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Abstract 

Characterizing system performance under disruption is a growing area of research, 

particularly for describing a system’s resilience to a disruption event. Within the 

framework of system resilience, this study approaches the minimization of a multiple-

commodity system’s vulnerability to multiple disruption events. The vulnerability of a 

system is defined by the degree to which commodities can no longer flow through the 

system to satisfy demand given a disruptive event. A multi-objective formulation is 

developed to find defense strategies at minimal cost that maintain a high level of 

demand satisfaction across all commodities. A solution method involving an estimation 

of the Pareto frontier via the Non-dominated Sorted Genetic Algorithm II (NSGA-II) is 

also proposed. A decision support environment is proposed and supported by 

application of the Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS). The proposed formulation and solution method are illustrated with an 

example generated from the multi-commodity Swedish rail network. 

 

Keywords: vulnerability, resilience, multi-commodity network flow, max flow, rail 

transportation, multiple commodity 
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Chapter 1: Introduction and Motivation 

Characterizing the performance of critical infrastructure following a disruptive event is 

an increasingly important area of research, given (i) the frequency of possible 

disruptions, and (ii) the scale of their implications. The US government emphasizes 

resilience planning for critical infrastructures, suggesting that they “must be secure and 

able to withstand and rapidly recover from all hazards”[1]. The ability to withstand, to 

adapt to, and to recover from a disruption is generally referred to as resilience[2].  

 

A number of qualitative and quantitative approaches for characterizing resilience have 

been offered in the recent literature[3]. One such approach is depicted graphically in 

Figure 1[4]-[6]. This approach describes system performance before, during, and after a 

disruption with function 𝜑(𝑡). Note two dimensions of resilience in Figure 1. The lack 

of ability of the network to maintain performance immediately following disruptive 

event 𝑒𝑘 is referred to as its vulnerability, an area receiving attention in the network 

literature for several years[7],[8]. The ability of the network to return to an acceptable 

level of performance in a timely manner is referred to as its recoverability, a burgeoning 

area of study in the network field[9]-[11]. Moreover, recoverability has garnered attention 

earlier within specific fields of research (e.g., power system reliability[12]).  
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Figure 1. Illustration of network performance, 𝝋(𝒕), across different transition 

states. 

 

With this approach in mind, the evaluation and quantification of these resilience 

dimensions is possible in a way that is generalizable across many problem instances. 

Graph encoding and network formulation are often relied upon for applying 

optimization approaches to a particular system, and it is assumed that networks of 

interest in this study lend themselves to such modeling paradigms. In previous research, 

efforts to quantify network characteristics were directed towards graph-theoretic 

measures (e.g., edge betweenness, centrality). However, performance-driven measures 

may be of more use in the context of network resilience for decision making 

purposes[13],[14]. These metrics connect the idea of vulnerability with network flow as a 

proxy of system performance. As such, node and/or arc importance is a function of the 

degree to which overall network performance depends on the existence of, capacity of, 

and flow along that node/arc. This study focuses on the dimension of vulnerability—

specifically, the degree to which vulnerability (in terms of performance loss) can be 
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mitigated by employing an effective defense strategy against probable disruptions with 

known parameters. 

 

Given that a planner has some prior knowledge that a network faces a disruptive event 

with uncertainty, it is assumed that the planner will attempt to insulate, fortify, or 

otherwise harden the network in a way that minimizes the extent of the disruption 

(vulnerability reduction). Such a defense strategy would incur some cost to implement. 

The general approach for this study is to employ a defense strategy at a minimal cost 

that also minimizes network vulnerability. Prior effort has formalized this multi-

objective problem[15], taking into account discrete, diverse “attack” scenarios and 

offering a solution approach for approximating Pareto-optimality to define an overall 

robust defense strategy. This study makes use of this approach, extending it for multi-

commodity networks. The Pareto-optimal defense strategies are specific to a particular 

attack (hereafter more generally referred to as “disruption”). To explore strategies that 

are robust to multiple disruptions, the Pareto-optimal frontiers could be consolidated 

based on stakeholder opinions of the trade-offs between several criteria, including 

vulnerability reduction across several disruptions and cost. This study uses a 

multicriteria decision analysis technique, the Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS), to address these trade-offs, especially given the 

possibility of a large, high-dimensional Pareto set to consider. 

The goal of this paper is to propose a methodology for making robust decisions for 

reducing vulnerability in multi-commodity networks under uncertain disruptions. The 

remainder of this paper is as follows. Section 2 describes the proposed methodology. 
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Section 3 illustrates the methodology with a Swedish rail case study, and Section 4 

offers concluding remarks.  
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Chapter 2: Proposed Methodology 

This section discusses the proposed methodology for making robust decisions for 

reducing vulnerability in multi-commodity networks under uncertain disruptions. 

