡
)ܮ ത݊  )ିଵ1ܮ( ത݊)

_________________________________________________________________________________
− ଵ

௡
)ܮ1் ത݊  )ିଵܮ( ത݊)                                            1− ଵ

௡

൪ 

We know that 

)ܮ ത݊  )ିଵܮ( ത݊) =  .ܫ

So, 

ܮାܮ              = ൦
ܫ − ଵ

௡
)ܮ ത݊  )ିଵܱ − ଵ

௡
−          ܫܬ ଵ

௡
1ܫ

_____________________________________________
− ଵ

௡
−1                                            ܫ1் ଵ

௡

൪ 
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                      = ൦
ܫ − ଵ

௡
−          ܬ ଵ

௡
1

__________________________
− ଵ

௡
1்                 1 − ଵ

௡

൪ = ܫ  −  ௃
௡
 ାܮܮ = 

Hence proved. 

 

The new formula for computing Kirchhoff Index is given in the following theorem. 

Theorem 2.12.    (ܩ)݂ܭ = (ܼ)ݎܶ݊ −  ∑ ௞௟௞,௟ݖ                   (2.41) 

where Z is the inverse of the Laplacian matrix obtained by deleting any ith row and ith 

column, and ∑ ௞௟௞,௟ݖ    is the sum of all the elements of matrix Z (note that Z = ܻିଵ). 

Proof. Using equation (2.40) we can calculate the (i, j)th entry of pseudoinverse ܮାof 

the Laplacian matrix L in terms of the elements of the matrix Z: 

  ݈௜௝ା =

⎩
⎪⎪
⎨

⎪⎪
⎧
∑ ௭ೖ೗ೖ,೗
௡మ

+ ௜௝ݖ −
ଵ
௡
∑ ௞௝௞ݖ − ଵ

௡
∑ ௜௟௟ݖ        ,         ݅ ≠ ݊,   ݆ ≠ ݊

∑ ௭ೖ೗ೖ,೗
௡మ

− ଵ
௡
∑ ௞௝௞ݖ                                      ,         ݅ = ݊,   ݆ ≠ ݊

∑ ௭ೖ೗ೖ,೗
௡మ

− ଵ
௡
∑ ௜௟௟ݖ                                        ,         ݅ ≠ ݊,   ݆ = ݊

∑ ௭ೖ೗ೖ,೗
௡మ

                                                          ,       ݅ = ݊,   ݆ = ݊

               (2.42) 

where, 

∑ ௞௟௞,௟ݖ    is the sum of all the elements of the matrix ܼ 

∑ ௞௝௞ݖ   is the sum of the elements of the ݇௧௛ rows of the matrix ܼ 

∑ ௜௟௟ݖ   is the sum of the elements of the ݈௧௛ columns of the matrix ܼ 

Now using equation (2.37) and (2.40), we get 

(ܩ)݂ܭ = (ାܮ)ݎܶ݊ = ݊ ൭෍ ݈௜௜ା
௡ିଵ

௜ୀଵ

+ ݈௡௡ା ൱ .                                     (2.43) 

The trace of the pseudoinverse ܮା of the Laplacian matrix satisfies 
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(ାܮ)ݎܶ = ෍݈௜௜ା
௡ିଵ

௜ୀଵ

+ ݈௡௡ା .                                                                   (2.44) 

From (2.42) we get 

݈௜௜ା =
∑ ௞௟௞,௟ݖ

݊ଶ + ௜௜ݖ −
2
݊෍ݖ௜௟

௟

                                                     (2.45) 

݈௡௡ା =
∑ ௞௟௞,௟ݖ

݊ଶ                                                                                  (2.46) 

Now using (2.44), (2.45) and (2.46), we get 

(ାܮ)ݎܶ = ∑ ቀ∑ ௭ೖ೗ೖ,೗
௡మ

+ ௜௜ݖ −
ଶ
௡
∑ ௜௟௟ݖ ቁ௡ିଵ

௜ୀଵ + ∑ ௭ೖ೗ೖ,೗
௡మ

.             (2.47) 

Note that  ∑ (∑ ௜௟௟ݖ ) = ∑ ௞௟௞,௟ݖ
௡ିଵ
௜ୀଵ   (sum of all elements of matrix ܼ) 

Thus, 

(ାܮ)ݎܶ =
1
݊ଶ

(݊ − 1)෍ݖ௞௟
௞,௟

+ ෍ݖ௜௜

௡ିଵ

௜ୀଵ

−
2
݊෍ݖ௞௟

௞,௟

+
∑ ௞௟௞,௟ݖ

݊ଶ . 

After simplification, we get 

(ାܮ)ݎܶ = ෍ݖ௜௜

௡ିଵ

௜ୀଵ

−
∑ ௞௟௞,௟ݖ

݊  .                                                    (2.48) 

From (2.43) and (2.48), we get  

(ܩ)݂ܭ = ݊෍ ௜௜ݖ

௡ିଵ

௜ୀଵ

−  ෍ݖ௞௟
௞,௟

.                                                 (2.49) 

We know, 

෍ݖ௜௜

௡ିଵ

௜ୀଵ

=  (2.50)                                                                   . (ܼ)ݎܶ

The required result follows from (2.49) and (2.50) as 
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(ܩ)݂ܭ = (ܼ)ݎܶ݊ −෍ݖ௞௟
௞,௟

. 

 

The following example demonstrates the calculation of the Kirchhoff Index by 

first using the Moore-Penrose Pseudoinverse and then by using our new formula. 

Example 2.13.  Figure 2.9 shows an unweighted graph ܩ with six nodes and its 

Laplacian matrix.  

                      

                             (ܽ)                                                                           (ܾ)   
                                                                                                                                                                    
Figure 2.9: Laplacian matrix. (a) A graph G with six nodes. (b) Laplacian matrix L of   
                   graph G. 

 

Kirchhoff index using Moore-Penrose pseudo-inverse: 

First, we find the Moore-Penrose pseudoinverse of Laplacian matrix ܮ given in Figure 

2.9(b) by using formula (2.10): 

ାܮ =

⎝

⎜⎜
⎛

 

⎣
⎢
⎢
⎢
⎢
⎡
   2 −1    0
−1    2 −1
   0 −1     3

    
  −1     0     0
     0    0     0
  −1 −1     0

−1  0 −1   
 0  0 −1   
 0 0    0

   
   3 −1    0
−1    3 −1
   0 −1    1 ⎦

⎥
⎥
⎥
⎥
⎤

+
1
6

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1
1 1 1
1 1 1

    
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

    
1 1 1
1 1 1
1 1 1⎦

⎥
⎥
⎥
⎥
⎤

 

⎠

⎟⎟
⎞

ିଵ

−
1
6

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1
1 1 1
1 1 1

    
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

    
1 1 1
1 1 1
1 1 1⎦

⎥
⎥
⎥
⎥
⎤
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ାܮ =

⎣
⎢
⎢
⎢
⎢
⎡

0.487 0.123 −0.074
0.123 0.487 0.017
−0.074 0.017 0.275

    
0.017 −0.195 −0.362
−0.074 −0.195 −0.362
0.002 −0.028 −0.195

0.017 −0.074 0.002
−0.195 −0.195 −0.028
−0.362 −0.362 −0.195

    
0.275 −0.028 −0.195
−0.028 0.305 0.138
−0.195 0.138 0.972 ⎦

⎥
⎥
⎥
⎥
⎤

 

The trace of Moore-Penrose pseudoinverse is 

(ାܮ)ݎܶ = ෍݈௜௜

௡

௜ୀଵ

= 2.801. 

Let  (ܩ)݂ܭ be the Kirchhoff index of the graph given in Figure. 2.9(a). Now using 

(2.35) we can calculate Kirchhoff index  (ܩ)݂ܭ  as 

(ܩ)݂ܭ  = 6 ∗ 2.801 = 16.8. 

Next, we calculate Kirchhoff Index (ܩ)݂ܭ by using ܼ (i. e. ,ܼ = )ܮ ത݊)ିଵ). 

 

Kirchhoff index using our new formula: 

The matrix  ܼ of graph  ܩ for Laplacian matrix  ܮ in Figure 2.8 is 

ܼ =  

⎣
⎢
⎢
⎢
⎡
2.182 1.818 1.455
1.818 2.182 1.545
1.455 1.545 1.636

    
1.545 1
1.455 1
1.364 1

1.545 1.455 1.364
1 1 1     1.636 1

1 1⎦
⎥
⎥
⎥
⎤
 

In order to find the Kirchhoff index (ܩ)݂ܭ , we calculate the trace of matrix ܼ and the 

sum of all the elements of matrix ܼ: 

(ܼ)ݎܶ = 8.63                                    

෍ݖ௞௟
௞,௟

= 35                                      

Using (2.41), the Kirchhoff Index (ܩ)݂ܭ is  

(ܩ)݂ܭ = 6 ∗ 8.63− 35 = 16.8. 
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In the next section, we establish the formula in Theorem 2.1 using standard 

electrical circuit theoretic arguments based on the properties of the n-port resistance 

networks. 

2.5   Kirchhoff Index using Topological Formulas for Network  

        Functions 

The formula in Theorem for Kirchhoff Index shows that not all the effective resistances 

are independent. That is, one can obtain Kirchhoff Index using only the matrix Z, whose 

diagonal entries are a subset of (݊ − 1) effective resistances. The off-diagonal entries in 

Z relate these ݊ − 1 effective resistances to the remaining effective resistances. 

Consider a graph G of the network obtained by replacing each edge in the 

network by a resistance of one ohm. Let ܻ =  denote the node admittance matrix of [௜௝ݕ]

G with node n as the reference or datum node. 

Note that Y is a square matrix of order   ݊ − 1 and it is the matrix obtained by 

removing the  ݊௧௛ row and the  ݊௧௛ column from the Laplacian matrix of L. 

Note that ܼ = ܻିଵ.  

As we have seen before, 

௜௝ݎ =  
߬௜,௝
 (ܩ)߬

However,  

߬௜௝ =  ߬௜,௡௝ + ߬௜௡,௝ 

=  {߬௜,௡ − ߬௜௝,௡} + {߬௝,௡ − ߬௜௝,௡}          

=  ߬௜,௡ + ௝߬,௡ − 2߬௜௝,௡                            
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Dividing by ߬(ܩ) both sides of the above equation we get 

߬௜௝
(ܩ)߬ =  

߬௜,௡
(ܩ)߬ + ௝߬,௡

(ܩ)߬ −
2߬௜௝,௡

(ܩ)߬  

௜௝ݎ  = ௜,௡ݎ + ௝,௡ݎ −  ௜௝              (2.51)ݖ2

Since each ݎ௝,௡ appears ݊ − 1 times on the right-hand side of the sum ∑ ௜,௞௜,௞வ௜ݎ ,  we get 

෍ ௜,௞ݎ
௜,௞வ௜

= (݊ − 1)෍ݎ௝,௡

௡ିଵ

௝ୀଵ

− 2 ෍ ௜௞ݖ
௜,௞வ௜

 

     = (݊ − 1)∑ ௝,௡ݎ
௡ିଵ
௝ୀଵ + ∑ ௝,௡ݎ

௡ିଵ
௝ୀଵ − ൫∑ ௝,௡ݎ

௡ିଵ
௝ୀଵ + 2∑ ௜௞௜,௞வ௜ݖ ൯ 

(ܩ)݂ܭ = ݊෍ݎ௝,௡

௡ିଵ

௝ୀଵ

− ቌ෍ݎ௝,௡

௡ିଵ

௝ୀଵ

+ 2 ෍ ௜௞ݖ
௜,௞வ௜

ቍ                                    

The above is the same as 

(ܩ)݂ܭ = ݊෍ݖ௜௜

௡ିଵ

௜ୀଵ

− ൭෍ݖ௜௟
௜,௟

൱ 

 

2.6   Kirchhoff Index using Circuit Theoretic Concepts 

We now give another proof of equation (2.51) using circuit-theoretic principles. 

Consider again the description of an (݊ + 1)- node network as given by equation 

ܻܸ =  ܫ

when node 0 is chosen as the reference node (see equation 2.20). If we are interested in 

the description of the network as viewed across the ports (1, 0) , (2, 0) then it is 

equivalent to setting ܫଶ =  ⋯ = ௡ܫ  = 0 . See Figure 2.10. 
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Figure 2.10: A 2-port network. 
 

We then get 

⎣
⎢
⎢
⎢
⎡
ଵܫ
____ଶܫ
0
⋮
0 ⎦
⎥
⎥
⎥
⎤

=  ൥
ଵܻଵ

____
ଶܻଵ

      
ଵܻଶ

____
ଶܻଶ

൩ 

⎣
⎢
⎢
⎢
⎢
⎡ ଵܸ

ଶܸ____
ଷܸ
⋮
௡ܸ ⎦
⎥
⎥
⎥
⎥
⎤

 

Solving the above 

൬ܫଵܫଶ
൰ = ( ଵܻଵ − ଵܻଶ ଶܻଶ

ିଵ
ଶܻଵ) ൬ ଵܸ

ଶܸ
൰ 

The matrix ଵܻଵ − ଵܻଶ ଶܻଶ
ିଵ

ଶܻଵ is called a Schur Complements of Y. It is in fact the 

Laplacian matrix of the 3-node network obtained by repeated star-delta transformations 

at the nodes 2,⋯ ,݊. See Figure 2.11, where x, y, z are the resistance of the equivalent 

network containing only nodes 1, 2, and 0. 

 

Figure 2.11: Three-node network. 
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Let the resistance distance between nodes i and j is denoted by ݎ௜௝. By using principles 

of circuit theory, we have 

௜௡ݎ =  ௫(௬ା௭)
௫ା௬ା௭

                          (2.52) 

௝௡ݎ =  ௬(௭ା௫)
௫ା௬ା௭

                          (2.53) 

௜௝ݎ =  ௭(௫ା௬)
௫ା௬ା௭

                           (2.54) 

The voltage across edge ( j, n ) when a unit current source is connected  between i  and 

n is denoted by ݖ௜௝. 

