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Abstract 

This dissertation is a collection of three essays which study the impact of make-take fees 

on market efficiency, the relevance of three dimensions of liquidity on bond yields, and 

the value of information flow through the network of corporate directors. 

In Chapter 1, I investigate the causal link between exchange-subsidized liquidity, in the 

form of make-take fees, and market efficiency. Using an exogenous experiment 

performed by NASDAQ in 2015, I employ difference-in-differences analysis on a 

matched sample and find that a decrease in take fee and make rebate levels leads to greater 

absolute pricing error and larger variance of mispricing. This stems from widened bid-

ask spreads and decreased informed trading by retail investors. These findings 

demonstrate that make-take fees are beneficial for market efficiency. 

There are three important dimensions of liquidity: trading costs, depth, and resiliency. 

Chapter 2 investigate the relevance of each of these three dimensions of liquidity – 

separately and in conjunction – for the pricing of corporate bonds. Unlike previous 

studies, this sample allows us to cleanly separate the default and non-default components 

of yield spreads. We find that each of the above three dimensions of liquidity are priced 

factors. Overall, in our sample, a one standard deviation change in trading costs, 

resiliency, and depth measures lead to a change in non-default spreads of 5.00 basis 

points, 2.27 basis points, and 1.27 basis points, respectively. We also find that both bond-

specific and market-wide dimensions of liquidity are priced in non-default spreads. 

Finally, we find that there does exist in some periods a small residual non-default yield 

spread that is consistent with an additional “flight-to-extreme-liquidity” premium 
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reflecting investor preference for assets that enable quickest possible disengagement from 

the market when necessary. 

Chapter 3 investigates the value of information flow through the network of corporate 

directors. More connected directors may have better information and more influence, 

which can increase firm value. However, directors with larger networks may also spread 

misleading or value-decreasing management practices. To identify the effect of director 

networks on firm value, we use the sudden deaths of well-connected directors as a shock 

to the director networks of interlocked directors. By looking at the announcement returns 

and using a difference-in-differences methodology, we find that this negative shock to 

director networks reduces firm value. This evidence suggests that director networks are 

valuable. 
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Chapter 1: The Impact of Make-Take Fees on Market Efficiency 

 

1. Introduction 

Informational efficiency in financial markets is of paramount interest to financial 

economists because efficient security prices result in a Pareto optimal allocation of 

capital, which contributes to economic growth. Over the past two decades, the 

informational efficiency of prices has increased dramatically due to market improvements 

such as decimalization, tick-size reduction, and increased institutional trading (Chordia 

et al., 2008, 2011). Over that same time period, stock markets in the US have become 

completely electronic. What’s more, participation has become completely voluntary. 

Striking the old specialist model has resulted in a lack of affirmative obligations for 

traders to stand ready to make a market. As a result, exchanges have made numerous 

changes in order to cater to and incentivize liquidity providers. One such change has been 

the introduction of the “maker-taker” pricing model of market access fees, in which 

traders providing liquidity receive a rebate, and those consuming liquidity pay a fee. 

These make-take fees, largely propagated by Reg NMS (Regulation National Market 

System) in 2005, have quickly become one of the most debated aspects of market design 

(SEC, 2016) 

Using the NASDAQ Access Fee Experiment in 2015 as a source of exogenous 

variation in make-take fees, I examine the resulting change in market efficiency. Utilizing 

propensity score matching and difference-in-differences (DiD) regressions, I find that an 

exogenous decrease in make-take fees causes a deterioration in market efficiency, namely 

an increase in absolute pricing error and an increase in the variance of mispricing. I 
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propose that this effect propagates through the information channel by demonstrating that 

bid-ask spreads widen and fewer informative trades are executed. This suggests that 

make-take fees are beneficial for market efficiency. 

That is, market makers widen their bid-ask spreads to compensate for the marginal 

loss of exchange rebates, as shown by Brolley and Malinova (2013), Malinova and Park 

(2015), and Anand et al. (2016), which increases transaction costs (particularly for traders 

without direct market access1). This increased cost of trading, in turn, discourages 

informed traders from trading if they indeed prefer the immediacy of marketable orders 

over the uncertainty of limit orders. This leads to a marginal decrease in the amount of 

information transmitted through trading. The decrease in information dissemination 

ultimately leads to a deterioration in market efficiency. 

This finding is novel because it is not clear a priori that this should be the case. While 

Malinova and Park (2015) show that make-take fees improve liquidity by narrowing bid-

ask spreads, it is not clear that this would automatically result in more efficient markets. 

While Chordia et al. (2008) finds a positive correlation between liquidity and market 

efficiency, Tetlock (2008) demonstrates that increased liquidity has an ambiguous effect 

on market efficiency. This is because lower transaction costs make trading more 

attractive, not just for informed traders, but also for noise traders, and the increase of 

noise trading could lead to more pricing error.  

                                                 
1 Many traders, including retail and numerous institutional investors, do not have direct market access, but 

rather trade through a broker. This is an important point raised by Brolley and Malinova (2013) because, 

in practice, these traders have the bid and ask prices from the exchange passed on to them, but not the 

volume-based market access fee. They instead pay a flat fee. While this flat fee will also change in the long 

run, the authors show that in equilibrium, the higher flat fee does not offset the reduced bid-ask spread, and 

thus overall transaction costs reduce. 
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Separately, the lower cost of trading (lower take fees) on a public exchange like 

NASDAQ may encourage some orders – which would otherwise be routed to dark pools 

– to be routed to “lit” exchanges.2 This would actually have a positive effect on 

information transmission, as more trades would be executed in the public eye, ultimately 

improving market efficiency.  

In practice, it is quite possible that when the make-take fees are altered both the 

liquidity effect and the volume effect simultaneously impact the informational efficiency 

of a stock’s price, leading to conflicting ex ante hypotheses. In addition, Skjeltorp, Sojli, 

and Tham (2013) as well as Chung and Hrazdil (2010) conclude that the effect of make-

take fees depends largely on the degree of adverse selection occurring in the market, 

further increasing the ambiguity of the theoretical impact of make-take fees on market 

efficiency. 

In 2005, in hopes of further alleviating market fragmentation and creating a more 

cohesive national market for securities, the SEC (U.S. Securities and Exchange 

Commission) introduced Reg NMS, which established rules for market data, order 

protection (price priority), and market access fees, which were limited to $0.0030 per 

share traded (or hereafter referred to as 30¢ per 100 shares traded). The “maker-taker” 

pricing model of market access fees has since developed due to increased competition for 

trading volume between stock exchanges. In this model, traders with direct market access 

(DMA) – namely brokers and broker-dealers – are charged a “take” fee when removing 

liquidity from the market via marketable orders and given a “make” rebate when 

providing liquidity through limit orders. For example, for the majority of orders and 

                                                 
2 In fact, this is what NASDAQ hypothesizes in its Dec. 12, 2014 SEC filing (NASDAQ, 2014). 
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stocks in 2015, NASDAQ had a 30/29 fee structure in place. This meant that for every 

100 shares, a trader would be assessed a 30¢ fee for consuming liquidity and credited a 

29¢ rebate for providing liquidity. Meanwhile, NASDAQ itself would keep the 1¢ 

difference.  

In February of 2015, NASDAQ – in hopes of increasing its market share (NASDAQ, 

2014) – experimentally lowered its fee structure from 30/29 to 5/4 on 14 stocks for a four 

month period. 

To answer the empirical question “How do make-take fees affect market efficiency?” 

I exploit the changes to make-take fees during the 2015 NASDAQ Access Fee 

Experiment. Using propensity score matching on pre-shock variables to alleviate 

concerns of selection bias, I create a control sample for a baseline comparison to the 14 

treated stocks before, during, and after the NASDAQ Access Fee Experiment using 

difference-in-differences (DiD) regression specifications. Following Menkveld (2013), 

Brogaard et al. (2014), and Fotak et al. (2014), I use a Kalman filter to estimate both the 

latent pricing error variable every minute as well as the latent variance of pricing error 

innovations parameter on a daily basis, while controlling for the bid-ask bounce. I find 

that when the NASDAQ reduces its access fee structure the treated stocks suffer an 

increase in mean absolute pricing error, as well as an increase in the variance of pricing 

error innovations, vis-à-vis the control stocks; pricing error of treated stocks increased to 

2.51% from 2.34%, while pricing error of control stocks increased from 0.54% to 0.56%. 

This effect is in addition to, and cannot be explained simply by, widened bid-ask spreads 

during the experiment. 
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Furthermore, I show that during the access fee experiment, NASDAQ was less likely 

to possess the quote at the national best bid and/or the national best offer.  I show that 

before and after the access fee experiment, the national best bid (ask) quote is on the 

NASDAQ 42.0% (42.26%) of the time. For stocks in the treatment group during the 

experiment, NASDAQ possessed the national best bid (ask) 19.9% (19.9%) less relative 

to the control stocks. I also find that the time NASDAQ possessed either/both of the 

NBBO (National Best Bid and Offer) quotes decreased during the access fee experiment, 

suggesting wider bid-ask spreads resulting from reduced make-take fees, at least on the 

NASDAQ. This is consistent with Malinova and Park (2015) who document that bid-ask 

spreads narrow with higher make-take fees.  

Chordia et al. (2008) suggest that one reason liquidity and market efficiency may be 

associated is the increased incorporation of private information into market prices during 

more liquid regimes. To test this in regards to the access fee experiment, I examine the 

changes in adverse selection costs and find that for treatment group stocks, market makers 

lost less capital to informed traders during the lower make-take fee regime. This suggests 

that less private information was being incorporated into prices during this time, possibly 

explaining the steep increase in mispricing. 

Finally, I consider the effect of the access fee experiment on trade volumes. While 

NASDAQ reports that they lost 1.5% market share on the treated stocks (relative to 

control stocks) during the low make-take fee regime, I find that NASDAQ lost 3.4% of 

the market share relative to the control group in this study. Delving further into the 

changes in volume, I find that volume on other exchanges actually increased during the 

experiment for treated stocks by 5.8% more than control stocks. However, the NASDAQ 
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lost 11.5% of its volume during the experiment for treated stocks, relative to control 

stocks. This may suggest that the reduction in make-take fees actually did entice dark 

pool volume on to lit exchanges, however, brokers still routed marketable orders to the 

exchanges with higher rebates when possible.  Clearly, more data is needed to make 

conclusions in this area. The potential SEC-proposed market-wide access fee pilot 

program may allow further research to be conducted along this vein. 

Overall, the empirical analysis suggests that an exogenous decrease in make-take fees 

is detrimental to market efficiency. Taken in conjunction with the recent literature’s 

claims that make-take fees are beneficial to market liquidity, it would not be altogether 

outlandish to conclude that make-take fees, while still highly debated, are actively 

improving market quality. 

The remainder of the chapter is organized as follows. In Section 2, I give a brief 

review of the relevant literature. In Section 3, I describe the NASDAQ Access Fee 

Experiment, as well as describe the data, matching process, and research methods. In 

Section 4, I complete the empirical analysis of the NASDAQ Access Fee Experiment. 

Finally, Section 5 contains my concluding remarks. 

 

2. Literature Review 

Research in the area of make-take fees is still in its relative infancy. While analyzing 

new features of equity markets in the 21st century, Angel et al. (2011) recommend that 

the SEC either require access fees to pass through to end-users, stipulate that fees be 

included in the order protection (price priority) rule, or simply ban access fees outright. 
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They cite the increased agency costs between brokers and clients that arise from the 

maker-taker pricing model. 

Since this recommendation, several theoretical works have analyzed aspects of 

market access fees. Colliard and Foucault (2012) emphasize the importance of 

distinguishing net fee and the breakdown between take fees and make rebates. They 

further show that an increase in net fee can either increase or decrease volume, based on 

several parameters. Empirically, Cardella et al. (2015) find that an exchange’s trading 

volume is decreasing in its net access fee. Hence, one very important aspect of this paper 

is that the net fee is held constant in the NASDAQ Access Fee Experiment. 

Skjeltorp et al. (2013) posit that make-take fees actually create a positive liquidity 

externality unless adverse selection is sufficiently high, in which case make-take fees may 

actually cause a negative liquidity externality because market makers are averse to trading 

opposite informed traders. 

After recognizing that the choice between market and limit orders arises from a 

trader’s inherent  value of speed, Foucault et al. (2013) endogenize the demand for speed, 

and propose a model which shows that the breakdown of make and take fees becomes 

economically significant when the minimum tick size restricts bid-ask spread adjustment. 

Since markets now permit trades to be executed up to 4 decimal places, and access fees 

are in the 3 to 4 decimal range, this is of less concern, at least in US markets. 

However, Brolley and Malinova (2013) show that because make-take fees are not, 

in practice, passed through brokers to end-use traders3, make-take fees should improve 

                                                 
3 Rather than make-take fees, brokers typically charge a flat trade fee to its customers, which include retail 

traders, as well as other institutional traders not structured as brokers with direct market access. While these 

flat fees may increase in the long run, Brolley and Malinova (2013) show that in equilibrium, the increased 

fee does not offset the narrowed bid-ask spread, therefore overall transaction costs reduce. 
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market quality in numerous aspects - lowering transaction costs, increasing trading 

volume, and improving welfare. These theoretical predictions are confirmed by Malinova 

and Park (2015). They use a change in make-take fees on the Toronto Stock Exchange to 

show that raw bid-ask spreads improve, but after adjusting for the fees, total transaction 

costs remain unaffected. However, since access fees are not passed to non-DMA traders, 

overall liquidity improves. 

Similarly, Anand et al. (2016) find that overall execution costs for liquidity 

demanders decline following the introduction of the make-take fee structure in options 

markets, consistent with increased quote competition. Lutat (2010), on the other hand, 

finds that spreads aren’t affected by make-take fees, but depth at the best bid and ask 

quotes improves. Also related, Battalio et al. (2016) document a negative relationship 

between limit order execution and rebate/fee levels. 

This study builds upon Malinova and Park (2015) and Anand et al. (2016) by 

showing that not only are bid-ask spreads improved by higher make-take fees, but that 

make-take fees also reduce mispricing. I show that this occurs through the information 

channel. Interestingly, Malinova and Park (2015) find that adverse selection costs actually 

decline as make-take fees increase while I show that adverse selection costs decline as 

make-take fees decrease. 

This paper is also related to the vein of literature which relates liquidity to market 

efficiency. Particularly, Chordia et al. (2008) find a positive correlation between liquidity 

and market efficiency. While they hypothesize that this could be because liquidity 

stimulates greater arbitrage activity, enhancing market efficiency, no causal evidence is 
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explored. Chung and Hrazdil (2010) reinforce these findings, also documenting that the 

liquidity-efficiency relationship is amplified when adverse selection spread is higher 

(more informative trading). 

While this paper does not provide direct evidence of a causal relationship between 

liquidity and informational efficiency due to confounding economic mechanisms, the 

results of this paper are consistent with both Chordia et al. (2008) and Chung and Hrazdil 

(2010), as I find informational efficiency is improved by make-take fees because 

transaction costs are reduced and trades become more informative.  

This study also increases our understanding of the liquidity-efficiency relationship 

because even during a decrease in make-take fee level, and subsequent widening of the 

bid-ask spread, I document an increase in trading volume, suggesting that liquidity is 

defined by more than just transaction costs. Additionally, whereas Chordia et al. (2008) 

define market efficiency as the inverse of short-horizon return predictability from order 

flows, I define market efficiency following Fama and French (1988) and others, by 

removing the random walk component of intraday stock prices (specifically NBBO 

midpoints) to find mispricing, and the variance thereof. 

 

3. Sample and Methodology 

3.1. NASDAQ Access Fee Experiment 

In November of 2014, NASDAQ announced its intention to change its make-take fee 

structure for select stocks in order to analyze the changes’ effect on market share, 

displayed liquidity, effective spreads, and volatility. In NASDAQ’s filing with the SEC 

the exchange stated that it believed take fees had grown to a level which was discouraging 
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certain traders from directing their trades to one of the 14 “lit” exchanges, opting instead 

to trade in dark pools. NASDAQ hypothesized that by reducing its take fees and make 

rebates that it would be able to increase its market share. In the SEC filing, the exchange 

requested permission to experimentally change its market access fee structure to charge 

a $0.0005 fee per share to remove liquidity (from $0.0030), and to credit a $0.0004 rebate 

per share to add displayed liquidity (from $0.0029)4 (NASDAQ, 2014). 

Late in 2014, NASDAQ announced the 14 stocks included in its access fee 

experiment: American Airlines (AAL), Micron Technology (MU), FireEye (FEYE), 

GoPro (GPRO), Groupon (GRPN), Sirius XM (SIRI), Zynga (ZNGA), Bank of America 

(BAC), General Electric (GE), Kinder Morgan (KMI), Rite Aid (RAD), Transocean 

(RIG), Sprint (S), and Twitter (TWTR). The NASDAQ Access Fee Experiment 

commenced on February 2, 2015 and was set to run for a term of four months, though 

wording seemed to indicate that an extended timeframe would be possible if it was 

deemed valuable later on. 

Throughout the course of the experiment, NASDAQ reported on various aspects of 

the market for these stocks. The exchange had seen a small uptick in liquidity 

consumption (marketable orders), but it was not offset by the major losses in liquidity 

provision (executed limit orders), “time at the inside” of the NBBO, and market share. 

Therefore, NASDAQ elected to cease the experiment after the initial four month term. 

                                                 
4 There were further alterations to the fee structure which included rebates for non-displayed liquidity, non-

displayed midpoint liquidity, and several other obscure order types, but in general, the make-take fee 

structure was reduced by 25¢ per 100 shares. Also important to the validity of the results in this study, the 

net fee remained 1¢. 
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3.2. Data and Research Design 

The majority of the data used in this study is collected from NYSE TAQ (Trade and 

Quotation). The data represents the consolidated tape, which covers virtually all trades 

and quotes on the 14 U.S. public stock exchanges. The NASDAQ experiment ran for four 

months, from February through May of 2015. In order to obtain a baseline sample outside 

of the experiment period, I collect TAQ data on all stocks spanning October 2014 through 

September 2015. For each day, I calculate the total volume, volume on the NASDAQ, 

price, NASDAQ market share, percentage bid-ask spread, dollar bid-ask spread, adverse 

selection cost, the percentage of time NASDAQ spent on the inside of the NBBO, and 

multiple mispricing measures. 

Specifically, I calculate volume as the sum of the trade size (in shares) for all trades 

on every exchange. Similarly, NASDAQ volume is the sum of the shares traded on the 

NASDAQ exchange. I divide the NASDAQ volume by the total volume to measure 

NASDAQ’s market share. In later regressions, use the natural logarithm of both of the 

volume variables to address the skewness of the distribution of volumes (because volume 

has a lower bound of 0, volume is positively skewed). Actual transaction prices are often 

executed at the bid or ask price. Therefore, to eliminate the bid-ask bounce, I use a 

volume-weighted average of the NBBO midpoint of each trade as a proxy for stock price. 

Similarly, I calculate the daily percentage bid ask spread as the mean of the NBBO bid-

ask spread scaled by the midpoint taken after each new quote. I multiply this by the daily 

midpoint to calculate the dollar bid-ask spread5. 

                                                 
5 A differentiation between percentage and dollar bid-ask spreads is important because the make-take fees 

are “volume-based,” rather than “value-based,” which means the fees and rebates are assessed on a dollars-

per-share basis, rather than a percent-of-value basis, therefore the fee structure will affect the bid-ask 

spreads, and ultimately the market efficiency, of low and high priced shares differentially. 
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In order to estimate the level of informed trading, I calculate adverse selection costs, 

which represent the money that market makers lose to informed traders on average. In 

order to calculate this, I first sign the trades using the Lee and Ready (1991) algorithm. I 

calculate adverse selection costs ASCk as 

 𝐴𝑆𝐶𝑘 =
1

𝑇
∑

𝑑𝑡(𝑚𝑡+𝑘−𝑚𝑡)

𝑚𝑡

𝑇
𝑡=1 , (1) 

where mt is the NBBO midpoint at trade t, dt equals 1 for a buy and -1 for a sell (according 

to the Lee and Ready (1991) algorithm), T is the number of trades in a given day, and k 

is the number of minutes after the initial trade. I calculate the adverse selection spread 

using a k of 1, 15, 30, and 60 minutes. 

In order to calculate the amount of time the NASDAQ has a quote on the inside of the 

NBBO, I first create two binary variables at the quote level: one which equals 1 when the 

national best bid is located on the NASDAQ exchange (and 0 otherwise), and one which 

equals 1 when the national best ask is located on the NASDAQ exchange. From these, I 

create two more quote-level binary variables: one which equals 1 when the NASDAQ 

has the best bid and offer (represented mathematically as bestbid×bestask), and another 

which equals 1 when the NASDAQ has either the best bid or ask (represented 

mathematically as max(bestbid,bestask)). Next, I calculate the daily averages of these 

four binary variables (Best Bid, Best Ask, Best Both, and Best Either) to find the amount 

of quote-time the NASDAQ is at the inside of the NBBO. 

