

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

RESISTANCE DISTANCE, KIRCHHOFF INDEX, FOSTER’S THEOREMS, AND

GENERALIZATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

MAMTA YADAV
 Norman, Oklahoma

2017

RESISTANCE DISTANCE, KIRCHHOFF INDEX, FOSTER’S THEOREMS, AND
GENERALIZATIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Krishnaiyan Thulasiraman, Chair

Dr. Sudarshan Dhall

Dr. Changwook Kim

Dr. Qi Cheng

Dr. Pramode Verma

Dr. Janet Allen

© Copyright by MAMTA YADAV 2017
All Rights Reserved.

To my spiritual guru SHREE SHREE MAA ANANTANAND TIRTH

To my parents, for encouraging me to follow my dreams

iv

Acknowledgements

First, I would like to express my deepest gratitude to my advisor, Dr. Krishnaiyan

Thulasiraman, who accepted me as his PhD student and offered me his mentorship,

patience and care. This work would not have been possible without his excellent

guidance and unconditional support. Under his guidance, I successfully overcame many

difficulties and learned a lot. I am grateful for having the opportunity to work with him.

I would like to extend my thanks to members of my dissertation committee Dr.

Sudarshan Dhall, Dr. Changwook Kim, Dr. Qi Cheng, Dr. Pramode Verma and Dr.

Janet Allen for their valuable time, and invaluable feedback.

The School of Computer Science at OU has provided me with great learning

experiences. I would like to thank Department Chair Dr. Sridhar Radhakrishnan, all the

faculty and the wonderful staff, specially Virginie Perez, Lindsay Rice, Ashley Hill and

James Casidy, for their guidance and help during all these years of graduate work.

I would wholeheartedly like to acknowledge the people who mean a lot to me,

my spiritual Guru (Shree Shree Maa Anantanand Tirth) and my parents, Mr. Mohan Lal

Yadav and Mrs. Shakuntala Yadav, for showing faith in me and giving me liberty to

choose what I desired. I salute you all for the selfless love, care and sacrifice you did to

shape my life.

In addition, I would like to acknowledge the love and support of my family: my

uncle and aunty, Mr. Kalpesh Patel and Mrs. Surekha Patel; my sisters Manisha Yadav

and Neetu Thakor; my brothers Dr. Shiv Yadav and Sanjeev Thakor; my brother-in-law

Rohit Yadav; my sister-in-law Dr. Sudha Yadav; my little nieces Ramya Yadav and

v

Vishwa Thakor; and my little angel my daughter Durgey Yadav; for their support and

generous care throughout this journey.

Finally, and most importantly, I owe thanks to a very special person, my

husband Mr. Raman Yadav for his continued and unfailing love, support and

understanding during my pursuit of PhD degree that made the completion of this

dissertation possible.

vi

Contents

Acknowledgements .. iv

List of Figures .. ix

Abstract ... xi

1 Introduction ...1
1.1 Introduction of Network Science ..1
1.2 Why are we Interested in Networks ..3
1.3 A Brief History of Network Science...3

1.3.1 Early pre-network Period (1736 – 1966) ..4
1.3.2 The meso-network Period (1967 – 1998) ...5
1.3.3 The modern Period (1998 – present) ..6

1.4 Key Aspects of Network Science ...8
1.5 Networks ...8

1.5.1 Definition of Network ...8
1.5.2 Types of Networks .. 10

1.6 Overview of Resistance Distance and Kirchhoff Index 13
1.7 Organization of the Dissertation ... 14

2 Resistance Distance and Kirchhoff Index in Networks 16

2.1 Basic Definitions ... 17
2.2 Matrices of a Graph ... 20

2.2.1 Incidence Matrix ... 20
2.2.2 Adjacency Matrix .. 22
2.2.3 Laplacian Matrix ... 23
2.2.4 Matrix-tree Theorem ... 25
2.2.5 Pseudo-inverse of Laplacian Matrix .. 27

2.3 Topological Formulas for Electrical Resistance Networks 29
2.3.1 Resistance Networks ... 29
2.3.2 Topological Formulas for Resistance Network Functions 32

2.4 Kirchhoff Index of a Graph .. 40
2.4.1 Computation of the Kirchhoff Index using Laplacian Pseudo-inverse 40
2.4.2 A Simple Formula for the Kirchhoff Index Based on the Pseudo-inverse

of the Laplacian Matrix .. 42
2.5 Kirchhoff Index using Topological Formulas for Network Functions 48
2.6 Kirchhoff Index using Circuit Theoretic Concepts ... 49
2.7 Summary ... 51

3 Cutset Laplacian Matrix of a Graph and Kirchhoff Index 53

3.1 Cutsets ... 53
3.2 Cuts ... 55
3.3 Fundamental Cutsets .. 56
3.4 Cut Matrix and Fundamental Cutset Matrix ... 59
3.5 Fundamental Circuit Matrix and Relationship with Fundamental Cutset
 Matrix .. 62

vii

3.5.1 Fundamental Circuits .. 62
3.5.2 Circuit Matrix ... 62
3.5.3 Fundamental Circuit Matrix .. 64

3.6 Kirchhoff’s Laws and Fundamental Circuit and Cutset Matrices 65
3.7 Cutset Laplacian Matrix and Kirchhoff Index .. 66
3.8 Computing Kirchhoff Index: A Matrix Transformation Approach 68
3.9 Kirchhoff Polynomial of a Graph and a Formula for Kirchhoff Index 73
3.10 Summary ... 79

4 Weighted Kirchhoff Index of a Resistance Network and Generalization of
 Foster’s Theorem ... 80

4.1 Basic Concepts and Definitions.. 81
 4.1.1 Star-Delta Transformation ... 81
 4.1.2 Multiple Star-Delta Transformations ... 81

4.2 Foster’s Theorems ... 85
 4.2.1 Foster’s First Theorem .. 85
 4.2.2 Foster’s Second Theorem .. 86

4.3 Weighted Kirchhoff Index of a Resistance Network, Foster’s Theorems,
 and Generalization ... 89

 4.3.1 Foster’s First Theorem using Weighted Kirchhoff Index 90
 4.3.2 Foster’s Second Theorem using Weighted Kirchhoff Index 90
 4.3.3 Generalized Foster’s Theorem ... 90

4.4 Dual Form of Foster’s First Theorem ... 93
4.5 Summary ... 95

5 Computing Kirchhoff Index .. 96

5.1 Introduction ... 96
5.2 Graph Partition using METIS... 96
5.3 Graphics Processing Units (GPUs) and CUDA .. 100

 5.3.1 The Architecture of GPU ... 100
 5.3.2 CUDA Programming Model and Memory Model 101

5.4 Star-Delta Transformation Algorithm using Series and Parallel Reduction ... 103
5.5 Sequential and Parallel Approaches for Resistance Distance Computation ... 105

 5.5.1 Sequential Approach for Resistance Distance 105
 5.5.2 Parallel Approach for Resistance Distance .. 108

5.6 Three Step Approximation Algorithm for Resistance Distance Calculation 115
5.7 Experiment Results .. 119
5.8 Summary ... 121

6 Conclusions .. 122

6.1 Summary ... 122
6.2 Future Directions of Research .. 123

6.2.1 Graph Clustering ... 124
6.2.2 Similarity and Criticality Measures ... 125

Bibliography .. 128

viii

List of Tables

Table 1: Key Aspects of Network Science ...9

Table 2: Types of Networks .. 12

Table 3: Comparison of time for sequential and parallel implementation 120

Table 4: Comparison of time for number of processors for graph G250 120

Table 5: Quality performance of Three Step Approximation Algorithm 120

ix

List of Figures

Figure 1.1 History of Network Science ...4

Figure 1.2 Kӧnigsberg bridge problem..5

Figure 2.1 Effective Resistance using series - parallel method and Star-Delta

 Transformation .. 18

Figure 2.2 Incidence Matrix .. 21

Figure 2.3 A weighted directed graph G and its all-vertex incidence matrix 25

Figure 2.4 Spanning 3-tree.. 27

Figure 2.5 A network element... 29

Figure 2.6 Directed graph representation of an electrical network 30

Figure 2.7 A 1-port network. .. 33

Figure 2.8 A 2-port network. .. 35

Figure 2.9 Laplacian Matrix ... 46

Figure 2.10 A 2-port Network .. 50

Figure 2.11 Three node network. .. 50

Figure 3.1 Illustration of the definition of a cutset. .. 54

Figure 3.2 A set of fundamental cutsets of a graph .. 57

Figure 3.3 Spanning tree of directed graph.. 61

Figure 3.4 Set of two fundamental circuits of G .. 63

Figure 3.5 Voltage ܸ݆ across the jth branch when a current source of 1A is............... 68

Figure 3.6 Star tree ܶ݊.. 69

Figure 3.7 Voltages across the branches and current injected through branches. 69

Figure 3.8 Spanning tree T and star tree. ... 71

Figure 3.9 Path from vertex i to j. ... 74

Figure 3.10 3-node equivalent representation of the graph given in Figure 3.9. 75

Figure 3.11 .. 75

Figure 3.12 .. 76

Figure 3.13 .. 77

x

Figure 4.1 Star – delta transformation ... 82

Figure 4.2 Multiple Star-Delta Transformation ... 82

Figure 4.3 A 5-node resistance network N. ... 83

Figure 4.4 Corresponding network N(D) for each subset D of nodes. 84

Figure 4.5 Calculating effective resistance distance between vertices 1ݒ and 882ݒ

Figure 5.1 Graph partition files. .. 98

Figure 5.2 Graph G partitioned in four clusters. .. 99

Figure 5.3 GPU Architecture (NVIDIA Tesla C1060). ... 101

Figure 5.4 CUDA Programming Model (Corporation, 2010) 102

Figure 5.5 CUDA Memory Model (Corporation, 2010). ... 103

Figure 5.6 Illustration of Star-Delta Transformation and series/parallel reductions.. 104

Figure 5.7 Illustration of Star-Delta Transformation Procedure Algorithm. 106

Figure 5.8 Adjacency Matrix A of graph G given in Figure 5.1(a). 113

Figure 5.9 Resistance Distance Matrix R of graph G given in Figure 5.1(a)……….114

Figure 5.10 Boundary node network B' of graph G………………………………….117

Figure 5.11 Resistance distance matrix R using three step approximation………….118

xi

Abstract

The emerging area of network science studies structural characteristics of networks and

dynamical processes on networks such as spread of epidemics, vulnerability of power

grids to cascading failures etc. In this area, several measures of network performance

have been introduced and studied. In this dissertation, we study two measures, namely,

resistance distance and Kirchhoff index.

Treating each element of a graph as a resistance, resistance distance between

two nodes u and v is the effective resistance across u and v. Kirchhoff index defined by

the chemistry community is the sum of the effective resistances across all pairs of nodes

of the graph. Kirchhoff index, also called network criticality, has been studied by the

communication network community. Kirchhoff index has been studied using the graph

Laplacian matrix which is the same as the indefinite admittance matrix of a resistance

network.

 Our research is on reducing the computational effort in calculating the Kirchhoff

index in networks. First a simpler formula for Kirchhoff index based on the properties

of node-to-datum resistance matrix is presented. To avoid computational complexity

and extraneous efforts of Moore-Penrose pseudoinverse, Kirchhoff index is calculated

in terms of the inverse of the reduced Laplacian matrix.

The notion of Laplacian matrix is then generalized using the fundamental cutset

matrix of a graph. Two approaches to compute Kirchhoff index are presented: The first

approach is based on a matrix transformation, and the second approach uses the concept

of Kirchhoff polynomial of a graph. Kirchhoff polynomial of a graph introduced in this

work is defined for each spanning tree of the graph.

xii

In 1949 and 1961 Foster established two theorems that give identities involving

resistance distances. We introduce the concept of Weighted Kirchhoff index of a graph

and study its relationship to Foster’s theorems. We present a generalization of Foster’s

theorems that retains the circuit-theoretic flavor and elegance of Foster’s theorems, and

develop a dual form of this theorem.

 Kirchhoff index captures the effect of topological structure on the performance

of networks. It also captures the path diversity between nodes in a network. Kirchhoff

index can be used to determine node betweenness in networks that are of interest in

network vulnerability studies. In view of this, an efficient methodology to compute

Kirchhoff index is required. For this purpose, we propose sequential and parallel

algorithms. In addition, we introduce a novel 3-step approximation algorithm for

calculation of resistance distance and Kirchhoff index.

1

Chapter 1

Introduction

 1.1 Introduction to Network Science

Complex systems are pervasive in our society. Some examples are the Internet System

that interconnects computer networks globally, the World Wide Web System that links

the information networks to each other, the electrical power system, the biological

system that relates the networks of biologically relevant entities, the communication

system that integrates billions of cell phones with satellites and computers, the social

system that interrelate the individuals, groups, institutions, organizations etc. There are

three aspects to study the complex systems. The first is the study of the nature of the

individual components of the systems, the second is the study of the nature of

connections or interactions and the third is the study of the pattern of connections

between components.

Networks represent the pattern of connections in a system. The science of

networks is called network science. This is not a new concept, and it has roots as far

back as 1736. Network science has roots in many subfields, for example, in social

network analysis, electrical circuits and systems, synthetic emergent systems (i.e. the

Internet, power grid), biological science etc.

Network science is defined in many ways by the National Research Council

(NRC) of the National Academies. The most direct definition given by NRC is (Lewis,

2009):

2

Definition 1.1. Network science is an organized knowledge of networks based on their

study using the scientific methods.

In simple language, a network is a collection of points that are joined together

by lines. Each subfield has a different working definition of a network. For

communication engineers the network is a system of routers and switches and for

marketing business people it is a population of buyers. According to sociologists a

network is an influence diagram that represents the social interaction among humans

and for physicists it is a model of phase transition and magnetism. Biologists use

network analogy to understand the epidemics and metabolic system within a cell but for

power engineers a network is a system of electrical power grids.

The operational definition of network science has two main components

(Newman, 2010):

(i) Network science is the study of the structure of a collection of nodes and

links that represent something real.

(ii) Network science is the study of the dynamic behavior of the aggregation of

nodes and links.

The nodes might be molecules or genes for biological systems, humans for social

systems, routers or switches for communication systems, transformers for electrical

systems. The links might be contagions or synapses for biological system, friendships or

other relationships for social systems, physical wires or wireless for communication

systems, cables for electrical systems, etc.

3

1.2 Why are we Interested in Networks

To understand complex systems, we have to acquire a deep understanding of the

networks behind the systems. A network reduces a complex system to an abstract

structure representing the connection patterns in the system. A network can be

described by a graph structure (i.e. nodes and links) and by its behavior (i.e. the

interaction among the nodes and links). Over the years, scientists have developed a

pervasive set of mathematical, computational, and statistical tools for analyzing,

modeling and understanding networks. These tools work with networks in their abstract

form and help in finding some crucial and useful information about networks, for

example, the critical node or edge in a network, length of a path from one node to

another in a network, flow of traffic over the network, clusters or communities in a

network, etc. These tools can be applied to any systems that can be represented as

networks.

1.3 A Brief History of Network Science

Network science is not only a single field, but it is a result of convergence of many

other subfields. The two major evolutions in network science are: (i) from mathematical

theory to graph theory and (ii) from graph theory to collections of generalization about

the things that are connected.

The history of network science can be divided into three periods (Newman, 2010) as

shown in Figure 1.1.

4

 Figure 1.1: History of network science

1.3.1 Early pre-network period (1736 – 1966)

Early pre-network period is the period when network science was really the

mathematics of graphs. The very first known application of network science was

Euler’s treatment of Bridges of Kӧnigsberg (Euler, 1736). This application established

graph theory and demonstrated that many real-world problems can be solved by

abstractions as graphs. Euler called a graph a mathematical object consisting of points

(or nodes) and lines (or edges). In his study, Euler represented the four land masses as

four vertices and joined them by seven edges in the pattern of the Kӧnigsberg bridges

(Figure 1. 2). The problem is to start at one vertex, traverse all the edges exactly once

and return to the starting vertex.

In network science, the next major turning point was in 1925, when Yule first

observed preferential attachment in evolution (Yule, 1925). Preferential attachment

describes an emergent process and it explains the existence of scale-free networks in

natural and synthetic systems. In 1927, Kermack and McKendrick discovered a

mathematical epidemic model of the spread of a disease in biological networks. Their

idea of epidemics was first applied by Solomonoff and Rappaport in 1951 to random

networks.

Early pre-network period (1736 – 1966)

 The meso-network period (1967 – 1998)

 The modern period (1998 – present)

5

Figure 1.2 (Anon., 2003): Kӧnigsberg bridge problem. (a) A map of eighteenth century
Kӧnigsberg with its seven bridges. (b) Simplified illustration of the rivers and bridges in
the Kӧnigsberg bridge problem. (c) the corresponding network of nodes and edges.

By the mid-twentieth century, network science figured out that the nature and

real objects could be modeled as random processes or as random graphs. In 1959,

Gilbert built a random graph in two steps, the first step was to construct a complete

graph and the second step was to delete the randomly selected links from the graph until

it reached the desired number of links (Gilbert, 1959). But very soon in 1960, Erdos and

Renyi, surpassed Gilbert’s algorithm and came up with an elegant and simple algorithm

which is widely used today. Erods-Renyi (ER) algorithm constructs a network of n

nodes by inserting a link between randomly selected pair of nodes and this process is

repeated until m links have been inserted (Erdos & Renyi, 1960). By late 1960s the seed

of network science was planted in seemingly unrelated disciplines.

1.3.2 The meso-network period (1967 – 1998)

This is the period when applications of networks started emerging. In 1967, a major

turning point in network science was marked by Stanley Milgram by his “six degrees of

separation” experiment. Milgram called this network a small-world network because he

concludes that the social world is smaller than the real world and it took only six hops

6

to connect a pair of strangers, regardless of where they lived. Milgram’s small-world

idea is based on the “weak ties” theory. Later in 1973, Granoveter (Granovetter, 1973)

gave his theory that social networks contain both “strong ties” and “weak ties”. Strong

ties are the direct connection between two nodes and weak ties are the long-distance

connections that bind social world. In 1978, Pool and Kochen determined the

theoretical analysis of small-world networks. Bonacich was the first social scientist

who postulated the mathematical representation of the social networks by using the

connection matrix (Bonacich, 1972). The Marketing gurus remark that the highly-

connected people are superspreaders, while on the other hand the social scientists note

that the middle-person or intermediary person is powerful and called it betweenesss.

Betweenness is the number of paths that must run through a node to connect to other

nodes.

Kuramoto’s work in 1984 on synchronization in coupled linear systems has had

a major impact on convergence between network science and control theory

(Kuramoto, 1984). The fundamentals of network science had been established by 1998.

This was the time when Internet was at rapid rise and Waxman proposed a static graph

theory model of Internet (Waxman, 1988).

1.3.3 The modern period (1998 – present)

Emergence plays a very crucial role in the study of networks. In 1998, Holland defined

emergence as “a major change in global properties of networks coming from small

changes at the local level” (Holland, 1998). Watts and Strognatz showed their interest in

small-world networks and generated arbitrarily small world networks that fall between a

7

random network and non-random network (Watts & Strogatz, 1998; Watts, 1999;

Watts, 1999a). After this, the small world networks were not restricted to social

networks only. The year 1999 turns out to be a milestone for the modern period, as this

year was full of discoveries. M. Faloutsos, P. Faloutos and C. Faloutos observed a

power law in their Internet graph model (Faloutsos, et al., 1999), and similarly Albert,

Jeong, and Barbasi observed power law in their WWW model (Albert, et al., 1999). In

(Barbasi, et al., 1999) Barbasi and Albert determined a generative procedure to produce

scale-free networks.

 Dorogovstsev, Mendes, Samukhim, Krapivsky, and Redner introduced the

concept of power law of purely scale-free networks in many biological systems

(Dorogovtsev, et al., 2000; Dorogovtsev, et al., 2002; Dorogovtsev & Mendes, 2002;

Dorogovtsev & Mendes, 2003). In 2000, Kleinberg showed that it takes O (n) steps to

search a small world using “Manhattan distance” (Kleinberg, 2000). Albert, Jeong, and

Barbasi observed that the scale-free networks are resilient for protected hubs (Albert, et

al., 2000).

 Wang, Chen, Barahona, Pecora, Liu, Hong, Choi, Jost, Joy and others showed

the stability of any network as a function of the network’s topology (Wang & Chen,

2002; Wang & Chen, 2002a; Wang & Chen, 2002b; Barahona & Pecora, 2002; Liu, et

al., 2002; Liu, 2003; Liu, et al., 2004; Liu, et al., 2004a; Hong & Kim, 2002; Jost & Joy,

2002).

 Wang, Chakrabarti, Wang, and Faloutsos determined the spread of epidemics by

using the largest eigenvalue of connection matrix and network’s spectral radius (Wang,

et al., 2003).

8

 Atay et al. (Atay, et al., 2006) studied synchronization in networks with the

degree sequence distribution. Lewis (Lewis, 2009) extended the topological results of

networks to several classes of Atay’s network and to a new class of networks called

Kirchhoff newtorks. Atay’s network uses a local averaging algorithm to compute the

state of nodes (Atay, et al., 2006), while the new class of Kirchhoff Networks stabilizes

the value of nodes by maintaining the Kirchhoff’s first law. Recently network science

has contributed to many results in many fields such as marketing, electrical engineering,

biology, communication systems, etc.

1.4 Key Aspects of Network Science

To investigate the topology and dynamics of several systems, network science uses

different tools such as graph theory, social network analysis, market competition

modeling, epidemic modeling, etc. Network science is distinguished by the subject of

study as well as by its methodology. Some key aspects of Network Science are given in

Table 1.

1.5 Networks

1.5.1 Definition of network

In simplest form, a network is a collection of points joined together in pairs by lines.

The points are called nodes or vertices and the lines are called links or edges.

A complete definition of network must include both structural and behavioral

information (Lewis, 2009).

9

Aspects Description

Structure

Networks are not just a random collection of nodes and

links, but networks have structure. For example, social

networks are not just a collection of people connected

randomly, but instead, the networks have a distinct format

or topology. The nodes of a network, unite in a distinct

format to form a structure.

Topology

The pattern in which the nodes of a network are connected

is called topology. In dynamic networks, the topology

changes as a function of time. Topology is a consequence

of Darwinian forces that shape the network.

Emergence

Network science is the study of both static and dynamic

properties of networks. The emergent property helps a

dynamic network in achieving stability. Emergence is a

network synchronization issue. A dynamic network

transits from one state to another state until either cycling

back or reaching a fixed point. The evolution of a network

from initial state to future state is a called emergence.

Power

The power of a node is proportional to its degree i.e., the

number of links connecting to the network of the power of

a network is proportional to the strength of its nodes and

links.

Stability

A network is dynamically stable if the rate of change in the

state of its topology diminishes as time passes.

Bottom-up evaluation

Networks evolve from local level to the global level. They

are designed and implemented by using bottom-up

strategy.

Table 1: Key aspects of network science

10

The structural information of a network is modeled by the corresponding graph.

The behavioral information about networks is defined by a set of microrules governing

the behavior of nodes and links.

Definition 1.5.1: For a given network G,

(ݐ)ܩ = :(ݐ)݂,(ݐ)ܧ,(ݐ)ܸ} ,{(ݐ)ܬ

where,

 is a function of time t (ݐ)ܩ

 t = time, simulated or real

 V = nodes or vertices

 E = links or Edges

 ݂:ܰ×ܰ = mapping function that connects nodepairs, yielding topology

 J = “ microrules” or algorithm for describing behaviors of nodes and

 links versus time.