 

2.1. Single Commodity Formulation  

The network vulnerability reduction formulation proposed here extends that which was 

given previously for a single commodity[15], described as follows.  

 

Let a network be represented by 𝐺 = (𝑁, 𝐴), where 𝑁 represents the set of nodes (with 

source node 𝑠 and sink node 𝑡), and 𝐴 represents the set of links (or edges) between 

nodes. The capacity of link (𝑖, 𝑗) directed from node 𝑖 to node 𝑗 is 𝑞𝑖𝑗(𝑎𝑖𝑗), where 𝑎𝑖𝑗 is 

a binary indicator of disruption equal to 1 if the link is disrupted and 0 if the link is not 

disrupted. It is assumed that if link (𝑖, 𝑗) experiences a disruption, 𝑞𝑖𝑗(1) ≤ 𝑞𝑖𝑗(0). The 

set of (disrupted) capacities across all links is noted as the vector 𝐪. 

 

The original formulation considers a set of resources belonging to an adversary divided 

amongst disruptive events 𝐞𝑘 ∈ 𝐷, which further divide those resources so that 𝑒𝑖𝑗
𝑘  

refers to the amount of resources dedicated to disrupt link (𝑖, 𝑗) for event 𝑘. The set of 

all disruptive events is 𝐷. 

The network defender is assumed to be aware of possible disruption scenarios, 𝐷, but 

not aware of the specific components and their locality. The defender employs defense 

strategy 𝐡𝑙 to minimize the vulnerability of the network to disruption 𝐞𝑘, where ℎ𝑖𝑗
𝑙  

denotes the resources dedicated to mitigate damage to link (𝑖, 𝑗) for strategy 𝑙. 
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Linking disruption and defense strategies with the notion of vulnerability is a contest 

function found in Eq. (1) based on work by Skapderas[16] and supported by the 

competing resource strategy by Levitin and Hausken[17]. That is, given disruption 𝑘 and 

defense strategy 𝑙, the disruptive threat to link (𝑖, 𝑗) is the probability that the link’s 

capacity is reduced to zero, represented with 𝑢𝑖𝑗(𝐞
𝑘, 𝐡𝑙). The exponent 𝑚 describes 

contest intensity (which defaults to a value of 1). Note that this contest function is 

particularly used for attacker/defender scenarios, though it is considered more generally 

here for disruptions beyond only malevolent attacks where 𝑒𝑖𝑗
𝑘  could broadly be 

interpreted as the strength of disruption to link (𝑖, 𝑗) and where ℎ𝑖𝑗
𝑙  could be a similarly 

scaled measure of the strength of defense of link (𝑖, 𝑗). 

 

𝑢𝑖𝑗(𝐞
𝑘, 𝐡𝑙) =

{
 

 (𝑒𝑖𝑗
𝑘)

𝑚

(𝑒𝑖𝑗
𝑘)

𝑚
+ (ℎ𝑖𝑗

𝑙 )
𝑚 if (𝑒𝑖𝑗

𝑘)
𝑚
> 0

0  if (𝑒𝑖𝑗
𝑘 )

𝑚
= 0

 (1) 

 

When 𝐞𝑘 and 𝐡𝑙 are known, each link’s survival probability is assumed to be a random 

variable with probabilities given by Eq. (2).  

 

𝑃 (𝑞𝑖𝑗(𝑎𝑖𝑗)) = {
1 − 𝑢𝑖𝑗(𝐞

𝑘, 𝐡𝑙)   if 𝑎𝑖𝑗 = 1

           0                 if 𝑎𝑖𝑗 = 0
 (2) 

 

Expected network performance, where 𝜑 is defined as source-to-sink flow, can be 

described as 𝜀(ℎ𝑙, 𝑒𝑘) = 𝐸[𝜑(𝐪)|𝐞𝑘, 𝐡𝑙]. And network performance is a function of link 
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flow, 𝑓(𝑞𝑖𝑗) ∈ (0, 𝑞𝑖𝑗(1)). From these definitions, the formulation is defined as 

follows. The objectives in Eqs. (3) and (4) are expected network performance and cost 

of vulnerability reduction, respectively. Constraint (5) is through-network flow balance, 

constraint (6) is terminal (source-sink) flow balance, constraint (7) enforces link 

capacity, and constraint (8) ensures non-negativity. These constraints are typical in the 

maximum flow literature[18]. Note that this formulation accounts for a single source and 

a single sink for each commodity, which could be imposed as “super source” and “super 

sink” nodes. 

