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Abstract

The world’s population is increasingly concentrated in large urban areas. Many

observational and modeling studies have explored how large, population-dense

cities modify local and mesoscale atmospheric phenomena. Urban modeling

studies often use an explicit urban canopy model to parameterize urban surfaces.

However, it is unclear whether this approach is appropriate for more suburban

cities, such as those found in the Great Plains. To investigate this problem,

the Weather Research and Forecasting model is used to simulated a week of

conditions in and around the Oklahoma City, Oklahoma area, and results from

these simulations are compared with observations. Overall, five simulations with

varying urban land-surface parameterization configurations are examined. Three

simulations use the Noah land surface model (LSM): one with all urban areas

removed, one using the original Noam LSM, and the other with urban areas

parameterized by a modified Noah LSM with three urban categories. Additional

simulations utilize a single layer urban canopy model either with default urban

fraction values or with urban fractions taken from the National Land Cover

Database. In general, all simulations produce warmer, drier urban areas, with

a stronger urban heat island at night. However, the prediction of near-surface

winds is problematic in the two simulations that use the single layer urban

canopy model as neither simulation correctly reproduces reduced wind speeds

over the city. The modified Noah LSM provides the best overall agreement with

observations and represents a reasonable option for simulating the urban effects

of more suburban cities.

The effect of urban areas on weakly-forced precipitation systems has also been
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studied extensively. However, interactions between urban areas and synoptically-

active convection, such as supercells, remain relatively unexamined. Simulations

of a supercell thunderstorm, with an urban area parameterized using the modi-

fied Noah LSM scheme, are used to quantify the impacts of a large Plains urban

area on the evolution and strength of a supercell thunderstorm. Simulations with

urban areas are compared to an initial-condition ensemble of simulations without

any urban areas, with hierarchical clustering analysis used to form statistically

similar groups of simulations. In this analysis, the effects of the storm having

various city-relative paths, as well as the storm life cycle stage during urban

interactions, are investigated. The results suggest that, when the storm passes

to the north of or directly over the city center late in its life cycle, low-and mid-

level mesocyclone strength increases, and the mesocyclone tracks further south.

In general, low-level storm characteristics are more sensitive to the location of

the city than are mid-level storm properties.

To supplement this analysis, a factor separation approach is undertaken to

determine the relative importance of the roughness and thermal characteristics of

urban areas on storm modification. City locations near the beginning and end of

the storm’s life cycle are used to determine if the storm’s maturity while interact-

ing directly with the city modulates these effects. Results generally suggest that

surface roughness and its interactions between thermodynamic properties are the

dominant contributors to urban-induced effects on storm strength and evolution.

Additionally, the amplitude of interactions between shear and thermodynamic

modifications is often similar in magnitude to either effect individually.
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Chapter 1

Introduction

A large body of research (e.g., Shepherd 2005; Shepherd et al. 2010b) suggests

that urban areas modify atmospheric properties in their vicinity due to the spe-

cial properties of urban areas (e.g., surface albedo and emissivity, anthropogenic

emissions, etc.) (Oke 1976, 1981, 1982; Arnfield 2003; Barlow 2014). To better

understand urban-rural differences, researchers have undertaken efforts in the

past few decades to observe and quantify the range of effects that urban areas

can have on the environment. Studies involving first-order urban effects focus

almost exclusively on urban-induced near-surface warming, particularly at night

(e.g. Gedzelman et al. 2003; Yow and Carbone 2006; Alonso et al. 2007; Basara

et al. 2008; Yang et al. 2013; Smoliak et al. 2015; Hu et al. 2016), which is fre-

quently referred to as the urban heat island (UHI; Oke 1982). Although not as

well-documented, in-situ measurements also suggest slower wind speeds in the

city, most prominently during the day (Bornstein and Johnson 1977; Dou et al.

2015; Hu et al. 2016), and decreased humidity (Dou et al. 2015) in urban areas.

Modifications of microscale atmospheric properties by urban areas can also

affect mesoscale and storm-scale weather phenomena. For example, researchers

have observed urban areas across the globe to cause earlier arrival of Spring

(Alonso et al. 2007), fewer freezing rain events (Changnon 2003), and more severe

floods (e.g. Smith et al. 2002). Of particular relevance to the present study is the

effect that urban areas have on intense convection; a wide breadth of research
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indicates that convective precipitation pattern, frequency, and intensity can be

altered as a consequence of urban modifications of temperature, humidity, and

flow structure (e.g. Huff and Changnon 1973; Changnon 1979; Changnon et al.

1991; Bornstein and Lin 2000; Shepherd et al. 2002; Shepherd and Burian 2003;

Burian et al. 2005; Dou et al. 2015; Seino et al. 2016). Research also suggests

that urban aerosols can cause altered lightning frequency (e.g., Orville et al.

2001; Rose et al. 2008; Tan et al. 2016), though aerosols will not be addressed

in this study.

Earth’s population is increasingly concentrated in urban areas, with nearly

two-thirds of the world’s population expected to live in urban areas by 2050

(United Nations 2015). As the number of people within cities grows, it is be-

coming more important to understand, and to be able to correctly predict (es-

pecially via numerical modeling), the interactions between urban environments

and the atmosphere. Hence, this study will simulate the interaction between an

isolated supercell and a large plains urban environment after first identifying the

best urban parameterization to use in these simulations. These analyses will be

supplemented by a factor separation analysis in an attempt to determine which

aspects of the urban environment most affect supercell strength and evolution.

1.1 Motivation and previous work

1.1.1 Direct urban effects on the atmosphere

While the exact mechanisms through which urban areas modify their environ-

ment are not fully understood, the meteorological conditions observed in urban

areas are likely caused by a multitude of factors (Table 1.1). The majority of

research involving these mechanisms focuses on the UHI. The primary culprit of

the UHI effect is the modification of surface properties, such as albedo, emissiv-
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Table 1.1: Suggested causes of the urban heat island (not rank ordered).
(Adapted from Oke 1982)

Altered energy balance terms leading to pos-
itive thermal anomaly

Features of urbanization underlying energy
balance changes

A. Canopy Layer
1. Increased absorption of short-wave ra-

diation
Canyon geometry – increased surface area
and multiple reflection

2. Increased long-wave radiation from the
sky

Air pollution – greater absorption and re-
emission

3. Decreased long-wave radiation loss Canyon geometry – reduction of sky view
factor

4. Anthropogenic heat source Building and traffic heat losses

5. Increased sensible heat storage Construction materials – increased thermal
admittance

6. Decreased evapotranspiration Construction materials – increased ’water-
proofing’

7. Decreased total turbulent heat trans-
port

Canyon geometry – reduction of wind speed

B. Boundary Layer
1. Increased absorption of short-wave ra-

diation
Air pollution – increased aerosol absorption

2. Anthropogenic heat source Chimney and stack heat losses

3. Increased sensible heat input from be-
low

Canopy heat island – increased heat flux
from canopy layer and roofs

4. Increased sensible heat input from
above

Heat island, roughness – increased turbulent
entrainment

ity, and thermal conductivity, in the urban area due to the replacement of natural

vegetation with man-made materials. Though the albedo of urban materials can

vary (αasphalt ' 0.05, αconcrete ' 0.55), artificial materials used for construction

typically have a higher thermal admittance, resulting in greater heat storage and

increased sensible heat release, particularly at night. Additionally, by replacing

natural, evaporating surfaces by generally water-proof materials, latent heat flux

is reduced. This results in drier urban air, thus compounding the effect of higher

sensible heat flux. Air pollution, by increasing absorption and re-emission of ra-

diation, contributes both to increased sensible heating and decreased long-wave

radiation loss at night. Anthropogenic heat release, though typically only impor-

tant in very large cities, is also a direct contributor to increased sensible heating

in the urban area. A warm urban area also results in increased turbulent mixing
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near the surface, which provides an additional source of sensible heat due to

turbulent entrainment, though this process may be tempered by the impedance

of urban structures. (Oke 1982; Oke et al. 1991). Together, these complicated

processes generally result in warmer temperatures in urban areas, up to 4− 5oC

under ideal conditions at night(e.g., Aase and Siddoway 1982; Hu and Xue 2016).

Tall buildings in urban areas also modify winds near the surface due to

increased surface roughness length, z0 (Oke 1987). Bornstein and Johnson (1977)

observed slower winds over the New York City urban area. As a result, the

Coriolis force decreased, causing a counter-clockwise turning of the winds as

they passed over and downstream of the urban area. More recent observational

investigations (e.g., Dou et al. 2015; Hu et al. 2016) have observed ∼ 10− 20%

slower wind speeds over urban areas during the day when wind rural speeds are

moderate, which they attribute to urban surface roughness impeding the flow.

These land-atmosphere interactions can also be modulated by larger-scale

meteorological conditions. Moderate wind speeds at night increase boundary

layer turbulence, which acts as an equalizer for urban-rural temperature differ-

ences through turbulent heat transport (e.g., Alonso et al. 2007; Hu et al. 2013,

2016). Similarly, cloud cover acts as an insulator that prevents heat loss to the

free atmosphere at night, hence increasing rural temperatures and decreasing the

UHI intensity (UHII; e.g., Alonso et al. 2007), or the difference between urban

and rural near-surface temperatures, and urban boundary layer development. .

Wet soils cool more slowly at night, hence precipitation also causes warmer ru-

ral nighttime temperatures (e.g., Oke et al. 1991), while drought conditions can

result in higher rural daytime soil temperatures, minimizing or reversing (i.e.,

cooler urban than rural temperatures) the daytime UHII (e.g., Winguth and

Kelp 2013; Husain et al. 2014). These examples illustrate the complicated pro-

cesses that create, modify, and maintain the UHI, which motivates the continued
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observational and modeling studies involving the urban area and its multitude

of effects.

1.1.2 Modeling urban effects

Recent studies have used the Noah land surface model (LSM; Chen and Dud-

hia 2001; Ek 2003) coupled with a single-layer urban canopy model (SLUCM;

Kusaka et al. 2001; Kusaka and Kimura 2004) in the Advanced Research Weather

Research and Forecasting (ARW-WRF Skamarock and Klemp 2008) model to

investigate land-atmosphere interactions in urban areas. Researchers have per-

formed modeling studies in large, dense cities across the globe, such as New

York City (Gutiérrez et al. 2015a), Taipei, Taiwan (Lin et al. 2008), Beijing,

China (Miao et al. 2009), Baltimore-Washington D.C. (Zhang et al. 2011; Li

et al. 2013), Mexico City (Cui and de Foy 2012), Hangzhou, China (Chen et al.

2014), Tokyo, Japan (Adachi et al. 2014; Takane et al. 2015), and Nanjing,

China (Chen et al. 2015). Although less numerous, some studies have used the

LSM-SLUCM framework in the WRF to model urban effects of smaller or less-

dense cities such as Las Vegas (Kamal et al. 2015), Dallas-Fort Worth, Texas

(Hu et al. 2016), Oklahoma City (Hu et al. 2013), Houston, Texas (Chen et al.

2011), and Phoenix, Arizona (Grossman-Clarke et al. 2010; Shaffer et al. 2015).

These investigations showed that using the SLUCM to parameterize urban ar-

eas improves model representation of UHI intensity (UHII), or the difference

between urban and rural near-surface temperatures, and urban boundary layer

development.

In the WRF LSM-SLUCM modeling framework, the Noah LSM is used to

compute surface fluxes in all non-urban grid points based on vegetative and

soil properties such as surface roughness, emissivity, and albedo, as well as soil

moisture and temperature. In urban areas, the SLUCM is used to compute
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fluxes in the urban canopy, taking into account building materials, building

height, and more complex surface geometry. The LSM is also used at these

locations to compute fluxes, however the LSM considers the grid point to be

”natural” (i.e. non-urban). In this study, grassland was used to parameterize

the natural, non-urban surface. Each urban grid cell is then partitioned based

on urban fraction (i.e., how much of a grid cell is urbanized), and surface fluxes

from the LSM and SLUCM are aggregated.

To analyze the performance of the LSM-SLUCM modeling system, many

investigations have made modifications to land use categories, urban fraction,

vegetation percentage, and various urban canopy and LSM parameters. For ex-

ample, Miao et al. (2009) used the WRF Noah LSM-SLUCM system with mod-

ified land use categories, building height, and anthropogenic heat release within

the urban area. They concluded that increasing urban development intensity

resulted in a warmer and drier urban environment extending to 1.8 km above

ground level (AGL). In addition, their results suggested that increased building

height slows nocturnal wind speeds in the lowest 1 km AGL due to increased

friction, but enhances vertical mixing during the day, resulting in stronger wind

speeds. Cui and de Foy (2012) found that increasing vegetative cover in an urban

area moderates the UHI effect. Others, such as Li et al. (2013) and Chen et al.

(2014, 2015), simulated urban expansion by changing the urban land use repre-

sentation to that from various years. As urban extent and intensity increased,

so did sensible heat, ground heat storage, and air temperature throughout the

boundary layer. Additionally, Adachi et al. (2014) found that a compact city

with the same population as a disperse one (simulated by modifying urban frac-

tion) had a weaker average UHI, but had higher temperatures in the urban core.

These findings suggest that accurate urban land cover representation is essential

for accurately simulating meteorological conditions in urban areas.
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1.1.3 Urban modification of convection

Atmospheric modifications by urban areas can affect storm-scale weather phe-

nomena. Enhanced convergence on the outskirts of urban area, as a result

of increased surface roughness, can result in precipitation enhancement in and

near the urban area (e.g., Bornstein and Lin 2000; Thielen et al. 2000), as can

UHI-induced destabilization over and downwind of cities (e.g., Shepherd et al.

2002; Shepherd and Burian 2003; Shepherd 2006; Mote et al. 2007; Baik et al.

2007). In support of these theories, recent observational studies find significant

(10−30%) precipitation increases over and downwind of cities (e.g., Lacke et al.

2009; Shepherd et al. 2010a; Li et al. 2011; Ganeshan et al. 2013; Seino et al.

2016). In comparing rain gauge measurements in and around Houston, Texas,

Burian et al. (2005) show that warm season rainfall increased by 25% from

1950–58 to 1984–99, suggesting that the urban effect on downwind precipitation

is affected by urban size. Modeling studies (e.g., Li et al. 2011; Wang et al. 2014;

Yang et al. 2014b) have suggested that this additional precipitation is a result

of more (less) frequent heavy (light) rainfall events. Additionally, observational

(e.g., Loose and Bornstein 1977; Bornstein and Lin 2000; Niyogi et al. 2011)

and modeling (e.g., Niyogi et al. 2011; Miao et al. 2011; Yang et al. 2014b)

investigations have suggested that the increased surface roughness of the urban

canopy can cause a bifurcation or diversion of precipitation systems, thereby

further modifying precipitation distribution.

Though most of these investigations only consider weakly-forced precipita-

tion events in typical summertime environments, others analyze urban effects on

precipitation systems that form in strongly forced, synoptically active regimes.

Yang et al. (2014a) and Yeung et al. (2015) find that while organized thun-

derstorms associated with strong dynamic forcing change structure and initiate
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new cells more frequently over the urban area, these storms do not split as

they approach from the west, and there are negligible large-scale differences in

precipitation patterns caused by urban areas. Ryu et al. (2016) found that sim-

ulated, urban-induced low-level temperature and wind field modifications in the

Baltimore-Washington D.C. metropolitan area resulted in downwind precipita-

tion enhancements from an organized thunderstorm complex, though the the

interaction of these modifications with the Chesapeake bay breeze was a neces-

sary factor. The results of these studies differ from those of studies that consider

weakly forced convection, suggesting that interactions between urban areas and

organized, forced convection merit further investigation.

1.2 Questions to be addressed

1.2.1 What is the most accurate urban

parameterization option to use in severe weather

simulations in the Plains?

While most studies find the WRF to properly reproduce many aspects of

the boundary layer, some weaknesses still exist, particularly the simulation of

boundary-layer winds. Zhang and Zheng (2004) and Ngan et al. (2013) find that

phase and amplitude errors exist across all WRF PBL schemes throughout the

depth of the PBL, both during the day and at night. In addition, results from

Lee et al. (2011), Li et al. (2013), and Hu et al. (2016) depict errors in bound-

ary layer winds in urban areas, particularly near the surface. However, there

is a paucity of observational studies that investigate the modification of winds

in urban areas alongside UHI effects against which to compare these modeling

results (Klein 2012; Klein and Galvez 2014; Hu et al. 2016). In addition, as
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many modeling investigations of the urban canopy focus on intense heat wave

events with weak synoptic wind speeds (e.g., Chen et al. 2014; Takane et al.

2015), few closely examine urban modification of the wind field. Studies that do

examine time periods with moderate wind speeds frequently focus on land-sea

breeze processes (e.g., Chen et al. 2011; Gutiérrez et al. 2015a; Sharma et al.

2016), a phenomenon separate from the daytime low-level wind speed increase

that results from radiation-induced turbulence. Chen et al. (2015), using a ro-

bust analysis of WRF-simulated 10-m wind speed modifications in a continental

urban area, found that while increasing urban extent improved the accuracy of

simulated winds, urban wind speeds were still too high.

Aside from documented errors in the reproduction of urban wind speeds,

there are also reasons to believe that using an explicit urban parameterization

scheme, such as the SLUCM, is not appropriate for all urban areas, particularly

the geometric considerations of urban buildings made by explicit urban schemes.

The SLUCM assumes that all urban areas are covered by street canyons (Fig.

1.1), which motivates how the scheme computes radiative terms, particularly

ground shading by tall buildings and trapping of longwave radiation due to

reflections off building walls. These radiative differences comprise the largest

difference between urban canopy models and the bulk urban parameterizations

used in the Noah LSM. While this basic model of urban areas may be relatively

realistic for very large, highly urbanized cities (e.g., New York City, London,

Beijing, etcl.), this kind of urban morphology is not common in largely subur-

ban cities typical of the Great Plains (e.g., Dallas-Ft. Worth, Oklahoma City,

Kansas City, etc.). Given that the ultimate goal in this dissertation is to use an

urban parameterization in a Plains supercell case, the first objective will be to

determine the most accurate method by which to parameterize an urban area

typical of the Great Plains.
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Figure 1.1: Schematic depiction of (a) the urban/atmosphere interface, including
an urban canyon and its canyon air volume (dashed); and (b) sensible heat
exchanges into and out of the canyon air volume. (Adapted from Nunez and
Oke (1977).)

1.2.2 Does the presence of a city modify the strength

and evolution of a supercell?

As yet unexplored are the effects that urban areas could have on severe orga-

nized convection, particularly supercells. Recent research involving supercells

has focused on properties of the lowest 500 to 1000 m of the PBL, especially the

role that near-surface shear properties play in low-level mesocyclone strength

and tornadogenesis. Thompson and Edwards (2000) first noted a prominent

low-level hodograph ”kink” separating primarily near-surface speed shear from

principally directional shear above in some environments of significantly tornadic

supercells. Subsequent analyses of proximity soundings and modeling investiga-

tions suggest that the properties of the PBL below this ”kink” (i.e., typically
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below 500 m) discriminate tornadic from non-tornadic environments better than

traditional deep-layer metrics used to identify environments supportive of su-

percells (e.g., Esterheld and Giuliano 2008; Togstad et al. 2011; Nowotarski

and Jensen 2013). Using idealized simulations, Markowski et al. (2012) and

Markowski and Richardson (2014) show that environmental shear in the lowest

few hundred meters of the PBL is dynamically beneficial to the development of

a supecell’s low-level mesocyclone (Fig. 1.2). Their results suggest that stronger

near-surface shear lowers the base of the mid-level mesocyclone, thereby en-

hancing the dynamic vertical perturbation pressure gradient force. This results

in greater stretching of negatively buoyant near-surface outflow parcels that

possess cyclonic vorticity (ζ), thereby strengthening the low-level mesocyclone.