1.5.2 Types of networks

Networks are divided into four general classes (Newman, 2010):

(i) Technological networks

(ii) Social networks

(iii) Information networks

(iv) Biological networks

The list of some of the most important examples in each class and their description is

given in Table 2.

11

Classes Examples Nodes and Edges Description

Technological

Networks

The Internet Nodes: Computers or

other devices

Edges: wires or

wireless

The Internet is a network of

physical data connections

between computers and related

devices.

The

Telephone

network

Nodes: Telephones or

mobile phones

Edges: Wires or

wireless

The telephone network is a

network of landlines and

wireless links that transmit

telephone calls.

Power Grids Nodes: Generating

stations and

switching substations

Edges: High-voltage

lines

A power grid is a network of

high-voltage transmission lines

that provide long-distance

transport of electric power

within and between countries.

Transportation

Networks

Nodes: Geographic

locations

Edges: Routes

between geographic

locations

Transportation networks

describe the flow of some

commodity or vehicular

movement between geographic

locations. Some examples of

transportation networks are

airline route networks, road

networks and rail networks.

Social

Networks

Facebook,

Twitter,

MySpace.

Nodes: People or

groups of people

Edges: social

interaction, such as

friendship.

A social network is a network of

people (such as friends,

coworkers) connected by some

social relationships (such as

friendship). Sociologists call

vertices (or people) as actors and

the edges as ties.

Information

Networks

The World

Wide Web

Nodes: Web pages

consisting of text,

pictures or other

information.

The world-wide web is a

network of web pages that are

connected to each other by

means of hyperlinks. Hyperlinks

12

Edges: hyperlinks or

hypertexts.

allow us to navigate from one

web page to another.

Citation

Networks

Nodes: papers

Edges: citation

In citation networks, there is a

direct edge from paper A to

paper B if paper A cites paper B

in its bibliography.

Biological

Networks

Biochemical

networks

Nodes: molecules

(genes, proteins,

metabolites, cells

etc.)

Edges: interaction

(reactions, molecular

interaction,

regulatory interaction

etc.)

Biochemical networks represent

the molecular level patterns of

interaction and mechanisms of

control in the biological cell.

Examples of Biological

networks are metabolic

networks, protein-protein

interaction networks, and genetic

regulatory networks.

Neural

networks

Nodes: neurons

Edges: excitatory

inputs, inhibiting

inputs.

A neural network is a network

that models the brain and central

nervous system in animals. The

neurons are connected by two

types of directed edges, one for

excitatory inputs and one for

inhibiting inputs.

Ecological

Networks

Nodes: species,

individuals

Edges: interaction

between species.

Ecological network is a network

of ecological interactions

between species. Examples of

ecological networks are Food

web networks, host-parasite

networks, mutualistic networks,

etc.

Table 2: Types of networks

13

1.6 Overview of Resistance Distance and Kirchhoff Index

As discussed in the previous sections, graphs and networks have been used

extensively in many applications (Newman, 2010; Easley & Kleinberg, 2010; Barabasi,

2013; Chiang, 2012). In these works, several network measures have been defined and

studied. Of these measures, closeness and betweenness measures of nodes and edges

that capture their criticality have received a great deal of attention. In defining these

measures, paths between nodes play an important role. Though, in general, all paths

must be used in assessing the centrality of a node, shortest paths are used because they

are easy to compute. To mitigate the effect of the approximation of criticality by

considering only shortest paths, other measures that capture both the lengths of paths

and the number of these paths between nodes need to be investigated. Resistance

distance and Kirchhoff Index are two such exemplary measures. To capture accurately

the impact of paths, resistance distance can be used in place of shortest distances and

Kirchhoff index can be used in place of the sum of all shortest distances. This motivates

our study in this dissertation

 Resistance distance is based on the electrical network theory and it was first

introduced by Klein and Randiܿ́ (Klein & Randic, 1993). The concept of resistance

distance has been much studied in the chemical studies (Klein & Randic, 1993; Xiao &

Gutman, 2003). Resistance distance implies many dynamic properties of a graph or

network. The properties of resistance distances were proved using the Laplacian matrix

(Xiao & Gutman, 2003; Xiao & Gutman, 2003a). Resistance distance and Kirchhoff

index have wide applications in complex networks, chemistry, physics, electric circuit,

14

graph theory and others. The concept of the Kirchhoff analysis was first introduced by

G. Kirchhoff (Kirchhoff, 1847) in 1847 for the graph-theoretic study of electric circuits.

Resistance distance across a pair of nodes is the same as the effective resistance

across that pair, treating each edge as a 1 ohm resistance. A special case of this

restricted to only the edges of a graph was studied by Foster (Foster, 1949). A further

generalization of this was given by Foster in (Foster, 1961). In (Tetali, 1994) Tetali

proved Foster’s first theorem using certain results from the theory of Markov chains,

then Palacios gave an extension of Foster’s second theorem in (Palacios, 2004).

Generalization of all of the Foster’s theorems are given by Cinkir in (Cinkir, 2011). The

connection between resistance distance and random walks on graphs have been

discussed in (Thulasiraman, et al., 2015; Doyle & Snell, 1984).

Kirchhoff index is the sum of the resistance distances across all pairs of nodes

in the network. Kirchhoff index has also been studied using the graph Laplacian. The

Laplacian of a graph is the same as the indefinite admittance matrix of a resistance

network that has been studied by electrical circuit theorists extensively in the

development of several results (Swamy & Thulasiraman, 1981). See (Molitierno, 2012)

for detailed study of the Laplacian from a graph-theoretic perspective.

1.7 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 discusses the relationship

between resistance distance and Kirchhoff index. A new formula for Kirchhoff index is

presented in this chapter. The generalization of Laplacian matrix using the fundamental

cutset matrix is introduced in Chapter 3. Two approaches to compute Kirchhoff index

15

are presented in this chapter. Chapter 4 generalizes the notion of Kirchhoff index and

studies its relationship to Foster’s theorems. A dual form of Foster’s first theorem is

developed in this chapter. We propose sequential and parallel algorithms for resistance

distance in Chapter 5. A novel approximation algorithm for resistance distance and

Kirchhoff index is introduced in this chapter. Conclusion and future work is given in

Chapter 6.

16

Chapter 2

Resistance Distance and Kirchhoff Index in Networks

Over the past several years a variety of graph measures have been proposed to reveal

the behavior of networks based on topological and dynamical characteristics. Resistance

distance and Kirchhoff index are highly valuable graph measures in the study of various

network problems. These measures were first studied in the chemical literature. In

recent years, they have also attracted the attention of researchers in electrical

engineering, mathematics, computer science and social networks.

In 1993, Klein and Randić (Klein & Randic, 1993) introduced the concept of

resistance distance. The resistance distance concept is the convergence of resistive

electrical network theory and the graph theory. An electrical resistance network can be

viewed as a connected graph, with the junctions in the electrical network as the vertices

of the graph and the unit resistors of one ohm as the edges of the graph. The effective

resistance between pairs of vertices is called the resistance distance between these

vertices. Kirchhoff index of a graph is the sum of resistance distances between all pairs

of vertices. The Laplacian matrix of a graph plays an important role in the computation

of resistance distance and Kirchhoff index. The standard method to obtain resistance

distance is via Moore-Penrose pseudoinverse ܮା of the Laplacian matrix L of a

connected graph G (Klein & Randic, 1993; Zhu, et al., 1996).

This chapter is concerned with the study of relationship between resistance

distance and Kirchhoff index. In the following section, we briefly present certain basic

17

definitions in graph theory. For other graph theory concepts not covered in section 2.1

(Kirchhoff, 1847) may be consulted.

2.1 Basic Definitions

Let ܩ = (ܩ)ܸ be a connected graph with the vertex set ((ܩ)ܧ,(ܩ)ܸ) = ,ଵݒ} ,ଶݒ

,ଷݒ , ௡ݒ } and the edge set ܸ(ܩ) = {݁ଵ, ݁ଶ, ݁ଷ, , ݁௠}, where ݊ is the number

of vertices and ݉ is the number of edges. Let ܰ be an electrical network obtained from

the connected graph ܩ. To obtain an electrical network from the graph ܩ, replace each

edge of G with a unit resistor.

The resistance distance ݎ௜௝ between vertices ݒ௜ and ݒ௝ of graph G is defined as

the effective resistance between vertices ݒ௜ and ݒ௝ of the electrical network N. The

effective resistance ݎ௜௝ is the potential difference between vertices ݒ௜ and ݒ௝ when unit

current is injected into ݒ௜ and drawn from ݒ௝.

The effective resistance between two vertices of an electrical circuit can easily

be calculated by the well-known series and parallel manipulation and star-delta

transformation. Figure 2.1 (a) illustrates the series and parallel manipulation method to

calculate the effective resistance distance ݎ௔௕ between vertices ݒ௔ and ݒ௕. Figure 2.1 (b)

illustrates the start-delta transformation to calculate the effective resistance distance by

using conductance ݃௜ , which is the reciprocal of conductance ݃௜ , i.e., ݎ௜ = ଵ
௚೔

 .

The Kirchhoff index is a structure descriptor (Xiao & Gutman, 2003a) based on

the resistance distance. The Kirchhoff index (ܩ)݂ܭ of the graph G is defined as

(ܩ)݂ܭ = ෍ݎ௜௝
௜ழ௝

 . (2.1)

18

 00

Figure 2.1: Effective resistance using (a) series-parallel method (b) star-delta
transformation.

The resistance distance and Kirchhoff index have been extensively studied in

chemical literature. Kirchhoff index appears in several applications: electrical networks,

Markov chain, averaging networks, and experiment design (Klein & Randic, 1993;

Kirchhoff, 1847; Bonchev, et al., 1994; Hu, et al., 2013; Hu, et al., 2013a). The formula

௕ݒ ௔ݒ

௔௕ݎ = ଵݎ + ଶݎ

(i) Resistors in Series

 ௕ݒ ௔ݒ

 ଶݎ

௔௕ݎ =
1

1
ଵݎ

+ 1
ଶݎ

=
ଵݎ ∙ ଶݎ
ଵݎ + ଶݎ

(ii) Resistors in Parallel

(a) Effective resistance using series and parallel manipulation method.

 ௔ݒ

 ௕ݒ

 ௖ݒ

 ௔ݒ

 ௕ݒ

 ௖ݒ

ௗݒ

݃ଵ

݃ଷ

݃ଶ

݃஺

݃஻ ݃஼

(b) Effective resistance using star-delta transformation (removing ݒௗvertex)
method.

݃஺ = ௚భ௚మ
௚భା௚మା௚య

 ݃஻ = ௚మ௭௚య
௚భା௚మା௚య

 ݃஺ = ௚భ௚య
௚భା௚మା௚య

 ଶݎ ଵݎ
 ଵݎ

19

for Kirchhoff index has been computed for some classes of graphs such as cycle-

containing graphs (Klein, et al., 1995; Lukovits, et al., 1999), complete graphs

(Lukovits, et al., 1999), circulant graphs (Zhang & Yang, 2007) and distance transitive

graphs (Palacios, 2001). Bapat (Bapat, 2004) obtained a formula for the inverse and

determinant of resistance distance for weighted graphs by using the properties of

resistance distance and Kirchhoff index defined by Xiao and Gutman (Xiao & Gutman,

2003a). Several properties of the Kirchhoff index related to the normalized Laplacian

eigen values of a connected graph are presented by Zhou and Trinajstic (Zhou &

Trinajstic, 2009).

In 1993, Kunz (Kunz, 1993) studied the properties of the Laplacian matrix for

finding the topological distances in the graph. In 1949, Foster (Foster, 1949) discussed

the concept of the effective resistance distance and recently in 2004 this concept was

again studied by Palacios (Palacios, 2004). Palacios used effective resistance distance to

extend the Foster’s first and second formulas and then used Foster’s third formula to

compute the Kirchhoff index of a class of graphs with diameter 3. Further review of

literature on Foster’s theorems will be given in Chapter 4.

In this chapter, we study the relationship between resistance distance, Kirchhoff

index and the Laplacian matrix of a graph. Section 2.2 discusses the incidence,

adjacency and Laplacian matrices of a graph, Section 2.3 discusses the topological

formulas for resistance network functions. Section 2.4 describes the basic facts and

notations of Laplacian graph spectral theory. A new formula for the Kirchhoff index of

a graph is presented in section 2.4. Three proofs of this formula based on the properties

20

of the pseudo-inverse of the Laplacian matrix, topological formula for network

functions and basic concepts of electrical circuit theory are presented.

2.2 Matrices of a Graph

In this section, we introduce the incidence, adjacency and Laplacian matrices of a graph

and establish several properties of these matrices that help to reveal the structure of a

graph (Swamy & Thulasiraman, 1981). The incidence, adjacency and Laplacian

matrices arise in the study of electrical network because these matrices are the

coefficient matrices of the Kirchhoff’s equation that describes a network. Thus, the

properties of these matrices form the basis of graph-theoretic study of electrical

networks and systems, in particular, resistance distance and Kirchhoff index.

2.2.1 Incidence matrix

Consider a graph G with n vertices and m edges and having no self-loops. The all-vertex

incidence matrix ܣ௖ = [ܽ௜௝] of G has n rows, one for each vertex, and m columns, one

for each edge. The element ܽ௜௝ of ܣ௖ is defined as follows:

 G is undirected

 ܽ௜௝ = ൜1, If the ݆the edge is incident on the ݅the vertex;
0, otherwise (2.2)

 G is directed

 ܽ௜௝ =

⎩
⎪
⎨

⎪
⎧

1, if the ݆th edge is incident on the ݅th vertex and
 oriented away from it;

−1, if the ݆th edge is incident on the ݅th vertex and
 oriented toward it ;

0, otherwise

 (2.3)

21

A row of ܣ௖ will be referred to as an incidence vector of G. Two graphs and their all-

vertex incidence matrices are shown in Figures 2.2a and 2.2b.

It should be clear from the preceding definition that each column of ܣ௖ contains

exactly two non-zero entries, one +1 and one -1. Therefore, we can obtain any row of

݊ ௖ from the remainingܣ − 1 rows. Thus, any ݊ − 1 rows of ܣ௖ contain all the

information about ܣ௖ . In other words the rows of ܣ௖ are lineraly dependent.

An (n −1)-rowed submatrix A of ܣ௖ will be referred to as an incidence matrix of

G. The vertex which corresponds to the row of ܣ௖ which is not in A will be called the

reference vertex or datum vertex of A.

 (a) (b)

Figure 2.2: Incidence matrix. (a) An undirected graph G and its all-vertex incidence
matrix. (b) A directed graph G and it’s all vertex incidence matrix.

22

Note that

rank(ܣ) = rank(ܣ௖) ≤ ݊ − 1

In the case of a connected graph, the rank of ܣ௖ is in fact equal to ݊ − 1. This result is

based on the following theorem.

Theorem 2.1 The determinant of any incidence matrix of a tree is equal to ±1.

See (Swamy & Thulasiraman, 1981) for a proof of the above theorem.

Since a connected graph has at least one spanning tree, it follows from Theorem

2.1 that in any incidence matrix A of a connected graph with n vertices there exists a

nonsingular submatrix of order ݊ − 1. Thus, for a connected graph A,

rank(ܣ) = ݊ − 1.

Since rank(ܣ௖) = rank(ܣ), we get the following theorem.

Theorem 2.2. The rank of the all-vertex incidence matrix of an n-vertex connected

graph G is equal to n-1, the rank of G.

An immediate consequence of Theorem 2.2 is the following.

Corollary 2.2.1. If an n-vertex graph has p components, then the rank of its all-vertex

incidence matrix is equal to n – p, the rank of G.

2.2.2 Adjacency matrix

Let ܩ = ܸ be a directed graph with no parallel edges. Let (ܧ,ܸ) = ,ଵݒ} ⋯,ଶݒ ௡}. Theݒ,

adjacency matrix ܯ = [݉௜௝] of G is an ݊×݊ matrix with ݉௜௝ define as follows:

݉௜௝ = ൜1, if ൫ݒ௜ ௝൯ݒ, ∈ .ܧ
0, otherwise.

 (2.4)

23

In the case of an undirected graph, ݉௜௝ = 1 only if there is an edge connecting ݒ௜ and ݒ௝.

For example, the undirected graph of Figure 2.2(a) has the following adjacency matrix:

and the directed graph of Figure 2.2(b) has the following adjacency matrix:

Clearly, for undirected graphs, the adjacency matrix M is a symmetric matrix with

zeros on the diagonal.

2.2.3 Laplacian matrix

Let ܩ = (ܩ)ܸ be a weigthed graph with vertex set (ܧ,ܸ) = ,ଶݒ,ଵݒ} , ௡} and edgeݒ

set (ܩ)ܧ. Let ݓ௜௝ denote the weight of edge (݅, ݆). The adjacency matrix (ܩ)ܯ is as

defined in (2.4). Then the degree matrix (ܩ)ܦ is defined as

௜,௝ܦ = ቄ sum of the weights of the edges incident on ݅ ݂݅ ݅ = ݆
 ݁ݏ݅ݓݎℎ݁ݐ݋ 0

 (2.5)

Note that if each ݓ௜௝ = 1, then ܦ௜,௜ is equal to the degree of i.

The Laplacian matrix of a weighted graph ܩ is a square matrix of order n, defined by

(ܩ)ܮ = (2.6) . (ܩ)ܯ−(ܩ)ܦ

24

Note that, the (݅, ݆)- entry of Laplacian matrix ܮ can be written as:

௜,௝ܮ =

⎩
⎨

⎧
௜௝ݓ− ݂݅ ݅ ≠ ௜ݒ ݀݊ܽ ݆ ݐ݆݊݁ܿܽ݀ܽ ݁ݎܽ ௝ݒ ݀݊ܽ
 0 ݂݅ ݅ ≠ ௜ݒ ݀݊ܽ ݆ ݐ݆݊݁ܿܽ݀ܽ ݐ݋݊ ݁ݎܽ ௝ݒ ݀݊ܽ
Sum of the weights of the ݂݅ ݅ = ݆
edges incidnet on ݅ (2.7)

So ܮ = ௖௧ܣ௖ܹܣ where W is the diagonal matrix with the diagonal entries representing

the weights on the edges.

Let ܮ(ଓ)തതതത be a reduced Laplacian matrix which is obtained by removing ith row

and ith column from L. The reduced Laplacian matrix of a graph G is given by

തതതത(ଓ)ܮ = ௧ (2.8)ܣܹܣ

The Laplacian matrix and reduced Laplacian matrix of a weighted directed graph G

(Figure 2.3) is calculated as follows. The diagonal matrix W for given graph is

ܹ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 0 0
0 3 0
0 0 2

0 0 0
0 0 0
0 0 0

0
0
0

0 0 0
0 0 0
0 0 0

3 0 0
0 1 0
0 0 1

0
0
0

0 0 0 0 0 0 3⎦
⎥
⎥
⎥
⎥
⎥
⎤

 .

We can now calculate Laplacian matrix by using L = ܣ௖ܹܣ௖௧ .

ܮ =

⎣
⎢
⎢
⎢
⎢
⎡

 5 −2 0
−2 5 −3
 0 −3 6

−3 0 0
 0 0 0
−2 −1 0

 −3 0 −2
 0 0 −1
 0 0 0

 6 −1 0
−1 5 −3
 0 −3 3⎦

⎥
⎥
⎥
⎥
⎤

25

Figure 2.3: A weighted directed graph G and its all-vertex incidence matrix.

The reduced Laplacian matrix after deleting the ݊௧௛ row of the incidence matrix ܣ௖

using (2.8) is

̅(ଓ)ܮ =

⎣
⎢
⎢
⎢
⎡
 5 −2 0
−2 5 −3
 0 −3 6

−3 0
 0 0
−2 −1

−3 0 −2
 0 0 −1 6 −1

−1 5 ⎦
⎥
⎥
⎥
⎤
 .

2.2.4 Matrix-tree theorem

2.2.4.1 The number of spanning trees

A spanning tree of a graph G is a tree of G having all the vertices of G. The spanning

trees of a connected graph are in one-to-one correspondence with the nonsingular

submatrices of matrix A.

Theorem 2.3. A square submatrix of order ݊ − 1 of any incidence matrix A of an n-

vertex connected graph G is nonsingular if and only if the edges that correspond to the

columns of the submatrix form a spanning tree of G.

26

Given a spanning tree of a graph G, the product of all the weights of edges in the

spanning tree is called the tree weight product. We denote by ߬(ܩ) the sum of the

weights product of all spanning tree of G.

Theorem 2.4. Let G be a connected and weighted undirected graph and A be an

incidence matrix of the directed graph that is obtained by assigning arbitrary

orientations the edges of G. Then

(ܩ)߬ = (௧ܣܹܣ)ݐ݁݀ = ݐ݁݀ ̅(ଓ)ܮ .݅ ݔ݁ݐݎ݁ݒ ݕ݊ܽ ݎ݋݂ ,

Thus, from Theorem 2.4 we get the following result, originally due to Kirchhoff

(Kirchhoff, 1847).

Theorem 2.5. All the cofactors of the degree matrix of a connected undirected graph

has the same value as the number of spanning trees of G.

2.2.4.2 The number of spanning 2-trees

A k-tree is an acyclic graph consisting of k components. If a k-tree is a spanning

subgraph of a graph G, then it is called a spanning k-tree of G. The spanning 2-trees

௜ܶ௝௞…,௥௦௧… denotes a 2-tree, in which the vertices ݒ௜, ௞ݒ,௝ݒ , … are required in one

component and the vertices ݒ௥ , ௧ݒ,௦ݒ , … are required to be in the other component of the

2-tree. For example, Figure 2.4(b) shows an example of a spanning 3-tree of the graph

G shown in Figure 2.4(a).

27

(a) (b)

Figure 2.4: Spanning tree. (a) Graph G (b) A spanning 3-tree T of G.

The sum of weight products of all spanning 2-trees of type ௜ܶ௝…,௥௦… will be

denoted by ߬௜௝௞…,௥௦௧…. Let ∆௜௝ denote the (i, j) cofactor of ܣܹܣ௧. That is, ∆௜௝ is the (݅, ݆)

cofactor of ܮ(ത݇) for any ݇.

Theorem 2.6. For a connected graph G,

 ∆௜௜= ߬௜,௡ and

∆௜௝= ߬௜௝,௡

2.2.5 Pseudo-inverse of Laplacian matrix

The sum of elements in each row and the sum of elements in each column of a

Laplacian matrix is zero, that is,

෍ܮ௜௝

௡

௜ୀଵ

= ෍ܮ௜௝
௡

௝ୀଵ

= 0 . (2.9)

So, the determinant of Laplacian matrix is zero, that is, det (ܩ)ܮ = 0.

Since the determinant of the Laplacian matrix is zero, it has no inverse. So, the

Moore-Penrose pseudoinverse of (ܩ)ܮ is used as a substitute for the inverse of (ܩ)ܮ.

28

The Moore-Penrose pseudoinverse of Laplacian matrix (ܩ)ܮ is denoted by ܮା(ܩ) and

has the following basic properties

(i) ܮ(ܩ)ܮା(ܩ)(ܩ)ܮ = (ܩ)ܮ

(ii) ܮା(ܩ)ܮ(ܩ)ܮା(ܩ) = (ܩ)ାܮ

(iii) [ܮ(ܩ)ܮା(ܩ)]ᇱ = (ܩ)ାܮ(ܩ)ܮ

(iv) [ܮା(ܩ)(ܩ)ܮ]ᇱ = (ܩ)ܮ(ܩ)ାܮ

The Moore-Penrose pseudoinverse ܮା(ܩ) can be computed as follows (Gutman &

Mohar, 1996):

(ܩ)ାܮ = ቀ(ܩ)ܮ + ௃
௡
ቁ
ିଵ
− ௃

௡
 (2.10)

where ܬ ∈ ܴ௡௫௡ is a matrix of all 1’s and n is the number of vertices of graph ܩ.