Later, in order to construct a proper control sample, I collect industry (NAICS and 

SIC) and listing exchange data from CRSP over the same time frame. All continuous 

variables were then winsorized at the 1st and 99th percentiles. 
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3.2.1 Market Efficiency Measures  

Because a stock’s true fundamental value, and therefore pricing error cannot be 

directly observed, further assumptions must be made to estimate fundamental value and 

pricing error. Since at least Fama (1965) the random walk model, or the weak form of 

market efficiency, has been widely accepted in the financial economics literature. 

Following Fama and French (1988) and Hasbrouck (1993), I assume that the logarithm 

of a stock’s observed transaction price pt follows the equation 

 𝑝𝑡 = 𝑓𝑡 + 𝑠𝑡 (2) 

where st is the pricing error of the stock on day t, and the stock’s fundamental value, ft, 

follows a random walk with a drift μ, and white noise innovation εt, 

 𝑓𝑡 = 𝜇 + 𝑓𝑡−1 + 𝜀𝑡,       𝜀𝑡~𝑁(0, 𝜎𝜀
2). (3) 

If pricing error is assumed to follow mean-reverting process 

 Δ𝑠𝑡 = −𝛼𝑠𝑡−1 + 𝜙𝑡,        𝜙𝑡~𝑁(0, 𝜎𝜙
2) (4) 

with mean reversion parameter α and white noise innovation ϕt, then combining equations 

(2), (3), and (4), we get: 

 𝑝𝑡 = 𝜇 + (1 − 𝛼)𝑝𝑡−1 + 𝛼𝑓𝑡−1 + 𝜃𝑡,       where 𝜃𝑡 = 𝜀𝑡 + 𝜙𝑡. (5) 

Following Boehmer and Kelly (2009), Menkveld (2013), Brogaard et al. (2014), and 

Fotak et al. (2014), I use Kalman filter estimation methodology with the transition 

equation: 

 [

𝑝𝑡

𝑓𝑡

1
] = [

1 − 𝛼 𝛼 𝜇
0 1 𝜇
0 0 1

] [

𝑝𝑡−1

𝑓𝑡−1

1
] + [

𝜃𝑡

𝜀𝑡

0
], (6) 

and the measurement equation: 

 𝑝𝑡 = [1 0 0] [

𝑝𝑡

𝑓𝑡

1
], (7) 
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Elsewhere in the economics literature, the Kalman filter is used to observe otherwise 

latent variables, i.e. mispricing, from observable variables, given an assumed structure. 

In this case, I am removing the random-walk component from stock midpoint prices to 

observe mispricing. If a time-series was indeed a random walk, I would find no 

mispricing6. 

Because the actual transaction price tends to “bounce” due to the bid-ask spread, and 

Malinova and Park (2015) show that make-take fees directly affect the bid-ask spread, I 

use the log of the midpoint of the bid-ask spread as a proxy for log price, pt, in this 

estimation. Omitting the first 5 minutes of trading to eliminate the opening noise, I collect 

pt from each stock at every minute from 9:35 to 16:00 over the entire sample. Using BFGS 

maximum likelihood optimization, I obtain estimates of µ, α, 𝜎𝜙
2, and 𝜎𝜀

2 for every stock, 

each day. I further calculate the mean absolute pricing error (MAPE) each day by 

averaging |𝑠𝑡| over the day. I use 𝜎𝜙
2 to measure the variance of pricing error innovations 

on each day. These two variables were also winsorized at the 1st and 99th percentiles. 

3.2.2 Matching Procedure 

In a laboratory setting, the treatment and control groups would be randomly selected. 

However, in the NASDAQ experiment, the 14 treated stocks were said to be chosen based 

on the estimated proportion of “off-exchange” (dark pool) trading (NASDAQ, 2014). We 

also know that the effect of a make-take fee reduction will differ based on the share price 

of a stock since make-take fees are based on shares traded, and not dollar value. 

Therefore, to assuage concerns over selection bias, I created a matched control sample of 

                                                 
6 For more information on the Kalman filter smoothing-estimation procedure, see chapter 13 of Hamilton 

(1994). 
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firms using nearest neighbor propensity score matching. To measure the propensity of 

being selected into the NASDAQ Access Fee Experiment, I employ a probit model using 

pre-experiment data (from October 2014 through January 2015).  

I omit stocks which have less than 80 trading days in the 4 month window (out of 84 

possible), have a missing or unclassifiable industry (SIC 9999), are listed as Financial 

Vehicles (NAICS 525990), or are missing the outcome variables in the study (pricing 

error, adverse selection spread, volume, etc.). This results in 7,573 stocks (14 of which 

are treated). I then take the 4-month average of the variables in the propensity score model 

to estimate the probit model on a firm level.  

Ideally, the proportion of off-exchange volume would be a key component to the 

matching process, however, since dark pools do not disseminate any comprehensive 

transaction data, I instead substitute the NASDAQ volume into the model. I also match 

on dollar bid-ask spread and midpoint price, as well as average MAPE, to attempt to get 

the control sample close to the treatment sample on these pre-shock characteristics. The 

results of the probit model, along with marginal effects are displayed in Table 1. 

Next, to select the control sample, for each of the 14 treated stocks I eliminate as 

potential matches untreated stocks which are not listed on either the NASDAQ or NYSE, 

or with a difference in average price greater than 10 percent. I then select the 5 untreated 

stocks with the closest propensity score, based on the above probit, allowing for 

replacement. This creates a control sample of 70 stocks – 63 of which are unique. The 

means and medians of the pre-shock variables of interest for treatment and control groups 

are displayed in Table 2. 
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The sample means are statistically different at the 10% significance level or above for 

each variable in the table, except price. This is partially due to the large sample sizes 

reducing the standard errors, as the means are usually economically very similar. 

However, we do see some economically significant differences in a few key variables, 

namely the adverse selection costs, MAPE, variance of mispricing, and the dollar bid-ask 

spread. While this raises a concern that perhaps the control and treatment samples will 

behave differently, violating the parallel trend assumption of DiD analysis, the difference 

in means is controlled for by the binary Treated Dummy variable in the DiD regressions, 

therefore, the difference in means are only problematic if they suggest that the treatment 

stocks and control stocks will behave differently. We also see that the medians are 

economically similar, suggesting that the statistical differences are driven by a few 

poorly-matched outliers. Still, to assuage concerns that the results may be driven by these 

differences in control and treated samples, I create alternative control samples. 

 

4. Empirical Results 

4.1 Main Results 

To determine the effect of make-take fees on market efficiency, I regress the two 

(inverse) measures of market efficiency, MAPE and variance of pricing error innovations 

(𝜎𝜙
2) in panel DiD regressions. I include a binary Treated Dummy variable, which equals 

1 if the stock is 1 of the 14 in the NASDAQ Access Fee Experiment and 0 if it is in the 

control stock, a binary Experiment Dummy variable, which equals 1 if the lower access 

fees were in effect (Feb. 2015 – May 2015) and 0 for all other dates, and finally, an 

interaction of the two, which will produce the regression coefficient representing the 
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difference in differences in the means. To correct the standard errors for autocorrelation 

and heteroskedasticity between stocks, I use robust standard errors clustered two-ways, 

by day and stock, as suggested by Pedersen (2009). The results of these regressions are 

represented in Table 3.  

In the first regression in Panel A, we see that there is no statistical difference in MAPE 

between treatment and control samples before and after the access fee experiment, 

however, when NASDAQ lowers its access fees to the 5/4 structure, the MAPE increases 

by 0.17% of the stock price7. When I include linear controls for the price, percentage bid-

ask spread, and volume, this result holds. Relative to the control stocks, the mean absolute 

pricing error of treated stocks increased 0.17%, roughly $0.0422 taken at the mean – far 

in excess of the $0.0025 difference in access fees. 

When regressing the variance of mispricing innovations in the DiD model, I find that 

the access fee experiment increased the variance 0.0046 for treated stocks relative to 

control stocks (an increase of 6.78% in standard deviation). When including controls in 

the regression model, the DiD effect remains at 0.0049, with strong statistical 

significance. 

It is possible that somehow trader behavior changed after the access fee experiment, 

even though the make-take fees returned to the previous price structure. To ensure this 

wasn’t driving the DiD results, Panel A of Table 4 includes regressions which exclude 

observations after May 2015, the end of the NASDAQ experiment. When excluding these 

observations, the DiD results remain largely unchanged. In fact, the DiD coefficients on 

                                                 
7 Since pt is the log of the midpoint price, |st|, and therefore MAPE, are also measured in the same units. 
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the MAPE and variance regressions increase relative to the full sample. Therefore, we 

can conclude that the mispricing increases when make-take fees are reduced. 

As suggested by Roberts and Whited (2013), if the mispricing effect is truly driven 

by the reduction in make-take fees, then when the NASDAQ restored to the original fee 

structure, the effect of mispricing should reverse. I test this reversal effect in Panel B of 

Table 4. Indeed, we see that when the fee structure is raised, MAPE decreases 0.08% 

(0.12% when including control variables). However, we also see that the variance of 

mispricing increased when the fee structure was reversed, though lacking statistical 

significance.  

Subsequently, I confirm the findings of Malinova and Park (2015) that make-take fees 

affect bid-ask spreads. However, where their sample involves the entire market switching 

to a make-take fee structure, this sample involves only one exchange, NASDAQ, 

changing its make-take fees. Consequently, since the other 13 public exchange did not 

change their fee structure, the bid-ask spread may not have necessarily altered since other 

exchanges had make rebates as high as 24¢ and take fees as low as -6¢ (a rebate of 6¢)8. 

Therefore I instead examine the amount of time that NASDAQ quotes are at the inside of 

the NBBO. I use the same DiD regression framework as in the previous tests, with the 

constructed Best Ask, Best Bid, Best Either, and Best Both proportion variables.  

The results of these regressions are displayed in Table 5. It’s important to note, that 

the time at the inside of the NBBO did not differ between treatment and control groups 

                                                 
8 Inverted “taker-maker” pricing structures are located on the NASDAQ Boston Exchange and Direct 

Edge EDGA Exchange. This pricing structure has been argued to be an alternative to dark pools since it is 

cheap (due to the rebate) to execute trades taking liquidity on these exchanges. This structure has also 

been promulgated as a hot bed for predatory high frequency traders who are essentially being charged a 

“make” fee by the exchange to have access to the information provided by these fee-sensitive traders. 
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prior to the experiment, according to the Treated Dummy coefficient. But when 

NASDAQ lowered its fee structure, we see a significant differential reduction in time at 

the inside of the NBBO for NASDAQ quotes. For treated stocks, NASDAQ spends 

19.9%, 19.9%, 27.2%, and 12.4% less time possessing the best bid, best ask, either the 

best bid or ask, and both the best bid and ask, respectively. As Brolley and Malinova 

(2013) would posit, the decrease in rebates for limit orders results in less time inside the 

NBBO as market makers submitting orders on the NASDAQ widen their spreads to 

compensate. These results hold in Panel B, when I include price and volume and linear 

controls. I don’t include the bid-ask spread as a control, since it is mechanically related 

to the NASDAQ’s time inside the NBBO. 

Because market makers are posting limit orders in a way that is widening the bid-ask 

spread – due to the smaller rebates – one would expect less information to be transmitted 

by retail and other non-DMA traders due to the marginal increase to transaction costs. 

Therefore, I examine the changes in adverse selection costs to determine how the make-

take fee reduction affected the incorporation of private information into security prices. 

The DiD analysis is presented in Table 6, without controls in Panel A and with controls 

in Panel B. When examining the average 1-minute, 15-minute, and 30-minute profits of 

liquidity takers (ASC1, ASC15, and ASC30) we see a significant decrease for treated stocks, 

relative to the control stocks, during the experiment. We also see a decrease in 60-minute 

profits of liquidity takers, however the difference is not statistically significant. This 

evidence, in conjunction with prior results, suggests that the widened bid-ask spreads 

resulting from the make-take fee reduction led to fewer informative trades being made by 

non-DMA traders, which made markets less informationally efficient. 
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NASDAQ hypothesized that by lowering their make-take fees, they would garner 

more volume onto the exchange by luring away “off-exchange” trading to the NASDAQ. 

This increase in volume could also arguable lead to an increase in market efficiency – 

because more trades take place on lit exchanges, leading to more incorporation of private 

information into stock prices. We can see from the above results that this was not the 

case, but that doesn’t necessarily preclude that the treatment stocks experienced an 

increase in volume.  

In Table 7, I investigate the changes in volume propagated by the access fee 

experiment. Looking at the DiD interaction coefficient, I find that NASDAQ’s market 

share reduced by 3.4% relative to the control sample during the experiment – a somewhat 

higher loss than the 1.5% NASDAQ estimated against its own control sample. Along 

these lines, I find that the volume on the NASDAQ (for these 14 treated stocks) reduced 

by 11.5% relative to control stocks, and the volume of the treated stocks actually 

increased by an average of 5.8% on all other exchanges, in comparison with control 

stocks. This shows that volume transitioned from the NASDAQ and on to other 

exchanges due solely to the level of make-take fees.  

These results suggests that while NASDAQ did not benefit from the reduction in 

make-take fees, other exchanges did. This is quite possible if market makers were still 

apt to submit limit orders to the exchanges with the higher rebates (for example, BATS, 

with a 25/24 fee structure), and the reduction from 30¢ to 25¢ to execute these orders was 

enough to entice more traders to take liquidity, whether they would have otherwise not 

traded or traded in dark pools. While I’ve shown that this increase in volume did not result 

in an overall increase in trade informativeness, or a decrease in pricing error, without a 
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more complex structural model, the volume effect of make-take fees on market efficiency 

is not possible to estimate, due to make-take fees’ simultaneous effect on the bid-ask 

spread. However, these results suggest that a market-wide experiment on make-take fees 

– such as the SEC proposed in the summer of 2016 (SEC, 2016) – may lend valuable data 

to extend this line of research. 

4.2 Robustness Tests 

Roberts and Whited (2013) suggest falsification (placebo) tests as one method to 

further demonstrate that the natural experiment is truly the driving force in variable 

changes. To perform falsification tests, I create dummy variables for stock-day 

observations in November, December, and January, and subsequently interact these 

transactions with the dummy for treated stocks. Using a sample of the four months prior 

to the NASDAQ pilot, I regress MAPE and the variance of mispricing on these variables 

in Table 8. Examining the regression coefficients on the interaction terms (of the month 

and treated dummy variables), we see that there was very little difference in the outcome 

variables of treated and control stocks between October, November, December, and 

January. We see a slight increase in MAPE and the variance of mispricing for the treated 

stocks in November, however the statistical significance is very slight (with p-values 

between 0.07 – 0.17). When we consider that the pricing error was significantly higher 

(2.45% vs 2.18%) for treated stocks during the NASDAQ pilot than in November, we can 

conclude that it is likely not a coincidental time trend which was behind the increase in 

mispricing, but instead that it was the market access fee pilot. 

Due to the statistical differences in treatment and control groups, I create four 

alternate control samples to demonstrate the robustness of results. To construct each of 
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these samples, I first eliminate as potential matches untreated stocks which have less than 

80 trading days in the 4 month window (out of 84 possible), have a missing or 

unclassifiable industry (SIC 9999), are listed as Financial Vehicles (NAICS 525990), are 

missing the outcome variables in the study (pricing error, adverse selection spread, 

volume, etc.), which are not listed on either the NASDAQ or NYSE, or with a difference 

in average price greater than 10 percent. Next, I match on one variable at a time: MAPE, 

NASDAQ volume share, dollar bid-ask spread, or the percent of NBBO quotes coming 

from the NASDAQ. 

Next, I repeat the regressions from Table 3 with MAPE as the dependent variable 

using the four alternate samples. In all four alternate samples, we see that pricing error 

increased during the access fee pilot, with magnitudes ranging from 0.14% to 0.36%. We 

also see that in all of the alternate samples, there was no statistical difference in MAPE 

between treated and control samples. This further assuages any concerns about violating 

the parallel trend assumption, and demonstrating that lower make-take fees increased 

pricing error. 

 

5. Concluding Remarks 

While market efficiency is a paramount assumption in markets, directly affecting 

every trader and investor, the effect of market access fee level on market efficiency has 

not been addressed in the literature until this paper. While ex ante predictions range from 

an increase in efficiency via subsidized liquidity to a decrease in efficiency due to the 

prohibitive costs of trading using market orders, I find that a decrease in take fees and 

make rebates causes greater absolute pricing error and larger variance of mispricing, 
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stemming from the widened bid-ask spreads and decreased informed trading by retail 

investors and other traders without direct market access. This suggests that higher levels 

of make-take fees lead to greater market efficiency. However, further research may be 

necessary to document the effect of make-take fees on dark pool trading volume and the 

market share of lit exchanges. 
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Chapter 2: The pricing of different dimensions of liquidity: Evidence 

from government guaranteed bonds9 

 

1. Introduction 

Bank liabilities are often insured selectively by government programs of different 

countries.10 The empirical analysis in this chapter has been made possible by one such 

program: the U.S. government's Debt Guarantee Program of 2008. In an attempt to stem 

bank contagion risk during the 2008 financial crisis, the FDIC instituted a program 

wherein bank-issued bonds were backed by the full faith and credit of the U.S. 

government, and thus made equivalent in credit quality to U.S. Treasury securities. While 

these bonds were as safe as Treasuries from a default perspective, they differed 

significantly from Treasuries, and from each other, in their liquidity. Thus, these bonds 

impounded a yield spread over comparable Treasuries that was arguably a significant 

function of liquidity, but independent of any default-related considerations. We use this 

unique situation to analyze how different dimensions of liquidity affect the pricing of 

corporate bonds: specifically, bonds issued by banks. 

The yield spreads of corporate bonds (relative to Treasuries) have been shown by 

Elton et al. (2001), among others, to be significantly larger than can be explained by 

default risk and state taxes. Chief among the factors shown to affect non-default spreads 

is liquidity. For example, Longstaff et al. (2005) and Dick-Nielsen et al. (2012) show that 

                                                 
9 This chapter is based on collaborative work with Duane Stock and Pradeep K. Yadav, published in the 

Journal of Banking and Finance. 

 
10 A common example is deposit insurance where, in the United States, the insuring agency is the Federal 

Deposit Insurance Agency (FDIC). 
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an important dimension of liquidity – the trading cost dimension as measured by the bid-

ask spread – is priced in the non-default component of yield spreads. The focus of this 

chapter is on the relative pricing relevance of different dimensions of liquidity. In this 

context, the early seminal literature in market microstructure – Garbade, 1982; Kyle, 

1985, and Harris, 1990; Harris, 2003 – identifies three main dimensions of liquidity: the 

trading cost dimension, the tradable quantity or the depth dimension, and the time 

dimension as manifested in the resiliency in liquidity subsequent to order-flow shocks.11 

In this chapter, our main aim is to investigate whether these three different dimensions of 

liquidity are priced in government-guaranteed bank bond yields, estimate the relative 

importance of each of these liquidity dimensions for pricing, and determine the 

comparative pricing relevance of bond-specific and market-wide dimensions of liquidity. 

Unlike previous studies, our sample allows us to cleanly separate the default and 

non-default components of yield spreads. We are accordingly able to contribute 

significantly to the extant literature on the pricing of liquidity in fixed income markets in 

several important ways. We are the first to examine whether the resiliency dimension of 

liquidity is priced in bond yields. Second, we are also the first to test whether the 

aforementioned three dimensions of liquidity – trading costs, depth, and resiliency – are 

priced in conjunction, as opposed to being priced separately. Third, an important 

methodological contribution we make is to use the principles underlying the empirical 

measure of resiliency developed (for limit-order-book markets) by Kempf et al. (2015) to 

                                                 
11 Holden et al. (2014) provide an excellent review of the empirical literature on liquidity. Specifically 

focusing on the three dimensions of liquidity mentioned above, see, for example: (a) Glosten and Milgrom 

(1985) and Stoll (1989) for the trading cost dimension; (b) Kyle (1985); Glosten and Harris (1988);  

Hasbrouck (1991), and Kempf and Korn (1999) for the depth dimension; and (c) Foucault et al. (2005), and 

Kempf et al. (2015) for the resiliency dimension. 
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define and estimate a new measure for the resiliency of over-the-counter dealer markets 

(like corporate bond markets). Fourth, we analyze the relative pricing relevance of both 

bond-specific and market-wide dimensions of liquidity. Finally, we examine whether 

there exists – after controlling for (bond-specific and market-wide) trading cost, 

resiliency, and depth dimensions of liquidity – a “residual” non-default yield spread 

arising from an additional flight-to-extreme-liquidity premium over Treasuries, or a 

“quality” spread related in some way to the probability of the government guarantee being 

invoked. 