 

 max
𝑙
𝜀(𝒉𝑙, 𝒆𝑘)  ∀ 𝐞𝑘 ∈ 𝐷 (3) 

 min
𝑙
𝐶(𝐡𝑙) (4) 

s.t. ∑𝑓(𝑞𝑖𝑗)

𝑖|ℎ𝑖𝑗

− ∑ 𝑓(𝑞𝑗𝑘)

𝑘|ℎ𝑗𝑘

= 0  ∀  𝑖, 𝑗 ∈ 𝑁, ∉ {𝑠, 𝑡} (5) 

 ∑ 𝑓(𝑞𝑠𝑗)

𝑗|ℎ𝑠𝑗

− ∑ 𝑓(𝑞𝑘𝑡)

𝑘|ℎ𝑘𝑡

= 0 ∀ 𝑗, 𝑘 ∈ 𝑁, ∉ {𝑠, 𝑡} (6) 

 𝑓(𝑖, 𝑗) ≤ 𝑞𝑖𝑗(𝑎𝑖𝑗) ∀ (𝑖, 𝑗) ∈ 𝐴 (7) 

 ℎ𝑖𝑗
𝑙 ≥ 0 (8) 

 

The two objectives are in competition, so a Pareto-optimal set and relevant tradeoff 

schemes have to be determined for decision support.   
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2.2 Multi-commodity Extension 

This study extends the above formulation to include multiple commodities that do not 

share the same link capacity resource, where the set of commodities is 𝑉, (𝑣 ∈ 𝑉). The 

formulation assumes that a given commodity may have multiple points of supply and 

demand, so each commodity’s set of source and sink nodes is defined as 𝑆𝑣 and 𝑇𝑣, 

respectively. Demand for a commodity at a given node 𝑧 is noted as 𝑑𝑣𝑧 (where 

negative demand denotes supply). Flow of commodity 𝑣 across link (𝑖, 𝑗) is denoted by 

𝑓𝑣(𝑖, 𝑗).  

 

The new objective functions accounting for multiple commodities are found in Eqs. (9) 

and (10). Eq. (9) refers to the minimization of the largest fraction of unsatisfied demand 

across all commodities. Where a common measure of network performance (𝜑 from 

Figure 1) might be maximum flow for a pair of nodes (or all nodes [Nicholson et al. 

2016]) or the amount of demand being met in demand nodes, we consider the minimal 

greatest fraction of unsatisfied demand across commodities. This allows us to represent 

network performance with a vulnerability measure, which would likely increase after a 

disruption (as opposed to the decreasing phenomenon in Figure 1). It is assumed that 

each commodity has equal economic importance, though alternative importance 

schemes could easily be represented with convex-sum weighting schemes in Eq. (9). 

The second objective in Eq. (10) refers to the minimization of the cost of implementing 

strategy 𝑙, 𝐶(𝐡𝑙). The cost function is taken to be specific to the problem and is left in a 

general form here. 
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min
ℎ𝑖𝑗
𝑙
𝑧1 = max

𝑣∈𝑉
(1 − ∑∑

𝑓𝑣(𝑠𝑣, 𝑗)

∑ 𝑑𝑣𝑧𝑧∈𝑁
𝑗∈𝑁𝑠𝑣∈𝑆

) (9) 

min
ℎ𝑖𝑗
𝑙
𝑧2 = 𝐶(𝐡𝑙) (10) 

  

The constraints for the single commodity formulation in Eqs. (3)-(8) are reformulated as 

Eqs. (11)-(14) to account for multiple commodities and the possibility of multiple 

sources and sinks for each commodity. Here, Eq. (11) refers to flow balance (amount in 

equals amount out, less the amount demanded at that node), Eq. (12) refers to 

commodity flow conservation (no commodity is lost in the network), Eq. (13) refers to 

the post-disruption capacity constraint on each link, and Eq. (14) refers to the non-

negativity condition of the defense strategy (no benefit can come from decreasing 

resources from a link). 

 

∑𝑓𝑣(𝑖, 𝑗)

𝑖|ℎ𝑖𝑗

− ∑ 𝑓𝑣(𝑗, 𝑘)

𝑘|ℎ𝑗𝑘

− 𝑑𝑣𝑗 = 0 ∀ 𝑣 ∈ 𝑉,  𝑗 ∉ {𝑆𝑣 ∪ 𝑇𝑣} (11) 

∑ 𝑓𝑣(𝑠𝑣, 𝑗)

𝑗|ℎ𝑠𝑣𝑗

− ∑ 𝑓𝑣(𝑘, 𝑡𝑣)

𝑘|ℎ𝑘𝑡𝑣

= 0  ∀ 𝑣 ∈ 𝑉 (12) 

∑𝑓𝑣(𝑖, 𝑗)

𝑣∈𝑉

≤ 𝑞𝑖𝑗𝑣(𝑎𝑖𝑗) ∀ (𝑖, 𝑗) ∈ 𝐴,  𝑣 ∈ 𝑉 (13) 