The following properties were established and proved by several authors

(Gutman & Xiao, 2004) for the Moore-Penrose pseudoinverse of the Laplacian matrix.

Lemma 2.7 (Klein, et al., 1995). The Moore-Penrose pseudoinverse ܮା(ܩ) of the

Laplacian matrix (ܩ)ܮ of a connected graph is real and symmetric.

Lemma 2.8 (Klein, et al., 1995). The Laplacian matrix and its pseudoinverse satisfy

the following relations

ܬ(ܩ)ܮ = (ܩ)ܮܬ = 0

ܬ(ܩ)ାܮ = (ܩ)ାܮܬ = 0

Lemma 2.9 (Klein, et al., 1995). If (ܩ)ܮ and ܮା(ܩ) pertain to a connected graph on n

vertices, then

(ܩ)ାܮ(ܩ)ܮ = (ܩ)ܮ(ܩ)ାܮ = ܫ −
ܬ
݊

29

Theorem 2.10 (Klein, et al., 1995). If ܩ is a connected graph, then the inverse of the

matrix (ܩ)ܮ + ௃
௡
 exists and is equal to ܮା(ܩ) + ௃

௡
.

Proof. Using Lemma 2.8 and Lemma 2.9, and the fact that ܬଶ = we have ,ܬ݊

൬(ܩ)ܮ +
ܬ
݊൰ ൬ܮ

ା(ܩ) +
ܬ
݊൰ = (ܩ)ାܮ(ܩ)ܮ +

ܬ
݊ ܮ

ା(ܩ) +
1
݊ ܮ

ܬ(ܩ) +
1
݊ଶ ܬ

ଶ

 = ቀܫ − ௃
௡
ቁ + ܱ + ܱ + ௃

௡
= .ܫ

2.3 Topological Formulas for Electrical Resistance Networks

2.3.1 Resistance networks

 An electrical network is an interconnection of electrical network elements such as

resistances, capacitances, inductances and voltage and current sources. We will assume

that all the network elements in the networks to be considered are resistances. Each

network element is associated with two variables, the voltage variable (ݐ)ݒ and the

current variable ݅(ݐ). We need to specify reference directions for these variables

because they are functions of time and may take on positive and negative values in the

course of time. This is done by assigning an arrow, called orientation, to each network

element (Figure 2.5). This arrow means that ݅(ݐ) is positive whenever the current is in

the direction of the arrow. Further we assume that the positive polarity of the voltage

 is positive whenever the voltage drop in (ݐ)ݒ is at the tail end of the arrow. Thus (ݐ)ݒ

a network element is in the direction of the arrow.

Figure 2.5: A network element (representation).

 (ݐ)݅

 (ݐ)ݒ + -

30

Network elements are characterized by the physical relationships between the

associated voltage and current variables. Ohm’s law specifies the relationship between

 as (ݐ)݅ and (ݐ)ݒ

(ݐ)ݒ = (2.11) (ݐ)݅ ܴ

where R is the resistance (in ohms) of the network element.

Note that for some of the network elements the voltage variables may be

required to have specified values and for some others the current variables may be

specified. Such elements are called, respectively, the voltage and current sources.

Two fundamental laws of network theory are Kirchhoff’s laws, that are stated as

follows:

Kirchhoff’s Current Law (KCL): The algebraic sum of the currents flowing out of a

vertex is equal to zero.

Kirchhoff’s Voltage Law (KVL): The algebraic sum of the voltages around any

circuit is equal to zero.

Figure 2.6: Directed graph representation of an electrical network. (a) Electrical
Network G. (b) Directed graph of G

31

For instance, for the network shown in Figure 2.6(a) the KCL and KVL equations are as

given below. In this figure element 5 is a voltage source and element 4 is a current

source.

KCL equations:

vertex a = ݅ଵ − ݅ହ + ݅଺ = 0,

vertex c = −݅ଶ + ݅ସ − ݅଺ = 0,

vertex b = −݅ଵ + ݅ଶ + ݅ଷ = 0.

KVL equations:

circuit {1, 3, + 1ݒ {5 + 3ݒ = 5ݒ 0

circuit {2, 4, + 2ݒ {3 − 4ݒ = 3ݒ 0

 circuit {1, 6, 2} − + 1ݒ − 6ݒ = 2ݒ 0

Given an electrical network G, the problem of network analysis is to determine

the element voltages and currents that satisfy Kirchhoff’s laws and the Ohm’s law.

Notice that the equations which arise from an application of Kirchhoff’s laws

are algebraic in nature, and they depend only on the way the network elements are

interconnected and not on the nature of the network elements. There are several

properties of an electrical network which depend on the structure of the network. In

studying such properties, it will be convenient to treat each network element as a

directed edge associated with the two variables (ݐ)ݒ and ݅(ݐ) . Thus, we may consider

an electrical network as a directed graph in which each edge is associated with the two

variables (ݐ)ݒ and ݅(ݐ), which are required to satisfy Kirchhoff’s laws and the Ohm’s

32

law. For example, the directed graph corresponding to the network of Figure 2.6(a) is

shown in Figure 2.6(b).

It is now easy to see that KCL and KVL equations for a network G can be

written, respectively, as

 ܳ௖ܫ௘ = 0 (2.12)

and

௖ܤ ௘ܸ = 0 (2.13)

where ܳ௖and ܤ௖ are the cut and circuit matrices of the directed graph associated with

G, and ܫ௘ and ௘ܸ are, respectively, the column vectors of element currents and voltages

of N.

Since the all-vertex incidence matrix ܣ௖ is a submatrix of ܳ௖ and has the same

rank as ܳ௖, we can use in equation (2.3) the matrix ܣ௖ in place of ܳ௖. Thus, KCL

equations can be written as

௘ܫ௖ܣ = 0 (2.14)

 Since the rank of ܣ௖ is n−1, we can remove any row from ܣ௖ and use the

resulting matrix A called the incidence matrix. The vertex corresponding to the removed

row is called the reference or datum vertex.

2.3.2 Topological formulas for resistance network functions

Consider first a 1-port resistance network G. Each port is defined by a pair of nodes.

The network is available for connection through the ports to the other parts of a system.

Let the network G have ݊ + 1 nodes denoted by 0, 1, 2, ..., n, and let the nodes 1 and 0

be, respectively, the positive and negative reference terminals of the port (Figure 2.7).

33

Let us now excite the network by connecting a current source of value ܫଵ across

the port. Let ଵܸ, ଵܸ , ଶܸ, … , ௡ܸ denote the voltages of the nodes 1, 2, ..., n with respect to

node 0. This means ଴ܸ = 0 and ௜ܸ is the voltage between the nodes i and 0 (that is ௜ܸ =

 ௜ܸ − ଴ܸ) for ݅ ≠ 0. Also, the A matrix does not contain the row corresponding to the

vertex 0.

Figure 2.7: A 1-port network.

Then we have

௘ܫ ܣ − ܫ = 0,

that is

௘ܫ ܣ = (2.15) ܫ

where,

ܫ =

⎣
⎢
⎢
⎢
⎡
ଵܫ
0
0
⋮
0 ⎦
⎥
⎥
⎥
⎤
.

Note that in the graph representation of a port, the corresponding edge will be

oriented from the positive terminal to the negative terminal. So, the current flowing

through this in the direction of the orientation is −ܫଵ where the voltage from positive

terminal to negative terminal of the port is ݒଵ.

G

34

Let the network elements be labeled as ݁ଵ, ݁ଶ, . . . , ݁௠ with ݎ௜ denoting the

resistance value of element ݁௜. Then the conductance of ݁௜ is given by ݓ௜ = ଵ
௥೔

 . Let W

be the diagonal matrix with its (i, i) entry equal to ݓ௜. Then we can write

௘ܫ = ܹ ௘ܸ (2.16)

Suppose the end vertices of ݁௜ are k and l. Then the voltage across this element (voltage

drop from node k to node l) is given by ௞ܸ − ௟ܸ , assuming that the element is oriented

from vertex k to vertex l. So, we can write

௘ܸ = ௧ܸ (2.17)ܣ

where V is the vector of voltages ଵܸ , ଶܸ , … , ௡ܸ. Combining (2.15), (2.16) and (2.17) we

get the node equations

௧ܸܣܹܣ = (2.18) ܫ

where

ܸ =

⎣
⎢
⎢
⎢
⎡ ଵܸ

ଶܸ

ଷܸ
⋮
௡ܸ ⎦
⎥
⎥
⎥
⎤

Let

ܻ = ௧ܣܹܣ

so, that

ܻ ܸ = (2.19) ܫ

Note that the matrix Y is the same as the reduced Laplacian ܮ(0ത) defined in section

2.2.3.

The matrix Y is called the node-conductance matrix of the network with vertex 0

as the reference. Solving (2.19) for ଵܸ, we get

35

ଵܸ =
∆ଵଵ
∆ , ଵܫ

where

 ∆ = det Y

and

∆ଵଵ = (1,1) cofactor of Y.

So, the driving-point resistance across vertices 1 and 0 is given by

ݖ = ௏భ
ூభ

= ∆భభ
∆

 , (2.20)

and the driving-point conductance across 1 and 0 is given by

ݕ = ଵ
௭

= ∆
∆భభ

 . (2.21)

To illustrate certain principles of network analysis, consider next a 2-port

network G (See Figure 2.8). If the ports of G are excited by current sources of values ܫଵ

and ܫଶ, then the node equations of G can be written as

YV = I

where

ܫ =

⎣
⎢
⎢
⎢
⎡
ଵܫ
ଶܫ
ଶܫ−
⋮
0 ⎦
⎥
⎥
⎥
⎤
 .

Figure 2.8: A 2-port network.

36

Solving for the node voltages ଵܸ, ଶܸ, and ଷܸ, we get

ଵܸ =
1
∆

(∆ଵଵܫଵ + ∆ଶଵܫଶ − ∆ଷଵܫଶ),

ଶܸ =
1
∆

(∆ଶଵܫଵ + ∆ଶଶܫଶ − ∆ଷଶܫଶ),

ଷܸ =
1
∆

(∆ଷଵܫଵ + ∆ଷଵܫଶ − ∆ଷଷܫଶ),

From the above relations, we get

൤ ଵܸ

ଶܸ − ଷܸ
൨ = ଵ

∆
൤ ∆ଵଵ
∆ଵଶ − ∆ଶଵଷ

 ∆ଶଵ − ∆ଷଵ
∆ଶଶ + ∆ଷଷ − ∆ଷଶ − ∆ଶଷ

൨ ൤ܫଵܫଶ
൨ (2.22)

 = ܼ௢௖ܫ

Here ܼ௢௖ is called the open circuit resistance matrix of the 2-port network. This

is because each element of ܼ௢௖ is obtained by setting one of the port currents equal to

zero (that is, open-circuiting the corresponding port). Thus

ଵଵݖ = ଵܸ

ଵܫ
 ฬ ଶܫ = 0 ,

ଵଶݖ = ଵܸ

ଶܫ
 ฬ ଵܫ = 0 ,

ଶଵݖ = ଶܸ

ଵܫ
 ฬ ଶܫ = 0 ,

ଶଶݖ = ଶܸ

ଶܫ
 ฬ ଵܫ = 0 ,

Here ݖଵଵ and ݖଶଶ are called driving point resistances across the respective ports

and ݖଵଶ and ݖଶଵ are called transfer resistances between the ports. Note that since Y is

symmetric, we have

∆௜௝= ∆௝௜ .

37

So

ܼ௢௖ = ଵ
∆
൤ ∆ଵଵ
∆ଵଶ − ∆ଶଵଷ

 ∆ଶଵ − ∆ଷଵ
∆ଶଶ + ∆ଷଷ − ∆ଷଶ − ∆ଶଷ

൨ . (2.23)

Thus, from Theorem 2.5, we have the following results

∆= (ܩ)߬

∆ଵଵ= ߬ଵ,଴ . (2.24)

Recall that ߬(ܩ) is the sum of the conductance products of all the spanning trees

in G and ߬ଵ,଴ is the sum of the conductance products of all the spanning 2-trees of the

type ଵܶ,଴ (with 1 and 0 in separate trees of ଵܶ,଴). So

∆௜௝= ߬௜௝,଴

where ߬௜௝,଴ is the sum of the conductance products of all 2-trees ௜ܶ௝,଴ (i and j in one tree

and 0 in the other tree). So

∆ଵଶ − ∆ଵଷ= ߬ଵଶ,଴ − ߬ଵଷ,଴ . (2.25)

Since each spanning 2-tree ଵܶଶ,଴ is either a spanning 2-tree ଵܶଶ,ଷ଴ or a spanning

2-tree ଵܶଶଷ,଴, we get

߬ଵଶ,଴ = ߬ଵଶ,ଷ଴ + ߬ଵଶଷ,଴ . (2.26)

Similarly,

߬ଵଷ,଴ = ߬ଵଷ,ଶ଴ + ߬ଵଶଷ,଴ . (2.27)

Then

∆ଵଶ − ∆ଵଷ= ߬ଵଶ,଴ − ߬ଵଷ,଴ . (2.28)

38

By a similar reasoning,

∆ଶଶ + ∆ଷଷ − 2∆ଶଷ = ߬ଶ,଴ + ߬ଷ,଴ − 2߬ଶଷ,଴

 = ߬ଶଷ,଴ + ߬ଶ,ଷ଴ + ߬ଶଷ,଴ + ߬ଷ,ଶ଴ − 2߬ଶଷ,଴

 = ߬ଶ,ଷ଴ + ߬ଷ,ଶ଴

 = ߬ଶ,ଷ (2.29)

So, we can write ܼ௢௖ as

ܼ௢௖ =
1

(ܩ)߬
ቂ

߬ଵ,଴ ߬ଵଶ,ଷ଴ − ߬ଵଷ,ଶ଴
߬ଵଶ,ଷ଴ − ߬ଵଷ,ଶ଴ ߬ଶ,ଷ

ቃ .

 So, the driving point resistance across port 1 is given by

ܼଵ,଴ =
߬ଵ,଴

 (ܩ)߬

Similarly, the driving point resistance ݖଶ across 2 and 3 is given by ఛమ,య
ఛ(ீ)

 . In

general, the driving point resistance across any pair of nodes i and j is given by ఛ೔,ೕ
ఛ(ீ)

. We

shall denote by ݎ௜௝ the driving point resistance across any pair of vertices i and j so that

௜௝ݎ = ఛ೔,ೕ
ఛ(ீ)

 (2.30)

where ݎ௜௝ is also called the effective resistance across i and j.

We wish to emphasize that the formulas for ݖ௜௝’s in (2.13) are with respect to

vertex 0 as reference. On the other hand, the formula in (2.22) does not explicitly

involve the reference vertex. We conclude this subsection with the following facts that

will be needed in the subsequent sections, where we shall assume that the vertices are

labeled as 1, 2,⋯ ,݊

39

1. The degree matrix ܭ = ܩ of a simple undirected graph [௜௝ܭ] = is (ܧ,ܸ)

defined as

݇௜௜ = ∋ ݅ for all ,(௜ݒ)݀ ܸ

݇௜௝ = −1, if (݅, ݆) ∈ ܧ

 = 0 otherwise

where ݀(ݒ௜) is the degree of vertex i. Then K can be written as

ܭ = ௖௧ܣ௖ܣ

where ܣ௖ is the all-vertex incidence matrix of G.

2. Let N be the resistance network N obtained by associating a 1-ohm

resistance with each edge of G. Then in electrical engineering literature the

matrix K is called the indefinite conductance matrix. In graph theory

literature K is also known as the graph Laplacian. Also, if the conductances

are defined by ݃௜, with G as the diagonal matrix of edge conductances, then

the graph Laplacian of the corresponding weighted graph will be ܣ௖ܣܩ௖௧ .

Here the degree of vertex i is the sum of the conductances incident on i.

3. Let ܭ௝௝ be the matrix obtained by removing the jth row and the jth column

from K. Then ܭ௝௝ is the same as the matrix Y defined in (2.18) with vertex j

as reference if all the resistances have 1 ohm value.

4. By Theorem 2.5 all cofactors of K are equal to the number of spanning trees

of N. In particular

 det ܭ௝௝ = ܹ. (2.31)

5. The (i,i) cofactor of ܭ௝௝ = number of spanning 2-trees of the type

 ௜ܶ,௝ = ௜ܹ,௝. (2.32)

40

6. The (i,k) cofactors of ܭ௝௝ = Number of spanning 2-trees of the type

 ௜ܶ௞,௝ = ௜ܹ௞,௝. (2.33)

7. The effective resistance ݎ௜௝ across i and j of N is given by

௜௝ݎ =
(݅, ݅) cofactor of ܻ

determinent ܻ

 =
(݅, ݅) cofactor of ܭ௝௝

determinent ܭ௝௝

 =
(݅, ݅) cofactor of ܭ௝௝

ܹ

 = ௐ೔,ೕ

ௐ
 . (2.34)

2.4 Kirchhoff Index of a Graph

The structural and functional robustness of a network can be measured by the Kirchhoff

index. The Kirchhoff index (ܩ)݂ܭ of a connected undirected graph G is defined as

(ܩ)݂ܭ = ∑ ௜௝௜ழ௝ݎ . (2.35)

Thus (ܩ)݂ܭ is the sum of the effective resistances across all pairs of vertices of the 1-

ohm resistance network obtained from G.

2.4.1 Computation of the Kirchhoff index using Laplacian pseudo-inverse

In a network, the resistance distance ݎ௜,௝ between any pair of nodes ݅ and ݆ can be

computed by using the Kirchhoff Law and Ohm law. The Moore-Penrose pseudoinverse

 gives the following formula (Klein & Randic, 1993; Xiao & Gutman, 2003) for (ܩ)ାܮ

computing the resistance distance ݎ௜,௝:

௜௝ݎ = ௜௜ାܮ ௝௝ାܮ + − ௜௝ାܮ − ௝௜ାܮ . (2.36)

41

From Lemma 2.7 we know that the Moore-Penrose pseudoinverse is symmetric.

So now the equation (2.36) can be simplified as

௜௝ݎ = ௜,௜ାܮ + ௝௝ାܮ − ௜௝ାܮ2 .

Kirchhoff index (ܩ)݂ܭ is the sum of the resistance distance of all pair of vertices of a

graph ܩ:

(ܩ)݂ܭ = ∑ ௜௝௜ழ௝ݎ = ∑ ൫ܮ௜,௜ା + ௝௝ାܮ − ௜௝ାܮ2 ൯௜ழ௝

It was proved by Klein and Randic (Klein & Randic, 1993) that the Kirchhoff Index can

also be written as

(ܩ)݂ܭ = ൯ (2.37)(ܩ)ାܮ൫ݎݐ݊

where ݊ is the number of vertices and ݎݐ(ܮା(ܩ)) denotes the trace function which can

be calculated by

൯(ܩ)ାܮ൫ݎݐ = ෍݈௜௜ା
௡

௜ୀଵ

.

Gutman and Mohar (Gutman & Mohar, 1996) demonstrated that it is possible to

calculate the Kirchhoff Index without knowing the Moore-Penrose pseudoinverse of a

Laplacian matrix. They obtained the Kirchhoff Index from the eigenvalues of the

Laplacian matrix of a graph ܩ:

(ܩ)݂ܭ = ݊෍
1
௜ߤ

௡ିଵ

௜ୀଵ

 (2.38)

where ߤ௜ is the non-zero eigenvalues of the Laplacian matrix (ܩ)ܮ.

 To avoid the computational efforts required to calculate the Moore-Penrose

pseudoinverse of the Laplacian matrix, we next present a new formula for Kf (G).

42

2.4.2 A Simple formula for the Kirchhoff index based on the pseudo-inverse of

 the Laplacian matrix

Let L be the Laplacian matrix of a connected graph G and ܮ(ଓ ̅) be a submatrix obtained

by deleting the ݅௧௛ row and ݅௧௛ column of the Laplacian matrix L. Note that ܮ(ଓ ̅) is the

same as the node-conductance Y, if vertex i is chosen as reference.

Let Z be the inverse of ܮ(ଓ ̅), i.e.,

ܼ = ଵ. (2.39)ି(̅ ଓ)ܮ

Theorem 2.11 (Molitierno, 2012). Let ܮ be the Laplacian matrix of a connected graph

 with ݊ vertices. Then ܩ

ାܮ =
݁ܮ்݁
݊ଶ ܬ +

⎣
⎢
⎢
⎢
⎡ ܼ −

1
݊ ܬܼ −

1
݊ − ܼܬ

1
݊ ܼ݁______________________________________

−
1
݊ ݁

்ܼ ܱ ⎦
⎥
⎥
⎥
⎤

 (2.40)

where ݁ is the left and right null vector of any Laplacian matrix and matrix ܼ is the

inverse of a reduced Laplacian matrix obtained by deleting the last (݊௧௛) row and the

last (݊௧௛) column, that is, ܼ =)ܮ ത݊)ିଵ = ܻିଵ.

Proof. By Lemma 2.9 we know that

ܮାܮ = ାܮܮ = ܫ −
ܬ
݊

where, L is the Laplacian matrix, ܮା is the pseudoinverse of Laplacian matrix L, I is the

identity matrix, J is a unit matrix of all 1’s and n is the number of vertices of graph ܩ.

 Multiply L on both sides of equation (2.40):

43

ܮାܮ = ൮௘೅௅௘
௡మ

ܬ + ൦
ܼ − ଵ

௡
ܬܼ − ଵ

௡
− ܼܬ ଵ

௡
݁ݖ

− ଵ

௡
்ܼ݁ ܱ

൪൲ܮ

 = ௘೅௅௘
௡మ

ܮܬ + ൦
ܼ − ଵ

௡
ܬܼ − ଵ

௡
− ܼܬ ଵ

௡
݁ݖ

− ଵ

௡
்ܼ݁ ܱ

൪ܮ

From Lemma 2.8, we know that

LJ = JL = 0.

So, we get

ܮାܮ = 0 + ൦
ܼ − ଵ

௡
ܬܼ − ଵ

௡
− ܼܬ ଵ

௡
݁ݖ

− ଵ

௡
்ܼ݁ ܱ

൪ܮ

Also, we have

ܼ =)ܮ ത݊)ିଵ , ݁ = 1 and ்݁ = 1்

ܮାܮ = ൦
)ܮ ത݊)ିଵ − ଵ

௡
)ܮ ത݊)ିଵܬ − ଵ

௡
)ܮܬ ത݊)ିଵ − ଵ

௡
)ܮ ത݊)ିଵ1

− ଵ

௡
)ܮ1் ത݊)ିଵ ܱ

൪ ܮ

 = ൦
)ܮ ത݊)ିଵܮ(ത݊) − ଵ

௡
)ܮ ത݊)ିଵܮܬ(ത݊)− ଵ

௡
)ܮܬ ത݊)ିଵܮ(ത݊) − ଵ

௡
)ܮ ത݊)ିଵ1ܮ(ത݊)

− ଵ

௡
)ܮ1் ത݊)ିଵܮ(ത݊) 1− ଵ

௡

൪

We know that

)ܮ ത݊)ିଵܮ(ത݊) = .ܫ

So,

ܮାܮ = ൦
ܫ − ଵ

௡
)ܮ ത݊)ିଵܱ − ଵ

௡
− ܫܬ ଵ

௡
1ܫ

− ଵ

௡
−1 ܫ1் ଵ

௡

൪

44

 = ൦
ܫ − ଵ

௡
− ܬ ଵ

௡
1

− ଵ

௡
1் 1 − ଵ

௡

൪ = ܫ − ௃
௡
 ାܮܮ =

Hence proved.