Examining properties even closer to the surface, it has been shown that surface

friction can intensify tornadoes by preventing the development of cyclostrophic

balance and thereby promoting radial convergence (e.g., Rotunno 1979; Howells

et al. 1988; Lewellen 1993). Additionally, recent simulations (Schenkman et al.

2012; Xu et al. 2015) suggest that friction can also act as a source of vorticity

in storm inflows rather than solely serving to enhance vorticity generated by

other means, though Markowski and Richardson (2014) finds the contributions

of frictionally-generated vorticity to be highly variant in idealized storms.

The lifting condensation level (LCL) of an environment, which approximates

cloud base, is raised by warmer, drier near-surface conditions. Lower lifting con-

densation level heights (LCLs) are well-documented to favor tornadic supercells

(e.g., Thompson et al. 2003; Craven et al. 2004). Lower LCLs tend to suppress

supercell cold pools (i.e., they have small negative buoyancy through decreased

evaporative cooling; Markowski et al. 2002), which Markowski and Richardson

(2014) argue increases vortex stretching (less negatively buoyant parcles are

easier to lift), and thus the vertical pressure gradient force, in the supercell’s
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Figure 1.2: Schematic summarizing the simulation outcomes of: (a) a baseline
simulation in which a strong cyclonic vortex develops and a simulation where (b)
the environmental wind shear is too weak (results in a weaker dynamic vertical
pressure gradient force). (Adapted from Markowski and Richardson (2014)).

low-level mesocyclone. The result is a stronger low-level mesocyclone, and thus

a higher likelihood of tornadogenesis.

Given that urban areas can modify near-surface winds, temperature, and

humidity, and that these properties modulate storm strength, there is the possi-

bility that these alterations to the pre-storm (or even perhaps during-storm) en-

vironment could possibly effect the strength and evolution of a supercell. Hence,

12



this possibility will be investigated in this dissertation.

1.2.3 What aspect of the urban area has the largest

impact on supercell characteristics?

As discussed above, the differences between urban and natural surfaces can gen-

erally be categorized as either thermodynamic properties or roughness. While

each surface attribute most directly affects atmospheric properties of the same

type (i.e., changes in heat capacity typically have the largest effect on temper-

atures), there are also cross-category effects. For example, increased surface

roughness in the urban area can induce stronger turbulence, which then results

in greater downward transport of cooler air (in the case of a super-adiabatic

layer near the surface), resulting in lower near-surface temperatures. However,

the degree to which each of the multitude of effects of surface roughness and

thermodynamic properties result in atmospheric modifications is still a subject

of debate. Additionally, research suggests that both the UHI and urban surface

roughness can modify storm properties, particularly rainfall patterns. However,

it is unclear which of these two would most affect supercellular properties and

evolution. Thus, the final goal of this dissertation will be to investigate which

properties of the urban area have the greatest effect on a simulated supercell,

and if this relationship changes dependent on city location relative to the storm’s

track.

1.3 Dissertation overview

The following chapter will discuss methods and data analyses techniques that

will be used in one or more chapters. Chapter 3 will present the results from

testing and selection of an appropriate WRF urban parameterization, and Chap-
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ter 4 will examine how a simulated urban area, parameterized using this chosen

urban scheme, modifies the strength and evolution of a supercell when in vari-

ous locations relative to the storm’s path. A factor separation analysis of several

simulations from Chapter 4 is presented in Chapter 5, and an overall summary

concludes the dissertation in Chapter 6.
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Chapter 2

Model modifications, analysis techniques, and

observational data

2.1 Update of urban land use and urban fraction data

The default land use / land cover (LULC) arrays used by the Noah LSM are

computed from (at best) 30-second Global Land Cover Characterization (GLCC)

data (available from the U. S. Geological Survey; USGS), which is derived pri-

marily from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR)

10-day Normalized Difference Vegetation Index (NDVI) composites (Loveland

et al. 2000). This data is categorized according to the USGS 24-category LULC

system. Using these data sets results in coarse, sometimes inaccurate, repre-

sentations of finer-scale land surface features that change frequently over time,

such as urban areas. In addition, the USGS LULC data has only one category

of urban land use. Consequently, complicated urban morphology is represented

by just one urban class, such that the majority of the OKC metropolitan area

is defined simply as urban.

As an accurate representation of the OKC and DFW urban areas are critical

to this dissertation, LULC and urban fraction data were modified (for all but

one simulation in Chapter 3) using data from the 2011 National Land Cover

Database (NLCD; Homer et al. 2015). The NLCD provides a 30-m, 20-category,
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4-urban-type continental United States land cover classification (LCC) derived

from Landsat data. Unfortunately, the NLCD LCC data use a different classifi-

cation scheme than the USGS data, and LULC data classified using the USGS

categories are required by the Noah LSM. Thus, the NLCD data were re-classified

to match the USGS 24-category classification system (Table 2.1), with the de-

veloped open space (DOS) and developed low-intensity (DLI) categories merged

to allow for 3 urban categories.

When the SLUCM is used, its default strategy is to assign grid cell ur-

ban fraction percentage based on urban category. If the single-urban-category

USGS LULC data set is used, all urban grid cells have 90% urban fractional

coverage. However, when paired with NLCD LULC data with re-mapped 3 ur-

ban categories, urban fraction values of 50%, 90%, and 95% are assigned to the

low-intensity residential (LIR), high-intensity residential(HIR), and commercial

Table 2.1: Specifications for how NLCD2011 data were remapped to USGS
LULC categories.

NLCD 2011 Category Reclassified USGS Category
Open Water Water Bodies
Perrenial Ice/ Snow Snow or Ice
Developed, Open Space Low-Intensity Residential
Developed, Low Intensity Low-Intensity Residential
Developed, Medium Intensity High-Intensity Residential
Developed, High Intensity Commercial
Barren Land Barren or Sparsely Vegetated
Deciduous Forest Deciduous Broadleaf Forest
Evergreen Forest Evergreen Needleleaf Forest
Mixed Forest Mixed Forest
Shrub/ Scrub Shrubland
Grassland, Herbaceous Grassland
Pasture/ Hay Dryland Cropland and Pasture
Cultivated Crops Irrigated Cropland and Pasture
Woody Wetlands Wooded Weland
Emergent Herbaceous Wetlands Herbaceous Wetland
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(COM) urban LULC types, respectively. In addition, NLCD’s impervious sur-

face area (ISA; Xian et al. 2011) data is used as a direct substitute for urban

fraction, such that urban fraction is no longer assigned a default value according

the land use type. To arrive at the data used in the WRF, raw ISA data were

median aggregated to 510-m cell sizing, then re-sampled to the same 500-m grid

sizes as the LULC data using the nearest-neighbor (NN) method. The WRF

uses this data to create the urban fraction array on the model grid using NN in-

terpolation. Note that combining the DOS and DLI categories in to the USGS’s

LIR category tends to over-estimate the default urban fraction (furb = 50%) of

the grid points that were originally categorized as NLCD DOS, which is typically

assigned to areas with 0% ≤ISA≤ 20% (Homer et al. 2004; Shaffer et al. 2016).

2.2 Noah LSM modifications

In its original form, the Noah LSM uses a single land use category to repre-

sent all urban areas (e.g., a bulk urban scheme; Liu et al. 2006). In order to

take advantage of the NLCD 3-category urban land use information, the Noah

LSM code and parameters table were modified. The added entries from the

Noah LSM’s parameter table are shown in Table 2.2. Two variables from this

table, QGL and α, both empirical vegetation-dependent parameters, are used to

parameterize latent heating within the model through their control on canopy

resistance. In the Noah LSM (Chen and Dudhia 2001), canopy resistance, rc, is

computed as

rc =
rcmin

LAI ·F1 ·F2 ·F3 ·F4

(2.1)

where rcmin
is the minimum possible canopy resistance, LAI is leaf area index,

and the F1, F2, F3, and F4 factors correspond to stomatal response to insolation,

vapor pressure deficit, ambient air temperature, and soil moisture, respectively.
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The F1 factor is defined as

F1 =
f +

( rcmin

rcmax

)
1 + f

(2.2)

with

f = 0.55
Qs

QGL

2

LAI
(2.3)

where rcmax is the maximum possible canopy resistance (typically set to 5000

s m−1), Qs is insolation reaching the surface, and QGL is an empirical scaling

parameter assigned for each vegetation type, typically varying from 30 W m−2

for forests to 100 W m−2 for cropland (Jacquemin and Noilhan 1990). Holding

all else constant, larger values of QGL typically lead to larger values of canopy

resistance, hence lower evapotranspiration. In addition, the F2 factor, which

parameterizes stomatal response to vapor pressure deficit, is dependent on α as

F2 =
1

1 + α
[
qs(Ta)− qa

] (2.4)

where qs(Ta) is the saturation water vapor mixing ratio of the near-surface air,

qa is the water vapor mixing ratio, and α is an empirical vegetation-dependent

parameter, varying from 40 for crops, to 150 for forests and 300 for shrubland.

As with QGL, larger values of α produce greater canopy resistance and less

evapotranspiration.

In order to achieve very little evapotranspiration from urban areas, the Noah

LSM sets QGL and α to 999 W m−2 and 999, respectively. These large parameter

values result in very small F1 and F2 factors, thereby creating an abnormally

high canopy resistance and little to no evapotranspiration. However, for cities

such as OKC, where many urban locations have grassy areas and trees, this

treatment of evapotranspiration is not appropriate. To allow some latent heat
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flux within urban areas, QGL and α were modified to values of 150, 200 and

250 W m−2 and 75, 100, and 125, respectively, for LIR, HIR, and COM, respec-

tively. These values are higher than the highest value used for any vegetation

type (maximum QGL of 100 W m−2 for cropland and grassland and maximum α

of 60.00 for wetlands), but not high enough to nearly completely shut off evapo-

transpiration as is achieved by the default values. In addition, these parameters

were scaled below these given values in proportion to urban fraction, hence the

quantities shown here indicate maximum values. Chosen values for QGL and α

are not based on previous studies and are reasonable estimates at what parame-

ters might provide the most realistic results in simulations. Hence, other values

could possibly be used in their place and realistic results obtained.

The surface roughness values (zo) assigned to NLCD categories developed

low, medium, and high intensity (0.7 m, 1.5 m, and 2.0 m, respectively) were

used as a first guess, then adjusted to better agree with OKCNET (described in

Section 2.4) wind observations. This adjustment was conducted via a trial and

error approach wherein different values were tested within a physically reasonable

range, given the known characteristics of the land cover, until the results agreed

with observations. This method is similar to that discussed in Wang et al.

(2011) in which many of the parameters needed by the SLUCM are estimated

and calibrated for each case. As a result, surface roughness lengths of 0.5 m,

1.0 m, and 2.0 m were used for LIR, HIR, and COM grid points, respectively

(Table 2.2). As surface roughness values are typically ∼ 10% of the height of

the average obstruction, the surface roughness values used would correspond to

5 m, 10 m, and 20 m mean building height for the three urban categories.
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2.3 Computation of winds in the urban surface layer

Following Monin-Obukhov similarity theory (Monin and Obukhov 1954), and

computational formulations developed by Paulson (1970), Dyer and Hicks

(1970), and Zhang and Anthes (1982), the MM5 surface layer scheme used in all

simulations presented here computes the effect of surface roughness on winds in

the surface layer through the frictional velocity, u∗, computed as

u∗ =
k U

ln
(
za
zo

)
−Ψm

, (2.5)

where k is the Von Karman constant (= 0.4), U is the wind speed at the first

model level, za is the height above ground of the first model level (∼ 25 m in

this dissertation), zo is the surface roughness length, and Ψm is the stability

correction function. The height of the first model level is required to be above

10 meters. As surface roughness increases, u∗ decreases. The frictional velocity

is used to directly compute the diagnostic 10-m wind speed, u10 and v10, using

the log wind profile assumption valid in the surface layer:

u10 = ua

 ln
(

10
zo

)
−Ψm(z = 10)

ln
(
z
zo

)
−Ψm(z = za + zo)

 , (2.6)

v10 = va

 ln
(

10
zo

)
−Ψm(z = 10)

ln
(
z
zo

)
−Ψm(z = za + zo)

 , (2.7)

where ua and va are the x and y components, respectively, of the wind at the

first model level. While the values of u10 and v10 are not used in any further

computations in the WRF, they are frequently used in studies to compare to

observed wind speeds, which are traditionally measured at 10 m AGL.
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Computation of the stability correction function, Ψm is dependent on surface

layer stability. As the results presented here generally focus on properties of

the atmosphere during the day under warm, high insolation conditions, this

discussion of the wind profile function will only consider unstable (i.e., super

adiabatic) surface layer computation. In an unstable surface layer (as determined

by the bulk Richardson number, Ri < 0.0), the MM5 scheme computes Ψm

according to modified Dyer and Hicks (1970) parameterization (Fairall et al.

1996; Grachev et al. 2000; Jiménez et al. 2012) as

Ψm =
ΨKm

(
zz
L

)
+
(
z
L

)2
ΨCm

(
zz
L

)
1 +

(
zz
L

)2 , (2.8)

where zz = za + zo and L is the Monin-Obukhov length. The functions ΨKm

and ΨCm are computed as

ΨKm

(zz
L

)
= 2 ln

(
1 + x

2

)
+ ln

(
1 + x2

2

)
− 2 arctanx+

π

2
(2.9)

and

ΨCm

(zz
L

)
=

3

2
ln

(
y2 + y +

1

3

)
−
√

3 arctan

(
2y +

1√
3

)
+

π√
3
, (2.10)

with

x =
(

1− 16
zz

L

)1/4

(2.11)

and

y = 3

√
1− 10

(zz
L

)
. (2.12)

After the MM5 computes these parameters at any one model time step, the

SLUCM (if used) then computes an urban frictional velocity, u∗urb , as well as

an urban stability correction function, Ψmurb
. The SLUCM computes urban
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frictional velocity as

u∗urb =
√

Φuv. (2.13)

Φuv, which is only used to compute u∗urb , is computed as

Φuv = (fR CDR + fNR CDC) U2, (2.14)

where fR and fNR are the fraction of the grid cell that are road and non-road

(fR + fNR = 1), respectively, and CDR and CDC are momentum diffusion coef-

ficients associated with the road and non-road portions of the grid cell, respec-

tively. Urban and non-urban frictional velocities computed by the MM5 surface

layer parameterization and the SLUCM, respectively, are aggregated based on

grid cell urban fraction to create an updated frictional velocity,u∗pbl , according

to

u∗pbl = furb u∗urb + (1− furb)u∗, (2.15)

which is then passed on to the YSU PBL scheme and used to compute the winds

at each grid point in the boundary layer starting at the lowest model grid cell.

The urban stability function correction, Ψmurb
, is computed using the equation

for ΨKm ((2.9)), but with x computed using urban values for z/L as

z

L
= −k g (za − d) Φh

u∗urb Ta
(2.16)

where Ta is the temperature at the first model level, d is the zero-plane dis-

placement height, is the gravitational constant, and Φh is heat transfer (i.e.,

heat flux normalized by density and heat capacity). When the SLUCM is used,

Ψmurb
completely replaces Ψm computed previously by the MM5 surface layer

scheme, which is then used in the PBL scheme . It is also used to compute a

new diagnostic 10-m wind speed (with Ψmurb
and zourb used in place of Ψm and
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zo, respectively, in (2.6) and (2.7)) which also overrides the quantities computed

by the surface layer scheme.

The YSU PBL scheme uses u∗pbl and Ψmurb
in computation of wind speeds

on model grid points in the PBL. The frictional velocity is used to compute

momentum eddy diffusivity, Km, as

Km(z) = kwsz
(

1− z

h

)
, (2.17)

where h is the height of the boundary layer, and ws is the mixed layer velocity

scale. The mixed layer velocity scale is computed as

ws = u∗φ
−1
m , (2.18)

where φm is the Monin-Obukhov similarity function for momentum evaluated

at the top of the surface layer. Under unstable surface layer conditions, φm is

computed in the PBL scheme according to Dyer and Hicks (1970) as

φm

(
h

L

)
=

(
1− 16

h

L

)− 1/4

, (2.19)

where h is the height of the PBL top. The fraction h/L is computed using Ψmurb

as

h

L
= 0.1

RiΨ2
murb

h

z Ψhurb

, (2.20)

where Ri is the bulk Richardson number in the surface layer and Ψhurb is the

stability correction for heat transfer.

23



2.4 Observational data

For verification purposes in Chapter 3, two sets of surface observations are used.

Oklahoma City Micronet (OKCNET; Basara et al. 2011) data are obtained for

comparisons to model results within the OKC urban area (Fig. 2.1). The OKC-

Figure 2.1: (a) For the Oklahoma City region, background shading correspond-
ing to rural ares (white), as well as land use categories LIR (low-intensity resi-
dential), HIR (high-intensity residential) and COM (commercial) derived from
NLCD 2011 data. Red dots are locations of OKCNET stations, with the central
business district (CBD) labeled in red. Not all station locations are visible in
the CBD due to symbol overlap. Black dots and labels are the 8 Oklahoma
Mesonet locations surrounding OKC. Urban points (land use = LIR, HIR, or
COM) inside the blue box labeled ”U” are used as urban grid points in WRF
analyses, while all rural points not contained within box U, but within box R,
are considered rural areas. (b) Color-filled contours are urban fraction (furb, m2

m−2), also derived from NLCD 2011 data. Black dots are rural Mesonet sites.
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NET, which was designed to improve atmospheric monitoring throughout the

OKC metropolitan area, consisted of 39 stations, spaced approximately 3 km

apart, with 36 traffic-signal-mounted (9 m AGL) stations and 3 stations sited

according to Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007)

standards. These observations are available at 1-minute-averaged intervals from

November 2008 through November 2010. Oklahoma Mesonet data are used as

a rural counterpart to OKCNET observations. The Oklahoma Mesonet, a ru-

ral network of 120 meteorological stations with citing chosen so as to minimize

influences from urban landscapes, provides a continuous data set of 5-minute

averages of 2-m and 9-m temperature, 2-m relative humidity, as well as 10-m

wind speed and direction from across Oklahoma (Brock et al. 1995).

Spatial comparison of observed data to model-derived quantities is desired,

so point measurements at OKCNET and Oklahoma Mesonet sites are inter-

polated to a regular grid using the ordinary kriging method of Journel and

Huijbrgts (2004). Kriging is a technique commonly used in mapping point-

observations of meteorological, geological, and chemical quantities to continuous

two-dimensional fields (Moore and Rojstaczer 2002; Alfieri et al. 2009; Mercer

et al. 2011; Smoliak et al. 2015; Gutiérrez et al. 2015a; Hu et al. 2016). While

kriging interpolation is a statistical method subject to errors based on user-

defined interpolation options, and may change significantly if various data points

are removed, it maintains observational integrity at the observed locations. The

purpose here is only to provide a two-dimensional field of observations against

which to visually compare model results, and to supplement point-to-point anal-

yses of model biases. Hence, though kriging analyses are subject to errors, they

are not of much concern here as the analyses presented here will not include a

statistical comparison of the field of kriged observations to model results.
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2.5 Heirarchical clustering algorithm

Groups of model simulations are used in this study to make the resulting analyses

more robust and less susceptible to noise that necessarily arises due to small-

scaled artifacts. While the various members could be grouped subjectively or

based upon various characteristics, there is no guarantee that clustering the sim-

ulations in this manner yields groups whose members are most similar to each

other. Hence, we perform hierarchical clustering analysis (HCA; Anderberg

1973; Alhamed et al. 2002) using selected variables to determine which simula-

tions should be grouped together. HCA can help identify potentially important

relationships in highly complex datasets that could easily be overlooked other-

wise, requires no a priori assumptions about how many clusters exist, and allows

clusters and their secondary subclusters to be identified simultaneously (Wilks

2011). These qualities make HCA an ideal choice for the present study, and it

has been used previously to draw insight from ensemble simulations (e.g., Yus-

souf et al. 2004; Nakaegawa and Kanamitsu 2006; Branković et al. 2008; Johnson

et al. 2011b)

Let X = [xij], 1 ≤ i ≤ m, 1 ≤ j ≤ n, be the data matrix, where each jth

column represents an object (in this case, a simulation member), and each ith row

represents an observation (a grid point in the horizontal plane). Hence, for the

following analyses, X ∈ R248,004×108, and x?j denotes the jth object / simulation

member across all m observations, and xi? denotes the ith observation across all

n objects / simulation members.