௜௝ݖ     = ௬௫
௫ା௬ା௭

             (2.55) 

Using (2.52), (2.53), (2.54) and (2.55), we get 

௜௡ݎ + ௝௡ݎ  − ௜௝ݖ2 =
ݕ)ݔ + (ݖ
ݔ + ݕ + ݖ +  

ݖ)ݕ + (ݔ
ݔ + ݕ + ݖ − 2

ݔݕ
ݔ + ݕ +  ݖ

=
ݕݔ + ݖݔ + ݖݕ + ݖݕ −  ݔݕ2

ݔ + ݕ + ݖ                  

    =
ݔ)ݖ + (ݕ
ݔ + ݕ +          ݖ

                          = ௜௝ݎ         (by equation 2.54) 

 

2.7   Summary 

In this chapter, we have given an overview of electrical networks along with the 

topological formulas for network functions. We also discussed the matrices of graph 

and their properties. Along with the Laplacian spectral graph theory we showed some 

known formulae of the Kirchhoff index using the Moore-Penrose pseudoinverse of the 

Laplacian matrix of a graph. We presented an interesting new formula for calculating 
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the Kirchhoff index in terms of the matrix ܼ, to avoid the computational complexities 

and extraneous efforts of Moore-Penrose pseudoinverse. The matrix ܼ is the inverse of 

the reduced Laplacian matrix ܮ(ଓ ̅).  

Generalization of the Laplacian matrices and its relationship to the Kirchhoff 

index will be studied in the next chapter. 
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Chapter 3 

Cutset Laplacian Matrix of a Graph and Kirchhoff Index 

 

In chapter 2 we studied the relationship between the Laplacian matrix and the Kirchhoff 

index of a graph. Noting that the Laplacian matrix is defined by the reduced incidence 

matrix and the reduced incidence matrix is a submatrix of the cut matrix, in this chapter 

we generalize the notion of Laplacian matrix using the fundamental cutset matrix. We 

then develop two approaches to compute the Kirchhoff index. The first approach is 

based on a matrix transformation. To develop the second method, we define the concept 

of Kirchhoff polynomial of a graph which expresses Kirchhoff index using the elements 

of the resistance matrix. Since our discussion will be based on the fundamental cutset 

and fundamental circuit matrices, we begin with an introductory treatment of these 

concepts and their relationship with Kirchhoff voltage and current laws. 

 

3.1   Cutsets 

A graph N is said to be connected if there exists a path between every pair of vertices in 

N. For example, the graph of Figure 3.1 (a) is connected. 

 

Definition 3.1 (Thulasiraman & Swamy, 1992). A cutset S of a connected graph N is a 

minimal set of edges of N such that its removal from N disconnects N, that is, the graph 

N – S is disconnected. 

 

For example, consider the subset ଵܵ = {݁ଶ, ݁ସ} of edges of the graph N in Figure 

3.1(a). The removal of ଵܵ from graph N results in the graph  ଵܰ = ܰ −  ଵܵ of Figure 
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3.1(b). Graph ଵܰ is disconnected. Furthermore, the removal of any proper subset of ଵܵ 

cannot disconnect N. Thus ଵܵ is a cutset of N. 

Consider next the subset ܵଶ = {݁ହ, ݁଺}. The graph ଶܰ = ܰ −  ܵଶ is shown in 

Figure 3.1(c).  

 

 
(a) Graph N 

 

 

           
                   (b) ܰ ଵ                 (c) ଶܰ 

   Figure 3.1: Illustration of the definition of a cutset. (a) Graph N. 
(b) ଵܰ = ܰ −  ଵܵ ,    ଵܵ = {݁ଶ, ݁ସ}.  (c) ଶܰ = ܰ −  ܵଶ ,    ܵଶ = {݁ହ, ݁଺} 
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3.2   Cuts 

We now define the concept of a cut, which is closely to that of a cutset.  

Definition 3.2 (Thulasiraman & Swamy, 1992). Consider a connected graph N with 

vertex set V. Let ଵܸ and ଶܸbe two mutually disjoint subsets of V such that ܸ =  ଵܸ ∪ ଶܸ; 

that is, ଵܸ and ଶܸ have no common vertices and together contain all the vertices of V. 

Then the set S of all those edges of graph N having one end vertex in ଵܸ and the other in 

ଶܸis called a cut of N. This is usually denoted by 〈 ଵܸ, ଶܸ〉. 

 

Note that the cut  〈 ଵܸ, ଶܸ〉 of N is the minimal set of edges of N whose removal 

disconnects N into two graphs ଵܰand ଶܰ, which are induces subgraphs of N on the 

vertex sets ଵܸ and ଶܸ. ଵܰ and ଶܰmay not be connected. If both these graphs are 

connected, then  〈 ଵܸ, ଶܸ〉 is also the minimal set of edges disconnecting N into exactly 

two components. Then by definition 3.1, 〈 ଵܸ, ଶܸ〉 is a cutset of N.  

 Suppose that for a cutset S of N, ଵܸ and ଶܸare, respectively, the vertex sets of the 

two components ଵܰand ଶܰof N – S. Then S is the cut 〈 ଵܸ, ଶܸ〉.  

 Thus, we have the following theorem. 

 

Theorem 3.3. 

1. A cut 〈 ଵܸ, ଶܸ〉 of a connected graph N is a cutset of N if the induced 

subgraphs of N on vertex sets ଵܸ and ଶܸ are connected. 

2. If S is a cutset of a connected graph N, and  ଵܸ and ଶܸare the vertex sets of 

the two components of N –S, then S = 〈 ଵܸ, ଶܸ〉. 
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Any cut 〈 ଵܸ, ଶܸ〉 in a connected graph N contains a cutset of N, since the removal 

of 〈 ଵܸ, ଶܸ〉  from N disconnects N. In fact, we can prove that a cut in a graph N is the 

union of some edge- disjoint cutsets of N. Formally, we state this in the following 

theorem. 

 

Theorem 3.4  A cut in a connected graph N is a cutset or union of edge-disjoint cutsets 

of N.    

 

3.3   Fundamental Cutsets 

In this section, we will show, how spanning tree can be used o define a set of 

fundamental cutsets. 

 Consider a spanning tree T of a connected graph N. Let b be a branch of T 

(Note: The edges of a spanning tree T are called the branches of T ). Now, the removal 

of the branch b disconnects T into exactly two components ଵܶ  and ଶܶ. Note that ଵܶ  and 

ଶܶ are trees of N. Let ଵܸ  and ଶܸ, respectively, denote the vertex sets of ଵܶ  and ଶܶ. ଵܸ  

and ଶܸ together contain all vertices of N.  

Let ଵܰ  and ଶܰbe, respectively, the induced subgraphs of N on the vertex sets ଵܸ  

and ଶܸ. It can be seen that ଵܶ  and ଶܶ are, respectively, the spanning trees of ଵܰ  and ଶܰ. 

Hence, ଵܰ  and ଶܰ are connected. This, in turn, proves (Theorem 3.3) that the cut ⟨ ଵܸ, 

ଶܸ⟩ is a cutset of N. This cutset is known as the fundamental cutset of N with respect to 

the branch b of the spanning tree T of N. The set of all the n −1 fundamental cutsets 

with respect to the n −1 branches of a spanning tree T of a connected graph N is known 

as the fundamental set of cutsets of N with respect to the spanning tree T. The rank 
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݊ of a connected N is defined to be equal to (ܰ)ߩ − 1. If N has p components, then 

(ܰ)ߩ = ݊ −   .݌

Note that the cutset ⟨ ଵܸ, ଶܸ⟩ contains exactly one branch, namely, the branch b 

of T. All the other edges of ⟨ ଵܸ, ଶܸ⟩ are links of T. This follows from the fact that ⟨ ଵܸ, 

ଶܸ⟩ does not contain any edge of ଵܶ  and ଶܶ. Further, branch b is not present in any other 

fundamental cutset with respect to T.  

A graph N and a set of fundamental cutsets of N are shown in Figure 3.2. 

 

         
                        (a)                                                                      (b) 

 

                  
             (c)                                                                           (d) 

Figure 3.2: A set of fundamental cutsets of a graph. (a) Graph N. (b) Spanning tree T of   
N. (c) Fundamental cutset with respect to branch ݁ଵ. (d) Fundamental cutset with 
respect to branch ݁ଶ. (e) Fundamental cutset with respect to branch ݁ଷ . (f) Fundamental 
cutset with respect to branch ݁଺ . (g) Fundamental cutset with respect to branch ݁଻. 
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                           (e)                                                                      (f) 

 

 
(g) 

Figure 3.2.  (Continued) 

 

It is obvious that removal of a cutset S from a connected graph N destroys all the 

spanning trees of N. A little thought will indicate that a cutset is a minimal set of edges 

whose removal from N destroys all the spanning trees of N. 

 

Theorem 3.5.  A cutset of a connected graph N contains at least one branch of every 

spanning tree of N.  

 

Theorem 3.6.  A set S of edges of a connected graph N is a cutset of N if and only if S is 

a minimal set of edges containing at least one branch of every spanning tree of N. 
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3.4   Cut Matrix and Fundamental Cutset Matrix 

To define the cut matrix of a directed graph we need to assign an orientation to each cut 

of the graph.  

 Consider a directed graph N = (V, E). If  ௔ܸ  is a nonempty subset of V, then the 

set of edges connecting the vertices in ௔ܸ  to those in ௔ܸ   is a cut, and this cut is denoted 

as ⟨ ௔ܸ , ௔ܸ⟩. The orientation of ⟨ ௔ܸ , ௔ܸ⟩ may be assumed to be either from ௔ܸ  to  ௔ܸ  or 

from ௔ܸ   to ௔ܸ . Suppose we assume that the orientation is from ௔ܸ  to  ௔ܸ . Then the 

orientation of an edge in ⟨ ௔ܸ , ௔ܸ⟩ is said to agree with the orientation of the cut ⟨ ௔ܸ , ௔ܸ⟩ 

if the edge is oriented from a vertex in ௔ܸ  to a vertex in ௔ܸ . 

 The cut matrix ܳ௖ =  of a graph N with m edges has m columns and as [௜௝ݍ]

many rows as the number of cuts in N. The entry ݍ௜௝ is defined as follows: 

N is undirected 

௜௝ݍ =  ൜1 ,         if the ݆th edge is in the ݅the cut ;
0 ,         otherwise .                                        

N is directed 

௜௝ݍ =  

⎩
⎪
⎨

⎪
⎧

    1 ,      if the ݆th edge is in the ݅the cut  and its orientation agrees with 
the cut orientation ;                                                                    

−1 ,      if the ݆th edge is in the ݅the cut  and its orientation does  not     
agrees with the cut orientation ;                                            

0 ,       otherwise .                                                                                                

 

 

A row of ܳ௖ will be referred to as a cut vector. 

Consider next any vertex v. The nonzero entries in the corresponding incidence 

vector represent the edges incident on v. These edges form the cut ⟨v, V − v⟩. If we 

assume that the orientation of this cut is from v to V − v, then we can see from the 
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definitions of cut in section 3.2 and incidence matrices recall from chapter 2, that the 

row in ܳ௖ corresponding to the cut ⟨v, V − v⟩ is the same as the row in ܣ௖ corresponding 

to the vertex v. Thus ܣ௖ is a submatrix of ܳ௖. 

 

Theorem 3.7.  Each row in the cut matrix ܳ௖ can be expressed, in two ways, as a linear 

combination the rows of the matrix ܣ௖ . In each case, the nonzero coefficients in the 

linear combination are all +1 or all −1. 

 

Theorem 3.8. The rank of the cut matrix ܳ௖ of an n-vertex connected graph N is equal 

to ݊ − 1, the rank of N. 

 

As the above discussion and theorems show, the all –vertex incidence matrix ܣ௖ 

is an important submatrix of the cut matrix ܳ௖ .  Next, we identify another important 

submatrix of ܳ௖, that is, fundamental cutset matrix ܳ௙ . 

We know from Section 3.3 that a spanning tree T of an n-vertex connected graph 

N defines a set of n − 1 fundamental cutsets—one fundamental cutset for each branch of 

T. The submatrix of ܳ௖ corresponding to these n −1 fundamental cutsets is known as the 

fundamental cutset matrix ܳ௙  of N with respect to T. 

Let ܾଵ, ܾଶ, … , ܾ௡ିଵ denote the branches of tree T. Suppose we arrange the 

columns and the rows of ܳ௙  so that  

1.  For 1≤ i ≤ n−1, the ith column corresponds to the branch ௜ܾ. 

2.  The ith row corresponds to the fundamental cutset defined by ௜ܾ. 
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 If, in addition, we assume that the orientation of a fundamental cutset is so 

chosen as to agree with that of the defining branch, then the matrix ܳ௙  can be displayed 

in a convenient form as follows:  

ܳ௙ = ൣܷ| ܳ௙௖൧      (3.1) 

where U is the unit matrix of order ݊ − 1 and its columns correspond to the branches of 

T and ܳ௙௖  is the fundamental cutset of chords of T. 

For example, the fundamental cutset matrix ܳ௙  of the connected graph of Figure 

3.3(a) with respect to the spanning tree T = {݁ଶ, ݁ଷ, ݁ସ, ݁ହ, ݁଻} is 

 

 

It is clear from (3.1) that the rank of fundamental cutset matrix ܳ௙  is equal to 

݊ − 1, the rank of cut matrix ܳ௖. Thus, every cut vector (which may be a cutset vector) 

can be expressed as a linear combination of the fundamental cutset vectors. 

 

          
(a)                                                                                   (b) 

Figure 3.3: (a) A directed Graph N. (b) Spanning tree T of N. 

(3.2) 
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3.5   Fundamental Circuit Matrix and Relationship with Fundamental  

        Cutset Matrix 

3.5.1   Fundamental circuits 

Consider a spanning tree T of a connected graph G. Let the branches of T be denoted by 

ܾଵ,ܾଶ,⋯ , ܾ௡ିଵ , and let the chords of T be denoted by ܿଵ, ܿଶ,⋯ , ܿ௠ି௡ାଵ, where n is the 

number of vertices in G and m is the number of edges in G. 

 While T is acyclic, the graph ܶ ∪ ܿ௜ contains exactly one circuit ܥ௜. This circuit 

consists of the chord ܿ௜ and those branches of T which lie in the unique path in T 

between the end vertices of ܿ௜. The circuit ܥ௜ is called the fundamental circuit of G with 

respect to the chord ܿ௜ of the spanning tree T.  

