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Abstract

The emerging area of network science studies structural characteristics of networks and
dynamical processes on networks such as spread of epidemics, vulnerability of power
grids to cascading failures etc. In this area, several measures of network performance
have been introduced and studied. In this dissertation, we study two measures, namely,
resistance distance and Kirchhoff index.

Treating each element of a graph as a resistance, resistance distance between
two nodes u and v is the effective resistance across u and v. Kirchhoff index defined by
the chemistry community is the sum of the effective resistances across all pairs of nodes
of the graph. Kirchhoff index, also called network criticality, has been studied by the
communication network community. Kirchhoff index has been studied using the graph
Laplacian matrix which is the same as the indefinite admittance matrix of a resistance
network.

Our research is on reducing the computational effort in calculating the Kirchhoff
index in networks. First a simpler formula for Kirchhoff index based on the properties
of node-to-datum resistance matrix is presented. To avoid computational complexity
and extraneous efforts of Moore-Penrose pseudoinverse, Kirchhoff index is calculated
in terms of the inverse of the reduced Laplacian matrix.

The notion of Laplacian matrix is then generalized using the fundamental cutset
matrix of a graph. Two approaches to compute Kirchhoff index are presented: The first
approach is based on a matrix transformation, and the second approach uses the concept
of Kirchhoff polynomial of a graph. Kirchhoff polynomial of a graph introduced in this

work is defined for each spanning tree of the graph.

Xi



In 1949 and 1961 Foster established two theorems that give identities involving
resistance distances. We introduce the concept of Weighted Kirchhoff index of a graph
and study its relationship to Foster’s theorems. We present a generalization of Foster’s
theorems that retains the circuit-theoretic flavor and elegance of Foster’s theorems, and
develop a dual form of this theorem.

Kirchhoff index captures the effect of topological structure on the performance
of networks. It also captures the path diversity between nodes in a network. Kirchhoff
index can be used to determine node betweenness in networks that are of interest in
network vulnerability studies. In view of this, an efficient methodology to compute
Kirchhoff index is required. For this purpose, we propose sequential and parallel
algorithms. In addition, we introduce a novel 3-step approximation algorithm for

calculation of resistance distance and Kirchhoff index.
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Chapter 1

Introduction

1.1 Introduction to Network Science

Complex systems are pervasive in our society. Some examples are the Internet System
that interconnects computer networks globally, the World Wide Web System that links
the information networks to each other, the electrical power system, the biological
system that relates the networks of biologically relevant entities, the communication
system that integrates billions of cell phones with satellites and computers, the social
system that interrelate the individuals, groups, institutions, organizations etc. There are
three aspects to study the complex systems. The first is the study of the nature of the
individual components of the systems, the second is the study of the nature of
connections or interactions and the third is the study of the pattern of connections
between components.

Networks represent the pattern of connections in a system. The science of
networks is called network science. This is not a new concept, and it has roots as far
back as 1736. Network science has roots in many subfields, for example, in social
network analysis, electrical circuits and systems, synthetic emergent systems (i.e. the
Internet, power grid), biological science etc.

Network science is defined in many ways by the National Research Council
(NRC) of the National Academies. The most direct definition given by NRC is (Lewis,

2009):



Definition 1.1. Network science is an organized knowledge of networks based on their
study using the scientific methods.

In simple language, a network is a collection of points that are joined together
by lines. Each subfield has a different working definition of a network. For
communication engineers the network is a system of routers and switches and for
marketing business people it is a population of buyers. According to sociologists a
network is an influence diagram that represents the social interaction among humans
and for physicists it is a model of phase transition and magnetism. Biologists use
network analogy to understand the epidemics and metabolic system within a cell but for
power engineers a network is a system of electrical power grids.

The operational definition of network science has two main components
(Newman, 2010):

(1 Network science is the study of the structure of a collection of nodes and
links that represent something real.
(i) Network science is the study of the dynamic behavior of the aggregation of
nodes and links.
The nodes might be molecules or genes for biological systems, humans for social
systems, routers or switches for communication systems, transformers for electrical
systems. The links might be contagions or synapses for biological system, friendships or
other relationships for social systems, physical wires or wireless for communication

systems, cables for electrical systems, etc.



1.2 Why are we Interested in Networks

To understand complex systems, we have to acquire a deep understanding of the
networks behind the systems. A network reduces a complex system to an abstract
structure representing the connection patterns in the system. A network can be
described by a graph structure (i.e. nodes and links) and by its behavior (i.e. the
interaction among the nodes and links). Over the years, scientists have developed a
pervasive set of mathematical, computational, and statistical tools for analyzing,
modeling and understanding networks. These tools work with networks in their abstract
form and help in finding some crucial and useful information about networks, for
example, the critical node or edge in a network, length of a path from one node to
another in a network, flow of traffic over the network, clusters or communities in a
network, etc. These tools can be applied to any systems that can be represented as

networks.

1.3 A Brief History of Network Science

Network science is not only a single field, but it is a result of convergence of many
other subfields. The two major evolutions in network science are: (i) from mathematical
theory to graph theory and (ii) from graph theory to collections of generalization about
the things that are connected.

The history of network science can be divided into three periods (Newman, 2010) as

shown in Figure 1.1.



Early pre-network period (1736 — 1966)

The meso-network period (1967 — 1998)

The modern period (1998 — present)

Figure 1.1: History of network science

1.3.1 Early pre-network period (1736 — 1966)

Early pre-network period is the period when network science was really the
mathematics of graphs. The very first known application of network science was
Euler’s treatment of Bridges of Konigsberg (Euler, 1736). This application established
graph theory and demonstrated that many real-world problems can be solved by
abstractions as graphs. Euler called a graph a mathematical object consisting of points
(or nodes) and lines (or edges). In his study, Euler represented the four land masses as
four vertices and joined them by seven edges in the pattern of the Konigsberg bridges
(Figure 1. 2). The problem is to start at one vertex, traverse all the edges exactly once
and return to the starting vertex.

In network science, the next major turning point was in 1925, when Yule first
observed preferential attachment in evolution (Yule, 1925). Preferential attachment
describes an emergent process and it explains the existence of scale-free networks in
natural and synthetic systems. In 1927, Kermack and McKendrick discovered a
mathematical epidemic model of the spread of a disease in biological networks. Their
idea of epidemics was first applied by Solomonoff and Rappaport in 1951 to random

networks.



Figure 1.2 (Anon., 2003): Konigsberg bridge problem. (a) A map of eighteenth century
Konigsberg with its seven bridges. (b) Simplified illustration of the rivers and bridges in
the Konigsberg bridge problem. (c) the corresponding network of nodes and edges.

By the mid-twentieth century, network science figured out that the nature and
real objects could be modeled as random processes or as random graphs. In 1959,
Gilbert built a random graph in two steps, the first step was to construct a complete
graph and the second step was to delete the randomly selected links from the graph until
it reached the desired number of links (Gilbert, 1959). But very soon in 1960, Erdos and
Renyi, surpassed Gilbert’s algorithm and came up with an elegant and simple algorithm
which is widely used today. Erods-Renyi (ER) algorithm constructs a network of n
nodes by inserting a link between randomly selected pair of nodes and this process is
repeated until m links have been inserted (Erdos & Renyi, 1960). By late 1960s the seed

of network science was planted in seemingly unrelated disciplines.

1.3.2 The meso-network period (1967 — 1998)

This is the period when applications of networks started emerging. In 1967, a major
turning point in network science was marked by Stanley Milgram by his “six degrees of
separation” experiment. Milgram called this network a small-world network because he

concludes that the social world is smaller than the real world and it took only six hops



to connect a pair of strangers, regardless of where they lived. Milgram’s small-world
idea is based on the “weak ties” theory. Later in 1973, Granoveter (Granovetter, 1973)
gave his theory that social networks contain both “strong ties” and “weak ties”. Strong
ties are the direct connection between two nodes and weak ties are the long-distance
connections that bind social world. In 1978, Pool and Kochen determined the
theoretical analysis of small-world networks. Bonacich was the first social scientist
who postulated the mathematical representation of the social networks by using the
connection matrix (Bonacich, 1972). The Marketing gurus remark that the highly-
connected people are superspreaders, while on the other hand the social scientists note
that the middle-person or intermediary person is powerful and called it betweenesss.
Betweenness is the number of paths that must run through a node to connect to other
nodes.

Kuramoto’s work in 1984 on synchronization in coupled linear systems has had
a major impact on convergence between network science and control theory
(Kuramoto, 1984). The fundamentals of network science had been established by 1998.
This was the time when Internet was at rapid rise and Waxman proposed a static graph

theory model of Internet (Waxman, 1988).

1.3.3 The modern period (1998 — present)

Emergence plays a very crucial role in the study of networks. In 1998, Holland defined
emergence as “a major change in global properties of networks coming from small
changes at the local level” (Holland, 1998). Watts and Strognatz showed their interest in

small-world networks and generated arbitrarily small world networks that fall between a



random network and non-random network (Watts & Strogatz, 1998; Watts, 1999;
Watts, 1999a). After this, the small world networks were not restricted to social
networks only. The year 1999 turns out to be a milestone for the modern period, as this
year was full of discoveries. M. Faloutsos, P. Faloutos and C. Faloutos observed a
power law in their Internet graph model (Faloutsos, et al., 1999), and similarly Albert,
Jeong, and Barbasi observed power law in their WWW model (Albert, et al., 1999). In
(Barbasi, et al., 1999) Barbasi and Albert determined a generative procedure to produce
scale-free networks.

Dorogovstsev, Mendes, Samukhim, Krapivsky, and Redner introduced the
concept of power law of purely scale-free networks in many biological systems
(Dorogovtsev, et al., 2000; Dorogovtsev, et al., 2002; Dorogovtsev & Mendes, 2002;
Dorogovtsev & Mendes, 2003). In 2000, Kleinberg showed that it takes O (n) steps to
search a small world using “Manhattan distance” (Kleinberg, 2000). Albert, Jeong, and
Barbasi observed that the scale-free networks are resilient for protected hubs (Albert, et
al., 2000).

Wang, Chen, Barahona, Pecora, Liu, Hong, Choi, Jost, Joy and others showed
the stability of any network as a function of the network’s topology (Wang & Chen,
2002; Wang & Chen, 2002a; Wang & Chen, 2002b; Barahona & Pecora, 2002; Liu, et
al., 2002; Liu, 2003; Liu, et al., 2004; Liu, et al., 2004a; Hong & Kim, 2002; Jost & Joy,
2002).

Wang, Chakrabarti, Wang, and Faloutsos determined the spread of epidemics by
using the largest eigenvalue of connection matrix and network’s spectral radius (Wang,

et al., 2003).



Atay et al. (Atay, et al., 2006) studied synchronization in networks with the
degree sequence distribution. Lewis (Lewis, 2009) extended the topological results of
networks to several classes of Atay’s network and to a new class of networks called
Kirchhoff newtorks. Atay’s network uses a local averaging algorithm to compute the
state of nodes (Atay, et al., 2006), while the new class of Kirchhoff Networks stabilizes
the value of nodes by maintaining the Kirchhoff’s first law. Recently network science
has contributed to many results in many fields such as marketing, electrical engineering,

biology, communication systems, etc.

1.4 Key Aspects of Network Science

To investigate the topology and dynamics of several systems, network science uses
different tools such as graph theory, social network analysis, market competition
modeling, epidemic modeling, etc. Network science is distinguished by the subject of
study as well as by its methodology. Some key aspects of Network Science are given in

Table 1.

1.5 Networks

1.5.1 Definition of network

In simplest form, a network is a collection of points joined together in pairs by lines.
The points are called nodes or vertices and the lines are called links or edges.

A complete definition of network must include both structural and behavioral

information (Lewis, 2009).



Aspects

Description

Structure

Networks are not just a random collection of nodes and
links, but networks have structure. For example, social
networks are not just a collection of people connected
randomly, but instead, the networks have a distinct format
or topology. The nodes of a network, unite in a distinct

format to form a structure.

Topology

The pattern in which the nodes of a network are connected
is called topology. In dynamic networks, the topology
changes as a function of time. Topology is a consequence
of Darwinian forces that shape the network.

Emergence

Network science is the study of both static and dynamic
properties of networks. The emergent property helps a
dynamic network in achieving stability. Emergence is a
network synchronization issue. A dynamic network
transits from one state to another state until either cycling
back or reaching a fixed point. The evolution of a network
from initial state to future state is a called emergence.

Power

The power of a node is proportional to its degree i.e., the
number of links connecting to the network of the power of
a network is proportional to the strength of its nodes and
links.

Stability

A network is dynamically stable if the rate of change in the
state of its topology diminishes as time passes.

Bottom-up evaluation

Networks evolve from local level to the global level. They
are designed and implemented by using bottom-up

strategy.

Table 1: Key aspects of network science




The structural information of a network is modeled by the corresponding graph.
The behavioral information about networks is defined by a set of microrules governing
the behavior of nodes and links.
Definition 1.5.1: For a given network G,
G() ={v(®).EQ), f(©):J(O}
where,
G (t) is a function of time t
t = time, simulated or real
V = nodes or vertices
E = links or Edges
f:NxN = mapping function that connects nodepairs, yielding topology
J = “microrules” or algorithm for describing behaviors of nodes and

links versus time.

1.5.2 Types of networks

Networks are divided into four general classes (Newman, 2010):
(i) Technological networks
(i1) Social networks
(iii) Information networks

(iv) Biological networks

The list of some of the most important examples in each class and their description is

given in Table 2.

10



Classes

Examples

Nodes and Edges

Description

The Internet

Nodes: Computers or

The Internet is a network of

other devices physical data  connections
Edges: wires or between computers and related
wireless devices.
Technological | The Nodes: Telephones or | The telephone network is a
Networks Telephone mobile phones network of landlines and
network Edges: Wires or wireless links that transmit
wireless telephone calls.

Power Grids Nodes: Generating A power grid is a network of
stations and high-voltage transmission lines
switching substations | that  provide  long-distance
Edges: High-voltage | transport of electric power
lines within and between countries.

Transportation | Nodes: Geographic Transportation networks

Networks locations describe the flow of some
Edges: Routes commaodity or vehicular
between geographic movement between geographic
locations locations. Some examples of

transportation  networks are
airline route networks, road
networks and rail networks.

Facebook, Nodes: People or A social network is a network of

Social Twitter, groups of people people  (such as friends,
Networks MySpace. Edges: social coworkers) connected by some
interaction, such as social relationships (such as
friendship. friendship).  Sociologists call
vertices (or people) as actors and

the edges as ties.

The World Nodes: Web pages The world-wide web is a

Wide Web consisting of text, network of web pages that are

Information pictures or other connected to each other by
Networks information. means of hyperlinks. Hyperlinks
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Edges: hyperlinks or

allow us to navigate from one

hypertexts. web page to another.
Citation Nodes: papers In citation networks, there is a
Networks Edges: citation direct edge from paper A to
paper B if paper A cites paper B
in its bibliography.
Biochemical Nodes: molecules Biochemical networks represent
networks (genes, proteins, the molecular level patterns of
metabolites, cells interaction and mechanisms of
etc.) control in the biological cell.
Biological Edges: interaction Examples of Biological
Networks (reactions, molecular | networks are metabolic
interaction, networks, protein-protein
regulatory interaction | interaction networks, and genetic
etc.) regulatory networks.
Neural Nodes: neurons A neural network is a network
networks Edges: excitatory that models the brain and central
inputs, inhibiting nervous system in animals. The
inputs. neurons are connected by two
types of directed edges, one for
excitatory inputs and one for
inhibiting inputs.
Ecological Nodes: species, Ecological network is a network
Networks individuals of ecological interactions

Edges: interaction

between species.

between species. Examples of
ecological networks are Food
web  networks, host-parasite
networks, mutualistic networks,

etc.