The new formula for computing Kirchhoff Index is given in the following theorem.

Theorem 2.12. (ܩ)݂ܭ = (ܼ)ݎܶ݊ − ∑ ௞௟௞,௟ݖ (2.41)

where Z is the inverse of the Laplacian matrix obtained by deleting any ith row and ith

column, and ∑ ௞௟௞,௟ݖ is the sum of all the elements of matrix Z (note that Z = ܻିଵ).

Proof. Using equation (2.40) we can calculate the (i, j)th entry of pseudoinverse ܮାof

the Laplacian matrix L in terms of the elements of the matrix Z:

 ݈௜௝ା =

⎩
⎪⎪
⎨

⎪⎪
⎧
∑ ௭ೖ೗ೖ,೗
௡మ

+ ௜௝ݖ −
ଵ
௡
∑ ௞௝௞ݖ − ଵ

௡
∑ ௜௟௟ݖ , ݅ ≠ ݊, ݆ ≠ ݊

∑ ௭ೖ೗ೖ,೗
௡మ

− ଵ
௡
∑ ௞௝௞ݖ , ݅ = ݊, ݆ ≠ ݊

∑ ௭ೖ೗ೖ,೗
௡మ

− ଵ
௡
∑ ௜௟௟ݖ , ݅ ≠ ݊, ݆ = ݊

∑ ௭ೖ೗ೖ,೗
௡మ

 , ݅ = ݊, ݆ = ݊

 (2.42)

where,

∑ ௞௟௞,௟ݖ is the sum of all the elements of the matrix ܼ

∑ ௞௝௞ݖ is the sum of the elements of the ݇௧௛ rows of the matrix ܼ

∑ ௜௟௟ݖ is the sum of the elements of the ݈௧௛ columns of the matrix ܼ

Now using equation (2.37) and (2.40), we get

(ܩ)݂ܭ = (ାܮ)ݎܶ݊ = ݊ ൭෍ ݈௜௜ା
௡ିଵ

௜ୀଵ

+ ݈௡௡ା ൱ . (2.43)

The trace of the pseudoinverse ܮା of the Laplacian matrix satisfies

45

(ାܮ)ݎܶ = ෍݈௜௜ା
௡ିଵ

௜ୀଵ

+ ݈௡௡ା . (2.44)

From (2.42) we get

݈௜௜ା =
∑ ௞௟௞,௟ݖ

݊ଶ + ௜௜ݖ −
2
݊෍ݖ௜௟

௟

 (2.45)

݈௡௡ା =
∑ ௞௟௞,௟ݖ

݊ଶ (2.46)

Now using (2.44), (2.45) and (2.46), we get

(ାܮ)ݎܶ = ∑ ቀ∑ ௭ೖ೗ೖ,೗
௡మ

+ ௜௜ݖ −
ଶ
௡
∑ ௜௟௟ݖ ቁ௡ିଵ

௜ୀଵ + ∑ ௭ೖ೗ೖ,೗
௡మ

. (2.47)

Note that ∑ (∑ ௜௟௟ݖ) = ∑ ௞௟௞,௟ݖ
௡ିଵ
௜ୀଵ (sum of all elements of matrix ܼ)

Thus,

(ାܮ)ݎܶ =
1
݊ଶ

(݊ − 1)෍ݖ௞௟
௞,௟

+ ෍ݖ௜௜

௡ିଵ

௜ୀଵ

−
2
݊෍ݖ௞௟

௞,௟

+
∑ ௞௟௞,௟ݖ

݊ଶ .

After simplification, we get

(ାܮ)ݎܶ = ෍ݖ௜௜

௡ିଵ

௜ୀଵ

−
∑ ௞௟௞,௟ݖ

݊ . (2.48)

From (2.43) and (2.48), we get

(ܩ)݂ܭ = ݊෍ ௜௜ݖ

௡ିଵ

௜ୀଵ

− ෍ݖ௞௟
௞,௟

. (2.49)

We know,

෍ݖ௜௜

௡ିଵ

௜ୀଵ

= (2.50) . (ܼ)ݎܶ

The required result follows from (2.49) and (2.50) as

46

(ܩ)݂ܭ = (ܼ)ݎܶ݊ −෍ݖ௞௟
௞,௟

.

The following example demonstrates the calculation of the Kirchhoff Index by

first using the Moore-Penrose Pseudoinverse and then by using our new formula.

Example 2.13. Figure 2.9 shows an unweighted graph ܩ with six nodes and its

Laplacian matrix.

 (ܽ) (ܾ)

Figure 2.9: Laplacian matrix. (a) A graph G with six nodes. (b) Laplacian matrix L of
 graph G.

Kirchhoff index using Moore-Penrose pseudo-inverse:

First, we find the Moore-Penrose pseudoinverse of Laplacian matrix ܮ given in Figure

2.9(b) by using formula (2.10):

ାܮ =

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡
 2 −1 0
−1 2 −1
 0 −1 3

 −1 0 0
 0 0 0
 −1 −1 0

−1 0 −1
 0 0 −1
 0 0 0

 3 −1 0
−1 3 −1
 0 −1 1 ⎦

⎥
⎥
⎥
⎥
⎤

+
1
6

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1⎦

⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞

ିଵ

−
1
6

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1⎦

⎥
⎥
⎥
⎥
⎤

47

ାܮ =

⎣
⎢
⎢
⎢
⎢
⎡

0.487 0.123 −0.074
0.123 0.487 0.017
−0.074 0.017 0.275

0.017 −0.195 −0.362
−0.074 −0.195 −0.362
0.002 −0.028 −0.195

0.017 −0.074 0.002
−0.195 −0.195 −0.028
−0.362 −0.362 −0.195

0.275 −0.028 −0.195
−0.028 0.305 0.138
−0.195 0.138 0.972 ⎦

⎥
⎥
⎥
⎥
⎤

The trace of Moore-Penrose pseudoinverse is

(ାܮ)ݎܶ = ෍݈௜௜

௡

௜ୀଵ

= 2.801.

Let (ܩ)݂ܭ be the Kirchhoff index of the graph given in Figure. 2.9(a). Now using

(2.35) we can calculate Kirchhoff index (ܩ)݂ܭ as

(ܩ)݂ܭ = 6 ∗ 2.801 = 16.8.

Next, we calculate Kirchhoff Index (ܩ)݂ܭ by using ܼ (i. e. ,ܼ =)ܮ ത݊)ିଵ).

Kirchhoff index using our new formula:

The matrix ܼ of graph ܩ for Laplacian matrix ܮ in Figure 2.8 is

ܼ =

⎣
⎢
⎢
⎢
⎡
2.182 1.818 1.455
1.818 2.182 1.545
1.455 1.545 1.636

1.545 1
1.455 1
1.364 1

1.545 1.455 1.364
1 1 1 1.636 1

1 1⎦
⎥
⎥
⎥
⎤

In order to find the Kirchhoff index (ܩ)݂ܭ , we calculate the trace of matrix ܼ and the

sum of all the elements of matrix ܼ:

(ܼ)ݎܶ = 8.63

෍ݖ௞௟
௞,௟

= 35

Using (2.41), the Kirchhoff Index (ܩ)݂ܭ is

(ܩ)݂ܭ = 6 ∗ 8.63− 35 = 16.8.

48

In the next section, we establish the formula in Theorem 2.1 using standard

electrical circuit theoretic arguments based on the properties of the n-port resistance

networks.

2.5 Kirchhoff Index using Topological Formulas for Network

 Functions

The formula in Theorem for Kirchhoff Index shows that not all the effective resistances

are independent. That is, one can obtain Kirchhoff Index using only the matrix Z, whose

diagonal entries are a subset of (݊ − 1) effective resistances. The off-diagonal entries in

Z relate these ݊ − 1 effective resistances to the remaining effective resistances.

Consider a graph G of the network obtained by replacing each edge in the

network by a resistance of one ohm. Let ܻ = denote the node admittance matrix of [௜௝ݕ]

G with node n as the reference or datum node.

Note that Y is a square matrix of order ݊ − 1 and it is the matrix obtained by

removing the ݊௧௛ row and the ݊௧௛ column from the Laplacian matrix of L.

Note that ܼ = ܻିଵ.

As we have seen before,

௜௝ݎ =
߬௜,௝
 (ܩ)߬

However,

߬௜௝ = ߬௜,௡௝ + ߬௜௡,௝

= {߬௜,௡ − ߬௜௝,௡} + {߬௝,௡ − ߬௜௝,௡}

= ߬௜,௡ + ௝߬,௡ − 2߬௜௝,௡

49

Dividing by ߬(ܩ) both sides of the above equation we get

߬௜௝
(ܩ)߬ =

߬௜,௡
(ܩ)߬ + ௝߬,௡

(ܩ)߬ −
2߬௜௝,௡

(ܩ)߬

௜௝ݎ = ௜,௡ݎ + ௝,௡ݎ − ௜௝ (2.51)ݖ2

Since each ݎ௝,௡ appears ݊ − 1 times on the right-hand side of the sum ∑ ௜,௞௜,௞வ௜ݎ , we get

෍ ௜,௞ݎ
௜,௞வ௜

= (݊ − 1)෍ݎ௝,௡

௡ିଵ

௝ୀଵ

− 2 ෍ ௜௞ݖ
௜,௞வ௜

 = (݊ − 1)∑ ௝,௡ݎ
௡ିଵ
௝ୀଵ + ∑ ௝,௡ݎ

௡ିଵ
௝ୀଵ − ൫∑ ௝,௡ݎ

௡ିଵ
௝ୀଵ + 2∑ ௜௞௜,௞வ௜ݖ ൯

(ܩ)݂ܭ = ݊෍ݎ௝,௡

௡ିଵ

௝ୀଵ

− ቌ෍ݎ௝,௡

௡ିଵ

௝ୀଵ

+ 2 ෍ ௜௞ݖ
௜,௞வ௜

ቍ

The above is the same as

(ܩ)݂ܭ = ݊෍ݖ௜௜

௡ିଵ

௜ୀଵ

− ൭෍ݖ௜௟
௜,௟

൱

2.6 Kirchhoff Index using Circuit Theoretic Concepts

We now give another proof of equation (2.51) using circuit-theoretic principles.

Consider again the description of an (݊ + 1)- node network as given by equation

ܻܸ = ܫ

when node 0 is chosen as the reference node (see equation 2.20). If we are interested in

the description of the network as viewed across the ports (1, 0) , (2, 0) then it is

equivalent to setting ܫଶ = ⋯ = ௡ܫ = 0 . See Figure 2.10.

50

Figure 2.10: A 2-port network.

We then get

⎣
⎢
⎢
⎢
⎡
ଵܫ
____ଶܫ
0
⋮
0 ⎦
⎥
⎥
⎥
⎤

= ൥
ଵܻଵ

ଶܻଵ

ଵܻଶ

ଶܻଶ

൩

⎣
⎢
⎢
⎢
⎢
⎡ ଵܸ

ଶܸ____
ଷܸ
⋮
௡ܸ ⎦
⎥
⎥
⎥
⎥
⎤

Solving the above

൬ܫଵܫଶ
൰ = (ଵܻଵ − ଵܻଶ ଶܻଶ

ିଵ
ଶܻଵ) ൬ ଵܸ

ଶܸ
൰

The matrix ଵܻଵ − ଵܻଶ ଶܻଶ
ିଵ

ଶܻଵ is called a Schur Complements of Y. It is in fact the

Laplacian matrix of the 3-node network obtained by repeated star-delta transformations

at the nodes 2,⋯ ,݊. See Figure 2.11, where x, y, z are the resistance of the equivalent

network containing only nodes 1, 2, and 0.

Figure 2.11: Three-node network.

51

Let the resistance distance between nodes i and j is denoted by ݎ௜௝. By using principles

of circuit theory, we have

௜௡ݎ = ௫(௬ା௭)
௫ା௬ା௭

 (2.52)

௝௡ݎ = ௬(௭ା௫)
௫ା௬ା௭

 (2.53)

௜௝ݎ = ௭(௫ା௬)
௫ା௬ା௭

 (2.54)

The voltage across edge (j, n) when a unit current source is connected between i and

n is denoted by ݖ௜௝.

௜௝ݖ = ௬௫
௫ା௬ା௭

 (2.55)

Using (2.52), (2.53), (2.54) and (2.55), we get

௜௡ݎ + ௝௡ݎ − ௜௝ݖ2 =
ݕ)ݔ + (ݖ
ݔ + ݕ + ݖ +

ݖ)ݕ + (ݔ
ݔ + ݕ + ݖ − 2

ݔݕ
ݔ + ݕ + ݖ

=
ݕݔ + ݖݔ + ݖݕ + ݖݕ − ݔݕ2

ݔ + ݕ + ݖ

 =
ݔ)ݖ + (ݕ
ݔ + ݕ + ݖ

 = ௜௝ݎ (by equation 2.54)

2.7 Summary

In this chapter, we have given an overview of electrical networks along with the

topological formulas for network functions. We also discussed the matrices of graph

and their properties. Along with the Laplacian spectral graph theory we showed some

known formulae of the Kirchhoff index using the Moore-Penrose pseudoinverse of the

Laplacian matrix of a graph. We presented an interesting new formula for calculating

52

the Kirchhoff index in terms of the matrix ܼ, to avoid the computational complexities

and extraneous efforts of Moore-Penrose pseudoinverse. The matrix ܼ is the inverse of

the reduced Laplacian matrix ܮ(ଓ ̅).

Generalization of the Laplacian matrices and its relationship to the Kirchhoff

index will be studied in the next chapter.

53

Chapter 3

Cutset Laplacian Matrix of a Graph and Kirchhoff Index

In chapter 2 we studied the relationship between the Laplacian matrix and the Kirchhoff

index of a graph. Noting that the Laplacian matrix is defined by the reduced incidence

matrix and the reduced incidence matrix is a submatrix of the cut matrix, in this chapter

we generalize the notion of Laplacian matrix using the fundamental cutset matrix. We

then develop two approaches to compute the Kirchhoff index. The first approach is

based on a matrix transformation. To develop the second method, we define the concept

of Kirchhoff polynomial of a graph which expresses Kirchhoff index using the elements

of the resistance matrix. Since our discussion will be based on the fundamental cutset

and fundamental circuit matrices, we begin with an introductory treatment of these

concepts and their relationship with Kirchhoff voltage and current laws.

3.1 Cutsets

A graph N is said to be connected if there exists a path between every pair of vertices in

N. For example, the graph of Figure 3.1 (a) is connected.

Definition 3.1 (Thulasiraman & Swamy, 1992). A cutset S of a connected graph N is a

minimal set of edges of N such that its removal from N disconnects N, that is, the graph

N – S is disconnected.

For example, consider the subset ଵܵ = {݁ଶ, ݁ସ} of edges of the graph N in Figure

3.1(a). The removal of ଵܵ from graph N results in the graph ଵܰ = ܰ − ଵܵ of Figure

54

3.1(b). Graph ଵܰ is disconnected. Furthermore, the removal of any proper subset of ଵܵ

cannot disconnect N. Thus ଵܵ is a cutset of N.

Consider next the subset ܵଶ = {݁ହ, ݁଺}. The graph ଶܰ = ܰ − ܵଶ is shown in

Figure 3.1(c).

(a) Graph N

 (b) ܰ ଵ (c) ଶܰ

 Figure 3.1: Illustration of the definition of a cutset. (a) Graph N.
(b) ଵܰ = ܰ − ଵܵ , ଵܵ = {݁ଶ, ݁ସ}. (c) ଶܰ = ܰ − ܵଶ , ܵଶ = {݁ହ, ݁଺}

55

3.2 Cuts

We now define the concept of a cut, which is closely to that of a cutset.

Definition 3.2 (Thulasiraman & Swamy, 1992). Consider a connected graph N with

vertex set V. Let ଵܸ and ଶܸbe two mutually disjoint subsets of V such that ܸ = ଵܸ ∪ ଶܸ;

that is, ଵܸ and ଶܸ have no common vertices and together contain all the vertices of V.

Then the set S of all those edges of graph N having one end vertex in ଵܸ and the other in

ଶܸis called a cut of N. This is usually denoted by 〈 ଵܸ, ଶܸ〉.

Note that the cut 〈 ଵܸ, ଶܸ〉 of N is the minimal set of edges of N whose removal

disconnects N into two graphs ଵܰand ଶܰ, which are induces subgraphs of N on the

vertex sets ଵܸ and ଶܸ. ଵܰ and ଶܰmay not be connected. If both these graphs are

connected, then 〈 ଵܸ, ଶܸ〉 is also the minimal set of edges disconnecting N into exactly

two components. Then by definition 3.1, 〈 ଵܸ, ଶܸ〉 is a cutset of N.

 Suppose that for a cutset S of N, ଵܸ and ଶܸare, respectively, the vertex sets of the

two components ଵܰand ଶܰof N – S. Then S is the cut 〈 ଵܸ, ଶܸ〉.

 Thus, we have the following theorem.

Theorem 3.3.

1. A cut 〈 ଵܸ, ଶܸ〉 of a connected graph N is a cutset of N if the induced

subgraphs of N on vertex sets ଵܸ and ଶܸ are connected.

2. If S is a cutset of a connected graph N, and ଵܸ and ଶܸare the vertex sets of

the two components of N –S, then S = 〈 ଵܸ, ଶܸ〉.

56

Any cut 〈 ଵܸ, ଶܸ〉 in a connected graph N contains a cutset of N, since the removal

of 〈 ଵܸ, ଶܸ〉 from N disconnects N. In fact, we can prove that a cut in a graph N is the

union of some edge- disjoint cutsets of N. Formally, we state this in the following

theorem.

Theorem 3.4 A cut in a connected graph N is a cutset or union of edge-disjoint cutsets

of N.

3.3 Fundamental Cutsets

In this section, we will show, how spanning tree can be used o define a set of

fundamental cutsets.

 Consider a spanning tree T of a connected graph N. Let b be a branch of T

(Note: The edges of a spanning tree T are called the branches of T). Now, the removal

of the branch b disconnects T into exactly two components ଵܶ and ଶܶ. Note that ଵܶ and

ଶܶ are trees of N. Let ଵܸ and ଶܸ, respectively, denote the vertex sets of ଵܶ and ଶܶ. ଵܸ

and ଶܸ together contain all vertices of N.

Let ଵܰ and ଶܰbe, respectively, the induced subgraphs of N on the vertex sets ଵܸ

and ଶܸ. It can be seen that ଵܶ and ଶܶ are, respectively, the spanning trees of ଵܰ and ଶܰ.

Hence, ଵܰ and ଶܰ are connected. This, in turn, proves (Theorem 3.3) that the cut ⟨ ଵܸ,

ଶܸ⟩ is a cutset of N. This cutset is known as the fundamental cutset of N with respect to

the branch b of the spanning tree T of N. The set of all the n −1 fundamental cutsets

with respect to the n −1 branches of a spanning tree T of a connected graph N is known

as the fundamental set of cutsets of N with respect to the spanning tree T. The rank

57

݊ of a connected N is defined to be equal to (ܰ)ߩ − 1. If N has p components, then

(ܰ)ߩ = ݊ − .݌

Note that the cutset ⟨ ଵܸ, ଶܸ⟩ contains exactly one branch, namely, the branch b

of T. All the other edges of ⟨ ଵܸ, ଶܸ⟩ are links of T. This follows from the fact that ⟨ ଵܸ,

ଶܸ⟩ does not contain any edge of ଵܶ and ଶܶ. Further, branch b is not present in any other

fundamental cutset with respect to T.

A graph N and a set of fundamental cutsets of N are shown in Figure 3.2.

 (a) (b)

 (c) (d)

Figure 3.2: A set of fundamental cutsets of a graph. (a) Graph N. (b) Spanning tree T of
N. (c) Fundamental cutset with respect to branch ݁ଵ. (d) Fundamental cutset with
respect to branch ݁ଶ. (e) Fundamental cutset with respect to branch ݁ଷ . (f) Fundamental
cutset with respect to branch ݁଺ . (g) Fundamental cutset with respect to branch ݁଻.

58

 (e) (f)

(g)

Figure 3.2. (Continued)

It is obvious that removal of a cutset S from a connected graph N destroys all the

spanning trees of N. A little thought will indicate that a cutset is a minimal set of edges

whose removal from N destroys all the spanning trees of N.

Theorem 3.5. A cutset of a connected graph N contains at least one branch of every

spanning tree of N.

Theorem 3.6. A set S of edges of a connected graph N is a cutset of N if and only if S is

a minimal set of edges containing at least one branch of every spanning tree of N.

59

3.4 Cut Matrix and Fundamental Cutset Matrix

To define the cut matrix of a directed graph we need to assign an orientation to each cut

of the graph.

 Consider a directed graph N = (V, E). If ௔ܸ is a nonempty subset of V, then the

set of edges connecting the vertices in ௔ܸ to those in ௔ܸ is a cut, and this cut is denoted

as ⟨ ௔ܸ , ௔ܸ⟩. The orientation of ⟨ ௔ܸ , ௔ܸ⟩ may be assumed to be either from ௔ܸ to ௔ܸ or

from ௔ܸ to ௔ܸ . Suppose we assume that the orientation is from ௔ܸ to ௔ܸ . Then the

orientation of an edge in ⟨ ௔ܸ , ௔ܸ⟩ is said to agree with the orientation of the cut ⟨ ௔ܸ , ௔ܸ⟩

if the edge is oriented from a vertex in ௔ܸ to a vertex in ௔ܸ .

 The cut matrix ܳ௖ = of a graph N with m edges has m columns and as [௜௝ݍ]

many rows as the number of cuts in N. The entry ݍ௜௝ is defined as follows:

N is undirected

௜௝ݍ = ൜1 , if the ݆th edge is in the ݅the cut ;
0 , otherwise .

N is directed

௜௝ݍ =

⎩
⎪
⎨

⎪
⎧

 1 , if the ݆th edge is in the ݅the cut and its orientation agrees with
the cut orientation ;

−1 , if the ݆th edge is in the ݅the cut and its orientation does not
agrees with the cut orientation ;

0 , otherwise .

A row of ܳ௖ will be referred to as a cut vector.

Consider next any vertex v. The nonzero entries in the corresponding incidence

vector represent the edges incident on v. These edges form the cut ⟨v, V − v⟩. If we

assume that the orientation of this cut is from v to V − v, then we can see from the

60

definitions of cut in section 3.2 and incidence matrices recall from chapter 2, that the

row in ܳ௖ corresponding to the cut ⟨v, V − v⟩ is the same as the row in ܣ௖ corresponding

to the vertex v. Thus ܣ௖ is a submatrix of ܳ௖.

Theorem 3.7. Each row in the cut matrix ܳ௖ can be expressed, in two ways, as a linear

combination the rows of the matrix ܣ௖ . In each case, the nonzero coefficients in the

linear combination are all +1 or all −1.

Theorem 3.8. The rank of the cut matrix ܳ௖ of an n-vertex connected graph N is equal

to ݊ − 1, the rank of N.

As the above discussion and theorems show, the all –vertex incidence matrix ܣ௖

is an important submatrix of the cut matrix ܳ௖ . Next, we identify another important

submatrix of ܳ௖, that is, fundamental cutset matrix ܳ௙ .

We know from Section 3.3 that a spanning tree T of an n-vertex connected graph

N defines a set of n − 1 fundamental cutsets—one fundamental cutset for each branch of

T. The submatrix of ܳ௖ corresponding to these n −1 fundamental cutsets is known as the

fundamental cutset matrix ܳ௙ of N with respect to T.