The set of all the ݉ − ݊ + 1 fundamental circuits ܥଵ,ܥଶ,⋯  ௠ି௡ାଵ of G withܥ,

respect to the chords of the spanning tree T of G is known as the fundamental set of 

circuits of G with respect to T. The nullity μ(ܩ)of a connected graph G is defined to be 

equal to ݉ − ݊ + 1. If G is not connected and has p components, then μ(ܩ)  =  ݉ −

݊ +   .݌

An important feature of the fundamental circuit ܥ௜ is that it contains exactly one 

chord, namely, chord ܿ௜. Further, chord ܿ௜ is not present in any other fundamental circuit 

with respect to T. For a given graph G and its spanning tree T in Figure 3.3, a set of 

fundamental circuits of G are shown in Figure 3.4. 

 

3.5.2   Circuit matrix 

A circuit can be traversed in one of two directions, clockwise or anticlockwise. The 

direction we choose for traversing a circuit defines its orientation.  
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  (a)  Circuit ܥଵ    (b)   Circuit ܥଶ 

Figure 3.4: Set of two fundamental circuits of G (given in Figure 3.3(a)) with respect 
to the spanning tree T (given in Figure 3.3(b)). 
 

Consider an edge e which has ݒ௜  and ݒ௝ as its end vertices. Suppose that this 

edge is oriented from ݒ௜  and ݒ௝ and that it is present in circuit C. Then we say that the 

orientation of e agrees with the orientation of the circuit if ݒ௜  appears before ݒ௝  when 

we traverse C in the direction specified by its orientation.  

The circuit matrix ܤ௖ = [ ௜ܾ௝] of a graph G with m edges has m columns and as 

may rows as the number of circuits in G. The entry ௜ܾ௝  is defined as follows: 

 G is directed: 

௜ܾ௝ =

⎩
⎪
⎨

⎪
⎧

1,        if the ݆th edge is in the ݅th circuit and its                        
 orientation agrees with the circuit orientation;

−1,       if the ݆th edge is in the ݅th circuit and its                            
 orientation does not agrees with the circuit        
orientation;                                                                   

0,         if the ݆th edge is not in the ݅th circuit.                              

 

 

G is undirected:  

௜ܾ௝ = ൜1,        if the ݆th edge is in the ݅th circuit                                       
0,         otherwise                                                                                  
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           A row of ܤ௖ is called a circuit vector of G. Next, we identify an important 

submatrix of ܤ௖. 

 

3.5.3   Fundamental circuit matrix 

Consider any spanning tree T of a connected graph G having n vertices and m edges. 

Let ܿଵ, ܿଶ,⋯ , ܿ௠ି௡ାଵ be the chords of T. We know that these ݉− ݊ + 1 chords define a 

set of m−n+1 fundamental circuits. The submatrix of ܤ௖ corresponding to these 

fundamental circuits is known as the fundamental circuit matrix ܤ௙ of G with respect to 

the spanning tree T. 

 Suppose we arrange the columns and rows of ܤ௙ so that  

1. For  1 ≤ ݅ ≤ ݉ − ݊ + 1, the ith column corresponds to the chord ܿ௜; and 

2. The ith row corresponds to the fundamental circuit defined by ܿ௜. 

 

If, in addition, we choose the orientation of a fundamental circuit to agree with 

that of the defining chord, then the matrix ܤ௙ can be written as 

௙ܤ =  ௙௧൧                   (3.3)ܤ |ܷൣ

where U is the unit matrix of order ݉ − ݊ + 1 and its columns correspond to the chords 

of T.  

For example, the fundamental circuit matrix of the graph of Figure 3.3 (a) with 

respect to the spanning tree T  = {݁ଶ, ݁ଷ, ݁ସ, ݁ହ, ݁଻} is as given below:  

 

 

(3.4) 
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It is obvious from (3.3) that the rank of ܤ௙ is equal to ݉ − ݊ + 1, the nullity 

µ(G) of G. Since ܤ௙ is a submatrix of ܤ௖, we get  

rank(ܤ௖) ≥ ݉ − ݊ + 1 

It is known (Thulasiraman & Swamy, 1992) that circuit and cutset vectors are 

orthogonal. That is, 

ܳ௙ܤ௙௧ = 0.                  (3.5) 

Using this relation, we get 

௙௧ܤ = −ܳ௙௖௧                  (3.6) 

 

3.6   Kirchhoff’s Laws and Fundamental Circuit and Cutset Matrices 

Consider an electrical resistance network G. Let T be a spanning tree of G. Then the 

fundamental cutset ܳ௙  matrix of G has the form 

 

ܳ௙ = ൣ           ܷ             |           ܳ௙௖             ൧ 

and Kirchhoff’s current law equations can be written as 

ܳ௙ܫ௘ = 0                            (3.7) 

that is 

  ൣܷ       ܳ௙௖൧ ൤
௕ܫ
௖ܫ
൨ = 0                             (3.8) 

where ܫ௕ is the vector of branch currents and ܫ௖ is the vector of chord currents. So 

௕ܫ    =  −ܳ௙௖ܫ௖                 (3.9) 

Similarly, we have 

௙ܤ = ௙௧    ܷ  ൧ܤ ൣ = ൣ− ܳ௙௖௧     ܷ  ൧               (3.10) 

Chords Branche
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and Kirchhoff’s voltage law equations can be written as 

௙ܤ  ௘ܸ = 0                           (3.11) 

that is 

  ൣ− ܳ௙௖௧     ܷ ൧ ൤ ௕ܸ
௖ܫ
൨ = 0                          (3.12) 

where ௕ܸ  is the vector of branch voltage and ௖ܸ  is the vector of chord voltage. So 

௖ܸ =  − ܳ௙௖௧ ௕ܸ                 (3.13) 

 

3.7   Cutset Laplacian Matrix and Kirchhoff Index 

Recall that the node-to-conductance matrix Y, also called the reduced Laplacian matrix, 

is given by 

ܻ =  ௧               (3.14)ܣܹܣ

 where A is the reduced incidence matrix of G with respect to a specified reference 

vertex and W is the diagonal matrix of conductances of the elements of G. 

 Since each row of A represents a cut vector (set of edges incident on a node), we 

can generalize the notion of Laplacian matrix using fundamental cutset ܳ௙  in place of A. 

 

Definition 3.3. Generalized Laplacian matrix 

 Let T be a spanning tree of a graph G and  ܳ௙  be the fundamental cutset matrix 

of G with respect to T. If W is the diagonal matrix of edge conductances of G, then the 

cutset Laplacian matrix ௧ܻ of G is given by 

௧ܻ = ܳ௙ܹܳ௙௧                (3.15) 
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 The matrix ௧ܻ is also called the conductance matrix of a multiport resistance 

network, as viewed from the branches of T (called ports). The Matrix ܼ௧ = ௧ܻ
ିଵ is called 

the resistance matrix of the multiport network. 

 Each diagonal entry of ܼ௧ is the resistance ݎ௜௝ across the nodes i and j of the 

corresponding branch of the defining branch of T.  

 For example, the cutset Laplacian matrix ௧ܻ of the connected graph of Figure 

3.3(a) with respect to fundamental cutset matrix ܳ௙  given in (3.2) is 

 

௧ܻ =

⎣
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1

    
0 0 −1
0 0 −1
0 0   1

    
   0
−1
   0

0 0 0
0 0 0    1 0    0

0 1    0       1  0⎦
⎥
⎥
⎥
⎤
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1000000
0100000
0010000
0001000
0000100
0000010
0000001

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

01010
00111
10000
01000
00100
00010
00001




⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

     ௧ܻ =

⎣
⎢
⎢
⎢
⎡
   2   1 −1
   1   3 −1
−1 −1   2

    
  0 0
−1 0
  0 0

  0 −1   0
  0   0   0        2 0

  0 1 ⎦
⎥
⎥
⎥
⎤
 

 

So, we get, 

ܼ௧ = ௧ܻ
ିଵ =

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
   2   1 −1
   1   3 −1
−1 −1   2

    
  0 0
−1 0
  0 0

  0 −1   0
  0   0   0        2 0

  0 1 ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞

ିଵ

 

                                                          =

⎣
⎢
⎢
⎢
⎡ 8 11⁄ −2 11⁄ 3 11⁄
−2 11⁄ 6 11⁄ 2 11⁄
3 11⁄ 2 11⁄ 8/11

    
−1 11⁄ 0
3 11⁄ 0
1 11⁄ 0

−1 11⁄  3 11⁄   1 11⁄
0 0 0       7 11⁄  0

0 1⎦
⎥
⎥
⎥
⎤
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  The (1, 1) entry of above matrix ܼ௧ is the resistance ݎଵସ. Also, element ܼ௜௝ = ௝ܸ, 

where ௝ܸ is the voltage across the jth branch of T when a current source of unit value is 

connected across the nodes of the ith branch of T, as shown in Figure 3.5. 

 

 

 

 

 

 

 

 

Figure 3.5: Voltage ࢐ࢂ across the jth branch when a current source of 1A is connected 
across the nodes of the ith branch. 
 

3.8   Computing Kirchhoff Index: A Matrix Transformation Approach 

In Chapter 2 we presented a formula to compute the Kirchhoff index using the elements 

of ( ௡ܻ)ିଵ, where ௡ܻ is the Laplacian matrix. In this section, we present a method to 

compute the Kirchhoff index from ܼ௧ using a matrix transformation approach. 

Note that in view of our definition of the cutset Laplacian, ௡ܻ may be viewed as 

the cutset Laplacian with respect to the star stree ௡ܶ (see Figure 3.6). 

The matrix  ( ௧ܻ)ିଵ =  (ܳ௙ܹܳ௙௧)ିଵ  specifies the relationship between the 

voltages across the branches of T and the currents injected through these branches (see 

Figure 3.7). 

The matrix  ܼ௧ =  ௧ܻ
ିଵ relates ௧ܸ and ܫ௧ as 

௧ܸ = ܼ௧ܫ௧                (3.16) 

- 

+ 

1 A 
Branch ௜ܾ 

+ 
Branch 
     ܾ௜ 

-

+ 

-

Branch 
     ௝ܾ 

+ 

- 

௝ܸ ௜ܸ 
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If ௡ܻ is the Laplacian matrix when the star tree is used, then 

௡ܸ = ܼ௡ܫ௡                (3.17) 

where  ܼ௡ =  ௡ܻ
ିଵ. 

We can find the Kirchhoff index if ܼ௡ is known using (2.39).  

 Given ܼ௧, our interest is to determine ܼ௡ using a matrix transformation 

approach. We can then apply (2.38) on ܼ௡ to compute the Kirchhoff index. 

 Now we show how to relate ܼ௡ with  ܼ௧. 

 

 

 

 

 

 

 

Figure 3.7: Voltages across the branches of T and current injected through branches. 
 

 

Branch ܾ௔ 
 ௔ܫ

௔ܸ  

- 

+ 

Reference Node 

n 3 2 1 

Figure 3.6: Star tree ࢔ࢀ 
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 Note that each row of the reduced incidence matrix A represents a cut. So the 

rows of A represent ݊ − 1 linearly independent cutsets. This means each row of ܳ௙  can 

be written as a linear combination of the rows of A. 

ܳ௙ = ൣ  ܷ   | ܳ௙௖     ൧ =  [  ଵଶܣ     ଵଵܣ  ]ଵଵିଵܣ

 where ܣଵଵ is the submatrix of columns of A corresponding to the branches of T. 

 Now 

    ௧ܻ = ܳ௙ܳܩ௙௧  

         =  ௧(ܣଵଵିଵܣ)ܩܣଵଵିଵܣ 

                =                 ௧(ଵଵିଵܣ) (௧ܣܩܣ)ଵଵିଵܣ 

              = ଵଵିଵܣ  ௡ܻ(ܣଵଵିଵ)௧                          

 So 

    ܼ௧ =  ௧ܻ
ିଵ 

               = ଵଵ௧ܣ ௡ܻ
ିଵܣଵଵ                                 

             = ଵଵ௧ܣ ܼ௡ ܣଵଵ                                 

 So 

               ܼ௡ =  (3.18)               (ଵଵିଵܣ)௧ܼ௧(ଵଵିଵܣ)

 Since 

    ௧ܸ = ଵଵ௧ܣ ௡ܸ 

    ௡ܸ =  ௧                (3.19)(ଵଵିଵܣ) 

 To compute (ܣଵଵିଵ)௧ we procced as follows. Consider any node i and the 

corresponding node-to-datum voltage ௜ܸ.  

 Let ௜ܲ be the path in T from node i to the datum node. Then ௡ܸ is the algebraic 

sum of the voltages of the edges in ௜ܲ. For example, in Figure 3.8 



71 

ଵᇱݒ = ଶݒ + ଷݒ −  . ସݒ

 Thus, we have the following formula to compute (ܣଵଵିଵ)௧  

ܽ௜௝ିଵ =

⎩
⎪
⎨

⎪
⎧

    1,     if the edge ௝݁ ∈ ܶ lies in the path ௜ܲ and is oriented in the direction   
from node ݅ to datum;                                                                              

−1,     if the edge ௝݁ ∈ ܶ lies in the path ௜ܲ and is oriented in the direction    
from datum to node ݅;                                                                              

   0,      if the edge ௝݁ ∈ ܶ is not in path ௜ܲ;                                                                   

 

 

Consider the graph in Figure 3.3(a) and the spanning tree T in Figure 3.3(b). The 

graph containing T and the star tree ௡ܶ (dashed lines) is shown in Figure 3.8.  

 

 
Figure 3.8: Graph containing spanning tree T and star tree (dotted) given in Figure 3.3. 

  

 

For the graph in Figure 3.8 

⎣
⎢
⎢
⎢
⎢
ଵݒ⎡

ᇱ

ଷᇱݒ
ସᇱݒ

ହᇱݒ
଺ᇱݒ ⎦
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡
1 1 −1
0 0 −1
0 1 −1

     
   0    0
   0    0
   0    0

0 1 −1
0 1 −1    −1    0

−1 −1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
ଶݒ
ଷݒ
ସݒ
ହݒ
⎦଺ݒ
⎥
⎥
⎥
⎤
 

=                                ௧(ଵଵିଵܣ)
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 One can easily see that (ܣଵଵିଵ)௧ is −(ܤ௙௧), a submatrix of ܤ௙ of the graph in 

Figure 3.8. 