12
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1.6 Overview of Resistance Distance and Kirchhoff Index

As discussed in the previous sections, graphs and networks have been used
extensively in many applications (Newman, 2010; Easley & Kleinberg, 2010; Barabasi,
2013; Chiang, 2012). In these works, several network measures have been defined and
studied. Of these measures, closeness and betweenness measures of nodes and edges
that capture their criticality have received a great deal of attention. In defining these
measures, paths between nodes play an important role. Though, in general, all paths
must be used in assessing the centrality of a node, shortest paths are used because they
are easy to compute. To mitigate the effect of the approximation of criticality by
considering only shortest paths, other measures that capture both the lengths of paths
and the number of these paths between nodes need to be investigated. Resistance
distance and Kirchhoff Index are two such exemplary measures. To capture accurately
the impact of paths, resistance distance can be used in place of shortest distances and
Kirchhoff index can be used in place of the sum of all shortest distances. This motivates
our study in this dissertation

Resistance distance is based on the electrical network theory and it was first
introduced by Klein and Randi¢ (Klein & Randic, 1993). The concept of resistance
distance has been much studied in the chemical studies (Klein & Randic, 1993; Xiao &
Gutman, 2003). Resistance distance implies many dynamic properties of a graph or
network. The properties of resistance distances were proved using the Laplacian matrix
(Xiao & Gutman, 2003; Xiao & Gutman, 2003a). Resistance distance and Kirchhoff

index have wide applications in complex networks, chemistry, physics, electric circuit,
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graph theory and others. The concept of the Kirchhoff analysis was first introduced by
G. Kirchhoff (Kirchhoff, 1847) in 1847 for the graph-theoretic study of electric circuits.

Resistance distance across a pair of nodes is the same as the effective resistance
across that pair, treating each edge as a 1 ohm resistance. A special case of this
restricted to only the edges of a graph was studied by Foster (Foster, 1949). A further
generalization of this was given by Foster in (Foster, 1961). In (Tetali, 1994) Tetali
proved Foster’s first theorem using certain results from the theory of Markov chains,
then Palacios gave an extension of Foster’s second theorem in (Palacios, 2004).
Generalization of all of the Foster’s theorems are given by Cinkir in (Cinkir, 2011). The
connection between resistance distance and random walks on graphs have been
discussed in (Thulasiraman, et al., 2015; Doyle & Snell, 1984).

Kirchhoff index is the sum of the resistance distances across all pairs of nodes
in the network. Kirchhoff index has also been studied using the graph Laplacian. The
Laplacian of a graph is the same as the indefinite admittance matrix of a resistance
network that has been studied by electrical circuit theorists extensively in the
development of several results (Swamy & Thulasiraman, 1981). See (Molitierno, 2012)

for detailed study of the Laplacian from a graph-theoretic perspective.

1.7 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 discusses the relationship
between resistance distance and Kirchhoff index. A new formula for Kirchhoff index is
presented in this chapter. The generalization of Laplacian matrix using the fundamental

cutset matrix is introduced in Chapter 3. Two approaches to compute Kirchhoff index
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are presented in this chapter. Chapter 4 generalizes the notion of Kirchhoff index and
studies its relationship to Foster’s theorems. A dual form of Foster’s first theorem is
developed in this chapter. We propose sequential and parallel algorithms for resistance
distance in Chapter 5. A novel approximation algorithm for resistance distance and
Kirchhoff index is introduced in this chapter. Conclusion and future work is given in

Chapter 6.
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Chapter 2

Resistance Distance and Kirchhoff Index in Networks

Over the past several years a variety of graph measures have been proposed to reveal
the behavior of networks based on topological and dynamical characteristics. Resistance
distance and Kirchhoff index are highly valuable graph measures in the study of various
network problems. These measures were first studied in the chemical literature. In
recent years, they have also attracted the attention of researchers in electrical
engineering, mathematics, computer science and social networks.

In 1993, Klein and Randi¢ (Klein & Randic, 1993) introduced the concept of
resistance distance. The resistance distance concept is the convergence of resistive
electrical network theory and the graph theory. An electrical resistance network can be
viewed as a connected graph, with the junctions in the electrical network as the vertices
of the graph and the unit resistors of one ohm as the edges of the graph. The effective
resistance between pairs of vertices is called the resistance distance between these
vertices. Kirchhoff index of a graph is the sum of resistance distances between all pairs
of vertices. The Laplacian matrix of a graph plays an important role in the computation
of resistance distance and Kirchhoff index. The standard method to obtain resistance
distance is via Moore-Penrose pseudoinverse L* of the Laplacian matrix L of a
connected graph G (Klein & Randic, 1993; Zhu, et al., 1996).

This chapter is concerned with the study of relationship between resistance

distance and Kirchhoff index. In the following section, we briefly present certain basic
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definitions in graph theory. For other graph theory concepts not covered in section 2.1

(Kirchhoff, 1847) may be consulted.

2.1 Basic Definitions

Let G = (V(G),E(G)) be a connected graph with the vertex set V(G) = {v,, v,,
Vgyornnn , U, } and the edge set V(G) = {eq, e,, e3,...... ,em}, Where n is the number
of vertices and m is the number of edges. Let N be an electrical network obtained from
the connected graph G. To obtain an electrical network from the graph G, replace each
edge of G with a unit resistor.

The resistance distance r;; between vertices v; and v; of graph G is defined as
the effective resistance between vertices v; and v; of the electrical network N. The
effective resistance r;; is the potential difference between vertices v; and v; when unit
current is injected into v; and drawn from v;.

The effective resistance between two vertices of an electrical circuit can easily
be calculated by the well-known series and parallel manipulation and star-delta
transformation. Figure 2.1 (a) illustrates the series and parallel manipulation method to
calculate the effective resistance distance r,,; between vertices v, and v,,. Figure 2.1 (b)

illustrates the start-delta transformation to calculate the effective resistance distance by

. - - . - 1
using conductance g; , which is the reciprocal of conductance g; , i.e., r; = o

The Kirchhoff index is a structure descriptor (Xiao & Gutman, 2003a) based on

the resistance distance. The Kirchhoff index Kf(G) of the graph G is defined as

i<j
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(b) Effective resistance using star-delta transformation (removing v, vertex)

Figure 2.1: Effective resistance using (a) series-parallel method (b) star-delta
transformation.

The resistance distance and Kirchhoff index have been extensively studied in

chemical literature. Kirchhoff index appears in several applications: electrical networks,

Markov chain, averaging networks, and experiment design (Klein & Randic, 1993;

Kirchhoff, 1847; Bonchev, et al., 1994; Hu, et al., 2013; Hu, et al., 2013a). The formula
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for Kirchhoff index has been computed for some classes of graphs such as cycle-
containing graphs (Klein, et al., 1995; Lukovits, et al., 1999), complete graphs
(Lukovits, et al., 1999), circulant graphs (Zhang & Yang, 2007) and distance transitive
graphs (Palacios, 2001). Bapat (Bapat, 2004) obtained a formula for the inverse and
determinant of resistance distance for weighted graphs by using the properties of
resistance distance and Kirchhoff index defined by Xiao and Gutman (Xiao & Gutman,
2003a). Several properties of the Kirchhoff index related to the normalized Laplacian
eigen values of a connected graph are presented by Zhou and Trinajstic (Zhou &
Trinajstic, 2009).

In 1993, Kunz (Kunz, 1993) studied the properties of the Laplacian matrix for
finding the topological distances in the graph. In 1949, Foster (Foster, 1949) discussed
the concept of the effective resistance distance and recently in 2004 this concept was
again studied by Palacios (Palacios, 2004). Palacios used effective resistance distance to
extend the Foster’s first and second formulas and then used Foster’s third formula to
compute the Kirchhoff index of a class of graphs with diameter 3. Further review of
literature on Foster’s theorems will be given in Chapter 4.

In this chapter, we study the relationship between resistance distance, Kirchhoff
index and the Laplacian matrix of a graph. Section 2.2 discusses the incidence,
adjacency and Laplacian matrices of a graph, Section 2.3 discusses the topological
formulas for resistance network functions. Section 2.4 describes the basic facts and
notations of Laplacian graph spectral theory. A new formula for the Kirchhoff index of

a graph is presented in section 2.4. Three proofs of this formula based on the properties
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of the pseudo-inverse of the Laplacian matrix, topological formula for network

functions and basic concepts of electrical circuit theory are presented.

2.2 Matrices of a Graph

In this section, we introduce the incidence, adjacency and Laplacian matrices of a graph
and establish several properties of these matrices that help to reveal the structure of a
graph (Swamy & Thulasiraman, 1981). The incidence, adjacency and Laplacian
matrices arise in the study of electrical network because these matrices are the
coefficient matrices of the Kirchhoff’s equation that describes a network. Thus, the
properties of these matrices form the basis of graph-theoretic study of electrical

networks and systems, in particular, resistance distance and Kirchhoff index.

2.2.1 Incidence matrix

Consider a graph G with n vertices and m edges and having no self-loops. The all-vertex
incidence matrix A, = [a;;] of G has n rows, one for each vertex, and m columns, one
for each edge. The element a;; of A, is defined as follows:

G is undirected

0. = {1, If the jthe edge is incident on the ithe vertex;
ij

|0, otherwise (22)

G is directed

( 1, ifthe jth edge is incident on the ith vertex and
| oriented away from it;
a;j = 4 —1, ifthe jth edge isincident on the ith vertex and (2.3)
| oriented toward it ;
kO, otherwise
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A row of A, will be referred to as an incidence vector of G. Two graphs and their all-
vertex incidence matrices are shown in Figures 2.2a and 2.2b.

It should be clear from the preceding definition that each column of A, contains
exactly two non-zero entries, one +1 and one -1. Therefore, we can obtain any row of
A. from the remaining n—1 rows. Thus, any n—1 rows of A, contain all the
information about A, . In other words the rows of A, are lineraly dependent.

An (n —1)-rowed submatrix A of A, will be referred to as an incidence matrix of

G. The vertex which corresponds to the row of A, which is not in A will be called the

reference vertex or datum vertex of A.

' s
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E? 5 7
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EE =13
€4
e v
vy U3 v, 4 3

€1 €2 €3 €3 €5 % €7 “r—1 1 0 0 0 0 O
vi'l'lﬂﬂﬂﬂﬂ 1_'1::_-1{] 0 1{]{]{]
“211. 0 0 1 0 0 0 vail 0 0 -1 -1 0 1 0

Azf-ﬂﬂﬂiiﬂiﬂ Aczi_':lq_ 0 —1 1 0 1 0O 0
c w|0 110100 vs| 0 0 0 0 -1-1 1
Psio 0 00 1 11 E,S[]g o 0 0 0-1
vslo 0 00 0 0 1 &
(@) (b)

Figure 2.2: Incidence matrix. (a) An undirected graph G and its all-vertex incidence
matrix. (b) A directed graph G and it’s all vertex incidence matrix.
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Note that
rank(4) = rank(4,) <n-1

In the case of a connected graph, the rank of A, is in fact equal to n — 1. This result is
based on the following theorem.
Theorem 2.1 The determinant of any incidence matrix of a tree is equal to £1.
See (Swamy & Thulasiraman, 1981) for a proof of the above theorem.

Since a connected graph has at least one spanning tree, it follows from Theorem
2.1 that in any incidence matrix A of a connected graph with n vertices there exists a
nonsingular submatrix of order n — 1. Thus, for a connected graph A,

rank(4) = n — 1.

Since rank(4.) = rank(A4), we get the following theorem.

Theorem 2.2. The rank of the all-vertex incidence matrix of an n-vertex connected

graph G is equal to n-1, the rank of G.

An immediate consequence of Theorem 2.2 is the following.
Corollary 2.2.1. If an n-vertex graph has p components, then the rank of its all-vertex

incidence matrix is equal to n — p, the rank of G.

2.2.2 Adjacency matrix
Let G = (V,E) be a directed graph with no parallel edges. Let V = {v,, v,, -, v, }. The

adjacency matrix M = [m;;] of G is an nxn matrix with m;; define as follows:

Y 1o, otherwise. '
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In the case of an undirected graph, m;; = 1 only if there is an edge connecting v; and v;.

For example, the undirected graph of Figure 2.2(a) has the following adjacency matrix:

v vy vy Vi Vs Vg

1001 01 0 0
z11 0 1 0 0 0O
M=310 10110
s /11 0 10 1 0
sip o 11 0 1
velo 0 00D 1 0

and the directed graph of Figure 2.2(b) has the following adjacency matrix:

¥ Vg Vg Ve Vs Vg

1o 0 D1 0 O
z11. 0 1 0 0 O
M_”Hﬂﬂﬂﬂiﬂ
“v% 0o 10 10
Vsip 0o o0 1
s lo 0 DO 0 O

Clearly, for undirected graphs, the adjacency matrix M is a symmetric matrix with

zeros on the diagonal.

2.2.3 Laplacian matrix
Let G = (V,E) be a weigthed graph with vertex set V(G) = {v,,v,,....,v,} and edge
set E(G). Let w;; denote the weight of edge (i, j). The adjacency matrix M(G) is as

defined in (2.4). Then the degree matrix D(G) is defined as

D. . = {sum of the weights of the edges incident on i ifi=j
Lj —

2.
0 otherwise (25)

Note that if each w;; = 1, then D ; is equal to the degree of i.
The Laplacian matrix of a weighted graph G is a square matrix of order n, defined by

L(G) =D(G) — M(G) . (2.6)
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Note that, the (i, j)- entry of Laplacian matrix L can be written as:

( WU if i # j and v; and v; are adjacent
{ if i # j and v; and v; are not adjacent

Sum of the weightsofthe  if i =
kedges incidnet on i (2.7)

So L = A.WAL where W is the diagonal matrix with the diagonal entries representing
the weights on the edges.
Let L(1) be a reduced Laplacian matrix which is obtained by removing ith row
and ith column from L. The reduced Laplacian matrix of a graph G is given by
L() = AWA® (2.8)
The Laplacian matrix and reduced Laplacian matrix of a weighted directed graph G

(Figure 2.3) is calculated as follows. The diagonal matrix W for given graph is

2 0 0 0 0 O O
0O 3000 O00O0
0 020000
wW=1]0 0 0 3 0 0 Ol.
0O 000100
0O 00O OT1O0
0 0 0 0O 0 0 3
We can now calculate Laplacian matrix by using L = AW A%
5 -2 0 -3 0 07
-2 5 -3 0 0 O
I = 0O -3 6 -2 -1 O
-3 0 -2 6 -1 O
O 0 -1 -1 5 -3
o 0o o o0 -3 3
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Figure 2.3: A weighted directed graph G and its all-vertex incidence matrix.

The reduced Laplacian matrix after deleting the n* row of the incidence matrix A,

using (2.8) is

[ 5 =2 0 -3 O]
| -2 5 -3 0 0]
lo -3 6 -2 -1f.
l—3 0 -2 6 —1J
0 0 -1 -1 5

L@) =

2.2.4 Matrix-tree theorem
2.2.4.1 The number of spanning trees
A spanning tree of a graph G is a tree of G having all the vertices of G. The spanning

trees of a connected graph are in one-to-one correspondence with the nonsingular

submatrices of matrix A.

Theorem 2.3. A square submatrix of order n — 1 of any incidence matrix A of an n-
vertex connected graph G is nonsingular if and only if the edges that correspond to the

columns of the submatrix form a spanning tree of G.
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Given a spanning tree of a graph G, the product of all the weights of edges in the
spanning tree is called the tree weight product. We denote by 7(G) the sum of the

weights product of all spanning tree of G.

Theorem 2.4. Let G be a connected and weighted undirected graph and A be an
incidence matrix of the directed graph that is obtained by assigning arbitrary
orientations the edges of G. Then

7(G) = det(AWAY) = det L(1), for any vertex i.

Thus, from Theorem 2.4 we get the following result, originally due to Kirchhoff

(Kirchhoff, 1847).

Theorem 2.5. All the cofactors of the degree matrix of a connected undirected graph

has the same value as the number of spanning trees of G.

2.2.4.2 The number of spanning 2-trees

A k-tree is an acyclic graph consisting of k components. If a k-tree is a spanning
subgraph of a graph G, then it is called a spanning k-tree of G. The spanning 2-trees
Tijk. rst.. denotes a 2-tree, in which the vertices v;, v;,v,.. are required in one
component and the vertices v,., v; v, ... are required to be in the other component of the
2-tree. For example, Figure 2.4(b) shows an example of a spanning 3-tree of the graph

G shown in Figure 2.4(a).
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Figure 2.4: Spanning tree. (a) Graph G (b) A spanning 3-tree T of G.

The sum of weight products of all spanning 2-trees of type T;; ... will be
denoted by 7;j, _ ,s¢.. Let A;; denote the (i, j) cofactor of AWA*. That is, A;; is the (i, j)

cofactor of L(k) for any k.