ℎ𝑖𝑗
𝑙 ≥ 0 (14) 

 

Given that flow across a node is constrained by capacity under probabilistic disruption, 

the expected value of capacity is represented by Eq. (15). 
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𝐸[𝐞𝑘] = {
 𝑞𝑖𝑗(𝑎𝑖𝑗) (1 − 𝑢𝑖𝑗(𝐞

𝑘, 𝐡𝑙))     if (𝑒𝑖𝑗
𝑘 )

𝑚
> 0

 𝑞𝑖𝑗(𝑎𝑖𝑗)                                       if (𝑒𝑖𝑗
𝑘)

𝑚
= 0

 (15) 

 

 

2.2.1 Pareto Optimality 

Given the competing objectives, it is necessary to estimate the Pareto set. The exact 

Pareto set 𝐻∗ is defined as the set of all non-dominated defense strategies. Of two 

feasible strategies for reducing vulnerability, 𝐡𝑙 and 𝐡𝑙
′
, given disruption 𝐞𝑘, 𝐡𝑙

′
 

dominates 𝐡𝑙 if 𝐡𝑙
′
outperforms 𝐡𝑙 in at least one objective while 𝐡𝑙

′
 performs at least as 

well as 𝐡𝑙 in the other objectives. If there exists no 𝐡𝑙
′
 that dominates 𝐡𝑙, then 𝐡𝑙 is 

non-dominated and 𝐡𝑙 ∈ 𝐻∗. Specifically for the bi-objective problem discussed here, a 

non-dominated strategy essentially refers to a strategy that improves, say, 𝑧1 relative to 

another strategy but where 𝑧2 degrades relative to the other strategy (and vice versa).  

 

Since 𝐡𝑙 ∈ ℝ+, defining 𝐻∗ precisely, like most multi-objective problems, is at worst, 

impossible, and at best, computationally difficult. This study proposes, instead, that the 

NSGA-II heuristic be used to approximate the Pareto set. 

 

To generate the Pareto-optimal frontier (tradeoff space), a heuristic approach to 

estimating the true Pareto set is favored—namely, the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II)[19]. This algorithm has been shown to perform favorably both 

in terms of accuracy (verified by test sets with known Pareto subsets) and in terms of 

computational complexity for high-dimensional decision spaces in network 
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formulations. Examples of such problems include multi-objective supply chain 

problems[20], supply chain resilience[21], stochastic computer network reliability[22], and 

many other problems based on network and/or graph constructs. 

 

2.3 Robustness Evaluation  

The Pareto set is a set of defense strategies (i.e., an investment in protecting a set of 

links), and each disruption scenario generates one such set. Each set of defense 

strategies is evaluated against all other disruption scenarios in terms of reduction of the 

maximum flow through the network and in terms of commodity demand satisfaction (a 

measure of individual commodity flow). From this set of globally-evaluated solutions, a 

decision maker assesses the performance of each strategy relative to the commodity 

flow performance (𝑧1) for each disruption in 𝐷 and the overall cost (𝑧2) of the defense 

strategy. As the number of disruptions increases, the complexity of the solution set 

increases. To navigate this complexity, this study utilizes a multicriteria decision 

analysis technique, TOPSIS, to define a ranking of candidate solutions, where the 

criteria represent (i) the commodity flow performance for each disruption and (ii) the 

cost of the defense strategy.  

 

The first step of TOPSIS is to ensure that the criteria being compared are 

commensurate. This is typically achieved by normalization (or standardization). Range 

normalization is computationally simple and may offer greater understandability for 

decision makers in the final solution selection stages, although there are other 

normalization techniques that may be more appropriate for different networks[23]. Range 
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normalization is defined on two functional components, one for criteria that are 

perceived as benefits (advantageous) and one for criteria perceived as costs 

(disadvantageous). These are shown in Eqs. (16) and (17), respectively. In both cases, a 

value of one is understood to be the best possible outcome for a given criterion, while a 

value of zero is the worst. 

 

𝑟ℎ𝑙𝑦 =
𝑥ℎ𝑙𝑦 − min

ℎ𝑙∈𝐡𝑙
𝑥ℎ𝑙𝑦

max
ℎ𝑙∈𝐡𝑙

𝑥ℎ𝑙𝑦 − min
ℎ𝑙∈𝐡𝑙

𝑥ℎ𝑙𝑦
 (16) 

 

𝑟ℎ𝑙𝑦 =
max
ℎ𝑙∈𝐡𝑙

𝑥ℎ𝑙𝑦 − 𝑥ℎ𝑙𝑦

max
ℎ𝑙∈𝐡𝑙

𝑥ℎ𝑙𝑦 − min
ℎ𝑙∈𝐡𝑙

𝑥ℎ𝑙𝑦
 (17) 

 

The result is a normalized value, 𝑟ℎ𝑙𝑦, denoting the performance of alternative (i.e., 

defense strategy) ℎ𝑙 for criteria 𝑦 ∈ {1,… , 𝑌}, the set of criteria being considered. A 

weighting scheme can be applied to each criterion, as shown in Eq. (18). 