HCA uses either similarity or dissimilarity measures to quantify the distance

between objects. The pairwise distances between all objects are calculated and

arranged in the form of a square, n × n, matrix where the ijth entry denotes

the distance between objects i and j, and n is the number of objects. For
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this study, the commonly-employed Euclidean distance dissimilarity measure

is selected for use, as tests using other similarity/dissimilarity measures (e.g.

correlation) produced results similar to those presented herein using Euclidian

distance. The Euclidean distance, eij, between two objects, i and j, is defined

as:

eij =

√√√√ m∑
k=1

(xki − xkj)2 ≥ 0, (2.21)

where m is the number of observations in each object, or in this case the total

number of grid points in the horizontal plane (248,004). A unique n× n dissim-

ilarity matrix, E, formed by the pairwise Euclidean distances, is computed for

each 5-min model output time during the storm’s life cycle (2130–0300 UTC, or

64 ∆t). Each matrix E is normalized to form a new normalized distance matrix,

D, whose elements are computed as

0 ≤ dij =
eij − emin
emax − emin

≤ 1, (2.22)

where emin and emax are the minimum and maximum distances, respectively,

of the original distance matrix E. All unique normalized matrix elements dij

are averaged over all times, and the resulting is used as a composite distance

measure. The resulting matrix D is then used for HCA using Ward’s algorithm

(Ward 1963; Murtagh and Legendre 2014). This procedure is similar to that used

by Johnson et al. (2011a) to perform HCA on ensemble precipitation forecasts.

The results of hierarchical clustering are displayed graphically as a dendro-

gram, which shows a stepwise merging of the various clusters identified by the

algorithm. Each simulation is initially a single-member group displayed along

the bottom. Each single-element group is then merged with the next most sim-

ilar member. The vertical height of each merger, represented by a horizontal
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line connecting the two groups, indicates the increase in within-group variance

caused by the combination. This process of merging the most similar groups is

repeated until all groups are combined. Thus, lower-level clusters are composed

of simulation members that are more similar to each other than those merged

near the top.

In Chapter 4, HCA will be performed on several different variables indica-

tive of storm structure and strength one variable at the time (i.e., X will be

a horizontal field of a single variable). As many studies have found urban ar-

eas to affect rainfall patterns, accumulated rainfall will be analyzed with HCA

to determine the statistical correlation between city location and accumulated

rainfall over time. To analyze how varying city location modifies mid-level storm

strength, HCA will be used on 2–5-km updraft helicity (UH; Kain et al. 2008)

and column-maximum updraft velocity. UH, computed as

UH =

∫ zt

zo

wζdz, (2.23)

where zo and zt are the height above ground level (AGL) of the bottom and top,

respectively, of layer over which UH is to be computed, w is vertical velocity, and

ζ is vertical vorticity, quantifies the rotational strength of a storm over the layer

in question, and thus is indicative of mesocyclone location. UH computed over

the standard 2–5-km layer indicates mid-level rotation in a storm. However,

UH can also be computed over a layer closer to the ground, for example 0–

1-km, to location strong low-level storm rotation. Hence, HCA will also be

performed using 0–1-km UH to determine the effect of city location on low-level

storm strength. To analyze the effect of urban location on storm properties

very near the surface, HCA will also be performed on first-model-level minimum

temperature (quantifies cold pool strength), maximum wind speed (analyzes
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outflow and inflow strength and patterns), and vertical vorticity.

2.6 Calculation of group difference fields

Once meaningful groups of ensemble members are computed using HCA, we

quantify differences between members of two groups to investigate group differ-

ences over a specific time interval. For each variable (except storm-total rainfall),

the field presented, Y, is computed as

Y(x, y) =
1

`

∑̀
i=1

max
1≤t≤nt

Ai (x, y, t)−
1

p

p∑
j=1

max
1≤t≤nt

Bj (x, y, t) , (2.24)

where Ai is the ith HCA member in a group with `members, Bj is the jth member

of either another HCA grouping (or the control group with no urban areas)

with p members, and t is time with nt time steps spanning the time interval

of interest. For temperature, min is used in place of max to investigate surface

cold pool strength. These fields represent the difference between group-averaged,

time-maximum values at each grid point of two groups. Because storm-total

rainfall is already a cumulative quantity, the computation for its field is simply

a difference between point-to-point group averages of the run-total accumulated

rainfall, computed as

Y(x, y) =
1

`

∑̀
i=1

Ai (x, y)− 1

p

p∑
j=1

Bj (x, y) . (2.25)

This same procedure also will be used to compare parameter fields in the factor

separation analysis.
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2.7 Significance testing

To test the significance of group difference fields, permutation tests for the dif-

ference of group means (Pitman 1937) were conducted. This non-parametric

permutation test assesses the significance of the difference between the means

of two samples (groups) without any assumptions about the distributions of the

sampled population. The significance of the test statistic, p, represents the prob-

ability that the difference between the means of the two groups could arise by

pure chance.

For each pair of groups we wish to compare, group differences fields, Y, are

computed as described in Section 2.6. We also retain the time-composite fields

for each ith urban group member, Ui, and each jth non-urban group member,

Cj, computed as

Ui (x, y) = max
1≤t≤nt

Ai (x, y, t) (2.26)

Ci (x, y) = max
1≤t≤nt

Bi (x, y, t) (2.27)

where Ai is the ith HCA member in a group with ` members, Bj is the jth

member of the non-urban simulation group with p members, and t is time with nt

time steps spanning the selected time interval. As described in Section 2.6, this

procedure is slightly modified for computing composite minimum temperature

(use min in place of max) and storm total rainfall (there’s no need for a composite

as it is accumulated). For each permutation in the testing procedure, ` members

in the set (U,C) are randomly chosen to represent the urban group and placed

in the permuted urban group, Up, and the remaining members of (U,C) are

assigned to the permuted non-urban group, Cp. Differences, Dp between the
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permuted groups are computed as

Dp (x, y) =
1

`

∑̀
i=0

Upi (x, y)− 1

p

p∑
j=0

Cpj (x, y) . (2.28)

This permutation procedure is iterated 10,000 times, providing 10,000 unique

Dp. At each point (x, y), the fraction, p, of Dp (x, y) that exceed (in magnitude)

the original Y(x, y) are determined, and p is the test statistic we use for our

significance test. A significance level of α = 0.05 is used in all calculations.

2.8 Factor separation procedure

Factor separation has been found to provide useful interpretation of various sim-

ulated weather phenomena, including climate sensitivities (e.g., Yin and Berger

2012), heavy rain in the Washington D.C. area (Ryu et al. 2016), precipitation

distribution over the Atlantic (Siongco et al. 2017), and land-surface-aerosol in-

teractions in tropical sea breezes (Grant and van den Heever 2014). In Chapter

5, factor separation will be used in a novel manner to determine the relative

contributions of urban surface roughness and thermal properties to changes in

simulated supercell morphology and strength.

In each simulation in Chapter 5, the parameterization of the urban area

(i.e., which aspects of the urban area are included) is controlled by modifying

the vegetation parameter values used by the Noah LSM (Table 2.3). In the

non-urban simulations (f0), all areas are parameterized as grassland, and in the

original simulations (fRT ), the full suite of urban characteristics are used. To

simulate an urban area that is only warm and dry (fT ), urban surface roughness,

as parameterized by roughness length (z0), is changed to be equal to that of

grassland. Likewise, to incorporate a city that is only a roughness element (

fR) all parameters other than roughness length are changed to match those of
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grassland.

To determine the contributions to storm modifications of urban roughness

(f̂R), urban thermal characteristics (f̂T ), and the interactions between thermal

and roughness characteristics ( ˆfRT ) compared to the storm morphology charac-

teristics that are unrelated to any urban properties (f̂0), the method of Stein and

Alpert (1993) is followed. The contributions of the four factors are computed as

f̂0 = f0 (2.29)

f̂R = fR − f0 (2.30)

f̂T = fT − f0 (2.31)

f̂RT = fRT − (fR + fT ) + f0. (2.32)

These differences may be computed point-to-point, which provides a horizontal

field of differences, or calculated as the difference between two time series. For

the former, the group difference computational procedure described in Section

2.6 is followed.
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Chapter 3

Sensitivity of simulated urban-atmosphere

interactions in Oklahoma City to urban

parameterization

Before approaching the main objective of simulating a supercell interacting with

an urban area, it is important to ensure that the urban parameterization that

is used represents urban-atmosphere interactions appropriately. To achieve this,

WRF results using various urban parameterization options will be compared to

observations, and the highest-performing parameterization will be used for the

supercell simulations. This chapter will present the results from these simula-

tions and make the argument that using a modified version of the Noah LSM to

parameterize Plains urban areas provides the most accurate results. This chap-

ter was taken in large part from Reames and Stensrud (2017), which is currently

in press.

3.1 Data and chapter-specific methods

3.1.1 Study area and Synoptic Background

Oklahoma City (OKC), Oklahoma (35o28’56”N, 97o32’06”W) is located in cen-

tral Oklahoma in the Sandstone Hills region of Oklahoma, which is character-

ized by 75–120-m tall rolling hills, and sits on the North Canadian River. The
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metropolitan area, however, is quite flat (Fig. 3.1). OKC has a humid subtrop-

ical climate, with daily mean temperatures ranging from to 4oC in January to

29oC in July, and an average of 912 mm of annual precipitation. The average

prevailing wind in May is from the SSE at 3.5 m s −1. OKC ranks as the 7th

largest city in the United States by land area (∼ 1610 km2), and, as of 2010,

27th largest by population (∼ 580, 000; United States Census Bureau 2010).

While it has a small central business district (∼27 km2; Burian et al. 2005) with

a number of buildings with more than 20 stories (> 60 m), the majority of OKC

is a mixture of suburban homes with 1−3 story (3−10 m) commercial buildings

along the major arterial roadways.

The time period chosen for this study, from 1–7 May 2010, was selected

because it is characterized by conditions typical of mid-spring in central Okla-

homa, it occurs just prior to the 10 May 2010 severe weather outbreak in central

Oklahoma, and because it resides within the time period during which Hu et al.

(2016) analyzed observations from the Oklahoma City (OKC) Micronet (OKC-

Figure 3.1: Shaded terrain height and urban areas outlined in black over the
study domain. Oklahoma county borders are in gray.
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NET; Basara et al. 2011). One goal of this research is to select an urban param-

eterization that is appropriate for use in a severe weather simulation, hence the

proximity of the study’s time period to the 10 May 2010 outbreak is ideal. This

week at the beginning of May was characterized by a 500 mb trough over the

mountain west (Fig. 3.2), as well as minimal cloud cover, very little rain, high

temperatures between 20 and 35oC, and moderate wind speeds in the OKC area

(Fig. 3.3). An UHI was present during each day of this seven-day period(Fig.

3.3a), and rural wind speeds were consistently stronger than urban wind speeds

at similar times (Fig. 3.3b).

Figure 3.2: Geopotential height at 500 hPa (black lines, 10 gpm), 850 hPa
relative humidity (shaded, %), 850 hPa temperature (red lines, K), and 850 hPa
wind vectors (orange, kts) averaged over the investigation period. State and
geopolitical borders are in gray. The red + indicates the location of Oklahoma
City.

3.1.2 Model configuration

The simulations for this study were performed using the ARW-WRF model

Version 3.6.1. Three one-way nested domains with grid spacing of 4.5 km, 1.5
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Figure 3.3: Time series of averaged observed (a) Mesonet (rural; blue) and
OKCNET (urban; red) temperature, and the difference between them (black)
and (b) Mesonet (blue) and OKCNET (red) wind speed and Mesonet rainfall
(orange) over the duration of the study period. The times between sunset and
sunrise are shaded in gray.

km and 0.5 km on grids of size 300 x 300, 400 x 400, and 399 x 399, respectively,

were used (Fig. 3.4a). Each domain had 119 terrain-following vertical levels

from the surface to 100-hPa (∼ 16 km), with vertical spacing of ∼ 50 m from

the surface to 800 hPa (∼ 2 km) and ∼ 150 m above that. Approximately 20 of

these levels were below 1 km, providing fine vertical resolution in the PBL.

Identical physics schemes were used across all domains, including the double-

moment, six-class, graupel particle density predicting NSSL microphysics scheme

(Mansell et al. 2010), the Goddard short and long wave radiation schemes (Chou

and Suarez 1999; Chou et al. 2001; Matsui and Tao 2007), the Yonsei University

(YSU) PBL scheme, (Noh et al. 2003), the MM5 Monin-Obukhov surface layer

scheme (Monin and Obukhov 1954; Paulson 1970; Dyer and Hicks 1970; Webb

1970), and the Noah LSM. The YSU PBL scheme was chosen because it repro-

duces PBL moisture and temperature profiles accurately in warm, moist, severe
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Figure 3.4: (a) Domain locations for all WRF simulations in Chapter 3, d01,
d02, and d03, with 4500m, 1500m, and 500m horizontal grid spacing. State and
geopolitical boundaries are drawn in black. (b) Color-filled land use/land cover
of d03 from the re-mapped NLCD 2011 datasets, which which was used in LSM,
SLUCM1, and SLUCM2. Oklahoma county boundaries are outlined in black.
Box R encompasses the region used for ”rural” calculations. (c) Color-filled
land use/land cover of the original 24-category USGS. (d) Shaded land use map
with all urban areas replaced by natural vegetation, as used in CTRL. (e) The
original d03 SLUCM-prescribed urban fraction used for SLUCM1. (f) Urban
fraction derived from NLCD 2011 impervious surface data, used for LSM and
SLUCM2.

weather environments (Coniglio et al. 2013; Clark et al. 2015) in addition to its

ability to simulate surface energy balance terms in rural and urban areas well

(Shaffer et al. 2015). In 2 of the 4 simulations, noted SLUCM1 and SLUCM2

(Table 3.1), the single-layer urban canopy model was employed to simulate the
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Table 3.1: Parameterization details for the different WRF model simulations
performed in Chapter 3.

Run name LSM code version Urban parameterization LULC source Urban fraction source
CTRL Original N/A NLCD2011 N/A
LSM Original LSM bulk USGS N/A

LSMMOD Modified LSM bulk NLCD2011 NLCD2011 impervious surface %
SLUCM1 Original SLUCM NLCD2011 SLUCM default by LULC category
SLUCM2 Original SLUCM NLCD2011 NLCD2011 impervious surface %

effects of urban land use. The SLUCM default values for heat capacity, con-

ductivity, albedo, emissivity, and roughness lengths for heat and momentum of

roof, road, and wall surfaces (Loridan and Grimmond 2012) were employed. An-

thropogenic heating in OKC, estimated at < 5 W m−2 in the summer by Sailor

et al. (2015), was set to zero for all SLUCM simulations. Additionally, obser-

vations indicate that soil moisture was at normal levels in early May 2010, so

although irrigation in urban areas is not explicitly parameterized in the present

model configuration, it would likely not play a large role, if any, in modifying

observations.

Each WRF simulation was initialized at 0000 UTC on 1 May 2010 (1800 CST

30 April 2010), and was integrated for 168-h until 0000 UTC 8 May 2010 (1800

CST 7 May 2010). Initial and lateral atmospheric boundary conditions were

taken from the 13-km Rapid Update Cycle (RUC; Benjamin et al. 2004) at 1-h

intervals. Soil state variables were initialized with offline North American Land

Data Assimilation-2 (NLDAS-2) 0.125-degree Noah Model output (Xia et al.

2012), provided by the Goddard Earth Sciences Data and Information Services

Center (GES DISC).
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3.1.3 Numerical experiments

Five numerical simulations were performed for this study: CTRL, LSM, LSM-

MOD, SLUCM1, and SLUCM2 (Table 3.1). In CTRL, the modified land cover

data (Fig. 3.4b) were used, but with all representations of urban areas in d03

replaced with grassland, cropland, or forest, depending on surrounding rural

vegetation types (Fig. 3.4d). This model run will serve as a basis for how the

WRF performs without any urban areas. Simulation LSM used the original

Noah LSM bulk-urban code with the default USGS 30-second LULC data (Fig.

3.4c), while LSMMOD used the modified land use information (Fig. 3.4b) with

the modified Noah LSM (Section 2.2), thus having three urban categories but

still using a bulk representation of urban areas. The SLUCM1 and SLUCM2

runs employed the SLUCM scheme, but SLUCM1 used the default urban frac-

tion values (Fig. 3.4e), while SLUCM2 ingested NLCD impervious surface data

as a proxy for urban fraction (Fig. 3.4f). These latter three simulations will be

compared against each other, to the CTRL run, as well as against observations

to evaluate their ability to properly reproduce the effects of urban areas on their

surroundings.

3.2 Results

3.2.1 Model Verification

We can evaluate general WRF performance by comparing mean biases (MB)

and RMSEs for near-surface conditions of all 5 simulations at Mesonet (Table

3.2) and OKCNET (Table 3.3) locations, as well as time series of diurnal average

model differences from observations (Fig. 3.5). Modeled rural conditions are too

warm during the day and even more so at night (Table 3.2 and Fig. 3.5a), a
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Table 3.2: Statistical comparison of the observed 10-m and simulated first-
model-level rural (Mesonet locations) temperatures (Tlow, oC), mixing ratios
(qlow, g kg−1), and wind speeds (WSlow,m s−1 ) at night (0400−1100 UTC) and
during the day (1500− 2300 UTC).

Rural Stations Tlow (oC) qlow (g kg−1) WSlow (m s−1)
Mean MB RMSE Mean MB RMSE Mean MB RMSE

OBS Night 15.9 – – 7.82 – – 2.94 – –
Day 21.9 – – 7.44 – – 6.30 – –

CTRL Night 16.5 1.22 3.12 6.16 -1.66 2.13 3.83 0.89 2.12
Day 24.1 0.10 1.85 7.02 -0.43 1.23 6.18 -0.10 2.17

LSM Night 16.6 1.29 3.16 5.98 –1.85 2.26 3.84 0.90 2.16
Day 24.3 0.3 1.9 6.77 –0.68 1.34 6.29 0.02 2.21

LSMMOD Night 16.8 1.47 3.15 6.12 -1.70 2.16 3.73 0.80 2.06
Day 24.2 0.17 1.86 6.92 -0.52 1.27 5.95 -0.33 2.19

SLUCM1 Night 16.8 1.49 3.21 6.08 -1.74 2.19 3.75 0.81 2.19
Day 24.2 0.17 1.86 6.92 -0.53 1.27 6.27 -0.01 3.86

SLUCM2 Night 16.8 1.42 3.20 6.10 -1.72 2.17 3.77 0.83 2.15
Day 24.2 0.14 1.86 6.96 -0.48 1.25 6.25 -0.03 2.18

Table 3.3: Same as Table 3.2, but for urban (OKCNET) stations. The bold
numbers represent better results compared with other cases.