Theorem 2.6. For a connected graph G,
Aii: Ti,n and

Ay= Tijn

2.2.5 Pseudo-inverse of Laplacian matrix
The sum of elements in each row and the sum of elements in each column of a
Laplacian matrix is zero, that is,
n n
i=1 j=1
So, the determinant of Laplacian matrix is zero, that is, detL(G) = 0.
Since the determinant of the Laplacian matrix is zero, it has no inverse. So, the

Moore-Penrose pseudoinverse of L(G) is used as a substitute for the inverse of L(G).
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The Moore-Penrose pseudoinverse of Laplacian matrix L(G) is denoted by L*(G) and
has the following basic properties

() LALHG)LEG) = L(G)

(i)  LT*(G)L(G)L*(G) = L*(G)

(i) [L(G)LT(G)] = L(G)L*(G)

(iv)  [L7(G)L(G)] = L*(G)L(G)
The Moore-Penrose pseudoinverse L*(G) can be computed as follows (Gutman &

Mohar, 1996):

1(6) = (L&) + ﬁ)_l -1 (2.10)

where J € R™™ is a matrix of all 1’s and n is the number of vertices of graph G.

The following properties were established and proved by several authors
(Gutman & Xiao, 2004) for the Moore-Penrose pseudoinverse of the Laplacian matrix.
Lemma 2.7 (Klein, et al., 1995). The Moore-Penrose pseudoinverse L*(G) of the

Laplacian matrix L(G) of a connected graph is real and symmetric.

Lemma 2.8 (Klein, et al., 1995). The Laplacian matrix and its pseudoinverse satisfy
the following relations
L(G)]=]JL(G)=0

L*(6)] =JL*(6) =0

Lemma 2.9 (Klein, et al., 1995). If L(G) and L*(G) pertain to a connected graph on n

vertices, then

L(G)L*(G) = LY(G)L(G) =1 — %
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Theorem 2.10 (Klein, et al., 1995). If G is a connected graph, then the inverse of the
matrix L(G) + % exists and is equal to L*(G) + %

Proof. Using Lemma 2.8 and Lemma 2.9, and the fact that J2 = nJ, we have
1 1

(1@)+ 1) (1@ + 1) = O @ + L 17(6) + LG + -
n n n n n

=(1-4)+o+o+Ll=1 O
(1-3) ;

2.3 Topological Formulas for Electrical Resistance Networks

2.3.1 Resistance networks

An electrical network is an interconnection of electrical network elements such as
resistances, capacitances, inductances and voltage and current sources. We will assume
that all the network elements in the networks to be considered are resistances. Each
network element is associated with two variables, the voltage variable v(t) and the
current variable i(t). We need to specify reference directions for these variables
because they are functions of time and may take on positive and negative values in the
course of time. This is done by assigning an arrow, called orientation, to each network
element (Figure 2.5). This arrow means that i(t) is positive whenever the current is in
the direction of the arrow. Further we assume that the positive polarity of the voltage
v(t) is at the tail end of the arrow. Thus v(t) is positive whenever the voltage drop in

a network element is in the direction of the arrow.

i(t)
o——{ }—>—-o0
* v(t) -

Figure 2.5: A network element (representation).
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Network elements are characterized by the physical relationships between the
associated voltage and current variables. Ohm’s law specifies the relationship between
v(t) and i(t) as

v(t) =R i(t) (2.11)
where R is the resistance (in ohms) of the network element.

Note that for some of the network elements the voltage variables may be
required to have specified values and for some others the current variables may be
specified. Such elements are called, respectively, the voltage and current sources.

Two fundamental laws of network theory are Kirchhoff’s laws, that are stated as
follows:

Kirchhoff’s Current Law (KCL): The algebraic sum of the currents flowing out of a

vertex is equal to zero.

Kirchhoff’s Voltage Law (KVL): The algebraic sum of the voltages around any

circuit is equal to zero.

L !

NN
L ys )

- q
d

(a) ()

Figure 2.6: Directed graph representation of an electrical network. (a) Electrical
Network G. (b) Directed graph of G
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For instance, for the network shown in Figure 2.6(a) the KCL and KVL equations are as
given below. In this figure element 5 is a voltage source and element 4 is a current
source.
KCL equations:

vertexa=1i; —ig +iz =0,

vertexc = —i, +iy, —ig =0,

vertexb = —i; +i, +i; =0.

KVL equations:

circuit {1, 3,5} vl +v3 +v5 =0
circuit{2, 4,3} v2 +v4 —v3 =0
circuit{1, 6, 2} —vl +v6 —v2 =0

Given an electrical network G, the problem of network analysis is to determine
the element voltages and currents that satisfy Kirchhoff’s laws and the Ohm’s law.

Notice that the equations which arise from an application of Kirchhoff’s laws
are algebraic in nature, and they depend only on the way the network elements are
interconnected and not on the nature of the network elements. There are several
properties of an electrical network which depend on the structure of the network. In
studying such properties, it will be convenient to treat each network element as a
directed edge associated with the two variables v(t) and i(t) . Thus, we may consider
an electrical network as a directed graph in which each edge is associated with the two

variables v(t) and i(t), which are required to satisfy Kirchhoff’s laws and the Ohm’s
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law. For example, the directed graph corresponding to the network of Figure 2.6(a) is
shown in Figure 2.6(b).

It is now easy to see that KCL and KVL equations for a network G can be

written, respectively, as

Ql. =0 (2.12)
and

BV, =0 (2.13)
where Q.and B, are the cut and circuit matrices of the directed graph associated with
G, and I, and V, are, respectively, the column vectors of element currents and voltages
of N.

Since the all-vertex incidence matrix A, is a submatrix of Q. and has the same
rank as Q., we can use in equation (2.3) the matrix A, in place of Q.. Thus, KCL
equations can be written as

AJd, =0 (2.14)

Since the rank of A, is n—1, we can remove any row from A, and use the

resulting matrix A called the incidence matrix. The vertex corresponding to the removed

row is called the reference or datum vertex.

2.3.2 Topological formulas for resistance network functions

Consider first a 1-port resistance network G. Each port is defined by a pair of nodes.
The network is available for connection through the ports to the other parts of a system.
Let the network G have n + 1 nodes denoted by 0, 1, 2, ..., n, and let the nodes 1 and 0

be, respectively, the positive and negative reference terminals of the port (Figure 2.7).
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Let us now excite the network by connecting a current source of value I; across
the port. Let V;, V;,V,,..., 1} denote the voltages of the nodes 1, 2, ..., n with respect to
node 0. This means V, =0and V; is the voltage between the nodes i and O (that is V; =

V; — V,) fori # 0. Also, the A matrix does not contain the row corresponding to the

vertex 0.

Figure 2.7: A 1-port network.

Then we have
Al,—1=0,
that is

Al =1 (2.15)

where,

~
[uny

———
—_———

o o

Note that in the graph representation of a port, the corresponding edge will be
oriented from the positive terminal to the negative terminal. So, the current flowing
through this in the direction of the orientation is —I; where the voltage from positive

terminal to negative terminal of the port is v, .
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Let the network elements be labeled as ej,e,,..., e, with r; denoting the

resistance value of element e;. Then the conductance of e; is given by w; = rl Let W

be the diagonal matrix with its (i, i) entry equal to w;. Then we can write

I, =WV, (2.16)
Suppose the end vertices of e; are k and . Then the voltage across this element (voltage
drop from node k to node ) is given by V,, — 1/, , assuming that the element is oriented
from vertex k to vertex I. So, we can write

v, = AtV (2.17)
where V is the vector of voltages V; , V5, ..., V. Combining (2.15), (2.16) and (2.17) we

get the node equations

AWALY = (2.18)
where
]
V=]
M
Let
Y = AWAt
so, that
YV =1 (2.19)

Note that the matrix Y is the same as the reduced Laplacian L(0) defined in section
2.2.3.
The matrix Y is called the node-conductance matrix of the network with vertex 0

as the reference. Solving (2.19) for V;, we get
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where
A=detY
and
A;; = (1,1) cofactor of Y.

So, the driving-point resistance across vertices 1 and 0 is given by

Vi _ A

z=4=1tu (2.20)

and the driving-point conductance across 1 and 0 is given by

1_ A

L (2.21)

Y= z Aqq
To illustrate certain principles of network analysis, consider next a 2-port
network G (See Figure 2.8). If the ports of G are excited by current sources of values I;

and I,, then the node equations of G can be written as

YV =1
where
[ 1]
| 1> |
0

Iﬂ—‘;‘-——i'. 2‘-——-;—0 |
t 4
2 Ta—T
LD——!E‘ :r——}r—ol

Figure 2.8: A 2-port network.
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Solving for the node voltages V;, V,, and V5, we get

1

V= K(A1111 + Ayl — Azly),
1

V, = Z(A2111 + Ayl — Azyly),

1
V3 = Z(A3111 + Azl — Agsly),

From the above relations, we get

[ V1 ] — 1[ A11 A21 - A31 ] [11] (2 22)
Vo=V A A12 - A213 A22 + A33 - A32 - A23 I, '
=Zycl

Here Z,. is called the open circuit resistance matrix of the 2-port network. This
is because each element of Z,. is obtained by setting one of the port currents equal to

zero (that is, open-circuiting the corresponding port). Thus

_ny,
le—z 12—0,

Here z;;, and z,, are called driving point resistances across the respective ports
and z,, and z,, are called transfer resistances between the ports. Note that since Y is

symmetric, we have
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So

1 A4 Ay — Az
Zye = - . 2.23
0 T i |Ar — Doy By + gy — Agy — Ay (2.23)
Thus, from Theorem 2.5, we have the following results
A= 1(G)
A11: Tl,O . (224)

Recall that 7(G) is the sum of the conductance products of all the spanning trees
in G and 7, 4 is the sum of the conductance products of all the spanning 2-trees of the
type T; o (with 1 and O in separate trees of T, ). So

Aii=Ti50
where 7,5, is the sum of the conductance products of all 2-trees T;;, (i and j in one tree
and 0O in the other tree). So
A1z —A13= T120 — T130 - (2.25)
Since each spanning 2-tree T, , is either a spanning 2-tree T, 3, Or a spanning

2-tree Ty,3 9, WE get

T12,0 = T1230 T T123,0 - (2.26)
Similarly,

T13,0 = T1320 T T123,0 - (2.27)
Then

Ajy —A13= T120 — T13,0 - (2.28)
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By a similar reasoning,
Apy + A3z — 2053 = Tp0 + T30 — 27230
= T30+ T230 + T230 + T320 — 2T230

= T30 T T320

= 1,5 (2.29)

So, we can write Z,. as

1 T1,0 T12,30 — 113,20
Zoe = .

7(G) 712,30 ~ 113,20 123
So, the driving point resistance across port 1 is given by

T10

Zipg = m

Similarly, the driving point resistance z, across 2 and 3 is given by % . In

ij
= We

T

general, the driving point resistance across any pair of nodes i and j is given by

shall denote by r;; the driving point resistance across any pair of vertices i and j so that

where r;; is also called the effective resistance across i and j.

We wish to emphasize that the formulas for z;;’s in (2.13) are with respect to
vertex 0 as reference. On the other hand, the formula in (2.22) does not explicitly
involve the reference vertex. We conclude this subsection with the following facts that
will be needed in the subsequent sections, where we shall assume that the vertices are

labeledas 1,2,---.,n
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. The degree matrix K = [K;;] of a simple undirected graph ¢ = (V,E) is

defined as
ki = d(vy), foralli €V
kij = -1, if (i,j) €E
=0 otherwise

where d(v;) is the degree of vertex i. Then K can be written as
K = A.AL

where A, is the all-vertex incidence matrix of G.
Let N be the resistance network N obtained by associating a 1-ohm
resistance with each edge of G. Then in electrical engineering literature the
matrix K is called the indefinite conductance matrix. In graph theory
literature K is also known as the graph Laplacian. Also, if the conductances
are defined by g;, with G as the diagonal matrix of edge conductances, then
the graph Laplacian of the corresponding weighted graph will be A, GAL.
Here the degree of vertex i is the sum of the conductances incident on i.
Let K;; be the matrix obtained by removing the jth row and the jth column
from K. Then K;; is the same as the matrix Y defined in (2.18) with vertex j
as reference if all the resistances have 1 ohm value.
By Theorem 2.5 all cofactors of K are equal to the number of spanning trees
of N. In particular

detK;; = W. (2.31)
. The (i,i) cofactor of K;; = number of spanning 2-trees of the type

J
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6. The (i,k) cofactors of K;; = Number of spanning 2-trees of the type
Tikj = Wik (2.33)
7. The effective resistance r;; across i and j of N is given by

_ (i,i) cofactor of Y
" = "determinent ¥

_ (i,i) cofactor of Kj;
~ determinent Kj;

_ (i,i) cofactor of Kj;
- w

_ Wi
== (2.34)

2.4 Kirchhoff Index of a Graph

The structural and functional robustness of a network can be measured by the Kirchhoff

index. The Kirchhoff index Kf(G) of a connected undirected graph G is defined as
Kf(G) = Zi<j Tij - (2.35)

Thus Kf(G) is the sum of the effective resistances across all pairs of vertices of the 1-

ohm resistance network obtained from G.

2.4.1 Computation of the Kirchhoff index using Laplacian pseudo-inverse

In a network, the resistance distance r;; between any pair of nodes i and j can be
computed by using the Kirchhoff Law and Ohm law. The Moore-Penrose pseudoinverse
L*(G) gives the following formula (Klein & Randic, 1993; Xiao & Gutman, 2003) for
computing the resistance distance 7; ;:

40



From Lemma 2.7 we know that the Moore-Penrose pseudoinverse is symmetric.
So now the equation (2.36) can be simplified as
rj = Li; + Lf; — 2Lj;.

Kirchhoff index Kf(G) is the sum of the resistance distance of all pair of vertices of a
graph G:

Kf(G) = Xicjrij = Zi<j(LJir,i + Lf; — 2L
It was proved by Klein and Randic (Klein & Randic, 1993) that the Kirchhoff Index can
also be written as

Kf(G) = ntr(L*(G)) (2.37)
where n is the number of vertices and tr(L*(G)) denotes the trace function which can

be calculated by

er(14(6)) = ) 1

Gutman and Mohar (Gutman & Mohar, 1996) demonstrated that it is possible to
calculate the Kirchhoff Index without knowing the Moore-Penrose pseudoinverse of a
Laplacian matrix. They obtained the Kirchhoff Index from the eigenvalues of the

Laplacian matrix of a graph G:
n—1 1
KF(G) = nZ— (2.38)
= Ui

where y; is the non-zero eigenvalues of the Laplacian matrix L(G).
To avoid the computational efforts required to calculate the Moore-Penrose

pseudoinverse of the Laplacian matrix, we next present a new formula for Kf (G).
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2.4.2 A Simple formula for the Kirchhoff index based on the pseudo-inverse of
the Laplacian matrix
Let L be the Laplacian matrix of a connected graph G and L(7) be a submatrix obtained
by deleting the i*"* row and i*® column of the Laplacian matrix L. Note that L(7) is the
same as the node-conductance Y, if vertex i is chosen as reference.
Let Z be the inverse of L(7), i.e.,

7 =L@E)" (2.39)

Theorem 2.11 (Molitierno, 2012). Let L be the Laplacian matrix of a connected graph

G with n vertices. Then

r, 1,1 P
eTLe | 4 nZ] n]Z nZe |
L =— J +| I (2.40)
l —leTZ ‘ 0 J
n

where e is the left and right null vector of any Laplacian matrix and matrix Z is the
inverse of a reduced Laplacian matrix obtained by deleting the last (n‘*) row and the
last (nt"*) column, thatis, Z = L(n)"t = Y1,

Proof. By Lemma 2.9 we know that

L*L=LL*=1-

3 I~

where, L is the Laplacian matrix, L* is the pseudoinverse of Laplacian matrix L, | is the
identity matrix, J is a unit matrix of all 1’s and n is the number of vertices of graph G.

Multiply L on both sides of equation (2.40):
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1 1 1
Z—;Z]—;]Z —;TE
LTL =

—leTz 0|
n

1 1 1
Z—;Z]—;]Z ‘ —;ZE

—leTz ‘ 0
n

From Lemma 2.8, we know that

LI=JL=0
So, we get
Z--7] -]z —%’ze
L*L=0+ L
—%eTZ 0‘
Also, we have
Z=LHm)?' e=1and e’ = 1T
L) --L(@) - -JL(R) ‘ —-L()™"1
L*L =
—-17L(n)7? ‘ 0
L() L) — - L(R)"YL(R) — ~JL(A ) L(R) - ~L(7 )M 1L(R)
- 14T (R) 1L (R) ‘ 11t

We know that
L(n)'L(n) =1.
So,

I-XL@) 0 -1 -in
L+L — n n

—217] ‘ 1-=
n
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=] -

3 I~

=LL*

Hence proved.