 

𝑏ℎ𝑙𝑦 = 𝑟ℎ𝑙𝑦𝑤𝑦 (18) 

 

Since the criteria in this study comprise 𝑧1 and 𝑧2 values from Eqs. (9) and (10), the 

best solutions seek minimal values in criteria performance. TOPSIS constructs an ideal 

solution, 𝐴+, componentwise from all considered solutions, selecting the best possible 

criteria outcomes, as shown in Eq. (19). Similarly, an “anti-ideal” solution, 𝐴−, is 

constructed componentwise from all worst criteria outcomes, shown in Eq. (20). 
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𝐴+ = (𝑏1
+, … , 𝑏𝑌

+), 𝑏𝑦
+ = min

𝑦
𝑏ℎ𝑙𝑦 (19) 

 

𝐴− = (𝑏1
−, … , 𝑏𝑌

−), 𝑏𝑦
− = max

𝑦
𝑏ℎ𝑙𝑦 (20) 

 

The solution set is then ordered by comparing each solution to both the ideal and anti-

ideal conditions 𝐴+ and 𝐴−. The solutions are ordered by similarity to the ideal 

condition such that the best solutions have the greatest Euclidean distance from the 

worst condition (𝐷−) and the least distance from the best condition (𝐷+), as described 

in the similarity metric 𝑆+ in Eq. (21). The solutions with higher 𝑆+ values are 

considered to be better solutions. 

 

𝑆+ =
𝐷−

𝐷− + 𝐷+
 (21) 

 

Note that the specific tradeoffs made in the ordering process may lack some 

transparency for high-dimensional situations, but the ease, speed, and relatability of 

TOPSIS suggests that it is reasonable for ordering of robust defense solutions in a 

decision support environment. From the initial solution set, interactive methods for 

determining stakeholder utility can be employed to inform overall decision support, and 

these can be incorporated into the TOPSIS methodology as weights, as noted in Eq. (18) 

above. 
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2.4 Solution Algorithm  

Given that the objective of the modeling process is to understand the impacts of 

disruption across multiple commodities and to provide decision support from that 

understanding, this study proposes the following assimilation of the above formulation 

and techniques. 

 

First, the network is instantiated with nodes, directed links, link capacities for each 

commodity, and the set of disruption scenarios. These disruption scenarios are 

constrained by a resource budget, with resources divided equally among links that are 

targeted. These scenarios must be framed in such a way that the resources directed at 

the links be commensurate with defense strategy resources. Second, the Pareto-optimal 

defense strategies are determined for each disruption scenario using the NSGA-II 

algorithm. These defense strategies are characterized by their objective values: the 

maximum fraction of satisfied demand and overall strategy cost. Third, the performance 

of each defense strategy set is weighed against each disruption scenario to determine 

which defense strategy is most robust across disruptions. The robustness of the defense 

strategies is characterized by an ordering gained from TOPSIS. 
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Chapter 3: Illustrative Example: Swedish Rail Network 

This algorithmic approach was applied to data for a Swedish railway system of 1,363 

stations (nodes) and 1,438 connecting, bidirectional tracks (links), collected from public 

sources and the infrastructure owner[24]. This system has been studied concerning 

infrastructure vulnerability in previous publications[24],[25]. 

 

3.1. Instrumentation 

The data were re-structured and output from Matlab. The problem instance was 

implemented in the Python programming language using the “networkx” package 

(version 1.11)[26] to implement and create graph structures and network data structures, 

the “ecspy” package (version 1.1) to implement evolutionary computations and the 

NSGA-II evolutionary algorithm, and the Python API for the Gurobi solver platform to 

solve the single-objective maximum flow sub-problems. All algorithms were performed 

on a standard laptop computer with a quad-core 2.4GHz processor and 8 gigabytes of 

memory. 