Because the liquidity risk of a security and the default risk of a firm are 

endogenously related, separating the two is problematic and involves measurement error. 

Intuitively, and according to Ericcson and Renault (2006), among others, increases in 

default risk lead to increases in liquidity risk. Interestingly, He and Xiong (2012) and He 

and Milbradt (2014) theorize that the inverse is also true – that deterioration in liquidity 

leads to increases in default risk.12 In this study, we use a sample of bonds in which 

liquidity risk is exogenously separated from default risk, since the sample bonds do not 

carry any default risk above that of US Treasury bonds. This allows us to analyze the 

non-default component of the yield spread (hereafter “non-default spread” or “NDS” ) 

without the potential for measurement error induced by using models for the default 

spread, as has been done in earlier studies. The absence of measurement error in our 

sample allows us to cleanly and accurately determine the magnitude of the non-default 

spread, and relate it to different dimensions of liquidity. 

                                                 
12 This occurs because firms sustain higher losses when rolling over maturing debt, which make strategic 

default more likely. 
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We calculate bid-ask spread to proxy for the trading cost dimension of liquidity 

following the methods of Hong and Warga (2000). To measure the depth dimension of 

liquidity we use the Amihud (2002) illiquidity measure, which is a direct measure of the 

price impact of trading volume, and consistent with Kyle (1985). Finally, we develop a 

measure for the resiliency dimension of liquidity in OTC dealer markets based on the rate 

of mean reversion of aggregate dealer inventories – following the conceptual notion of 

resiliency in Garbade (1982) and the principles underlying the empirical resiliency 

measure developed (for limit-order book markets) by Kempf et al. (2015). We find that 

each of the three dimensions of liquidity – trading costs, depth, and resiliency – are priced 

factors in the non-default spread. We find that the non-default spread is most affected by 

the trading cost and resiliency dimensions, while the depth dimension has a smaller, but 

still statistically significant effect. A one standard deviation change in trading costs, 

resiliency, and depth measures lead to a change in non-default spreads of 5.00 basis 

points, 2.27 basis points, and 1.27 basis points, respectively. For the case when the 

individual liquidity dimensions are at their average values, we find that about 80% of the 

non-default spread (attributable collectively to these three liquidity dimensions) comes 

from the bid-ask spread, about 17% from resiliency, and a relatively minuscule 3% from 

the Amihud depth measure. The average non-default spread in our sample period is about 

21 basis points. To put this into perspective, the total yield spreads of Aaa and Baa 

industrial bonds over the same period (which impound both default and non-default risk) 

are about 90 basis points and 232 basis points respectively.13 

                                                 
13 These total yield spread figures are calculated from 30-year Moody's Baa and Aaa yields less 30-year 

Treasury bond yields from H.15 releases. 
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Commonality in liquidity has been examined in several studies (see, for example, 

Chordia et al., 2000a; Chordia et al., 2000b; Pástor and Stambaugh, 2003; Acharya and 

Pedersen, 2005;  Lin et al., 2011; and Bao et al., 2011). These articles suggest that market-

wide liquidity factors may affect the non-default spread more than their idiosyncratic 

counterparts. In this context, we therefore create indices that measure the trading costs, 

depth, and resiliency of the Treasury bond market as a whole. We construct a market 

liquidity index based on the liquidity of Treasuries because the “market” for our 

government-guaranteed bank bonds is arguably much more comparable to the market for 

bonds carrying the same credit risk (i.e., the market for Treasuries), rather than the market 

for other corporate bonds carrying credit risk. We find that each of the three dimensions 

of market-wide liquidity has significant pricing relevance over our full sample period. 

When we control for the possibility of different liquidity pricing relationships during the 

financial crisis (as suggested by Dick-Nielsen et al. (2012) and Friewald et al. (2012)), 

we find that only the market-wide trading cost dimension is significantly priced during 

the crisis, in addition to bond-specific resiliency and bond-specific trading costs. 

However, in the post-crisis subsample, each of the three bond-specific and market-wide 

liquidity dimensions is significantly priced. 

Finally, we find that the overall average residual non-default spread over our 

sample period (after controlling for state taxes and our three dimensions of liquidity) is 

not significantly different from zero. However, this residual non-default yield spread is 

statistically significant in some periods, albeit small in magnitude. In this context, 

Longstaff (2004) has earlier investigated government guaranteed Refcorp bonds, and 

found (like we do for our sample bonds) a non-default spread between these government 
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guaranteed Refcorp bonds and Treasuries, even though they had the same credit risk. 

Longstaff (2004) concluded that this non-default spread was a “flight-to-liquidity” 

spread. However, Longstaff (2004) did not incorporate any controls (as we do in this 

study) for differences in (time-varying measures of) liquidity between Treasuries and his 

sample of guaranteed bonds, arguing that the differences (for example) in bid-ask spreads 

are too small in magnitude to explain the large yield spreads of Refcorp bonds. Our results 

in this study show that most of the Longstaff (2004) “flight-to-liquidity” premium is a 

liquidity premium directly related to the conventional measures of liquidity – spreads, 

depth, and resiliency. However, we also find that the non-default spread in some periods, 

particularly periods of crisis, impounds a tiny additional “flight-to-extreme-liquidity” 

premium that, in the spirit of the quote of former Federal Reserve Bank Chairman Alan 

Greenspan cited at the start of Longstaff (2004), reflects a strong investor preference for 

assets that enable quickest possible disengagement from the market if circumstances 

make that necessary.14 Furthermore, we find that the residual non-default yield spread 

(after controlling for state taxes and our measures of liquidity) is not a positive function 

of issuer default risk, and hence unlikely to represent a “quality spread” arising (for 

example) because these bonds are guarantees, rather than direct obligations, of the U.S. 

Treasury. This latter result is also consistent with the indirect evidence in this regard in 

Longstaff (2004).15 

                                                 
14 Longstaff (2004) quotes former Federal Reserve Bank Chairman Alan Greenspan as saying the following 

on October 7, 1998: “But what is crucial… is that the individuals who were moving from, let's assume, the 

illiquid U.S. Treasuries to the liquid on-the-run liquid issues, are basically saying, ‘I want out. I don't want 

to know anything about whether a particular investment is risky or not. I just want to disengage.’ And the 

reason you go into these liquid instruments is that that is the vehicle which enables one to disengage as 

quickly as possible.” 

 
15 Longstaff (2004) investigated the government guaranteed bonds of only one entity – Refcorp. Hence, his 

conclusion in this regard was based on the absence of a positive dependence of the non-default spread on 
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The remainder of the chapter proceeds as follows. In Section 2, we develop the 

hypotheses tested in the study. Section 3 describes the sample used for our empirical 

analysis, including details of the FDIC's Debt Guarantee Program, and the estimation 

processes we use for the three liquidity dimensions. We report our empirical results in 

Section 4. Finally, Section 5 contains our concluding remarks. 

 

2. Development of hypotheses 

The most researched aspect of liquidity in extant literature is the trading cost 

dimension, typically estimated by the bid-ask spread of a security. In the bond market, 

Longstaff et al. (2005) split corporate yield spreads into default and non-default 

components and find that, among other factors, bid-ask spreads are indeed priced in the 

non-default component. Dick-Nielsen et al. (2012) also find that bid-ask spreads are 

priced in the non-default spreads of corporate bonds. We therefore base Hypothesis 1a on 

those studies. 

H1a: The trading cost dimension is priced in the non-default spread of bank bonds. 

Research has also analyzed the pricing of the depth dimension of liquidity. For 

equity markets, Brennan and Subrahmanyam (1996) document that an estimate of Kyle's 

λ – the depth dimension – is a priced risk factor in equities. In the bond market, Dick-

Nielsen et al. (2012) find that the Amihud (2002) measure of depth is priced in the non-

default spread. These studies motivate Hypothesis 1b. 

H1b: The depth dimension is priced in the non-default spread of bank bonds. 

                                                 
the yield difference between AAA and BBB bonds (proxying for a possible perception of default risk in 

guaranteed Refcorp bonds). 
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Kempf et al. (2015) first developed a measure of the resiliency dimension for 

limit-order-book markets, using Garbade (1982) as the basis for modeling resiliency as 

the mean reversion of order-flow. Kempf et al. (2015) model time varying liquidity using 

a mean reverting model, ΔLt=α−ϕLt−1+ɛt, where Lt is the level of liquidity at time t. ϕ, 

the intensity of mean reversion, is their estimate of resiliency in liquidity. Using this 

measure of resiliency, Obizhaeva and Wang (2013) show that an optimal strategy of 

trading a given security depends largely on the resiliency of the security. We could not 

find any research studies on the pricing relevance of resiliency in liquidity – neither for 

stocks nor for bonds. However, Dong et al. (2010) provide evidence that price resiliency 

predicts the cross-section of stock returns. Also, Pástor and Stambaugh (2003) show the 

pricing relevance of an illiquidity measure based on equity return reversals, and hence 

closely related to price resiliency. We accordingly postulate Hypothesis 1c, and are the 

first to explore this dimension of bond market liquidity. 

H1c: The resiliency dimension is priced in the non-default spread of bank bonds. 

Commonality in liquidity has been widely explored in the existing microstructure 

literature, beginning with Chordia et al. (2000a); Chordia et al. (2000b) who show that 

the bid-ask spreads of securities covary with one another, and that the depths of securities 

also co-move with one another. In their seminal work, Pástor and Stambaugh (2003) show 

that a market-wide illiquidity measure is priced in stocks. Similarly, Acharya and 

Pedersen (2005) demonstrate that a stock's return depends on its relationships with market 

liquidity. In the bond markets, Lin et al. (2011) show that investors in corporate bonds 

are compensated for their exposure to general market illiquidity. Moreover, Bao et al. 



32 

(2011) show that for high-rated bonds, market illiquidity actually explains more than 

credit risk. These findings collectively motivate Hypothesis 2. 

H2: The non-default spread varies also with market-wide liquidity dimensions. 

Finally, we turn our attention to the residual component, if any, of the non-default 

spread that remains after accounting for the non-default spread arising from state-level 

taxes and the three (aforementioned) dimensions of liquidity we analyze.16 If the non-

default spread is driven entirely by state taxes and these dimensions of liquidity, this 

residual yield spread should be zero. If there is a significantly positive residual non-

default yield spread, it could be a “quality spread” related to the risk of issuer default, 

arising because government guarantees may be considered inferior to direct government 

obligations because of possible procedural and time delays when the guarantee is actually 

invoked.17 Alternatively, following Longstaff (2004), the residual non-default yield 

spread could also be a “flight-to-extreme-liquidity premium” related to the fear of future 

volatility, reflecting investor preference for assets that enable quickest possible 

disengagement from the market if that becomes necessary – an aspect of liquidity not 

necessarily fully captured by our time-varying measures of our three dimensions of 

liquidity. Accordingly, we propose Hypothesis 3a, 3b, and 3c. 

H3a: The residual non-default yield spread that remains after accounting for the trading 

cost, depth, and resiliency dimensions of liquidity, is zero. 

                                                 
16 While the non-default spread has also been explained empirically using variables like maturity, market 

uncertainty, and certain debt covenants, these factors should affect the value of the bond only through 

illiquidity or state taxes as a channel. 

 
17 There could be good reasons for this. For example, in the formation of the Debt Guarantee Program, the 

FDIC initially claimed it would issue bondholders checks for the full amount of the guaranteed debt within 

days of a default; however, in the finalized program in November 2008, the FDIC stated that it would 

continue to make the scheduled payments of the defaulted debt issue (Federal Registrar, 2008). 
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H3b: The residual non-default yield spread that remains after accounting for the trading 

cost, depth, and resiliency dimensions of liquidity, is a “quality spread” related to the 

risk of issuer default. 

H3c: The residual non-default yield spread that remains after accounting for the trading 

cost, depth, and resiliency dimensions of liquidity, is a “flight-to-extreme-liquidity 

spread” related to the fear of future volatility. 

 

3. Sample and research design 

In order to isolate the non-default spread of bonds, we must control for default 

risk. To do this, we use a special set of corporate bonds with the same default risk as the 

US Treasury. This special set of bonds comes out of the financial crisis and Debt 

Guarantee Program (DGP), in which the FDIC insured bank debt against default with the 

full faith and credit of the United States government. The FDIC's backing is reflected in 

the highest possible ratings in the rating system, i.e., AAA ratings, for each of these 

guaranteed bond issuances, even though this was not necessarily the case for other bonds 

of the same issuer, with ratings varying all the way down to BB. 

These fixed-rate insured bonds provide a very clean setting in which to analyze 

the yield spreads of corporate debt. This is because these insured bonds should have 

default risk equal to that of US Treasuries and, therefore, no additional default premium. 

By subtracting the yields of Treasury debt from the yields of these insured bonds, we can 

observe the implied non-default component of the yield spread without relying on the 

kind of measurement-error-inducing models that are used in extant literature. 
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Transaction-level data for this study comes from the TRACE (Trade Reporting 

and Compliance Engine) Enhanced dataset. The sample collected from TRACE includes 

all transactions of DGP bonds with fixed or zero coupons. The program began in October 

2008 and continued through December 2012. That is, guaranteed bonds could be issued 

between October 14, 2008 and October 31, 2009 where the government guarantee on 

these issuances expired December 31, 2012. In practice, all of the bonds issued under the 

DGP matured prior to this deadline. Bond-level data for the bonds in the sample was 

obtained from the Mergent Fixed Investment Securities Database (FISD) and merged by 

CUSIP. To eliminate erroneous entries in the TRACE data, the transactions are filtered 

according to the methods outlined by Dick-Nielsen (2009). We also employ the agency 

filter from Dick-Nielsen (2009) to remove paired agency trades. The data are then 

processed further using a 10% median filter as described by Friewald et al. (2012). 

Following Bessembinder et al. (2009), daily yields are obtained by weighting individual 

trade prices by volume, and finding the yield from the resulting price. 

Daily Treasury yields are obtained from the H-15 release data from the Federal 

Reserve and maturity-adjusted for each observation using linear interpolation, following 

Dick-Nielsen et al. (2012). The non-default spread is then estimated by subtracting these 

Treasury yields from the yields of the government-guaranteed bonds. After later merging 

these non-default spreads with the different measures of liquidity, we are left with 10,122 

bond-day observations. To test the aforementioned hypotheses, we calculate proxies for 

each of the three dimensions of liquidity. The TRACE Enhanced dataset makes this 

possible by providing non-truncated volumes and a buy/sell indicator. 
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As a measure of the trading cost dimension, we follow Hong and Warga (2000) 

and approximate the daily bid-ask spread for each bond by taking the difference between 

the daily volume-weighted averages of the buy and sell prices. The effective half-spread 

is then scaled by the midpoint of the average buy and sell prices as follows: 

 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑑 =

∑ 𝑞𝑖𝑡𝑑𝑝𝑖𝑡𝑑𝐷=1
∑ 𝑞𝑖𝑡𝑑𝐷=1

−
∑ 𝑞𝑖𝑡𝑑𝑝𝑖𝑡𝑑𝐷=−1

∑ 𝑞𝑖𝑡𝑑𝐷=−1

(
∑ 𝑞𝑖𝑡𝑑𝑝𝑖𝑡𝑑𝐷=1

∑ 𝑞𝑖𝑡𝑑𝐷=1
+

∑ 𝑞𝑖𝑡𝑑𝑝𝑖𝑡𝑑𝐷=−1
∑ 𝑞𝑖𝑡𝑑𝐷=−1

)
, (8) 

where qitd is the volume of trade t for bond i on day d, pitd is the price of that trade, and D 

equals 1 for all public buys and −1 for all public sales. 

Similar to Dick-Nielsen et al. (2012) we use the Amihud (2002) illiquidity 

measure as a proxy for price impact of trades, and thus the depth dimension of liquidity. 

We estimate the Amihud measure as the following: 

 𝐴𝑚𝑖ℎ𝑢𝑑𝑖𝑑 =
100

𝑇
 × ∑

𝑎𝑏𝑠(𝑙𝑛(𝑝𝑖𝑡𝑑)−𝑙𝑛(𝑝𝑖,𝑡−1,𝑑))

𝑞𝑖𝑡𝑑/1,000,000
𝑇
𝑡=2 , (9) 

where T represents the number of trades of that particular bond on day d. This measure 

captures the change in price for a given quantity traded. To the extent that overall quantity 

traded (rather than signed order flow) represents the order flow in Kyle (1985), this is a 

theoretically valid measure of depth, and is extensively used as such in recent literature. 

The empirical measure of resiliency in liquidity that has been used in the literature 

is the Kempf et al. (2015) measure for limit order book markets based on the principles 

outlined by Garbade (1982). In this framework, resiliency in liquidity (i.e., trading cost 

or depth) is the extent to which distortions in liquidity (trading cost or depth as the case 

may be) get neutralized within a pre-specified time. Based on this framework, we 

construct a measure of resiliency for over-the-counter dealer markets, like U.S. corporate 
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bond markets. Since the change in aggregate dealer inventories represents the overall 

signed order flow in a dealer market, we define resiliency in liquidity as the extent to 

which distortions in dealers’ aggregate inventory get neutralized by the change in 

inventory within a pre-specified period. Dealers target a given inventory level, and will 

give attractive prices to buyers and unattractive prices to sellers when they have relatively 

high inventory levels, and vice versa when their inventory levels are relatively low (see 

Amihud and Mendelson, 1980; Ho and Stoll, 1981 ;  Ho and Stoll, 1983; Hansch et al., 

1998). Hence, the stronger the mean reversion in aggregate dealer inventories, the higher 

the resiliency. Accordingly, to estimate a bond's resiliency, we measure the extent of 

mean reversion in aggregate dealer inventories; i.e., the relationship between the level of 

dealer inventory at time t and the change in dealer inventory from time t to time t+1. The 

daily ϕ measure from the following regression is used as our resiliency measure in further 

analysis: 

 ∆𝐼𝑛𝑣𝑖𝑡𝑑 = 𝛼𝑖𝑑 − 𝜙𝑖𝑑𝐼𝑛𝑣𝑖,𝑡−1,𝑑 + 𝜀𝑖𝑡𝑑 . (10) 

Consistent with earlier literature (e.g., Naik and Yadav, 2003), we assume that 

aggregate dealer inventory is zero at the beginning of the sample, and adjust aggregate 

dealer inventory for each trade over the life of the bond. ϕid, our measure of resiliency, is 

a mean reversion parameter, and should theoretically be between 0 and 1, with 0 

indicating that dealer inventory is a random walk with no mean reversion, and 1 indicating 

perfect resiliency, meaning that dealers are always at their target inventory, which 

eliminates any liquidity-related pressures on prices to deviate from their intrinsic value. 

Therefore, the higher the value of ϕ, the greater the resiliency in liquidity. 
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After we estimate the non-default spread, bid-ask spread, Amihud measure, and 

resiliency measure for each bond-day, we winsorize each of these variables at the 1st and 

99th percentiles. Then, to correct for skewness and – more importantly for this study – to 

improve interpretability of regression coefficients, we take the natural logarithm of the 

winsorized bid-ask spreads, Amihud measures, and resiliency measures. Finally, in order 

to test the relationship of these three dimensions independent of the others, we 

orthogonalize the three liquidity dimension variables by regressing them on the other two, 

and keeping the residual from these three regressions.18 Because resiliency decreases as 

illiquidity increases, we lastly multiply the resiliency value by −1, so that it, as well as 

the bid-ask spread, the Amihud measure, and the non-default spread, are all increasing 

with illiquidity. 

Market-wide liquidity measures are obtained from GOVPX, which provides 

trades and quotes for US Treasuries, from 2008 through 2012. For observations in 2008, 

we limit our Treasury sample to those indicated as “Active,” or on-the-run. Similarly, for 

all other years, we limit our sample to Type 151 and 153 instruments, which are “Active 

Notes and Bonds” and “Active Treasury Bills,” respectively.19 

The best bid and ask prices for US Treasuries are provided by GOVPX. We first 

use these values to calculate the inside half-spread, and then average these values for 

every bond-day to get one bid-ask spread observation per bond-day. For consistency with 

the TRACE dataset, we estimate our market-wide Amihud illiquidity measure and 

                                                 
18 For example, these residuals give us the variation in the depth dimension of liquidity while controlling 

for the bid-ask spread and resiliency, and likewise for the other two dimensions. This is important because 

the price impact of a trade is affected by more factors than just volume, like the bid-ask spread, for example. 

 
19 We do this because the GOVPX dataset is split into years 2008 and prior, and 2009 and after, with slightly 

different variables in the two subsets. 
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resiliency measure using only on-the-run Treasury trade data. We construct both the 

Amihud and resiliency measures as we do for the guaranteed bonds above, on a bond-day 

basis. We then winsorize the bid-ask spread, Amihud, and resiliency variables at the 1 

and 99 percentile levels before averaging across days to construct three daily time series. 