The new formula for computing Kirchhoff Index is given in the following theorem.
Theorem 2.12. Kf(G) = nTr(Z) — Yi,zu (2.41)

where Z is the inverse of the Laplacian matrix obtained by deleting any ith row and ith
column, and X, ; zx; is the sum of all the elements of matrix Z (note that Z =Y ~1).
Proof. Using equation (2.40) we can calculate the (i, j)th entry of pseudoinverse L*of

the Laplacian matrix L in terms of the elements of the matrix Z:

[ TklZkl 1

1 , .
23 +Zij—;Zkaj—;ZlZil , i#n, j#n
YkiZkl 1 , .
L2kt Ly i=n n
TR ’ 7 (2.42)
g~ 1 '
k,lel__Z - .
—le n 1Zi1 s l n, ] -n
Yk1Zkl . .
kT , l=n, Jj=n

where,
Yk1Zr s the sum of all the elements of the matrix Z
Yk Zkj is the sum of the elements of the k*" rows of the matrix Z

Y, z; is the sum of the elements of the [** columns of the matrix Z

Now using equation (2.37) and (2.40), we get

KF(G) =nTr(L*) =n (Z I+ l;{n>. (2.43)

The trace of the pseudoinverse L* of the Laplacian matrix satisfies
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Tr(L*) = Z I+ I

From (2.42) we get

Now using (2.44), (2.45) and (2.46), we get

Tr(L*) = (Zklzkl lell) Zklzkl

nZ
Note that Y71 (X; z;) = Yk 2 (sum of all elements of matrix Z)

Thus,

2 Z
Tr(L+) - (n — 1) Zy + Zij — HZ Zp t+ Zkr,ll2 kl.

k|l i=1 k!l

After simplification, we get

n-1

Z
TT(L+) = Z Zii — Zki;l il .

i=1

From (2.43) and (2.48), we get

n-1
Kf(G) = nZ Zy — szl-
i=1 k.l
We know,
n—-1
Z Zii = TT(Z) .
i=1

The required result follows from (2.49) and (2.50) as
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(2.47)

(2.48)

(2.49)
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KF(G) = nTr(Z) — Z Ziy. 0

k|l

The following example demonstrates the calculation of the Kirchhoff Index by
first using the Moore-Penrose Pseudoinverse and then by using our new formula.
Example 2.13. Figure 2.9 shows an unweighted graph G with six nodes and its

Laplacian matrix.

(5 vy
2 -1 0 -1 0 0
Vs Vg -1 2 -1 0 0 0
;-0 -1 3 -1 -1 0
-1 0 -1 3 -1 0
0 0 -1 -1 3 -1
V2 V3 0 0 0 0 -1 1
(a) (b)

Figure 2.9: Laplacian matrix. (a) A graph G with six nodes. (b) Laplacian matrix L of
graph G.

Kirchhoff index using Moore-Penrose pseudo-inverse:

First, we find the Moore-Penrose pseudoinverse of Laplacian matrix L given in Figure

2.9(b) by using formula (2.10):

[2—10—1001 [111111]
/|—1 2 -1 0 0 O |111111|\
=]l 0 -1 3 -1 -1 ofl, 11111 1]]
-1 0o -1 3 -1 ol"6lt 111 1 1l
[0 0 -1 -1 3—1J [111111]
0 0 0 0 -1 1 111111
11111
11 1 11 1 1§
11011 01 1
6l1 1 11 1 1l
[111111]
111111
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1 0487 0123 -0.074 0017 -0195 -0.362
0.123 0487 0017 -0.074 -0195 -0.362

.+ =| —0074 0017 0275 0002 -0028 -0.195
0017 -0.074 0.002 0275 -0.028 -0.195

—-0.195 -0195 -0.028 -0.028 0305 0.138
—0.362 -0362 -0.195 -0.195 0.138 0972

The trace of Moore-Penrose pseudoinverse is
n
Tr(L*) = Z I, = 2.801.
i=1

Let Kf(G) be the Kirchhoff index of the graph given in Figure. 2.9(a). Now using
(2.35) we can calculate Kirchhoff index Kf(G) as
Kf(G) =6%2801=16.8.

Next, we calculate Kirchhoff Index Kf(G) by using Z (i.e., Z = L(n)™1).

Kirchhoff index using our new formula:

The matrix Z of graph G for Laplacian matrix L in Figure 2.8 is

[2182 1.818 1455 1545 1
[1.818 2182 1545 1455 1|

Z=11455 1545 1636 1364 1|
l1.545 1455 1364 1636 1J

1 1 1 1 1
In order to find the Kirchhoff index Kf(G) , we calculate the trace of matrix Z and the

sum of all the elements of matrix Z:

Tr(Z) = 8.63

szl = 35

k|l
Using (2.41), the Kirchhoff Index Kf(G) is
Kf(G) =6+863—35=16.8.
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In the next section, we establish the formula in Theorem 2.1 using standard
electrical circuit theoretic arguments based on the properties of the n-port resistance
networks.

2.5 Kirchhoff Index using Topological Formulas for Network

Functions

The formula in Theorem for Kirchhoff Index shows that not all the effective resistances
are independent. That is, one can obtain Kirchhoff Index using only the matrix Z, whose
diagonal entries are a subset of (n — 1) effective resistances. The off-diagonal entries in
Z relate these n — 1 effective resistances to the remaining effective resistances.
Consider a graph G of the network obtained by replacing each edge in the
network by a resistance of one ohm. Let Y = [y;;] denote the node admittance matrix of
G with node n as the reference or datum node.
Note that Y is a square matrix of order n — 1 and it is the matrix obtained by
removing the n** row and the n** column from the Laplacian matrix of L.
Note that Z = Y1,

As we have seen before,

ij (G

However,
Tij = Tinj T Tinj
= {Tin — Tijn} ¥ {Tjn — Tijn}

= Tin + Tjm — 2Tijn
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Dividing by 7(G) both sides of the above equation we get

Tij _ Tin . Tn  2Tijn

1(G) ~ ©(G) () (6)

rij =Tin + T]"n - 2Zij (251)

Since each r;,, appears n — 1 times on the right-hand side of the sum %; ,.»; 7;,, we get
n-1
Z Tik = (n_l)er,n_z Z Zik
ik>i j=1 ik>i
=(n-1) 27;11 Tin+ 27;11 Tin — (27;11 Tjin ¥ 22i,k>izik)

n-1

Zr}',n+zzzik
= /

j= [

KF@) =1 ) 1y -
j=1

i,k>1
The above is the same as

Kf(G) = nrilzﬁ - (Z Zil)

=1

2.6 Kirchhoff Index using Circuit Theoretic Concepts
We now give another proof of equation (2.51) using circuit-theoretic principles.
Consider again the description of an (n + 1)- node network as given by equation

YV =1
when node 0 is chosen as the reference node (see equation 2.20). If we are interested in
the description of the network as viewed across the ports (1, 0) , (2, 0) then it is

equivalent to setting I, = --- = I, = 0. See Figure 2.10.
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We then get

Solving the above

The matrix Y;; — Y;,Y5, Y, is called a Schur Complements of Y. It is in fact the
Laplacian matrix of the 3-node network obtained by repeated star-delta transformations

at the nodes 2, ---,n. See Figure 2.11, where x, y, z are the resistance of the equivalent

5 L

Figure 2.10: A 2-port network.

SIS

,_
o - o| e
1]

N

= =

oSS

N N
_————————————
= e §|
—————

I _ V.
<I;) =M — Y12Y221Y21) <V;)

network containing only nodes 1, 2, and 0.

A " 7 yi
_1.'"..._ Fel
N
i

Figure 2.11: Three-node network.
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Let the resistance distance between nodes i and j is denoted by r;;. By using principles

of circuit theory, we have

— x(y+z)

Tin = x+y+z (252)
— Y(z+x)

Tjn = xX+y+z (2.53)
— z(x+y)

i = riyez (2.54)

The voltage across edge ( j, n) when a unit current source is connected between i and

n is denoted by z;;.

7, = =2 (2.55)

U™ xty+z
Using (2.52), (2.53), (2.54) and (2.55), we get

x+z)  yE+x) ,  ¥x
x+ty+z x+y+z x+ty+z

T; + Tjn—ZZij =

_xy+txz+yz+yz—2yx

x+y+z

_z(x+y)

x+ty+z

= (by equation 2.54)

j
2.7 Summary

In this chapter, we have given an overview of electrical networks along with the
topological formulas for network functions. We also discussed the matrices of graph
and their properties. Along with the Laplacian spectral graph theory we showed some
known formulae of the Kirchhoff index using the Moore-Penrose pseudoinverse of the

Laplacian matrix of a graph. We presented an interesting new formula for calculating

o1



the Kirchhoff index in terms of the matrix Z, to avoid the computational complexities
and extraneous efforts of Moore-Penrose pseudoinverse. The matrix Z is the inverse of
the reduced Laplacian matrix L(7).

Generalization of the Laplacian matrices and its relationship to the Kirchhoff

index will be studied in the next chapter.
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Chapter 3

Cutset Laplacian Matrix of a Graph and Kirchhoff Index

In chapter 2 we studied the relationship between the Laplacian matrix and the Kirchhoff
index of a graph. Noting that the Laplacian matrix is defined by the reduced incidence
matrix and the reduced incidence matrix is a submatrix of the cut matrix, in this chapter
we generalize the notion of Laplacian matrix using the fundamental cutset matrix. We
then develop two approaches to compute the Kirchhoff index. The first approach is
based on a matrix transformation. To develop the second method, we define the concept
of Kirchhoff polynomial of a graph which expresses Kirchhoff index using the elements
of the resistance matrix. Since our discussion will be based on the fundamental cutset
and fundamental circuit matrices, we begin with an introductory treatment of these

concepts and their relationship with Kirchhoff voltage and current laws.

3.1 Cutsets

A graph N is said to be connected if there exists a path between every pair of vertices in

N. For example, the graph of Figure 3.1 (a) is connected.

Definition 3.1 (Thulasiraman & Swamy, 1992). A cutset S of a connected graph N is a
minimal set of edges of N such that its removal from N disconnects N, that is, the graph

N — S is disconnected.

For example, consider the subset S; = {e,, e,} of edges of the graph N in Figure

3.1(a). The removal of S; from graph N results in the graph N; = N — §; of Figure
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3.1(b). Graph N; is disconnected. Furthermore, the removal of any proper subset of S;
cannot disconnect N. Thus S, is a cutset of N.
Consider next the subset S, = {es,es}. The graph N, = N — S, is shown in

Figure 3.1(c).

(a) Graph N

s o o 0
Us 37
€ L | €3 *———O v,
e ’
vy V2 V3
(b) Ny (c) N,

Figure 3.1: Illustration of the definition of a cutset. (a) Graph N.
P) Ny =N-—S8;, Sy ={ezes}. ()N, =N-—-5,, S; ={es, €6}
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3.2 Cuts

We now define the concept of a cut, which is closely to that of a cutset.

Definition 3.2 (Thulasiraman & Swamy, 1992). Consider a connected graph N with
vertex set V. Let I/} and V,be two mutually disjoint subsets of V such that V = V; U V;
that is, V; and V, have no common vertices and together contain all the vertices of V.
Then the set S of all those edges of graph N having one end vertex in V; and the other in

V,is called a cut of N. This is usually denoted by (V;, V).

Note that the cut (V;,V,) of N is the minimal set of edges of N whose removal
disconnects N into two graphs N;and N,, which are induces subgraphs of N on the
vertex sets ¥, and V,. N; and N,may not be connected. If both these graphs are
connected, then (V;,V,) is also the minimal set of edges disconnecting N into exactly
two components. Then by definition 3.1, (V;, ;) is a cutset of N.

Suppose that for a cutset S of N, V; and V. are, respectively, the vertex sets of the
two components N;and N,of N —S. Then S is the cut (V;, V).

Thus, we have the following theorem.

Theorem 3.3.
1. A cut (V;,V,) of a connected graph N is a cutset of N if the induced
subgraphs of N on vertex sets V; and V, are connected.
2. If Sis a cutset of a connected graph N, and V; and V,are the vertex sets of

the two components of N =S, then S = (V/;, 1,).
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Any cut (V;,V5) in a connected graph N contains a cutset of N, since the removal
of (V;,V,) from N disconnects N. In fact, we can prove that a cut in a graph N is the
union of some edge- disjoint cutsets of N. Formally, we state this in the following

theorem.

Theorem 3.4 A cut in a connected graph N is a cutset or union of edge-disjoint cutsets

of N.

3.3 Fundamental Cutsets

In this section, we will show, how spanning tree can be used o define a set of
fundamental cutsets.

Consider a spanning tree T of a connected graph N. Let b be a branch of T
(Note: The edges of a spanning tree T are called the branches of T ). Now, the removal
of the branch b disconnects T into exactly two components T; and T,. Note that T; and
T, are trees of N. Let I/, and V,, respectively, denote the vertex sets of T, and T,. V;
and V;, together contain all vertices of N.

Let N; and N,be, respectively, the induced subgraphs of N on the vertex sets V;
and V,. It can be seen that T; and T, are, respectively, the spanning trees of N; and N.,.
Hence, N; and N, are connected. This, in turn, proves (Theorem 3.3) that the cut (V/;,
V,) is a cutset of N. This cutset is known as the fundamental cutset of N with respect to
the branch b of the spanning tree T of N. The set of all the n —1 fundamental cutsets
with respect to the n —1 branches of a spanning tree T of a connected graph N is known

as the fundamental set of cutsets of N with respect to the spanning tree T. The rank
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p(N) of a connected N is defined to be equal to n — 1. If N has p components, then
p(N) =n—p.

Note that the cutset (V;, V,) contains exactly one branch, namely, the branch b
of T. All the other edges of (V;, V) are links of T. This follows from the fact that (V;,

/,) does not contain any edge of T; and T,. Further, branch b is not present in any other

fundamental cutset with respect to T.

A graph N and a set of fundamental cutsets of N are shown in Figure 3.2.

Vs &7 vs &7
£ Vg &1 E3 Vg
g es

e v
g 4 3 1q Lk

&

(@) (b)

——
-
Y
b
v
TR
1]
e
g e
o
L] o
-
s

-
“

(©) (d)

Figure 3.2: A set of fundamental cutsets of a graph. (a) Graph N. (b) Spanning tree T of
N. (c) Fundamental cutset with respect to branch e;. (d) Fundamental cutset with
respect to branch e,. (¢) Fundamental cutset with respect to branch e; . (f) Fundamental
cutset with respect to branch e, . (g) Fundamental cutset with respect to branch e,.
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Figure 3.2. (Continued)

It is obvious that removal of a cutset S from a connected graph N destroys all the
spanning trees of N. A little thought will indicate that a cutset is a minimal set of edges

whose removal from N destroys all the spanning trees of N.

Theorem 3.5. A cutset of a connected graph N contains at least one branch of every

spanning tree of N.

Theorem 3.6. A set S of edges of a connected graph N is a cutset of N if and only if S is

a minimal set of edges containing at least one branch of every spanning tree of N.
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3.4 Cut Matrix and Fundamental Cutset Matrix

To define the cut matrix of a directed graph we need to assign an orientation to each cut
of the graph.

Consider a directed graph N = (V, E). If 1/, is a nonempty subset of V, then the

set of edges connecting the vertices in I/, to those in V, is a cut, and this cut is denoted
as (V,, V). The orientation of (V,, V,) may be assumed to be either from V, to V, or
from V, to V,. Suppose we assume that the orientation is from V, to V,. Then the
orientation of an edge in (V,, V,) is said to agree with the orientation of the cut (V,, V,)
if the edge is oriented from a vertex in V, to a vertex in V.

The cut matrix Q. = [g;;] of a graph N with m edges has m columns and as
many rows as the number of cuts in N. The entry g;; is defined as follows:

N is undirected

o {1 , if the jth edge is in the ithe cut ;
9% = 10,  otherwise.

N is directed

( 1, ifthejthedgeisin the ithe cut and its orientation agrees with
| the cut orientation ;

4 —1, ifthejth edgeisin the ithe cut and its orientation does not

| agrees with the cut orientation ;

k 0, otherwise.

qij; =

A row of Q. will be referred to as a cut vector.
Consider next any vertex v. The nonzero entries in the corresponding incidence
vector represent the edges incident on v. These edges form the cut (v, V — v). If we

assume that the orientation of this cut is from v to V — v, then we can see from the
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definitions of cut in section 3.2 and incidence matrices recall from chapter 2, that the
row in Q. corresponding to the cut (v, V — v) is the same as the row in A, corresponding

to the vertex v. Thus A, is a submatrix of Q..