Urban Stations Tlow (oC) qlow (g kg−1) WSlow (m s−1)
Mean MB RMSE Mean MB RMSE Mean MB RMSE

OBS Night 17.3 – – 6.54 – – 2.35 – –
Day 24.7 – – 6.98 – – 4.47 – –

CTRL Night 16.6 –0.65 3.05 6.02 –0.52 0.91 4.28 1.94 2.69
Day 23.6 –1.09 1.63 7.30 0.31 1.12 6.69 2.22 3.42

LSM Night 17.8 0.49 2.54 5.64 –0.9 1.15 3.97 1.62 2.50
Day 24 –0.64 1.36 6.59 –0.4 1.22 6.05 1.58 2.82

LSMMOD Night 17.4 0.13 2.62 5.98 –0.55 0.94 3.32 0.97 1.88
Day 23.9 -0.78 1.43 6.88 –0.10 1.09 5.16 0.69 2.26

SLUCM1 Night 18.0 0.74 2.77 5.73 –0.81 1.08 3.86 1.50 2.76
Day 23.9 –0.79 1.44 6.77 –0.21 1.12 6.68 2.22 3.36

SLUCM2 Night 17.4 0.17 2.82 5.81 –0.73 1.03 3.66 1.31 2.51
Day 23.8 –0.93 1.53 7.00 0.01 1.08 6.64 2.18 3.35

bias common with the YSU PBL scheme (Hu et al. 2010; Coniglio et al. 2013;

Clark et al. 2015), though it may also be a byproduct of too-dry soil moisture

initialization (Fig. 3.6). Simulated rural wind speeds are in agreement with

observations during the day, but are overestimated by ∼ 25% at night in all

simulations (Table 3.2 and Fig. 3.5c). Simulated urban areas (Table 3.3 and

Fig. 3.5a,b) are also too warm (except in CTRL, which has no urban areas)

and dry at night, particularly for SLUCM. However, daytime urban tempera-
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Figure 3.5: Diurnal variation of simulation-average 9-m observed OKCNET
(dashed) and Mesonet (solid) (a) T (oC), (b) q (g kg−1), and (c) WS (m s−1).
Also, diurnal variation of simulation-average differences from OKCNET (dashed)
and Mesonet (solid) observations for (a) first-model-level T, (b) first-model-level
q, (c) first-model-level WS, (d) 2-m T , (e) 2-m q, and (f) 10-m WS. Comparisons
are made only for model results from the grid points closest to each OKCNET
and Mesonet station location. Positive (negative) values denote a greater (lesser)
modeled value than observations. LSMMOD, SLUCM1, SLUCM2, and CTRL
correspond to the blue, red, yellow, and purple lines, respectively. Times from
sunset to sunrise are shaded in gray.

tures are underestimated by all urban simulations, and simulated daytime ur-

ban mixing ratios agree well with observations. The CTRL simulation has the
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Figure 3.6: Color-filled contours of fractional water index (FWI; Schneider et al.
2003) (a) as observed by Mesonet stations and interpolated using kriging inter-
polation, and (b) as used in the WRF initialization. NLCD 2011 urban fraction
of 0.1 m2 m−2 and Oklahoma county boundaries are contoured in black. Black
dots are rural Mesonet sites. FWI is a unitless measure of how close the soil
is to saturation, with 0 indicating that the soil is at the wilting point, and 1
indicating that the soil is saturated.

coolest temperatures and highest mixing ratios throughout the day, indicating

the urban-induced thermodynamic modifications in the simulations with urban

areas. Simulation LSMMOD outperforms all other simulations for both urban

MB and RMSE for daytime and nighttime wind speed and mixing ratio. Fur-

thermore, LSMMOD has lower absolute mixing ratio and wind speed MB and

RMSE than LSM, and a decreased nighttime warm temperature bias, though

LSM’s lower absolute MB for daytime temperature is a result of its larger neg-
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ative moisture bias. Hence, because LSMMOD generally outperforms LSM in

urban areas, further analyses will not consider simulation LSM.

Spatial variations in the average daily minimum, maximum, and mean first-

model level (approx. 25 m AGL) temperature from SLUCM1 and LSMMOD

are compared to kriging-interpolated Mesonet and OKCNET 9-m temperature

for the seven days of the simulations in Fig. 3.7. .The SLUCM1 simulation

is selected over SLUCM2 because it has urban fraction values assigned per

the SLUCM’s default values. The UHI effect is evident in the mean (Tmean),

maximum (Tmax), and minimum (Tmin) 9-m temperature (T ) observations (Fig.

3.7a,d,g). Observed temperatures are spatially-correlated with urban fraction

(Fig. 3.4f; correlation coefficient, r ∼ 0.55 for Tmin), particularly over the Ok-

lahoma City central business district (CBD) at night, with an area of warmer

(1− 2oC ) concentrated in central OKC. During the day, this warm air extends

north of the CBD, likely attributable to advection by predominately southerly

winds (Fig. 3.3b). Other studies have observed similar spatial distributions of

temperature in Oklahoma City (Basara et al. 2008, 2010; Hu et al. 2013, 2016),

although there is no evidence of the daytime cool island observed by Basara

et al. (2008) during part of their study period.

Observed mean daily 9-m water vapor mixing ratios (q; Fig. 3.8a) are drier in

the urban area (0.5−0.75 g kg−1), particularly near and north of the CBD. Simi-

lar patterns were noted for more dense cities (e.g., Dou et al. 2015). Urban effects

on humidity are contradictory; while combustion and lawn irrigation release wa-

ter vapor in to the urban surface layer (not explicitly accounted for in the present

study), replacement of natural vegetation with impervious artificial materials de-

creases potential evapotranspiration. In addition, warmer and rougher daytime

urban PBLs experience greater turbulent mixing and slower near-surface wind

speeds than cooler, smoother rural PBLs, increasing the upward flux of mois-
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Figure 3.7: (a) Color-filled contours of Kriging-interpolated OKCNET and Ok-
lahoma Mesonet observations of average daytime (1500−2300 UTC) 9-m tem-
perature, T . NLCD 2011 urban fraction of 0.1 m2 m−2 and Oklahoma county
boundaries are contoured in black. Model vertical cross sections taken along the
blue line (∼ 97.48oW) are plotted in Fig.3.14. (b), (c) Same as (a) but for first-
model-level T simulated by SLUCM1 and LSMMOD, respectively. (d)−(f) Same
as (a)−(c) but for average nighttime (0400−1100 UTC) temperature. (g)−(i)
Same as (a)−(c) but for average daily mean temperature.

ture while also decreasing the surface moisture transfer coefficient. Together,

these mechanisms typically result in lower urban humidity values (Grimmond
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Figure 3.8: (a) Color-filled contours of Kriging-interpolated OKCNET and Ok-
lahoma Mesonet observations of simulation-mean 9-m water vapor mixing ratio,
q. Urban fraction of 0.1 m2 m−2 and Oklahoma county boundaries are contoured
in black. (b), (c) Same as (a) but for first-model-level q simulated by SLUCM1
and LSMMOD, respectively.(d)−(e) Same as (a)−(c) but for mean wind speed,
WS.

and Oke 1986; Dou et al. 2015), hence the dry urban area simulated here is

appropriate. Also consistent with this theory, and similar to results from Hu

et al. (2016), mean 10-m wind speeds (WS; Fig. 3.8b) are as much as 2 m s−1

(approx. 50%) weaker over the CBD than the surrounding rural areas owing to

increased surface roughness. However, unlike in the temperature observations,

these decreased wind speeds do not appear to be plume-like, but instead appear

to be correlated with urban fraction (Fig. 2.1a; r ∼ −0.54), which suggests that

weaker winds are a direct result of increased surface roughness, in agreement

with Hu et al. (2016).
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The SLUCM1 and LSMMOD simulations reproduce the general warm, dry

pattern over most of the urban area (Fig. 3.7b−c,e−f,h−i, Fig.3.8b−c), though

both are too warm and dry overall, especially at night. Both of these biases

are perhaps a result of over zealous turbulent mixing seen frequently with the

YSU scheme (Hu et al. 2010; Coniglio et al. 2013; Clark et al. 2015) as well

as dry soils (Fig. 3.6). However, these differences can also be expected given

the ∼15-m height difference between the observations and the first WRF model

level. However, unlike observations and results from LSMMOD (Fig. 3.8d,g),

mean first model level wind speeds in SLUCM (Fig. 3.8e) are only slightly nega-

tively correlated with urban fraction (r ∼ −0.09), and are generally higher than

in rural areas. These results, which appear to be unrealistic given the OKC-

NET and Mesonet observations, suggest that vertical transport of momentum

may be overestimated by the SLUCM/YSU combination, thereby mixing excess

momentum downward from aloft.

3.2.2 Model reproduction of diurnal changes in

urban-rural differences

The diurnal cycle of observed urban-rural differences in near-surface atmospheric

conditions can be analyzed by calculating the averages over all OKCNET sites at

each time and subtracting the average of all 8 Mesonet sites (Fig. 2.1) to arrive

at an observed urban-rural difference. These sites correspond to those used by

Hu et al. (2016) for UHI comparisons, thus our results are directly comparable to

their observations. The observed urban-rural differences are compared to WRF-

simulated urban-rural dissimilarities. These are computed by subtracting the

mean values at each 5-minute output of rural grid points contained in the area

covered by Fig. 2.1 but not within box U from averages of urban grid points
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within box U in Fig. 2.1. Both observed and simulated urban-rural differences

are averaged over days 2−6 of the simulation. Day 1 was not used due to

spin-up adjustment time period, and a sharp cold front crossed the study area

during day 7, hence the exclusion of both days. The results of these calculations

for temperature, T , q, and WS are shown in Fig. 3.9. For each parameter,

differences in simulated first-model-level (∼ 25 m) and diagnostic quantities (2-

m T and q, and 10-m WS) are compared to observed urban-rural dissimilarities

at 9-m. While the diagnostic variables should be closer to the 9-m observations
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Figure 3.9: Diurnal variation of averages of urban−rural differences in (a) first-
model-level T (oC), (b) first-model-level q (g kg−1), (c) first-model-level WS
(m s−1) , (d) 2-m T , (e) 2-m q, and (f) 10-m WS. Negative (positive) values
denote a greater (lesser) parameter value in the rural areas. Observations are
plotted in black, while LSMMOD, SLUCM1, SLUCM2, and CTRL correspond
to the blue, red, yellow, and purple lines, respectively. Urban average is taken
over all urban grid points inside box U (Fig.2.1), while rural averages are taken
over all non-urban points inside box R (Fig.3.4) but outside box U. In all plots,
observational urban−rural differences are computed from 9-m measurements.
Times from sunset to sunrise are shaded in gray.
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than the model-level computations valid at approximately 25 m AGL, they are

parameterized values, and are thus more susceptible to errors.

Observed UHII (Fig. 3.9a) remains constant throughout the night near

1.5− 2oC, before decreasing to near 0oC ∼ 3 hr after sunrise. The UHII slowly

rises again in response to daytime heating, reaching a maximum daytime UHII

of 0.75oC around 2200 UTC. Differences between the three urban representa-

tions of UHII are evident (Fig. 3.9d). Given relatively higher urban fractions,

SLUCM1 has a greater UHII at night in both the first-model-level T (Fig. 3.9a)

and diagnostic 2-m T (Fig. 3.9d). UHII is higher at 2 m than at 25 m, likely

because model-level computations allow for turbulence and diffusion, while diag-

nostic variables are based primarily on surface fluxes. However, none of the runs

sustains the UHII, either at 2 or 25 m, throughout the night at the level (∼ 2oC)

seen in the observations. Chen et al. (2014) simulated a similar slow decrease

in UHI throughout the night over Beijing. Although UHII is not maintained as

long as observed, all three simulations produce a greater first-model-level UHII

throughout most of the night than their maximum daytime UHII, which agrees

with the observations.

Measured urban mixing ratios are consistently drier than those in rural ar-

eas (Fig. 3.9b), especially when rural downward turbulent transport of drier

air decreases overnight, when the mean urban mixing ratio is as much as 1.5 g

kg−1 drier. These observations agree with those of Hu et al. (2013) which sug-

gested that, in the absence of strong low-level wind speeds, turbulence decreases

dramatically in rural areas after sunset, while rougher and warmer surface char-

acteristics of urban areas result in enhanced vertical mixing, which then inhibits

the formation of a cool, moist, surface-based stable layer. None of the WRF

runs correctly reproduces this diurnal pattern. While daytime urban-rural mix-

ing ratio differences are comparable to observations (∼0.5 g kg−1), particularly
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for 2-m q (Fig. 3.9e), nighttime urban and rural mixing ratio differences are

near zero. This difference is perhaps because of the strong wind speed and dry

biases in rural areas (Table 3.2), which may inhibit the formation of the rural

stable layer. Both simulated and observed urban-rural mixing ratio differences

decrease dramatically near sunset. However, modeled urban-rural differences

reduce shortly afterwards, while observed differences remain constant for several

hours before slowly equalizing.

The most noticeable difference between the three urban runs is in their sim-

ulation of near-surface wind speeds (Fig. 3.9c,f). The LSMMOD run, similar to

observations, produces lower urban wind speeds throughout the diurnal cycle,

with the greatest differences (∼1 m s−1, ∼ 15%) occurring during the daytime.

However, nighttime urban and rural wind speeds in SLUCM1 and SLUCM2

are very similar at 25 m, and urban 10-m wind speeds are upwards of 1 m s−1

(∼ 23%) greater than over rural areas, which is in disagreement with observa-

tions. These results are in accordance with the diurnal mean wind speeds seen

in Fig. 3.8d, and those simulated by Hu et al. (2016).

3.2.3 Urban modification of surface and near-surface

properties

To ascertain exactly how the various representations of the Oklahoma City ur-

ban area modify their environment, the analysis from here will consider differ-

ences between CTRL and each of the three urban runs, LSMMOD, SLUCM1,

and SLUCM2, averaged over days 2−6 of the simulation. Fig. 3.10a−f shows

that urban−CTRL differences in near-surface T , q, and WS are similar to the

urban−rural differences seen in Fig. 3.9. First-model level and 2-m temperatures

are warmer in the urban runs, especially at night, with SLUCM1 producing the
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Figure 3.10: Diurnal averages of urban-CTRL run differences, averaged over
urban areas in box U (Fig.2.1), in (a) first-model-level T (oC), (b) first-model-
level q (g kg−1), (c) first-model-level WS (m s−1) , (d) 2-m T , (e) 2-m q, and (f)
10-m WS. Negative (positive) values denote a greater (lesser) value in the CTRL
run. LSMMOD-CTRL, SLUCM1-CTRL, and SLUCM2-CTRL correspond to
the blue, red, and yellow lines. Times from sunset to sunrise are shaded in gray.

warmest nocturnal near-surface temperatures. Additionally, all urban runs pro-

duce generally drier urban areas, especially in the early evening, while SLUCM1

and SLUCM2 (LSMMOD) have higher (lower) wind speeds over the city during

the day.

To further investigate how these average urban-CTRL differences are pro-

duced, we examine spatial distributions of T (Fig. 3.11) throughout the diurnal

cycle. During the day (1500 to 2300 UTC), all three urban runs have urban

temperatures ∼ 0.0 − 0.5oC greater than the CTRL run (Fig. 3.11a−c), with

somewhat warmer temperatures in LSMMOD (Fig. 3.11a) and SLUCM1 (Fig.

3.11b) compared to SLUCM2 (Fig. 3.11c). Evening (0000−0400 UCT; Fig.

3.11d-f) urban near-surface temperatures are even warmer compared to CTRL
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Figure 3.11: (a)-(c) Color-filled contours of average urban-CTRL run differ-
ences in box U (Fig. 3.4) of first-model-level T (oC), as well as urban run first-
model-level wind speeds (blue arrows), during daytime (1500−2300 UTC) for
LSMMOD−CTRL, SLUCM1−SLUCM2, and SLUCM2−CTRL. Negative (pos-
itive) contoured values denote a greater (lesser) value in the CTRL run. Urban
fraction of 0.1 is contoured in black. (d)−(f) Same as (a)−(c) but for evening
(0000−0400 UTC). (g)−(i) Same as (a)−(c) except for nighttime (0400−1100
UTC).
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than during the day, with SLUCM1 the warmest during the evening (Fig. 3.11e;

> 2oC over northwestern OKC). SLUCM2’s (Fig. 3.11f) urban area is also

warmer during the evening than that of LSMMOD (Fig. 3.11d), but cooler

than that of SLUCM1, and SLUCM2’s warmest area is more concentrated over

and downwind of the CBD than the other 2 runs. The spatial patterns of noc-

turnal (0400−1100 UTC) near-surface temperatures in LSMMOD (Fig. 3.11g),

SLUCM1 (Fig. 3.11h), and SLUCM2 (Fig. 3.11i) are similar to those in the

evening, though the urban warming is ∼ 0.5− 1.0oC less intense.

The diurnal cycle of spatial distributions of first-model-level wind speeds are

also examined in Fig. 3.12. During the day, the wind speeds in the LSMMOD run

(Fig. 3.12a) are 1−3 m s−1 (15−20%) slower over urban areas than in the CTRL

run, with the slowest wind speeds located in central OKC. However, neither

SLUCM1 (Fig. 3.12b) or SLUCM2 (Fig. 3.12c) show similar patterns of wind

speed differences, with few concentrated areas of winds faster or slower than in

CTRL anywhere near the city. Near sunset, urban wind speeds remain slower in

LSMMOD (Fig. 3.12d), however to a lesser degree than during the day. Evening

urban wind speeds in SLUCM1 (Fig. 3.12e) are, in many locations, faster than

those in CTRL, particularly on the southwest side of OKC. However, the pattern

of SLUCM2−CTRL wind speeds (Fig. 3.12f) now more closely resembles those

of LSMMOD−CTRL, with mostly slower wind speeds over OKC. At night (Fig.

3.12g−i), wind speeds in LSMMOD and SLUCM2 are 0.5 − 2.0 m s−1 slower

over all of OKC, and 0.0− 1.5 m s−1 slower in SLUCM1.

Analyzing all observations within an urban area as a single category, when

each is affected by the different underlying surface structure and LULC, may be

inadequate to properly analyze urban effects (Stewart 2011; Stewart and Oke

2012). The spatial plots of T , q, and WS show that simulated temperature and

wind speed are dependent on urban category or urban fraction, as the warmest
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Figure 3.12: Same as Fig. 3.11 but for first-model-level wind speed difference

first-model-level temperatures and slowest first-model-level wind speeds are of-

ten concentrated near the CBD (e.g. Fig. 3.11f and Fig. 3.12a). Analysis of

OKCNET observations by urban category by Hu et al. (2016) suggested that this

should be the case for OKC. Analysis of the times series of the 5-day mean and

standard deviation of urban−CTRL temperature (Fig. 3.13a-c) and wind speed

(Fig. 3.13d-f) differences for each urban category indicates that this is only some-
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Figure 3.13: (a) Diurnal averages (solid line) and standard deviation (shaded) of
first-model-level temperature (oC) averaged over low-intensity residential (blue),
high-intensity residential (red), and commercial (black) grid points in box U (Fig.
3.4) for LSMMOD−CTRL. Negative (positive) values denote a greater (lesser)
value in the CTRL run. Times from sunset to sunrise are shaded in grey. (b)
Same as (a) but for SLUCM1−CTRL. (c) Same as (a) but for SLUCM2−CTRL.
(d)−(f) Same as (a)−(c), but for wind speed (m s−1).

times the case. While the distribution means of daytime wind speeds associated

with the three urban categories in LSMMOD−CTRL are separated noticeably

(Fig. 3.13d), little distinction is present between wind speed differences over the

same points in SLUCM−CTRL (Fig. 3.13e) and SLUCM2−CTRL (Fig. 3.13f).

In contrast, first-model-level nighttime urban−CTRL temperatures associated

with the three urban categories are all very similar in LSMMOD−CTRL (Fig.