Finally, we take the natural log of these three series to construct ln(Market Spread)t, 

ln(Market Amihud)t, and ln(Market Resiliency)t. Similar to the individual bond measures, 

we change the sign of resiliency so that it is increasing in illiquidity. 

Following Elton et al. (2001) we use a bond's coupon rate to control for the state 

tax premium. Due to constitutional law in the United States, state and federal 

governments cannot tax income from one another. This is most commonly illustrated in 

municipal bonds, wherein the income is exempt from federal taxation. However, the roles 

are reversed for Treasury bonds. States cannot tax the income from Treasuries. They can, 

however, tax the income (coupon payments) from corporate bonds; therefore corporate 

bonds, even those of equal default and liquidity risk, will have a slight yield spread over 

Treasuries, due to this “state tax premium”. When analyzing the residual non-default 

yield spread, we use the daily VIX level (obtained from the CBOE indices database) as 

well as S&P firm ratings (obtained from Compustat). Descriptive statistics for these 

measures are in Panel A of Table 10. Panel B contains the correlations of these variables. 
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4. Empirical results 

4.1. Pricing of bond-specific liquidity dimensions 

We begin our empirical analysis by testing Hypotheses 1a through 1c: whether 

the three liquidity dimensions are priced factors in these bonds. We do so using the 

following regression model: 

 𝑁𝐷𝑆𝑖𝑑 = 𝛼 + 𝛽1𝑙𝑛(𝑆𝑝𝑟𝑒𝑎𝑑)𝑖𝑑 + 𝛽2𝑙𝑛(𝐴𝑚𝑖ℎ𝑢𝑑)𝑖𝑑 + 𝛽3(−𝑙𝑛(𝑅𝑒𝑠𝑖𝑙))𝑖𝑑 

+𝜷′𝑿 + 𝜀𝑖𝑑,  (11) 

where X is a vector of control variables, including coupon and fixed-effects in various 

specifications. For this model, we use robust standard errors clustered two-ways, by day 

and bond, as suggested by Pedersen (2009). This corrects the standard errors for 

autocorrelation within bonds and heteroskedasticity between bonds. 

The results of these regressions are reported in Table 11. In Model 1, we use no 

fixed-effects and find that the coefficient on the log of the bid-ask spread is 0.059. Using 

the means and standard deviations reported in Table 10, this means that a one standard 

deviation increase in a bond's bid-ask spread is associated with an increase in yield of 

4.94 basis points.20 Similarly, for a one standard deviation increase in resiliency, yields 

decrease by 2.07 basis points.21 Both effects are statistically significant. However, the 

dependence on the Amihud measure is not statistically significant in this preliminary 

specification, although it is in the expected direction. Consistent with Elton et al. (2001) 

we find that state taxes are roughly 4.12 percent on the margin. 

                                                 
20 We obtain the effect of a one standard deviation change by calculating β × ln(1 + s/m), where β is the 

calculated regression coefficient using the log transformation, “s” is the standard deviation of the non-

transformed variable, and “m” is the mean of the non-transformed variable. 

 
21 Recall that the sign of resiliency is changed in the presentation of the regression results. 
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Next, in order to control for time-invariant, bond-specific effects, we use bond 

fixed effects in Model 2, which allows us to analyze the central research question of this 

study, i.e., the impact of the time-series variation in the liquidity dimensions of a 

particular bond on the non-default spread of that bond, while ignoring any variation 

between bonds. In this model, the effect of the bid-ask spread and resiliency on non-

default spreads remains statistically significant and roughly unchanged in economic 

magnitude. Economically, a one standard deviation change in the bid-ask spread is 

associated with a 5.00 basis point change, and a one standard deviation change in 

resiliency is associated with a 2.27 basis point change in the non-default spread. However, 

the effect of the depth dimension also becomes statistically significant, but the magnitude 

is still considerably less than the effect of bid-ask spread and resiliency – a one standard 

deviation increase in the Amihud measure is associated with only about a 1.27 basis point 

increase in bond yield. Meanwhile, when we take the regressors at the mean and multiply 

them by their respective coefficients, we find that a non-default spread of 16.3 basis points 

is attributable to the bid-ask spread, 3.5 basis points is attributable to resiliency, and 0.6 

is attributable to the Amihud measure. This means that, for this particular case, about 80% 

of the non-default spread (attributable collectively to these three liquidity dimensions) 

comes from the bid-ask spread, about 17% from resiliency, and a relatively minuscule 

3% from the Amihud depth measure.22 

To further analyze the relative impact of these three dimensions of liquidity, we 

reproduce Model 2 of Table 10 (in unreported regressions) and exclude each of the three 

orthoganalized liquidity variables, one at a time. We find that the R2 of the model falls by 

                                                 
22 Due to the bond fixed effects in this model, the means of the components need not add up exactly to the 

overall mean of the dependent variable, which is 20.7 basis points. 
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9.53%, 2.42%, and 0.58% when we exclude the bid-ask spread, resiliency, and Amihud 

measure variables, respectively. These results are qualitatively consistent with those 

documented above: the impact of the bid-ask spread is about four times that of resiliency, 

and that of resiliency is about four or five times that of depth. These relative impacts are 

also consistent with the univariate correlations in Panel B of Table 10. For example, in 

the regression we see that the non-default spread is most impacted by bid-ask spreads, 

then resiliency, and finally the Amihud measure; while in the correlation table, we find 

that non-default spreads vary most closely with orthoganalized bid-ask spreads (0.292), 

then orthoganalized resiliency (0.140), and finally the orthoganalized Amihud measure 

(−0.040). Since R2 is a goodness-of-fit measure, when we square the correlations, we see 

that bid-ask spreads (without any controls) account for approximately 8.5% of the 

variation in bid-ask spreads, resiliency accounts for 2.0%, and influence of depth 

(Amihud measure) is relatively negligible. 

In Model 3, we employ time (day) fixed effects to explore the effect on the non-

default spread of the cross-sectional differences in liquidity of different bonds within a 

given day (rather than within bonds over time.) This model controls for day-specific 

effects that don't change across bonds, in particular, all market-wide variables. The effect 

it measures is different from Model 2; the coefficients in Model 3 measure the impact of 

a cross-sectional difference in liquidity between bonds on non-default spread on a 

particular day. All three dimensions in this model are again statistically significant. A one 

standard deviation difference (between different bonds) in spreads, resiliency, and depth 

changes the non-default spread of the bond by about 0.54, 0.17, and 0.63 basis points, 

respectively. We see that when specifying the model in terms of cross-sectionally 
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examining variation between bonds, rather than over time for a particular bond, the depth 

dimension is surprisingly more important to investors. However, we are more interested 

in examining the pricing of liquidity for a particular bond over time (which is the bond 

fixed-effects specification). 

Finally, as a check for robustness, we utilize firm-fixed effects in Model 4 to 

control for any time-invariant effects which affect firms’ bonds differentially. In this 

model, we find results strikingly similar to those of the bond-fixed effect model. This 

shows that the effect of liquidity of the cost of debt is not firm-dependent. Again, these 

results indicate that the trading cost dimension of liquidity affects the non-default spread 

more than the resiliency and depth dimensions. 

Overall, these results offer strong evidence in support of Hypothesis 1a, 1b, and 

1c – that the trading cost, depth, and resiliency dimensions are each priced factors in the 

non-default spread of bonds. Furthermore, the trading cost dimension and the resiliency 

dimension are clearly more important to traders than the depth dimension. 

4.2. Pricing of market-wide liquidity dimensions 

As discussed previously, market-wide liquidity has been well documented in the 

literature. Because of this, we test Hypothesis 2, which states that the non-default spread 

varies also with market-wide liquidity measures. We do this by creating the 

aforementioned market liquidity variables from Treasury bond data. We then utilize these 

variables in our analysis of the non-default spread. Rather than estimating multiple 

liquidity “market models” to estimate the market and idiosyncratic components of 

liquidity, we opt instead to include both bond-specific and market-wide liquidity 

measures in the same regression. This parsimonious strategy reduces estimation error by 
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assuming that the effect of market liquidity on bond-specific liquidity is constant over the 

entire sample. 

Model 1 in Table 12 presents results without any fixed effects in the regression 

specification, while Model 2 presents results with bond fixed effects, which is what is 

directly relevant for the research question we are investigating. Models 1 and 2 cover the 

entire sample period. Interestingly, the inclusion of the market-wide liquidity proxies in 

the regression model does not materially affect the previous bond-specific results. We see 

that, over the full sample period, even after controlling for market-wide liquidity 

dimensions, a one standard deviation increase to a bond's bid-ask spread is associated 

with an increase in non-default spread of 4.20 basis points; a one standard deviation 

decrease in a bond's resiliency is associated with an increase in non-default spread of 2.03 

basis points; and a one standard deviation increase in a bond's Amihud measure is 

associated with an increase in non-default spread of 1.16 basis points; each of them is 

statistically significant at the 1% level.23 

The effects of the market-wide liquidity dimensions are also significant and large 

in magnitude over the full sample period. Focusing on the more relevant Model 2, we see 

that, even after controlling for bond-specific liquidity dimensions, a one standard 

deviation increase in market-wide trading costs, one standard deviation increase in 

market-wide depth, and one standard deviation decrease in market-wide resiliency is 

accompanied by an increase in non-default spread of about 0.56, 3.17, and 14.77 basis 

points, respectively; each of them are statistically significant at the 1% level. 

                                                 
23 Again, we obtain these figures by calculating β × ln(1+s/m), using the means and standard deviations 

from the descriptive statistics provided in Table 10 and the regression coefficients provided in Model 2 of 

Table 12. 
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Dick-Nielsen et al. (2012), as well as Friewald et al. (2012), show a dichotomy in 

liquidity pricing between crisis and non-crisis times. In light of this finding, we split our 

overall sample into crisis and post-crisis subsamples, and present the corresponding 

results (with bond fixed effects) in Models 3 and 4 respectively. Model 3 includes only 

the financial crisis period and Model 4 includes only the post-financial-crisis period. We 

classify transactions from 2008 and 2009 as being within the “crisis” subsample and 

transactions in 2010 and later as being in the “post-crisis” subsample. The results confirm 

a strong contrast in the two pricing regimes. We see that during the post-crisis period 

(Model 4), the pricing relevance of each of the dimensions of both bond-specific and 

market-wide liquidity remain highly significant, and qualitatively similar to what we have 

for the overall period. However, during the crisis period (Model 3) the situation is 

different. Bond-specific trading costs, market-wide trading costs, and bond-specific 

resiliency are the only liquidity dimensions that remain statistically and economically 

significant. 

4.3. Residual non-default spread 

Our results thus far show that the non-default component of the yield spread in 

our sample of FDIC-guaranteed DGP bonds depends significantly on the three widely 

accepted dimensions of liquidity – spreads, depth, and resiliency – and also reflect state 

taxes, as they should, since these bonds are subject to state taxes while U.S. Treasuries 

are not. In this sub-section, we examine if there is any residual non-default spread that 

remains unaccounted for after accounting for state taxes and the three dimensions of 

liquidity we have investigated. 
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The results of our tests for this residual non-default yield spread are reported in 

Table 13. In this table, we again regress the non-default spread on the three liquidity 

dimension proxies – trading costs, depth, and resiliency – and the coupon rate; but the 

important difference from earlier tables is that the liquidity dimension proxies in the 

regressions reported in this table have been transformed so that the regression coefficient 

on the constant term can be interpreted as the remaining magnitude of the non-default 

spread when the various liquidity dimension variables represent perfect liquidity. We do 

this by multiplying the liquidity variables by 100, adding 1 and taking the natural 

logarithm, except that for resiliency, we multiply “1 minus resiliency” by 100, add 1, and 

then take the logarithm. The intercept provides the residual non-default yield spread since 

it is the conditional mean of the dependent variable of the regression (the non-default 

spread) when all of the other variables are zero. This specification allows us to interpret 

the intercept term as the residual non-default yield spread remaining after controlling for 

state taxes and the three dimensions of liquidity we analyze, while keeping the 

distributions of the liquidity variables similar to previous analysis. Therefore, by using 

these transformed variables, the intercept estimates the mean value of the non-default 

spread when the bid-ask spread is zero (i.e., perfect liquidity from a trading cost 

perspective), the Amihud measure is zero (i.e., perfect liquidity from a depth perspective), 

and the resiliency is 1 – or more accurately “1 minus resiliency” is zero (i.e., perfect 

liquidity from a resiliency perspective). By including the coupon rate, we also control for 

the state tax premium. 

Model 1 in Table 13 presents the results of running the above regression for the 

overall sample with only bond-specific liquidity dimensions. We find that the residual 
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non-default yield spread is not significantly different from zero despite a sample of over 

10,000 bond-day observations. The intercept term of 0.0097 percent, while not 

significantly different from zero, represents about 4% of the mean non-default spread.24 

To further explore the robustness of our conclusion, we employ more 

specifications and controls. First, since Dick-Nielsen et al. (2012) show that liquidity is 

priced differently in crisis and non-crisis periods, we run, in Models 2 and 3 respectively, 

separate regressions for the crisis (2008–2009) and post-crisis (2010–2012) portions of 

our sample. When we account for potentially different dependence on liquidity measures 

in different periods, we do find statistically significant residual non-default yield spreads 

of about 8 basis points in both the crisis sample and the post-crisis sample. We then run 

the regression for the overall sample but control for market-wide liquidity dimensions in 

Model 4 of Table 13. Even when we include our three market-wide liquidity dimension 

proxies, we find, similar to Model 1, no statistically significant residual non-default yield 

spread for the overall sample. However, when we split the regression sample into the 

crisis and post-crisis time periods in Models 5 and 6, we again find a residual non-default 

yield spread of about 8 basis points in each sub-period, though the p-value in the crisis 

subsample is only 0.13, i.e., not significant at the conventionally used levels of 

significance. 

Overall, our results indicate that, after we control for state taxes and for the trading 

cost, depth, and resiliency dimensions of liquidity, the residual non-default spread is, on 

average, zero or minuscule in magnitude; but it may not be appropriate to definitively 

                                                 
24 It should be noted that this model has an adjusted R2 of only 0.089. So even though 96.12% of the size 

of the non-default spread has been statistically accounted for by the state tax premium and the three liquidity 

dimensions, about 91% of the variation of the non-default spread remains unexplained. 
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rule it out in its entirety in each period. We accordingly explore two possible reasons for 

such a residual non-default spread. Since the residual non-default yield spread is not the 

primary focus of this study, our analysis is largely exploratory, leaving an in-depth 

investigation of the reasons driving the observed residual non-default yield spread for 

future research. 

First, we note that, although our DGP bonds were backed by the full faith and 

credit of the United States government, they differed from Treasuries in that they were 

only guarantees and not direct obligations. Hence, there could potentially exist a “quality 

spread,” reflecting possible procedural and time delays, related arguably to the market-

perceived risk of actual issuer default (as it should closely proxy for the probability of the 

guarantee actually being invoked). 

Second, a residual non-default yield spread could also arise because of variables 

we may have omitted in our regression specifications, or variables that we may have 

specified in a functional form that did not fully reflect the dependence of the non-default 

spread. In particular, in the spirit of the Alan Greenspan quote from Longstaff (2004) 

cited in footnote 3 above, the residual non-default yield spread could potentially be 

driven, for example, by a “flight-to-extreme-liquidity” premium reflecting a strong 

investor preference for assets that enable the quickest possible disengagement from the 

market if circumstances make that necessary. 

In light of the previous results, we further analyze the residual non-default yield 

spread to determine whether or not this yield spread can be driven by a flight-to-extreme-

liquidity or by the difference in quality between government guarantees and government 

obligations. Longstaff (2004) suggests that the yield spread between these bonds and 
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Treasuries is driven by flight-to-liquidity, which is spawned by a general market fear 

motivating investors to place their capital in securities which allow them to disengage 

from the market as easily as possible. We therefore include a proxy for general market 

fear factor – the VIX level – in the residual non-default yield spread regression 

specification. We demean the VIX for each regression specification in order to keep the 

intercept coefficients interpretable. This does not affect the covariance of the non-default 

spread and the VIX, thus the associated regression coefficients on the VIX are unaffected. 

Our regression results are in Table 14. 

As we see in Table 14, the VIX is positively related to non-default spreads after 

controlling for liquidity and state taxes, and the dependence is statistically significant. 

This is consistent with the residual non-default yield spread being indeed driven by this 

general market fear factor, as Longstaff (2004) suggests. Specifically, we find that a one 

unit increase in the VIX is associated with a 1.75 basis point increase in residual non-

default yield spreads. This effect is increased to 2.22 basis points per unit increase during 

the crisis period, and reduced to 0.34 basis points per unit increase in the post-crisis period 

– which is consistent with a flight-to-liquidity premium being more important in times of 

crisis. We find that, even after controlling for this market fear, the conditional mean of 

residual non-default yield spreads in the post-crisis period remains at 8 basis points. 

However, the conditional mean of the residual non-default yield spread in the crisis period 

rises to about 29 basis points, driven by the VIX level of 31.84 that existed in that period. 

Over our full sample, we find residual non-default yield spread levels of around 12 basis 

points. 
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We finally examine whether this residual non-default yield spread could also be 

caused by a market perception that these guaranteed bonds are of inferior credit quality 

to Treasury bonds. Thus, we investigate whether the residual non-default yield spread is 

a function of market-perceived default risk. To do this, we include issuer credit rating 

fixed effects in the three regressions modeled in Table 14. These fixed effects are 

graphically represented in Fig. 1. When looking at the full and post-crisis samples, we 

find absolutely no evidence that the residual non-default yield spread is a function of 

market-perceived default risk. Specifically, we show that the residual non-default yield 

spread does not increase as issuer credit ratings worsen. This is also shown for the crisis 

subsample, for bonds of all credit ratings, albeit with one single exception. Two bonds, 

both issued by New York Community Bank, which had a “BBB-” Standard & Poor's 

credit rating during the crisis sample period – the worst rating of any bond in that period 

and hence one most likely to default – have much higher non-default spreads than their 

liquidity and VIX levels would suggest. This could be interpreted as indicating that, 

during the stressful crisis period, investors became wary of guaranteed bonds with the 

highest probability of default – possibly due to the uncertainty of guarantee payments in 

the event of default, or the possible red tape involved in receiving payments – and priced 

that risk accordingly. Alternatively, these two extreme observations from one particular 

bank in one particular sub-period could just be outliers. Thus, while we cannot completely 

rule out the conjecture that the residual non-default yield spread is due to a perceived 

inferiority of guaranteed bonds to direct obligation bonds, our overall results are not 

consistent with that view – a conclusion that is consistent with the earlier indirect 

evidence in Longstaff (2004). 
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Taken in conjunction, our results indicate that, while most of the Longstaff (2004) 

“flight-to-liquidity” premium is a liquidity premium arising from the conventional 

measures of liquidity – spreads, depth, and resiliency – the non-default spread could also 

impound, particularly in periods of crisis, a tiny additional “flight-to-extreme-liquidity” 

premium reflecting, as suggested by Longstaff (2004), a strong investor preference for 

assets that enable quickest possible disengagement from the market if necessary. 

4.4. Robustness tests 

We document a strong relationship between the non-default spread and each of 

the three dimensions of liquidity – trading costs, depth, and resiliency. The direction of 

causality in this relationship should arguably be from liquidity to non-default spreads, 

since it is difficult to think of a credible economic rationale for higher (lower) yields to 

cause correspondingly lower (higher) levels of liquidity. However, without a shock to 

bond liquidity that is exogenous to yields, we cannot formally test the causal direction of 

the relationships we document between non-default spread and liquidity. Instead, we 

attempt to address this empirically using a changes specification, vector autoregressions, 

and impulse response functions. All of these suggest that shocks to the non-default spread 

do not cause changes to the three liquidity dimensions, and point instead to causality from 

the three liquidity dimensions to the non-default spread. 