Theorem 3.7. Each row in the cut matrix Q. can be expressed, in two ways, as a linear
combination the rows of the matrix A, . In each case, the nonzero coefficients in the

linear combination are all +1 or all —1.

Theorem 3.8. The rank of the cut matrix Q. of an n-vertex connected graph N is equal

ton — 1, the rank of N.

As the above discussion and theorems show, the all —vertex incidence matrix A,
IS an important submatrix of the cut matrix Q.. Next, we identify another important
submatrix of Q, that is, fundamental cutset matrix Q.

We know from Section 3.3 that a spanning tree T of an n-vertex connected graph
N defines a set of n — 1 fundamental cutsets—one fundamental cutset for each branch of
T. The submatrix of Q. corresponding to these n —1 fundamental cutsets is known as the
fundamental cutset matrix Q, of N with respect to T.

Let by, by, ...,b,_, denote the branches of tree T. Suppose we arrange the
columns and the rows of @ so that

1. For 1<i < n-—1, the ith column corresponds to the branch b;.

2. The ith row corresponds to the fundamental cutset defined by b;.
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If, in addition, we assume that the orientation of a fundamental cutset is so
chosen as to agree with that of the defining branch, then the matrix Q can be displayed
in a convenient form as follows:

Qr = [U| ch] (3.1)
where U is the unit matrix of order n — 1 and its columns correspond to the branches of
T and Q. is the fundamental cutset of chords of T.

For example, the fundamental cutset matrix @y of the connected graph of Figure

3.3(a) with respect to the spanning tree T = {e,, e, e4, e5,e,} IS

€2 €3 g4 €5 €7 &

e2r1 0 00 0|—1 0

es|0 1 00 0|-1 —1
@;=%|0o 0o 10 0| 1 o (3.2)

sl 0o 0 01 0| 0 1

ezLo 0o 00 1| 0 o

It is clear from (3.1) that the rank of fundamental cutset matrix Qf is equal to

n — 1, the rank of cut matrix Q.. Thus, every cut vector (which may be a cutset vector)

can be expressed as a linear combination of the fundamental cutset vectors.

i_':ll EE 'E:Jq_ .E_.,l E: 'E-"q.
£s 5 »
Vg &7 vy &7
€1 Vg €3 g
=
T,.':': E4 T"JE -E_-:l2 Eq, T—"E
(@) (b)

Figure 3.3: (a) A directed Graph N. (b) Spanning tree T of N.
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3.5 Fundamental Circuit Matrix and Relationship with Fundamental

Cutset Matrix

3.5.1 Fundamental circuits

Consider a spanning tree T of a connected graph G. Let the branches of T be denoted by
by, by, -+, b,_; , and let the chords of T be denoted by ¢y, c,,*, C—n+1, Where n is the
number of vertices in G and m is the number of edges in G.

While T is acyclic, the graph T U ¢; contains exactly one circuit C;. This circuit
consists of the chord ¢; and those branches of T which lie in the unique path in T
between the end vertices of c;. The circuit C; is called the fundamental circuit of G with
respect to the chord c; of the spanning tree T.

The set of all the m —n + 1 fundamental circuits C;, Cy, +++, Cy_pny1 0OF G with
respect to the chords of the spanning tree T of G is known as the fundamental set of
circuits of G with respect to T. The nullity p(G)of a connected graph G is defined to be
equal to m —n+ 1. If G is not connected and has p components, then u(G) = m —
n+p.

An important feature of the fundamental circuit C; is that it contains exactly one
chord, namely, chord c;. Further, chord c; is not present in any other fundamental circuit
with respect to T. For a given graph G and its spanning tree T in Figure 3.3, a set of

fundamental circuits of G are shown in Figure 3.4.

3.5.2 Circuit matrix
A circuit can be traversed in one of two directions, clockwise or anticlockwise. The

direction we choose for traversing a circuit defines its orientation.
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i =

: R
€y /]\ o .

| b

r—>—80 7 eg

vs €4 V3 V3

(a) Circuit C; (b) Circuit G,

Figure 3.4: Set of two fundamental circuits of G (given in Figure 3.3(a)) with respect
to the spanning tree T (given in Figure 3.3(b)).

Consider an edge e which has v; and v; as its end vertices. Suppose that this
edge is oriented from v; and v; and that it is present in circuit C. Then we say that the
orientation of e agrees with the orientation of the circuit if v; appears before v; when

we traverse C in the direction specified by its orientation.

The circuit matrix B, = [b;;] of a graph G with m edges has m columns and as
may rows as the number of circuits in G. The entry b;; is defined as follows:

G is directed:

(1, if the jth edge is in the ith circuit and its
orientation agrees with the circuit orientation;
—1, ifthejth edge isin the ith circuit and its
J orientation does not agrees with the circuit
orientation;
\ O, if the jth edge is not in the ith circuit.

G is undirected:

_ {1, if the jth edge is in the ith circuit
b;; = .
70, otherwise
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A row of B, is called a circuit vector of G. Next, we identify an important

submatrix of B,.

3.5.3 Fundamental circuit matrix
Consider any spanning tree T of a connected graph G having n vertices and m edges.
Let ¢y, ¢y, oo+, Cm—n+1 De the chords of T. We know that these m — n + 1 chords define a
set of m—n+/ fundamental circuits. The submatrix of B, corresponding to these
fundamental circuits is known as the fundamental circuit matrix B, of G with respect to
the spanning tree T.
Suppose we arrange the columns and rows of By so that
1. For 1 <i<m—n+1,theith column corresponds to the chord c¢;; and

2. The ith row corresponds to the fundamental circuit defined by c;.

If, in addition, we choose the orientation of a fundamental circuit to agree with

that of the defining chord, then the matrix B, can be written as
Bf = [U| By] (3.3)

where U is the unit matrix of order m —n + 1 and its columns correspond to the chords
of T.

For example, the fundamental circuit matrix of the graph of Figure 3.3 (a) with
respect to the spanning tree T = {e,, e, e4, s, e, } is as given below:

e, €5 e, e; €4 €5 ey

E-'1[1 ﬂ‘l 1 -1 0 0 (3.4)

B =
f e l0 1|0 1 0 -1 0
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It is obvious from (3.3) that the rank of By is equal to m —n + 1, the nullity
H(G) of G. Since By is a submatrix of B, we get
rank(B,)) >m—-n+1
It is known (Thulasiraman & Swamy, 1992) that circuit and cutset vectors are
orthogonal. That is,
QfBf = 0. (3.5)
Using this relation, we get

Bft = _Q]L':C (36)

3.6 Kirchhoff’s Laws and Fundamental Circuit and Cutset Matrices

Consider an electrical resistance network G. Let T be a spanning tree of G. Then the

fundamental cutset @ matrix of G has the form

<Branche = <« Chords —>
Q=] U | Qre ]

and Kirchhoff’s current law equations can be written as
Qer =0 (3.7)

that is

v Q] m =0 (3.8)
where I}, is the vector of branch currents and 1. is the vector of chord currents. So

Iy = =Qrcl, (3.9)
Similarly, we have

Br=[Bre U]=[-0Qf U] (3.10)



and Kirchhoff’s voltage law equations can be written as
BV, =0 (3.11)

that is
- 0t UH%]:O (3.12)

where V,, is the vector of branch voltage and V., is the vector of chord voltage. So

V.= —QLV, (3.13)

3.7 Cutset Laplacian Matrix and Kirchhoff Index

Recall that the node-to-conductance matrix Y, also called the reduced Laplacian matrix,
is given by
Y = AW At (3.14)
where A is the reduced incidence matrix of G with respect to a specified reference
vertex and W is the diagonal matrix of conductances of the elements of G.
Since each row of A represents a cut vector (set of edges incident on a node), we

can generalize the notion of Laplacian matrix using fundamental cutset Q@ in place of A.

Definition 3.3. Generalized Laplacian matrix

Let T be a spanning tree of a graph G and @ be the fundamental cutset matrix

of G with respect to T. If W is the diagonal matrix of edge conductances of G, then the
cutset Laplacian matrix Y; of G is given by

Y, = QfWQ]E (3.15)

66



The matrix Y; is also called the conductance matrix of a multiport resistance
network, as viewed from the branches of T (called ports). The Matrix Z, = Y"1 is called
the resistance matrix of the multiport network.

Each diagonal entry of Z, is the resistance r;; across the nodes i and j of the
corresponding branch of the defining branch of T.

For example, the cutset Laplacian matrix Y; of the connected graph of Figure

3.3(a) with respect to fundamental cutset matrix @y given in (3.2) is

1000000][1 0 00 0]
0100000Illo 1 000
[1 0O 00 0 -1 O]
01000 -1 —1/[0010000f|0 0 100
Y,=lo o 100 1 ollooo1o0o00|l|l0 0 o010
[8 8 8 é 2 8 éJ 0000100/lo 0o o001
00000O0T1O0[[-1-1100
000000T1]l0 -1 0 1 0]
[2 1 -1 O O]
| 1 3 -1 -1 0]
v,=l-1 -1 2 o ol
[ 0 -1 0 2 OJ
0O 0 0 01
S0, we get,
/[ 2 1 -1 0 0]\_1
[l 8 -1 -1 o
Z,=Y"'=|l-1 -1 2 o0 ol
[ 0 -1 0 20
0O 0 0 0 1

[8/11 -2/11 3/11 -1/11 0]
|-2/11 6/11 2/11 3/11 0]
=|3/11 2/11 8/11 1/11 ol
-1/11 3/11 1/11 7/11 oJ

0 0 0 0 1
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The (1, 1) entry of above matrix Z, is the resistance ;4. Also, element Z;; =V},
where V; is the voltage across the jth branch of T when a current source of unit value is

connected across the nodes of the ith branch of T, as shown in Figure 3.5.

+

Branch

Branch
b; . Vi 1A

Branch b;

’_\.?_.

Figure 3.5: VVoltage V; across the jth branch when a current source of 1A is connected
across the nodes of the ith branch.

3.8 Computing Kirchhoff Index: A Matrix Transformation Approach
In Chapter 2 we presented a formula to compute the Kirchhoff index using the elements
of (¥,))7, where Y, is the Laplacian matrix. In this section, we present a method to
compute the Kirchhoff index from Z, using a matrix transformation approach.

Note that in view of our definition of the cutset Laplacian, Y,, may be viewed as
the cutset Laplacian with respect to the star stree T, (see Figure 3.6).

The matrix  (Y;)™" = (Q;WQf)™" specifies the relationship between the
voltages across the branches of T and the currents injected through these branches (see
Figure 3.7).

The matrix Z, = Y,~* relates V, and I, as

V, =Z,1, (3.16)
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Reference Node

Figure 3.6: Star tree T,

If Y,, is the Laplacian matrix when the star tree is used, then
V,=Z,1, (3.17)
where Z, = Y, 7"
We can find the Kirchhoff index if Z,, is known using (2.39).
Given Z., our interest is to determine Z, using a matrix transformation

approach. We can then apply (2.38) on Z,, to compute the Kirchhoff index.

Now we show how to relate Z,, with Z,.

+

£
Branch b, —

I
|

Figure 3.7: Voltages across the branches of T and current injected through branches.
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Note that each row of the reduced incidence matrix A represents a cut. So the
rows of A represent n — 1 linearly independent cutsets. This means each row of @, can
be written as a linear combination of the rows of A.

Qr = [ U | Q. ]:Aﬁl[ Ay Agp ]

where A4 is the submatrix of columns of A corresponding to the branches of T.

Now
Y, = Q;GQ¢
= A1{AG(A7{A)*
= A1{ (AGA") (A11)*
= A1 Yo (A11)f
So
Z, = Y1
= ALY A
= A1 Z, Ay
So
Zp = (A11)"Z,(Ar] (3.18)
Since
Ve = ALV,
V= (A1) (3.19)

To compute (A7i)t we procced as follows. Consider any node i and the
corresponding node-to-datum voltage V;.
Let P; be the path in T from node i to the datum node. Then V,, is the algebraic

sum of the voltages of the edges in P;. For example, in Figure 3.8
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VI = U, U3 — U,
Thus, we have the following formula to compute (471)¢

( 1, iftheedgee; €T liesin the path P; and is oriented in the direction
| from node i to datum;

al= { —1, iftheedgee; €T liesin the path P; and is oriented in the direction
I from datum to node i;
k 0, iftheedgee; € T isnotin path P;

Consider the graph in Figure 3.3(a) and the spanning tree T in Figure 3.3(b). The

graph containing T and the star tree T,, (dashed lines) is shown in Figure 3.8.

Figure 3.8: Graph containing spanning tree T and star tree (dotted) given in Figure 3.3.

For the graph in Figure 3.8

IfZﬂI L1 -1 0 oyva
|73 |0 0 -1 0 Ofvs]|
Iv"lelo 1 -1 0o ollval
lvgJ [0 1 -1 -1 OHvSJ
pl 1o 1 -1 -1 -1l
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One can easily see that (A71)" is —(By.), a submatrix of B, of the graph in

Figure 3.8.

Thus, we can rewrite (3.18) as

Zy = BftZtB]Et

This is the transformation we have been looking for.

Example 3.8.1. For the graph in Figure 3.3(a), the datum node is v,. We get the

following reduced Laplacian matrix by removing the 2" row and 2" column from the

Laplacian Matrix of given graph.

Calculating Z,, by using reduced Laplacian matrix

(V)™

[0.73

|0.27
Z,=lo4s
[0.36

0.36

72

(2 0 -1 0 0]
0 3 -1 -1 0
-1 -1 3 -1 0
0 -1 -1 3 -1
o 0 0 1 1
_ -1
2 0 -1 0 O
0 3 -1 -1 0
-1 -1 3 -1 0
0 -1 -1 3 -1
O 0 0 1 1
027 045 036 0.36]
0.72 055 064 0.64]
055 091 073 0.73!
064 073 1.18 1.18
064 073 1.18 218



Calculating Z,, by using cutset Laplacian matrix

Zy = BftZtB]Et

-1 -110 0]Jf072 -018 027 -0.09 OJ[-1 0 0 O O]

0O 0 10 0§;-018 055 018 027 Oj;-1 0 -1 -1 -1
Z,=!0 -110 0J}] 027 018 072 009 OJj1 1 1 1 1
0O -111 0-009 027 009 064 O0fjO O O 1 1

|0 -1 11 1] O 0 0 0 1/J]o0 0 0 0 1|

[073 027 045 036 0.36]
|027 072 055 064 064]

Z,=1045 055 091 073 073!
[0.36 064 073 1.18 1.18

036 064 0.73 118 218

Using (2.41), Kirchhoff Index of G is

KI(G) = 16.8.

3.9 Kirchhoff Polynomial of a Graph and a Formula for Kirchhoff

Index
In this section, we determine a formula for the Kirchhoff index in terms of the elements
of Z,. We define a new concept called the Kirchhoff polynomial of a graph. This is a
generalization of the formula in (2.39) in terms of the elements of Z,, = (Y,,) "%, where

Y,, is the reduced Laplacian matrix of the graph.
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Definition 3.4. Kirchhoff polynomial of a graph.

Let Y, be the cutset Laplacian matrix of a resistance network G with respect to a
spanning tree T. Let Z, = (Y,) 1 = [z;;]. Kirchhoff polynomial of G is a polynomial
2. Cijz;j that express Kirchhoff index of G in terms of the elements of Z,. That is

Kirchhoff index = % C;;z;;.

We first determine a formula for each r;;. Consider the path from vertex i to
vertex j in the spanning tree T. To illustrate the ideas in our development, let this path

be as given in Figure 3.9.

—>r—o »——o—> o
I N N N
Port 1 Port2 Port 3 Port 4

'
J

>y

Figure 3.9: Path from vertex i to j.

For convenience, in Figure 3.9 the ports are oriented similarly. But in general,
the ports can be oriented arbitrarily.

Consider now the 3-node equivalent representation of the graph as shown in
Figure 3.10. This network can be obtained by repeated star-delta transformation at the
remaining nodes.

Then by equation (2.51)

Thj = The +rjc - 2‘/}c = Thc +rjc + Tpe + 2234

J
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b‘\iﬁ.’wﬂeﬁj
+ -

r'«—Port4

Port 3/' -
Z34
- + Z34 = —Vjc

c

Figure 3.10: 3-node equivalent representation of the graph given in Figure 3.9.