3.13a) and SLUCM2−CTRL (Fig. 3.13c), while in SLUCM1−CTRL nighttime

temperatures in low-intensity residential areas are cooler than those of the more

urbanized categories (Fig. 3.13b). Both of these results corroborate the rel-
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atively uniform distribution of SLUCM1−CTRL and SLUCM2−CTRL wind

speeds (Fig. 3.12) and LSMMOD temperatures (Fig. 3.11) throughout the day.

3.2.4 Urban modifications of the planetary boundary

layer

Urban effects are also seen throughout the PBL. Vertical cross sections of q and

potential temperature, θ, near peak heating (2100 UTC), along the north-south

line in Fig. 3.7 for LSMMOD−CTRL, SLUCM1−CTRL, and SLUCM2−CTRL

are shown in Fig. 3.14. This location was chosen for the cross section because

it is aligned along the mean boundary layer wind over the study period, and

because it transects the majority of the OKC metro, including downtown OKC.

The lowest ∼ 1 km of the PBL is drier in each urban run compared to the CTRL

simulation, with the drying extending further north and south, and of greater

intensity, in LSMMOD and SLUCM1. The drying is also most concentrated over

the urban area, as indicated by the trace of run-specific urban fraction below

each plot. In addition, SLUCM1 is 0.25 oC warmer just above the surface, while

warmer air extends over a deeper portion of the PBL in LSMMOD, with a few

locations of +0.5 oC air near the ground. The warmer temperatures in the lower

portions of the PBL of SLUCM1, and especially in LSMMOD, result in deeper

PBLs, denoted by the black (blue) line for the CTRL (urban) run. A higher PBL

top leads to moistening and cooling at the PBL top over the city (given that

the PBL is typically topped by an inversion), especially in LSMMOD, where the

atmosphere is up to 0.5 g kg−1 moister and 0.5 oC cooler. Cross sections across

other parts of OKC (not shown) show similar urban-CTRL run differences.

To quantify how each urban parameterization modified the PBL throughout

the day, CTRL (Fig. 3.15a,e) and urban−CTRL θ, q, WS, and vertical wind
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Figure 3.14: Vertical cross section along the line in Fig. 3.7 of average 2100 UTC
mixing ratio (filled contours) and potential temperature (red lines ever 0.25 oC;
negative dashed, positive solid, 0 line not shown) for (a) LSMMOD−CTRL, (b)
SLUCM1−CTRL, and (c) SLUCM2−CTRL. Negative (positive) values denote
a greater (lesser) value in the CTRL run. Also shown in cross section are PBL
height of CTRL (black line) and each urban run (blue line) along the cross
section line. Plotted below each vertical cross section is urban fraction of each
urban run along the line.
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Figure 3.15: (a) Mean CTRL θ (oC; solid) and q (g kg−1; dashed) as a function
of height over urban areas in box U (Fig. 3.4) at 1200 UTC (purple), 2100
UTC (light green) and 0100 UTC (light blue). (b) Averages of urban-CTRL run
differences in θ (oC; solid) and q (g kg−1; dashed) at 1200 UTC as a function of
height, averaged over all urban locations in box U (Fig. 3.4). Negative (positive)
values denote a greater (lesser) value in the CTRL run. LSMMOD−CTRL,
SLUCM1−CTRL, and SLUCM2−CTRL correspond to the blue, red, and yellow
lines. Thick black horizontal line is the average simulated PBL height at this
time. (c) Same as (b) but at 2100 UTC. (d) Same as (b) but at 0100 UTC. (e)
Same as (a) but for WS (m s−1; solid lines) and w (cm s−1; dashed). (f)−(h)
Same as (b)−(d), but for urban–CTRL differences in WS (m s−1; solid lines)
and w (cm s−1; dashed).

speed (w), averaged over urban grid points in box U (Fig. 2.1a), are plotted in

the lowest 2000 m above urban grid points in box U of Fig. 2.1 at 1200 UTC (Fig.

3.15b,f), 2100 UTC (Fig. 3.15c,g), and 0100 UTC (Fig. 3.15d,h). At 1200 UTC,

just after sunrise, all urban runs are 0.5 to 1 oC warmer just above the surface,
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but, owing to minimal nighttime turbulent mixing, this warming does not extend

above the shallow PBL (Fig. 3.15b). In addition, due to surface roughness,

slower wind speeds are evident in the PBL in all runs, especially nearest the

surface (Fig. 3.15f), accompanied by weaker near-surface sinking motion than

in CTRL (Fig. 3.15e) because of warmer surface temperatures. Above the

PBL, while temperature, moisture, and horizontal wind speed remain relatively

unchanged from CTRL, stronger sinking motion is evident just below average

daytime PBL height (Fig. 3.15c,g), particularly in LSMMOD and SLUCM2.

Near peak heating at 2100 UTC, the lower urban PBL has dried 0.5–1 g

kg−1 (Fig. 3.15c) in all runs compared to CTRL (Fig. 3.15a), with somewhat

drier air through most of the PBL. The majority of the PBL is also slightly

warmer, though not as much so near the surface. As was evident in analysis of

first-model-level conditions (Fig. 3.10), the LSMMOD run produces ∼ 1.5 m

s−1 weaker daytime wind speeds near the surface of urban areas, while low-level

wind speeds in both SLUCM runs differ little from the CTRL simulation (Fig.

3.15g). The decreased wind speeds in LSMMOD extend through the depth of

the PBL, though they are lowest near the surface. Just above the most slowed

wind speeds, at ∼ 150 m AGL, LSMMOD has weaker sinking motion, nearly

neutralizing the downward vertical motions at this height in CTRL (Fig. 3.15e).

All runs feature weaker sinking motion near the CTRL PBL top (Fig. 3.15g),

particularly in SLUCM1, indicating the increase in PBL height seen in Fig. 3.14.

At sunset (0100 UTC), all runs are 1− 2oC warmer and 1− 1.5 g kg−1 drier

than CTRL just above the surface (Fig. 3.15d), in agreement with observations

in Fig. 3.10. However, as was the case at sunrise (Fig. 3.15b), these modifica-

tions are limited to the air nearest the ground due to lower turbulent mixing than

during the day. Wind field deviations near sunset (Fig. 3.15h), however, extend

over a larger depth. LSMMOD and SLUCM2 have lower horizontal wind speeds

60



just above the surface, but reach their maximum difference in speed 50−100 m

higher. SLUCM1 also has lower wind speeds ∼ 200 m AGL, however SLUCM1’s

wind speeds nearest the surface are higher than CTRL’s, a result echoed in the

time series (Fig. 3.10d) of first-model-level SLUCM1 wind speeds. In addition,

the daytime weaker sinking motion near the surface evident in LSMMOD (Fig.

3.15g) is now apparent in both SLUCM1 and SLUM2, and extends through

the depth of the collapsing PBL. In the SLUCM runs, this weaker sinking mo-

tion also continues above the evening PBL, a residual feature from the daytime

convective boundary layer (CBL).

3.3 Discussion and Conclusions

This study used the WRF-ARW, run at 500-m horizontal grid spacing with 25-

m vertical grid spacing near the ground, to investigate model-simulated urban-

atmosphere interactions in Oklahoma City. The CTRL simulation with no urban

area served as a comparison point for the urban simulations. These urban runs

included the LSM and LSMMOD, using the original and a new, modified version,

respectively, of the Noah land surface model to parameterize the urban surface.

Also analyzed were two SLUCM simulations using the more complex single-

layer urban canopy model parameterization, differing only in their urban fraction

values. Simulation SLUCM1 had the default urban fraction values assigned by

the urban canopy model, while SLUCM2, through a novel approach, used NLCD

2011 impervious surface data as a proxy for urban fraction, resulting in generally

less dense urban areas. The results presented in this study suggested that it is

more appropriate to use the modified Noah LSM alone (LSMMOD), instead of

the SLUCM-Noah LSM combination, for lower-density cities, which are common

in the Great Plains.
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The SLUCM1 and LSMMOD runs simulated near surface temperatures in

the OKC area reasonably well. First-model-level daily maximum, minimum,

and mean temperatures were, on average, ∼ 1oC warmer over the urban area

than nearby rural areas. Both simulations also reproduced the daytime dry

urban area seen in observations, although this was not maintained through the

night. However, maximum and mean daily temperatures were slightly warmer

and mean mixing ratios were drier than observations, biases seen frequently in

models using the YSU PBL scheme. Furthermore, given the dry bias of the

initialization soil moisture content, future work should investigate how using

the high-resolution land data assimilation system (HRLDAS; Chen et al. 2007)

to spin up the soil state before WRF simulation, as done by Sharma et al.

(2016) and Nemunaitis-Monroe et al. (2016), might improve these results. The

SLUCM1 run also was unable to produce weaker winds over urban areas as seen

in observations, while LSMMOD’s urban wind speeds more closely agreed with

observations.

All simulations (LSMMOD, SLUCM1, and SLUCM2) reproduced the noc-

turnal UHI relatively well, with urban-rural differences ranging from ∼ 1−1.5oC

overnight. However, SLUCM1 produced a more intense, and thus more realistic,

nocturnal UHI than LSMMOD and SLUCM2, although the urban fractions in

SLUCM1 are less representative of the city. Evaluations of rural and urban ob-

servations separately suggest that the models’ weak nocturnal UHIIs are a result

of a warm bias in rural areas as opposed to a cool bias in urban areas. Results

show that while the daytime UHI was accurately reproduced as less intense than

the nocturnal UHI, all three urban simulations produced only a slightly warmer

(∼ 0.25oC) daytime urban area, compared to observations of a ∼ +0.5 − 1oC

daytime UHI. Owing to lower urban densities in OKC, the SLUCM2 simulation

had a weaker nighttime and daytime UHI than in the SLUCM1 run. However,
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given the UHI in SLUCM1 was already too weak, the UHI in SLUCM2 had an

even greater cool bias.

Additionally, observed wind speeds were lower in the urban area, especially

during the day. The biggest difference between the three urban simulations was

the failure of either SLUCM run to produce this phenomenon. However, the

diurnal cycle of urban-rural differences in wind speed in the LSMMOD simula-

tion agreed well with observations. Wind speeds as a function of urban category

were analyzed to investigate the role of surface roughness in producing these

differences. While increasingly rough urban surfaces (i.e. higher-intensity urban

areas) resulted in progressively slower wind speeds in the LSMMOD run com-

pared to the CTRL run, wind speeds over all urban surfaces were roughly the

same in both SLUCM runs, regardless of urban category.

Hu et al. (2016) theorized the cause of the higher near-surface wind speeds

in the WRF during the evening to be an imbalance of friction-induced speed

reduction and turbulent transport of increased momentum from aloft caused by

inadequacies of the PBL scheme. Other investigations have had similar diffi-

culties correctly simulating evening and nocturnal wind speeds with the WRF

(e.g. Zhang and Zheng 2004; Lee et al. 2011; Ngan et al. 2013). However, as

all of the runs examined here use the same PBL scheme, and the differences in

wind speeds are noticeable during the daytime, their theory cannot account for

the discrepancies shown here between the SLUCM and LSMMOD simulations.

Miao et al. (2009) noted increased wind speeds in the city center of Beijing while

using the SLUCM, which they attributed to increased turbulence, however they

did not have a simulation using only the LSM to which to compare these find-

ings. It is possible that the core of OKC is not large or aerodynamically rough

enough to result in the turbulence-induced acceleration of the winds that Miao

et al. (2009) observed in Beijing. Further testing of the SLUCM is needed to
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ascertain the cause of these erroneous wind speeds in OKC.

It is troublesome that providing the SLUCM with more accurate surface

characteristics would result in a less realistic UHI representation. Contrary to

these results, Li et al. (2013) found that using urban fraction computed directly

from 30-m NLCD 2006 data (Fry et al. 2011) improved the representation of sur-

face energy balance terms. The SLUCM, designed around the ”urban canyon”

observations of Nunez and Oke (1977), assumes that all urban areas are covered

by closely-spaced buildings with canyon-like streets and alleys in between. In-

deed most studies which have used the SLUCM-Noah LSM modeling system to

simulate UHIs are performed over large, densely populated cities such as New

York City (Holt and Pullen 2007), Taipei (Lin et al. 2008), and Beijing (Miao

et al. 2009). Few studies have used the SLUCM to simulate the UHI of cities

that are less dense and with greater suburban sprawl. The results herein suggest

that the SLUCM may not always be suited for use in less-dense urban areas, par-

ticularly if accurate reproduction of urban wind speeds are important. However,

a more accurate aerodynamic parameterization for the SLUCM, as suggested by

Varquez et al. (2015), could be used to attempt to remedy this problem in future

simulations.

Recent developments aimed at eliminating these deficiencies from urban

canopy parameterizations have focused on developing multi-layer urban canopy

models, particularly the Building Energy Parameterization (Martilli 2002) and

Building Energy Model (Salamanca et al. 2010) in the WRF. Studies using

these parameterizations have indicated their ability to improve PBL tempera-

tures and wind speeds in urban areas (e.g., Gutiérrez et al. 2015a,b; Sharma

et al. 2016). However, both of these parameterization options are incompatible

with the non-local YSU PBL scheme, which was chosen for this study because

of its suitability for use in severe weather environments (Coniglio et al. 2013;
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Clark et al. 2015). However, the local-mixing Mellor-Yamada-Nakanishi-Niino

PBL scheme (MYNN; Nakanishi 2000, 2001; Nakanishi and Niino 2004, 2006),

which is also appropriate for use in severe weather situations (Coniglio et al.

2013) could be used with the multi-layer urban parameterization options, hence

this is an avenue for future investigation.
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Chapter 4

Influence on a simulated supercell of the

storm-relative location of a large Great Plains

urban environment

Now that it has been shown the modified LSM is the most appropriate urban

parameterization for use in a great plains urban environment, it will be used to

parameterize a large Great Plains urban environment (Dallas-Ft. Worth; DFW)

in simulations of an isolated supercell. The interactions between DFW, which is

placed in 108 distinct locations within the innermost domain, and the supercell

will be analyzed. The goal here is not to reproduce exactly the events of a

particular day (in this case, 31 May 2013), but to quantify the effects that DFW

has on the strength and evolution of the supercell. Using analyses of simulations

grouped based on cluster analysis, this chapter will show that the city has a

statistically significant effect on storm strength, and that these modifications

vary based on the storm-relative location of the city. Storm inflow differences

will be quantified to investigate possible causes of changes in storm strength,

and these differences in inflow characteristics will be connected to urban effects.
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4.1 Model configuration and simulation descriptions

Simulations are performed using the ARW-WRF Version 3.6.1. Three one-way

nested domains (Table 4.1) are used with 4.5 km, 1.5 km, and 0.5 km horizontal

grid spacing and domain sizes of 300 x 300, 399 x 399, and 498 x 498, respectively

(Fig. 4.1a). All domains have 119 vertical terrain-following grid points, spaced

at ∼ 50 m near the surface and stretching to ∼ 150 m spacing at 800 hPa (∼ 2

km AGL) and above. Approximately 20 vertical levels are within the lowest 1.0

km AGL, providing finer vertical resolution in the convective boundary layer

(CBL).

All three domains employ the same parameterization options: Goddard short

and long wave radiation schemes (Chou and Suarez 1999; Chou et al. 2001; Mat-

sui and Tao 2007), a modified version of the Noah land surface model (LSM;

Chen and Dudhia 2001; Ek 2003), as described in Section 2.2 and used in Chapter

3, the MM5 Monin-Obukhov surface layer (Monin and Obukhov 1954; Paulson

1970; Dyer and Hicks 1970; Webb 1970) and corresponding Yonsei University

(YSU) PBL scheme (Noh et al. 2003), and the double-moment NSSL micro-

Table 4.1: Simulation domain and parameterization specifications for the simu-
lations in Chapter 4.

d01 d02 d03
Horizontal grid size 300 × 300 399 × 399 498 × 498
Grid spacing (km) 4.5 1.5 0.5
Vertical levels 119
Time steps (s) 6 2 1
Microphysics NSSL
LW radiation New Goddard
SW radiation New Goddard
PBL Scheme YSU
Land Surface Scheme Modified Noah LSM

67



Figure 4.1: (a) Domain locations used for all simulations in Chapter 4. The
plotted area is encompassed by d01, and the red and black boxes indicate d02
and d03, respectively. Terrain height is shaded, and state boundaries are in gray.
(b) Grid of 108 simulation urban locations (red dots), plotted according to the
center of urban fraction mass for each simulation in d03. Oklahoma county lines
are in black. (c) Shaded urban land use data for run x240.y183, whose center of
mass location (red dot) corresponds to the dashed lines and labels in (b). (d)
Same as (c) but for urban fraction.

physics scheme (Mansell et al. 2010), which uses six hydrometeor classes and

predicts graupel density. The YSU scheme is selected as it yields PBL prop-

erties and depths that agree well with observations, and because it has been

shown to perform well in Plains severe weather environments (Coniglio et al.

2013; Clark et al. 2015). An urban canopy model (UCM) is not used to repre-

sent urban areas because Chapter 3 shows that the single-layer UCM (SLUCM;
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Kusaka et al. 2001; Kusaka and Kimura 2004)—the only explicit UCM available

in the WRF that is compatible with the YSU PBL scheme—is not appropriate

for use in plains cities, particularly because of its poor prediction of urban wind

speeds.

Each simulation is initialized at 0600 UTC (0000 LST) 31 May 2013, with a

Rapid Refresh (RAP) analysis, supplemented by offline North American Land

Data Assimilation-2 (NLDAS-2) 0.125-degree Noah Model soil moisture and

temperature output (Xia et al. 2012), provided by the Goddard Earth Sciences

Data and Information Services Center (GES DISC). Simulations are integrated

for 21 h to 0600 UTC 01 June 2013 using a time step of 6 s, 2 s, and 1 s for d01,

d02, and d03, respectively, with lateral boundary conditions for d01 provided

by hourly RAP analyses. In total, 118 separate simulations are performed: one

without any urban areas (CTRL); 9 additional simulations without any urban

areas but with random, zero-mean normal, small amplitude noise applied to

the volumetric soil water content of the top soil layer (CTRLN); and 108 with

the Dallas-Fort Worth (DFW) urban area placed in one of 108 regularly-spaced

gridded locations (Fig. 4.1b). In addition to removing urban areas from CTRL

and CTRLN simulations, the land use type at all grid points of d03 are changed

to grassland. For each non-CTRL simulation, three-category urban land use

(Fig. 4.1c) and urban fraction (Fig. 4.1d) of DFW, derived from National Land

Cover Database (NLCD) land use (Homer et al. 2015) and impervious surface

(Xian et al. 2011) data, respectively, are used to represent the characteristics of

the DFW urban area. All other areas in d03 remain grassland as in CTRL. The

108 simulations with the land use of DFW are referred to by the location of the

mass-weighted center (with urban fraction used as the mass) of DFW relative

to the southwest corner of d03 (e.g., the center of DFW in simulation x240.y183

would be 240 grid points (120 km) east and 183 (91.5 km) north of the SW
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corner of d03; Fig. 4.1b,c).

The purpose of the CTRLN simulations is to provide an initial-condition en-

semble against which to compare variable means across various groups of DFW

simulations. If group averages are compared to the single CTRL run, small-

scale features from CTRL can dominate the analysis. However, averaging over

the CTRLN ensemble makes comparative analyses less dependent on random

variability from a single run and better elucidates the dominant signals. Hence-

forth, the slate of 10 simulations that use the CTRL landuse (i.e., CTRL plus

CTRLN) will be referred to as CTRLE, however some analyses will only consider

CTRL where appropriate.