 

3.2. Network Generation 

The freight data comprise 19 different commodities (as shown in Table I) aggregated 

from publicly available data and train operator data. The data contain granularity issues 

in that freight movement was consolidated to the level of cargo routes, whereby specific 

information about individual trains and operators has been removed for sensitivity 

purposes. As a result, the data lack specific supply and demand values for stations and 

capacity parameters for links, though this study makes use of the estimation approach 
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for these parameters from a previous study[27]. Supply and demand values for each 

commodity were distributed across those stations over which train operators shipped 

each commodity, with the values being proportional to the number of routes bearing 

that commodity across that node. Similarly, link capacities were estimated by assessing 

freight movement in the rail network such that the resulting network has some degree of 

slack. Table 1 provides the commodity descriptions (translated from Swedish) and 

estimates for supply and demand. Figure 2 depicts two selected examples of 

capacitation outcomes from this process, showing that different commodities have 

different levels of movement through different paths in the network. Conceptually, this 

could be due to availability of different train car types, or supply-demand interactions. 

 

Given that supply is not equivalent to demand for each commodity, the values are 

adjusted to the minimum of the two values for the base case of this network. In this 

way, the best possible performance of the network equates to 100% demand 

satisfaction. 

 

Generating the network relied heavily on data structures provided by the Python 

package “networkx” [27]. The final network consisted of the original 1,363 nodes and 

2,876 links between them (since each of the original 1,438 links is considered bi-

directional). 
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Table 1. Raw supply and demand data for each commodity (in kilotons). 

Index Commodity Supply Demand 

1 Agriculture, forest, fishing 228 284 

2 Coal, crude oil, natural gas 27 19 

3 Ore 210 262 

4 Food, beverage, tobacco 281 366 

5 Textile, leather 240 262 

6 Wood, cork, pulp, paper 245 276 

7 Petroleum products 198 217 

8 Chemicals, rubber, plastics 186 187 

9 Other non-metallic mineral 270 258 

10 Fabricated metal products 216 193 

11 Machinery and equipment 263 251 

12 Transport equipment 240 269 

13 Furniture, other manufactured 248 239 

14 Return materials and recycling 256 380 

15 Post and packages 0 0 

16 Equipment for transportation 238 260 

17 Moving goods, vehicles for repair 0 0 

18 Loader and grouped goods 287 241 

19 Unidentifiable goods 293 267 

 

  

(a) commodity 2 (b) commodity 7 

Figure 2. Capacitation of the network for commodities 2 (Coal, crude oil, natural 

gas) and 7 (Petroleum products). 
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3.3. Disruption Scenarios 

Since there are no disruption data for this problem instance, and since costs for 

hardening the system are unknown, five separate disruption scenarios were generated. 

For each scenario, 288 links (10% of total) were selected at random and were allocated 

10 units of disruption resource. Lacking a disruption scenario, such a distribution may 

be realistic in the event of a Swedish winter with extremely heavy snowfall combined 

with hard winds. Thus, simulating the probabilities of failure over five disruption 

scenarios should help decision makers to determine the defense strategy (e.g., investing 

in track clearance resources) that is most robust to this problem. An example disruption 

of the network is shown in Figure 3. 

 

   

(a) scenario 1 (b) scenario 2 (c) scenario 3 
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(d) scenario 4 (e) scenario 5  

Figure 3. The five disruption scenarios for the network, with yellow links 

denoting full disruption. 

 

3.4. Pareto Frontier Estimation 

The determination of Pareto frontiers was approached for each disruption scenario 

individually. 

 

To initialize the NSGA-II algorithm, a set of starting solutions is necessary. Each 

solution is a list of defense resources allocated to corresponding links of the network. In 

trial runs and preliminary tuning of the NSGA-II algorithm, different methods were 

used to randomly generate high-performing, sufficiently diverse initial solution sets, but 

it was found that a null set, together with a high mutation rate, performed better than the 

other methods. The set of solutions—or evolutionary “population”—consisted of 50 

members. 

 

Because of the size of the network and the limitations of computational resources, 

parameter tuning was a critical step to ensure high-quality estimates. Given the 50-
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member population, a mutation rate of 0.8 converged to relatively good solutions after 

about 10 generations, so a final value of 20 generations was chosen, pushing the 

computation resources to refine the Pareto estimate as much as possible. Because the 

number of generations is limited, it was found that the combination of a high mutation 

rate with the internal greedy mechanisms of NSGA-II struck a good balance between 

exploration of the solution space and exploitation of superior solutions.  

 

With the problem fully instantiated, the NSGA-II iterations (generations) began. An 

iteration consisted of an application of the contest function to each link for each solution 

in the population given the selected disruption scenario and each solution in the 

population. The outcome of the contest function is a probability value, which was 

assessed with a pseudo-random number generator. As described in Eq. (15), the 

probabilistic outcome is binary, and if the link was found to be “disrupted,” the capacity 

for all commodities on that link was reduced to 0. Likewise, if the outcome of the 

contest function is “not disrupted,” the commodity capacities are unchanged. A new, 

separate, disrupted network is then created for each ℎ𝑙 in the solution set, and the 

minimal value of the greatest fraction of unsatisfied demand (𝑧1) is calculated through 

solving a multiple-commodity network flow problem (for each ℎ𝑙) implemented in the 

Python API for the Gurobi linear programming platform. The fitness of each solution in 

the population was determined from the 𝑧1 value and the cost of the solution, taken to 

be the sum of the defense resources allocated to each link (𝑧2). 
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NSGA-II was then allowed to iterate for 20 generations using blend crossovers and the 

canonical NSGA-II selection and diversity methods to produce an estimate of the Pareto 

set of best-performing defense strategies. 