Note that, if port 4 is oriented from j to c, then

Thj = Tpe + Tej — 2234

J
as in equation (2.51).
Next consider r,;, as shown in Figure 3.11,

Taj = Tap + Tpj — 2Vy;
= Tap +1pj + 2(223 + 224)

In the above we have replaced Vy,; by —z,3 — 24 .

a b —z3 C —Za J
® > ® >— »—@
+ 1lvolt  + V. + Vg
Figure 3.11
So
raj = Tap + Thbe + rcj + 2(Z23 + Z24) + 2234
Continuing

1ij = (g + Tap F e + 7)) + 2210 + 213 + 214 ) + 2(253 + 254 ) + 2234,
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Note that resistances r;, 745, Tpc and r.; are diagonal elements of Z,. For
instance, r,,, IS the diagonal element z,,.

From the above we can see that the transfer resistance, say z,, appears exactly
once as 2z,, in the expressions of each of the resistance distances r;;, r,; and 7).
Generalizing this we can state that each z,, appears exactly once as 2z, in each r,,,
when the unique path in T containing ports x and y spans ports k and | as shown in

Figure 3.12. Each element z; appears exactly once in each r,,, when the unique path

from x-to-y in T spans port i.

- ———
- ~
- ~

ae=——e ——o o—e¢ o—ob
Port x Port k Port | Porty
Figure 3.12

If G is the complete graph on the vertices of T then
Cr; = 2(# number of edges in G, that span portskand ), ifkandlare
similarly oriented
= —2(# number of edges in G that span ports k and l), otherwise
and

Crie = (# number of edges in the f — cutset defined by port k)

Suppose we remove port k from the tree then the T will be disconnected into two

trees. One of them will not contain port I. Let this tree be called Tj;. If we remove port |
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from T, then the tree that does not contain port k will be denoted by T, . Then we can
see that
Cii = 2|Tiq| - Tyl

Here |Ty;| = # number of nodes in Ty;.
See Figure 3.13.
Also

Cor = |Tk(1)| . |Tk(2)|
where T, and T,® are the two trees that result when port k is removed from the
tree.

Note: Cy; = Cy.

Figure 3.13

Summarizing the above discussion, we have the following theorem
Theorem 3.9. Given a graph G with weight matrix W. Let T be a spanning tree of G.

Let Z, = [z;;] be the resistance matrix with respect to T. Then the Kirchhoff Index

KI(G) is given by
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KI(G) = X, CyiZy + X CijZij (3.17)

= Zk'Tk(1)| : |Tk(2)| +2 Zkk>lli|Tkl| Tyl

In the case when T is star tree
Ti(l) =1 for all i

Ti(z) =n-1 forall i

[T =1
[T =1
Then
Ci=n-1
Cij = %1, i # j, because all ports are dissimilarly oriented.
and
KI(G) =(n—DTr(Z,) — 2 ¥isj zij (3.18)

This verifies formula (2.41) for the Kirchhoff index when the star tree is used in

defining the cutset Laplacian matrix.

Example 3.8.2. For the graph given in Figure 3.8.

[ 0.72 -0.18 0.27 -0.09
-018 0.55 0.18 0.27
Z,=1027 018 0.72 0.09
-0.09 027 0.09 0.64
0 0 0 0

R O O O O
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The port numbers for Figure 3.8 are
Edgee, > Port1l, Edgee; - Port2, Edgee, = Port 3,

Edge e; - Port4, Edge e; - Port 5.

For the tree T in Figure 3.3, C;; are

C11 =5, Ci2 = 2, Ci3 = -1, Ci4 = 2, Cis =1,
Cy =2, Cy = 8, Cyr3 = —4, Crs = —4, Cys = 2,
C1=-1, (3=-4, (33=5, C34 = 2, C3s =1,
Cy =2, Ci2 = —4, Cy3 =2, Ciq =8, Cys = 4,
Cs; =1, Cs; = =2, (53=1, Css = 4, Css =5,

Using (3.17), we get Kirchhoff Index

KI =16.38.

3.10 Summary

In this chapter, we have given an overview of the fundamental cutsets and fundamental
circuits of a graph. We generalized the notion of Laplacian matrix using the
fundamental cutset matrix. We presented two approaches to compute the Kirchhoff
Index; first approach is based on a matrix transformation and the second approach used
the concept of Kirchhoff polynomial of a graph.

In the next chapter, we generalize the notion of Kirchhoff index and study its

relationship to Foster’s theorems.
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Chapter 4
Weighted Kirchhoff Index of a Graph and Generalization of Foster’s

Theorems

In 1949, Foster (Foster, 1949) proved a theorem called Foster’s First Theorem. This
theorem gives an identity involving the sum of resistance distances. A graph-theoretic
proof of this theorem was given in (Thulasiraman, et al., 1983) . In (Tetali, 1994) Tetali
proved this theorem using certain results from the theory of Markov Chains. In 1961,
Foster presented an extension of his first theorem (called Foster’s second theorem).
Building on Tetali’s probabilistic approach, Palacios gave another proof of Foster’s
second theorem (Palacios, 2004). In this paper, Palacios also gave an extension of
Foster’s second theorem. In 2007, Cinkir (Cinkir, 2007) gave a generalization of all of
Foster’s theorems. These extensions are about the sum of resistance values over paths
consisting of a certain number of edges. Connection between resistance distances and
random walks on graph have been discussed in several works. See (Thulasiraman, et al.,
2015) and (Doyle & Snell, 1984) for examples. See (Coppersmith, et al., 1990) and
(Tetali, 1991) for the application of random walk and Foster’s theorem in the design of
on-line algorithms.

In this chapter, we provide further advances on the concept of Kirchhoff index.
Our main contributions are the introduction of the concept of Weighted Kirchhoff index
of a graph and its relationship to Foster’s theorems. Specifically, we first show that

Foster’s theorems can be presented as results involving the sum of weighted r;;’s

(w;jrij) when the weights are chosen appropriately. We then give a generalization of
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Foster’s theorems that retains the circuit-theoretic flavor and elegance of these theorems

in section 4.3. We also present a dual form of Foster’s first theorem in section 4.4.

4.1 Basic Concepts and Definitions

Consider a network N of positive resistances. Let V be the set of nodes in N. Let n
denote the number of nodes in N. We assume that the nodes are numbered 1, 2, ..., n.
So V ={1,2,..n}. Let y;; be the value of the conductance of the resistance element
connecting nodes i and j. Let 7;; denote the input resistance of N across the pair of nodes

i and j. r;; is also called the driving point resistance across nodes i and j.

4.1.1 Star-Delta transformation
Consider a node v. Let y,, ... , ¥, be the conductances of the edges incident on v, with
1,2, ..., k denoting the other end nodes of these edges. Star-delta transformation at v is
the operation of removing node v from N and adding a new element (i,j) with
conductance y;y;/d(v) forall k <i,j <k (see Figure 4.1).

It is well known in circuit theory that the input resistance across nodes i and j in

N'is same as r;; in N as long as these nodes remain in N'.

4.1.2 Multiple star-delta transformations

Let D be a proper subset of nodes of N, that is, D c V. Suppose we perform star-delta
transformations successively at the nodes in D, one at a time. Let N(D) denote the
resulting network. Clearly N(D) has n — k nodes when k = |D|. At the end of the

multiple star-delta transformations, a new resistance element connecting i and j will be
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Figure 4.1: Star-delta transformation.

created in N(D). Let the conductance value of the new element be S;;(D). Thus, the
total value of the conductance of the elements connecting i and j in N(D) will be y;; +

S;;(D). See Figure 4.2,

N N(D)

Figure 4.2: Multiple star-delta transformation.

Let

s = ) 5y(D). (41)
DIk

That is, s;;(k) is the sum of all S;;(D)’s for all subsets of nodes of size k.
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For example, consider a 5-node resistance network N given in Figure 4.3. For this, there

are ten 3-element subsets of nodes. These subsets are:

{a,b,c},{a,b,d} {a,b, e} {a,c,d} {a c e} {a d, e} {b c,d},{b,c e} {b.d, e} {c d, e}

Figure 4.3: A 5-node resistance network N.

For each subset, D of nodes, the corresponding network N (D) is shown in Figure 4.4. In

this figure, dotted edges indicate the new resistance elements along with the

corresponding S;;(D)’s. Then, using (4.1) we have

3 1 37 2 4 4 46
@ =743t 1% @3t T e
(2)_3+9+1_365 (2)_2+2+2_26
Saale) =791 737 2371 Sael\e) =3 73777 o1
4 4 8 5 5 8
spc(2) TRETIREEL spa(2) :g+1+€: 3
) 1,9 ,3_365 LI 8
Sbe 37117 231 S TTiTIIT 11
) = LA 246 (2)_9+1 3 365
See\e) =977 11737 33" S TI17T37 77 231
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(i) Star-Delta transformation at nodes {c, e} (j) Star-Delta transformation at nodes {d, e}

Figure 4.4: Corresponding network N(D) for each subset D of nodes.
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4.2 Foster’s Theorems

4.2.1 Foster’s first theorem

Consider a resistance N. Let N have n nodes and m elements eq,e,, ... ,e,,. The

resistance and conductance of each e; will be denoted by z; and y; (: Zl) respectively.

Also, the two nodes of each e; will be denoted by i; and i,. If ; ;, denotes the effective
resistance of N across the pair of nodes i; and i,, then we have the following theorem
due to Foster (Foster, 1949). For the sake of completeness, we provide a proof of this

theorem repeated from (Thulasiraman, et al., 1983).

Theorem 4.1 (Foster’s First Theorem)
m
Z yirilviz =n-1 (42)
i=1

Proof. Let T denote the set of all the spanning trees of N and, for each i, let T; denote
the set of all the spanning 2-trees of N separating the nodes i; and i,. That is, T; is the

set of all the spanning trees of type T; Note that adding e; to a spanning 2-tree

1vi2'
separating i; and i, will generate a spanning tree. Further, let w(t) denote the
conductance product of spanning tree t and w(t;) denote the conductance product of a

spanning 2-tree t; separating i; and i,. Itis easy to seethatif t = t; U e; then

W(T) = Z w(t)

teT

and
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W)= > w(t)

t;€T;
then it is known (see 2.33, Chapter 2) that
_wW(Ty)
Tt T W(T)

Thus, to prove the theorem, we need to show that

Y vy = (- Dw(r) (43)

or

m

Y Y wed=@-1) w.

i=1 t; €T; teT

Consider any tree conductance product w(t).We may assume, without loss of
generality, that the spanning tree t contains the elements e, e,, ... ,e,_1. Then for every
i=12.. ,n—11t—e; Iisaspanning 2-treet; separating the nodes i, and i,. So for
everyi=12,.. ,n—1,
w(t) = yiw(t)

for some spanning 2-tree t;. Thus, the conductance product w(t) appears exactly once
in each y;w(t;), i =1,2,... ,n— 1. In other words, each w(t) appears n — 1 times in
both sides of (4.2). The theorem follows since each y,w(t;) corresponds to a unique

w(t). O

4.2.2 Foster’s second theorem
In this section, we state and prove Foster’s second theorem. This theorem is based on

the operation of star-delta transformation which we define as follows.
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Consider a node v. Let y;, ... ,y, be the conductances of the edges incident on v,
with 1,2,... .k denoting the other end nodes of these edges. Recall that star-delta
transformation at v removes node v from N and adds a new element (i,j) with
conductance y;y;/d(v) forall k <i,j <k (see Figure 4.1).

Figure 4.5. illustrates an example to calculate the effective resistance R;,
between two vertices v; and v, by using Star-Delta transformation method.

The following theorem is by Foster (Foster, 1961).

Theorem 4.2 (Foster’s Second Theorem) Consider a resistance network N. For any
pair of conductances y; and y; incident on common node v, let r;; denote the effective
resistance across the two remaining nodes of y; and y;. Let d(v) be the sum of the

conductances of the elements incident on v. Then

> S =y Vs

VEV i<j i<j
where the sum is extended over all pairs of adjacent elements incident on a common
node v.
Proof. Consider any node v in N. Star-delta transformation at v results in a network N’

with n — 1 nodes. Applying Foster’s First theorem to N’ we get

Z rijyij + szyk =n-2. (45)

i<jen’
Here the first summation is over all pairs of elements of N’ which reflect the new
conductances created by star-delta transformation at node v. The second summation is
over all conductances of N that are not connected to v. Note that y, is a conductance

and zy, is the effective resistance across the nodes of this conductance.
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Figure 4.5: Calculating effective resistance distance between nodes v; and v,.
Here, g1, is the conductance between nodes v; and v,.
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Summing (4.5) over all the n vertices in N, we get

Z Zrifyif +Zzzkyk =n(n - 2).

i<jeN’ v
The first sum is over all pairs of vertices adjacent to a common node v in N. The second

sum is

DD aye=(-2)) zy, (4.6)

because conductance y, appears exactly n — 2 times in the double summation. So

Z Zrijyij =n(n-2)-(n— Z)Zziyi

i<jEN' v
=n(n—2)— (n—2)(n— 1), applying Foster’s First theorem
=n-—-2
This completes the proof. OJ

4.3 Weighted Kirchhoff Index of a Resistance Network, Foster’s

Theorems, and Generalization

The Kirchhoff Index of a resistance network N is given by

KI(N) = Z”f'

i<j
Suppose we associate a weight w;; to each r;;. Then the corresponding weighted

Kirchhoff index of N is defined as

i<j
Next, we present foster’s two theorems stated in section 4.2 using the concept of
weighted Kirchhoff index.
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4.3.1 Foster’s first theorem using weighted Kirchhoff index

Theorem 4.3. If w;; = y;; then

i<j
Note: y;; = O if there is no resistance element connecting i and j. So, in that case, we

get the original statement of Foster’s theorem, namely,

Z yijrij =n-1.

i~j

Note: i ~ j means there is an element connecting i and j.

4.3.2 Foster’s second theorem using weighted Kirchhoff index

Theorem 4.4. If w;; = s;;(1) then

WKI(N) = Zsij(l)rij =n-—2.

i<j
We next state and prove the main contribution of this chapter that generalizes Foster’s

theorems.

4.3.3 Generalized Foster’s theorem

Theorem 4.5. Ifw;; = s;;(k), k = 1 then

WKI(N) = Z sij(K)ry = (n—k—1) <: : i)

i<j
Proof. Consider a resistance network N of n nodes with nodes numbered 1, 2, ..., n. Let

V ={1,2,..,n}. Let D be a proper subset of V and |D| = k. Then the network N (D)
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that results after Star-Delta Transformations at the nodes of D will have n — k nodes.

So, applying Foster’s Theorem on N(D), we get

i<j

Equation (4.7) can be rewritten as

ZSij(D)rij + Zyijrij =n—k-1 (4.8)

i<j i<j
Let us now write similar equations for all the (Z) subsets of V of size k and sum up

both the right-hand side and left-hand side terms.

Then we get
Z Zsi,-(p)rij + Z Z yirg= () (n—k=1). (4.9)
DcV i<j DcV i<j

Equation (4.9) can be rewritten as

Z sy (k) + Z Z yirg= () (n—k=1). (4.10)

i<j DcV i<j

Consider the second term Ypcy Xicjyi;7ij in (4.9). In this summation, y;;r;;
will be present only if D does not contain both i and j. There are (™) subsets of V
that satisfy this requirement. In all other cases, y;;r;; will not be present. Thus, each
term y;;7;; appears exactly (™.%) times in the second sum (4.9). So, we can rewrite

(4.9) as

Zsij(k)rij"'(n;Z)Z}’iﬂ‘ij: (:) (n—k-1).

i<j i<j
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That is

Yicjsij()rij + (M2 )n—1) = (%) (n—k—1),byTheorem4.3.

So,
S sytory=-k-0(7) - (" )1
=
=o-e-[() g ren (")
=(-k=1) :(Z)_k! ((:—_klﬁl)!l
=== ()" )
-
where the identity (%) = (") + (") is used. L)

For example, the WKI(N) of the 5-node resistance network N (Figure 4.3) for
k = 2 is calculated below. Note that |D| = k. The resistance distance r; ; for each pair

of nodes for the 5-node network N (Figure 4.3) is

Tap = 0475, 75 = 0.875, Taq = 0475, 74 = 0.500,
The = 0600, Tba — 0400, The — 0475, Yea — 0600,
.. = 0.875, T4 — 0.475.