Let ܾଵ, ܾଶ, … , ܾ௡ିଵ denote the branches of tree T. Suppose we arrange the

columns and the rows of ܳ௙ so that

1. For 1≤ i ≤ n−1, the ith column corresponds to the branch ௜ܾ.

2. The ith row corresponds to the fundamental cutset defined by ௜ܾ.

61

 If, in addition, we assume that the orientation of a fundamental cutset is so

chosen as to agree with that of the defining branch, then the matrix ܳ௙ can be displayed

in a convenient form as follows:

ܳ௙ = ൣܷ| ܳ௙௖൧ (3.1)

where U is the unit matrix of order ݊ − 1 and its columns correspond to the branches of

T and ܳ௙௖ is the fundamental cutset of chords of T.

For example, the fundamental cutset matrix ܳ௙ of the connected graph of Figure

3.3(a) with respect to the spanning tree T = {݁ଶ, ݁ଷ, ݁ସ, ݁ହ, ݁଻} is

It is clear from (3.1) that the rank of fundamental cutset matrix ܳ௙ is equal to

݊ − 1, the rank of cut matrix ܳ௖. Thus, every cut vector (which may be a cutset vector)

can be expressed as a linear combination of the fundamental cutset vectors.

(a) (b)

Figure 3.3: (a) A directed Graph N. (b) Spanning tree T of N.

(3.2)

62

3.5 Fundamental Circuit Matrix and Relationship with Fundamental

 Cutset Matrix

3.5.1 Fundamental circuits

Consider a spanning tree T of a connected graph G. Let the branches of T be denoted by

ܾଵ,ܾଶ,⋯ , ܾ௡ିଵ , and let the chords of T be denoted by ܿଵ, ܿଶ,⋯ , ܿ௠ି௡ାଵ, where n is the

number of vertices in G and m is the number of edges in G.

 While T is acyclic, the graph ܶ ∪ ܿ௜ contains exactly one circuit ܥ௜. This circuit

consists of the chord ܿ௜ and those branches of T which lie in the unique path in T

between the end vertices of ܿ௜. The circuit ܥ௜ is called the fundamental circuit of G with

respect to the chord ܿ௜ of the spanning tree T.

The set of all the ݉ − ݊ + 1 fundamental circuits ܥଵ,ܥଶ,⋯ ௠ି௡ାଵ of G withܥ,

respect to the chords of the spanning tree T of G is known as the fundamental set of

circuits of G with respect to T. The nullity μ(ܩ)of a connected graph G is defined to be

equal to ݉ − ݊ + 1. If G is not connected and has p components, then μ(ܩ) = ݉ −

݊ + .݌

An important feature of the fundamental circuit ܥ௜ is that it contains exactly one

chord, namely, chord ܿ௜. Further, chord ܿ௜ is not present in any other fundamental circuit

with respect to T. For a given graph G and its spanning tree T in Figure 3.3, a set of

fundamental circuits of G are shown in Figure 3.4.

3.5.2 Circuit matrix

A circuit can be traversed in one of two directions, clockwise or anticlockwise. The

direction we choose for traversing a circuit defines its orientation.

63

 (a) Circuit ܥଵ (b) Circuit ܥଶ

Figure 3.4: Set of two fundamental circuits of G (given in Figure 3.3(a)) with respect
to the spanning tree T (given in Figure 3.3(b)).

Consider an edge e which has ݒ௜ and ݒ௝ as its end vertices. Suppose that this

edge is oriented from ݒ௜ and ݒ௝ and that it is present in circuit C. Then we say that the

orientation of e agrees with the orientation of the circuit if ݒ௜ appears before ݒ௝ when

we traverse C in the direction specified by its orientation.

The circuit matrix ܤ௖ = [௜ܾ௝] of a graph G with m edges has m columns and as

may rows as the number of circuits in G. The entry ௜ܾ௝ is defined as follows:

 G is directed:

௜ܾ௝ =

⎩
⎪
⎨

⎪
⎧

1, if the ݆th edge is in the ݅th circuit and its
 orientation agrees with the circuit orientation;

−1, if the ݆th edge is in the ݅th circuit and its
 orientation does not agrees with the circuit
orientation;

0, if the ݆th edge is not in the ݅th circuit.

G is undirected:

௜ܾ௝ = ൜1, if the ݆th edge is in the ݅th circuit
0, otherwise

64

 A row of ܤ௖ is called a circuit vector of G. Next, we identify an important

submatrix of ܤ௖.

3.5.3 Fundamental circuit matrix

Consider any spanning tree T of a connected graph G having n vertices and m edges.

Let ܿଵ, ܿଶ,⋯ , ܿ௠ି௡ାଵ be the chords of T. We know that these ݉− ݊ + 1 chords define a

set of m−n+1 fundamental circuits. The submatrix of ܤ௖ corresponding to these

fundamental circuits is known as the fundamental circuit matrix ܤ௙ of G with respect to

the spanning tree T.

 Suppose we arrange the columns and rows of ܤ௙ so that

1. For 1 ≤ ݅ ≤ ݉ − ݊ + 1, the ith column corresponds to the chord ܿ௜; and

2. The ith row corresponds to the fundamental circuit defined by ܿ௜.

If, in addition, we choose the orientation of a fundamental circuit to agree with

that of the defining chord, then the matrix ܤ௙ can be written as

௙ܤ = ௙௧൧ (3.3)ܤ |ܷൣ

where U is the unit matrix of order ݉ − ݊ + 1 and its columns correspond to the chords

of T.

For example, the fundamental circuit matrix of the graph of Figure 3.3 (a) with

respect to the spanning tree T = {݁ଶ, ݁ଷ, ݁ସ, ݁ହ, ݁଻} is as given below:

(3.4)

65

It is obvious from (3.3) that the rank of ܤ௙ is equal to ݉ − ݊ + 1, the nullity

µ(G) of G. Since ܤ௙ is a submatrix of ܤ௖, we get

rank(ܤ௖) ≥ ݉ − ݊ + 1

It is known (Thulasiraman & Swamy, 1992) that circuit and cutset vectors are

orthogonal. That is,

ܳ௙ܤ௙௧ = 0. (3.5)

Using this relation, we get

௙௧ܤ = −ܳ௙௖௧ (3.6)

3.6 Kirchhoff’s Laws and Fundamental Circuit and Cutset Matrices

Consider an electrical resistance network G. Let T be a spanning tree of G. Then the

fundamental cutset ܳ௙ matrix of G has the form

ܳ௙ = ൣ ܷ | ܳ௙௖ ൧

and Kirchhoff’s current law equations can be written as

ܳ௙ܫ௘ = 0 (3.7)

that is

 ൣܷ ܳ௙௖൧ ൤
௕ܫ
௖ܫ
൨ = 0 (3.8)

where ܫ௕ is the vector of branch currents and ܫ௖ is the vector of chord currents. So

௕ܫ = −ܳ௙௖ܫ௖ (3.9)

Similarly, we have

௙ܤ = ௙௧ ܷ ൧ܤ ൣ = ൣ− ܳ௙௖௧ ܷ ൧ (3.10)

Chords Branche

66

and Kirchhoff’s voltage law equations can be written as

௙ܤ ௘ܸ = 0 (3.11)

that is

 ൣ− ܳ௙௖௧ ܷ ൧ ൤ ௕ܸ
௖ܫ
൨ = 0 (3.12)

where ௕ܸ is the vector of branch voltage and ௖ܸ is the vector of chord voltage. So

௖ܸ = − ܳ௙௖௧ ௕ܸ (3.13)

3.7 Cutset Laplacian Matrix and Kirchhoff Index

Recall that the node-to-conductance matrix Y, also called the reduced Laplacian matrix,

is given by

ܻ = ௧ (3.14)ܣܹܣ

 where A is the reduced incidence matrix of G with respect to a specified reference

vertex and W is the diagonal matrix of conductances of the elements of G.

 Since each row of A represents a cut vector (set of edges incident on a node), we

can generalize the notion of Laplacian matrix using fundamental cutset ܳ௙ in place of A.

Definition 3.3. Generalized Laplacian matrix

 Let T be a spanning tree of a graph G and ܳ௙ be the fundamental cutset matrix

of G with respect to T. If W is the diagonal matrix of edge conductances of G, then the

cutset Laplacian matrix ௧ܻ of G is given by

௧ܻ = ܳ௙ܹܳ௙௧ (3.15)

67

 The matrix ௧ܻ is also called the conductance matrix of a multiport resistance

network, as viewed from the branches of T (called ports). The Matrix ܼ௧ = ௧ܻ
ିଵ is called

the resistance matrix of the multiport network.

 Each diagonal entry of ܼ௧ is the resistance ݎ௜௝ across the nodes i and j of the

corresponding branch of the defining branch of T.

 For example, the cutset Laplacian matrix ௧ܻ of the connected graph of Figure

3.3(a) with respect to fundamental cutset matrix ܳ௙ given in (3.2) is

௧ܻ =

⎣
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1

0 0 −1
0 0 −1
0 0 1

 0
−1
 0

0 0 0
0 0 0 1 0 0

0 1 0 1 0⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1000000
0100000
0010000
0001000
0000100
0000010
0000001

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

01010
00111
10000
01000
00100
00010
00001




⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ௧ܻ =

⎣
⎢
⎢
⎢
⎡
 2 1 −1
 1 3 −1
−1 −1 2

 0 0
−1 0
 0 0

 0 −1 0
 0 0 0 2 0

 0 1 ⎦
⎥
⎥
⎥
⎤

So, we get,

ܼ௧ = ௧ܻ
ିଵ =

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡
 2 1 −1
 1 3 −1
−1 −1 2

 0 0
−1 0
 0 0

 0 −1 0
 0 0 0 2 0

 0 1 ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞

ିଵ

 =

⎣
⎢
⎢
⎢
⎡ 8 11⁄ −2 11⁄ 3 11⁄
−2 11⁄ 6 11⁄ 2 11⁄
3 11⁄ 2 11⁄ 8/11

−1 11⁄ 0
3 11⁄ 0
1 11⁄ 0

−1 11⁄ 3 11⁄ 1 11⁄
0 0 0 7 11⁄ 0

0 1⎦
⎥
⎥
⎥
⎤

68

 The (1, 1) entry of above matrix ܼ௧ is the resistance ݎଵସ. Also, element ܼ௜௝ = ௝ܸ,

where ௝ܸ is the voltage across the jth branch of T when a current source of unit value is

connected across the nodes of the ith branch of T, as shown in Figure 3.5.

Figure 3.5: Voltage ࢐ࢂ across the jth branch when a current source of 1A is connected
across the nodes of the ith branch.

3.8 Computing Kirchhoff Index: A Matrix Transformation Approach

In Chapter 2 we presented a formula to compute the Kirchhoff index using the elements

of (௡ܻ)ିଵ, where ௡ܻ is the Laplacian matrix. In this section, we present a method to

compute the Kirchhoff index from ܼ௧ using a matrix transformation approach.

Note that in view of our definition of the cutset Laplacian, ௡ܻ may be viewed as

the cutset Laplacian with respect to the star stree ௡ܶ (see Figure 3.6).

The matrix (௧ܻ)ିଵ = (ܳ௙ܹܳ௙௧)ିଵ specifies the relationship between the

voltages across the branches of T and the currents injected through these branches (see

Figure 3.7).

The matrix ܼ௧ = ௧ܻ
ିଵ relates ௧ܸ and ܫ௧ as

௧ܸ = ܼ௧ܫ௧ (3.16)

-

+

1 A
Branch ௜ܾ

+
Branch
 ܾ௜

-

+

-

Branch
 ௝ܾ

+

-

௝ܸ ௜ܸ

69

If ௡ܻ is the Laplacian matrix when the star tree is used, then

௡ܸ = ܼ௡ܫ௡ (3.17)

where ܼ௡ = ௡ܻ
ିଵ.

We can find the Kirchhoff index if ܼ௡ is known using (2.39).

 Given ܼ௧, our interest is to determine ܼ௡ using a matrix transformation

approach. We can then apply (2.38) on ܼ௡ to compute the Kirchhoff index.

 Now we show how to relate ܼ௡ with ܼ௧.

Figure 3.7: Voltages across the branches of T and current injected through branches.

Branch ܾ௔
 ௔ܫ

௔ܸ

-

+

Reference Node

n 3 2 1

Figure 3.6: Star tree ࢔ࢀ

70

 Note that each row of the reduced incidence matrix A represents a cut. So the

rows of A represent ݊ − 1 linearly independent cutsets. This means each row of ܳ௙ can

be written as a linear combination of the rows of A.

ܳ௙ = ൣ ܷ | ܳ௙௖ ൧ = [ଵଶܣ ଵଵܣ]ଵଵିଵܣ

 where ܣଵଵ is the submatrix of columns of A corresponding to the branches of T.

 Now

 ௧ܻ = ܳ௙ܳܩ௙௧

 = ௧(ܣଵଵିଵܣ)ܩܣଵଵିଵܣ

 = ௧(ଵଵିଵܣ) (௧ܣܩܣ)ଵଵିଵܣ

 = ଵଵିଵܣ ௡ܻ(ܣଵଵିଵ)௧

 So

 ܼ௧ = ௧ܻ
ିଵ

 = ଵଵ௧ܣ ௡ܻ
ିଵܣଵଵ

 = ଵଵ௧ܣ ܼ௡ ܣଵଵ

 So

 ܼ௡ = (3.18) (ଵଵିଵܣ)௧ܼ௧(ଵଵିଵܣ)

 Since

 ௧ܸ = ଵଵ௧ܣ ௡ܸ

 ௡ܸ = ௧ (3.19)(ଵଵିଵܣ)

 To compute (ܣଵଵିଵ)௧ we procced as follows. Consider any node i and the

corresponding node-to-datum voltage ௜ܸ.

 Let ௜ܲ be the path in T from node i to the datum node. Then ௡ܸ is the algebraic

sum of the voltages of the edges in ௜ܲ. For example, in Figure 3.8

71

ଵᇱݒ = ଶݒ + ଷݒ − . ସݒ

 Thus, we have the following formula to compute (ܣଵଵିଵ)௧

ܽ௜௝ିଵ =

⎩
⎪
⎨

⎪
⎧

 1, if the edge ௝݁ ∈ ܶ lies in the path ௜ܲ and is oriented in the direction
from node ݅ to datum;

−1, if the edge ௝݁ ∈ ܶ lies in the path ௜ܲ and is oriented in the direction
from datum to node ݅;

 0, if the edge ௝݁ ∈ ܶ is not in path ௜ܲ;

Consider the graph in Figure 3.3(a) and the spanning tree T in Figure 3.3(b). The

graph containing T and the star tree ௡ܶ (dashed lines) is shown in Figure 3.8.

Figure 3.8: Graph containing spanning tree T and star tree (dotted) given in Figure 3.3.

For the graph in Figure 3.8

⎣
⎢
⎢
⎢
⎢
ଵݒ⎡

ᇱ

ଷᇱݒ
ସᇱݒ

ହᇱݒ
଺ᇱݒ ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1 1 −1
0 0 −1
0 1 −1

 0 0
 0 0
 0 0

0 1 −1
0 1 −1 −1 0

−1 −1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
ଶݒ
ଷݒ
ସݒ
ହݒ
⎦଺ݒ
⎥
⎥
⎥
⎤

= ௧(ଵଵିଵܣ)

72

 One can easily see that (ܣଵଵିଵ)௧ is −(ܤ௙௧), a submatrix of ܤ௙ of the graph in

Figure 3.8.

Thus, we can rewrite (3.18) as

ܼ௡ = ௙௧௧ܤ௙௧ܼ௧ܤ

 This is the transformation we have been looking for.

Example 3.8.1. For the graph in Figure 3.3(a), the datum node is ݒଶ. We get the

following reduced Laplacian matrix by removing the 2nd row and 2nd column from the

Laplacian Matrix of given graph.

௡ܻ = (̅ݖ)ܮ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

11000
13110

01311
01130
00102







⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Calculating ࢔ࢆ by using reduced Laplacian matrix

ܼ௡ = (௡ܻ)ିଵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

11000
13110

01311
01130
00102







⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤
ିଵ

ܼ௡ =

⎣
⎢
⎢
⎢
⎡
0.73 0.27 0.45
0.27 0.72 0.55
0.45 0.55 0.91

0.36 0.36
0.64 0.64
0.73 0.73

0.36 0.64 0.73
0.36 0.64 0.73 1.18 1.18

1.18 2.18 ⎦
⎥
⎥
⎥
⎤

73

Calculating ࢔ࢆ by using cutset Laplacian matrix

ܼ௡ = ௙௧௧ܤ௙௧ܼ௧ܤ

ܼ௡ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

11110
01110
00110
00100
00111







⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10000
064.009.027.009.0
009.072.018.027.0
027.018.055.018.0
009.027.018.072.0






⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10000
11000
11111
11101

00001




⎦
⎥
⎥
⎥
⎥
⎥
⎤

ܼ௡ =

⎣
⎢
⎢
⎢
⎡
0.73 0.27 0.45
0.27 0.72 0.55
0.45 0.55 0.91

0.36 0.36
0.64 0.64
0.73 0.73

0.36 0.64 0.73
0.36 0.64 0.73 1.18 1.18

1.18 2.18 ⎦
⎥
⎥
⎥
⎤

 Using (2.41), Kirchhoff Index of G is

(ܩ)ܫܭ = 16.8.

3.9 Kirchhoff Polynomial of a Graph and a Formula for Kirchhoff

 Index

In this section, we determine a formula for the Kirchhoff index in terms of the elements

of ܼ௧. We define a new concept called the Kirchhoff polynomial of a graph. This is a

generalization of the formula in (2.39) in terms of the elements of ܼ௡ = (௡ܻ)ିଵ, where

௡ܻ is the reduced Laplacian matrix of the graph.

74

Definition 3.4. Kirchhoff polynomial of a graph.

 Let ௧ܻ be the cutset Laplacian matrix of a resistance network G with respect to a

spanning tree T. Let ܼ௧ = (௧ܻ)ିଵ = Kirchhoff polynomial of G is a polynomial .[௜௝ݖ]

∑ ௜௝௜,௝ݖ௜௝ܥ that express Kirchhoff index of G in terms of the elements of ܼ௧. That is

Kirchhoff index = ∑ܥ௜௝ݖ௜௝.

 We first determine a formula for each ݎ௜௝. Consider the path from vertex i to

vertex j in the spanning tree T. To illustrate the ideas in our development, let this path

be as given in Figure 3.9.

Figure 3.9: Path from vertex i to j.

For convenience, in Figure 3.9 the ports are oriented similarly. But in general,

the ports can be oriented arbitrarily.

 Consider now the 3-node equivalent representation of the graph as shown in

Figure 3.10. This network can be obtained by repeated star-delta transformation at the

remaining nodes.

Then by equation (2.51)

௕௝ݎ = ௕௖ݎ + ௝௖ݎ − 2 ௝ܸ௖ = ௕௖ݎ + ௝௖ݎ + ௕௖ݎ + ଷସݖ2

Port 3 Port 4

j c b a i

Port 2 Port 1

75

 Figure 3.10: 3-node equivalent representation of the graph given in Figure 3.9.

Note that, if port 4 is oriented from j to c, then

௕௝ݎ = ௕௖ݎ + ௖௝ݎ − ଷସݖ2

as in equation (2.51).

Next consider ݎ௔௝, as shown in Figure 3.11,

௔௝ݎ = ௔௕ݎ + ௕௝ݎ − 2 ௕ܸ௝

= ௔௕ݎ + ௕௝ݎ + + ଶଷݖ)2 (ଶସݖ

In the above we have replaced ௕ܸ௝ by −ݖଶଷ − . ଶସݖ

 Figure 3.11

So

௔௝ݎ = ௔௕ݎ + ௕௖ݎ + + ௖௝ݎ + ଶଷݖ)2 (ଶସݖ + ଷସݖ2

Continuing

௜௝ݎ = ௜௔ݎ) + ௔௕ݎ + ௕௖ݎ + (௖௝ݎ + ଵଶݖ)2 + + ଵଷݖ (ଵସݖ + + ଶଷݖ)2 (ଶସݖ + .ଷସݖ2

 ଶଷݖ− ଶସݖ−

+ ௖ܸ௝ + ௕ܸ௖ + 1 volt

Port 4

-

b
+

+

Port 3
ଷସݖ = − ௝ܸ௖

j

c

 ଷସݖ

-
j

c b a

76

Note that resistances ݎ௜௔, ݎ௔௕, ݎ௕௖ and ݎ௖௝ are diagonal elements of ܼ௧. For

instance, ݎ௔௕ is the diagonal element ݖଶଶ.

From the above we can see that the transfer resistance, say ݖଶସ appears exactly

once as 2ݖଶସ in the expressions of each of the resistance distances ݎ௜௝, ݎ௔௝ and ݎ௕௝.

Generalizing this we can state that each ݖ௞௟ appears exactly once as 2ݖ௞௟ in each ݎ௫௬

when the unique path in T containing ports x and y spans ports k and l as shown in

Figure 3.12. Each element ݖ௜௜ appears exactly once in each ݎ௫௬ when the unique path

from x-to-y in T spans port i.

Figure 3.12

If ்ܩ is the complete graph on the vertices of T then

௞௟ܥ = 2(# number of edges in ்ܩ that span ports ݇ and ݈), if ݇ and ݈ are

 similarly oriented

 = −2(# number of edges in ்ܩ that span ports ݇ and ݈), otherwise

and

௞௞ܥ = (# number of edges in the ݂ − cutset defined by port ݇)

Suppose we remove port k from the tree then the T will be disconnected into two

trees. One of them will not contain port l. Let this tree be called ௞ܶ௟. If we remove port l

ba
Port yPort x a Port k Port l

77

from T, then the tree that does not contain port k will be denoted by ௟ܶ௞ . Then we can

see that

௞௟ܥ = 2| ௞ܶ௟| ∙ | ௟ܶ௞|

Here | ௞ܶ௟| = # number of nodes in ௞ܶ௟.

See Figure 3.13.

Also

௞௞ܥ = ห ௞ܶ
(ଵ)ห ∙ ห ௞ܶ

(ଶ)ห

where ௞ܶ
(ଵ) and ௞ܶ

(ଶ) are the two trees that result when port k is removed from the

tree.

Note: ܥ௞௟ = ௟௞ܥ .

Figure 3.13

Summarizing the above discussion, we have the following theorem

Theorem 3.9. Given a graph G with weight matrix W. Let T be a spanning tree of G.

Let ܼ௧ = be the resistance matrix with respect to T. Then the Kirchhoff Index [௜௝ݖ]

KI(G) is given by

k l

௟ܶ௞ ௞ܶ௟

78

(ܩ)ܫܭ = ∑ ௜௜ܼ௜௜௜ܥ + ∑ ௜௝ܼ௜௝௜,௝ܥ (3.17)

 = ∑ ห ௞ܶ
(ଵ)ห ∙ ห ௞ܶ

(ଶ)ห௞ + 2 ∑ ±| ௞ܶ௟| ∙ | ௟ܶ௞|௞௟
௞வ௟

.

In the case when T is star tree

௜ܶ
(ଵ) = 1 for all ݅

௜ܶ
(ଶ) = ݊ − 1 for all ݅

| ௜ܶ௝| = 1

| ௝ܶ௜| = 1

Then

௜௜ܥ = ݊ − 1

௜௝ܥ = ±1, ݅ ≠ ݆, because all ports are dissimilarly oriented.

and

(ܩ)ܫܭ = (݊ − −(௧ܼ)ݎܶ(1 2 ∑ ௜௝௜வ௝ݖ (3.18)

This verifies formula (2.41) for the Kirchhoff index when the star tree is used in

defining the cutset Laplacian matrix.

Example 3.8.2. For the graph given in Figure 3.8.