Thus, we can rewrite (3.18) as 

ܼ௡ = ௙௧௧ܤ௙௧ܼ௧ܤ   

 This is the transformation we have been looking for. 

 

Example 3.8.1. For the graph in Figure 3.3(a), the datum node is ݒଶ. We get the 

following reduced Laplacian matrix by removing the 2nd row and 2nd column from the 

Laplacian Matrix of given graph. 

௡ܻ = (̅ݖ)ܮ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

11000
13110

01311
01130
00102







⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Calculating ࢔ࢆ by using reduced Laplacian matrix 

ܼ௡ =  ( ௡ܻ)ିଵ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

11000
13110

01311
01130
00102







⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤
ିଵ

 

 

ܼ௡ =  

⎣
⎢
⎢
⎢
⎡
0.73 0.27 0.45
0.27 0.72 0.55
0.45 0.55 0.91

    
0.36 0.36
0.64 0.64
0.73 0.73

0.36 0.64 0.73
0.36 0.64 0.73   1.18 1.18

1.18 2.18 ⎦
⎥
⎥
⎥
⎤
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Calculating ࢔ࢆ by using cutset Laplacian matrix 

ܼ௡ = ௙௧௧ܤ௙௧ܼ௧ܤ  

 

ܼ௡ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

11110
01110
00110
00100
00111







⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10000
064.009.027.009.0
009.072.018.027.0
027.018.055.018.0
009.027.018.072.0






⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10000
11000
11111
11101

00001




⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

ܼ௡ =  

⎣
⎢
⎢
⎢
⎡
0.73 0.27 0.45
0.27 0.72 0.55
0.45 0.55 0.91

    
0.36 0.36
0.64 0.64
0.73 0.73

0.36 0.64 0.73
0.36 0.64 0.73   1.18 1.18

1.18 2.18 ⎦
⎥
⎥
⎥
⎤
 

 

 Using (2.41), Kirchhoff Index of G is 

(ܩ)ܫܭ = 16.8. 

 

3.9   Kirchhoff Polynomial of a Graph and a Formula for Kirchhoff  

        Index 

In this section, we determine a formula for the Kirchhoff index in terms of the elements 

of ܼ௧. We define a new concept called the Kirchhoff polynomial of a graph. This is a 

generalization of the formula in (2.39) in terms of the elements of ܼ௡ = ( ௡ܻ)ିଵ, where 

௡ܻ is the reduced Laplacian matrix of the graph. 
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Definition 3.4. Kirchhoff polynomial of a graph. 

 Let ௧ܻ be the cutset Laplacian matrix of a resistance network G with respect to a 

spanning tree T. Let ܼ௧ = ( ௧ܻ)ିଵ =  Kirchhoff polynomial of G is a polynomial .[௜௝ݖ]

∑ ௜௝௜,௝ݖ௜௝ܥ  that express Kirchhoff index of G in terms of the elements of ܼ௧. That is  

Kirchhoff index = ∑ܥ௜௝ݖ௜௝. 

 

   We first determine a formula for each ݎ௜௝. Consider the path from vertex i to 

vertex j in the spanning tree T. To illustrate the ideas in our development, let this path 

be as given in Figure 3.9. 

 

     

 

Figure 3.9: Path from vertex i to j. 
 

For convenience, in Figure 3.9 the ports are oriented similarly. But in general, 

the ports can be oriented arbitrarily.  

 Consider now the 3-node equivalent representation of the graph as shown in 

Figure 3.10. This network can be obtained by repeated star-delta transformation at the 

remaining nodes. 

Then by equation (2.51) 

௕௝ݎ = ௕௖ݎ  + ௝௖ݎ − 2 ௝ܸ௖ = ௕௖ݎ + ௝௖ݎ + ௕௖ݎ +  ଷସݖ2

 

 

Port 3 Port 4 

j c b a i 

Port 2 Port 1 
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               Figure 3.10: 3-node equivalent representation of the graph given in Figure 3.9. 
 

   

Note that, if port 4 is oriented from  j to c, then 

௕௝ݎ = ௕௖ݎ  + ௖௝ݎ −  ଷସݖ2

as in equation (2.51). 

Next consider ݎ௔௝, as shown in Figure 3.11, 

௔௝ݎ = ௔௕ݎ  + ௕௝ݎ − 2 ௕ܸ௝                         

= ௔௕ݎ  + ௕௝ݎ + + ଶଷݖ)2  ( ଶସݖ

In the above we have replaced ௕ܸ௝  by −ݖଶଷ −  . ଶସݖ

 

 

       
 

          Figure 3.11 
 

So 

௔௝ݎ = ௔௕ݎ  + ௕௖ݎ + + ௖௝ݎ + ଶଷݖ)2 ( ଶସݖ +  ଷସݖ2

Continuing 

௜௝ݎ = ௜௔ݎ) + ௔௕ݎ  + ௕௖ݎ + ( ௖௝ݎ + ଵଶݖ)2 + + ଵଷݖ ( ଵସݖ + + ଶଷݖ)2 ( ଶସݖ +  .ଷସݖ2

 ଶଷݖ−   ଶସݖ−  

+  ௖ܸ௝ +  ௕ܸ௖ +  1 volt 

Port 4 

- 

b 
+ 

+ 

Port 3 
ଷସݖ =  − ௝ܸ௖   

j 

c 

 ଷସݖ

- 
j 

c b a 
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Note that resistances ݎ௜௔,  ݎ௔௕, ݎ௕௖ and ݎ௖௝ are diagonal elements of ܼ௧. For 

instance, ݎ௔௕ is the diagonal element ݖଶଶ. 

From the above we can see that the transfer resistance, say ݖଶସ  appears exactly 

once as 2ݖଶସ  in the expressions of each of the resistance distances ݎ௜௝, ݎ௔௝ and ݎ௕௝. 

Generalizing this we can state that each ݖ௞௟ appears exactly once as 2ݖ௞௟  in each ݎ௫௬ 

when the unique path in T containing ports x and y spans ports k and l as shown in 

Figure 3.12. Each element ݖ௜௜ appears exactly once in each ݎ௫௬ when the unique path 

from x-to-y in T spans port i. 

 

 

 

 

 

 

Figure 3.12 
 

 

If ்ܩ is the complete graph on the vertices of T then  

௞௟ܥ = 2(# number of edges in ்ܩ  that span ports ݇ and ݈ ),      if ݇ and ݈ are  

                                                                                                                             similarly oriented 

     = −2(# number of edges in ்ܩ  that span ports ݇ and ݈ ),     otherwise 

and 

௞௞ܥ = (# number of edges in the ݂ − cutset defined by port ݇)                        

 

Suppose we remove port k from the tree then the T will be disconnected into two 

trees. One of them will not contain port l. Let this tree be called ௞ܶ௟. If we remove port l 

ba 
Port yPort x  a Port k Port l
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from T, then the tree that does not contain port k will be denoted by ௟ܶ௞ . Then we can 

see that 

௞௟ܥ =  2| ௞ܶ௟| ∙ | ௟ܶ௞|  

Here  | ௞ܶ௟| = # number of nodes in ௞ܶ௟. 

See Figure 3.13. 

Also 

௞௞ܥ =  ห ௞ܶ
(ଵ)ห ∙ ห ௞ܶ

(ଶ)ห 

where   ௞ܶ
(ଵ) and ௞ܶ

(ଶ) are the two trees that result when port k is removed from the 

tree.  

Note: ܥ௞௟ = ௟௞ܥ  . 

 

 

 

 

 

 

 

 

Figure 3.13 
 

Summarizing the above discussion, we have the following theorem 

Theorem 3.9.  Given a graph G with weight matrix W. Let T be a spanning tree of G. 

Let  ܼ௧ =  be the resistance matrix with respect to T. Then the Kirchhoff Index [௜௝ݖ]

KI(G) is given by 

 

k l 

௟ܶ௞ ௞ܶ௟ 
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(ܩ)ܫܭ   =  ∑ ௜௜ܼ௜௜௜ܥ + ∑ ௜௝ܼ௜௝௜,௝ܥ           (3.17) 

                     =  ∑ ห ௞ܶ
(ଵ)ห ∙ ห ௞ܶ

(ଶ)ห௞ + 2 ∑ ±| ௞ܶ௟| ∙ | ௟ܶ௞|௞௟
௞வ௟

. 

 

In the case when T is star tree 

௜ܶ
(ଵ) = 1                 for all ݅ 

௜ܶ
(ଶ) = ݊ − 1         for all ݅ 

| ௜ܶ௝| = 1                              

| ௝ܶ௜| = 1                              

Then 

௜௜ܥ = ݊ − 1                    

௜௝ܥ =  ±1,           ݅ ≠ ݆, because all ports are dissimilarly oriented. 

and 

(ܩ)ܫܭ    = (݊ − −(௧ܼ)ݎܶ(1 2 ∑ ௜௝௜வ௝ݖ              (3.18) 

 

This verifies formula (2.41) for the Kirchhoff index when the star tree is used in 

defining the cutset Laplacian matrix.  

 

Example 3.8.2. For the graph given in Figure 3.8. 

 

ܼ௧ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10000
064.009.027.009.0
009.072.018.027.0
027.018.055.018.0
009.027.018.072.0






⎦
⎥
⎥
⎥
⎥
⎥
⎤
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The port numbers for Figure 3.8 are   

Edge ݁ଶ  Port 1, Edge ݁ଷ  Port 2, Edge ݁ସ  Port 3,  

Edge ݁ହ  Port 4, Edge ݁଻  Port 5.      

 

For the tree T in Figure 3.3, ܥ௜௝ are 

ଵଵܥ = ଵଶܥ ,5 = ଵଷܥ ,2 = ଵସܥ ,1− = ଵହܥ  ,2 = 1, 

ଶଵܥ = ଶଶܥ ,2 = ଶଷܥ ,8 = ଶସܥ ,4− = ଶହܥ ,4− = −2, 

ଷଵܥ = ଷଶܥ ,1− = ଷଷܥ ,4− = ଷସܥ ,5 = ଷହܥ  ,2 = 1, 

ସଵܥ = ସଶܥ ,2 = ସଷܥ ,4− = ସସܥ ,2 = ସହܥ  ,8 = 4, 

ହଵܥ = ହଶܥ ,1 = ହଷܥ ,2− = ହସܥ ,1 = ହହܥ  ,4 = 5, 

 

 Using (3.17), we get Kirchhoff Index 

ܫܭ = 16.8. 

 

3.10   Summary 

In this chapter, we have given an overview of the fundamental cutsets and fundamental 

circuits of a graph. We generalized the notion of Laplacian matrix using the 

fundamental cutset matrix. We presented two approaches to compute the Kirchhoff 

Index; first approach is based on a matrix transformation and the second approach used 

the concept of Kirchhoff polynomial of a graph. 

In the next chapter, we generalize the notion of Kirchhoff index and study its 

relationship to Foster’s theorems. 
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Chapter 4 

Weighted Kirchhoff Index of a Graph and Generalization of Foster’s 

Theorems 

 

In 1949, Foster (Foster, 1949) proved a theorem called Foster’s First Theorem. This 

theorem gives an identity involving the sum of resistance distances. A graph-theoretic 

proof of this theorem was given in (Thulasiraman, et al., 1983) . In (Tetali, 1994) Tetali 

proved this theorem using certain results from the theory of Markov Chains. In 1961, 

Foster presented an extension of his first theorem (called Foster’s second theorem). 

Building on Tetali’s probabilistic approach, Palacios gave another proof of Foster’s 

second theorem (Palacios, 2004). In this paper, Palacios also gave an extension of 

Foster’s second theorem. In 2007, Cinkir (Cinkir, 2007) gave a generalization of all of 

Foster’s theorems. These extensions are about the sum of resistance values over paths 

consisting of a certain number of edges. Connection between resistance distances and 

random walks on graph have been discussed in several works. See (Thulasiraman, et al., 

2015) and (Doyle & Snell, 1984) for examples. See (Coppersmith, et al., 1990) and 

(Tetali, 1991) for the application of random walk and Foster’s theorem in the design of 

on-line algorithms. 

In this chapter, we provide further advances on the concept of Kirchhoff index. 

Our main contributions are the introduction of the concept of Weighted Kirchhoff index 

of a graph and its relationship to Foster’s theorems. Specifically, we first show that 

Foster’s theorems can be presented as results involving the sum of weighted ݎ௜௝’s 

 when the weights are chosen appropriately. We then give a generalization of  (௜௝ݎ௜௝ݓ)
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Foster’s theorems that retains the circuit-theoretic flavor and elegance of these theorems 

in section 4.3. We also present a dual form of Foster’s first theorem in section 4.4. 

 

4.1   Basic Concepts and Definitions 

Consider a network N of positive resistances. Let V be the set of nodes in N. Let n 

denote the number of nodes in N. We assume that the nodes are numbered 1, 2, …, n. 

So ܸ = {1, 2, . .݊}. Let ݕ௜௝  be the value of the conductance of the resistance element 

connecting nodes i and j. Let ݎ௜௝ denote the input resistance of N across the pair of nodes 

i and j. ݎ௜௝ is also called the driving point resistance across nodes i and j.  

 

4.1.1   Star-Delta transformation 

Consider a node v. Let ݕଵ, … , ௞ݕ  be the conductances of the edges incident on v, with 

1, 2, … , ݇ denoting the other end nodes of these edges. Star-delta transformation at v is 

the operation of removing node v from N and adding a new element (݅, ݆) with 

conductance ݕ௜ݕ௝ ⁄(ݒ)݀  for all ݇ ≤ ݅, ݆ ≤ ݇  (see Figure 4.1).  

It is well known in circuit theory that the input resistance across nodes i and j in 

ܰᇱ is same as ݎ௜௝ in N as long as these nodes remain in ܰᇱ. 