We begin by analyzing the relationship of daily changes in the non-default spread 

and the liquidity dimensions using the following regression model: 

 ∆𝑁𝐷𝑆𝑖𝑑 = 𝛼 + 𝛽1𝑙𝑛(𝑆𝑝𝑟𝑒𝑎𝑑)𝑖𝑑 + 𝛽2𝑙𝑛(𝐴𝑚𝑖ℎ𝑢𝑑)𝑖𝑑 − 𝛽3(𝑙𝑛(𝑅𝑒𝑠𝑖𝑙))𝑖𝑑 

+𝛽4𝑁𝐷𝑆𝑖,𝑑−1 + 𝜷′𝑿 + 𝜀𝑖𝑑 . (12) 

Because the non-default spread is arguably an integrated time-series – specifically 

the sum of a collection of previous shocks to the non-default spread – which is suggested 
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by Longstaff (2004), we include the lagged level of the non-default spread. While this 

changes the interpretation of the regression coefficients, if we find that the levels of the 

liquidity dimensions affect the shocks to non-default spreads, it suggests that the liquidity 

dimensions causally affect non-default spreads, and not the contrary. The results of these 

regression specifications can be found in Table 15. In Model 1 of Table 15, we see that, 

as in the levels specification (Table 11), the effect of the bid-ask spread is larger on the 

non-default spread than the effect of the other two liquidity dimensions. When we control 

for time-invariant, bond-specific factors by including bond fixed-effects in Model 2 of 

Table 15, these results still hold. Next, we include market liquidity variables (as in Table 

12) in Model 3 and find that while the market variables are significantly positively 

correlated with shocks to the non-default spreads, the bond-specific liquidity dimensions 

remain strongly significant. Finally, we split the sample into crisis and post-crisis. We 

again find a reduced effect of liquidity on the non-default spread during the crisis period. 

We find that the non-default spread has much less mean reversion during the crisis than 

in other periods (indicated by a smaller absolute value of the regression coefficient on the 

lagged NDS level). Thus, the non-default spread could still be a function of liquidity 

levels but in this specification, the lagged NDS already impounds previously-observed 

liquidity levels. In the post-crisis subsample, we find that all six liquidity dimensions are 

significantly priced, and the non-default spread is largely mean-reverting. Once again, we 

find that the level of market resiliency has a larger effect on the non-default spread than 

any other dimension. These results largely confirm our earlier analysis and dissuade any 

concerns that the previous regressions suffered from misspecification. 



52 

Typically, in the extant literature, it is assumed that the non-default spread is 

affected by the contemporaneous level of liquidity. We examine the following vector 

autoregression of the non-default spread and the liquidity dimension variables, in order 

to examine whether the lagged level of the liquidity dimensions affects the non-default 

spread, as well as investigate the reverse causality possibility: 

 𝐕𝐢𝐝 = 𝜶′ + 𝜷𝟏
′ 𝐕𝐢,𝐝−𝟏 + 𝜷′𝑿 + 𝛆𝐢𝐝. (13) 

where Vid is a vector containing the non-default spread, ln(Spread), ln(Amihud), and 

ln(Resiliency) for bond i on day d. The lagged liquidity dimensions are excellent proxies 

for the contemporaneous liquidity dimensions because their exogeneity is difficult to 

argue – the non-default spread on day d cannot affect the level of liquidity on day d−1, 

especially after controlling for the non-default spread in day d−1. We also attempt to 

control for any remaining residual non-default yield spread using the contemporaneous 

VIX level as variable proxy for the “fear factor”. We display the VAR for the crisis 

subsample in Panel A of Table 16 and the VAR for the post-crisis subsample in Panel B 

of Table 16. In the crisis subsample we see that all three dimensions of liquidity are priced 

when we use lagged dimension levels as proxies, confirming that in the crisis liquidity 

levels and non-default spreads were very persistent. More importantly, we see that the 

lagged non-default spread has a much smaller statistical effect on the contemporaneous 

liquidity dimensions than the effect of the lagged liquidity levels on the non-default 

spread. This goes a long way in dissuading a reverse causality argument, albeit without a 

properly identified exogenous event. We confirm this when we include contemporaneous 

variables into the VAR to examine the impulse responses of these four variables. Visual 

representations of the impulse response functions during the crisis period are provided in 
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Panel A of Fig. 2. From these impulse responses, we see that the liquidity dimensions 

have a much smaller response to a one standard deviation shock to the non-default spread 

than the non-default spread has to a one standard deviation shock to the liquidity 

dimensions, once again weakening the reverse causality argument. These results hold 

when we examine the impulse response functions during the post-crisis period in Panel 

B of Fig. 2. Interestingly, when we examine the VAR during the post-crisis period in 

Panel B of Table 15, we see that the lagged liquidity dimensions are not significantly 

priced in the non-default spread after we control for the lagged non-default spread and 

the VIX level. In conjunction with the changes specifications, this suggests that during 

the crisis, non-default spreads and liquidity levels were very persistent, but in the calmer, 

less uncertain environment of the post-crisis period, the non-default spread is more mean 

reverting and is a function of contemporaneous liquidity levels. Irrespective, overall, 

these results strongly point towards causality from the three liquidity dimensions to the 

non-default spread. 

 

5. Concluding remarks 

The seminal market microstructure literature – Garbade (1982), Kyle (1985), 

Harris (1990), and Harris (2003) – identifies three important dimensions of liquidity: 

trading costs, depth, and resiliency. This is the first study to investigate the relevance of 

each of these three dimensions of liquidity – separately and in conjunction – for the 

pricing of corporate bonds, specifically, bank bonds. Unlike previous studies, our sample 

allows us to cleanly separate the default and non-default components of yield spreads. 

We find that each of the above three dimensions of liquidity are priced factors in the non-
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default spread. Both bond-specific and market-wide dimensions of liquidity are priced. 

The trading cost and resiliency dimensions are relatively more important than the depth 

dimension as determinants of the level of the non-default spread. Finally, we find that, 

even after controlling for these three dimensions of liquidity, there does exist in some 

periods a small residual non-default yield spread that is consistent with an additional 

“flight-to-extreme-liquidity” premium (related to the fear of future volatility, and 

consistent with Longstaff (2004)) reflecting investor preference for assets that enable the 

quickest possible disengagement from the market when necessary. 

This study contributes to the extant literature in several important and significant 

ways. We are the first to examine whether the resiliency dimension of liquidity is priced 

in bond yields. Second, we are also the first to test whether the aforementioned three 

dimensions of liquidity – trading costs, depth, and resiliency – are priced in conjunction, 

as opposed to being priced separately. Third, an important methodological contribution 

we make is to use the principles underlying the empirical measure of resiliency developed 

(for limit-order-book markets) by Kempf et al. (2015) to define and estimate a new 

measure for the resiliency of over-the-counter dealer markets (like corporate bond 

markets). Fourth, we analyze the relative pricing relevance of both bond-specific and 

market-wide dimensions of liquidity. Fifth, we show that most of the Longstaff (2004) 

“flight-to-liquidity” premium is a liquidity premium directly related to the conventional 

measures of liquidity – spreads, depth, and resiliency. However, we also do find that the 

non-default spread in some periods, particularly periods of crisis, impounds a tiny 

additional “flight-to-extreme-liquidity” premium that, in the spirit of the quote of former 

Federal Reserve Bank Chairman Alan Greenspan cited at the start of Longstaff (2004), 
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reflects a strong investor preference for assets that enable quickest possible 

disengagement from the market when necessary. Finally, consistent with Longstaff 

(2004), we do not find significant evidence of a “quality spread” arising from government 

guaranteed bonds being perceived inferior to direct government obligations. 
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Chapter 3: Director Networks and Firm Value25 

 

1. Introduction   

The board of directors of a corporation is responsible for making decisions on 

major corporate issues and establishing policies related to management such as setting 

CEO compensation and firing and hiring the CEO. The director network, defined as the 

connections, both current and former, between a firm’s board of directors and board 

members at other firms, may allow well-connected boards to perform these crucial tasks 

more effectively. Connected directors may not only have better access to information 

about value-increasing management practices (Mizruchi, 1990; Mol, 2001), but also have 

more influence over fellow directors and management to ensure these practices are 

implemented (DeMarzo et al., 2003). Moreover, better connected directors may have 

better access to suppliers, customers or politicians through their network which can lead 

to strategic economic benefits for the firm. Conversely, a well-connected board could also 

have negative effects on firm value. For instance, more connected directors could be more 

distracted (Fich and White, 2003; Loderer and Peyer, 2002; Fich and Shivdasani, 2006) 

or they may spread value-destroying management practices or misleading information 

(Bizjak et al., 2009; Snyder et al., 2009; Armstrong and Larcker, 2009). To determine 

whether the benefits of connected boards outweigh the costs, we use an exogenous shock 

to board connectedness to examine if director networks are valuable.  

To determine the effect of director networks on firm value, we use the sudden 

deaths of well-connected directors as a shock to the networks of directors who sit on the 

                                                 
25 This chapter is based on collaborative work with Tor-Erik Bakke, Scott C. Linn, and Hamed Mahmudi. 
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same board as the deceased director (interlocked directors). The death of the well-

connected director severs the network tie between the interlocked director and the 

deceased director’s network. This represents a negative shock to the director network of 

the interlocked director’s firm (director-interlocked firms). By looking at the 

announcement returns of the director-interlocked firms and using a difference-in-

differences methodology, we find that this negative shock to director networks reduces 

firm value suggesting that director networks are value-enhancing.  

Existing work finds evidence of a positive association between director networks 

and firm value (Larcker et al., 2013). However, due to the pervasive endogeneity of 

director choice and firm value, convincingly establishing causality has eluded 

researchers. For instance, better connected directors may choose to sit on the boards of 

better performing firms, or an omitted variable such as investment opportunities may be 

correlated with both director connectedness and firm value. Moreover, well-connected 

directors are usually more experienced and talented making identifying the effect of 

directors’ connectedness on firm value difficult. Our experimental setup helps overcome 

this endogeneity problem as we identify exogenous shocks to board connectedness. The 

sudden death of interlocked directors is unlikely to be correlated with value-relevant 

omitted variables which could contaminate inference. Importantly, by studying how the 

sudden death of well-connected directors affects the value of interlocked firms (and not 

the deceased director’s firm itself), we are able to separate out the effect of board 

connectedness on firm value from the effect of other value-relevant director attributes. 

Finally, the randomness of the sudden death breaks the endogenous matching between 

directors and firms.  
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Our sample consists of Canadian public firms from 2000 to 2012. We focus on 

professional networks. That is, directors are connected if they currently or previously 

served on the same board. The advantage of focusing on professional connections is that 

they are observable, objective and not subject to sample selection concerns. For instance, 

unlike many educational ties where directors may have simply co-existed in the same 

environment, directors that served on the same board have had repeated face-to-face 

interactions and a working relationship. The disadvantage is that we miss other types of 

social connections that could also facilitate the flow of information and affect the 

centrality of a director in the network.  

Next, we compute commonly used network centrality measures for each director 

in the network. To identify significant exogenous shocks to the director network we focus 

on the sudden deaths of the most connected directors. Our sample consists of the sudden 

death of seven well-connected directors which results in 128 directors at 159 interlocked 

firms that experienced negative shocks to their director networks. These director-

interlocked firms lose access to the deceased director’s network and are therefore 

considered the treatment group.  

The shock to the connectedness of director-interlocked firms is economically and 

statistically significant. We find that the eigenvector centrality of treated firms falls by 

about 1% relative to control firms.26 Moreover, it is likely that the change in centrality 

measures understates the magnitude of the shock as it implicitly assumes that readjusting 

the network is frictionless. In reality adjusting one’s network, to compensate for the loss 

of the well-connected directors network, entails significant frictions in the form of search 

                                                 
26 Changes in eigenvector centrality best capture the loss of a well-connected director to an interlocked 

director’s network which is the focus of our identification strategy. 
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costs. Further bolstering the argument that these shocks are significant, Falato et al. 

(2014) provide evidence that replacing a lost director is time consuming and costly. 

To test whether the exogenous elimination of network ties affects firm value, we 

compare the announcement returns of treated firms to a matched sample of control firms 

that were unaffected by the director network shock. We show that the shock to director 

networks, caused by an unexpected death of a director, results in negative cumulative 

abnormal returns (CARs) for director-interlocked firms relative to the sample of control 

sample have similar pre-shock firm characteristics. Specifically, in univariate results, we 

find that relative to control firms, treated firms have around 0.6 percent lower abnormal 

returns in response to the sudden death of well-connected interlocked directors. When 

controlling for other various factors in a multivariate seemingly unrelated regression 

(SUR) framework, this difference is about 0.3 percent but remains highly statistically 

significant. This indicates that the loss of network connections led to a statistically and 

economically significant decline in firm value of director-interlocked firms.  

We next investigate whether our results are driven by an increase in the busyness 

of interlocked directors. This is important as our results could be confounded by the fact 

that the sudden death of the well-connected director has two effects on interlocked 

directors: (i) a negative shock to the director’s network and (ii) an increase in the 

director’s busyness (Falato et al., 2014). To separate these two effects, we redefine treated 

firms to only include firms who lost a past connection due to the sudden death of one of 

the well-connected directors.  These firms have at least one director who previously 

served on the same board as the deceased director (a past connection), but do not currently 

share a director with the deceased director’s firm(s). As the loss of a past connection does 
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not increase the busyness of the interlocked director, but does affect the connectedness of 

the director, this strategy enables us to better isolate the first effect (i). We find that our 

results continue to hold using only past connections suggesting that our results are not 

simply an artifact of an increase in director busyness but rather due to a reduction in the 

connectedness of the firm’s directors.  

We contribute to several strands of literature. First, we contribute to the broad 

literature on the value of connections. Faccio and Parsley (2009) show that political 

connections are valuable; Hochberg et al. (2007) find that more connected venture capital 

firms perform better; Cohen et al. (2008) and Cohen et al. (2010) show that education 

connections are valuable to mutual fund managers and equity research analysts 

respectively; Faleye et al. (2012) show that better-connected CEOs innovate more. We 

add to this literature by showing that firms benefit from having better-connected boards.  

Second, our study fits in the literature that studies director networks. This 

literature uncovers positive and negative aspects to having a well-connected board. On 

the one hand, Engelberg et al. (2013) show that CEO pay is increasing in the number and 

importance of her own connections.  Similarly, Barnea and Guedj (2009) and Renneboog 

and Zhao (2011) show that firms with better connected directors pay their CEOs more, 

but these firms also grant pay packages with lower pay-performance sensitivity. In 

addition, Barnea and Guedj (2009) show that well connected directors are more likely to 

get more directorships and provide softer monitoring.  

On the other hand, Horton et al. (2012) show that the positive link between 

connectedness and director compensation is not due to the connected directors using their 

power to extract economic rents. Instead, they find evidence that firms compensate 
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directors for their network connections. Moreover, Fogel et al. (2014) show that powerful 

independent directors are associated with fewer value-destroying M&A bids, more high-

powered CEO compensation, more accountability for poor performance, and less 

earnings management. Helmers et al. (2015) find that better-connected boards spend more 

on R&D and obtain more patents. Shelley, and Tice (2015) demonstrate that firms with 

well-connected boards are less likely to both misstate their annual financial statements 

and adopt practices that reduce financial reporting quality. We contribute by showing that 

overall well-connected boards are value-enhancing.  

Third, we add to the literature that studies the link between board connectedness 

and firm value. Several studies have found positive associations between the 

connectedness of a firm’s board of directors and its operating performance (Hochberg et 

al., 2007; Horton et al., 2012; Crespí-Caldera and Pascual-Fuster, 2015). Larcker et al. 

(2013) show that firms with more connected boards have significantly higher risk-

adjusted returns than firms with less connected boards. Stern (2015) demonstrates, using 

a learning model, that better connected board chairmen (but not directors in general) are 

associated with more value creation for their firms. In contrast to these papers, we provide 

causal evidence that having better connected directors increases firm value.  

Fogel et al. (2014) provide evidence that the sudden death of powerful directors 

negatively affects the value of the powerful director’s firm. However, unlike in our study, 

they are unable to distinguish whether the decline in value was due to the loss of the 

deceased director’s talent or due to the loss of the deceased director’s connections.  As 

connected directors are likely to be talented, this may confound inference. We get around 

this challenge by looking at the effect of the sudden death on director-interlocked firms 
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only. Thus, our study contributes by better isolating the effect of director networks on 

firm value.  

The remainder of the chapter proceeds as follows. In Section 2, we discuss the 

link between the connectedness of a firm’s board of directors and firm value. Section 3 

describes the data used for our empirical analysis, and the network centrality measures. 

In Section 4, we discuss the benefits of our identification strategy and the research design. 

Section 5 contains our empirical results. Finally, we conclude in Section 6. 

 

2. Director Networks and Firm Value 

In this section we discuss the link between the connectedness of a firm’s board of 

directors and firm value. We start by discussing the benefits of director networks, and 

then switch to the potential costs. The potential benefits of having well-connected 

directors come in three forms. First, directors can use their boardroom networks to gain 

access to valuable information from other directors. This information could be related to 

industry trends, market conditions, and regulatory changes or could be information on 

value-enhancing business practices (e.g., technological innovations, effective corporate 

governance mechanisms etc.). Thus, well-connected directors are able to make better 

decisions as they have access to a larger pool of information.  (Mizruchi, 1990; Mol, 

2001).  

Second, well-connected directors may have better access to strategic economic 

benefits through their networks. For instance, closely connected firms could benefit from 

collusion and other anti-competitive behavior (Pennings, 1980).27 Another potential 

                                                 
27 It is important to note that, although collusion can have a positive effect on firm value, if it leads to the 

violation business law, the regulatory, litigation, and reputation costs can negatively affect firm value. 
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strategic benefit is that connected firms may enjoy political favors or superior supplier or 

customer relationships which could not be possible without access to a large professional 

network of directors.  

Finally, better connected directors may be more influential and therefore better 

able to prevail in discussions with the rest of the board and management. As demonstrated 

in a theory paper by DeMarzo et al. (2003), an individual’s influence on group opinions 

depends not only on accuracy, but also on how well-connected the individual is. Thus, a 

director who is well-connected within the network of directors is more likely to have the 

power to sway other directors in the board room towards his views. Both the well-

connected director’s access to superior information and increased power to persuade the 

board should lead to better firm decisions and enhanced shareholder value. 

There are also potential costs to having a well-connected board. Bizjak et al. 

(2009), Snyder et al. (2009) and Armstrong and Larcker (2009) show that director 

connections facilitate the propagation of value-destroying governance practices. 

Moreover, well-connected directors with multiple directorships may be busy and 

therefore unable to allocate sufficient time and attention to monitoring and advising on 

all the boards on which they serve. This in turn could negatively affect firm value (Core 

et al., 1999; Fich and White, 2003; Loderer and Peyer, 2002; Fich and Shivdasani, 2006).  

Several papers provide evidence suggesting that the benefits of director networks 

exceed the costs and that director networks overall increase firm value. Larcker et al. 

(2013) show that firms with large director networks are associated with superior risk-

adjusted returns and greater increases in future profitability than firms with less connected 
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boards. However, endogeneity remains a significant concern. This must be properly 

addressed before advising firms to go out and hire more connected directors.  

In this setting endogeneity concerns are numerous and multi-faceted. One concern 

is reverse causality. For instance, more connected directors may choose to work for better 

firms (Masulis and Mobbs, 2012). Moreover, connected directors may also use their 

networks to correctly anticipate which firms are likely to perform well. Thus, causality 

may flow from firm value to more connected boards, and not vice versa. Another concern 

is omitted variables. Any unobservable variable that affects firm value and is correlated 

with board connectedness can contaminate inference. For example, connected directors 

may choose to work for firms with better governance or good investment opportunities, 

both of which are likely to affect firm value. Although, it is possible to find proxies for 

both governance and investment opportunities, these proxies are imperfect and any 

measurement error could significantly bias the estimated coefficients. 

Another important latent variable is director ability. Fogel et al. (2014) provide 

evidence that the sudden death of powerful directors negatively affects the value of the 

powerful director’s firm. However, powerful directors are also likely to be talented. By 

omitting director talent, Fogel et al. (2014) are not able to determine whether it is the loss 

of the deceased director’s connections or talent that causes the decline in firm value. In 

the identification section (Section 4) we discuss how we tackle these endogeneity 

concerns and provide persuasive causal evidence that more connected boards increase 

firm value, but first we present our data and how we measure director connectedness.  
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3. Data and Network Centrality Measures 

3.1 Data  

Our sample consists of Canadian public firms in the Clarkson Centre for Business 

Ethics and Board Effectiveness dataset from 2000 to 2012. We use annual firm-level 

accounting data from Worldscope and return data from Datastream. We drop all 

observations with missing or negative total assets. We calculate Tobin’s Q as the sum of 

market capitalization and the book value of debt, scaled by total assets. Leverage is 

calculated as total debt over total assets (and is treated as missing if less than zero), and 

ROA is calculated as net income over total assets. Finally, cash and capital expenditures 

are scaled by total assets. Firm size is ln(total assets). All continuous variables are 

winsorized at the 1st and 99th percentiles. 

3.2. Director network centrality measures 

We construct director networks measures for our sample firms from 2000 to 2012 

using data from the Clarkson Centre for Business Ethics and Board Effectiveness. Two 

directors are linked if they (i) currently sit on the same board or (ii) previously sat on the 

same board.28 The network is undirected and unweighted. Undirected networks assume 

that influence and information flow both ways between connected directors. In 

unweighted networks each link between directors has equal importance (i.e., the intensity 

of each link is the same).  