ܼ௧ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10000
064.009.027.009.0
009.072.018.027.0
027.018.055.018.0
009.027.018.072.0






⎦
⎥
⎥
⎥
⎥
⎥
⎤

79

The port numbers for Figure 3.8 are

Edge ݁ଶ  Port 1, Edge ݁ଷ  Port 2, Edge ݁ସ  Port 3,

Edge ݁ହ  Port 4, Edge ݁଻  Port 5.

For the tree T in Figure 3.3, ܥ௜௝ are

ଵଵܥ = ଵଶܥ ,5 = ଵଷܥ ,2 = ଵସܥ ,1− = ଵହܥ ,2 = 1,

ଶଵܥ = ଶଶܥ ,2 = ଶଷܥ ,8 = ଶସܥ ,4− = ଶହܥ ,4− = −2,

ଷଵܥ = ଷଶܥ ,1− = ଷଷܥ ,4− = ଷସܥ ,5 = ଷହܥ ,2 = 1,

ସଵܥ = ସଶܥ ,2 = ସଷܥ ,4− = ସସܥ ,2 = ସହܥ ,8 = 4,

ହଵܥ = ହଶܥ ,1 = ହଷܥ ,2− = ହସܥ ,1 = ହହܥ ,4 = 5,

 Using (3.17), we get Kirchhoff Index

ܫܭ = 16.8.

3.10 Summary

In this chapter, we have given an overview of the fundamental cutsets and fundamental

circuits of a graph. We generalized the notion of Laplacian matrix using the

fundamental cutset matrix. We presented two approaches to compute the Kirchhoff

Index; first approach is based on a matrix transformation and the second approach used

the concept of Kirchhoff polynomial of a graph.

In the next chapter, we generalize the notion of Kirchhoff index and study its

relationship to Foster’s theorems.

80

Chapter 4

Weighted Kirchhoff Index of a Graph and Generalization of Foster’s

Theorems

In 1949, Foster (Foster, 1949) proved a theorem called Foster’s First Theorem. This

theorem gives an identity involving the sum of resistance distances. A graph-theoretic

proof of this theorem was given in (Thulasiraman, et al., 1983) . In (Tetali, 1994) Tetali

proved this theorem using certain results from the theory of Markov Chains. In 1961,

Foster presented an extension of his first theorem (called Foster’s second theorem).

Building on Tetali’s probabilistic approach, Palacios gave another proof of Foster’s

second theorem (Palacios, 2004). In this paper, Palacios also gave an extension of

Foster’s second theorem. In 2007, Cinkir (Cinkir, 2007) gave a generalization of all of

Foster’s theorems. These extensions are about the sum of resistance values over paths

consisting of a certain number of edges. Connection between resistance distances and

random walks on graph have been discussed in several works. See (Thulasiraman, et al.,

2015) and (Doyle & Snell, 1984) for examples. See (Coppersmith, et al., 1990) and

(Tetali, 1991) for the application of random walk and Foster’s theorem in the design of

on-line algorithms.

In this chapter, we provide further advances on the concept of Kirchhoff index.

Our main contributions are the introduction of the concept of Weighted Kirchhoff index

of a graph and its relationship to Foster’s theorems. Specifically, we first show that

Foster’s theorems can be presented as results involving the sum of weighted ݎ௜௝’s

 when the weights are chosen appropriately. We then give a generalization of (௜௝ݎ௜௝ݓ)

81

Foster’s theorems that retains the circuit-theoretic flavor and elegance of these theorems

in section 4.3. We also present a dual form of Foster’s first theorem in section 4.4.

4.1 Basic Concepts and Definitions

Consider a network N of positive resistances. Let V be the set of nodes in N. Let n

denote the number of nodes in N. We assume that the nodes are numbered 1, 2, …, n.

So ܸ = {1, 2, . .݊}. Let ݕ௜௝ be the value of the conductance of the resistance element

connecting nodes i and j. Let ݎ௜௝ denote the input resistance of N across the pair of nodes

i and j. ݎ௜௝ is also called the driving point resistance across nodes i and j.

4.1.1 Star-Delta transformation

Consider a node v. Let ݕଵ, … , ௞ݕ be the conductances of the edges incident on v, with

1, 2, … , ݇ denoting the other end nodes of these edges. Star-delta transformation at v is

the operation of removing node v from N and adding a new element (݅, ݆) with

conductance ݕ௜ݕ௝ ⁄(ݒ)݀ for all ݇ ≤ ݅, ݆ ≤ ݇ (see Figure 4.1).

It is well known in circuit theory that the input resistance across nodes i and j in

ܰᇱ is same as ݎ௜௝ in N as long as these nodes remain in ܰᇱ.

4.1.2 Multiple star-delta transformations

Let D be a proper subset of nodes of N, that is, ܦ ⊂ ܸ. Suppose we perform star-delta

transformations successively at the nodes in D, one at a time. Let ܰ(ܦ) denote the

resulting network. Clearly ܰ(ܦ) has ݊ − ݇ nodes when ݇ = At the end of the .|ܦ|

multiple star-delta transformations, a new resistance element connecting i and j will be

82

created in ܰ(ܦ). Let the conductance value of the new element be ௜ܵ௝(ܦ). Thus, the

total value of the conductance of the elements connecting i and j in ܰ(ܦ) will be ݕ௜௝ +

 ௜ܵ௝(ܦ). See Figure 4.2.

 Figure 4.2: Multiple star-delta transformation.

Let

(݇)௜௝ݏ = ෍ ௜ܵ௝(ܦ)
஽⊂௏

|஽|ୀ௞

. (4.1)

That is, ݏ௜௝(݇) is the sum of all ௜ܵ௝(ܦ)’s for all subsets of nodes of size k.

ଶସݕ =
ସݕଶݕ

ଵݕ + ଶݕ + ଷݕ + ସݕ

Figure 4.1: Star-delta transformation.

83

For example, consider a 5-node resistance network N given in Figure 4.3. For this, there

are ten 3-element subsets of nodes. These subsets are:

{ܽ,ܾ, ܿ}, {ܽ, ܾ,݀}, {ܽ, ܾ, ݁}, {ܽ, ܿ,݀}, {ܽ, ܿ, ݁}, {ܽ, ݀, ݁}, {ܾ, ܿ,݀}, {ܾ, ܿ, ݁}, {ܾ, ݀, ݁}, {ܿ,݀, ݁}

Figure 4.3: A 5-node resistance network N.

For each subset, D of nodes, the corresponding network ܰ(ܦ) is shown in Figure 4.4. In

this figure, dotted edges indicate the new resistance elements along with the

corresponding ௜ܵ௝(ܦ)’s. Then, using (4.1) we have

௔௕(2)ݏ =
3
7 +

1
3 + 1 =

37
௔௖(2)ݏ , 21 =

2
3 +

4
11 +

4
11 =

46
33,

௔ௗ(2)ݏ =
3
7 +

9
11 +

1
3 =

365
௔௘(2)ݏ ,231 =

2
7 +

2
3 +

2
7 =

26
21 ,

௕௖(2)ݏ =
4

11 +
4

11 =
8

௕ௗ(2)ݏ ,11 =
5
6 + 1 +

5
6 =

8
3

௕௘(2)ݏ =
1
3 +

9
11 +

3
7 =

365
௖ௗ(2)ݏ , 231 =

4
11 +

4
11 =

8
11,

௖௘(2)ݏ =
4

11 +
4

11 +
2
3 =

46
ௗ௘(2)ݏ , 33 =

9
11 +

1
3 +

3
7 =

365
231

84

 (a) Star-Delta transformation at nodes {a, b} (b) Star-Delta transformation at nodes {a, c}

(c) Star-Delta transformation at nodes {a, d} (d) Star-Delta transformation at nodes {a, e}

(e) Star-Delta transformation at nodes {b, c} (f) Star-Delta transformation at nodes {b, d}

(g) Star-Delta transformation at nodes {b, e} (h) Star-Delta transformation at nodes {c, d}

(i) Star-Delta transformation at nodes {c, e} (j) Star-Delta transformation at nodes {d, e}

Figure 4.4: Corresponding network N(D) for each subset D of nodes.

85

4.2 Foster’s Theorems

4.2.1 Foster’s first theorem

Consider a resistance N. Let N have n nodes and m elements ݁ଵ, ݁ଶ, … , ݁௠. The

resistance and conductance of each ݁௜ will be denoted by ݖ௜ and ݕ௜ ቀ= ଵ
௭೔
ቁ, respectively.

Also, the two nodes of each ݁௜ will be denoted by ݅ଵ and ݅ଶ. If ݎ௜భ,௜మ denotes the effective

resistance of N across the pair of nodes ݅ଵ and ݅ଶ, then we have the following theorem

due to Foster (Foster, 1949). For the sake of completeness, we provide a proof of this

theorem repeated from (Thulasiraman, et al., 1983).

Theorem 4.1 (Foster’s First Theorem)

 ෍ݕ௜ݎ௜భ,௜మ

௠

௜ୀଵ

= ݊ − 1 (4.2)

Proof. Let T denote the set of all the spanning trees of N and, for each i, let ௜ܶ denote

the set of all the spanning 2-trees of N separating the nodes ݅ଵ and ݅ଶ. That is, ௜ܶ is the

set of all the spanning trees of type ௜ܶభ,௜మ . Note that adding ݁௜ to a spanning 2-tree

separating ݅ଵ and ݅ଶ will generate a spanning tree. Further, let (ݐ)ݓ denote the

conductance product of spanning tree t and ݓ(ݐ௜) denote the conductance product of a

spanning 2-tree ݐ௜ separating ݅ଵ and ݅ଶ. It is easy to see that if ݐ = ௜ݐ ∪ ݁௜ then

(ݐ)ݓ = .(௜ݐ)ݓ௜ݕ

If

ܹ(ܶ) = ෍(ݐ)ݓ
௧∈்

and

86

ܹ(௜ܶ) = ෍ (௜ݐ)ݓ
௧೔∈்೔

then it is known (see 2.33, Chapter 2) that

௜భ,௜మݎ =
ܹ(௜ܶ)
ܹ(ܶ)

Thus, to prove the theorem, we need to show that

 ෍ݕ௜ܹ(௜ܶ)
௠

௜ୀଵ

= (݊ − 1)ܹ(ܶ) (4.3)

or

 ෍ݕ௜

௠

௜ୀଵ

෍ (௜ݐ)ݓ
௧೔ ∈ ்೔

= (݊ − 1)෍(ݐ)ݓ
௧∈்

.

Consider any tree conductance product (ݐ)ݓ.We may assume, without loss of

generality, that the spanning tree t contains the elements ݁ଵ, ݁ଶ, … , ݁௡ିଵ. Then for every

݅ = 1, 2, … , ݊ − 1, ݐ − ݁௜ is a spanning 2-tree ݐ௜ separating the nodes ݅ଵ and ݅ଶ. So for

every ݅ = 1, 2, … ,݊ − 1,

(ݐ)ݓ = (௜ݐ)ݓ௜ݕ

for some spanning 2-tree ݐ௜. Thus, the conductance product (ݐ)ݓ appears exactly once

in each ݕ௜ݓ(ݐ௜), ݅ = 1, 2, … , ݊ − 1. In other words, each (ݐ)ݓ appears ݊ − 1 times in

both sides of (4.2). The theorem follows since each ݕ௜ݓ(ݐ௜) corresponds to a unique

 .(ݐ)ݓ

4.2.2 Foster’s second theorem

In this section, we state and prove Foster’s second theorem. This theorem is based on

the operation of star-delta transformation which we define as follows.

87

Consider a node v. Let ݕଵ, … , ௞ݕ be the conductances of the edges incident on v,

with 1, 2, … ,݇ denoting the other end nodes of these edges. Recall that star-delta

transformation at v removes node v from N and adds a new element (݅, ݆) with

conductance ݕ௜ݕ௝ ⁄(ݒ)݀ for all ݇ ≤ ݅, ݆ ≤ ݇ (see Figure 4.1).

Figure 4.5. illustrates an example to calculate the effective resistance ܴଵଶ

between two vertices ݒଵ and ݒଶ by using Star-Delta transformation method.

The following theorem is by Foster (Foster, 1961).

Theorem 4.2 (Foster’s Second Theorem) Consider a resistance network N. For any

pair of conductances ݕ௜ and ݕ௝ incident on common node v, let ݎ௜௝ denote the effective

resistance across the two remaining nodes of ݕ௜ and ݕ௝. Let d(v) be the sum of the

conductances of the elements incident on v. Then

 ෍෍ݎ௜௝ݕ௜௝
௜ழ௝

=
௩∈௏

෍෍ݎ௜௝
௝ݕ௜ݕ
(ݒ)݀

௜ழ௝

= ݊ − 2 (4.4)

 where the sum is extended over all pairs of adjacent elements incident on a common

node v.

Proof. Consider any node v in N. Star-delta transformation at v results in a network N′

with ݊ − 1 nodes. Applying Foster’s First theorem to N′ we get

 ෍ ௜௝ݕ௜௝ݎ
௜ழ௝∈ேᇲ

+ ෍ݖ௞ݕ௞ = ݊ − 2. (4.5)

Here the first summation is over all pairs of elements of N′ which reflect the new

conductances created by star-delta transformation at node v. The second summation is

over all conductances of N that are not connected to v. Note that ݕ௞ is a conductance

and ݖ௞ is the effective resistance across the nodes of this conductance.

88

Figure 4.5: Calculating effective resistance distance between nodes ࢜૚ and ࢜૛.
Here, ݃ଵଶ is the conductance between nodes ݒଵ and ݒଶ.

݃ଵଶ = ଻
ହ
 , so ݎଵଶ = ଵ

௚భమ
= ହ

଻

89

Summing (4.5) over all the n vertices in N, we get

෍ ෍ݎ௜௝ݕ௜௝
௩௜ழ௝∈ேᇲ

+ ෍෍ݖ௞ݕ௞ = ݊(݊ − 2).

The first sum is over all pairs of vertices adjacent to a common node v in N. The second

sum is

 ෍෍ݖ௞ݕ௞ = (݊ − 2)෍ݖ௜ݕ௜ (4.6)

because conductance ݕ௞ appears exactly ݊ − 2 times in the double summation. So

 ෍ ෍ݎ௜௝ݕ௜௝
௩௜ழ௝∈ேᇲ

= ݊(݊ − 2) − (݊ − 2)෍ݖ௜ݕ௜

 = ݊(݊ − 2)− (݊ − 2)(݊ − 1) , applying Foster’s First theorem

= ݊ − 2

This completes the proof.

4.3 Weighted Kirchhoff Index of a Resistance Network, Foster’s

 Theorems, and Generalization

The Kirchhoff Index of a resistance network N is given by

(ܰ)ܫܭ = ෍ݎ௜௝
௜ழ௝

.

Suppose we associate a weight ݓ௜௝ to each ݎ௜௝. Then the corresponding weighted

Kirchhoff index of N is defined as

(ܰ)ܫܭܹ = ෍ݓ௜௝ݎ௜௝
௜ழ௝

.

Next, we present foster’s two theorems stated in section 4.2 using the concept of

weighted Kirchhoff index.

90

4.3.1 Foster’s first theorem using weighted Kirchhoff index

Theorem 4.3. If ݓ௜௝ = ௜௝ݕ then

(ܰ)ܫܭܹ = ෍ݕ௜௝ݎ௜௝
௜ழ௝

= ݊ − 1.

Note: ݕ௜௝ = 0 if there is no resistance element connecting i and j. So, in that case, we

get the original statement of Foster’s theorem, namely,

෍ݕ௜௝ݎ௜௝
௜ ~ ௝

= ݊ − 1.

Note: ݅ ~ ݆ means there is an element connecting i and j.

4.3.2 Foster’s second theorem using weighted Kirchhoff index

Theorem 4.4. If ݓ௜௝ = ௜௝(1) thenݏ

(ܰ)ܫܭܹ = ෍ݏ௜௝(1)ݎ௜௝
௜ழ௝

= ݊ − 2.

We next state and prove the main contribution of this chapter that generalizes Foster’s

theorems.

4.3.3 Generalized Foster’s theorem

Theorem 4.5. If ݓ௜௝ = ,(݇)௜௝ݏ ݇ ≥ 1 then

(ܰ)ܫܭܹ = ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= (݊ − ݇ − 1)൬
݊ − 1
݇ − 1൰

Proof. Consider a resistance network N of n nodes with nodes numbered 1, 2, …, n. Let

ܸ = {1, 2, … ,݊}. Let D be a proper subset of V and |ܦ| = ݇. Then the network ܰ(ܦ)

91

that results after Star-Delta Transformations at the nodes of D will have ݊ − ݇ nodes.

So, applying Foster’s Theorem on ܰ(ܦ), we get

෍(ݕ௜௝ + ௜ܵ௝(ܦ))ݎ௜௝
௜ழ௝

= ݊ − ݇ − 1. (4.7)

Equation (4.7) can be rewritten as

 ෍ ௜ܵ௝(ܦ)ݎ௜௝
௜ழ௝

+ ෍ݕ௜௝ݎ௜௝
௜ழ௝

= ݊ − ݇ − 1. (4.8)

Let us now write similar equations for all the ൫ ௡௞ ൯ subsets of V of size k and sum up

both the right-hand side and left-hand side terms.

Then we get

 ෍෍ ௜ܵ௝(ܦ)ݎ௜௝
௜ழ௝஽⊂௏

+ ෍෍ݕ௜௝ݎ௜௝
௜ழ௝

= ቀ
݊
݇ ቁ (݊ − ݇ − 1).

஽⊂௏

 (4.9)

Equation (4.9) can be rewritten as

 ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

+ ෍෍ݕ௜௝ݎ௜௝
௜ழ௝

= ቀ
݊
݇ ቁ (݊ − ݇ − 1).

஽⊂௏

 (4.10)

Consider the second term ∑ ∑ ௜௝௜ழ௝ݎ௜௝ݕ ஽⊂௏ in (4.9). In this summation, ݕ௜௝ݎ௜௝

will be present only if D does not contain both i and j. There are ൫ ௡ିଶ௞ ൯ subsets of V

that satisfy this requirement. In all other cases, ݕ௜௝ݎ௜௝ will not be present. Thus, each

term ݕ௜௝ݎ௜௝ appears exactly ൫ ௡ିଶ௞ ൯ times in the second sum (4.9). So, we can rewrite

(4.9) as

෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

+ ൬
݊ − 2
݇ ൰෍ݕ௜௝ݎ௜௝

௜ழ௝

= ቀ
݊
݇ ቁ (݊ − ݇ − 1).

92

That is

∑ ௜௝௜ழ௝ݎ(݇)௜௝ݏ + ൫ ௡ିଶ௞ ൯(݊ − 1) = ൫ ௡௞ ൯ (݊ − ݇ − 1) , by Theorem 4.3.

So,

 ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= (݊ − ݇ − 1) ቀ
݊
݇ ቁ − ൬

݊ − 2
݇ ൰ (݊ − 1)

 = (݊ − ݇ − 1) ൤ቀ
݊
݇ ቁ −

(݊ − 1)
(݊ − ݇ − 1) ൬

݊ − 2
݇ ൰൨

 = (݊ − ݇ − 1) ቈቀ
݊
݇ ቁ −

(݊ − 1)!
݇! (݊ − ݇ − 1)!

቉

 = (݊ − ݇ − 1) ൤ቀ
݊
݇ ቁ − ൬

݊ − 1
݇ ൰൨

 = (݊ − ݇ − 1) ൤൬
݊ − 1
݇ − 1 ൰൨ ,

where the identity ൫௡௥൯ = ൫௡ିଵ௥ିଵ൯ + ൫௡ିଵ௥ ൯ is used.

For example, the ܹܫܭ(ܰ) of the 5-node resistance network N (Figure 4.3) for

݇ = 2 is calculated below. Note that |ܦ| = ݇. The resistance distance ݎ௜௝ for each pair

of nodes for the 5-node network N (Figure 4.3) is

௔௕ݎ = ௔௖ݎ ,0.475 = ௔ௗݎ ,0.875 = ௔௘ݎ ,0.475 = 0.500,

௕௖ݎ = ௕ௗݎ ,0.600 = ௕௘ݎ ,0.400 = ௖ௗݎ ,0.475 = 0.600,

௖௘ݎ = ௗ௘ݎ ,0.875 = 0.475.

By using the above calculated ݎ௜௝’s and ݏ௜௝(2)’s, we can calculate ݎ௜௝ݏ௜௝(2) for each pair

of nodes as given below:

ܴ௔௕ݏ௔௕(2) = 0.837, ܴ௔௖ݏ௔௖(2) = 1.219, ܴ௔ௗݏ௔ௗ(2) = 0.750, ܴ௔௘ݏ௔௘(2) = 0.619,

ܴ௕௖ݏ௕௖(2) = 0.436, ܴ௕ௗݏ௕ௗ(2) = 1.066, ܴ௕௘ݏ௕௘(2) = 0.750, ܴ௖ௗݏ௖ௗ(2) = 0.436,

93

ܴ௖௘ݏ௖௘(2) = 1.219, ܴௗ௘ݏௗ௘(2) = 0.750,

So,

(ܰ)ܫܭܹ = ෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= 8.08 ≅ 8

For n = 5 and k = 2, we have by Theorem 4.5:

෍ݏ௜௝(݇)ݎ௜௝
௜ழ௝

= (݊ − ݇ − 1) ൬
݊ − 1
݇ − 1൰ = 3 ൬

4
1൰ = 8,

verifying the result in Theorem 4.5.

4.4 Dual Form of Foster’s First Theorem

Circuits and cutsets are dual concepts (Swamy & Thulasiraman, 1981). The cutset space

(KCL equations) has dimension ݊ − 1, rank of the graph, and the circuit space (KVL

equations) has dimension ݉ − ݊ + 1, nullity of the graph. Here m is the number of

resistance elements in N. Foster’s theorem states that the weighted Kirchhoff index of a

graph is ݊ − 1, the rank, when all weights are equal to unity. The question arises

whether one could assign weights appropriately so that the corresponding weighted

Kirchhoff index is equal to ݉ − ݊ + 1, the nullity. We shall answer this question in the

affirmative.

Note that the largest value that k can take in Theorem 4.5 is equal to n – 2, since

at least two nodes are needed to define resistance distance.

Theorem 4.6 (Dual of Foster’s First Theorem).

∑ ݊)௜௝ݏ − ௜௝௜ழ௝ݎ(2
௜~௝

= ݉− ݊ + 1 = nullity of graph G

94

Proof. For k = ݊ − 2, we can get from Theorem 4.5 that

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝

= ൬
݊ − 1
݊ − 3 ൰

 = ൬
݊ − 1

2 ൰

 =
(݊ − 1)(݊ − 2)

2

Rewriting the above, we get

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ~ ௝

+ ෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ≁௝

=
(݊ − 1)(݊ − 2)

2

where ݅ ~ ݆ means that there is an edge connecting i and j .

Since ݏ௜௝(݊ − 2) = ଵ
௥೔ೕ

 when ݅ ≁ ݆, we get

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ~ ௝

+ ݉′ =
(݊ − 1)(݊ − 2)

2

where ݉′ is the number of resistance elements that are not in the network.

Since ݉ᇱ = ௡(௡ିଵ)
ଶ

−݉ , we get

෍ݏ௜௝(݊ − ௜௝ݎ(2
௜ழ௝
௜ ~ ௝

=
(݊ − 1)(݊ − 2)

2 + ݉ −
݊(݊ − 1)

2

= ݉− ݊ + 1

= nullity of ܩ.

95

4.5 Summary

In this chapter, we first introduced the notion of Weighted Kirchhoff index of a graph.