 

4.1.2   Multiple star-delta transformations 

Let D be a proper subset of nodes of N, that is, ܦ ⊂ ܸ. Suppose we perform star-delta 

transformations successively at the nodes in D, one at a time. Let ܰ(ܦ) denote the 

resulting network. Clearly ܰ(ܦ) has ݊ − ݇ nodes when ݇ =  At the end of the .|ܦ|

multiple star-delta transformations, a new resistance element connecting i and j will be  
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created in ܰ(ܦ). Let the conductance value of the new element be ௜ܵ௝(ܦ). Thus, the 

total value of the conductance of the elements connecting i and j in ܰ(ܦ) will be ݕ௜௝ +

 ௜ܵ௝(ܦ).  See Figure 4.2. 

 

                                Figure 4.2: Multiple star-delta transformation. 
 

Let  

(݇)௜௝ݏ =  ෍ ௜ܵ௝(ܦ)
஽⊂௏

|஽|ୀ௞

.                                                                  (4.1) 

That is, ݏ௜௝(݇) is the sum of all ௜ܵ௝(ܦ)’s for all subsets of nodes of size k. 

ଶସݕ =
ସݕଶݕ

ଵݕ + ଶݕ  + ଷݕ + ସݕ
 

 
Figure 4.1: Star-delta transformation. 
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For example, consider a 5-node resistance network N given in Figure 4.3. For this, there 

are ten 3-element subsets of nodes. These subsets are:  

{ܽ,ܾ, ܿ}, {ܽ, ܾ,݀}, {ܽ, ܾ, ݁}, {ܽ, ܿ,݀}, {ܽ, ܿ, ݁}, {ܽ, ݀, ݁}, {ܾ, ܿ,݀}, {ܾ, ܿ, ݁}, {ܾ, ݀, ݁}, {ܿ,݀, ݁} 

 

 

Figure 4.3: A 5-node resistance network N. 
 

For each subset, D of nodes, the corresponding network ܰ(ܦ) is shown in Figure 4.4. In 

this figure, dotted edges indicate the new resistance elements along with the 

corresponding ௜ܵ௝(ܦ)’s. Then, using (4.1) we have 

௔௕(2)ݏ =
3
7 +

1
3 + 1 =  

37
௔௖(2)ݏ                , 21 =

2
3 +

4
11 +

4
11 =  

46
33,    

௔ௗ(2)ݏ =
3
7 +

9
11 +

1
3 =  

365
௔௘(2)ݏ            ,231 =

2
7 +

2
3 +

2
7 =  

26
21 ,           

௕௖(2)ݏ =
4

11 +
4

11 =  
8

௕ௗ(2)ݏ              ,11 =
5
6 + 1 +

5
6 =  

8
3         

௕௘(2)ݏ =
1
3 +

9
11 +

3
7 =  

365
௖ௗ(2)ݏ       , 231 =

4
11 +

4
11 =  

8
11,          

௖௘(2)ݏ =
4

11 +
4

11 +
2
3 =  

46
ௗ௘(2)ݏ       , 33 =

9
11 +

1
3 +

3
7 =  

365
231 
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 (a) Star-Delta transformation at nodes {a, b}        (b) Star-Delta transformation at nodes {a, c}                  

                           
(c) Star-Delta transformation at nodes {a, d}       (d) Star-Delta transformation at nodes {a, e}

                                      
(e) Star-Delta transformation at nodes {b, c}         (f) Star-Delta transformation at nodes {b, d}

                      
(g) Star-Delta transformation at nodes {b, e}            (h) Star-Delta transformation at nodes {c, d} 

                            
(i) Star-Delta transformation at nodes {c, e}            (j) Star-Delta transformation at nodes {d, e} 
 
Figure 4.4: Corresponding network N(D) for each subset D of nodes. 
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4.2   Foster’s Theorems 

4.2.1   Foster’s first theorem 

Consider a resistance N. Let N have n nodes and m elements ݁ଵ, ݁ଶ, … , ݁௠. The 

resistance and conductance of each ݁௜ will be denoted by ݖ௜ and ݕ௜ ቀ= ଵ
௭೔
ቁ, respectively. 

Also, the two nodes of each ݁௜ will be denoted by ݅ଵ and ݅ଶ. If ݎ௜భ,௜మ  denotes the effective 

resistance of N across the pair of nodes ݅ଵ and ݅ଶ, then we have the following theorem 

due to Foster (Foster, 1949). For the sake of completeness, we provide a proof of this 

theorem repeated from (Thulasiraman, et al., 1983).  

 

Theorem 4.1 (Foster’s First Theorem) 

                                                  ෍ݕ௜ݎ௜భ,௜మ

௠

௜ୀଵ

= ݊ − 1                                                               (4.2) 

Proof.  Let T denote the set of all the spanning trees of N and, for each i, let ௜ܶ denote 

the set of all the spanning 2-trees of N separating the nodes ݅ଵ and ݅ଶ. That is, ௜ܶ is the 

set of all the spanning trees of type ௜ܶభ,௜మ . Note that adding ݁௜ to a spanning 2-tree 

separating ݅ଵ and ݅ଶ will generate a spanning tree. Further, let (ݐ)ݓ denote the 

conductance product of spanning tree t and ݓ(ݐ௜) denote the conductance product of a 

spanning 2-tree ݐ௜ separating ݅ଵ and ݅ଶ.  It is easy to see that if ݐ = ௜ݐ  ∪ ݁௜ then 

(ݐ)ݓ =  .(௜ݐ)ݓ௜ݕ 

If 

ܹ(ܶ) =  ෍(ݐ)ݓ
௧∈்

 

and 
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ܹ( ௜ܶ) = ෍ (௜ݐ)ݓ
௧೔∈்೔

 

then it is known (see 2.33, Chapter 2) that  

௜భ,௜మݎ =
ܹ( ௜ܶ)
ܹ(ܶ)  

Thus, to prove the theorem, we need to show that 

                                          ෍ݕ௜ܹ( ௜ܶ)
௠

௜ୀଵ

= (݊ − 1)ܹ(ܶ)                                                     (4.3) 

or 

                                      ෍ݕ௜

௠

௜ୀଵ

෍ (௜ݐ)ݓ
௧೔ ∈ ்೔

= (݊ − 1)෍(ݐ)ݓ
௧∈்

.                                             

Consider any tree conductance product (ݐ)ݓ.We may assume, without loss of 

generality, that the spanning tree t contains the elements ݁ଵ, ݁ଶ, … , ݁௡ିଵ. Then for every 

݅ = 1, 2, … , ݊ − 1, ݐ − ݁௜    is a spanning 2-tree ݐ௜ separating the nodes ݅ଵ and ݅ଶ. So for 

every ݅ = 1, 2, … ,݊ − 1, 

(ݐ)ݓ =  (௜ݐ)ݓ௜ݕ 

for some spanning 2-tree ݐ௜. Thus, the conductance product (ݐ)ݓ appears exactly once 

in each ݕ௜ݓ(ݐ௜), ݅ = 1, 2, … , ݊ − 1. In other words, each (ݐ)ݓ appears ݊ − 1 times in 

both sides of (4.2). The theorem follows since each ݕ௜ݓ(ݐ௜) corresponds to a unique 

  .(ݐ)ݓ

 

4.2.2   Foster’s second theorem 

In this section, we state and prove Foster’s second theorem. This theorem is based on 

the operation of star-delta transformation which we define as follows.  
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Consider a node v. Let ݕଵ, … , ௞ݕ  be the conductances of the edges incident on v, 

with 1, 2, … ,݇ denoting the other end nodes of these edges. Recall that star-delta 

transformation at v removes node v from N and adds a new element (݅, ݆) with 

conductance ݕ௜ݕ௝ ⁄(ݒ)݀  for all ݇ ≤ ݅, ݆ ≤ ݇  (see Figure 4.1).  

Figure 4.5. illustrates an example to calculate the effective resistance ܴଵଶ 

between two vertices ݒଵ and ݒଶ by using Star-Delta transformation method.  

The following theorem is by Foster (Foster, 1961). 

Theorem 4.2 (Foster’s Second Theorem) Consider a resistance network N. For any 

pair of conductances ݕ௜ and ݕ௝ incident on common node v, let ݎ௜௝ denote the effective 

resistance across the two remaining nodes of ݕ௜ and ݕ௝. Let d(v) be the sum of the 

conductances of the elements incident on v. Then 

                           ෍෍ݎ௜௝ݕ௜௝
௜ழ௝

=
௩∈௏

෍෍ݎ௜௝
௝ݕ௜ݕ
(ݒ)݀

௜ழ௝

= ݊ − 2                                            (4.4) 

 where the sum is extended over all pairs of adjacent elements incident on a common 

node v. 

Proof.  Consider any node v in N. Star-delta transformation at v results in a network N′ 

with ݊ − 1 nodes. Applying Foster’s First theorem to N′ we get 

                       ෍ ௜௝ݕ௜௝ݎ
௜ழ௝∈ேᇲ

+ ෍ݖ௞ݕ௞ = ݊ − 2.                                                             (4.5) 

Here the first summation is over all pairs of elements of N′ which reflect the new 

conductances created by star-delta transformation at node v. The second summation is 

over all conductances of N that are not connected to v. Note that ݕ௞  is a conductance 

and ݖ௞ is the effective resistance across the nodes of this conductance. 
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Figure 4.5: Calculating effective resistance distance between nodes ࢜૚ and ࢜૛. 
Here, ݃ଵଶ is the conductance between nodes ݒଵ and ݒଶ. 
 

 

 

݃ଵଶ = ଻
ହ
 , so ݎଵଶ = ଵ

௚భమ
= ହ

଻
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Summing (4.5) over all the n vertices in N, we get 

෍ ෍ݎ௜௝ݕ௜௝
௩௜ழ௝∈ேᇲ

+ ෍෍ݖ௞ݕ௞ = ݊(݊ − 2). 

The first sum is over all pairs of vertices adjacent to a common node v in N. The second 

sum is 

                                    ෍෍ݖ௞ݕ௞ = (݊ − 2)෍ݖ௜ݕ௜                                                         (4.6) 

because conductance ݕ௞  appears exactly ݊ − 2 times in the double summation. So 

       ෍ ෍ݎ௜௝ݕ௜௝
௩௜ழ௝∈ேᇲ

= ݊(݊ − 2) − (݊ − 2)෍ݖ௜ݕ௜    

                                = ݊(݊ − 2)− (݊ − 2)(݊ − 1) , applying Foster’s First theorem 

= ݊ − 2                                                                                                    

This completes the proof. 

 
4.3   Weighted Kirchhoff Index of a Resistance Network, Foster’s  

        Theorems, and Generalization 

The Kirchhoff Index of a resistance network N is given by 

(ܰ)ܫܭ =  ෍ݎ௜௝
௜ழ௝

. 

Suppose we associate a weight ݓ௜௝  to each ݎ௜௝. Then the corresponding weighted 

Kirchhoff index of N is defined as  

(ܰ)ܫܭܹ =  ෍ݓ௜௝ݎ௜௝
௜ழ௝

. 

Next, we present foster’s two theorems stated in section 4.2 using the concept of 

weighted Kirchhoff index. 
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4.3.1   Foster’s first theorem using weighted Kirchhoff index 

Theorem 4.3.  If ݓ௜௝ = ௜௝ݕ   then 

(ܰ)ܫܭܹ =  ෍ݕ௜௝ݎ௜௝
௜ழ௝

= ݊ − 1. 

Note: ݕ௜௝ = 0 if there is no resistance element connecting i and j. So, in that case, we 

get the original statement of Foster’s theorem, namely, 

෍ݕ௜௝ݎ௜௝
௜ ~ ௝

= ݊ − 1. 

Note: ݅ ~ ݆ means there is an element connecting i and j. 

 

 

4.3.2   Foster’s second theorem using weighted Kirchhoff index 

Theorem 4.4.  If ݓ௜௝ =  ௜௝(1) thenݏ 

(ܰ)ܫܭܹ =  ෍ݏ௜௝(1)ݎ௜௝
௜ழ௝

= ݊ − 2. 

We next state and prove the main contribution of this chapter that generalizes Foster’s 

theorems. 

 

4.3.3   Generalized Foster’s theorem 

Theorem 4.5.  If ݓ௜௝ = ,(݇)௜௝ݏ  ݇ ≥ 1 then 

(ܰ)ܫܭܹ =  ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= (݊ − ݇ − 1)൬
݊ − 1
݇ − 1൰ 

Proof.  Consider a resistance network N of n nodes with nodes numbered 1, 2, …, n. Let 

ܸ = {1, 2, … ,݊}. Let D be a proper subset of V and |ܦ| = ݇. Then the network ܰ(ܦ) 
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that results after Star-Delta Transformations at the nodes of D will have ݊ − ݇ nodes. 

So, applying Foster’s Theorem on ܰ(ܦ), we get 

෍(ݕ௜௝ + ௜ܵ௝(ܦ))ݎ௜௝
௜ழ௝

= ݊ − ݇ − 1.                                 (4.7) 

Equation (4.7) can be rewritten as  

      ෍ ௜ܵ௝(ܦ)ݎ௜௝
௜ழ௝

+ ෍ݕ௜௝ݎ௜௝
௜ழ௝

= ݊ − ݇ − 1.                                (4.8) 

Let us now write similar equations for all the ൫ ௡௞ ൯  subsets of V of size k and sum up 

both the right-hand side and left-hand side terms. 

Then we get 

                   ෍෍ ௜ܵ௝(ܦ)ݎ௜௝
௜ழ௝஽⊂௏

+ ෍෍ݕ௜௝ݎ௜௝
௜ழ௝

=   ቀ 
݊
݇ ቁ  (݊ − ݇ − 1).

஽⊂௏

                       (4.9) 

 

Equation (4.9) can be rewritten as 

                     ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

+ ෍෍ݕ௜௝ݎ௜௝
௜ழ௝

=   ቀ 
݊
݇ ቁ  (݊ − ݇ − 1).

஽⊂௏

                         (4.10) 

Consider the second term ∑ ∑ ௜௝௜ழ௝ݎ௜௝ݕ  ஽⊂௏ in (4.9). In this summation, ݕ௜௝ݎ௜௝ 

will be present only if D does not contain both i and j. There are ൫ ௡ିଶ௞  ൯ subsets of V 

that satisfy this requirement. In all other cases, ݕ௜௝ݎ௜௝ will not be present. Thus, each 

term ݕ௜௝ݎ௜௝ appears exactly ൫ ௡ିଶ௞  ൯ times in the second sum (4.9). So, we can rewrite 

(4.9) as 

෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

+ ൬ 
݊ − 2
݇  ൰෍ݕ௜௝ݎ௜௝

௜ழ௝

=  ቀ 
݊
݇ ቁ   ( ݊ − ݇ − 1 ).   
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That is  

∑ ௜௝௜ழ௝ݎ(݇)௜௝ݏ + ൫ ௡ିଶ௞  ൯(݊ − 1) =  ൫ ௡௞ ൯   ( ݊ − ݇ − 1 ) , by Theorem 4.3. 