By using the above calculated r;;’s and s;;(2)’s, we can calculate 7;;s;;(2) for each pair

of nodes as given below:
RypSqp(2) = 0.837, Rye54.(2) =1.219, R, 35,4(2) =0.750, R,.S..(2) =0.619,
Ry.Spc(2) = 0436, R,;5,4(2) =1.066, Rp.s,.(2) =0.750, R.;5.4(2) = 0.436,
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RupSee(2) = 1219, Ryp54.(2) = 0.750,

So,

i<j
For n=5and k = 2, we have by Theorem 4.5:
n—1 4
i<j

verifying the result in Theorem 4.5.

4.4 Dual Form of Foster’s First Theorem

Circuits and cutsets are dual concepts (Swamy & Thulasiraman, 1981). The cutset space

(KCL equations) has dimension n — 1, rank of the graph, and the circuit space (KVL

equations) has dimension m —n + 1, nullity of the graph. Here m is the number of

resistance elements in N. Foster’s theorem states that the weighted Kirchhoff index of a

graph is n — 1, the rank, when all weights are equal to unity. The question arises

whether one could assign weights appropriately so that the corresponding weighted

Kirchhoff index is equal to m — n + 1, the nullity. We shall answer this question in the

affirmative.

Note that the largest value that k can take in Theorem 4.5 is equal to n — 2, since

at least two nodes are needed to define resistance distance.

Theorem 4.6 (Dual of Foster’s First Theorem).

Yi<jsij(n—2)r;; = m —n+ 1 =nullity of graph G
i~j
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Proof. For k =n — 2, we can get from Theorem 4.5 that

;sij(n—Z)rij:<Z:;)
-("3")

_(n-1)(n-2)
B 2

Rewriting the above, we get

Z sij(n —2)ry; + 2 sij(n = 2)1i; = o 1)2(" =

i<j i<j
i~j i+j

where i ~ j means that there is an edge connecting i and j .

Since s;;(n—2) = %when i +j, we get
ij

Z sij(n—=2)r;; +m’ = (n— 1)2(n —2)

<)
i~

where m' is the number of resistance elements that are not in the network.

Since m’ =22 _ i we get
n-1)(n-2) n(n—1)
Zsij(n—Z)Tij = 2 +m — T
i<j
i~
=m-n+1
= nullity of G.
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4.5 Summary

In this chapter, we first introduced the notion of Weighted Kirchhoff index of a graph.
We then presented Foster’s theorems in terms of the Weighted Kirchhoff index of a
graph. Two specific choices of weights to be associated with resistance distance result
in Foster’s first and second theorems. A generalization of Fosters theorems was then
discussed. Unlike the generalization in (Cinkir, 2011), our generalization retains the
elegance and circuit-theoretic flavor of Foster’s theorems. Our final result is to develop
a dual form of Foster’s first theorem. Since Foster’s theorems capture the impact of path
weights between nodes, we believe that our results provide a framework for the study of

cascading failures using resistance distances.
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Chapter 5

Computing Kirchhoff Index

5.1 Introduction

Kirchhoff Index is a structural descriptor of networks based on resistance distance. In
this chapter, we discuss sequential and parallel algorithms for resistance distance by
using Star-delta transformation. To study the properties of large networks, they are
partitioned into clusters. The boundary nodes of the clusters connect them to other
clusters in network. We propose a novel three-step approximation algorithm for
Kirchhoff Index, by storing the resistance distance information of each cluster on its
boundary nodes. The quality of the approximation algorithm depends on the density of
the network.

Section 5.2 describes the graph partition using the metis software. Section 5.3
describes the Graphics Processing Units (GPU) and CUDA for parallel approach. In
Section 5.4, we discuss the Star-Delta transformation algorithm using the series and
parallel reduction. The sequential and parallel algorithms for finding the resistance
distance are presented in Section 5.5. A novel approximation algorithm for resistance

distance and Kirchhoff index is presented in Section 5.6.

5.2 Graph Partition using METIS

Metis (Karypis & Kumar, 2013) is a serial software package for partitioning large
graphs. Metis consists of a fundamental library and a number of executable C programs.

Metis software is freely distributed and has been developed at the Department of
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Computer Science & Engineering at the University of Minnesota. Metis software can be
downloaded directly from http://www.cs.umn.edu. The algorithms implemented in
Metis are based on the multi-level graph paradigm (Karypis & Kumar, 2013). Metis
uses KL algorithm developed by Kernighan-Lin (Kernighan & Lin, 1970) for graph
partitioning.

We used Metis 5.1.0 software for our experiments. For graph partitioning we
used a stand-alone program, provided by Metis 5.x, called gpmetis. Gpmetis partitions a
given graph into specified number of clusters or parts. The input graph is stored in a
graphfile and the output of gpmetis is stored as graphfile.part.nparts where nparts is the
number of parts or clusters the graph was partitioned into.

The input graph file and output file for an undirected graph G are shown in
Figure 5.1. The undirected graph G given in Figure 5.1(a) consists of 25 nodes and 44
edges. The input graph file of graph G with n vertices and m edges consists of n + 1
lines. The first line of input graph file is called header line and it contain the
information about the number of nodes and number of edges of graph G. The remaining
n lines contain the information about the actual structure of the graph G. In particular,
the ith line contains the information about the list of nodes, connected to node i.

Figure 5.1(b) illustrates the input graph file of graph G. The header line contains
the information about size of graph as n = 25 and m = 44. The remaining lines represent
all the nodes connected to a particular node. The output partition file of a graph G
consists of n lines with a single number per line. The ith line in the output file represents
the ith node of the graph and the number present at the ith line is the partition number

where the ith node belongs to. Partitions are numbered from O to k — 1, where k is the
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(b) (c)
Figure 5.1: (a) Graph G. (b) Input graph file. (c) Output graph partition file.
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the number of partition. Figure 5.1(c) shows the partition output file of graph G. The

four clusters of the partition graph are shown in Figure 5.2.

Cluszter 2 Cluzter 3

Cluster 0 Claster 1

Figure 5.2: Graph G partitioned in four clusters.



5.3 Graphics Processing Units (GPUs) and CUDA

The Graphics Processing Units (GPUs) have a parallel processing architecture, which
allows GPUs to perform multiple calculations at the same time using multi-threading.
In 1999, Nvidia introduced the first GPU (GeForce256). The advantages of using the
GPUs over CPUs for computation are high performance and usage of less power and
lower cost. The interface for GPUs is Compute Unified Device Architecture (CUDA).
CUDA is a parallel computing platform created by Nvidia (Corporation, 2010). CUDA
is the first language designed by a GPU company to facilitate general-purpose
computing on GPUs. CUDA platform is designed to work with C and C++
programming languages. The CUDA platform gives direct access to the GPUSs.

In the CPU-GPU heterogeneous environment, the GPU is called the device and
the CPU to which it is connected is called the host. The programs executing on the
CPU can access the GPU and data can be transferred from the host memory to the

device memory to perform specific tasks.

5.3.1 The architecture of GPU

The GPU consists of several Streaming Multiprocessors (SMs) and each multiprocessor
contains 8 cores. The cores have access to the shared memory of the specific Streaming
Multiprocessor. The Streaming Multiprocessors have access to the global memory (also
called device memory). NVIDIA Tesla C1060 Card consists of 30 SMs, 240 GPU
cores, 16 KB of shared memory in each of the SM (total of 480 KB of shared memory)

and 4 GB of global memory. The architecture of GPU C1060 is shown in Figure 5.3.
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Figure 5.3: GPU architecture (NVIDIA Tesla C1060).

5.3.2 CUDA programming model and memory model

The CUDA programming model extends the C programming language. The C language
functions are called kernels in CUDA. A kernel is defined by using the “_global ”
declaration specifier. A CUDA kernel is executed by an array of threads. Each thread
has a unique threadlD to compute memory addresses and to make control decisions.
CUDA follows the Single Program Multiple Data (SPMD) model. So, all threads run
the same code. In a CUDA program, the sequential code executes in a host (CPU)
thread and the parallel code executes in many device (GPU) threads. The threads are

grouped into blocks. Blocks can be one-dimensional, two-dimensional, or three-
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dimensional arrays. Blocks can be identified by blockID. The blocks are grouped into
grids and grids can be one-dimensional or two-dimensional arrays. So, the batch of
threads that executes a kernel function at device is organized as a grid of thread blocks.

The CUDA programming model is shown in Figure 5.4.

(" Hot@P) ) / Device (GPU) \

Grid 1
Block(0, 0) | | Block(l,0) | | Block(2, 0)

Kemnel 1

Block(0, 1} | Block(1.1) | | Block(2. 1)
Block (1. 1) :

Figure 5.4: CUDA programming model (Corporation, 2010)

On executing a kernel call, the data is transferred from the CPU to the GPU by
using memory copy functions and then transferred back to CPU from GPU. Figure 5.5
shows the CUDA memory model. Global memory or device memory is used to transfer
data from host to device and then back from device to host. The shared memory is
accessed by all the threads within that block. The data stored in the register memory is
accessed only by the thread that wrote it.
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Figure 5.5: CUDA memory model (Corporation, 2010).

5.4 Star-Delta Transformation Algorithm using Series and Parallel

Reduction

The resistance distance between two nodes of a given network can be calculated by
repeated applications of star-delta transformation. Recall from Chapter 4, Star-delta
transformation at node v of a network N is the operation of removing node v from N and
adding a new element between every pair of nodes that are connected to node v. To
remove a node v, we perform series and parallel reductions. Series and parallel
reduction along with star-delta are illustrated in Section 4.2 of Chapter 4. See Figure 5.6

for an example.
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Figure 5.6. Hlustration of star-delta transformation and series/parallel reductions.

Resistance distance algorithm
For a given network N, let V be the set of all nodes in the network. Algorithm 1 given

below finds the resistance distance R for nodes (i, j) in N.

Algorithm 1: Resistance Distance Algorithm

Step 1: Set nodes i and j in network N.

Step 2: Choose the starting node v in N to perform star delta transformation.

Step 3: If v # i and v # j, then go to Step 4. Else go to Step 5.

Step 4: Perform star-delta transformation on v. This will add new resistance elements
to all pairs of nodes connected to v.

Step 5: Remove node v.

Step 6: Choose next node v to perform star delta transformation if a node v other than
i and j is available.

Step 7: Repeat Step 3 until all nodes (other than nodes i and j ) have been removed
from the network N.

Step 8: Let the new edge e between nodes i and j have conductance g. After

performing parallel reduction, the resistance distance R between i and j is
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rR=1
g

Step 9: Choose next pair of nodes (i, j).

Step 10: Repeat Step 1 to Step 9 for all pairs of nodes (i, j) in N.

Figure 5.7 illustrates Algorithm 1 for the node-pair (a, €). The node picked for

star-delta transformation is shown in red color.

5.5 Sequential and Parallel Approaches for Resistance Distance

Computation

The data structures we have used to store the graph information are Adjacency List and
Adjacency Matrix. For graph partition, we use adjacency list and for finding the
resistance distance we use adjacency matrix of the graph. We are using two approaches
to find the resistance distance for all pairs of nodes in the graph G. In the next two

subsections, we explain the sequential and the parallel approach for resistance distance.

5.5.1 Sequential approach for resistance distance

For finding the resistance distance using the star-delta transformation procedure, we
need to update the given adjacency matrix A. The sequential approach for finding the
resistance distance is given in Algorithm 2. The input for this algorithm is the adjacency
matrix A of graph G and the output is the resistance distance matrix R for all pairs of
nodes in G. In Algorithm 2, first we get the number of nodes n in G. Then for all pairs

of nodes, we calculate the sum of elements of all the rows in adjacency
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Figure 5.7: lllustration of star-delta transformation procedure algorithm.

matrix A and store them in rowSumArray[n]. Then we find the non-zero columns of a
row in adjacency matrix and store them in jRowArray[n]. The information of nodes
given in jRowArray helps in updating the adjacency matrix A. Then we set all the

elements of the processed row i and column i to zero in adjacency matrix.
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Algorithm 2: Sequential Algorithm for Resistance Distance Calculation

Input : Adjacency Matrix A of graph G.
Output: Resistance Distance R for all pairs of nodes in graph G.
begin
Get n (number of nodes in G);
A[n][n] € Adjacency Matrix (G);
fori=0ton—1 do
forj=0ton—-1 do
rowSumArray[i] € rowSumArrayl[i] + A[i][j];
count €< 0;
foriRow =0ton—1 do
for jRow =0ton—1 do
if A[iRow][jRow] != 0 then
JRowArray[count] € jRow;
count € count + 1;
end if
end for
for index1 = 0 to count do
jUpdatel < jRowArray[index1] ;
for index2 = index1 + 1 to count do
jUpdate2 < jRowArray[index2];

addition & A[iRow][jUpdate1]+A[iRow][jUpdate2] .

rowsumArray[iRow]
AljUpdatel][jUpdate2] < AljUpdatel][jUpdate2] +
addition;
end for
AliRow][jUpdatel]< O;
AljUpatel][iRow] € O;
end for
count €< 0;
rowSumArray[i] € rowSumArrayli] + A[il[/];
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end for
for rindex1 =0ton—1 do
for rindex2 =0ton—1 do
if A[rIndex1][rindex2]! = 0 then

1
Alrindex1][rindex2]’

R[rindex1][rindex2] €<

end if
end for
end for
end for
end for
Output € R[n][n];

end

Updating adjacency matrix completes the star-delta transformation at the selected
nodes. Once the adjacency matrix is updated, we again calculate the new sum of the
rows and update rowSumArray[n]. Then we calculate the resistance distance by taking
the reciprocal of the updated adjacency matrix and storing them in resistance distance

matrix R.

5.5.2 Parallel approach for resistance distance

For the parallel approach, we use CUDA parallel programming. Recall from Section 5.2
that the sequential part of the code is executed on the CPU (host), and the parallel parts
are executed on the GPU (device). Algorithms 3 and 4 explain the parallel parts that are
executed on the device. These are similar to Algorithms 1 and 2 incorporating certain
features required for parallel execution. Algorithm 3 is the device code,

kernel_rowSum(A, rowSumArray) function, for calculating the sum of elements of all
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the rows in adjacency matrix A and storing them in rowSumArray. The __ syncthreads()
function is used to coordinate the threads. This function works as a block level
synchronization barrier and it makes all threads stop at a certain point in the kernel

before moving enmasse.

Algorithm 3: kernel_rowSum — device code

Procedure kernel_rowSum (A, rowSumArray)
Get n (number of nodes);
i €blockDim.x * blockldx.x + threadldx. x;
ifi <n then
rowSumArray[i] < O;
forj=0ton do
rowSumArray[i] € rowSumArrayli] + A[i * n + j];
end for
__syncthreads();
end if
end procedure

Algorithm 4 is the device code, kernel _updateMatrix(A, rowSumArray, jRowArray,
irow, count) function, for updating the adjacency matrix A. Here rowSumArray is the
array of sum of rows of adjacency matrix A, jJRowArray is the array that holds the

information of nodes to be updating in the adjacency matrix.

Algorithm 4: kernel_updateMatrix — device code

Procedure kernel_updateMatrix (A, rowSumArray, jJRowArray, irow, count)
Get n (number of nodes);
I €blockDim.y * blockldx.y + threadldx.y;
j €blockDim. x = blockldx. x + threadldx. x;
ifi <nandj <nthen

forindex1 =0ton—1do
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for index2 = 0to k do
jUpdatel < jRowArray[index2];
if index1 = jUpdatel then
for index3 = index1+ 1ton —1do
for index4 =0 to k do
jUpdate2 < jRowArray[index4];

if index3 = jUpdate2 then

A[iRowsn+ jUpdatel]+A[iRow*n+ jUpdate2]
rowSumArray[iRow]

Alindexl * n + index3]€ Alindex1 * n + index3] +

addition =

addition;
Alindex3 * n + index1]€ Alindex3 * n + index1] +
addition;
end if
end for
__syncthreads( );
end for
Alirow * n + index1] = O;
Alindex1 x n + irow = 0;
end if
end for

__syncthreads();

end for

end procedure

The parallel approach for finding the resistance distance is given in Algorithm 5. The
input for this algorithm is the adjacency matrix A of graph G and the output is the
resistance distance matrix R for all pair of nodes in G. In Algorithm 5, GPUMalloc( )

function requests the array on the device’s global memory and GPUFree() function
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frees the array from the device global memory. MemcpyHostToDevice( ) function
transfers data from host memory to device memory and MemcpyDeviceToHost( )
function transfers data back to host memory from device memory.