We then presented Foster’s theorems in terms of the Weighted Kirchhoff index of a

graph. Two specific choices of weights to be associated with resistance distance result

in Foster’s first and second theorems. A generalization of Fosters theorems was then

discussed. Unlike the generalization in (Cinkir, 2011), our generalization retains the

elegance and circuit-theoretic flavor of Foster’s theorems. Our final result is to develop

a dual form of Foster’s first theorem. Since Foster’s theorems capture the impact of path

weights between nodes, we believe that our results provide a framework for the study of

cascading failures using resistance distances.

96

Chapter 5

Computing Kirchhoff Index

5.1 Introduction

Kirchhoff Index is a structural descriptor of networks based on resistance distance. In

this chapter, we discuss sequential and parallel algorithms for resistance distance by

using Star-delta transformation. To study the properties of large networks, they are

partitioned into clusters. The boundary nodes of the clusters connect them to other

clusters in network. We propose a novel three-step approximation algorithm for

Kirchhoff Index, by storing the resistance distance information of each cluster on its

boundary nodes. The quality of the approximation algorithm depends on the density of

the network.

 Section 5.2 describes the graph partition using the metis software. Section 5.3

describes the Graphics Processing Units (GPU) and CUDA for parallel approach. In

Section 5.4, we discuss the Star-Delta transformation algorithm using the series and

parallel reduction. The sequential and parallel algorithms for finding the resistance

distance are presented in Section 5.5. A novel approximation algorithm for resistance

distance and Kirchhoff index is presented in Section 5.6.

5.2 Graph Partition using METIS

Metis (Karypis & Kumar, 2013) is a serial software package for partitioning large

graphs. Metis consists of a fundamental library and a number of executable C programs.

Metis software is freely distributed and has been developed at the Department of

97

Computer Science & Engineering at the University of Minnesota. Metis software can be

downloaded directly from http://www.cs.umn.edu. The algorithms implemented in

Metis are based on the multi-level graph paradigm (Karypis & Kumar, 2013). Metis

uses KL algorithm developed by Kernighan-Lin (Kernighan & Lin, 1970) for graph

partitioning.

 We used Metis 5.1.0 software for our experiments. For graph partitioning we

used a stand-alone program, provided by Metis 5.x, called gpmetis. Gpmetis partitions a

given graph into specified number of clusters or parts. The input graph is stored in a

graphfile and the output of gpmetis is stored as graphfile.part.nparts where nparts is the

number of parts or clusters the graph was partitioned into.

The input graph file and output file for an undirected graph G are shown in

Figure 5.1. The undirected graph G given in Figure 5.1(a) consists of 25 nodes and 44

edges. The input graph file of graph G with n vertices and m edges consists of ݊ + 1

lines. The first line of input graph file is called header line and it contain the

information about the number of nodes and number of edges of graph G. The remaining

n lines contain the information about the actual structure of the graph G. In particular,

the ith line contains the information about the list of nodes, connected to node i.

Figure 5.1(b) illustrates the input graph file of graph G. The header line contains

the information about size of graph as n = 25 and m = 44. The remaining lines represent

all the nodes connected to a particular node. The output partition file of a graph G

consists of n lines with a single number per line. The ith line in the output file represents

the ith node of the graph and the number present at the ith line is the partition number

where the ith node belongs to. Partitions are numbered from 0 to ݇ − 1, where k is the

98

(a)

 (b) (c)

Figure 5.1: (a) Graph G. (b) Input graph file. (c) Output graph partition file.

99

the number of partition. Figure 5.1(c) shows the partition output file of graph G. The

four clusters of the partition graph are shown in Figure 5.2.

Figure 5.2: Graph G partitioned in four clusters.

100

5.3 Graphics Processing Units (GPUs) and CUDA

The Graphics Processing Units (GPUs) have a parallel processing architecture, which

allows GPUs to perform multiple calculations at the same time using multi-threading.

In 1999, Nvidia introduced the first GPU (GeForce256). The advantages of using the

GPUs over CPUs for computation are high performance and usage of less power and

lower cost. The interface for GPUs is Compute Unified Device Architecture (CUDA).

CUDA is a parallel computing platform created by Nvidia (Corporation, 2010). CUDA

is the first language designed by a GPU company to facilitate general-purpose

computing on GPUs. CUDA platform is designed to work with C and C++

programming languages. The CUDA platform gives direct access to the GPUs.

In the CPU-GPU heterogeneous environment, the GPU is called the device and

the CPU to which it is connected is called the host. The programs executing on the

CPU can access the GPU and data can be transferred from the host memory to the

device memory to perform specific tasks.

5.3.1 The architecture of GPU

The GPU consists of several Streaming Multiprocessors (SMs) and each multiprocessor

contains 8 cores. The cores have access to the shared memory of the specific Streaming

Multiprocessor. The Streaming Multiprocessors have access to the global memory (also

called device memory). NVIDIA Tesla C1060 Card consists of 30 SMs, 240 GPU

cores, 16 KB of shared memory in each of the SM (total of 480 KB of shared memory)

and 4 GB of global memory. The architecture of GPU C1060 is shown in Figure 5.3.

101

Figure 5.3: GPU architecture (NVIDIA Tesla C1060).

5.3.2 CUDA programming model and memory model

The CUDA programming model extends the C programming language. The C language

functions are called kernels in CUDA. A kernel is defined by using the “__global__”

declaration specifier. A CUDA kernel is executed by an array of threads. Each thread

has a unique threadID to compute memory addresses and to make control decisions.

CUDA follows the Single Program Multiple Data (SPMD) model. So, all threads run

the same code. In a CUDA program, the sequential code executes in a host (CPU)

thread and the parallel code executes in many device (GPU) threads. The threads are

grouped into blocks. Blocks can be one-dimensional, two-dimensional, or three-

102

dimensional arrays. Blocks can be identified by blockID. The blocks are grouped into

grids and grids can be one-dimensional or two-dimensional arrays. So, the batch of

threads that executes a kernel function at device is organized as a grid of thread blocks.

The CUDA programming model is shown in Figure 5.4.

Figure 5.4: CUDA programming model (Corporation, 2010)

On executing a kernel call, the data is transferred from the CPU to the GPU by

using memory copy functions and then transferred back to CPU from GPU. Figure 5.5

shows the CUDA memory model. Global memory or device memory is used to transfer

data from host to device and then back from device to host. The shared memory is

accessed by all the threads within that block. The data stored in the register memory is

accessed only by the thread that wrote it.

103

Figure 5.5: CUDA memory model (Corporation, 2010).

5.4 Star-Delta Transformation Algorithm using Series and Parallel

 Reduction

The resistance distance between two nodes of a given network can be calculated by

repeated applications of star-delta transformation. Recall from Chapter 4, Star-delta

transformation at node v of a network N is the operation of removing node v from N and

adding a new element between every pair of nodes that are connected to node v. To

remove a node v, we perform series and parallel reductions. Series and parallel

reduction along with star-delta are illustrated in Section 4.2 of Chapter 4. See Figure 5.6

for an example.

104

Figure 5.6. Illustration of star-delta transformation and series/parallel reductions.

Resistance distance algorithm

For a given network N, let V be the set of all nodes in the network. Algorithm 1 given

below finds the resistance distance R for nodes (i, j) in N.

Algorithm 1: Resistance Distance Algorithm

Step 1: Set nodes i and j in network N.

Step 2: Choose the starting node v in N to perform star delta transformation.

Step 3: If ݒ ≠ ݅ and ݒ ≠ ݆, then go to Step 4. Else go to Step 5.

Step 4: Perform star-delta transformation on v. This will add new resistance elements

 to all pairs of nodes connected to v.

Step 5: Remove node v.

Step 6: Choose next node v to perform star delta transformation if a node v other than

 i and j is available.

Step 7: Repeat Step 3 until all nodes (other than nodes i and j) have been removed

 from the network N.

Step 8: Let the new edge e between nodes i and j have conductance g. After

 performing parallel reduction, the resistance distance R between i and j is

105

 ܴ = ଵ
௚

.

Step 9: Choose next pair of nodes (i, j).

Step 10: Repeat Step 1 to Step 9 for all pairs of nodes (i, j) in N.

 Figure 5.7 illustrates Algorithm 1 for the node-pair (a, e). The node picked for

star-delta transformation is shown in red color.

5.5 Sequential and Parallel Approaches for Resistance Distance

 Computation

The data structures we have used to store the graph information are Adjacency List and

Adjacency Matrix. For graph partition, we use adjacency list and for finding the

resistance distance we use adjacency matrix of the graph. We are using two approaches

to find the resistance distance for all pairs of nodes in the graph G. In the next two

subsections, we explain the sequential and the parallel approach for resistance distance.

5.5.1 Sequential approach for resistance distance

For finding the resistance distance using the star-delta transformation procedure, we

need to update the given adjacency matrix A. The sequential approach for finding the

resistance distance is given in Algorithm 2. The input for this algorithm is the adjacency

matrix A of graph G and the output is the resistance distance matrix R for all pairs of

nodes in G. In Algorithm 2, first we get the number of nodes n in G. Then for all pairs

of nodes, we calculate the sum of elements of all the rows in adjacency

106

Figure 5.7: Illustration of star-delta transformation procedure algorithm.

matrix A and store them in rowSumArray[n]. Then we find the non-zero columns of a

row in adjacency matrix and store them in jRowArray[n]. The information of nodes

given in jRowArray helps in updating the adjacency matrix A. Then we set all the

elements of the processed row i and column i to zero in adjacency matrix.

107

Algorithm 2: Sequential Algorithm for Resistance Distance Calculation

Input : Adjacency Matrix A of graph G.

Output: Resistance Distance R for all pairs of nodes in graph G.

begin

 Get n (number of nodes in G);

 A[n][n]  Adjacency Matrix (G);

 for ݅ = 0 to ݊ − 1 do

 for ݆ = 0 to ݊ − 1 do

 rowSumArray[i]  rowSumArray[i] + A[i][j];

 count  0;

 for ܴ݅ݓ݋ = 0 to ݊ − 1 do

 for ݆ܴݓ݋ = 0 to ݊ − 1 do

 if A[iRow][jRow] != 0 then

 jRowArray[count]  jRow;

 count  count + 1;

 end if

 end for

 for ݅݊݀݁1ݔ = 0 to count do

 jUpdate1  jRowArray[index1] ;

 for ݅݊݀݁2ݔ = 1ݔ݁݀݊݅ + 1 to count do

 jUpdate2  jRowArray[index2];

 addition  ஺[௜ோ௢௪][௝௎௣ௗ௔௧௘ଵ]∗஺[௜ோ௢௪][௝௎௣ௗ௔௧௘ଶ]
௥௢௪ௌ௨௠஺௥௥௔௬[௜ோ௢௪]

 ;

[2݁ݐܽ݀݌ܷ݆][1݁ݐܽ݀݌ܷ݆]ܣ[2݁ݐܽ݀݌ܷ݆][1݁ݐܽ݀݌ܷ݆]ܣ +

 ;݊݋݅ݐ݅݀݀ܽ

 end for

 ; 0[1݁ݐܽ݀݌ܷ݆][ݓ݋ܴ݅]ܣ

 ; 0[ݓ݋ܴ݅][1݁ݐܽ݌ܷ݆]ܣ

 end for

 count  0;

 rowSumArray[i]  ݕܽݎݎܣ݉ݑܵݓ݋ݎ[݅] + ;[݆][݅]ܣ

108

 end for

 for 1ݔ݁݀݊ܫݎ = 0 to ݊ − 1 do

 for 2ݔ݁݀݊ܫݎ = 0 to ݊ − 1 do

 if [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܣ! = 0 then

 ଵ [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܴ
஺[௥ூ௡ௗ௘௫ଵ][௥ூ௡ௗ௘௫ଶ]

 ;

 end if

 end for

 end for

 end for

 end for

 Output  R[n][n];

end

Updating adjacency matrix completes the star-delta transformation at the selected

nodes. Once the adjacency matrix is updated, we again calculate the new sum of the

rows and update rowSumArray[n]. Then we calculate the resistance distance by taking

the reciprocal of the updated adjacency matrix and storing them in resistance distance

matrix R.

5.5.2 Parallel approach for resistance distance

For the parallel approach, we use CUDA parallel programming. Recall from Section 5.2

that the sequential part of the code is executed on the CPU (host), and the parallel parts

are executed on the GPU (device). Algorithms 3 and 4 explain the parallel parts that are

executed on the device. These are similar to Algorithms 1 and 2 incorporating certain

features required for parallel execution. Algorithm 3 is the device code,

kernel_rowSum(A, rowSumArray) function, for calculating the sum of elements of all

109

the rows in adjacency matrix A and storing them in rowSumArray. The __syncthreads()

function is used to coordinate the threads. This function works as a block level

synchronization barrier and it makes all threads stop at a certain point in the kernel

before moving enmasse.

Algorithm 3: kernel_rowSum – device code

Procedure kernel_rowSum (A, rowSumArray)

 Get n (number of nodes);

 i ܾ݈ݔ.݉݅ܦ݇ܿ݋ ∗ ݔ.ݔ݀ܫ݇ܿ݋݈ܾ + ;ݔ.ݔ݀ܫ݀ܽ݁ݎℎݐ

 if ݅ < ݊ then

 rowSumArray[i]  0;

 for ݆ = 0 to n do

[݅]ݕܽݎݎܣ݉ݑܵݓ݋ݎ  [݅]ݕܽݎݎܣ݉ݑܵݓ݋ݎ + ݅]ܣ ∗ ݊ + ݆];

 end for

 __syncthreads();

 end if

end procedure

Algorithm 4 is the device code, kernel_updateMatrix(A, rowSumArray, jRowArray,

irow, count) function, for updating the adjacency matrix A. Here rowSumArray is the

array of sum of rows of adjacency matrix A, jRowArray is the array that holds the

information of nodes to be updating in the adjacency matrix.

Algorithm 4: kernel_updateMatrix – device code

Procedure kernel_updateMatrix (A, rowSumArray, jRowArray, irow, count)
 Get n (number of nodes);
 i ܾ݈݉݅ܦ݇ܿ݋. ݕ ∗ ݕ.ݔ݀ܫ݇ܿ݋݈ܾ + ;ݕ.ݔ݀ܫ݀ܽ݁ݎℎݐ
 j ܾ݈݉݅ܦ݇ܿ݋. ݔ ∗ .ݔ݀ܫ݇ܿ݋݈ܾ ݔ + .ݔ݀ܫ݀ܽ݁ݎℎݐ ;ݔ
 if ݅ < ݊ and ݆ < ݊ then

 for ݅݊݀݁1ݔ = 0 to ݊ − 1 do

110

 for index2 = 0 to k do

 jUpdate1  jRowArray[index2];

 if index1 = jUpdate1 then

 for ݅݊݀݁3ݔ = 1ݔ݁݀݊݅ + 1 to ݊ − 1 do

 for index4 = 0 to k do

 jUpdate2  jRowArray[index4];

 if index3 = jUpdate2 then

 addition =
஺[௜ோ௢௪∗௡ା௝௎௣ௗ௔௧௘ଵ]∗஺[௜ோ௢௪∗௡ା௝௎௣ௗ௔௧௘ଶ]

௥௢௪ௌ௨௠஺௥௥௔௬[௜ோ௢௪]

1ݔ݁݀݊݅]ܣ ∗ ݊ + 1ݔ݁݀݊݅]ܣ [3ݔ݁݀݊݅ ∗ ݊ + [3ݔ݁݀݊݅ +

 ;݊݋݅ݐ݅݀݀ܽ

3ݔ݁݀݊݅]ܣ ∗ ݊ + 3ݔ݁݀݊݅]ܣ [1ݔ݁݀݊݅ ∗ ݊ + [1ݔ݁݀݊݅ +

 ;݊݋݅ݐ݅݀݀ܽ

 end if

 end for

 __syncthreads();

 end for

ݓ݋ݎ݅]ܣ ∗ ݊ + [1ݔ݁݀݊݅ = 0;

1ݔ݁݀݊݅]ܣ ∗ ݊ + ݓ݋ݎ݅ = 0;

 end if

 end for

 __syncthreads();

 end for

 end if

end procedure

The parallel approach for finding the resistance distance is given in Algorithm 5. The

input for this algorithm is the adjacency matrix A of graph G and the output is the

resistance distance matrix R for all pair of nodes in G. In Algorithm 5, GPUMalloc()

function requests the array on the device’s global memory and GPUFree() function

111

frees the array from the device global memory. MemcpyHostToDevice() function

transfers data from host memory to device memory and MemcpyDeviceToHost()

function transfers data back to host memory from device memory.

 To call the kernel functions from the device, we declare blocksPerGrid and

threadsPerBlock. blocksPerGrid is the number of blocks we want to run on processors

in parallel and threadsPerBlock is the number of threads we want to activate per block.

We call the kernel_rowSum function given in Algorithm 3 to calculate the sum of the

rows of adjacency matrix A. Then we call kernel_updateMatrix function given in

Algorithm 4 to update the entries of the adjacency matrix. Calculate the resistance

distance by taking the reciprocal of the updated adjacency matrix elements and storing

them in resistance distance matrix R.

Algorithm 5: Parallel Algorithm for Resistance Distance Calculation

Input : Adjacency Matrix A of graph G.

Output: Resistance Distance R for all pairs of nodes in graph G.

begin

 Get n (number of nodes in G);

 A[n][n]  Adjacency Matrix (G);

 for ݅ = 0 to ݊ − 1 do

 for ݆ = ݅ + 1 to ݊ − 1 do

 // Call ݇݁݉ݑܵݓ݋ݎ_݈݁݊ݎ function to add the elements of rows of adjacency matrix

 GPUMalloc();

 MemcpyHostToDevice();

,݀݅ݎܩݎ݁ܲݏ݇ܿ݋݈ܾ>>>݉ݑܵݓ݋ݎ_݈݁݊ݎ݁݇ ,A)<<<݇ܿ݋݈ܤݎ݁ܲݏ݀ܽ݁ݎℎݐ

 rowSumArray);

 MemcpyDeviceToHost();

 GPUFree();

 count  0;

112

 for ܴ݅ݓ݋ = 0 to ݊ − 1 do

 for ݆ܴݓ݋ = 0 to ݊ − 1 do

 if A[iRow][jRow] != 0 then

 jRowArray[count]  jRow;

 count  count + 1;

 end if

 end for

 // Call kernel_updateMatrix function to update the adjacency matrix.

 GPUMalloc();

 MemcpyHostToDevice();

,݀݅ݎܩݎ݁ܲݏ݇ܿ݋݈ܾ>>>ݔ݅ݎݐܽܯ݁ݐܽ݀݌ݑ_݈݁݊ݎ݁݇ ,A)<<<݇ܿ݋݈ܤݎ݁ܲݏ݀ܽ݁ݎℎݐ

rowSumArray, jRowArray, irow, count);

 MemcpyDeviceToHost();

 GPUFree();

 count  0;

 // Call kernel_rowSum function to add the rows of updated adjaceny matrix

 GPUMalloc();

 MemcpyHostToDevice();

,݀݅ݎܩݎ݁ܲݏ݇ܿ݋݈ܾ>>>݉ݑܵݓ݋ݎ_݈݁݊ݎ݁݇ ,A)<<<݇ܿ݋݈ܤݎ݁ܲݏ݀ܽ݁ݎℎݐ

 rowSumArray);

 MemcpyDeviceToHost();

 GPUFree();

 end for

 for 1ݔ݁݀݊ܫݎ = 0 to ݊ − 1 do

 for 2ݔ݁݀݊ܫݎ = 0 to ݊ − 1 do

 if [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܣ! = 0 then

 ଵ [2ݔ݁݀݊ܫݎ][1ݔ݁݀݊ܫݎ]ܴ
஺[௥ூ௡ௗ௘௫ଵ][௥ூ௡ௗ௘௫ଶ]

 ;

 end if

 end for

 end for

113

 end for

 end for

 Output  R[n][n];

End

We are getting the same output resistance distance matrix R from the sequential

approach Algorithm 2 and parallel approach Algorithm 5. Figure 5.8 shows the input

adjacency matrix A and Figure 5.9 shows the output resistance distance matrix R of G

given in Figure 5.1(a).

Figure 5.8: Adjacency matrix A of G given in Figure 5.1(a).

114

115

5.6 Three-Step Approximation Algorithm for Resistance Distance

 Calculation

In this section, our main objective is to introduce a three-step approximation algorithm

to calculate resistance distance between all pairs of nodes of a network. Algorithm 6

finds the resistance distance ܴ௔௣௣௥௢௫ using the paths in a network. First the network is

partitioned into clusters. Figure 5.10 shows the boundary nodes network ܤ′ having

weights on the edges (dashed red color edges) of boundary nodes of each cluster

(Illustrate Step 1 and Step 3 of Algorithm 6). The relationship between the resistance

distance R we are getting from Algorithm 2 (Algorithm 5 for parallel) and the resistance

distance ܴ௔௣௣௥௢௫ from Algorithm 6 is

ܴ௔௣௣௥௢௫ ≥ ܴ.

Figure 5.11 shows the output resistance distance matrix ܴ௔௣௣௥௢௫ of graph G given in

Figure 5.2.

Algorithm 6: Three-Step Approximation Algorithm for Resistance Distance Calculation

Step 1: Find the boundary nodes of each cluster in network N. These are the nodes that

 connect inter-cluster edges. See Figure 5.2.

Step 2: Get the adjacency matrix ܣ௖௟௨௦௧௘௥ for each of the clusters in the network.

Step 3: Find the weight on the edges of boundary nodes of each cluster by using

 Algorithm 2 (for sequential approach) or Algorithm 5 (for parallel approach).

Step 4: Get the adjacency matrix ܣ௕௢௨௡ௗ௔௥௬ for network ܤ′ of boundary nodes.

Step 5: Get the resistance distance matrix ܴ௕௢௨௡ௗ௔௥௬ for each pair of boundary nodes in

 by using Algorithm 2 or Algorithm 5. The input for Algorithm 2 and ′ܤ

 Algorithm 5 is adjacency matrix ܣ௕௢௨௡ௗ௔௥௬ .

Step 6: Get the adjacency matrix A of the network N.

Step 7: To find the resistance distance R for each pair of nodes (i, and j) in N, go to

116

 Step 8.

Step 8: Set nodes i and j.

Step 9: If nodes i and j are in the same cluster and both are non-boundary nodes then

 get the resistance distance by using Algorithm 2 or Algorithm 5. The input

 adjacency is matrix A. Go to Step 19.

Step 10: If nodes i and j are in the same cluster but i is a non-boundary node of the

 cluster and j is a boundary node of the cluster then get the resistance distance

 ܴ௖௟௨௦௧௘௥[݅][݆] by using Algorithm 2 or Algorithm 5. Go to Step 19.

Step 11: If nodes i and j are in different clusters and both are non-boundary nodes of

 those clusters then go to Step 12.

Step 12: If node i is a non-boundary node in clusterA and node j is non-boundary node

 in clusterB then go to Step 13 through Step 16 and find the resistance distance

 ܴ௔௣௣௥௢௫[݅][݆].

Step 13: Find the resistance distance ܴ௖௟௨௦௧௘௥஺[݅][݇] from node i to each boundary node

 k of clusterA, by using Algorithm 2 or Algorithm 5. The input adjacency is

 matrix ܣ௖௟௨௦௧௘௥஺ .

Step 14: Find the resistance distance ܴ௖௟௨௦௧௘௥஻[݇][݆] from node j to boundary node k of

 clusterB, by using Algorithm 2 or Algorithm 5. The input adjacency matrix is

௖௟௨௦௧௘௥஻ܣ .

Step 15: Find the resistance distance ܴ௕௢௨௡ௗ௔௥௬[݇][݈] from boundary node k of clusterA

 to boundary node l of clusterB, by using Algorithm 2 or Algorithm 5. The

 input adjacency matrix is ܣ௕௢௨௡ௗ௔௥௬ .