So, 

      ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= (݊ − ݇ − 1) ቀ 
݊
݇ ቁ   −  ൬ 

݊ − 2
݇  ൰ (݊ − 1)   

                                     = (݊ − ݇ − 1) ൤ቀ 
݊
݇ ቁ −

(݊ − 1)
(݊ − ݇ − 1) ൬ 

݊ − 2
݇  ൰൨ 

                           = (݊ − ݇ − 1) ቈቀ 
݊
݇ ቁ −

(݊ − 1)!
݇!  (݊ − ݇ − 1)!

቉ 

               = (݊ − ݇ − 1) ൤ቀ 
݊
݇ ቁ − ൬ 

݊ − 1
݇  ൰൨ 

  = (݊ − ݇ − 1) ൤൬ 
݊ − 1
݇ − 1 ൰൨ , 

where the identity ൫௡௥൯ = ൫௡ିଵ௥ିଵ൯ + ൫௡ିଵ௥ ൯ is used.     

     

For example, the ܹܫܭ(ܰ) of the 5-node resistance network N (Figure 4.3) for 

݇ = 2 is calculated below. Note that |ܦ| = ݇. The resistance distance ݎ௜௝ for each pair 

of nodes for the 5-node network N (Figure 4.3) is 

௔௕ݎ = ௔௖ݎ             ,0.475 = ௔ௗݎ             ,0.875 = ௔௘ݎ             ,0.475 = 0.500, 

௕௖ݎ = ௕ௗݎ             ,0.600 = ௕௘ݎ             ,0.400 = ௖ௗݎ             ,0.475 = 0.600, 

௖௘ݎ          = ௗ௘ݎ             ,0.875 = 0.475.                                                                                    

By using the above calculated ݎ௜௝’s and ݏ௜௝(2)’s, we can calculate ݎ௜௝ݏ௜௝(2) for each pair 

of nodes as given below: 

ܴ௔௕ݏ௔௕(2) = 0.837,   ܴ௔௖ݏ௔௖(2) = 1.219,     ܴ௔ௗݏ௔ௗ(2) = 0.750,    ܴ௔௘ݏ௔௘(2) = 0.619, 

ܴ௕௖ݏ௕௖(2) = 0.436,    ܴ௕ௗݏ௕ௗ(2) = 1.066,    ܴ௕௘ݏ௕௘(2) = 0.750,    ܴ௖ௗݏ௖ௗ(2) = 0.436, 
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ܴ௖௘ݏ௖௘(2) = 1.219,    ܴௗ௘ݏௗ௘(2) = 0.750,                                                                                    

So,  

(ܰ)ܫܭܹ =  ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= 8.08 ≅ 8 

For n = 5 and k = 2, we have by Theorem 4.5: 

෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= (݊ − ݇ − 1) ൬
݊ − 1
݇ − 1൰ =  3 ൬

4
1൰ = 8, 

verifying the result in Theorem 4.5. 

 

4.4   Dual Form of Foster’s First Theorem  

Circuits and cutsets are dual concepts (Swamy & Thulasiraman, 1981). The cutset space 

(KCL equations) has dimension    ݊ − 1, rank of the graph, and the circuit space (KVL 

equations) has dimension ݉ − ݊ + 1, nullity of the graph. Here m is the number of 

resistance elements in N. Foster’s theorem states that the weighted Kirchhoff index of a 

graph is ݊ − 1, the rank, when all weights are equal to unity. The question arises 

whether one could assign weights appropriately so that the corresponding weighted 

Kirchhoff index is equal to ݉ − ݊ + 1, the nullity. We shall answer this question in the 

affirmative. 

Note that the largest value that k can take in Theorem 4.5 is equal to n – 2, since 

at least two nodes are needed to define resistance distance. 

 

Theorem 4.6 (Dual of Foster’s First Theorem). 

∑ ݊)௜௝ݏ − ௜௝௜ழ௝ݎ(2
௜~௝

= ݉− ݊ + 1 = nullity of graph G 
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Proof.   For k  = ݊ − 2, we can get from Theorem 4.5 that 

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝

= ൬ 
݊ − 1
݊ − 3 ൰     

     = ൬ 
݊ − 1

2  ൰ 

     =
(݊ − 1)(݊ − 2)

2  

Rewriting the above, we get 

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ~ ௝

+ ෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ≁௝

=
(݊ − 1)(݊ − 2)

2  

where ݅ ~ ݆ means that there is an edge connecting i and j .  

Since  ݏ௜௝(݊ − 2) =  ଵ
௥೔ೕ

 when ݅ ≁ ݆, we get 

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ~ ௝

+ ݉′ =
(݊ − 1)(݊ − 2)

2  

where ݉′ is the number of resistance elements that are not in the network.  

Since  ݉ᇱ = ௡(௡ିଵ)
ଶ

−݉ , we get 

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ~ ௝

=  
(݊ − 1)(݊ − 2)

2 + ݉ −  
݊(݊ − 1)

2  

=  ݉− ݊ + 1 

= nullity of ܩ. 
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4.5   Summary 

In this chapter, we first introduced the notion of Weighted Kirchhoff index of a graph. 

We then presented Foster’s theorems in terms of the Weighted Kirchhoff index of a 

graph. Two specific choices of weights to be associated with resistance distance result 

in Foster’s first and second theorems. A generalization of Fosters theorems was then 

discussed. Unlike the generalization in (Cinkir, 2011), our generalization retains the 

elegance and circuit-theoretic flavor of Foster’s theorems. Our final result is to develop 

a dual form of Foster’s first theorem. Since Foster’s theorems capture the impact of path 

weights between nodes, we believe that our results provide a framework for the study of 

cascading failures using resistance distances. 
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Chapter 5 

Computing Kirchhoff Index 

 

5.1   Introduction  

Kirchhoff Index is a structural descriptor of networks based on resistance distance. In 

this chapter, we discuss sequential and parallel algorithms for resistance distance by 

using Star-delta transformation. To study the properties of large networks, they are 

partitioned into clusters. The boundary nodes of the clusters connect them to other 

clusters in network. We propose a novel three-step approximation algorithm for 

Kirchhoff Index, by storing the resistance distance information of each cluster on its 

boundary nodes. The quality of the approximation algorithm depends on the density of 

the network.  

 Section 5.2 describes the graph partition using the metis software. Section 5.3 

describes the Graphics Processing Units (GPU) and CUDA for parallel approach. In 

Section 5.4, we discuss the Star-Delta transformation algorithm using the series and 

parallel reduction. The sequential and parallel algorithms for finding the resistance 

distance are presented in Section 5.5. A novel approximation algorithm for resistance 

distance and Kirchhoff index is presented in Section 5.6. 

 

5.2   Graph Partition using METIS  

Metis (Karypis & Kumar, 2013) is a serial software package for partitioning large 

graphs. Metis consists of a fundamental library and a number of executable C programs. 

Metis software is freely distributed and has been developed at the Department of 
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Computer Science & Engineering at the University of Minnesota. Metis software can be 

downloaded directly from http://www.cs.umn.edu. The algorithms implemented in 

Metis are based on the multi-level graph paradigm (Karypis & Kumar, 2013). Metis 

uses KL algorithm developed by Kernighan-Lin (Kernighan & Lin, 1970) for graph 

partitioning. 

 We used Metis 5.1.0 software for our experiments. For graph partitioning we 

used a stand-alone program, provided by Metis 5.x, called gpmetis. Gpmetis partitions a 

given graph into specified number of clusters or parts. The input graph is stored in a 

graphfile and the output of gpmetis is stored as graphfile.part.nparts where nparts is the 

number of parts or clusters the graph was partitioned into. 

The input graph file and output file for an undirected graph G are shown in 

Figure 5.1. The undirected graph G given in Figure 5.1(a) consists of 25 nodes and 44 

edges. The input graph file of graph G with n vertices and m edges consists of ݊ + 1 

lines. The first line of input graph file is called header line and it contain the 

information about the number of nodes and number of edges of graph G. The remaining 

n lines contain the information about the actual structure of the graph G. In particular, 

the ith line contains the information about the list of nodes, connected to node i.  

Figure 5.1(b) illustrates the input graph file of graph G. The header line contains 

the information about size of graph as n = 25 and m = 44. The remaining lines represent 

all the nodes connected to a particular node. The output partition file of a graph G 

consists of n lines with a single number per line. The ith line in the output file represents 

the ith node of the graph and the number present at the ith line is the partition number 

where the ith node belongs to. Partitions are numbered from 0 to ݇ − 1, where k is the 
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(a) 

                                               
                  (b)       (c) 

Figure 5.1:  (a) Graph G. (b) Input graph file. (c) Output graph partition file. 
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the number of partition. Figure 5.1(c) shows the partition output file of graph G. The 

four clusters of the partition graph are shown in Figure 5.2. 

 

 

 

Figure 5.2: Graph G partitioned in four clusters. 
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5.3   Graphics Processing Units (GPUs) and CUDA  

The Graphics Processing Units (GPUs) have a parallel processing architecture, which 

allows GPUs to perform multiple calculations at the same time using multi-threading.  

In 1999, Nvidia introduced the first GPU (GeForce256). The advantages of using the 

GPUs over CPUs for computation are high performance and usage of less power and 

lower cost. The interface for GPUs is Compute Unified Device Architecture (CUDA). 

CUDA is a parallel computing platform created by Nvidia (Corporation, 2010). CUDA 

is the first language designed by a GPU company to facilitate general-purpose 

computing on GPUs. CUDA platform is designed to work with C and C++ 

programming languages. The CUDA platform gives direct access to the GPUs. 

In the CPU-GPU heterogeneous environment, the GPU is called the device and 

the CPU to which it is connected is called the host.  The programs executing on the 

CPU can access the GPU and data can be transferred from the host memory to the 

device memory to perform specific tasks.  

 

5.3.1   The architecture of GPU 

The GPU consists of several Streaming Multiprocessors (SMs) and each multiprocessor 

contains 8 cores. The cores have access to the shared memory of the specific Streaming 

Multiprocessor. The Streaming Multiprocessors have access to the global memory (also 

called device memory).  NVIDIA Tesla C1060 Card consists of 30 SMs, 240 GPU 

cores, 16 KB of shared memory in each of the SM (total of 480 KB of shared memory) 

and 4 GB of global memory. The architecture of GPU C1060 is shown in Figure 5.3.
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Figure 5.3: GPU architecture (NVIDIA Tesla C1060). 
 

5.3.2   CUDA programming model and memory model 

The CUDA programming model extends the C programming language. The C language 

functions are called kernels in CUDA. A kernel is defined by using the “__global__” 

declaration specifier. A CUDA kernel is executed by an array of threads. Each thread 

has a unique threadID to compute memory addresses and to make control decisions. 

CUDA follows the Single Program Multiple Data (SPMD) model. So, all threads run 

the same code. In a CUDA program, the sequential code executes in a host (CPU) 

thread and the parallel code executes in many device (GPU) threads. The threads are 

grouped into blocks. Blocks can be one-dimensional, two-dimensional, or three-
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dimensional arrays. Blocks can be identified by blockID. The blocks are grouped into 

grids and grids can be one-dimensional or two-dimensional arrays. So, the batch of 

threads that executes a kernel function at device is organized as a grid of thread blocks. 

The CUDA programming model is shown in Figure 5.4. 

 

Figure 5.4: CUDA programming model (Corporation, 2010) 
 

On executing a kernel call, the data is transferred from the CPU to the GPU by 

using memory copy functions and then transferred back to CPU from GPU. Figure 5.5 

shows the CUDA memory model. Global memory or device memory is used to transfer 

data from host to device and then back from device to host. The shared memory is 

accessed by all the threads within that block. The data stored in the register memory is 

accessed only by the thread that wrote it. 
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Figure 5.5: CUDA memory model (Corporation, 2010). 
 

5.4   Star-Delta Transformation Algorithm using Series and Parallel    

        Reduction  

The resistance distance between two nodes of a given network can be calculated by 

repeated applications of star-delta transformation. Recall from Chapter 4, Star-delta 

transformation at node v of a network N is the operation of removing node v from N and 

adding a new element between every pair of nodes that are connected to node v. To 

remove a node v, we perform series and parallel reductions. Series and parallel 

reduction along with star-delta are illustrated in Section 4.2 of Chapter 4. See Figure 5.6 

for an example. 
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Figure 5.6. Illustration of star-delta transformation and series/parallel reductions. 
  

Resistance distance algorithm 

For a given network N, let V be the set of all nodes in the network. Algorithm 1 given 

below finds the resistance distance R for nodes (i, j) in N. 

 

Algorithm 1: Resistance Distance Algorithm 

Step 1: Set nodes i and j in network N. 

Step 2: Choose the starting node v in N to perform star delta transformation. 

Step 3: If ݒ ≠ ݅ and ݒ ≠ ݆, then go to Step 4. Else go to Step 5. 

Step 4: Perform star-delta transformation on v. This will add new resistance elements  

             to all pairs of nodes connected to v.  

Step 5: Remove node v.  

Step 6: Choose next node v to perform star delta transformation if a node v other than  

             i and j is available. 

Step 7:  Repeat Step 3 until all nodes (other than nodes i and j ) have been removed   

             from the network N.  

Step 8: Let the new edge e between nodes i and j have conductance g. After  

             performing parallel reduction, the resistance distance R between i and j is 



105 

             ܴ = ଵ
௚

.  

Step 9:  Choose next pair of nodes (i, j). 

Step 10: Repeat Step 1 to Step 9 for all pairs of nodes (i, j) in N. 

 

 Figure 5.7 illustrates Algorithm 1 for the node-pair (a, e). The node picked for 

star-delta transformation is shown in red color. 