As is common in the literature (Renneboog and Zhao, 2011; Larker et al., 2013; 

Berkman et al., 2015; Crespi-Cladera and Pascual-Fuster, 2015) we restrict attention to 

                                                 
28 In regard to past connections, we use director start dates, and end dates for each position that each director 

holds to establish if directors previously sat on the same board. This approach allows the network to extend 

back beyond 2000. One shortcoming is that we miss past connections if at least one of the directors ended 

a position before 2000.   
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the director’s professional network (i.e., shared directorates). The advantage of focusing 

on professional connections is that we can observe the entire network. Moreover, no 

judgement is involved in determining the ties. Finally, directors that served on the same 

board have had repeated face-to-face interactions and a working relationship. In contrast, 

educational ties (considered by Fogel et al. (2014)) could range from situations in which 

directors worked closely together to situations in which directors may have simply co-

existed in the same environment. A downside of focusing only on professional 

connections is that that we miss other types of social connections (i.e., friends, 

acquaintances, family etc.) that could also facilitate the flow of information and affect the 

centrality of a director in the network. Unfortunately, data on social ties is not widely 

available.   

Using the start and end dates for each director’s position, we are able to construct 

a separate adjacency matrix for each year from 2000 through 2012. Intuitively, the 

adjacency matrix represents the network structure in each sample year. More specifically, 

the adjacency matrix A is a symmetric matrix in which each row and corresponding 

column refer to an individual director. Director i is then defined as connected to director 

j (A [i, j] = A [j, i] = 1) if the two directors sit on the same firm’s board in the same year, 

or have ever sat on the same board in the same year at some point in the past. If a director 

leaves the sample completely, and does not return, then all of her connections are severed. 

This could happen for various reasons from retirement to illness to a career change, as 

well as death. 

Using the adjacency matrices constructed based on our network of directors and 

UCINET software (see Borgatti et al. (2002)), we calculate four network centrality 
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measures for each director each year:  degree, eigenvector, closeness, and betweenness. 

Degree centrality measure is the number of connections a given director has within the 

network. Mathematically, the degree centrality for director i is simply the sum of column 

i (or row i) in the adjacency matrix. 

Eigenvector centrality is closely related to degree centrality. Intuitively, 

eigenvector centrality weights each connection by how important it is. Specifically, 

eigenvector centrality is an iteratively calculated weighted average of the importance of 

a director’s direct contacts, with weights determined by the importance of their direct 

connections, and so on. Assuming Ei is the eigenvector centrality measure for director i, 

and E is a vector containing [E1, E2,…, Ei,…,EN], then the aforementioned iterative 

calculations will converge to the condition AE = λE, where λ is the eigenvalue associated 

with E.29 The resulting Ei values are then normalized using a Euclidian normalization in 

order for the sum of the squares of the resulting centrality measures will equal 1 for any 

given network. This allows for comparison of eigenvector centrality measures between 

different networks. 

A director’s closeness centrality captures how close the director is to every other 

director in the network. Closeness centrality is calculated as the reciprocal of the sum of 

the shortest distances between the director and every other director in the network. One 

complication is that in large and complex network, such as the one we study, some 

directors in isolated subnetworks may have undefined distances to others (i.e., there are 

some parts of the network they cannot access). To account for this, we follow Fogel et al. 

(2014), and define director i's closeness, Ci as 

                                                 
29 Since the adjacency matrix A may have multiple eigenvalues, we apply the Perron-Frobenius theorem to 

ensure that all Ei ≥ 0, and use the eigenvector E with the largest λ. 
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 𝐶𝑖 =
𝑛𝑖−1

∑ 𝑔𝑖𝑗𝑖≠𝑗∈𝑁
×

𝑛𝑖

𝑁
,  (14) 

where ni is the size of the subnetwork which contains director i, gij is the geodesic distance 

from director i to director j, and N is the size of the entire network. This correction 

calculates the closeness of a director within a sub-network, and then weights that 

closeness measure by the relative size of the sub-network, which will correct for a director 

being highly connected within a very small sub-network (i.e., one firm with a board that 

has no connections to any other directors at other firms). 

A director’s betweenness centrality is the number of the shortest-paths between 

all directors in the network that go through the director. To better understand this measure, 

consider a spoke-and-hub network. The center hub will lie on every shortest path between 

the other directors (high betweenness), but a spoke will not lie on any of the shortest paths 

(low betweenness).  

Directors who score highly on any of these four network centrality measures are 

likely to have more power and influence as well as better access to information. That 

being said, different centrality measures are important for different reasons. For example, 

the number of immediate connections a director has – degree centrality – as well as the 

importance of those connections – eigenvector centrality – may increase the director’s 

power and influence in the board room (Renneboog and Zhao, 2011) and enable directors 

to better convince or persuade other directors or management. Closeness and betweenness 

centrality may be more apt to capture a director’s ease of accessing valuable information. 

For example, if a director has a high betweenness centrality, then she is more likely to 

broker conversations with other directors, gaining insight to potentially valuable 

information. Similarly, if a director has a high closeness centrality, then his position to 
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access information is advantageous relative to other directors in the network. It can also 

be argued that betweenness centrality better captures the power of the director as high 

betweenness implies that the director is on more of the shortest paths within the network 

and therefore more influential (Lee et al., 2010). Given the subtle differences between the 

measures, we report and use all four measures in our analysis.  

 

4. Identification Strategy and Research Design 

In this section we describe how we identify the effect of director networks on firm 

value. We focus on the negative shocks to director network stemming from the sudden 

and unexpected deaths of well-connected directors of Canadian firms from 2000 to 2012. 

To find the sudden deaths of well-connected directors we first, identify all directors who 

left the sample between 2000 and 2012. Second, we prioritize the directors with the 

highest network centrality measures. Specifically, we search for sudden death among the 

2100 most connected directors for each year in our sample. Third, to ascertain which of 

the well-connected directors left the sample due to a sudden death, we hand collect 

information about the passing of numerous directors from Factiva, obituaries, news 

media, and press releases. We eliminate all directors who left the sample for a reason 

other than death (i.e. career change, retirement, etc.). To ensure that the sudden death is 

unanticipated and exogenous, we also exclude director deaths in which the director retired 

prior to his passing, or had a prolonged illness which caused them to leave a firm in the 

year of their death.  

Ultimately, we classify seven deaths as sudden and unexpected. Specifically we 

identify sudden deaths of well-connected directors in 2001, 2002, 2003, 2005, 2006, and 



70 

two in 2011. To illustrate what we consider a sudden death, consider two examples. One 

director, Donald Fullerton, died May 29, 2011. His obituary claimed it to be a “sudden 

but peaceful passing.” Another director, John Beddome, died on May 10, 2005 “after a 

brief and courageous struggle with cancer.” We deem each of these director deaths to be 

sufficiently unexpected so that any the impact of their deaths is not already impounded 

in market prices. Even if deaths were partially anticipated it is likely that much 

uncertainty is still resolved on and around the announcement date. Moreover, the 

suddenness of the deaths implies that the firm did not have readily available replacement. 

Consistent with this conjecture, Falato et al. (2014) provide evidence that about half of 

firms, that lost a director due to death, do not fill the director vacancy one or two year 

after the death. They show that firms fill director vacancies even slower after a sudden 

death.  

For each year in which we identify sudden director death, we create “shocked” 

adjacency matrices for each year. These shocked matrices are identical to the pre-shock 

matrices, except for the column and row corresponding to the deceased director, in which 

we change each element to zero.30 In other words, the post-shock network structure is 

identical to the pre-shock network structure except that the well-connected director is 

removed from the network. To assess the magnitude of the shock to director networks 

induced by well-connected director deaths, we aggregate the estimated centrality 

measures at the firm level by averaging the network centrality measures of firms’ current 

directors each year. This is done for both the pre-shock and shocked director networks.  

                                                 
30 In 2011, there are two chronological shocks. The first shocked adjacency matrix is treated the same as 

the other shocked matrices, but for the second shocked matrix, we use the first shocked matrix as the pre-

shock matrix, and eliminate connections of the second deceased director. 
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Next, we find the percentage change in firm-level average director centrality by dividing 

the difference in the shocked and pre-shocked centrality by the pre-shock centrality value. 

This gives us a relative measure of how much a given death affected the network 

centrality of each firm’s board of directors. 

How large are our network shocks? To determine this we compare how the shock 

affected firms with direct connections to the deceased directors firms (treated firms) to 

firms without this direct connection (control firms). We find that the shock to director 

networks is economically and statistically significant. Eigenvector centrality is 

significantly shocked, dropping 0.91% more for treated firms relative to control firms. 

The other network centrality measures also experience statistically significant drops, but 

the magnitudes are smaller (degree, closeness, and betweenness centrality are 

differentially shocked by -0.26%, -0.02%, and -0.15%, respectively). This is not 

unexpected as eigenvector centrality is the centrality measure that is best suited to capture 

the loss of an important individual connection (as is the case in our setting).  

We also regress the percentage changes in average firm network centrality on a 

treatment dummy. The regression coefficient on the treatment dummy captures the DID 

estimate of the effect of the network shocks on the network centrality measures. We also 

include a number of control variables as well as industry fixed effects in the regressions. 

The controls include board size (number of firm directors), size, market-to-book, and 

profitability. The standard errors are panel-corrected standard errors (PCSE). The results 

of running these regressions are in Table 20 Panel A. The most notable result is that all 

four of the centrality measures were negatively shocked by the deaths of these directors 

(all except one is also statistically significant).  
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It is important to keep in mind that the estimated shocks to the network centrality 

measures likely understate the true impact of the network shock. This is because the 

calculation of the post-shock adjacency matrix assumes that directors can adjust their 

networks immediately and without any costs (e.g., search costs). For instance, in the case 

of betweenness and closeness centrality the post-shock network recalculates all the 

shortest paths. In reality the readjustment of the network is unlikely to be frictionless, but 

both time-consuming and costly. Taken in conjunction, this evidence suggests that the 

deaths of the seven well-connected directors did in fact have a negative impact on the 

network centrality of connected firms.  

To identify the impact of the board connectedness on firm value, we conduct an 

event study around each sudden death. Treated firms are defined as any firm that had a 

director interlock with the deceased director’s firm. These firms lost access to the well-

connected director’s network and are therefore subject to a network shock. Given that the 

deaths were sudden and unexpected, announcement returns should capture the value 

implications of the network shock on the firm value of director interlocked firms. 

Moreover, the unexpected nature of the shock also ensures that we have exogenous 

variation in director networks allowing the identification of a causal effect. We compare 

the abnormal returns of treated firms to a baseline of similar control firms, that were 

unaffected by the network shock (i.e., do not have an interlock with the deceased 

director’s firm). To the extent that the market anticipated how firms would react to loss 

of network connections, this difference-in-differences test can be interpreted as the causal 

effect of director connectedness on firm value.  
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It is important to recognize that we exclude the deceased director’s firm from our 

analysis (i.e., these firms are not part of our treatment group). The deceased director firms 

could see drops in value for two reasons, due to (i) the loss of the deceased director’s 

network connections and (ii) the loss of the deceased director’s talents, experience and 

knowledge. By focusing our analysis only on director-interlocked firms we are able to, 

unlike Fogel et al. (2014), to isolate the effect of the shock to board connectedness on 

firm value. 

To avoid violations of the parallel trends assumption, it is useful to test if 

observable firm characteristics of treated and control firm similar in the pre-shock period. 

Descriptive statistics of the pre-shock firm characteristics are displayed in Table 17 Panel 

A. We see that on average treated firms are much larger, have more board members, and 

are much better connected in the director network. The samples also differ in terms of 

cash holdings, Tobin’s Q, and profitability (ROA). 

Given the significant differences in pre-shock characteristics of the treated and 

untreated firms, we employ a matching procedure to obtain more similar treatment and 

control samples. Specifically, from the subsample of control firms in the same 1-digit SIC 

code, we limit the possible matches for each treated firm to its 7 nearest neighbors in pre-

shock average director degree centrality, and then match each treated firm with the 3 

nearest neighbors in pre-shock firm size. Matching is done with replacement. This results 

in a control sample of 477 firm-years, or 3 matched firms for each of the 159 treated firm-

years. Descriptive statistics for the treated and matched control sample are displayed in 

Table 18. We use three different methods to test for differences in the distribution of the 

two samples. The difference in means is tested using both a pooled difference-in-means 
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t-test and a paired difference t-test, while the difference in medians is tested using a two-

sided (rank-sum) Wilcoxon Z-test.  

As can be seen from Table 18 Panel A, the pre-shock samples are similar in both 

firm size and Tobin’s Q. Because we are using Canadian firms, we are unable to utilize 

the full Fama and French (1993) 3-factor model to calculate abnormal returns, but only a 

market model, therefore a treatment and control sample matched on both size and book-

to-market is important to alleviate concerns about systematic bias in our measurement of 

abnormal returns. We also see that the treatment and control firms are similar on most 

other dimensions, including board size, cash holdings, leverage, capital expenditures and 

return on assets. We do find statistically significant differences in both the means and 

medians in network centrality; however, the economic significance of the difference is 

fairly minuscule. For example, while the mean control firm has directors with an average 

of 29.14 connections, the mean treated firm has director with an average of 31.92 

connections, a relatively small difference. Overall, the matched samples are similar on 

observables, which makes it less likely that a differential trend during the event windows 

is biasing our results. 

 

5. Empirical Results 

5.1. Main Results 

We start our presentation of the empirical results, by examining the cumulative 

abnormal returns (CARs) around the announcement of the sudden director deaths. To 

implement our tests we first calculate abnormal returns for all firms in our sample using 

the market model. We use returns on the S&P/TSX Composite Index, including 
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dividends, obtained from Datastream as the market return in the model. Betas are 

estimated using data from 230 trading days prior to the death of each well-connected 

director, as we exclude the 30 days prior to the event date from the estimation window to 

mitigate contamination. We focus on event windows (0), (0,+1), (-1,+1) as well as (-2,+2) 

to allow for potential leakage of information prior to the announcement. Day zero is the 

announcement date of director deaths. Leakage is a possibility in the cases in which the 

director is admitted to a hospital and passes away relatively quickly, however, leakage is 

unlikely if the director’s death is due a stroke, heart attack or accident.   

Next, we calculate cumulative abnormal returns (CARs) for each event window 

for the treated and control firms separately. As the CARs are clustered over seven 

different event periods, cross-correlation may bias our standard errors downward and lead 

to over rejection of the null hypothesis (Kothari and Werner, (2006)). To adjust for the 

cross correlation, we calculate the t-statistics for the difference of the mean CARs from 

zero using the technique in Kolari and Pynnönen (2010). As can be seen in Table 19, 

treated firms have abnormal returns that are negative and statistically significant on the 

day the death is announced, however, in other event windows the abnormal returns are 

not statistically significant.  

However, we are more interested in how the treated and control firms reacted 

differentially to the death of the well-connected director. Therefore, we compare the 

differences of the CARs of the treated and control firms in the event windows. Treated 

firms have event-day abnormal returns of -0.36%, compared to 0.23% for control firms, 

resulting in a difference-in-differences (DID) estimate of -0.59%. This effect is 

statistically significant at the 1% level. When we expand the event window, we find the 
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DID estimate is -0.44% in the (0, +1) event window, and -0.45% in the (-1, +1) event 

window, both of which are statistically significant using a paired-difference t-test. These 

results strongly suggest with the negative shock to director connectedness results in a 

decrease in firm value.  

Although, the treatment and the matched control group are similar (see section 4), 

it is possible that omitted variables could be driving our univariate findings. Thus, we 

further test the effect of these network shocks in a multivariate setting. This allows the 

inclusion of control variables and industry fixed effects. We use a seemingly unrelated 

regression (SUR) framework that allows coefficient estimates to vary for each shock. 

Residuals are assumed to be correlated within each shock, but uncorrelated between 

different shocks. In the regressions we control for board size (number of firm directors), 

size, market-to-book, and profitability. Another potential concern is that the residuals are 

correlated within each of the shocks leading to biased estimates of standard errors. To 

adjust for this standard errors are panel-corrected standard errors (PCSE). 

Table 20 reports the cross-sectional regressions with CARs on the left hand side 

and an indicator variable that equals one if the firm is a member of our treated group on 

the right hand side. The results for the announcement day suggest that the treated firms 

experience abnormal returns that are smaller than those for the control firms by 0.3% 

which is statistically significant at the 5% level. In the other windows, the results are 

economically similar, but statistically insignificant. If the markets efficiently process the 

implications of the deaths for director networks, then this result is perhaps not surprising. 
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At the mean, a -0.30% decrease in firm value is approximately equivalent to a $19.7 

million loss in market capitalization per treated firm.31 

We also find that these results are qualitatively robust to instead using a paired 

difference specification in which each pair is a treated firm and a matched control firm. 

To this end, we regress the difference between treatment and control firm abnormal 

returns on the differences between treatment and control firm characteristics. The paired 

difference regression has the advantage that statistical power is improved in matched-pair 

regressions due to the additional information (i.e., which treated firm that is matched to 

which control firm) that is disregarded in pooled regressions. The downside of this 

specification is that control variables must take the form of matched-differences, which 

eliminates the possibility of industry fixed effects. This concern is mitigated by the fact 

that the control firms are matched to industry peers. 

The results using the paired difference specifications are in Table 20 Panel B. We 

again find that treated firms, those with direct connections to the deceased director, have 

event-day announcement returns that are lower than control firms (0.23%). Expanding 

the event window to include the day following the death (i.e., (0,+1)), we see that treated 

firms’ stocks had returns that were 0.31% lower compared to their control firms. 

Collectively these results are consistent with the negative shocks to director centrality 

reducing firms value differentially in our treated firms relative to our control firms.  

5.2 Busyness 

The value effect evident in the previous regressions is possibly due to two 

economic mechanisms. Firm value either dropped due to the exogenous severing of 

                                                 
31 This is calculated as -0.30% × $6,564,604,348 where the latter number is the average market 

capitalization of treated firms. 
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director network connections, or because board members from treated firms must now 

work more for the firm of the deceased, and thus neglect their other firms. This is the 

busyness effect hypothesized by Falato et al. (2014). They find, using the sudden death 

of interlocked directors, a negative abnormal market reaction for interlocked firms which 

they attribute to the increased busyness of the interlocked directors.32 This confounding 

effect of busyness is a threat to the internal validity of our results as the firm value of the 

director-interlocked firms (treated firms) could decrease either due to a negative shock to 

director networks or because its board is more distracted.  

We tackle this challenge by showing that our results continue to hold in a sample 

where director busyness is unaffected. To avoid the contamination of the increased 

busyness effect, we focus on a subsample of firms which do not share an interlocked 

director with the firm of the deceased, but which do have a past professional connection 

to the deceased director. In other words, we analyze the returns of firms which have 

directors that previously sat on boards with the deceased, but did not at the time of his 

death. This allows us to isolate the effect of a change in network centrality without any 

confounding change in busyness. This is because the director with only a past connection 

to the deceased will experience a loss of connectedness, but will not be incurring an 

increased workload due to the death.33 Thus, in this subsample the shock only affects the 

                                                 
32 Falato et al. (2014) define interlock as when two directors not only sit at on the same board but also on 

the same committee. 

 
33 It is possible for a firm to have both a current and past connection to the deceased director. This would 

occur if one of a firm’s directors is currently interlocked with the deceased director’s firm and another 

director previously sat on a board with the deceased director. However, we verify that this does not occur 

for any of the treated firms in this study. Thus, treated firms have either a current or past connections to the 

deceased director, but not both. 
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director’s network and not his busyness allowing us to better identify the effect of the 

negative network shock on firm value.   

Panel B of Table 18 displays the subsample of treated firms that only have past 

connection with the deceased directors, and thus no busyness-effect contamination, and 

their matched control firms. We can see that treated and control groups have comparable 

means and medians for most observable pre-shock firm characteristics. Pre-shock 

network centrality measures are statistically different between treated and control firms, 

but are mostly economically similar. This is comforting as it suggests that the parallel 

trends assumption is more likely to hold in this setting.  

Table 19 Panel B reports the univariate results. First, treated firms exhibit 

economically and statistically significant drops in firm value during the event windows. 

On the announcement date firm value drops 0.55%. If we expand the window to also 

include the day after the announcement we find an even larger 0.91% drop in firm value. 

This result is highly robust to different definitions of the event window.  Second, we also 

find that treated firms experience significantly larger deceases in value relative to control 

firms. We find a -0.69% event-day DID estimate indicating a significant decrease in firm 

value. When we expand the event window, we find DID CAR estimates of -1.09%, -

1.07%, and -0.90% for the (0, +1), (-1, +1), and (-2, +2) event windows, respectively, all 

statistically significant at the 1% level.  