This configuration is used to simulate a real meteorological situation interact-

ing with a relatively idealized land use pattern and is not intended to reproduce

exactly the events of 31 May 2013. This date, and the events that occurred

on it, are irrelevant to the discussions presented here, and this date was chosen

purely because the boundary conditions provided by NWP models on this date

produced a relatively isolated, long-lived supercell in the chosen WRF configura-

tion. While using the land use of Oklahoma City, instead of DFW, would have

been more geographically appropriate, the intention of using the much larger

urban area of DFW is to maximize the magnitude and extent of urban effects,

while still using the land use pattern of an urban area that is appropriate for

the southern Great Plains.

4.2 Results

4.2.1 Event description and CTRL results

On the afternoon of 31 May 2013, surface-based CAPE (SBCAPE) in excess of

4000 J kg−1, negligible surface-based CIN (SBCIN), effective bulk shear from 50–
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60 kts, and 0–1-km and 0–3-km storm-relative helicity values of approximately

100 and 200 m2 s−2, respectively, characterized the unstable warm sector over

central OK, east of a surface trough in western OK and south of a stationary

front draping across northwestern OK. In other words, all of the ingredients

for severe convection (e.g., Johns and Doswell 1992) were present. Conditions

within the CTRL simulation’s warm sector (Fig. 4.2a–c) generally agree with

these observations. Thus, it is no surprise that the model initiates convection

over central Oklahoma near the intersection of the dryline and stationary front

(Fig. 4.2c) at approximately 2200 UTC.

In d02 of CTRL, simulated convection near this ”triple point” intersection in

Oklahoma (Fig. 4.3a) propagates eastward off the boundary, and evolves into a

long-lived supercell (Fig. 4.3b,c). The simulated supercell produces a mid-level

mesocyclone with ζmax ≥ 0.02 s–1 from 2210–0300 UTC as it moves nearly due

eastward at ∼ 8 m s–1. Eventually, this initial supercell dissipates around 0330

UTC, followed by a new area of convection to the north of the supercell (Fig.

4.3d). This convective system organizes into a line of training precipitation cells

(Chappell 1986, Fig. 4.3d,e) which remains stationary over east central OK

through the end of the model run. The system of training precipitation and

the initial supercell result in over 150 mm of rain in some locations (Fig. 4.3f).

Simulated convective evolution is similar to reality, though it occurs too far east

and convective coverage is more sparse. However, these discrepancies are not

germane to the current study since the present goal is to simulate an isolated

supercell interacting with different parts of a city, not to reproduce exactly the

events of 31 May 2013. The results focus on the initial isolated supercell, from

formation at ∼ 2130 UTC, to its demise at ∼ 0300 UTC. As such, all subsequent

simulation details are from d03.

Detailed analysis of d03 results shows that storm initiation occurs at approx-
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Figure 4.2: (a) Color-filled contours of 0–1-km SRH (m2 s−2) at 2100 UTC 31
May 2013 for d02 of CTRL. County and state boundaries are outlined in gray.
State and county boundaries are outlined in gray. (b) Same as (a), but for 0–
3-km SRH. (c) Mesoscale conditions at 2100 UTC 31 May 2013, just prior to
convective initiation, taken from d02 of the CTRL run. Color-shaded contours
of SBCAPE (J kg−1), dash-filled contours of SBCIN (J kg−1), as well as 10-
m (black), 850 mb (red), and wind speed (kts), wind barbs (kts). The 20 oC
line is contoured in brown as an approximation for location of the dryline and
stationary front. (d) Shaded contours of maximum cloud coverage (%) in the
lowest 5 km and contours of 35 dBZ at −10 oC in orange. State and Oklahoma
county boundaries are outlined in red.

imately 2135 UTC (Fig. 4.4a), and roughly an hour later a hook echo forms.

The hook echo is accompanied by a concentrated region of large values of 2–

5-km updraft helicity (UH; e.g., Kain et al. 2008), which indicate mesocyclone

location (Fig. 4.4b). Also around this time, a cell forms on the north flank of
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Figure 4.3: Color-filled contours of simulated reflectivity (dBZ) at 1-km AGL
from d02 of the CTRL simulation at (a) 2200, (b) 0000, (c) 0200, (d) 0400, and
(e) 0600 WRF CTRL d02 simulated REFL at 1 km. (f) Filled contours of d02
CTRL rainfall accumulated from 2100–0600 UTC, State and county boundaries
are outlined in black.

the parent supercell. When this cell moves north and away from the main storm,

around 2300 UTC, the hook echo becomes more defined and the area of large UH

values grows (Fig. 4.4c). Around 2345 UTC (Fig. 4.4d), the initial mesocyclone
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Figure 4.4: Color-filled contours of simulated reflectivity (dBZ) at 1-km AGL
and contours of 800 m2s−2 2–5-km UH (black) from d03 of the CTRL simulation
at (a) 2135, (b) 2235, (c) 2300, (d) 2345, (e) 0025, (f) 0130, and (g) 0300 UTC.
Oklahoma county boundaries are outlined in gray.

begins to cycle, with a new mesocyclone forming to its west. Additionally, a new

cell forms just to the west of the main supercell. This flanking cell strengthens

and develops a mesocyclone, eventually undercutting the initial supercell, thus

becoming the dominant mesocyclone (Fig. 4.4e). Approximately an hour later,

the storm begins to weaken (Fig. 4.4f), and it is almost completely dissipated

by 0300 UTC (Fig. 4.4g).
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The resulting mesocyclone tracks, computed using a 3D object-tracking algo-

rithm similar to that used by Clark et al. (2012a), depict a complicated evolution

as the first supercell moves eastward and is undercut by the second supercell (Fig.

4.5). Mesocyclone tracks, computed similar to the method used by Clark et al.

(2012b) indicate that the CTRL storm generally tracks in an easterly direction

over its lifetime (Fig. 4.5), moving more south-southeast between 2300 and 0100

UTC (Fig. 4.5b). Near-surface wind speed (Fig. 4.5a) is strongest for the initial

Figure 4.5: Color-filled contours of CTRL d03 time composite (a) maximum
near-surface wind speed, (b) minumum near-surface temperature, (c) total rain-
fall, and (d) maximum 2–5-km UH. Mesocyclone track lines are in black, and
the location of the storm at every hour (UTC) is noted in (b) with dots and
time labels. Oklahoma counties are outlined in black.

75



mesocyclone track, with speeds exceeding 35 m s−1 in some locations. However,

2–5-km UH remains high for much longer in the storm’s lifetime (Fig. 4.5d)

until the mesocyclone weakens and takes a more northerly track, beginning just

after 0100 UTC. Rainfall is mainly concentrated north of the first track (Fig.

4.5c), as are the cooler near-surface temperatures accompanying the rain-cooled

downdraft (Fig. 4.5b).

Time series tracks of mesocyclone-averaged 0–1-km and 2–5-km updraft he-

licity (Fig. 4.6b) suggest that mid-level mesocyclone strength is greatest from

0000–0130 UTC, as indicated by plateaus of 3-km ζavg and 2–5-km UH at

∼ 0.02s−1 and ∼ 4000 m2 s−2, respectively. While first-model-level ζavg is also el-

evated over this time, low-level mesocyclone strength, as determined by 0–1-km

UH, is only relatively strong from ∼ 0000−0003 UTC. The southern-most meso-

cyclone track starts around this time (Fig. 4.5b), suggesting that the low-level

mesocyclone associated with this track is not as strong.

4.2.2 Pre-storm urban environment

It is important to establish that the model is producing reasonable atmospheric

urban effects before analyzing any differences in storm strength and evolution

among the 108 different urban runs. To illustrate this point, mean differences

are shown between simulation x240.y183 (Fig. 4.1c,d) and CTRL in the hour

prior to storm initiation (2030 − 2130 UTC; Fig. 4.7). While the magnitudes

of these urban effects are not identical across all urban runs, the general nature

of the changes remains consistent across all runs, hence pre-storm urban effects

are only shown from this simulation.

Near the ground, the urban area is generally warmer (Fig. 4.7a) and drier

(Fig. 4.7b) than CTRL, consistent with UHI theory and the replacement of

natural with non-evaporative urban surfaces (e.g., Barlow 2014). This warm,
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Figure 4.6: CTRL variables averaged over mesocyclone area as a function of
time. (a) Vertical vorticity, ζ, at 25 m and 3 km AGL, in black and green,
respectively, and plotted against the right and left axes, respectively. (b) 2–5-
km UH from 0–1-km in blue and red, respectively, and plotted against the right
and left axes, respectively.

dry air also is advected downwind (north and east) of the city. The rough urban

surface begets wind speeds that are at least 1.5 m s−1 slower than in the CTRL

run (Fig. 4.7c), or an approximate 20% decrease, over and downwind of the

city. Wind speed decreases of this magnitude have been observed and simulated

by previous studies (e.g., Hu et al. 2016, RS17). Winds generally back in the

wake of the city (Fig. 4.7d) by 10–15o, however a narrow band of equally veered
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Figure 4.7: Color-filled contours of the 2030-2130 UTC average difference from
CTRL of x240.y183 (a) first-model-level temperature (oC), (b) first-model-level
mixing ratio, q (g kg−1), (c) first model-level wind speed (m s−1), (d) first-model-
level wind direction (degrees),(e) 0–1-km SRH (m2 s−2), and (f) 0–3-km SRH.
Urban fraction of 0.1 is contoured in a thick black line. County boundaries are
outlined in gray.

winds exists downwind of the eastern edge of the city. As a consequence of slower

near-surface winds, 0–1-km and 0–3-km SRH are ∼ 40− 60 m2 s−2 higher in the

vicinity of the urban area, increasing SRH by ∼ 50% and ∼ 25%, respectively

(Fig. 4.7e,f). As all of these results are generally consistent with theory and

observations, we can be confident that the model is simulating reasonable urban-

atmosphere interactions.
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4.2.3 HCA of DFW simulations

The hierarchical clustering algorithm from Section 2.5 was used on various mea-

sures of storm strength and evolution, and the results will be discussed here.

Generally, the members in each 2–5-km UH HCA group (Fig. 4.8) do not have
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Figure 4.8: (a) Dendrogram of 2–5-km UH HCA results and (b) the resulting
city-center locations by group. Oklahoma county boundaries are outlined in
gray. Colored dendrogram groups in (a) correspond to similarly-colored dots in
(b).
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city locations that are geographically collocated. Likewise, member city locations

are similarly scatted in the HCA results for rainfall (Fig. 4.9). These findings

suggest that city location is not the primary reason for member differences in

2–5-km UH and storm-total rainfall.

In contrast, the HCA results for 0–1-km UH (Fig. 4.10), near-surface wind

speed (Fig. 4.11), and near-surface temperature (Fig. 4.12) suggest that differ-
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Figure 4.9: Same as Fig. 4.8 but for storm-total precipitation.
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Figure 4.10: Same as Fig. 4.8 but for 0–1-km UH.

ences in low-level storm characteristics are dependent on city location. At the

highest grouping (i.e., groups with the greatest within-group variance), members

with city centers south of and directly under the storm path (e.g., group 2–7 in

Fig. 4.10) are grouped separately from those with centers north of the storm

path (e.g.,group 1 in Fig. 4.10). Below that, each group generally bifurcates

into eastern and western groups (e.g., groups 2–3 and 4–7 in Fig. 4.10), followed
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Figure 4.11: Same as Fig. 4.8 but for low-level wind speed.

by another set of north-south and (in some cases) east-west splits. The mem-

bers group first (e.g., the bottom-most groups) by east-west city location, and

then subsequently by north-south location, suggesting that members with similar

east-west locations are generally more alike than those with similar north-south

locations.

While the HCA groupings for 0–1-km UH, near-surface wind speed, and near-

surface temperature are generally similar, some noticeable differences do exist.

For example, in the 0–1-km UH groupings, simulations with city locations in
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Figure 4.12: Same as Fig. 4.8 but for low-level temperature.

the northern third of the domain (group 1 in Fig. 4.10) are quite different from

those in the southern two-thirds of the domain (groups 2–7), as indicated by the

large increase in within group variance (> 0.25) when group 1 is combined with

the rest. A similarly large increase in variance (≈ 0.5) occurs when the group

of northern city locations from the low-level wind speed HCA (group 6 in Fig.

4.11) are combined with simulations with city locations in the middle third of the

domain (groups 7 and 8). However, variance increases by an even larger amount
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when groups 6–8 are combined with 3–5 (≈ 0.75). This difference between

0–1-km UH and near-surface wind speed HCA grouping structures indicates

that while the final groups may differ little, the order of similarity between

the groups can change. The main reason for these differences is that near-

surface temperature and wind speeds are modified by the urban area before (and

regardless of if) the storm interacts with the city. In other words, temperature

and wind speed changes are not directly tied to the presence of the storm, but

UH is a property of the storm itself, and not just the underlying surface. Hence,

it is possible that the HCA groupings for near-surface variables are dominated

by non-storm modifications of the near-surface environment.

To understand how the various groups differ, we can examine difference fields

for several variables that are related to storm strength and evolution. The

groupings are selected from a single HCA result to simplify interpretation. Since

the HCA results of 0–1-km UH, near-surface temperature, and near-surface wind

speed each provide grouping structures that are nearly identical, selecting the

groups from any of these three variables should provide similar results. Hence,

we will analyze difference fields based on the groupings from the 0–1-km UH

HCA. Furthermore, to avoid representativeness issues caused by small sample

size or large within-group variance, the 4 groupings with merging heights of∼ 0.5

(Fig. 4.10a) will be examined. These groupings, or groups 1, 2–3, 4–5, and 6–7

in Fig. 4.10, will be referred to as the N, SW, E, and SE groups, where the

directional names correspond to the location of the city relative to the general

storm track in each group.

Regardless of city location, all simulations with an urban area generally have

greater low- and mid-level UH than the CTRLE simulations (Fig. 4.13) along the

southern-most mesocyclone track (Fig. 4.7). This difference is most pronounced

and consistent when the city center is in the southern and eastern portions of
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Figure 4.13: (a) Color-filled contours of group-averaged differences of group N
from CTRL in time-composite maximum 2–5-km UH. Also, contoured in black
are differences that are significant at α = 95%, as computed from permutation
testing with 10,000 permutations. Oklahoma counties are outlined in gray. (b)–
(d) Same as (a), but for groups SW, E, and SE, respectively. (e)–(h) Same as
(a)–(d) but for 0–1-km UH.
n

the domain (groups SW, E and SE; Fig. 4.13b–d,f–h). However, UH values

near the initial, western-most mesocyclone are diminished by the presence of

the city to the south, particularly in the SW group (Fig. 4.13b,f). Some of these

apparent differences in mesocyclone strength can explained by a more southerly

storm track in the SW, E, and SE groups (Fig. 4.14). The more southerly

track of the mesocyclone is clear when comparing reflectivity and 2–5-km UH

contours of one member from these groups (x327.y156) to a CTRLN simulation

(Fig. 4.15). However, if the mesocyclones simply track further south, but are of

similar strength, we should in each case see an additional swath of nearly equal
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Figure 4.14: Color-filled contours of differences between groups and CTRLE of
the percentage of members in each group that have a mesocyclone track in a 3x3
box centered at each grid point. Contours of differences that are significant at
α = 95% are contoured in black. Oklahoma counties are outlined in gray.

magnitude UH change, but of opposite sign. In the case of both the increased UH

values of the southern-most storm track for groups SW, SE, and E (Fig. 4.13b–

d,f–h), as well as the decreased UH near the initial mesocyclone in the SW group

(Fig. 4.13b–d,f–h), this kind of pattern is not present. This indicates that the

strength of the southern-most mesocyclone is indeed increased, and significantly

so in the E and SE groups, while the initial mesocyclone is weakened significantly

in the SW group.

The most prominent, low-magnitude signals in minimum near-surface tem-

perature (Fig. 4.16a–d) and maximum near-surface wind speed (Fig. 4.16e–h)

group differences from CTRLE are first order effects of the urban area. Over

and downwind of the general location of the urban areas in each group, maxi-

mum wind speeds are slower while minimum temperatures are higher, caused by

increased friction and the UHI effect, respectively. These effects are particularly

evident for the SW (Fig. 4.16b,f) and SE (Fig. 4.16d,h) groups, where the city

locations are furthest from precipitation effects.

Temperature and wind speed differences also are apparent near the storm.

The minimum temperature south of the southern-most mesocylone track, likely

within the storm’s rear-flank downdraft (RFD), is over 0.5 oC cooler than
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Figure 4.15: (a) Simulated reflectivity from CTRLN member 1 contoured at 45
dBZ at every 30 minutes starting at 2230 UTC. Mesocyclone tracks for the two
mesocyclones that achieved the southernmost location are in black. County lines
are in gray. (b) Same as (a) but for urban simulation x327.y156. (c), (d) Same
as (a) and (b) but for 2–5-km UH contoured at 500 m2 s−2.

CTRLE for the SW (Fig. 4.16b) and E (Fig. 4.16c) groups. Members in the

SE group (Fig. 4.16d). have significantly cooler RFDs with Tmin ≥ 1 oC cooler

than the CTRLE group. Near-surface wind speeds in the vicinity of the storm

are generally higher than CTRLE when the storm passes south of the city (Fig.

4.16e), however in groups SW (Fig. 4.16f) and E (Fig. 4.16g) the urban-induced
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Figure 4.16: Same as Fig. 4.13 but for (a)–(d) difference in time-composite min-
imum near-surface temperature (Tmin; oC), (e)–(h) difference in time-composite
maximum near-surface wind speed (WSmax; m s−1), and (i)–(l) total accumu-
lated rainfall (mm).

friction negates these effects over some portions of the storm track. This is not

the case, though, for the SE group (Fig. 4.16h) which experiences stronger near-

surface winds over the entire storm track, even when it approaches the urban

area, though this increase is only significant in isolated locations. All urban

simulations have areas of significant increase in precipitation (Fig. 4.16i–l) par-

ticularly near the beginning and end of the storm track. The SW group also has

a large region of significantly less precipitation near the midpoint of the storm’s

tracks (Fig. 4.16).

Evaluating mesocyclone characteristics as a function of time provides insight

about timing and strength differences regardless of location within the domain.
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Cumulative differences in mesocyclone-average 2–5-km UH of the 4 groups from

CTRLE (Fig. 4.17a) supports the observation from Fig. 4.13a–d that the all

urban runs have generally higher 2–5-km UH than CTRLE, particularly for the

southern-most mesocyclone (which forms around 0025 UTC; Fig. 4.4e) and

for the SE group. This difference is particularly evident in the peak for the

SW, E, and SE groups from 0000–0100 UTC, which is strongest for the SE

group. However, while the SW, E, and SE groups’ mesocyclones are weakening

in comparison to CTRLE near the end of the simulation (∼ 0200 UTC), those in

the N group begin to strengthen. Though they are in line with earlier analyses,

these modifications to mid-level mesocyclone strength are small (∼ 2 − 3%)

compared to mesocyclone strength in CTRLE. Low-level mesocyclone strength

(Fig. 4.17b) and near-surface vertical vorticity (Fig. 4.17c) for the N group

follow a similar strengthening trend near the end of the simulation, accumulating

approximately 30% more 0–1 UH than the CTRLE group by the end of the

simulation. Although not categorized by a strong CTRLE-relative strengthening

trend near the end of the simulation, the E and SE simulations end with ∼ 20%

Figure 4.17: Cumulative CTRLE group average (black) and accumulated differ-
ence from CTRLE of N (yellow), SW (blue), E (red), and SE (green) groups of
mesocyclone-average (a) 2–5-km UH, (b) 0–1-km UH, and (c) first-model-level
ζ as a function of time.
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more accumulated 0–1-km UH and ∼ 10% greater accumulated near-surface

vertical vorticity, with these accumulated differences acquired steadily over the

entire lifetime of the storm. Across these measures of storm strength, the SW

group generally has the weakest mid- and low-level mesocyclone strength, and

correspondingly weak near-surface vorticity, particularly from 2200–0000 UTC,

trends that are not apparent from Fig. 4.13.