 

5.5   Sequential and Parallel Approaches for Resistance Distance  

        Computation  

The data structures we have used to store the graph information are Adjacency List and 

Adjacency Matrix. For graph partition, we use adjacency list and for finding the 

resistance distance we use adjacency matrix of the graph. We are using two approaches 

to find the resistance distance for all pairs of nodes in the graph G. In the next two 

subsections, we explain the sequential and the parallel approach for resistance distance. 

 

5.5.1   Sequential approach for resistance distance 

For finding the resistance distance using the star-delta transformation procedure, we 

need to update the given adjacency matrix A. The sequential approach for finding the 

resistance distance is given in Algorithm 2. The input for this algorithm is the adjacency 

matrix A of graph G and the output is the resistance distance matrix R for all pairs of 

nodes in G. In Algorithm 2, first we get the number of nodes n in G. Then for all pairs 

of nodes, we calculate the sum of elements of all the rows in adjacency 
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Figure 5.7: Illustration of star-delta transformation procedure algorithm. 
 

 

matrix A and store them in rowSumArray[n]. Then we find the non-zero columns of a 

row in adjacency matrix and store them in  jRowArray[n]. The information of nodes 

given in jRowArray helps in updating the adjacency matrix A. Then we set all the 

elements of the processed row i and column i to zero in adjacency matrix.  
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Algorithm 2: Sequential Algorithm for Resistance Distance Calculation 

Input : Adjacency Matrix A of graph G. 

Output: Resistance Distance R for all pairs of nodes in graph G. 

begin 

     Get n (number of nodes in G); 

     A[n][n]  Adjacency Matrix (G); 

     for ݅ = 0 to ݊ − 1  do 

             for ݆ = 0 to ݊ − 1  do 

                  rowSumArray[i]  rowSumArray[i] + A[i][j]; 

                  count  0; 

                  for ܴ݅ݓ݋ = 0 to ݊ − 1  do 

                         for ݆ܴݓ݋ = 0 to ݊ − 1  do 

                               if A[iRow][jRow] != 0 then 

                                        jRowArray[count]  jRow; 

                                       count  count + 1; 

                               end if 

                         end for 

                         for ݅݊݀݁1ݔ = 0 to count  do 

                                 jUpdate1  jRowArray[index1] ;  

                                for ݅݊݀݁2ݔ = 1ݔ݁݀݊݅ + 1 to count  do 

                                      jUpdate2  jRowArray[index2];   

                                     addition  ஺[௜ோ௢௪][௝௎௣ௗ௔௧௘ଵ]∗஺[௜ோ௢௪][௝௎௣ௗ௔௧௘ଶ]
௥௢௪ௌ௨௠஺௥௥௔௬[௜ோ௢௪]

 ; 

[2݁ݐܽ݀݌ܷ݆][1݁ݐܽ݀݌ܷ݆]ܣ[2݁ݐܽ݀݌ܷ݆][1݁ݐܽ݀݌ܷ݆]ܣ                                      +

 ;݊݋݅ݐ݅݀݀ܽ                                                                                              

                                end for 

 ; 0[1݁ݐܽ݀݌ܷ݆][ݓ݋ܴ݅]ܣ                                

 ; 0[ݓ݋ܴ݅][1݁ݐܽ݌ܷ݆]ܣ                                 

                         end for   

                          count  0; 

                          rowSumArray[i]  ݕܽݎݎܣ݉ݑܵݓ݋ݎ[݅] +  ;[݆][݅]ܣ
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                  end for 

                  for 1ݔ݁݀݊ܫݎ = 0 to ݊ − 1  do 

                         for 2ݔ݁݀݊ܫݎ = 0 to ݊ − 1  do 

                                 if [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܣ! = 0 then 

  ଵ [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܴ                                         
஺[௥ூ௡ௗ௘௫ଵ][௥ூ௡ௗ௘௫ଶ]

 ; 

                                 end if 

                         end for 

                  end for 

             end for 

     end for 

      Output  R[n][n]; 

end  

 

Updating adjacency matrix completes the star-delta transformation at the selected 

nodes. Once the adjacency matrix is updated, we again calculate the new sum of the 

rows and update rowSumArray[n]. Then we calculate the resistance distance by taking 

the reciprocal of the updated adjacency matrix and storing them in resistance distance 

matrix R. 

 

5.5.2   Parallel approach for resistance distance 

For the parallel approach, we use CUDA parallel programming. Recall from Section 5.2 

that the sequential part of the code is executed on the CPU (host), and the parallel parts 

are executed on the GPU (device). Algorithms 3 and 4 explain the parallel parts that are 

executed on the device. These are similar to Algorithms 1 and 2 incorporating certain 

features required for parallel execution. Algorithm 3 is the device code, 

kernel_rowSum(A, rowSumArray) function, for calculating the sum of elements of all 
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the rows in adjacency matrix A and storing them in rowSumArray. The __syncthreads() 

function is used to coordinate the threads. This function works as a block level 

synchronization barrier and it makes all threads stop at a certain point in the kernel 

before moving enmasse.  

Algorithm 3: kernel_rowSum – device code 

Procedure kernel_rowSum (A, rowSumArray) 

        Get n (number of nodes); 

        i ܾ݈ݔ.݉݅ܦ݇ܿ݋ ∗ ݔ.ݔ݀ܫ݇ܿ݋݈ܾ +    ;ݔ.ݔ݀ܫ݀ܽ݁ݎℎݐ

        if ݅ < ݊  then 

               rowSumArray[i]  0; 

               for ݆ = 0 to n  do 

[݅]ݕܽݎݎܣ݉ݑܵݓ݋ݎ  [݅]ݕܽݎݎܣ݉ݑܵݓ݋ݎ                      + ݅]ܣ ∗ ݊ + ݆]; 

               end for 

                 __syncthreads(); 

        end if 

end procedure  

 

Algorithm 4 is the device code, kernel_updateMatrix(A, rowSumArray, jRowArray, 

irow, count) function, for updating the adjacency matrix A. Here rowSumArray is the 

array of sum of rows of adjacency matrix A, jRowArray is the array that holds the 

information of nodes to be updating in the adjacency matrix. 

Algorithm 4: kernel_updateMatrix – device code 

Procedure kernel_updateMatrix (A, rowSumArray, jRowArray, irow, count) 
       Get n (number of nodes); 
       i ܾ݈݉݅ܦ݇ܿ݋. ݕ ∗ ݕ.ݔ݀ܫ݇ܿ݋݈ܾ +  ;ݕ.ݔ݀ܫ݀ܽ݁ݎℎݐ
       j ܾ݈݉݅ܦ݇ܿ݋. ݔ ∗ .ݔ݀ܫ݇ܿ݋݈ܾ ݔ + .ݔ݀ܫ݀ܽ݁ݎℎݐ  ;ݔ
      if ݅ < ݊ and ݆ < ݊ then 

              for ݅݊݀݁1ݔ = 0 to ݊ − 1 do 
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                     for index2 = 0 to k do 

                            jUpdate1  jRowArray[index2]; 

                           if index1 = jUpdate1 then 

                               for ݅݊݀݁3ݔ = 1ݔ݁݀݊݅ + 1 to ݊ − 1 do 

                                   for index4 = 0 to k do 

                                        jUpdate2  jRowArray[index4]; 

                                       if index3 = jUpdate2 then 

                                           addition = 
஺[௜ோ௢௪∗௡ା௝௎௣ௗ௔௧௘ଵ]∗஺[௜ோ௢௪∗௡ା௝௎௣ௗ௔௧௘ଶ]

௥௢௪ௌ௨௠஺௥௥௔௬[௜ோ௢௪]
 

1ݔ݁݀݊݅]ܣ                                             ∗ ݊ + 1ݔ݁݀݊݅]ܣ [3ݔ݁݀݊݅ ∗ ݊ + [3ݔ݁݀݊݅ +

 ;݊݋݅ݐ݅݀݀ܽ                                                                                                      

3ݔ݁݀݊݅]ܣ                                             ∗ ݊ + 3ݔ݁݀݊݅]ܣ [1ݔ݁݀݊݅ ∗ ݊ + [1ݔ݁݀݊݅ +

 ;݊݋݅ݐ݅݀݀ܽ                                                                                                      

                                       end if                    

                                   end for 

                                   __syncthreads( ); 

                               end for 

ݓ݋ݎ݅]ܣ                                ∗ ݊ + [1ݔ݁݀݊݅ = 0; 

1ݔ݁݀݊݅]ܣ                                 ∗ ݊ + ݓ݋ݎ݅ = 0; 

                           end if 

                     end for 

                     __syncthreads(); 

              end for 

      end if 

end procedure        

 

The parallel approach for finding the resistance distance is given in Algorithm 5. The 

input for this algorithm is the adjacency matrix A of graph G and the output is the 

resistance distance matrix R for all pair of nodes in G. In Algorithm 5, GPUMalloc( ) 

function requests the array on the device’s global memory and GPUFree() function 
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frees the array from the device global memory. MemcpyHostToDevice( ) function 

transfers data from host memory to device memory and MemcpyDeviceToHost( ) 

function transfers data back to host memory from device memory.   

 To call the kernel functions from the device, we declare blocksPerGrid and 

threadsPerBlock. blocksPerGrid is the number of blocks we want to run on processors 

in parallel and threadsPerBlock is the number of threads we want to activate per block. 

We call the kernel_rowSum function given in Algorithm 3 to calculate the sum of the 

rows of adjacency matrix A. Then we call kernel_updateMatrix function given in 

Algorithm 4 to update the entries of the adjacency matrix. Calculate the resistance 

distance by taking the reciprocal of the updated adjacency matrix elements and storing 

them in resistance distance matrix R. 

Algorithm 5: Parallel Algorithm for Resistance Distance Calculation 

Input : Adjacency Matrix A of graph G. 

Output: Resistance Distance R for all pairs of nodes in graph G. 

begin 

     Get n (number of nodes in G); 

     A[n][n]  Adjacency Matrix (G); 

     for ݅ = 0 to ݊ − 1  do 

             for ݆ = ݅ + 1 to ݊ − 1  do 

         // Call ݇݁݉ݑܵݓ݋ݎ_݈݁݊ݎ function to add the elements of rows of adjacency matrix 

                   GPUMalloc( ); 

                   MemcpyHostToDevice( );      

,݀݅ݎܩݎ݁ܲݏ݇ܿ݋݈ܾ>>>݉ݑܵݓ݋ݎ_݈݁݊ݎ݁݇                           ,A)<<<݇ܿ݋݈ܤݎ݁ܲݏ݀ܽ݁ݎℎݐ

                          rowSumArray);  

                   MemcpyDeviceToHost( );   

                   GPUFree( ); 

                   count  0; 
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                   for ܴ݅ݓ݋ = 0 to ݊ − 1  do 

                         for ݆ܴݓ݋ = 0 to ݊ − 1  do 

                               if A[iRow][jRow] != 0 then 

                                        jRowArray[count]  jRow; 

                                       count  count + 1; 

                               end if 

                         end for 

                         // Call  kernel_updateMatrix function to update the adjacency matrix. 

                          GPUMalloc( );      

                          MemcpyHostToDevice( );    

,݀݅ݎܩݎ݁ܲݏ݇ܿ݋݈ܾ>>>ݔ݅ݎݐܽܯ݁ݐܽ݀݌ݑ_݈݁݊ݎ݁݇                  ,A)<<<݇ܿ݋݈ܤݎ݁ܲݏ݀ܽ݁ݎℎݐ

rowSumArray, jRowArray, irow, count); 

                           MemcpyDeviceToHost( );  

                           GPUFree( ); 

                           count  0; 

                     // Call kernel_rowSum function to add the rows of updated adjaceny matrix 

                              GPUMalloc( );        

                              MemcpyHostToDevice( );      

,݀݅ݎܩݎ݁ܲݏ݇ܿ݋݈ܾ>>>݉ݑܵݓ݋ݎ_݈݁݊ݎ݁݇                                 ,A)<<<݇ܿ݋݈ܤݎ݁ܲݏ݀ܽ݁ݎℎݐ

                                               rowSumArray);  

                              MemcpyDeviceToHost( );   

                              GPUFree( ); 

                   end for 

                   for 1ݔ݁݀݊ܫݎ = 0 to ݊ − 1  do 

                         for 2ݔ݁݀݊ܫݎ = 0 to ݊ − 1  do 

                                 if [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܣ! = 0 then 

  ଵ [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܴ                                         
஺[௥ூ௡ௗ௘௫ଵ][௥ூ௡ௗ௘௫ଶ]

 ; 

                                 end if 

                         end for 

                   end for 
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             end for 

     end for 

     Output  R[n][n]; 

End 

 

We are getting the same output resistance distance matrix R from the sequential 

approach Algorithm 2 and parallel approach Algorithm 5. Figure 5.8 shows the input 

adjacency matrix A and Figure 5.9 shows the output resistance distance matrix R of G 

given in Figure 5.1(a).  

 

 

 

 

 
Figure 5.8: Adjacency matrix A of G given in Figure 5.1(a). 
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5.6    Three-Step Approximation Algorithm for Resistance Distance  

          Calculation  

In this section, our main objective is to introduce a three-step approximation algorithm 

to calculate resistance distance between all pairs of nodes of a network. Algorithm 6 

finds the resistance distance ܴ௔௣௣௥௢௫ using the paths in a network. First the network is 

partitioned into clusters. Figure 5.10 shows the boundary nodes network ܤ′ having 

weights on the edges (dashed red color edges) of boundary nodes of each cluster 

(Illustrate Step 1 and Step 3 of Algorithm 6). The relationship between the resistance 

distance R we are getting from Algorithm 2 (Algorithm 5 for parallel) and the resistance 

distance ܴ௔௣௣௥௢௫ from Algorithm 6 is 

ܴ௔௣௣௥௢௫ ≥ ܴ. 

Figure 5.11 shows the output resistance distance matrix ܴ௔௣௣௥௢௫ of graph G given in 

Figure 5.2. 

Algorithm 6: Three-Step Approximation Algorithm for Resistance Distance Calculation 

Step 1: Find the boundary nodes of each cluster in network N. These are the nodes that  

             connect inter-cluster edges. See Figure 5.2. 

Step 2: Get the adjacency matrix ܣ௖௟௨௦௧௘௥  for each of the clusters in the network. 