 

3.5. Robustness Evaluation and Strategy Ranking 

The final solution set obtained from each disruption scenario was then assessed for 

performance in each of the other five disruption scenarios. This resulted in a final 

solution set with a total of 250 solutions (population size multiplied by number of 

disruptions). Each of these solutions generated a disrupted graph instance for each of 

the five disruptions, and the resulting 1,250 graphs were assessed for 𝑧1, while 𝑧2 was 

constant across each of the 250 solutions. 

Six criteria were considered: the𝑧1 outcome from each of the five disruption scenarios 

and overall cost, 𝑧2.  for the TOPSIS ranking. The top-ranked of the 250 defense 

strategies are provided in Table 2. 

 

Table 2. TOPSIS rankings for top 12 defense strategies. 

Defense 

population 

Population 

member S+ Rank 

Vulnerability 𝑧1 for scenario 𝑘 Cost 

𝑧2 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

1 0 0.462 1 0.099 0.400 0.494 0.619 0.665 14294 

1 2 0.459 2 0.238 0.412 0.549 0.627 0.666 13943 

1 3 0.443 3 0.257 0.427 0.559 0.665 0.673 13927 

1 1 0.419 4 0.213 0.409 0.549 0.627 0.665 14286 

1 7 0.415 5 0.323 0.452 0.580 0.665 0.677 13944 

1 5 0.404 6 0.276 0.445 0.579 0.665 0.673 14110 

1 6 0.401 7 0.323 0.449 0.579 0.665 0.677 14038 

1 12 0.390 8 0.361 0.469 0.586 0.665 0.712 13980 

4 3 0.387 9 0.716 0.716 0.716 0.273 0.716 13773 

1 11 0.387 10 0.355 0.469 0.586 0.665 0.712 14009 

3 2 0.383 11 0.716 0.716 0.198 0.716 0.716 13938 

1 17 0.382 12 0.361 0.474 0.591 0.665 0.716 14018 
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Mentioned previously, running NSGA-II for each disruption scenario generated 50 

Pareto-optimal solutions (250 total). Between the crossover operator and the mutation 

operator used in the genetic iterations of NSGA-II, most solutions allocated defense 

resources to links that were not disrupted in the scenario. This was initially unexpected, 

but in the scheme of multiple disruptions, distributing resources with a broader brush 

conferred some degree of robustness to the solution sets, as the distribution of resources 

was appreciably uniform for non-disrupted links. This robustness creates inefficiency in 

solution costs and overall costs are inflated compared to parsimonious distribution of 

defense resources only to those links in the disruption set. It is expected, however, that 

longer run-times of NSGA-II over more disruption scenarios would improve the Pareto 

estimation and reduce this artificial inflation, confining resource allocation to the most 

vulnerable links.  

 

Despite these inefficacies, the quality of the solution set in a decision support 

environment remains high. Given the real-world political and socio-economic 

complexities of implementing defense strategies, a number of defense strategies with 

similar performance and costs but different allocations of resources might be desired. 

Perhaps, in the above example, resource allocation is limited in certain regions because 

of logistics, legislated spending caps, or some other difficult-to-model reality. 

Moreover, defense strategies that augment all links to some extent and critical links to a 

greater extent are defensibly realistic for certain probabilistic disruption scenarios. For 

example, those implementations, depending on the system of interest, might manifest as 

railway bridge retrofitting for spring floods, sandbagging flooding rivers, or adding 
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parallel tracks. In a decision support environment, a decision maker may appreciate 

alternatives that, although not Pareto-optimal by definition, still confer non-trivial 

vulnerability reduction and overall increased system resilience. Further, TOPSIS offers 

a fast, transparent, easily-understandable ordering of these solutions. The distance-

driven approach helps identify the superior solutions regardless of the quality of Pareto-

optimality estimation from the NSGA-II output. 
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Chapter 4: Concluding Remarks 

This study offers a formulation and modeling approach to assessing a multiple-

commodity system's vulnerability to disruption events. The system is abstracted to a 

graph representation of a network of nodes and directed, capacitated links. The network 

formulation aims to reduce the cost of a defense strategy while maintaining a high 

degree of demand satisfaction for each commodity. These objectives are based on the 

decision to allocate defense resources to specific links in the network. A heuristic search 

by a well-established genetic algorithm estimates the Pareto frontier for each disruption 

scenario in the set of disruption events. These Pareto frontiers form the solution set and 

are incorporated into a decision support environment with TOPSIS. From TOPSIS, the 

criteria of each solution (i.e., total cost and, for each disruption, demand satisfaction) 

are compared to an ideal condition and the solutions are ordered in terms of robustness 

of each defense strategy to all possible disruptions. The solution method allows for 

some decision maker interaction to account for real-world difficulties of implementing 

specific defense strategies (e.g., weight given to disruptions assumed to be more likely 

or of bigger concern).  