These results continue to hold in a multivariate setting. We use the same 

specifications as in Table 20, but only retain treated firms (and their matched control 

firms) that have a past connection with the deceased directors. In Panel A of Table 21 we 

regress abnormal returns on a treatment dummy, controls variables and industry fixed 
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effects using the SUR methodology. The coefficient on the Treatment dummy is negative 

and statistically significant in all event windows (except having a p-value of 0.103 in the 

(-2,+2) window). This indicates that firms that experience a negative network shock see 

decreases in firm value relative to control firms, despite having no shock to busyness. For 

the announcement date this differential decline in value is 0.41%. This effect becomes 

more pronounced in the (0, +1) event window, decreasing by 0.69%. Both of these effects 

are significant at the 5% significance level. The (-1, +1) event window shows a 0.63% 

differential in abnormal returns, with a p-value of 0.057.  

We repeat the pair difference regressions from Table 20 (i.e., each pair is a treated 

firm and its matched control firms). The results are in Panel B of Table 21. Here the 

intercept (the DID estimate) remains fairly similar to the pooled specification above, 

however the statistical significance increases. We find a -0.37% differential change in 

firm value on the event-day, a -0.68% change in the (0, +1) event window, a -0.64% 

change in the (-1, +1) event window, and a -0.61% change in the (-2, +2) event window 

– all statistically significant at either the 5 or 1% level. Using the average market 

capitalization of this treated subsample, the economic magnitude of these abnormal 

returns ranges from $25 to 46 million per firm – value which is being lost due to the 

negative network shock. It is also important to note that we also see a highly significant 

change in degree centrality for this subsample. This suggests that the network shock had 

a material adverse effect on board connectedness, and further suggest that the observed 

decline in firm value is indeed due to the change in director centrality.  

In sum, using a subsample of treated firms which were only connected to the 

deceased director in the past allows us to tease out the effect of a loss in network 
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connectedness on firm value without confounding change in busyness. The results 

suggest that network shocks lead to reductions in firm value independently of any 

busyness effect. This is not to suggest that busyness is not important or that busyness does 

not have adverse effects on firm value as found in Falato et al. (2014) suggest. Even 

though we show that network shocks reduce firm value, it is likely that both factors matter 

in practice.  

We perform some additional tests to further separate the busyness and network 

channels. Following Falato et al. (2014), we postulate that if the deceased directors who 

sat on smaller committees, then the sudden deaths should have a greater impact the 

busyness of the interlocked directors. In contrast, if the deceased director sat on a larger 

committee the shock to busyness of the interlocked director is smaller. Thus, if busyness 

is driving our results we expect to find that our results are stronger when the deceased 

director sat on a smaller committee. To accomplish this, using a triple difference 

methodology where third difference is whether the deceased directors sat on small or 

large committees.  

To implement these tests, we first find that the median committee size of the seven 

deceased directors is 7 directors. We then create a dummy variable (Big Committee) that 

equals 1 if the observation is related to the death of a director whose average committee 

size was greater than the median of 7, and 0 otherwise. Next, we use the paired-difference 

specification for the regression so that the dummy variable can directly be interpreted as 

the differential impact of the busyness effect. In contrast with the previous test, we also 

limit the sample to firms that were currently interlocked. This is done as past connections 

are unaffected by busyness.  
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If the busyness effect is prevalent in our sample, the Big Committee dummy 

variable will be significantly positive in these regressions with CARs as the dependent 

variable. A positive coefficient implies that the effect of the network shocks on firm value 

is attenuated when the deceased director sits on larger committees. In Table 22 we run 

these triple difference tests using SUR regressions, and the same control variables as 

previously, but adding industry fixed-effects since the constant is no longer necessary for 

interpretation.  

Interestingly, we do not find that the Big Committee dummy variable is 

significantly positive. In fact, the dummy variable is negative in all specifications, and 

significant at the 5% level when looking at cumulative abnormal returns in the (-2, +2) 

event window. This is inconsistent with the busyness channel. In Panel B of Table 22 we 

run similar triple difference regressions except that we have the matched-difference in 

changes in centrality measures on the left hand side. We find that in terms of degree, 

closeness, and betweenness centrality, the sudden deaths of the directors on big-

committees shocked the treated firms significantly more than the deaths of the directors 

on small committees. This is consistent with larger shocks to director networks leading 

to larger value-effects for Big Committee firms. Eigenvector centrality, however was 

shocked differentially more, suggesting that while the deceased directors on big 

committees were more connected and central, they may not have been as important. In 

sum, the results of the SUR regressions in Table 22 provide addition evidence that the 

value effect which we observe is not due to interlocked director busyness, but instead due 

to the severing of ties in director networks.  
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6. Concluding Remarks 

We use exogenous variation provided by the sudden death of well-connected 

directors to isolate the impact of board connectedness on firm value. To this end we study 

the abnormal returns of interlocked firms, whose interlocked director suffers a negative 

shock to his network of board connections, relative to control firms who are unaffected 

by the shock. We find that the negative network shock leads to about a 0.6% decrease in 

firm value.  

Our approach sidesteps many of the identification challenges faced by other 

papers. Given that the director deaths we study are unexpected and sudden, the variation 

in director networks we study is unlikely to be correlated with important omitted variables 

that affect firm value.  Moreover, the sudden deaths break up the endogenous matching 

in the director labor market, whereby highly connected directors choose better performing 

firms, making reverse causality less of a concern in our setting. By focusing our analysis 

on the interlocked firms (and not the deceased director’s firm), we are able to isolate the 

impact of director networks from potential confounding variables such as director talent 

and experience. Finally, we find, by studying past connections, we find that our results 

are not an artifact of the increase in busyness of interlocked directors following the sudden 

deaths.   

 Our findings are important as it is difficult to draw causal inference between 

board characteristics, such as director networks, and shareholder value. Moreover, the 

recent regulatory interest in this area makes our findings topical and highly relevant as it 

suggests firm performance can be improved by having a better connected board. We 

acknowledge that our test does not allow us to disentangle the specific channel through 
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which director networks affect value. For instance, the loss of connection could lead to a 

loss of access to information. Or it could be due to a decline in the power and influence 

of the director. Thus, in future research it would be interesting to ascertain why director 

networks are valuable. 
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Appendix A: Tables and Figures 

 

 

Table 1: Propensity Score Matching Probit 

This table displays the regression coefficients and (mean) marginal effects 

of the probit model used for propensity score matching. Stock data is from 

TAQ and CRSP. Stocks are excluded from this the regression if they are 

missing data on mispricing, time inside the NBBO, adverse selection, 

volume, price, bid-ask spread, or industry (SIC code). Stocks were also 

excluded if the pre-shock window contained less than 80 trading days, 

was classified as a financial vehicle (NAICS 525990), the stock was not 

listed on either the NASDAQ or NYSE or had a price difference with the 

treated stock of more than 10%. Variables are averaged over the 4-month 

pre-experiment period. Treated Dummy is a binary variable equal to 1 if 

the stock was affected by the NASDAQ Access Fee Experiment, and 0 

otherwise. Other variables are described in Section 3. ***, **, and * 

represent statistical significance at the 1%, 5% and 10% levels, 

respectively. 

  
Treated Dummy 

Marginal Effects 

(× 100,000) 

Constant -4.1344*** -1.6492 

  (0.000)  

Nasdaq Volume 2.2E-6*** 8.74E-7 

  (0.000)  

Bid-Ask Spread ($) 0.0637 0.0254 

  (0.939)  

Price -0.0074 -0.0029 

  (0.207)  

MAPE 1.8555 0.7402 

  (0.582)  

Psuedo R2 0.549  
Treated Firms 14  
Untreated Firms 7559  
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Table 2: Matched Sample Pre-shock Comparison 
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Table 3: Pricing Efficiency Effect 

This table displays results for the multivariate difference-on-differences analysis on the 

effect of a shock to make-take fee level on market efficiency. The dependent variables 

are the mean absolute pricing error (MAPE) and variance of pricing error innovations 

on a stock-day level. The dependent variables are regressed on a dummy variable 

equaling 1 for treated stocks, a dummy variable equaling 1 for observations during the 

experiment, and an interaction of the two dummy variables as well as control variables 

described in Section 3. Standard errors for these panel regressions are clustered by stock 

and date. Two-tailed p-values are in parenthesis below the corresponding coefficients. 

***, **, and * represent statistical significance at the 1%, 5% and 10% levels, 

respectively.  

 MAPE MAPE 𝝈𝝓
𝟐  𝝈𝝓

𝟐  

Treated Dummy 0.0180** 0.0176** 0.0613** 0.0606** 

 (0.024) (0.025) (0.016) (0.016) 

Experiment Dummy 0.0002 -0.0007** 0.0003 -0.0007** 

 (0.252) (0.040) (0.329) (0.040) 

Treated x Experiment 0.0017*** 0.0017*** 0.0046** 0.0049** 

 (0.000) (0.000) (0.032) (0.029) 

Price  -0.0000  -0.0000 

  (0.972)  (0.920) 

Bid-Ask Spread (%)  0.1018  -0.8604 

  (0.853)  (0.587) 

Log(Volume)  0.0009  0.0009 

  (0.124)  (0.150) 

Constant 0.0054** -0.0074 0.0038 -0.0068 

 (0.040) (0.166) (0.104) (0.285) 

Obs. 20,952 20,919 20,952 20,919 

R2 0.0418 0.0438 0.0613 0.0617 
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Table 4: Treatment and Reversal Effects 

This table displays results for the multivariate difference-on-differences analysis on the effect of 

a shock to make-take fee level on market efficiency. The dependent variables are the mean 

absolute pricing error (MAPE) and variance of pricing error innovations on a stock-day level. 

The dependent variables are regressed on a dummy variable equaling 1 for treated stocks, a 

dummy variable equaling 1 for observations during the experiment, and an interaction of the two 

dummy variables as well as control variables described in Section 3. The sample in Panel A 

contains observations from Oct. 2014 – May 2015 (omitting observations after the NASDAQ 

experiment) to test the effect of instituting the pilot. Panel B contains observations from Feb. 

2015 – Sept. 2015 (omitting observations before the NASDAQ experiment) to test for the reversal 

effect after the pilot ceases. Standard errors for these panel regressions are clustered by stock and 

date. Two-tailed p-values are in parenthesis below the corresponding coefficients. ***, **, and * 

represent statistical significance at the 1%, 5% and 10% levels, respectively.  

Panel A: Oct. 2014 – May 2015 (Before and During Pilot) 

 MAPE MAPE 𝝈𝛟
𝟐  𝝈𝛟

𝟐  

Treated Dummy 0.0171** 0.0150** 0.0424** 0.0397** 

 (0.024) (0.029) (0.016) (0.017) 

Experiment Dummy 0.0008** 0.0017* 0.0013** 0.0024* 

 (0.017) (0.059) (0.011) (0.078) 

Treated x Experiment 0.0026*** 0.0027** 0.0235*** 0.0237** 

 (0.000) (0.012) (0.000) (0.013) 

Price  0.0001  0.0001 

  (0.495)  (0.593) 

Bid-Ask Spread (%)  1.7726*  2.2134 

  (0.093)  (0.202) 

Log(Volume)  0.0062*  0.0080 

  (0.070)  (0.110) 

Constant 0.0048** -0.0905* 0.0028* -0.1212* 

 (0.041) (0.065) (0.099) (0.096) 

Obs. 13,901 13,901 13,901 13,901 

R2 0.0430 0.0566 0.0699 0.0741 

Panel B: Feb. 2015 – Sept. 2015 (During and After Pilot) 

 MAPE MAPE 𝝈𝛟
𝟐  𝝈𝛟

𝟐  

Treated Dummy 0.0189** 0.0180** 0.0798 0.0775 

 (0.025) (0.026) (0.159) (0.161) 

Experiment Dummy -0.0004 -0.0032* -0.0007* -0.0064** 

 (0.115) (0.076) (0.063) (0.050) 

Treated x Experiment 0.0008** 0.0012*** -0.0139 -0.0126 

 (0.042) (0.004) (0.181) (0.153) 

Price  -0.0000  -0.0001 

  (0.862)  (0.874) 

Bid-Ask Spread (%)  -0.2004  -1.3039 

  (0.746)  (0.516) 

Log(Volume)  0.0013  0.0025* 

  (0.112)  (0.064) 

Constant 0.0060** -0.0094 0.0048 -0.0235* 

 (0.039) (0.129) (0.106) (0.057) 

Obs. 13,900 13,867 13,900 13,867 

R2 0.0417 0.0457 0.0665 0.0686 
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Table 5: Percentage of NASDAQ quotes inside the NBBO 

This table displays results for the multivariate difference-on-differences analysis on the effect 

of a shock to make-take fee level on the percentage of NASDAQ quotes inside the NBBO. 

The samples for all regressions include observations from Oct. 2014 – Sept. 2015. The 

dependent variables are the amount of quotes on the NASDAQ which were the best bid, ask, 

either, or both. The dependent variables are regressed on a dummy variable equaling 1 for 

treated stocks, a dummy variable equaling 1 for observations during the experiment, and an 

interaction of the two dummy variables. Panel A contains no controls, while Panel B contains 

controls described in Section 3. Standard errors for these panel regressions are clustered by 

stock and date. Two-tailed p-values are in parenthesis below the corresponding coefficients. 

***, **, and * represent statistical significance at the 1%, 5% and 10% levels, respectively. 

Panel A: Without Controls 

 Best Bid Best Ask Best Either Best Both 

Treated Dummy 0.0142 0.0126 -0.0039 0.0291 

 (0.775) (0.798) (0.935) (0.573) 

Experiment Dummy -0.0078 -0.0070 -0.0130 -0.0010 

 (0.219) (0.271) (0.175) (0.793) 

Treated x Experiment -0.1988*** -0.1988*** -0.2716*** -0.1243*** 

 (0.000) (0.000) (0.000) (0.000) 

Constant 0.4197*** 0.4226*** 0.6791*** 0.1621*** 

 (0.000) (0.000) (0.000) (0.000) 

Obs. 20,966 20,966 20,966 20,966 

R2 0.0490 0.0470 0.0953 0.0149 

 

Panel B: With Controls 

 Best Bid Best Ask Best Either Best Both 

Treated Dummy 0.0138 0.0125 -0.0048 0.0296 

 (0.780) (0.799) (0.920) (0.564) 

Experiment Dummy -0.0101 -0.0090 -0.0183* 0.0002 

 (0.168) (0.217) (0.065) (0.972) 

Treated x Experiment -0.1987*** -0.1987*** -0.2712*** -0.1244*** 

 (0.000) (0.000) (0.000) (0.000) 

Price 0.0005 0.0006 0.0013 -0.0001 

 (0.556) (0.509) (0.159) (0.933) 

Log(Volume) 0.0014 0.0010 0.0037 -0.0014 

 (0.769) (0.841) (0.463) (0.784) 

Constant 0.3875*** 0.3944*** 0.5987*** 0.1842** 

 (0.000) (0.000) (0.000) (0.016) 

Obs. 20,933 20,933 20,933 20,933 

R2 0.0522 0.0508 0.1110 0.0152 
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Table 6: Informed Trading Effect 

This table displays results for the multivariate difference-on-differences analysis on the 

effect of a shock to make-take fee level on informed trading. Panel A contains no controls, 

while Panel B contains controls described in Section 3. The samples for all regressions 

include observations from Oct. 2014 – Sept. 2015. The dependent variables are the 1-, 

15-, 30-, and 60-minute adverse selection costs (average losses of market makers due to 

informed trading). The dependent variables are regressed on a dummy variable equaling 

1 for treated stocks, a dummy variable equaling 1 for observations during the experiment, 

and an interaction of the two dummy variables. Standard errors for these panel regressions 

are clustered by stock and date. Two-tailed p-values are in parenthesis below the 

corresponding coefficients. ***, **, and * represent statistical significance at the 1%, 5% 

and 10% levels, respectively. 

Panel A: Without Controls 

 ASC1 

(x1,000) 

ASC15 

(x1,000) 

ASC30 

(x1,000) 

ASC60 

(x1,000) 

Treated Dummy 0.5148** 0.4622 0.2636 0.2910* 

 (0.029) (0.352) (0.135) (0.100) 

Experiment Dummy -0.1302 -0.0510 -0.0816 -0.0457 

 (0.126) (0.434) (0.381) (0.644) 

Treated x Experiment -0.1426* -0.7452** -0.8556*** -0.3626 

 (0.067) (0.027) (0.008) (0.267) 

Constant 0.6799*** 0.6013*** 0.5866*** 0.5389*** 

 (0.000) (0.000) (0.000) (0.000) 

Obs. 20,930 20,928 20,924 20,926 

R2 0.0018 0.0029 0.0024 0.0010 

 

Panel B: With Controls 

 ASC1 

(x1,000) 

ASC15 

(x1,000) 

ASC30 

(x1,000) 

ASC60 

(x1,000) 

Treated Dummy 0.5262** 0.4750 0.2871 0.3047* 

 (0.027) (0.340) (0.102) (0.085) 

Experiment Dummy -0.0707 0.0085 0.0051 0.0115 

 (0.279) (0.870) (0.931) (0.858) 

Treated x Experiment -0.1385* -0.7413** -0.8504*** -0.3590 

 (0.068) (0.027) (0.009) (0.272) 

Price -0.0149*** -0.0132** -0.0133*** -0.0109*** 

 (0.002) (0.014) (0.004) (0.000) 

Log(Volume) -0.0472 -0.0490 -0.0767* -0.0487** 

 (0.320) (0.250) (0.074) (0.028) 

Constant 0.0017** 0.0016** 0.0020*** 0.0015*** 

 (0.015) (0.013) (0.002) (0.000) 

Obs. 20,930 20,928 20,924 20,926 

R2 0.0052 0.0053 0.0057 0.0030 
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Table 7: Volume Effect 

This table displays results for the multivariate difference-on-differences 

analysis on the effect of a shock to make-take fee level on exchange 

volumes. The samples for all regressions include observations from Oct. 

2014 – Sept. 2015. The dependent variables are the NASDAQ market 

share, log of NASDAQ volume, and log of total volume on other 

exchanges (not NASDAQ). The dependent variables are regressed on a 

dummy variable equaling 1 for treated stocks, a dummy variable equaling 

1 for observations during the experiment, and an interaction of the two 

dummy variables. Panel A contains no controls, while Panel B contains 

controls described in Section 3. Standard errors for these panel regressions 

are clustered by stock and date. Two-tailed p-values are in parenthesis 

below the corresponding coefficients. ***, **, and * represent statistical 

significance at the 1%, 5% and 10% levels, respectively. 

Panel A: Without Controls 

 Nasdaq 

Volume 

Share 

Log(Nasdaq 

Volume) 
Log(Volume) 

Treated Dummy 0.1354** 0.5705*** 0.1802 

 (0.043) (0.001) (0.126) 

Experiment Dummy -0.0083 0.9491*** 1.0209*** 

 (0.368) (0.000) (0.000) 

Treated x Experiment -0.0335** -0.1145* 0.0582** 

 (0.021) (0.074) (0.012) 

Constant 0.4227*** 12.7601*** 13.0925*** 

 (0.000) (0.000) (0.000) 

Obs. 20,933 20,902 20,207 

R2 0.0284 0.0663 0.0784 

 

Panel B: With Controls 

 Nasdaq 

Volume 

Share 

Log(Nasdaq 

Volume) 
Log(Volume) 

Treated Dummy 0.1362** 0.5776*** 0.1798 

 (0.043) (0.003) (0.178) 

Experiment Dummy -0.0098 0.9381*** 1.0153*** 

 (0.285) (0.000) (0.000) 

Treated x Experiment -0.0333** -0.1136* 0.0586*** 

 (0.021) (0.090) (0.004) 

Price 0.0016*** 0.0132*** 0.0060 

 (0.005) (0.009) (0.201) 

Constant 0.3841*** 12.4470*** 12.9523*** 

 (0.000) (0.000) (0.000) 

Obs. 20,933 20,902 20,207 

R2 0.0403 0.0842 0.0826 
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Table 8: Falsification Tests 

This table displays results for the multivariate falsification (placebo) analysis 

examining whether market efficiency changed prior to the NASDAQ pilot for 

the treated stocks. The dependent variables are the mean absolute pricing error 

(MAPE) and variance of pricing error innovations on a stock-day level. The 

dependent variables are regressed on a dummy variable equaling 1 for treated 

stocks, three dummy variables equaling 1 for observations during November, 

December, and January, and an interaction of the dummy variables as well as 

control variables described in Section 3. Standard errors for these panel 

regressions are clustered by stock and date. Two-tailed p-values are in 

parenthesis below the corresponding coefficients. ***, **, and * represent 

statistical significance at the 1%, 5% and 10% levels, respectively. 