Step 3: Find the weight on the edges of boundary nodes of each cluster by using  

              Algorithm 2 (for sequential approach) or Algorithm 5 (for parallel approach). 

Step 4: Get the adjacency matrix ܣ௕௢௨௡ௗ௔௥௬  for network ܤ′ of boundary nodes. 

Step 5: Get the resistance distance matrix ܴ௕௢௨௡ௗ௔௥௬  for each pair of boundary nodes in   

  by using Algorithm 2 or Algorithm 5. The input for Algorithm 2 and ′ܤ             

             Algorithm 5 is adjacency matrix ܣ௕௢௨௡ௗ௔௥௬ . 

Step 6: Get the adjacency matrix A of the network N. 

Step 7: To find the resistance distance R for each pair of nodes (i, and j) in N, go to  
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              Step 8. 

Step 8: Set nodes i and j. 

Step 9: If nodes i and j are in the same cluster and both are non-boundary nodes then  

             get the resistance distance by using Algorithm 2 or Algorithm 5. The input  

             adjacency is matrix A. Go to Step 19. 

Step 10: If nodes i and j are in the same cluster but i is a non-boundary node of the  

               cluster and j is a boundary node of the cluster then get the resistance distance  

               ܴ௖௟௨௦௧௘௥[݅][݆] by using Algorithm 2 or Algorithm 5. Go to Step 19. 

Step 11:  If nodes i and j are in different clusters and both are non-boundary nodes of  

                those clusters then go to Step 12. 

Step 12: If node i is a non-boundary node in clusterA and node j is non-boundary node  

               in clusterB then go to Step 13 through Step 16 and find the resistance distance  

               ܴ௔௣௣௥௢௫[݅][݆]. 

Step 13: Find the resistance distance ܴ௖௟௨௦௧௘௥஺[݅][݇] from node i to each boundary node  

               k of clusterA, by using Algorithm 2 or Algorithm 5. The input adjacency is  

               matrix ܣ௖௟௨௦௧௘௥஺ . 

Step 14: Find the resistance distance ܴ௖௟௨௦௧௘௥஻[݇][݆] from node j to boundary node k of  

                clusterB, by using Algorithm 2 or Algorithm 5. The input adjacency matrix is  

௖௟௨௦௧௘௥஻ܣ                 . 

Step 15: Find the resistance distance ܴ௕௢௨௡ௗ௔௥௬[݇][݈] from boundary node k of clusterA  

               to boundary node l of clusterB, by using Algorithm 2 or Algorithm 5. The  

               input adjacency matrix is ܣ௕௢௨௡ௗ௔௥௬ . 

Step 16: Set ܴ௔௣௣௥௢௫[݅][݆]  minimum resistance distance from i to j using paths of  

               length of 3, containing the boundary nodes of clusterA and clusterB.  

               Go to Step 19. 

Step 17: If node i is a non-boundary node in clusterA and node j is a boundary node in  

                clusterB then repeat Step 13 and Step 15 and find resistance distance.                    

               Set ܴ௔௣௣௥௢௫[݅][݆] the minimum resistance distance along paths of length 2,  

                                                containing only the boundary nodes of clusterA.  

               Go to Step 19. 
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Step 18: If node i is a boundary node in clusterA and node j is a non-boundary node in  

               clusterB then repeat Step 14 and Step 15 and find resistance distance  

               ܴௗ௜௩௘௥௦௘௉௔௧௛[݅][݆].                     

              Set ܴ௔௣௣௥௢௫[݅][݆]  the minimum resistance distance of paths of length 2 from 

                                                i to j, containing only the boundary nodes of ClusterB. 

               Go to Step 19. 

Step 19: Choose the next pair of nodes (i, j). Go to Step 8. 

Step 20: Stop when all pairs of nodes have been considered. 

 

 

Figure 5.10: Boundary node network B’ of graph G in Figure 5.2. 
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5.7   Experiment Results  

The software used for graph partitioning for our experiments is Metis 5.1.0, as 

discussed in Section 5.2. The programs are written in C and CUDA (toolkit 5.5) and 

compiled using the GCC v4.8.2 and nvcc compilers on a Linux x86_64 version 3.10.0. 

The sequential Algorithm 3 is implemented using CPU and the parallel Algorithm 5 is 

implemented using both CPU and GPU. The CPU implementation is performed using a 

single thread. The CPU used for experiments consists of quad-core 2.27 GHz Intel 

Xeon processors with 12GB of memory. The GPU used for experiments is Nvidia 

C1060 card with 240 GPU cores and 4GB of memory.  

The experiments have been performed on datasets (Johnson, et al., 1989) for 

graph sizes ranging from 25 to 500 nodes. The graphs considered for experiments in 

this chapter are graphExample (25 nodes, 44 edges), G124 (124 nodes, 318 edges), 

G250 (250 nodes, 1283 edges) and G500 (500 nodes, 5120 edges). The timing for the 

sequential (Algorithm 2) and parallel (Algorithm 5) implementation is shown in Table 

3. The time for parallel implementation is less than the sequential implementation.  The 

time for parallel implementation for graph G250 for various number of processors is 

shown in Table 4. The time is more for parallel implementation if the number of 

processors are less. 

The quality of performance of three-step approximation algorithm 6 for 

resistance distance and Kirchhoff index is shown in Table 5. The maximum error 

between resistance distance R and Rapprox is 96.27%  for graph G124 for node pair (22, 

39). 
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Graphs # Nodes # Edges Sequential 

Time 

(seconds) 

Parallel Time 

(seconds) 

graphExample 25 44 0.050 0.030 

G124 124 318 3.98 0.340 

G250 250 1283 7.352 0.598 

G500 500 5120 10.01 0.852 
 

Table 3: Comparison of time for sequential and parallel implementation. 

 

 

# Processors Time (seconds) 

4 1.472 

8 1.035 

16 0.824 

30 0.598 

 

                Table 4: Comparison of time for number of processors for graph G250. 
             

 

 

Graphs # Nodes Average Error (%) 

Resistance Distance 

Error(%) 

Kirchhoff Index 

graphExample 24 9.8 11.8 

G124 124 9.72 10.01 

G250 250 9.37 9.54 

G500 500 8.58 9.13 

 

Table 5: Quality performance of three-step approximation algorithm. 
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The effective resistance between a pair of nodes depends on the number of paths 

between these nodes and their lengths. So, the main parameters that affect the average 

percent error for resistance distance in a network are: density of intra-cluster edges 

within the clusters and density of inter-cluster edges between the clusters, the number of 

clusters, and the number of steps used in the approximation. The more the number of 

paths, the less is the resistance distance. Also, the longer the paths, the more is the 

resistance distance. The average percent error of resistance distance for a network with 

dense intra-cluster edges and sparse inter-cluster edges is less as compared to the 

network with dense inter-cluster edges. For a graph of 25 nodes, the error is 11.2% for 

sparse intra-cluster and inter-cluster edges, 10.8% for dense intra-cluster and sparse 

inter-cluster edges, and 17.5% for dense intra-cluster and dense inter-cluster edges. 

 

5.8   Summary  

In this chapter, sequential and parallel algorithms for resistance distance have been 

proposed. The performance of both the algorithms with respect to execution time have 

been discussed. In addition, a novel approximation algorithm for resistance distance and 

Kirchhoff index has been introduced. The parameters of network that affect the 

approximation algorithm have also been discussed. 
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Chapter 6 

Conclusions 

 

6.1   Summary  

This chapter summarizes the research presented in this dissertation. Chapter 1 provided 

introduction and appropriate literature review relating to network science. It also 

discussed the key aspects of network science and types of the networks. The overview 

of resistance distance and Kirchhoff index were described and the layout of the 

dissertation structure was also given in this chapter. 

 Chapter 2 presented an overview of electrical networks along with the 

topological formulas for network functions. The matrices of graph and their properties 

were discussed along with the Laplacian spectral graph theory. The Laplacian matrix of 

a graph plays an important role in the computation of resistance distance and Kirchhoff 

index. The standard method to obtain resistance distance is via Moore-Penrose 

pseudoinverse ܮା of the Laplacian matrix L of a connected graph. To avoid the 

computational complexity and extraneous efforts of Moore-Penrose pseudo-inverse, a 

new formula for calculating Kirchhoff index was presented in this chapter. Three proofs 

of this formula based on the properties of the pseudo-inverse of the Laplacian matrix, 

topological formula for network functions and basic concepts of electrical circuit theory 

were presented. 

 Chapter 3 generalized the notion of Laplacian matrix using the fundamental 

cutset matrix. The concept of Kirchhoff polynomial of a graph was defined in this 

chapter. Kirchhoff polynomial expresses Kirchhoff index using the elements of the 
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resistance matrix. In this chapter, two approaches were developed to compute the 

Kirchhoff index. The first approach is based on a matrix transformation and the second 

approach uses the concept of Kirchhoff polynomial of a graph. 

 Chapter 4 provided further advances on the concept of Kirchhoff index. This 

chapter introduced the concept of Weighted Kirchhoff index of a graph and its 

relationship to Foster’s theorems. Foster’s theorem is a very important theorem in the 

field of electrical network analysis. Foster’s theorems can be presented as results 

involving the sum of weighted resistance distances when the weights are chosen 

appropriately. This chapter presented a generalization of Foster’s theorems that retains 

the circuit-theoretic flavor and elegance of Foster’s theorems. A dual form of this 

theorem was developed in this chapter. 

 Chapter 5 proposed sequential and parallel algorithms to compute Kirchhoff 

index. Kirchhoff index captures the effect of topological structure on the performance 

of networks. It also captures the path diversity between nodes in a network. Kirchhoff 

index can be used to determine node betweenness in networks that are of interest in 

network vulnerability studies. In view of this, an efficient methodology to compute 

Kirchhoff index is required. A novel three-step approximation algorithm for calculation 

of resistance distance and Kirchhoff index was introduced in Chapter 5. This chapter 

discussed the parameters of network that affect the three-step approximation algorithm. 

 

6.2   Future Directions of Research 

Graphs and networks have been used extensively in many recent applications (e.g., 

social networks, economy, etc.). For instance, all centrality measures in network are 
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based on the shortest distances between pairs of nodes. Though, in general, all paths 

must be used in assessing the centrality of a node, shortest paths are used because they 

are easy to compute.  To mitigate the effect of the approximation of criticality by 

considering only shortest paths, other measures that capture both the lengths of paths 

and the number of these paths between nodes need to be investigated (e.g., diffusion 

distance). Resistance distance and Kirchhoff Index are two such measures.  

Resistance distance is a generalization of shortest paths. The shorter a path 

between two nodes the smaller will be the distance. Also, the more the number of paths, 

the less will be the distance. Thus, resistance distance captures the impact of both the 

lengths of paths and the number of paths on criticality measures. On the other hand, 

Kirchhoff index may be viewed as an aggregate property of a group of nodes (that is, 

the average of all resistance distances across all pairs of nodes in the group). 

We propose two problems for further investigations, employing the notion of 

resistance and Kirchhoff Index. 

 

6.2.1   Graph clustering 

In graph clustering one is interested in partitioning the nodes of a graph into non-

overlapping clusters satisfying certain additional properties. These additional 

constraints are defined by the applications considered.  Two extensive reviews of graph 

clustering that discuss both theoretical advances and some practical heuristics may be 

found in the reference (Thulasiraman, et al., 2015). The reference (Aluru, 2006) 

provides a very good coverage of applications of clustering in molecular biology. A 
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general class of clustering algorithms that satisfy the following constraints merits 

further investigation. 

 

Determine clusters minimizing the sum of Kirchhoff indices of all clusters   subject 

to a limit on the maximum number of nodes in each cluster. 

Since Kirchhoff Index captures the aggregate value of closeness of nodes in a group, the 

clusters obtained by the solution of the problem will be the groups of nodes that are 

very close to each other Additional constraints such as minimizing the number of inter-

cluster edges can also be introduced in the above formulation. It is easy to see that this 

problem is NP-hard. Heuristics such as those based on spectral partitioning, multi-

commodity flows etc.  for other classes clustering problems are available.  

In social network analysis, a related problem called community detection has 

been studied (Newman, 2010; Easley & Kleinberg, 2010; Malliaros & Vazirgianniz, 

2013). In community detection one objective is to get clusters that achieve maximum 

value of what is called modularity. We would like to add modularity constraint to 

capture the notion of homophily or assortative mixing in networks. In all these works 

Laplacian matrix and their eigenvalues play a central role. What makes the clustering 

problem defined above novel is the use of the notion of Kirchhoff Index. We believe 

combing with this the idea of assortative mixing will lead to more powerful measures 

and algorithms for clustering.  

 

6.2.2   Similarity and criticality measures 

Similarity: 
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 Similarity measures based on degree distributions and other topological parameters are 

available in the literature.  We propose a new definition of similarity of nodes using the 

concept of resistance distance. We first define the Kirchhoff index of a node v as the 

sum of the resistance distances of this node to all other nodes in the network. We define 

two nodes as similar if their node Kirchhoff index values are equal.  Our method to 

calculate the Kirchhoff index in this dissertation can also be used to compute the node 

Kirchhoff index values starting from the inverse of the reduced Laplacian. 

 

Criticality:  Node (edge) betweenness measure used in social network analysis captures 

the critical value of a node (edge) with respect to the number of paths that pass through 

the node (edge). For a review of research on this topic, the references (Newman, 2010; 

Easley & Kleinberg, 2010) may be consulted. We define a new criticality measure 

based on resistance distance instead of shortest paths. This will allow us to estimate the 

impact of path lengths and number of paths. 

Between measure algorithms, references based on shortest paths are available 

(Newman, 2010; Easley & Kleinberg, 2010; Brandes, 2001). One new direction of 

study is to investigate algorithms for betweenness measures using resistance distances 

instead of shortest paths.  It will also be interesting to study the relationship between 

these new betweenness measures and criticality of nodes and edges with respect to their 

ability to cause disruption in network functions. 

Our focus will be on handling large graphs. We shall also study the impact of a 

cascade of failures of critical nodes. We have studied problems of this type in different 

contexts: cascading failures in multi-layer networks and power grids (Zhou, et al., 2012; 
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Wu, et al., 2017). We plan to build on this expertise to advance knowledge by applying 

the concept of resistance distances to the study of cancer progression and detection of 

critical driver mutations.  
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