4.2.4 Storm inflow differences

To diagnose possible inflow differences among the groups that may result in the

storm modifications discussed in the previous section, we analyze meridional av-

erages of inflow characteristics as a function of time and longitude, computed

over box I in Fig. 4.7 (Fig. 4.18 and 4.19). The western (eastern) half of

the inflow region is warmer (Fig. 4.18a–d) and drier (Fig. 4.18e–h) than in

CTRLE before the storm passes due to the presence of the city in the south-

western (eastern and southeastern) portion of the domain. These warm and dry

conditions result in higher LCL heights (Fig. 4.18i–l) and lower CAPE (Fig.

4.18m–p) near the city location, but these differences are generally neutralized

as the storm approaches. Air behind the CTRL track is also cooler for the SW,

E, and SE groups (Fig. 4.18b–d) because of the more southerly track of the

mesocyclone in these groups.

Winds are generally slower in the inflow region when the city is south or

east of the storm (Fig.4.19a–d). In agreement with the wind direction changes

north of the city prior to storm formation (Fig. 4.7d), inflow-region, near-surface

winds are generally veered when the city is to the east (Fig. 4.19g) or southeast

(Fig. 4.19h) of the storm, but backed when the city is to the southwest (Fig.

4.19f) of the supercell. This is particularly evident during the latter half of

the mesocyclone track for the SW group (Fig. 4.19h). These near-surface wind
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Figure 4.18: (a) Hovmöller diagram of meridionally-averaged first-model-layer
differences in group N T (oC) from CTRLE computed over box I (Fig. 4.13e–
h), with time (UTC) on the ordinate and longitude (degrees) on the abscissa.
The thick black line represents the southern-most CTRL storm mesocyclone
track in longitude-time space. (b)–(d) Same as (a) but for groups SW, E, and
SE, respectively. (e)–(h) Same as (a)–(d) but for differences in first-model-level
water vapor mixing ratio (q; g kg−1). (i)–(l) Same as (a)–(d) but for differences
in LCL height (m). (m)–(p) Same as (a)–(d) but for differences in CAPE (J
kg−1).

vector modifications result in higher inflow 0–1-km SRH (Fig. 4.19i–l), 0–500-m

bulk shear (Fig. 4.19m–p), and first-model-level streamwise vorticity (ζsw; Fig.

4.19q–s).
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Figure 4.19: Same as Fig. 4.18 but for differences in (a)–(d) first-model-level
WS (m s−1); (e)–(h) first-model-level wind direction (θ; degrees); (i)–(l) 0–1-km
SRH (m2 s−1); (m)–(p) 0–500-m bulk shear (m s−1); and (q)–(t) first-model-level
streamwise vorticity (ζsw; s−1).

4.3 Summary and conclusions

In this study, we used the WRF to analyze the effect of a large southern Plains

urban area (DFW) on an isolated supercell. To investigate how urban-storm
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interactions change with varying city-relative storm tracks, DFW was placed in

108 systematically-chosen locations, resulting in 108 unique simulations. Hierar-

chical clustering analysis was used to determine which simulation members were

most similar to each other, providing groups of simulations which were compared

to each other.

HCA analyses indicated that 2–5-km updraft helicity, which indicates mid-

level updraft strength, and storm-total rainfall were not statistically dependent

upon city location. The latter finding stands in contrast to observational and

modeling studies that have found increased rainfall in the vicinity of urban areas

under synoptically benign conditions (e.g., Shepherd et al. 2010b; Li et al. 2011;

Niyogi et al. 2011), but is in agreement with those that have considered strongly-

forced precipitation events (e.g., Yang et al. 2014a). However, HCA of 0–1-km

UH, near-surface wind speed, and near-surface temperature showed that lower-

level storm characteristics vary with changing city location. Simulations with

city locations of similar east-west location generally were more alike than those

with similar north-south locations. This order of similarity suggest that low-

level supercell characteristics are most sensitive to the north-south location of a

city relative to the storm path.

First-order urban effects were clear during the lifetime of the storm in fields

of group-mean differences from CTRLE. Results indicated warmer and drier air

near the surface over and downwind of the general urban area in each group,

and slower near-surface wind speeds in the vicinity of the city. In the SW and

E groups, the latter effect also appeared to result in weaker storm-induced wind

speeds when the storm traversed the city, though these deviations from the non-

urban simulations were not significant.

Indicators of storm strength and evolution were also modulated by the city.

Total accumulated rainfall generally increased across all urban simulations, re-
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gardless of city location. However, no discernible pattern differences in precip-

itation changes were evident, echoing the failure of HCA to group simulation

rainfall by geographic location of the city relative to the storm. Storm meso-

cyclones tracks differed significantly from those of the non-urban simulations,

tracking further south in simulations where the storm moved over and/or north

of the city, especially in the second half of the storm’s lifetime. However, this

southward deviation was not necessarily accompanied by a stronger mesocy-

clone, with large swaths of significantly-increased maximum mid-level UH only

observed in simulations where the storm interacted with the city late in its life

cycle. Low-level updraft strength was also higher in these groups, as well as

those simulations with the city to the north of the storm track, though there

were few clear spatial differences among these groups.

Time series analyses suggested that mesocyclones of these simulations with

city locations to the north, southeast, and east of the storm track also accumu-

lated ∼ 15% more 0–1-km UH than CTRLE by the end of the CTRL supercell’s

lifetime. While differences between simulations with city locations south and

east of the storm stopped accumulating additional 0–1-km UH after this time,

those with cities to the north of the main supercell storm continued to accumu-

late more 0–1-UH after ∼ 0200 UTC, and ended with ∼ 30% more accumulated

0–1-km UH. Given that the main supercell in CTRL has nearly dissipated by

0200 UTC, this increase in mesocyclone strength at the end of the simulation

is likely associated with the significant increase in mesocyclone tracks east of

the eastern-most CTRL track (Fig. 4.7). Accumulated near-surface vertical

vorticity in these simulations where the storm tracks south of the city, as well

as in those where the storm tracked to the north of the city late in its lifetime,

followed a similar increasing trend near the end of the simulation, resulting in

∼ 10% more total accumulated vorticity than in CTRLE. Contrary to these
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results, simulations where the supercell tracked north of or over the city early in

its lifetime had the smallest increase in mid- and low-level mesocyclone strength,

and had weaker near-surface rotation, compared to CTRLE.

Analyses of atmospheric properties in the storm’s inflow region indicated

warmer, slower near-surface inflow for simulations with city locations to the

south of the storm track. The inflow is also more sheared in the lowest 1 km

AGL for these simulations. In simulations with the city in the eastern and south-

eastern portion of the domain, inflow was also more backed, and had stronger

stream-wise vorticity, compared to CTRLE, particularly near the end of the

storm track. Although these inflow differences are not robust enough to make

direct connections between inflow properties and storm strength, they make a

case that warmer, more sheared inflow induced by the city modifies storm-scale

strength and processes when the storm tracks north of the city. Further work

could involve parcel trajectory analyses to determine exactly how the storm’s

inflow is modified by the urban area.

Previous studies that evaluate the effect of urban areas on precipitation pat-

terns show that, while the UHI increases precipitation downwind of cities, in-

creased urban surface roughness causes precipitation to bifurcate around the

city. In other words, both thermal and roughness properties of the urban are

are important in modifying convection. The present work does not evaluate

these effects separately, therefore we cannot determine exactly which aspects of

the urban area are causing storm modifications. Future work will involve a fac-

tor separation approach to address this question. Additional work should also

include analyses of the affect of urban aerosols on simulated storms, as studies

have proposed that urban aerosols can modulate storm microphysical properties,

of which one consequence may be the induction of lightning maxima over and

downwind of cities (e.g., Orville et al. 2001; Rose et al. 2008; Kar et al. 2009;
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Coquillat et al. 2013; Tan et al. 2016; Kawecki et al. 2016).
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Chapter 5

Factor Separation Analysis

The previous chapter indicated that the presence of the city in the vicinity

of the supercell changed the storm’s strength and evolution, and that these

modifications varied based on the city’s location relative to the storm path.

Storm inflow analyses suggested that the city resulted in a warmer, more sheared

inflow when the city was south of the storm, and storms in these simulations

had the strongest low-level mesocyclones. However, the simulation configuration

in the previous chapter was not designed to determine which of these urban

effects (i.e., thermodynamic vs. shear-induced) made the largest impact on the

supercell. To investigate this, the present chapter will use a factor separation

approach, whereby simulations of the same supercell as in Chapter 4 are run

with only roughness aspects of the urban area parameterized, and an equal

number of simulations with only thermodynamic properties of the city included,

and the results from these various simulations will be compared. For these

simulations, four city locations have been chosen from both the SW and E groups

(so 8 unique city locations in total) that were used for analyses in the previous

chapter. The analyses discussed here will show that urban surface roughness, and

interactions between urban surface roughness and thermodynamic properties,

play an important role in modifying storm strength and evolution. Also, it will

be shown that the individual contributions of the various factors change based

on when the storm interacts with the city, hence attribution of storm changes
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to the various factors is complicated.

5.1 Simulation configuration

Model configuration (i.e., domain locations, parametrization choices, etc.) is

identical to that used in Chapter 4 (Fig. 5.1a). A total of 34 simulations are

Figure 5.1: (a) Domain locations used for all simulations in Chapter 5. The
plotted area is encompassed by d01, and the red and black boxes indicate d02
and d03, respectively. Terrain height is shaded, and state boundaries are in gray.
These domain locations are the same as those in Chapter 4. (b) Location of the
8 simulation urban locations (red dots), plotted according to the center of urban
fraction mass for each simulation in d03. Oklahoma county lines are in black.
(c) Shaded urban land use data for run x182.y256, whose center of mass location
(red dot) corresponds to the dashed lines and labels in (b). (d) Same as (c) but
for urban fraction.
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performed (Table 5.1) with 9 different land use patterns: 10 simulations without

any urban areas (CTRLE; same as in Chapter 4), 12 with the LU pattern of

DFW located in 4 unique locations in the west-central portion of d03 (West), and

12 additional simulations with DFW in 4 different locations in the east-central

portion of d03 (East).

Table 5.1: Names and descriptions of the simulations used in Chapter 5.

Name # Members Land Use Urban Parameterization

CTRLE 10 Grassland Only N/A

WestF 4
West-central
city locations

Full
WestT 4 Thermodynamic only
WestR 4 Roughness only

EastF 4
East-central
city locations

Full
EastT 4 Thermodynamic only
EastR 4 Roughness only

For each West and East simulation, three-category urban land use (Fig. 5.1c)

and urban fraction (Fig. 5.1d) of DFW, as described in Section 2.1 and used in

Chapter 4, are used to represent the various urban areas, while all other areas

in d03 remain grassland as in the CTRLE simulations. This land use modifica-

tion process follows that of Chapters 3 and 4. The 8 urban areas were selected

from two separate groups chosen from heirarchical clustering analysis (HCA;

Anderberg 1973; Alhamed et al. 2002) in Chapter 4 (4 from each of groups 3

and 8). These groups were chosen as they represent urban-storm interactions

during the early (SW) and late (E) stages of the storm’s life cycle, and because

urban differences from CTRLE were quite different for the two groups. For each

DFW land use pattern, 3 simulations are performed with the urban areas pa-

rameterized using: the full suite of urban land surface differences from natural

vegetation (WestF, EastF); surface roughness only (WestR, EastR); and thermo-
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dynamic characteristics only (WestT, EastT). These simulations facilitate the

factor separation approach that is the focus of this study.

5.2 Results

5.2.1 Pre-storm Urban Effects

To ensure that the urban-atmosphere interactions are being reasonably simu-

lated, and to frame future discussions of urban effects on a simulated supercell,

we will first analyze differences of the West simulations from CTRLE prior to

storm formation (2030−2130 UTC). Though they won’t be explicitly presented,

the differences from CTRLE of East are similar to those discussed here for West

but displaced to the east.

Increased surface roughness in WestR resulted in 1− 2 m s−2 (∼ 20− 40%)

slower wind speeds over and downwind of the city (Fig. 5.2a) compared to

CTRLE, while WestT simulations had slightly stronger winds (∼ 0.5 m s −1,

or ∼ 5%) in the urban area (Fig. 5.2b), likely a result of increased turbulence

caused by warmer near-surface temperatures (Fig. 5.3b). However, the dif-

ferences in WestR are much greater in magnitude than those in WestT, and

interactions between the two also result in slightly slower wind speeds (Fig.

5.2c), thus effects of surface friction dominate wind speed differences in WestF

(Fig. 5.2d). Coherent differences in wind direction directly over the city are not

present in any West group (Fig. 5.2e–h), though all but the contribution of the

interactions term (Fig. 5.2g) have veering winds downstream of the western edge

of the city and backed winds downstream of the city’s eastern edge compared

to CTRLE. Generally, areas with weaker winds have higher 0–1-km SRH (Fig.

5.2i–l), resulting in ∼ 40− 50 m2 s−2 (∼ 40− 50%) more 0–1-km SRH over the

city in WestR and WestF.
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Figure 5.2: (a)–(d) Color-filled contours of the 2030-2130 UTC average difference
from CTRL of first model-level wind speed (WSavg;m s−1), simulations WestR,
WestT, WestINT (i.e. the interactions contribution), and WestF, respectively.
Oklahoma counties are outlined in black. (e)–(h) Same as (a)–(d) but for first-
model-level wind direction (WS; degrees). (i)–(l) Same as (a)–(d) but for 0–1-km
SRH (m2 s−2).

While surface roughness effects appear to dominate wind-related differences,

thermal properties of the urban surface clearly are the main driver for thermo-

dynamic differences from CTRLE (Fig. 5.3). As parameterized by the LSM

(Table 2.3), increased stomatal resistance, along with lower surface emissivity

and albedo in the urban area result in warmer, drier near-surface air over and

downwind of the urban area in WestT (Fig. 5.3b,f), and these differences are

dominant in WestF as well (Fig. 5.3d,h). As warming and drying air near the

surface tends to raise the LCL, CAPE also decreases by ∼ 200 − 300 J kg−1
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Figure 5.3: Same as Fig. 5.2, but for (a)–(d) first-model-level temperature (Tavg;
oC), (e)–(f) first-model-level water vapor mixing ratio (qavg; g kg−1), and (h)–(k)
CAPE (J kg−1).

(∼ 5− 10%) over and downstream of the urban area in WestT and WestF (Fig.

5.3,j,l). The interactions term does not contribute to the differences in WestF

in a coherent manner for any of these thermal properties (Fig. 5.3c,g,j).

Stronger winds (Fig. 5.2a) and lower 0–1-km SRH (Fig. 5.2i) in the vicinity

of the surface stationary front in WestR suggest that the presence of the city as

a roughness element resulted in the stationary front being slightly further north.

Opposite changes for WestT (Fig. 5.2b,j) indicates that the front was slightly

further south in these simulations. These observations about the location of

the front are supported by slightly warmer temperatures in the general frontal

location in WestR (Fig. 5.3b).
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Wind speed modifications on the order simulated here have been observed

in previous studies (e.g., Hu et al. 2016, RS17b). Additionally, the simulation

of a warm, dry urban area is consistent with theory for and observations of the

results from replacing natural vegetation with man-made surfaces (e.g., Barlow

2014). Given that our results generally agree with theory and observations, we

are confident that the simulated urban-atmosphere interactions presented here

are reasonable.

5.2.2 Factor separation results

Factor separation variables are computed for each of the 8 urban locations ac-

cording to the procedure described in Section 2.8. Surface roughness in WestR

results in a significant southerly shift in storm-total rainfall (Fig. 5.4b). Approx-

imately 25–45 mm more rain falls south of the main CTRLE maximum in pre-

cipitation (Fig. 5.4a), but similarly less rain falls in the vicinity of the CTRLE

maximum. Although thermal properties (WestT) of the western urban areas

don’t result in any significant rainfall differences (Fig. 5.4c), large-magnitude

interactions between thermal and roughness properties (Fig. 5.4) are frequently

of opposite sign of the changes caused by surface roughness. These effects com-

bine in the full-physics urban parameterization (WestF; Fig. 5.4e), resulting

in few significant rainfall deviations from CTRLE. For East simulations, only

spotty differences exist (Fig. 5.4f–i), suggesting that urban interactions late in

the storm life cycle don’t significantly modify rainfall patterns.

WestR simulations have a large area of significantly stronger updraft veloc-

ities (Wmax; Fig. 5.5b) south of the swath of increased rainfall (Fig. 5.4b).

Much of this region, particularly that with significant increases, falls south of

the highest CTRLE updraft velocities (Fig. 5.5a). Unlike with the region of

greater rainfall, the region of stronger vertical motions in WestR is not accom-
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Figure 5.4: l(a) Color-filled contours of CTRLE-averaged storm-total rainfall
(mm) (b)–(e) Color-filled contours of differences from CTRLE in storm-total
accumulated rainfall (mm) for simulations WestR, WestT, WestINT (i.e. the
interactions contribution), and WestF, in that order. (f)–(l) Same as (b)–(e)
but for EastR, EastT, EastINT, and EastF, in that order.

panied by an additional nearby area of equally slower updraft speeds. Hence,

this does not appear to be a simple southward change in storm track. A small

area of significantly stronger vertical velocities is present in EastR (Fig. 5.5f),

but it is not as large, or displaced as far south from the CTRLE maximum, as

in WestR. As with rainfall changes, few significant updraft strength differences

results from the thermal aspects of the urban area (Fig. 5.5c,g), though there

are a few locations of stronger vertical motion near the end of the storm track

when the city is in the eastern portion of the domain (Fig. 5.5g). Although the

contribution to vertical velocity changes by interactions between surface rough-

ness and thermodynamic properties (Fig. 5.5d,h) are generally opposite in sign
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Figure 5.5: Same as Fig. 5.4 but for time-composite maximum updraft speed
(wmax; m2 s−1).

to the two contributions individually, as they were for modifications in rainfall,

they only mask these signals in West simulations (Fig. 5.5e), but not in East

members (Fig. 5.5i). Thus, though the roughness contribution to changes in

vertical motion is much larger, and over a broader area, in the WestR simula-

tions than in EastR, interactions between the two processes obscure this change

in WestF. All of the spatial patterns associated with vertical velocity are echoed

in those of time composite 2–5-km UH (Fig. 5.6), reinforcing that faster (slower)

updraft velocities are associated with a stronger (weaker) mid-level mesocyclone.

Slower maximum near-surface wind speeds (WSmax) due to surface roughness

are the most obvious feature in the spatial distribution of maximum wind speed

in WestR and EastR (Fig. 5.7b,f). Surface roughness does not appear to affect

the winds associated with the storm’s rear flank downdraft (RFD), which are
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Figure 5.6: Same as Fig. 5.4 but for time-composite maximum 2–5-km UH (m2

S−2).

the strongest winds produced by the storm (Fig. 5.7a), though the forward flank

downdraft (FFD) winds are significantly slower in WestR (Fig. 5.7b). Few large

areas of enhanced wind speeds near the storm exist in any of the factor plots

(Fig. 5.7b–d,f–h), though in EastF the three components combine to result in

generally increased wind speeds in the RFD region in the first half ot the storm’s

lifecycle (Fig. 5.7i), particularly just before it reaches the western edge of the

urban area. This is not the case in WestF (Fig. 5.7e) as the storm is interacting

with the city over nearly its entire lifetime and the differences are dominated by

those caused by roughness (WestR; Fig. 5.7b).