To call the kernel functions from the device, we declare blocksPerGrid and
threadsPerBlock. blocksPerGrid is the number of blocks we want to run on processors
in parallel and threadsPerBlock is the number of threads we want to activate per block.
We call the kernel_rowSum function given in Algorithm 3 to calculate the sum of the
rows of adjacency matrix A. Then we call kernel_updateMatrix function given in
Algorithm 4 to update the entries of the adjacency matrix. Calculate the resistance
distance by taking the reciprocal of the updated adjacency matrix elements and storing

them in resistance distance matrix R.

Algorithm 5: Parallel Algorithm for Resistance Distance Calculation

Input : Adjacency Matrix A of graph G.
Output: Resistance Distance R for all pairs of nodes in graph G.
begin
Get n (number of nodes in G);
A[n][n] € Adjacency Matrix (G);
fori=0ton—1 do
forj=i+1ton—1 do
/I Call kernel_rowSum function to add the elements of rows of adjacency matrix
GPUMalloc();
MemcpyHostToDevice( );
kernel rowSum<<<blocksPerGrid, threadsPerBlock>>>(A,
rowSumArray);
MemcpyDeviceToHost( );
GPUFree();
count € 0;
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for iRow =0ton—1 do
for jRow =0ton—1 do
if A[iRow][jRow] != 0 then
JRowArray[count] € jRow;
count € count + 1;
end if
end for
/I Call kernel_updateMatrix function to update the adjacency matrix.
GPUMalloc();
MemcpyHostToDevice( );
kernel updateMatrix<<<blocksPerGrid, threadsPerBlock>>>(A,
rowSumArray, jJRowArray, irow, count);
MemcpyDeviceToHost( );
GPUFree()
count € 0;
/I Call kernel_rowSum function to add the rows of updated adjaceny matrix
GPUMalloc();
MemcpyHostToDevice( );
kernel rowSum<<<blocksPerGrid, threadsPerBlock>>>(A,
rowSumArray);
MemcpyDeviceToHost( );
GPUFree();
end for
for rindex1 =0ton —1 do
for rindex2=0ton —1 do

if A[rIndex1][rindex2]! = 0 then

1

R[rindex1][rindex2] < Alrindexil[rindex2] ;

end if
end for
end for
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end for
end for
Output < R[n][n];
End

We are getting the same output resistance distance matrix R from the sequential
approach Algorithm 2 and parallel approach Algorithm 5. Figure 5.8 shows the input
adjacency matrix A and Figure 5.9 shows the output resistance distance matrix R of G

given in Figure 5.1(a).

Figure 5.8: Adjacency matrix A of G given in Figure 5.1(a).
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5.6 Three-Step Approximation Algorithm for Resistance Distance

Calculation
In this section, our main objective is to introduce a three-step approximation algorithm
to calculate resistance distance between all pairs of nodes of a network. Algorithm 6
finds the resistance distance R,p,rox USiNg the paths in a network. First the network is
partitioned into clusters. Figure 5.10 shows the boundary nodes network B’ having
weights on the edges (dashed red color edges) of boundary nodes of each cluster
(Mustrate Step 1 and Step 3 of Algorithm 6). The relationship between the resistance
distance R we are getting from Algorithm 2 (Algorithm 5 for parallel) and the resistance
distance Rgpprox from Algorithm 6 is
Rapprox = R.
Figure 5.11 shows the output resistance distance matrix R,p,,o, Of graph G given in

Figure 5.2.

Algorithm 6: Three-Step Approximation Algorithm for Resistance Distance Calculation

Step 1: Find the boundary nodes of each cluster in network N. These are the nodes that
connect inter-cluster edges. See Figure 5.2.

Step 2: Get the adjacency matrix A.;,s:err fOr €ach of the clusters in the network.

Step 3: Find the weight on the edges of boundary nodes of each cluster by using
Algorithm 2 (for sequential approach) or Algorithm 5 (for parallel approach).

Step 4: Get the adjacency matrix Apgynaqry for network B’ of boundary nodes.

Step 5: Get the resistance distance matrix Rp,oynaqry for each pair of boundary nodes in
B' by using Algorithm 2 or Algorithm 5. The input for Algorithm 2 and
Algorithm 5 is adjacency matrix A,oynaary-

Step 6: Get the adjacency matrix A of the network N.

Step 7: To find the resistance distance R for each pair of nodes (i, and j) in N, go to
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Step 8.

Step 8: Set nodes i and j.

Step 9: If nodes i and j are in the same cluster and both are non-boundary nodes then
get the resistance distance by using Algorithm 2 or Algorithm 5. The input
adjacency is matrix A. Go to Step 19.

Step 10: If nodes i and j are in the same cluster but i is a non-boundary node of the

cluster and j is a boundary node of the cluster then get the resistance distance
R useer [11[J] by using Algorithm 2 or Algorithm 5. Go to Step 19.

Step 11: If nodes i and j are in different clusters and both are non-boundary nodes of
those clusters then go to Step 12.

Step 12: If node i is a non-boundary node in clusterA and node j is non-boundary node
in clusterB then go to Step 13 through Step 16 and find the resistance distance
Rapprox L[]

Step 13: Find the resistance distance R, ster4[i1[k] from node i to each boundary node
k of clusterA, by using Algorithm 2 or Algorithm 5. The input adjacency is
matrix A juseera-

Step 14: Find the resistance distance Rjster5 k][] from node j to boundary node k of
clusterB, by using Algorithm 2 or Algorithm 5. The input adjacency matrix is
Acwusters-

Step 15: Find the resistance distance Rj,ynaary [k][1] from boundary node k of clusterA
to boundary node | of clusterB, by using Algorithm 2 or Algorithm 5. The
input adjacency matrix is Apounaary -

Step 16: Set Rypprox[11[/]1 € minimum resistance distance from i to j using paths of
length of 3, containing the boundary nodes of clusterA and clusterB.

Go to Step 19.

Step 17: If node i is a non-boundary node in clusterA and node j is a boundary node in
clusterB then repeat Step 13 and Step 15 and find resistance distance.

Set Rapprox[11[/1€ the minimum resistance distance along paths of length 2,
containing only the boundary nodes of clusterA.
Go to Step 19.
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Step 18: If node i is a boundary node in clusterA and node j is a non-boundary node in
clusterB then repeat Step 14 and Step 15 and find resistance distance
Raiversepacnl1[j1-

Set Rapprox [I1[j/1€ the minimum resistance distance of paths of length 2 from
i to j, containing only the boundary nodes of ClusterB.
Go to Step 19.
Step 19: Choose the next pair of nodes (i, j). Go to Step 8.
Step 20: Stop when all pairs of nodes have been considered.

Claster 2 Clazter 3

Clazter 0 Cluztar 1

Figure 5.10: Boundary node network B’ of graph G in Figure 5.2.
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5.7 Experiment Results

The software used for graph partitioning for our experiments is Metis 5.1.0, as
discussed in Section 5.2. The programs are written in C and CUDA (toolkit 5.5) and
compiled using the GCC v4.8.2 and nvcc compilers on a Linux x86_64 version 3.10.0.
The sequential Algorithm 3 is implemented using CPU and the parallel Algorithm 5 is
implemented using both CPU and GPU. The CPU implementation is performed using a
single thread. The CPU used for experiments consists of quad-core 2.27 GHz Intel
Xeon processors with 12GB of memory. The GPU used for experiments is Nvidia
C1060 card with 240 GPU cores and 4GB of memory.

The experiments have been performed on datasets (Johnson, et al., 1989) for
graph sizes ranging from 25 to 500 nodes. The graphs considered for experiments in
this chapter are graphExample (25 nodes, 44 edges), G124 (124 nodes, 318 edges),
G250 (250 nodes, 1283 edges) and G500 (500 nodes, 5120 edges). The timing for the
sequential (Algorithm 2) and parallel (Algorithm 5) implementation is shown in Table
3. The time for parallel implementation is less than the sequential implementation. The
time for parallel implementation for graph G250 for various number of processors is
shown in Table 4. The time is more for parallel implementation if the number of
processors are less.

The quality of performance of three-step approximation algorithm 6 for
resistance distance and Kirchhoff index is shown in Table 5. The maximum error
between resistance distance R and Rapprox 1S 96.27% for graph G124 for node pair (22,

39).
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Graphs # Nodes # Edges Sequential Parallel Time
Time (seconds)
(seconds)
graphExample 25 44 0.050 0.030
G124 124 318 3.98 0.340
G250 250 1283 7.352 0.598
G500 500 5120 10.01 0.852
Table 3: Comparison of time for sequential and parallel implementation.
# Processors Time (seconds)

4 1.472

8 1.035

16 0.824

30 0.598

Table 4: Comparison of time for number of processors for graph G250.
Graphs # Nodes Average Error (%) Error(%)
Resistance Distance Kirchhoff Index

graphExample 24 9.8 11.8
G124 124 9.72 10.01
G250 250 9.37 9.54
G500 500 8.58 9.13

Table 5: Quality performance of three-step approximation algorithm.
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The effective resistance between a pair of nodes depends on the number of paths
between these nodes and their lengths. So, the main parameters that affect the average
percent error for resistance distance in a network are: density of intra-cluster edges
within the clusters and density of inter-cluster edges between the clusters, the number of
clusters, and the number of steps used in the approximation. The more the number of
paths, the less is the resistance distance. Also, the longer the paths, the more is the
resistance distance. The average percent error of resistance distance for a network with
dense intra-cluster edges and sparse inter-cluster edges is less as compared to the
network with dense inter-cluster edges. For a graph of 25 nodes, the error is 11.2% for
sparse intra-cluster and inter-cluster edges, 10.8% for dense intra-cluster and sparse

inter-cluster edges, and 17.5% for dense intra-cluster and dense inter-cluster edges.

5.8 Summary

In this chapter, sequential and parallel algorithms for resistance distance have been
proposed. The performance of both the algorithms with respect to execution time have
been discussed. In addition, a novel approximation algorithm for resistance distance and
Kirchhoff index has been introduced. The parameters of network that affect the

approximation algorithm have also been discussed.
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Chapter 6

Conclusions

6.1 Summary

This chapter summarizes the research presented in this dissertation. Chapter 1 provided
introduction and appropriate literature review relating to network science. It also
discussed the key aspects of network science and types of the networks. The overview
of resistance distance and Kirchhoff index were described and the layout of the
dissertation structure was also given in this chapter.

Chapter 2 presented an overview of electrical networks along with the
topological formulas for network functions. The matrices of graph and their properties
were discussed along with the Laplacian spectral graph theory. The Laplacian matrix of
a graph plays an important role in the computation of resistance distance and Kirchhoff
index. The standard method to obtain resistance distance is via Moore-Penrose
pseudoinverse L* of the Laplacian matrix L of a connected graph. To avoid the
computational complexity and extraneous efforts of Moore-Penrose pseudo-inverse, a
new formula for calculating Kirchhoff index was presented in this chapter. Three proofs
of this formula based on the properties of the pseudo-inverse of the Laplacian matrix,
topological formula for network functions and basic concepts of electrical circuit theory
were presented.

Chapter 3 generalized the notion of Laplacian matrix using the fundamental
cutset matrix. The concept of Kirchhoff polynomial of a graph was defined in this

chapter. Kirchhoff polynomial expresses Kirchhoff index using the elements of the
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resistance matrix. In this chapter, two approaches were developed to compute the
Kirchhoff index. The first approach is based on a matrix transformation and the second
approach uses the concept of Kirchhoff polynomial of a graph.

Chapter 4 provided further advances on the concept of Kirchhoff index. This
chapter introduced the concept of Weighted Kirchhoff index of a graph and its
relationship to Foster’s theorems. Foster’s theorem is a very important theorem in the
field of electrical network analysis. Foster’s theorems can be presented as results
involving the sum of weighted resistance distances when the weights are chosen
appropriately. This chapter presented a generalization of Foster’s theorems that retains
the circuit-theoretic flavor and elegance of Foster’s theorems. A dual form of this
theorem was developed in this chapter.

Chapter 5 proposed sequential and parallel algorithms to compute Kirchhoff
index. Kirchhoff index captures the effect of topological structure on the performance
of networks. It also captures the path diversity between nodes in a network. Kirchhoff
index can be used to determine node betweenness in networks that are of interest in
network vulnerability studies. In view of this, an efficient methodology to compute
Kirchhoff index is required. A novel three-step approximation algorithm for calculation
of resistance distance and Kirchhoff index was introduced in Chapter 5. This chapter

discussed the parameters of network that affect the three-step approximation algorithm.

6.2 Future Directions of Research

Graphs and networks have been used extensively in many recent applications (e.g.,

social networks, economy, etc.). For instance, all centrality measures in network are
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based on the shortest distances between pairs of nodes. Though, in general, all paths
must be used in assessing the centrality of a node, shortest paths are used because they
are easy to compute. To mitigate the effect of the approximation of criticality by
considering only shortest paths, other measures that capture both the lengths of paths
and the number of these paths between nodes need to be investigated (e.g., diffusion
distance). Resistance distance and Kirchhoff Index are two such measures.

Resistance distance is a generalization of shortest paths. The shorter a path
between two nodes the smaller will be the distance. Also, the more the number of paths,
the less will be the distance. Thus, resistance distance captures the impact of both the
lengths of paths and the number of paths on criticality measures. On the other hand,
Kirchhoff index may be viewed as an aggregate property of a group of nodes (that is,
the average of all resistance distances across all pairs of nodes in the group).

We propose two problems for further investigations, employing the notion of

resistance and Kirchhoff Index.

6.2.1 Graph clustering

In graph clustering one is interested in partitioning the nodes of a graph into non-
overlapping clusters satisfying certain additional properties. These additional
constraints are defined by the applications considered. Two extensive reviews of graph
clustering that discuss both theoretical advances and some practical heuristics may be
found in the reference (Thulasiraman, et al.,, 2015). The reference (Aluru, 2006)

provides a very good coverage of applications of clustering in molecular biology. A
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general class of clustering algorithms that satisfy the following constraints merits

further investigation.

Determine clusters minimizing the sum of Kirchhoff indices of all clusters subject
to a limit on the maximum number of nodes in each cluster.

Since Kirchhoff Index captures the aggregate value of closeness of nodes in a group, the
clusters obtained by the solution of the problem will be the groups of nodes that are
very close to each other Additional constraints such as minimizing the number of inter-
cluster edges can also be introduced in the above formulation. It is easy to see that this
problem is NP-hard. Heuristics such as those based on spectral partitioning, multi-
commodity flows etc. for other classes clustering problems are available.

In social network analysis, a related problem called community detection has
been studied (Newman, 2010; Easley & Kleinberg, 2010; Malliaros & Vazirgianniz,
2013). In community detection one objective is to get clusters that achieve maximum
value of what is called modularity. We would like to add modularity constraint to
capture the notion of homophily or assortative mixing in networks. In all these works
Laplacian matrix and their eigenvalues play a central role. What makes the clustering
problem defined above novel is the use of the notion of Kirchhoff Index. We believe
combing with this the idea of assortative mixing will lead to more powerful measures

and algorithms for clustering.

6.2.2 Similarity and criticality measures

Similarity:
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Similarity measures based on degree distributions and other topological parameters are
available in the literature. We propose a new definition of similarity of nodes using the
concept of resistance distance. We first define the Kirchhoff index of a node v as the
sum of the resistance distances of this node to all other nodes in the network. We define
two nodes as similar if their node Kirchhoff index values are equal. Our method to
calculate the Kirchhoff index in this dissertation can also be used to compute the node

Kirchhoff index values starting from the inverse of the reduced Laplacian.

Criticality: Node (edge) betweenness measure used in social network analysis captures
the critical value of a node (edge) with respect to the number of paths that pass through
the node (edge). For a review of research on this topic, the references (Newman, 2010;
Easley & Kleinberg, 2010) may be consulted. We define a new criticality measure
based on resistance distance instead of shortest paths. This will allow us to estimate the
impact of path lengths and number of paths.

Between measure algorithms, references based on shortest paths are available
(Newman, 2010; Easley & Kleinberg, 2010; Brandes, 2001). One new direction of
study is to investigate algorithms for betweenness measures using resistance distances
instead of shortest paths. It will also be interesting to study the relationship between
these new betweenness measures and criticality of nodes and edges with respect to their
ability to cause disruption in network functions.

Our focus will be on handling large graphs. We shall also study the impact of a
cascade of failures of critical nodes. We have studied problems of this type in different

contexts: cascading failures in multi-layer networks and power grids (Zhou, et al., 2012;
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Wu, et al., 2017). We plan to build on this expertise to advance knowledge by applying
the concept of resistance distances to the study of cancer progression and detection of

critical driver mutations.
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