 

4.1. Limitations 

This approach has potential to be useful in several ways, but the consideration of a 

solution’s response to each disruption after the heuristic estimation limits its ability to 

be robust to the other disruptions. This could be avoided by adding a demand 

satisfaction objective for each disruption (like 𝑧1), but it is anticipated that this would 

prohibitively increase computation time for this problem instance and implementation 
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given NSGA-II’s computational complexity and the data structures employed in the 

algorithm. 

 

Another issue was that the network is fairly sparse. The sparsity of the underlying graph 

causes significant problems when assessing impacts of the disruption strategy we chose. 

It was found that if a disruption occurred on a sparse branch or subgraph then the 

solution quality would be highly dependent on the randomness of NSGA-II variator 

operator to “find” that branch. That is, if no solutions evolved to address the disruption 

of the link in that sparse subgraph, then the solution would not mitigate the disruption of 

that link. As a result, the demand satisfaction objective (𝑧1) would suffer and appear 

“frozen” for a given disruption across multiple population members. This can be seen in 

Table II where the 𝑧1 objective value for a disruption is the same for multiple solutions. 

Sparsity of the network has similar consequences for the robustness evaluation across 

the different disruptions, as seen in the dominance of disruption scenario 1 in Table 2. It 

was found that the particular disruptions generated in disruption scenarios 2 through 5 

had several disrupted links in sparse subgraphs. Again, the exploration mechanics of 

NSGA-II had difficulty “finding” these links in order to allocate defense resources to 

them. Disruption scenario 1 had fewer disruptions on sparse subgraphs. The result is the 

coincidental dominance of defense strategy 1 (which was generated from disruption 

scenario 1). To overcome issues associated with sparsity, it may be useful to employ 

graph-reducing algorithms. This might cause difficulties with capacitation, so any such 

reduction or simplification of the graph will need to account for bottlenecking of 

capacity along a sparse subgraph after disruption. That is, reducing sparsity in the graph 
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is secondary to retaining integrity of the disruptive event and defensive strategy; over-

simplification may reduce the effective meaning of a given solution. 

 

A further limitation is that this model assumes deterministic supply and demand values, 

and that supply and demand should be equivalent. Given the model’s high complexity 

under assumptions of determinism, incorporating stochasticity may make the model 

prohibitively complex to solve in realistic time. 

 

Finally, the complexity of the data structures and the slightly long solution times (tens 

of hours) may limit the applicability of this approach to larger or more time-sensitive 

problems, though it is argued that this approach should be used for longer term planning 

where run time is not likely an issue. As discussed above, simplification of the network 

may avoid these computational disadvantages, but would require careful thought for 

each specific problem instantiation. 

 

Despite these limitations, the proposed approach offers robust solutions in a decision 

support environment to begin addressing network vulnerability to a certain kind of 

disruption. Importantly, no single outcome from the TOPSIS ranking should be treated 

as a superior solution, but rather as a starting point to approach real-world complexities 

associated with the system. Note that TOPSIS is just one of several techniques that 

could be chosen to compare discrete strategies under multiple criteria. TOPSIS was 

chosen here due to its simplicity and its ability to implement a compromise solution. 
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The choice of decision analysis technique could influence the ranking of strategies[28], 

though a comparison is not sought here. 

 

4.2. Future Work 

Future work may entail performing a computational performance analysis for several 

types of networks across different evolutionary heuristics. That is, NSGA-II may be 

superior in some regards, but more recent heuristics may be better-suited to dealing with 

complex data structures that often arise in network modeling with multiple 

commodities. Along these lines, network simplification and sparsity-reducing 

algorithms might be explored to reduce the number of non-contributing nodes and links 

of a real-world network. Eliminating even a few nodes and/or links could significantly 

reduce computation times and encourage the use of more evolutionary generations to 

explore and exploit useful defense solution attributes. 

 

Within the resilience modeling framework, future research will elucidate trade-offs 

between vulnerability reduction and recoverability improvement given disruptions with 

some stochastic component (e.g., trade-off between pre-disruption and post-disruption 

investments).  
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