Near-surface minimum temperature (Tmin) generally decreases due to surface

roughness (Fig. 5.8b,f), particularly for WestR (Fig. 5.8b). Similar to the

pattern of differences of Wmax (Fig. 5.5) and 2–5-km UHmax (Fig. 5.6), this
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Figure 5.7: Same as Fig. 5.4 but for time-composite maximum first-model-level
wind speed (WSmax; m s−1).

area of colder temperatures is generally south of the coldest temperatures in

the CTRLE run. Urban-induced warming near the surface is clear in both

WestT (Fig. 5.8c) and EastT (Fig. 5.8g). Though this warm area is apparently

negated by the storm passing over the urban area later in the storm’s lifetime

in EastT, air is much warmer near the surface near the beginning of the storm

track in WestT. Although factor interactions result in large magnitude changes

in Tmin (Fig. 5.8d,h), none of these differences from CTRLE are significant. The

resulting Tmin field in the full-physics simulations (Fig. 5.8e,i) shows generally

cooler temperatures near the latter part of the storm track, particularly in EastF

(Fig. 5.8i), where all three factors are of the same relative sign (cooler than

CTRLE) in this area.. However, the significant cooling south of the CTRLE
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Figure 5.8: Same as Fig. 5.4 but for time-composite minimum first-model-level
temperature (Tmin; oC).

track present in WestR (Fig. 5.8b) is not clear in WestF due to the warmer Tmin

caused by the thermal and interaction terms.

To evaluate storm characteristics regardless of location, we can examine time

series of accumulated variables related to mesocyclone strength and storm evo-

lution. Although spatial analysis of 2–5-km UHmax (Fig. 5.6) and Wmax (Fig.

5.5) suggested regions of increased mesocyclone strength, time series analyses

of difference from CTRLE in group-averaged, mesocyclone-averaged 2–5-km UH

indicate minimal deviations of all urban simulations from CTRLE (Fig. 5.9a,e),

except near the very end of the storm’s lifetime. However, large differences

are present in a similar analysis of 0–1-km UH (Fig. 5.9b,f). While surface

roughness and thermal properties of the urban area alone generally have little

affect on 0–1-km UH in West, the interaction of the two results in a weaker
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Figure 5.9: Cumulative CTRLE group average (black) and accumulated dif-
ference from CTRLE of WestR (red), WestT (yellow), WestINT (pink), and
WestF(blue) simulations of mesocyclone-averaged (a) 2–5-km UH, (b) 0–1-km
UH, (c) column-maximum updrat speed, and (d) first-model-level ζ as a function
of time. (e)–(f) Same as (a)–(d) but for EastR (green), EastT (yellow-green),
EastINTER (purple), and EastF (light blue).

low-level meoscyclone, particularly in the early stages of the storm’s lifetime,

and these interactions dominate the time series for the full-physics simulation.

The result is WestF mesocyclones averaging ∼ 20% less 0–1-km UH by the end

of the storm’s life. The interactions term also dominates the increased 0–1-km

UH in East early in its lifetime (Fig. 5.9f), however the thermal and roughness

contributions generally are generally positive as well. As the storm approaches

the center of eastern city locations, the thermal and roughness contributions

increase, most notably the roughness contribution after ∼ 0200 UTC. Together,

these factors result in EastF having ∼ 33% more 0–1-km UH than CTRLE.

The contributions of the various factors to the total full-physics simulation of

mesocyclone-averaged w at 1 km AGL ()w1km; Fig. 5.9c,g) and first-model-level

vertical vorticity (ζmax; Fig. 5.9d,h) are generally vary similar to those of 0–1-
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km UH. Particularly important in these results is that, in addition to the 40%

increase in 0–1-km UH, W1km and first-model-level vertical vorticity increased

by approximately 40% and 30%, respectively, for the full-physics simulations

with the urban area on the eastern side of the domain.

5.3 Discussion and Conclusions

This study used the WRF to evaluate the individual contributions of urban

surface roughness and thermodynamic characteristics to the modifications of a

supercell caused by the Dallas-Ft. Worth metropolitan area. A total of 34 unique

simulations were used for this analysis. Of these, 10 were CTRL simulations

(CTRLE) with no urban areas, and grassland throughout the smallest domain.

Additionally, the land use of DFW was inserted in to this domain in 8 unique

locations, and 3 simulations performed for each unique city location: full urban

physics, urban roughness effects only, and urban thermodynamic effects only .

Thus a total of 24 simulations with urban areas were used. Following the work

of Stein and Alpert (1993), and using these simulations, we carried out a factor

separation analysis to determine which properties of the urban area result in the

greatest differences from the non-urban CTRLE simulations.

Urban effects on the pre-storm environment were generally as expected based

on theory. When the urban area was parameterized only as an area with in-

creased surface roughness, winds near the surface were ∼ 15− 20% lower in the

urban simulations. Additionally, parameterizing the urban area only with ther-

mal differences results in near-surface ∼ 1 oC warming and ∼ 0.5 g kg−1 lower

water vapor mixing ratio over and downwind of the urban area. Beyond these

obvious effects, surface roughness also contributed to some slight cooling near the

surface, perhaps due to increased turbulent mixing and thus greater downward
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turbulent transport of cooler air. Furthermore, thermodynamic effects lead to

patchy, small magnitude increases in wind speed over the urban area, likely due

to increased downward turbulent transport of higher momentum (Wang et al.

2007; Hu et al. 2013). However, these changes were quite small in comparison

to those induced by urban surface roughness. This result suggests that surface

roughness is the dominant factor in controlling near-surface wind speeds in the

urban area in these simulations, a finding that agrees with observations of Hu

et al. (2016) and those presented in Chapter 3.

The most significant contributor to differences from CTRLE in the spa-

tial distribution of storm characteristics was surface roughness in simulations

with DFW in the western locations. In these WestR simulations, rainfall and

maximum updraft speed increased and minimum near-surface temperatures de-

creased to the south of the southernmost CTRL storm track, but cumulative

mesocyclone-averaged vertical wind speed is relatively unchanged. These find-

ings indicate that the mid-level mesocyclone of the southern storm, and the

attendant RFD, moved further south in the WestR simulations, though meso-

cyclone strength remained relatively unchanged. This southward deviation is

not apparent in the full-physics urban simulations typically because the con-

tributions of the interaction term (or those of thermodynamics in the case of

minimum near-surface temperatures) are frequently of the same magnitude, but

of opposite sign, in corresponding location. The result is that few spatial charac-

teristics of storm strength and evolution are significantly different from CTRLE

in simulations where the storm interacts with the urban area earlier in its life-

time. Contrary to this result for WestF, few individual factor contributions to

spatial differences in simulations with eastern-located urban areas (East) are

large or significant individually. However, the contributions of thermal, rough-

ness, and interactions between the two are generally the same sign in similar
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locations, resulting in full-physics simulations with spatial fields that vary sig-

nificantly from CTRLE. The summation of these three factors provides EastF

simulations that, similar to WestR, depict southward movement of the south-

ernmost mesocyclone. Additionally, low-level mesocylone and near-surface cir-

culation are generally higher (∼ 30−40% accumulated) in the EastF simulation

compared to CTRLE, with the interactions term contributing the most to this

difference, though roughness and thermodynamic properties generally bolster

these changes.

One of the most important finding from these results is that increased shear

as induced by the urban area can have a noticeable effect on supercell evolution

and dynamics. While low-level shear has certainly been a focus for investigations

of supercellular dynamics over the past decade (e.g., Esterheld and Giuliano

2008; Togstad et al. 2011; Nowotarski and Jensen 2013; Markowski et al. 2012;

Markowski and Richardson 2014), is it typically only a secondary focal point for

urban studies as most research focuses on UHI effects. Additionally, modeling

studies involving the urban area frequently neglect to analyze the accuracy of

wind speed predictions, often because their study periods feature synoptically-

weak regimes (i.e., ideal conditions for heat waves). Given that the results

presented in this study suggest that supercell modifications by frictionally slowed

wind speeds in the urban area can be important, future urban research should

focus both on properly reproducing urban winds in numerical simulations, as well

as the mechanisms by which these changes can effect supercellular evolution.

Regardless of city location, the contribution of interactions between ther-

modynamic and roughness characteristics of the urban area to differences be-

tween urban and non-urban simulations is frequently of similar magnitude (if

not larger) than the individual contributions of either effect. However, the con-

tribution of these interactions to pre-storm differences in the urban area was
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not large, making interpretations of this result difficult and inconclusive. To

elucidate the processes by which these complicated interactions modify storm

dynamics, future work could involve performing factor separation simulations

for all 108 simulations and running the hierarchical clustering algorithm on the

thermodynamic and roughness runs separately. If these simulations group dif-

ferently than the full-physics runs, this could make clearer the mechanisms of

storm modification by the various factors.
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Chapter 6

Summary

The analyses presented here used the ARW-WRF to determine the most appro-

priate urban parameterization for a Great Plains supercell simulation, and then

analyze the effects of an urban area, parameterized using the chosen scheme,

on the strength and evolution of a supercell. These analyses were based on the

novel approach of using hierarchical clustering (HCA) on supercell simulations

with cities placed in various locations to create natural groupings of similar

simulations. The HCA clusters guided the intercomparison of groups of urban

simulations with cities in proximal locations. A unique application of the factor

separation procedure was also used to determine which aspects of the urban en-

vironment had the greatest effect on supercell strength and evolution. The most

important conclusions from these investigations were:

• The modified Noah land surface model provides the most accu-

rate representation of urban-atmosphere interactions for a city

typical of the Great Plains. The oft-used SLUCM reproduces a more

appropriate nocturnal UHI, when the UHI is strongest. However, by late-

afternoon (the time period of most interest for a severe weather simula-

tion), both the SLUCM and the Noah LSM produce similar UHIs. The

most significant difference between the two is that the Noah LSM signif-

icantly outperforms the SLUCM in simulating appropriately-slow urban

wind speeds. SLUCM winds were faster in urban areas than over rural
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land. As near-surface winds can play an important role in supercell dy-

namics, it is important that the chosen urban parameterization properly

reproduce of slower wind speeds in the urban area. Hence, a modified

version of the Noah LSM bulk urban scheme was chosen for use in the

subsequent simulations.

• Low-level storm properties are more dependent on city location

than measures of mid-level storm strength. Hierarchical clustering

analysis of full-physics urban simulations indicated that simulations with

proximal city locations produce storms with similar low-level evolution,

such as 0–1-km updraft helicity and near-surface temperature. Similar

geographical clusters were not produced for variables such as storm-total

rainfall and 2–5-km updraft helicity. This does not mean that the city had

no effect on the storm’s mid-level structure, but that city location was not

the primary cause of urban-induced differences in the full-physics runs.

• In full-physics urban simulations, storm interactions when the

urban area was generally south of the storm track, and the in-

teraction occurred early in the storm’s lifetime, resulted in min-

imal differences in low-level storm strength. Low-level mesocyclone

strength in simulations with the urban area south of the track and in the

western half of the domain (resulting in early-lifetime, longterm interac-

tions) differed little from that of the non-urban simulations for most of its

lifetime, and the near-surface vertical vorticity in these simulations was

upwards of 10% less than in non-urban simulations midway through the

simulation.

• When the full-physics city was in non-southwesterly locations

within the domain, low-level mesocyclone strength and near-
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surface vertical vorticity were consistently higher than in non-

urban simulations. In particular, simulations where the city was ei-

ther north of the storm or when the storm passed north of the city late

in its lifetime accumulated ∼ 20 − 30% more 0–1-km updraft helicity

and ∼ 10% more near-surface rotation. Though mid-level mesocyclone

strength changed very little for any of these simulations, the mesocyclone

(and its attendant RFD) took a more significantly more southerly track

during the second half of the storm life cycle for those simulations in which

the city was in the eastern half of the domain.

• Urban surface roughness and the interactions between urban

thermal and surface roughness properties properties are signifi-

cant contributors to urban storm modification. Most investigations

of near-surface urban properties and urban-storm interactions focus on

the impact of the UHI, but the results presented here argue for a greater

focus on the implications of urban surface roughness. Unlike in the full-

physics simulations, those simulations with the city parameterized only as

a roughness element, and with a long urban-storm interaction, resulted

in the largest differences from non-urban simulations of any of the fac-

tor separation analyses. The mid-level mesocyclone traveled further south

in the second half of the storm’s lifetime, as did the attendant low-level

mesocyclone and rear-flank downdraft, although low-level storm strength

generally decreased. Even for those simulations where the storm interacted

with the urban area later, and for a less protracted time, surface roughness

provided large contributions, most notably for mesocyclone strength.

While HCA has been used previously for attribution of variations in synoptic

and mesoscale fields to various factors, this is the first time it has been used to
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analyze storm-scale modifications. Given their large scale of motion, synoptic

and mesoscale phenomena are generally more predictable than severe storms,

thus few simulations are required to prove attribution of large-scale field vari-

ations to modifications in boundary conditions and parameterization options.

However, to perform attribution of small-scale effects to various factors in a real

data simulation, a large number of simulations are required to ensure that the

simulated changes are significant. The general hindrance to such an analysis is

the significant computational requirement. However, as computational power

continues to improve, such barriers are removed. Given the successful use of

HCA in the present work, future investigations of cause-and-effect relationships

in small-scale phenomena are encouraged to use such a technique. For example,

some recent research (e.g., Bosart et al. 2006; Markowski and Dotzek 2011) has

investigated the effect of complex terrain on tornadogenesis and tornado main-

tenance, with the results suggesting that terrain effects are quite complex. Such

a problem could be further investigated by performing HCA on a large number

of fine-grid simulations. These kinds of investigations are also pertinent to the

Warn-on-Forecast (Stensrud et al. 2009) effort as correctly predicting fine-scale

interactions could prove critical to forecasting a storm’s severe potential.

In comparison to studies on the effects of the urban area on weakly-forced

convection (i.e., Bornstein and Lin 2000; Shepherd et al. 2002, 2010a; Niyogi et al.

2011), precipitation patterns in the simulations presented in this dissertation

were not well-correlated with urban location, as suggested by the highly varied

HCA group city locations. This finding does agree, though, with those of studies

that consider convective systems in synoptically active regimes that negligible

large scale differences are found to be associated with the presence of urban areas

(Yang et al. 2014a; Yeung et al. 2015; Ryu et al. 2016). Combined with these

previous findings, the results presented here suggest that organized convective
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processes are less susceptible, on a large scale, to the effects of urban areas,

but that storm-scale deviations (e.g., mesocyclone strength and track) can be

modified by a large urban area.

Chapter 3 provided evidence that the simulation configuration used here pro-

duced realistic near-surface urban effects that compared well to observations. It

is also important that these simulations produce realistic properties over the

entire boundary layer. However, the analyses of boundary layer properties pre-

sented here were not compared to observations as no such observational data

exist. Field studies that collect data over the entire PBL across an urban area

could provide a comparison point, hence campaigns of this sort would prove

useful. These observations could also be supported by large eddy simulations

(LESs) to improve understanding of the evolution of boundary layer properties

over an urban area.

Comparing the results presented here to LES simulations and observations

should help determine how much effect the horizontal grid scale (500 m) used

in these simulations may have on the results presented here. Wyngaard (2004)

first noted that when model horizontal scale, ∆x, approaches the scale of tur-

bulent eddies, ` (i.e., `/∆x ∼ 1), the horizontal grid size is too small to meet the

assumptions implicit in Reynolds-averaged Navier-Stokes modeling (i.e., the as-

sumption that turbulent quantities are horizontally homogeneous across the grid

cell), but too large to explicitly resolve individual eddies (as in LES simulations).

He termed this horizontal scale the ”terra incognita”. At these scales, PBL pa-

rameterizations produced ensemble-mean fluxes by subgrid-scale motions that

theoretically should include scales on the same order as grid-scale circulations.

The outcome is the production of modeled fields in the convective boundary

layer whose horizontal scale, growth rate, and peak intensity are dependent on

both horizontal grid size and PBL scheme choice. The horizontal grid cell, 500
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m, used in the simulations presented here falls squarely within the ”terra ingo-

nita”, hence there may be grid-cell dependent circulations present in some of the

simulations. However, the non-local YSU scheme was used here, in part because

it has been shown to perform well in severe weather environments (Coniglio et al.

2013; Clark et al. 2015), but also because it generally suppresses spurious turbu-

lent circulations at ”terra incognita” scales (Ching et al. 2014). Hence, though

extraneous, grid-cell dependent circulations may be produced by the simula-

tions presented here, use of the YSU PBL scheme should minimize their effect.

If simulated PBL properties presented here agree with those of LES simulations

and observations, this would further increase confidence in the realism of the

urban-storm interactions simulated here.

The ultimate goal of this line of research is to provide guidance for city plan-

ning. Currently, the only way to reduce loss of life from severe storms is to

encourage proper sheltering procedures, while property losses are unavoidable.

However, if research can suggest that storm modification is possible with urban

planning procedures, strategies to minimize loss of life and property could be-

come more varied and perhaps effective as it would remove the unpredictable

element of personal sheltering choices. While the research presented in this

dissertation is only a very preliminary step along this path, hopefully it will

encourage more research in this area.

Towards this goal, the next step should be performing factor separation anal-

yses on more simulations, and then using hierarchical clustering analysis on the

individual factor results as opposed to only on the full-physics simulations. The

results presented in Chapter 5 suggested that the individual contributions of

urban surface roughness and thermal qualities may not resemble the full-physics

simulations on which HCA was used. In simulations where urban-storm inter-

actions occurred very early in the storm’s lifetime, surface roughness resulted
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in considerable southerly deviations in storm track, though this modification to

storm track was not evident in the full-physics simulations as the changes caused

by roughness were often countered by thermal or interaction contributions. In

contrast, while few significant differences were evident in the individual contri-

butions of the various factors when urban-storm interactions occurred later, the

contributions were typically of the same sign in corresponding locations, and

hence combined to result in significant full-physics deviations from non-urban

simulations. These contrasting results suggest that the contributions of surface

roughness and thermodynamic properties do not vary together as the location

of the city changes, and thus HCA of the factor results separately should allow

for proper attribution of supercell modifications to various aspects of the urban

environment.

Future simulations should also be configured for parcel trajectory analysis

(i.e., very short history output intervals). While HCA may provide information

on which simulations are most similar to each other, and suggest which aspects of

the urban area are most important for storm modification, they provide minimal

evidence for how these changes in surface properties modify storm characteris-

tics. Computing vorticity and buoyancy budgets along parcel trajectories that

enter a storm’s mesocyclone could elucidate how the urban surface modulates

low- and mid-level mesocyclone strength and evolution.

The analyses in Chapters 4 and 5 used only one set of urban parameters

(e.g., surface roughness) to simulate one urban area interacting with one storm

in particular. To broaden the scope of this research and arrive at a more general

conclusion about urban modification of severe storms, future simulations should

include a wide array of variations on the simulation design presented here. Simu-

lating different storm modes (e.g., mesoscale or linear convective systems) could

illuminate urban effects on severe convection with different storm dynamics, as
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could simulating a different supercell. Additionally, using various urban areas

of different sizes, roughness values and distributions, shapes, and thermal prop-

erties in simulations could provide suggestions for the best hazard-mitigating

urban planning strategies. It would also be important to investigate how urban-

storm interactions change under varied UHII conditions, such as the weaker (or

sometimes negative) UHII conditions when rural soil moisture dries out during

drought or early fall conditions. This could be simulated by artificially decreas-

ing rural soil moisture values.

To verify findings from the present work and future investigations concerning

urban modification of convection, observations of severe storms in the vicinity

of urban areas would prove useful. Candidate cases could be simulated, both

with and without the urban area, and compared to observations. In contrast to

the current research and the avenues presented above, these simulations would

attempt to reproduce reality. However any of the methods suggested above

(e.g. modifying urban properties, trajectory analyses, etc.) could be used to

investigate these simulations more thoroughly. If investigations of this kind can

supply evidence of urban modification in real storm data, this would provide the

most compelling argument for using urban planning to mitigate life and property

losses from severe storms.
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