Step 16: Set ܴ௔௣௣௥௢௫[݅][݆]  minimum resistance distance from i to j using paths of

 length of 3, containing the boundary nodes of clusterA and clusterB.

 Go to Step 19.

Step 17: If node i is a non-boundary node in clusterA and node j is a boundary node in

 clusterB then repeat Step 13 and Step 15 and find resistance distance.

 Set ܴ௔௣௣௥௢௫[݅][݆] the minimum resistance distance along paths of length 2,

 containing only the boundary nodes of clusterA.

 Go to Step 19.

117

Step 18: If node i is a boundary node in clusterA and node j is a non-boundary node in

 clusterB then repeat Step 14 and Step 15 and find resistance distance

 ܴௗ௜௩௘௥௦௘௉௔௧௛[݅][݆].

 Set ܴ௔௣௣௥௢௫[݅][݆] the minimum resistance distance of paths of length 2 from

 i to j, containing only the boundary nodes of ClusterB.

 Go to Step 19.

Step 19: Choose the next pair of nodes (i, j). Go to Step 8.

Step 20: Stop when all pairs of nodes have been considered.

Figure 5.10: Boundary node network B’ of graph G in Figure 5.2.

118

119

5.7 Experiment Results

The software used for graph partitioning for our experiments is Metis 5.1.0, as

discussed in Section 5.2. The programs are written in C and CUDA (toolkit 5.5) and

compiled using the GCC v4.8.2 and nvcc compilers on a Linux x86_64 version 3.10.0.

The sequential Algorithm 3 is implemented using CPU and the parallel Algorithm 5 is

implemented using both CPU and GPU. The CPU implementation is performed using a

single thread. The CPU used for experiments consists of quad-core 2.27 GHz Intel

Xeon processors with 12GB of memory. The GPU used for experiments is Nvidia

C1060 card with 240 GPU cores and 4GB of memory.

The experiments have been performed on datasets (Johnson, et al., 1989) for

graph sizes ranging from 25 to 500 nodes. The graphs considered for experiments in

this chapter are graphExample (25 nodes, 44 edges), G124 (124 nodes, 318 edges),

G250 (250 nodes, 1283 edges) and G500 (500 nodes, 5120 edges). The timing for the

sequential (Algorithm 2) and parallel (Algorithm 5) implementation is shown in Table

3. The time for parallel implementation is less than the sequential implementation. The

time for parallel implementation for graph G250 for various number of processors is

shown in Table 4. The time is more for parallel implementation if the number of

processors are less.

The quality of performance of three-step approximation algorithm 6 for

resistance distance and Kirchhoff index is shown in Table 5. The maximum error

between resistance distance R and Rapprox is 96.27% for graph G124 for node pair (22,

39).

120

Graphs # Nodes # Edges Sequential

Time

(seconds)

Parallel Time

(seconds)

graphExample 25 44 0.050 0.030

G124 124 318 3.98 0.340

G250 250 1283 7.352 0.598

G500 500 5120 10.01 0.852

Table 3: Comparison of time for sequential and parallel implementation.

Processors Time (seconds)

4 1.472

8 1.035

16 0.824

30 0.598

 Table 4: Comparison of time for number of processors for graph G250.

Graphs # Nodes Average Error (%)

Resistance Distance

Error(%)

Kirchhoff Index

graphExample 24 9.8 11.8

G124 124 9.72 10.01

G250 250 9.37 9.54

G500 500 8.58 9.13

Table 5: Quality performance of three-step approximation algorithm.

121

The effective resistance between a pair of nodes depends on the number of paths

between these nodes and their lengths. So, the main parameters that affect the average

percent error for resistance distance in a network are: density of intra-cluster edges

within the clusters and density of inter-cluster edges between the clusters, the number of

clusters, and the number of steps used in the approximation. The more the number of

paths, the less is the resistance distance. Also, the longer the paths, the more is the

resistance distance. The average percent error of resistance distance for a network with

dense intra-cluster edges and sparse inter-cluster edges is less as compared to the

network with dense inter-cluster edges. For a graph of 25 nodes, the error is 11.2% for

sparse intra-cluster and inter-cluster edges, 10.8% for dense intra-cluster and sparse

inter-cluster edges, and 17.5% for dense intra-cluster and dense inter-cluster edges.

5.8 Summary

In this chapter, sequential and parallel algorithms for resistance distance have been

proposed. The performance of both the algorithms with respect to execution time have

been discussed. In addition, a novel approximation algorithm for resistance distance and

Kirchhoff index has been introduced. The parameters of network that affect the

approximation algorithm have also been discussed.

122

Chapter 6

Conclusions

6.1 Summary

This chapter summarizes the research presented in this dissertation. Chapter 1 provided

introduction and appropriate literature review relating to network science. It also

discussed the key aspects of network science and types of the networks. The overview

of resistance distance and Kirchhoff index were described and the layout of the

dissertation structure was also given in this chapter.

 Chapter 2 presented an overview of electrical networks along with the

topological formulas for network functions. The matrices of graph and their properties

were discussed along with the Laplacian spectral graph theory. The Laplacian matrix of

a graph plays an important role in the computation of resistance distance and Kirchhoff

index. The standard method to obtain resistance distance is via Moore-Penrose

pseudoinverse ܮା of the Laplacian matrix L of a connected graph. To avoid the

computational complexity and extraneous efforts of Moore-Penrose pseudo-inverse, a

new formula for calculating Kirchhoff index was presented in this chapter. Three proofs

of this formula based on the properties of the pseudo-inverse of the Laplacian matrix,

topological formula for network functions and basic concepts of electrical circuit theory

were presented.

 Chapter 3 generalized the notion of Laplacian matrix using the fundamental

cutset matrix. The concept of Kirchhoff polynomial of a graph was defined in this

chapter. Kirchhoff polynomial expresses Kirchhoff index using the elements of the

123

resistance matrix. In this chapter, two approaches were developed to compute the

Kirchhoff index. The first approach is based on a matrix transformation and the second

approach uses the concept of Kirchhoff polynomial of a graph.

 Chapter 4 provided further advances on the concept of Kirchhoff index. This

chapter introduced the concept of Weighted Kirchhoff index of a graph and its

relationship to Foster’s theorems. Foster’s theorem is a very important theorem in the

field of electrical network analysis. Foster’s theorems can be presented as results

involving the sum of weighted resistance distances when the weights are chosen

appropriately. This chapter presented a generalization of Foster’s theorems that retains

the circuit-theoretic flavor and elegance of Foster’s theorems. A dual form of this

theorem was developed in this chapter.

 Chapter 5 proposed sequential and parallel algorithms to compute Kirchhoff

index. Kirchhoff index captures the effect of topological structure on the performance

of networks. It also captures the path diversity between nodes in a network. Kirchhoff

index can be used to determine node betweenness in networks that are of interest in

network vulnerability studies. In view of this, an efficient methodology to compute

Kirchhoff index is required. A novel three-step approximation algorithm for calculation

of resistance distance and Kirchhoff index was introduced in Chapter 5. This chapter

discussed the parameters of network that affect the three-step approximation algorithm.

6.2 Future Directions of Research

Graphs and networks have been used extensively in many recent applications (e.g.,

social networks, economy, etc.). For instance, all centrality measures in network are

124

based on the shortest distances between pairs of nodes. Though, in general, all paths

must be used in assessing the centrality of a node, shortest paths are used because they

are easy to compute. To mitigate the effect of the approximation of criticality by

considering only shortest paths, other measures that capture both the lengths of paths

and the number of these paths between nodes need to be investigated (e.g., diffusion

distance). Resistance distance and Kirchhoff Index are two such measures.

Resistance distance is a generalization of shortest paths. The shorter a path

between two nodes the smaller will be the distance. Also, the more the number of paths,

the less will be the distance. Thus, resistance distance captures the impact of both the

lengths of paths and the number of paths on criticality measures. On the other hand,

Kirchhoff index may be viewed as an aggregate property of a group of nodes (that is,

the average of all resistance distances across all pairs of nodes in the group).

We propose two problems for further investigations, employing the notion of

resistance and Kirchhoff Index.

6.2.1 Graph clustering

In graph clustering one is interested in partitioning the nodes of a graph into non-

overlapping clusters satisfying certain additional properties. These additional

constraints are defined by the applications considered. Two extensive reviews of graph

clustering that discuss both theoretical advances and some practical heuristics may be

found in the reference (Thulasiraman, et al., 2015). The reference (Aluru, 2006)

provides a very good coverage of applications of clustering in molecular biology. A

125

general class of clustering algorithms that satisfy the following constraints merits

further investigation.

Determine clusters minimizing the sum of Kirchhoff indices of all clusters subject

to a limit on the maximum number of nodes in each cluster.

Since Kirchhoff Index captures the aggregate value of closeness of nodes in a group, the

clusters obtained by the solution of the problem will be the groups of nodes that are

very close to each other Additional constraints such as minimizing the number of inter-

cluster edges can also be introduced in the above formulation. It is easy to see that this

problem is NP-hard. Heuristics such as those based on spectral partitioning, multi-

commodity flows etc. for other classes clustering problems are available.

In social network analysis, a related problem called community detection has

been studied (Newman, 2010; Easley & Kleinberg, 2010; Malliaros & Vazirgianniz,

2013). In community detection one objective is to get clusters that achieve maximum

value of what is called modularity. We would like to add modularity constraint to

capture the notion of homophily or assortative mixing in networks. In all these works

Laplacian matrix and their eigenvalues play a central role. What makes the clustering

problem defined above novel is the use of the notion of Kirchhoff Index. We believe

combing with this the idea of assortative mixing will lead to more powerful measures

and algorithms for clustering.

6.2.2 Similarity and criticality measures

Similarity:

126

 Similarity measures based on degree distributions and other topological parameters are

available in the literature. We propose a new definition of similarity of nodes using the

concept of resistance distance. We first define the Kirchhoff index of a node v as the

sum of the resistance distances of this node to all other nodes in the network. We define

two nodes as similar if their node Kirchhoff index values are equal. Our method to

calculate the Kirchhoff index in this dissertation can also be used to compute the node

Kirchhoff index values starting from the inverse of the reduced Laplacian.

Criticality: Node (edge) betweenness measure used in social network analysis captures

the critical value of a node (edge) with respect to the number of paths that pass through

the node (edge). For a review of research on this topic, the references (Newman, 2010;

Easley & Kleinberg, 2010) may be consulted. We define a new criticality measure

based on resistance distance instead of shortest paths. This will allow us to estimate the

impact of path lengths and number of paths.

Between measure algorithms, references based on shortest paths are available

(Newman, 2010; Easley & Kleinberg, 2010; Brandes, 2001). One new direction of

study is to investigate algorithms for betweenness measures using resistance distances

instead of shortest paths. It will also be interesting to study the relationship between

these new betweenness measures and criticality of nodes and edges with respect to their

ability to cause disruption in network functions.

Our focus will be on handling large graphs. We shall also study the impact of a

cascade of failures of critical nodes. We have studied problems of this type in different

contexts: cascading failures in multi-layer networks and power grids (Zhou, et al., 2012;

127

Wu, et al., 2017). We plan to build on this expertise to advance knowledge by applying

the concept of resistance distances to the study of cancer progression and detection of

critical driver mutations.

128

Bibliography

Albert, R., Jeong, H. & Barabasi, A. -L., 1999. Diameter of the World Wide Web.
Nature, Volume 401, pp. 130-131.

Albert, R., Jeong, H. & Barabasi, A. -L., 2000. The Internet's Achilles' heel: Error and

attack tolerance of complex networks. Nature, Volume 406, pp. 378-382.

Aluru, S., 2006. Handbook of Computational Molecular Biology. Chapman &

Hall/CRC.

Anon., 2003. Seven Bridges of Konigsberg. [Online]

Available at: http://en.wikipedia.org./wiki/Seven_Bridges_of_Konigsberg
[Accessed 9 November 2016].

Atay, F. M., Biyikoglu, T. & Jost, J., 2006. Synchronization of networks with

prescribed degree distributions. IEEE Trans Circuits Syst. I, 53(1), pp. 92-98.

Bapat, R. B., 2004. Resistance matrix of a weighted graph. Commun. Math. Comput.

Chem., Volume 50, pp. 73-82.

Barahona, M. & Pecora, L. M., 2002. Synchronization in small-world systems. Phys.

Rev. Lett. , Volume 89, p. 054101.

Barbasi, A. -L., Albert, R. & Jeong, H., 1999. Emergence of scaling in random

networks. Science, Volume 286, pp. 506-512.

Bonacich, P., 1972. Factoring and weighing approaches to clique identification.

J. Math. Sociol., Volume 2, pp. 113-120.

Bonchev, D., Balaban, A. T., Liu, X. & Klein, D. J., 1994. Molecular cyclicity and

centricity of polycyclic graphs. I. Cyclicity based on resistance distance or
reciprocal distances. Int. J. Quan. Chem. , Volume 50, pp. 1-20.

Brandes, U., 2001. A faster algorithm for betweenness centrality. Journal of

Mathematical Sociology, 25(2), pp. 163-177.

Cinkir, Z., 2007. The tau constant of metrized graphs.Thesis at the University of

Georgia.

Cinkir, Z., 2011. Generalized Foster's identities. International Journal of Quantum

Chemistry, 111(10), pp. 2228-2233.

Coppersmith, D., Doyle, P., Raghavan, P. & Snir, M., 1990. Random walks on a

129

weighted graphs and applications to online algorithms. In Proceedings of the
22nd symposium on the Theory of Computing , pp. 369-378.

Corporation, N., 2010. NVIDIA CUDA C Programming Guide, version 3.2.

Dorogovtsev, S. N. & Mendes, J. F. F., 2002. Evolution of networks. Adv. Phys., 51(4),

pp. 1079-1187.

Dorogovtsev, S. N. & Mendes, J. F. F., 2003. Evolution of networks - from biological

nets to internet and WWW. Oxford Univ. Press.

Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N., 2000. Structure of growing

networks with preferential linking. Phys. Rev. Lett., 85(21), pp. 4633-4636.

Dorogovtsev, S. N., V., G. A. & Mendes, J. F., 2002. Pseudofractal scale-free web.

Phys. Rev. E, 65(6), p. 066122.

Doyle, P. G. & Snell, J. L., 1984. Random walks and electric networks. Carus

Mathematical Monographs, Volume 22.

Easley, D. & Kleinberg, J., 2010. Networks, Crowds and Markets. New York:

Cambridge University Press.

Erdos, P. & Renyi, A., 1960. On the evaluatio of random graphs. Publ. Math. Inst.

Hungar. Acad. Sci., Volume 5, pp. 17-61.

Euler, L., 1736. Solutio problematis ad geometriam situs pertinetis. Comment. Acad.

Sci. U. Petrop., Volume 8, pp. 128-140.

Faloutsos, M., Faloutsos, P. & Faloutsos, C., 1999. On power-law relationships of the

Internet topology. New York, Proc. ACM SIGCOMM'99 conf. ACM Press,
pp. 251-262.

Foster, R. M., 1949. The average impedance of an electrical network. Contributions to

Applied Mechanics, (Reissner Anniversary Volume), Ed. J. W. Edwards,
pp. 333-340.

Foster, R. M., 1961. An extension of a network theorem. IRE Transaction on Circuit

Theory, Volume 8, pp. 75-76.

Gilbert, E. N., 1959. Random graphs. Ann. Math. Stat., 30(4), pp. 1141-1144.

Granovetter, M. S., 1973. The strength of weak ties. Am. J. Sociol, 78(6),

 pp. 1360-1380.

Gutman, I. & Mohar, B., 1996. The Quasi-Wiener and the Kirchhoff indices coincide.

130

J. of Chem. Inf. Comput. Sci., Volume 36, pp. 982-985.

Gutman, I. & Xiao, W., 2004. Generalized inverse of the Laplacian matrix and some

applications. Bulletin de Academie Serbe desScience at des Arts (Cl. Math.
Natur.), Volume 129, pp. 15-23.

Holland, J. H., 1998. Emergence: From Chaos to Order. Reading, MA: Addison-

Wesley.

Hong, H. C. M. Y. & Kim, B. J., 2002. Synchronization on small-world networks. Phys.

Rev. E, Volume 65, p. 026139.

Hu, Z., Thulasiraman, K. & Verma, P., 2013. Complex Networks: Traffic Dynamics,

network perofrmance and network structure. Americal Journal of Operations
Research, 3(1A), pp. 187-195.

Hu, Z., Verma, P. K. & Thulasiraman, K., 2013a. Interplay between traffic dynamics

and network structure. Seville, Spain, IARIA 8th International Conf. on Systems
(ICONS), pp. 202-206.

Johnson, D. S., Aragon, C. R., McGeoch, L. A. & Schevon, C., 1989. Optimization by

simulated annealing: an experimental evaluation. Part I, graph partitioning.
Oper. Res., INFORM, Institute for Operations Research and the Management
Sciences (INFORMS), Volume 37, pp. 865-892.

Jost, J. & Joy, M. P., 2002. Spectral properties and synchronization in coupled map

lattices. Phys. Rev. E, 65(1), p. 016201.

Karypis, G. & Kumar, V., 2013. MeTis: A software package for partitioning

unstructured graphs, partitoning meshes, and computing fill-reducing orderings
of sparse matrices, Univ. of Minnesota, Minneapolis, MN: Version 5.1.0,
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf.

Kernighan, B. W. & Lin, S., 1970. An efficient heuristic procedure for partitioning

graphs. The Bell System Technical Journal, pp. 291-307.

Kirchhoff, G., 1847. Uber die Auflosung der Gleichungen, auf welche man bei der

Untersuchung der linearen Verteilung galvanischer Strome gefiihrt wird. Ann.
 Phys. Chem., Volume 72, pp. 497-508.

Kleinberg, J. M., 2000. Navigation in a small world. Nature, Volume 406, pp. 845.

Klein, D. J., Lukovits, I. & Gutman, I., 1995. On the definition of the Hyper-Wiener

Index for cycle-containing structures. J. Chem. Inf. Comput., Volume 35,
pp. 50-52.

131

Klein, D. J. & Randic, M., 1993. Resistance distance. J. Math. Chem., Volume 12,
pp. 81-95.

Kunz, M., 1993. On topological and geometrical matrices. J. Math. Chem, Volume 13,

pp. 145-151.

Kuramoto, Y., 1984. Chemical Oscillations, Waves, Turbulence. Springer-Verlag.

Lewis, T. G., 2009. Network Science: Theory and Application. Wiley.

Liu, J., 2003. General complex dynamical network models and its synchronizaton

criterions. Yichang, China, Proc. 22nd Chinese Control Conf., pp. 380-384.

Liu, J., Yu, X. & Chen, G., 2004. Chaos synchronization of general complex dynamical

networks. Physica A, Volume 334, pp. 281-302.

Liu, J., Yu, X., Chen, G. & Cheng, D., 2004a. Characterizing the synchronizability of

small world dynamical networks. IEEE Trans. Circuits Syst. I, Volume 51.

Liu, J., Zhou, T. & Zhang, S., 2002. Chaos synchronization between linearly coupled

chaotic system. Chaos Solut. Fractal, Volume 144, pp. 529-541.

Lukovits, I., Nikolic, S. & Trinajstic, N., 1999. Resistance distance in regular graphs.

Int. J. Quan. Chem., Volume 71, pp. 217-225.

Malliaros, F. D. & Vazirgianniz, M., 2013. Clustering and Community Detection in

Directed Networks: a Survey. Physics Reports, 533(4), pp. 95-142.

Molitierno, J. J., 2012. Applications of combinatorial matrix theory to Laplacian

matrices of graphs. Chapman and Hall/CRC.

Newman, M., 2010. Networks: An Introduction. New York: Oxford University Press

Inc..

Palacios, J. L., 2001. Closed-form formulas for Kirchhoff index. Int. J. Quantum Chem,

Volume 81, pp. 135-140.

Palacios, J. L., 2004. Foster's formula via probability and the Kirchhoff index.

Methodology and Computing in Applied Probability, Volume 6, pp. 381-387.

Swamy, M. N. & Thulasiraman, K., 1981. Graphs, Networks and Algorithms.

Wiley-Inter-science.

Tetali, P., 1991. Random walks and the effective resistance of networks. J. Theoret.

Probab, 4(1), pp. 101-109.

132

Tetali, P., 1994. An extension of Foster's network theorem. Combin. Probab. Comput.,
Volume 3(3), pp. 421-427.

Thulasiraman, K. (Editor in Chief), Arumugam, S., Brandstaedt, A. & Nishizeki, T.

(Editors), 2015. Handbook of Graph Theory, Combinatorial Optimization and
Algorithms. CRC Press.

Thulasiraman, K., Jayakumar, R. & Swamy, M. N., 1983. Graph theoretic proof of a

network theorem and some consequences. Proc. IEEE , Volume 71,
pp. 771-772.

Thulasiraman, K. & Swamy, M. N., 1992. Graphs: Theory and Algorithms. New York:

John Wiley & Sons.

Wang, X. & Chen, G., 2002a. Synchronization in small-world dynamical networks. J.

Bifurcation Chas, 12(1), pp. 187-192.

Wang, X. & Chen, G., 2002b. Synchronization in scale-free dynamical networks:

Robustness and fragility. IEEE Trans. Circuits Syst. I, Volume 49, pp. 54-62.

Wang, X. & Chen, G., 2002. Pinning control of a scale-free dynamical networks.

Physica A, Volume 310, pp. 521-531.

Wang, Z., Chakrabarti, D., Wang, C. & Faloutsos, C., 2003. Epidemic spreading in real

networks: an eigenvalue viewpoint., Proc. 22nd Intnatl. Symp. Reliable
Distributed Systems.

Watts, D., 1999a. Samll Worlds. Princeton, NJ: Princeton Univ. Press.

Watts, D. J., 1999. Networks, dynamics, and the small-world phenomenon. Am. J.

Sociol., 105(2), pp. 493-527.

Watts, D. J. & Strogatz, S. H., 1998. Collective dynamics of "small world" networks.

Nature, Volume 393, pp. 440-442.

Waxman, B. M., 1988. Routing of multipoint connections. IEEE J. Select. Areas

Commun., 6(9), pp. 1617-1622.

Wu, D. et al., 2017. A study of the impacts of flow direction and electrical constraints

on vulnerability assessment of power grid using electrical betweenness
measures. Physica A: Statistical Mechanics and its Applications, Volume 466,
pp. 295-309.

Xiao, W. & Gutman, I., 2003a. Resistance distance and Laplacian spectrum. Theor.

Chem. Acc., Volume 110, pp. 284-289.

133

Xiao, W. & Gutman, I., 2003. On resistance matrices. MATCH Commun. Math.
Comput. Chem., Volume 49, pp. 67-81.

Yule, G. U., 1925. A mathemetical theory of evolution based on the conclusions of Dr.

J. C. Willis. Phil. Trans. Roy. Soc. Lond. B, Volume 213, pp. 21-87.

Zhang, H. & Yang, Y., 2007. Resistance distance and Kirchhoff index in circulant

graphs. Int. J. Quantum Chem, Volume 107, pp. 330-339.

Zhou, B. & Trinajstic, N., 2009. On resistance-distance and the Kirchhoff index. J.

Math. Chem, Volume 46, pp. 283-289.

Zhou, Z. et al., 2012. Novel Survivable Logical Topology Routing in IP-over-WDM

Networks by Logical Protecting Spanning Tree Set. St. Petersburg, Russia, Proc.
IEEE Reliable Network Design and Modeling Conference.

Zhu, H. Y., Klein, D. J. & Lukovits, I., 1996. Extensions of the Wiener Number. J.

Chem. Inf. Comput. Sci., Volume 36, pp. 420-428.