 MAPE MAPE 𝝈𝝓
𝟐  𝝈𝝓

𝟐  

Treated Dummy 0.0134 0.0106 0.0246 0.0205 

 (0.254) (0.340) (0.184) (0.222) 

November 0.0007 0.0016** 0.0012 0.0024* 

 (0.364) (0.025) (0.121) (0.085) 

December 0.0012** 0.0013** 0.0005** 0.0004 

 (0.021) (0.045) (0.011) (0.622) 

January -0.0007 -0.0008 -0.0011* -0.0014* 

 (0.360) (0.351) (0.071) (0.098) 

November x Treated 0.0039* 0.0034 0.0272* 0.0264* 

 (0.070) (0.170) (0.098) (0.093) 

December x Treated 0.0058 0.0064 0.0287 0.0298 

 (0.132) (0.181) (0.153) (0.140) 

January x Treated 0.0057 0.0067 0.0175 0.0193* 

 (0.115) (0.107) (0.117) (0.084) 

Price  0.0001  0.0002 

  (0.324)  (0.319) 

Bid-Ask Spread (%)  2.2569**  3.8089* 

  (0.042)  (0.068) 

Log(Volume)  0.0074**  0.0101** 

  (0.024)  (0.045) 

Constant 0.0045** -0.1108** 0.0027* -0.1571** 

 (0.048) (0.021) (0.087) (0.042) 

Obs. 7,052 7,052 7,052 7,052 

R2 0.0438 0.0617 0.0637 0.0721 
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Table 9: Robust Matching Tests 
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Table 10: Chapter 2 Variable Descriptions 

Panel A: Descriptive Statistics 

 Units Obs. Mean Std. Dev. Min. Med. Max. 

Non-Default Spread Pct. Yield 38,106 0.2072 0.2280 -0.2177 0.1492 1.2779 

Bid-Ask Spread bps of Price 19,386 15.97 21.20 0.00 8.30 118.71 

Amihud %Δ per $1M 40,752 10.839 34.436 0.0000 0.373 250.31 

Resiliency  14,925 0.4713 0.2681 0.0210 0.4457 0.9978 

Market Bid-Ask Spread bps of Price 45,712 6.9E-04 8.3E-04 0.0000 4.2E-04 7.5E-03 

Market Amihud %Δ per $1M 46,710 0.0003 0.0007 0.0000 0.0001 0.0078 

Market Resiliency  45,602 0.1135 0.1809 -0.5313 0.0662 1.1116 

Coupon Pct. of Par 47,145 2.0223 0.8045 0.2305 2.1250 3.2500 

VIX  47,135 24.848 8.177 13.450 22.660 68.510 

Volume Dollars 47,145 1.4E+07 6.4E+07 5.0000 2.7E+06 8.4E+09 

 

(continued on next page) 
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Table 11: Pricing of Liquidity Dimensions 

This table displays results for the multivariate analysis of the pricing of the three 

dimensions of liquidity in the non-default spread (NDS). Each of the three 

proxies for the liquidity dimensions – bid-ask spread, Amihud measure, and 

resiliency – have been orthoganalized to the other two. Following Elton et al. 

(2001), the coupon rate controls for state taxes within the non-default spread. 

Bond-, Day-, and Firm-fixed effects are used as controls in Models (2), (3), and 

(4), respectively. 

 

The sample for this unbalanced panel regression consists of bonds guaranteed by 

the FDIC under the DGP. Standard errors are clustered by bond and date. Two-

tailed p-values are in parenthesis. ***, **, and * represent statistical significance 

at the 1%, 5% and 10% levels, respectively. 

  (1) (2) (3) (4) 

Variable NDS NDS NDS NDS 

Ln(Bid-Ask Spread) 0.0590*** 0.0597*** 0.0064*** 0.0597*** 

orthogonalized (0.000) (0.000) (0.000) (0.000) 

Ln(Amihud) 0.0026 0.0089*** 0.0044*** 0.0067** 

orthogonalized (0.312) (0.000) (0.000) (0.011) 

–Ln(Resiliency) 0.0460*** 0.0503*** 0.0037** 0.0514*** 

  orthogonalized (0.000) (0.000) (0.034) (0.000) 

Coupon 0.0412*** Subsumed by 

Fixed Effects 

0.0051 0.0189 

 (0.004) (0.591) (0.175) 

Constant 0.1467*** 
Subsumed by Fixed Effects 

  (0.000) 

Adj. R2 0.130 0.183 0.874 0.157 

Bonds 65 65 65 65 

Days 958 958 958 958 

Obs. 10,122 10,122 10,122 10,122 

Fixed Effects None Bond Day Firm 
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Table 12: Pricing of Market-wide Liquidity Dimensions 
This table displays results for the multivariate analysis of the pricing of market-wide 

dimensions of liquidity in the non-default spread (NDS). Each of the three proxies for 

the bond-specific liquidity dimensions – bid-ask spread, Amihud measure, and 

resiliency – have been orthoganalized to the other two. Following Elton et al. (2001), 

the coupon rate controls for state taxes within the non-default spread. Model 1 presents 

results without any fixed effects in the regression model specification. Models 2, 3, 

and 4 present results with bond fixed effects, which is what is directly relevant for the 

research question being investigated. Models 1 and 2 cover the entire sample period, 

while Model 3 includes only the financial crisis period and Model 4 includes only the 

post-financial-crisis period. 

 

The sample for this unbalanced panel regression consists of bonds guaranteed by the 

FDIC under the DGP. Standard errors are clustered by bond and date. Two-tailed p-

values are in parenthesis. ***, **, and * represent statistical significance at the 1%, 

5% and 10% levels, respectively. 

  (1) (2) (3) (4) 

Variable NDS NDS NDS NDS 

Ln(Bid-Ask Spread) 0.0485*** 0.0501*** 0.0326*** 0.0184*** 

Orthogonalized (0.000) (0.000) (0.000) (0.000) 

Ln(Amihud) 0.0030 0.0081*** 0.0003 0.0067*** 

Orthogonalized (0.192) (0.000) (0.928) (0.000) 

–Ln(Resiliency) 0.0403*** 0.0450*** 0.0411*** 0.0096*** 

  Orthogonalized (0.000) (0.000) (0.000) (0.000) 

Ln(Market Spread) 0.0051*** 0.0045*** 0.0083*** 0.0012*** 

 (0.000) (0.000) (0.000) (0.001) 

Ln(Market Amihud) 0.0296*** 0.0263*** 0.0128 0.0103*** 

 (0.000) (0.000) (0.370) (0.000) 

–Ln(Market Resiliency) 0.1604*** 0.1550*** 0.0631 0.0512*** 

 (0.000) (0.000) (0.702) (0.001) 

Coupon 0.0329*** 
Subsumed by Fixed Effects 

 (0.000) 

Constant 0.5028*** 
Subsumed by Fixed Effects 

  (0.006) 

Adj. R2 0.164 0.212 0.173 0.138 

Bonds 65 65 64 64 

Days 887 887 254 633 

Obs. 9,419 9,419 3,842 5,577 

Sample Full Full Crisis Post-Crisis 

Fixed Effects None Bond Bond Bond 
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Table 13: Pricing of Market-wide Liquidity Dimensions 
This table displays results for testing whether the non-default spread (NDS) impounds a residual non-

default yield spread. In order to directly interpret the constant as a residual non-default yield spread, the 

liquidity variables have been monotonically transformed so that the constant will evaluate the remaining 

non-default spread when liquidity variables are taken at values corresponding with perfect liquidity. 

Each of the three proxies for the bond-specific liquidity dimensions – bid-ask spread, Amihud measure, 

and resiliency – have been orthoganalized to the other two. Following Elton et al. (2001), the coupon 

rate controls for state taxes within the non-default spread. Following Dick-Nielsen et al. (2012) and 

others, we control for the differential in liquidity pricing during crisis periods by splitting the sample 

into crisis (2008-09) and post-crisis (2010-12) subsamples. Models 1 and 4 cover the entire sample 

period, while Models 2 and 5 include only the financial crisis period and Models 3 and 6 include only 

the post-financial-crisis period. The sample for this unbalanced panel regression consists of bonds 

guaranteed by the FDIC under the DGP. Standard errors are clustered by bond and date. Two-tailed p-

values are in parenthesis. ***, **, and * represent statistical significance at the 1%, 5% and 10% levels, 

respectively. 

  (1) (2) (3) (4) (5) (6) 

Variable NDS NDS NDS NDS NDS NDS 

Constant 0.0097 0.0838* 0.0831*** -0.0064 0.0871 0.0768*** 

 (0.759) (0.071) (0.000) (0.840) (0.130) (0.000) 

ln(100×Bid-Ask Spread+1) 0.4482*** 0.2242*** 0.1509*** 0.3549*** 0.1684** 0.1434*** 

orthoganolized (0.000) (0.004) (0.000) (0.000) (0.013) (0.000) 

ln(100×Amihud+1) 0.0017 -0.0041 0.0072*** 0.0031 -0.0004 0.0071*** 

orthoganolized (0.554) (0.224) (0.000) (0.212) (0.902) (0.000) 

ln(100×(1-Resiliency)+1) 0.0243*** 0.0267*** 0.0066*** 0.0213*** 0.0234*** 0.0063*** 

orthoganolized (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

ln(100×Market Spread+1)    62.112*** 64.655*** 17.842*** 

    (0.000) (0.000) (0.000) 

ln(100×Market Amihud+1)    0.4852*** 0.2474 0.1161*** 

     (0.002) (0.271) (0.001) 

ln(100×(1-Market Resiliency)+1)    -0.0016 -0.0095 -0.0013 

    (0.685) (0.215) (0.392) 

Coupon 0.0462*** 0.0925*** -0.0048 0.0314*** 0.0706*** -0.0050 

  (0.001) (0.000) (0.205) (0.009) (0.000) (0.201) 

Adj. R2 0.089 0.067 0.053 0.161 0.128 0.073 

Bonds 65 64 64 65 6 64 

Days 958 275 683 904 256 648 

Obs. 10,144 4,108 6,036 9,601 3,882 5,719 

Sample Full Crisis Post-Crisis Full Crisis Post-Crisis 

Fixed Effects None None None None None None 
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Table 14: Analysis of the Residual Non-Default Yield Spread 

This table displays results for regression specifications analyzing the residual non-default yield spread 

within the non-default spread (NDS). In order to directly interpret the constant as a residual non-default 

yield spread, the liquidity variables have been monotonically transformed so that the constant will 

evaluate the remaining non-default spread when liquidity variables are taken at values corresponding 

with perfect liquidity. The VIX level has been demeaned so that the intercept can be interpreted as the 

residual non-default yield spread when the VIX is taken at the mean of the regression sample. Each of 

the three proxies for the bond-specific liquidity dimensions – bid-ask spread, Amihud measure, and 

resiliency – have been orthoganalized to the other two. Following Elton et al. (2001), the coupon rate 

controls for state taxes within the non-default spread. Following Dick-Nielsen et al. (2012) and others, 

we control for the differential in liquidity pricing during crisis periods by splitting the sample into 

crisis (2008-09) and post-crisis (2010-12) subsamples. Model 1 covers the entire sample period, while 

Model 2 includes only the financial crisis period and Model 3 includes only the post-financial-crisis 

period. The sample for this unbalanced panel regression consists of bonds guaranteed by the FDIC 

under the DGP. Standard errors are clustered by bond and date. Two-tailed p-values are in parenthesis. 

***, **, and * represent statistical significance at the 1%, 5% and 10% levels, respectively. 

 (1) (2) (3) 

Variable NDS NDS NDS 

Constant 0.1188*** 0.2855*** 0.0801*** 

 (0.000) (0.000) (0.000) 

VIX 0.0175*** 0.0222*** 0.0034*** 

demeaned (0.000) (0.000) (0.000) 

ln(100×Bid-Ask Spread+1) 0.1473*** -0.0234 0.1368*** 

orthoganolized (0.000) (0.386) (0.000) 

ln(100×Amihud+1) 0.0049*** 0.0017 0.0072*** 

orthoganolized (0.002) (0.500) (0.000) 

ln(100×(1-Resiliency)+1) 0.0090*** 0.0018 0.0061*** 

orthoganolized (0.000) (0.553) (0.000) 

ln(100×Market Spread+1) 32.034*** 23.927*** 17.245*** 

 (0.000) (0.000) (0.000) 

ln(100×Market Amihud+1) 0.1950** 0.1162 0.0896*** 

  (0.015) (0.181) (0.004) 

ln(100×(1-Market Resiliency)+1) -0.0016 -0.0017 -0.0014 

 (0.381) (0.537) (0.303) 

Coupon 0.0144** 0.0342** -0.0055 

  (0.046) (0.031) (0.157) 

Adj. R2 0.621 0.773 0.120 

Bonds 65 64 64 

Days 904 256 648 

Obs. 9,601 3,882 5,719 

Sample Full Crisis Post-Crisis 

Fixed Effects None None None 
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Table 15: Changes Specification Regressions 

This table displays results for robustness tests intended to show that the pricing of liquidity 

dimensions remains statistically significant when controlling for the possible non-stationarity 

in the non-default spreads (NDS). Since the NDS is close to a non-stationary variable, we 

include the lagged level of the NDS. Following Dick-Nielsen et al. (2012) and others, we 

control for the differential in liquidity pricing during crisis periods by splitting the sample into 

crisis (2008-09) and post-crisis (2010-12) subsamples in Models 4 and 5, respectively. The 

sample for this unbalanced panel regression consists of bonds guaranteed by the FDIC under 

the DGP. Standard errors are clustered by bond and date. Two-tailed p-values are in 

parenthesis. ***, **, and * represent statistical significance at the 1%, 5% and 10% levels, 

respectively. 

 (1) (2) (3) (4) (5) 

Variable ΔNDS ΔNDS ΔNDS ΔNDS ΔNDS 

Lagged NDS -0.1845*** -0.1943*** -0.2074*** -0.0775*** -0.7726*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) 

ln(Bid-Ask Spread) 0.0162*** 0.0179*** 0.0166*** -0.0002 0.0167*** 

orthoganolized (0.000) (0.000) (0.000) (0.910) (0.000) 

ln(Amihud) 0.0014 0.0033*** 0.0031*** -0.0008 0.0058*** 

orthoganolized (0.143) (0.004) (0.004) (0.366) (0.000) 

-ln(Resiliency) 0.0093*** 0.0101*** 0.0086*** -0.0007 0.0076*** 

orthoganolized (0.000) (0.000) (0.000) (0.697) (0.000) 

ln(Market Spread)     0.0013*** 0.0006 0.0010*** 

      (0.000) (0.221) (0.001) 

ln(Market Amihud)   0.0051*** -0.0014 0.0080*** 

   (0.005) (0.539) (0.000) 

-ln(Market Resiliency)     0.0428** 0.0215 0.0413*** 

      (0.014) (0.451) (0.004) 

Coupon 0.0103*** 
Subsumed by Fixed Effects 

 (0.007) 

Constant 0.0112 
Subsumed by Fixed Effects 

  (0.273) 

Adj. R2 0.130 0.141 0.150 0.051 0.565 

Bonds 64 64 64 63 64 

Days 957 957 886 253 633 

Obs. 10,110 10,110 9,408 3,833 5,575 

Sample Full Full Full Crisis Post-Crisis 

Fixed Effects None Bond Bond Bond Bond 

  



108 

Table 16: Vector Autoregressions 

This table displays results for one-lag vector autoregression testing of the impact of the lagged 

three dimensions of liquidity (orthogonalized to each other) on the non-default spreads (NDS) 

and the dimensions themselves. The contemporaneous VIX level is included in the VAR to 

control for market volatility. Panel A contains the crisis subsample while panel B contains 

the post-crisis subsample. The sample for this unbalanced panel regression consists of bonds 

guaranteed by the FDIC under the DGP. Two-tailed p-values are in parenthesis. ***, **, and 

* represent statistical significance at the 1%, 5% and 10% levels, respectively. 

Panel A: Crisis Subsample 

 (1) (2) (3) (4) 

Variable NDSid 

ln(Bid-Ask 

Spread)id ln(Amihud)id ln(Resiliency)id 

NDSi,d-1 0.8025*** -0.0197 0.5886* 0.2824** 

 (0.000) (0.903) (0.076) (0.038) 

ln(Bid-Ask Spread)i,d-1 0.0049*** 0.0946*** 0.2440*** -0.0066 

      orthogonalized (0.003) (0.000) (0.000) (0.726) 

ln(Amihud)i,d-1 0.0020*** 0.0067 0.3733*** 0.0104 

      orthogonalized (0.008) (0.522) (0.000) (0.238) 

ln(Resiliency)i,d-1 0.0053*** 0.0147 0.2373*** 0.0239 

      orthogonalized (0.006) (0.579) (0.000) (0.279) 

Constant -0.0582*** -0.1294 0.9394*** -0.0301 

 (0.000) (0.163) (0.000) (0.697) 

VIXid 0.0042*** 0.0176*** -0.0394*** 0.0018 

  (0.000) (0.000) (0.000) (0.622) 

Adj. R2 0.926 0.042 0.142 0.012 

Bonds 53 53 53 53 

Days 274 274 274 274 

Obs. 2094 2094 2094 2094 

Sample Crisis Crisis Crisis Crisis 

Fixed Effects None None None None 

 

(continued on next page) 
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Panel B: Post-Crisis Subsample 

 (1) (2) (3) (4) 

Variable NDSid 

ln(Bid-Ask 

Spread)id ln(Amihud)id ln(Resiliency)id 

NDSi,d-1 0.4963*** 1.3543*** -0.5500 0.1757 

 (0.000) (0.000) (0.313) (0.343) 

ln(Bid-Ask Spread)i,d-1 0.0019 0.1010*** 0.1799*** 0.0190 

       orthogonalized (0.105) (0.000) (0.000) (0.132) 

ln(Amihud)i,d-1 0.0008 0.0098 0.2559*** 0.0226*** 

      orthogonalized (0.187) (0.416) (0.000) (0.001) 

ln(Resiliency)i,d-1 0.0005 0.0135 0.2200*** 0.0644*** 

       orthogonalized (0.796) (0.708) (0.000) (0.002) 

Constant 0.0166*** -0.6024*** 0.9338*** -0.0260 

 (0.001) (0.000) (0.000) (0.638) 

VIXid 0.0025*** 0.0053 -0.0080 0.0006 

  (0.000) (0.198) (0.255) (0.808) 

Adj. R2 0.357 0.022 0.061 0.006 

Bonds 50 50 50 50 

Days 570 570 570 570 

Obs. 2461 2461 2461 2461 

Sample Post-Crisis Post-Crisis Post-Crisis Post-Crisis 

Fixed Effects None None None None 
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Table 17: Vector Autoregressions 

Panel A presents the pre-shock descriptive statistics for all of the untreated firms in the 

Canadian sample. Data for board and network variables are collected from the Clarkson 

Centre. Other firm-level data are collected from Worldscope. Panel B presents descriptive 

statistics for the treated firms. A firm is considered treated if one of its current directors had 

a network connection, past or present, with the deceased director. Firms in which the 

deceased director currently sitting on the board are excluded from both the untreated and 

treated samples. 

  Panel A: Untreated 

  Obs.  Mean St. Dev. Min  Median Max 

Board Size 3,537 7.941 3.809 1 7 25 

Degree Centrality 3,537 15.429 10.200 1 12.875 47.583 

Eigenvector Centrality 3,537 0.007 0.011 0 0.001 0.056 

Closeness Centrality 3,468 0.165 0.090 0 0.197 0.276 

Betweenness Centrality 3,537 7,201 7,980 0 4,679 38,003 

Ln(Assets) 2,363 13.410 2.359 7.533 13.494 20.357 

CapEx/Assets 2,354 0.087 0.098 0 0.055 0.475 

Cash/Assets 2,359 0.136 0.183 0 0.061 0.823 

Leverage 1,985 0.265 0.203 0.001 0.234 0.963 

Tobin's Q 2,299 1.696 1.606 0.109 1.204 10.229 

ROA 2,361 -0.033 0.237 -1.557 0.024 0.269 

       

 Panel B: Treated 

  Obs.  Mean St. Dev. Min  Median Max 

Board Size 247 11.798 3.956 3 11 23 

Degree Centrality 247 30.160 10.428 7.333 30.538 47.583 

Eigenvector Centrality 247 0.021 0.015 0 0.019 0.056 

Closeness Centrality 247 0.238 0.025 0.166 0.238 0.276 

Betweenness Centrality 247 15,242 8,970 1,361 13,827 38,003 

Ln(Assets) 181 15.608 2.065 10.396 15.560 20.357 

CapEx/Assets 181 0.061 0.064 0 0.043 0.402 

Cash/Assets 181 0.079 0.130 0 0.028 0.823 

Leverage 167 0.255 0.176 0.001 0.240 0.816 

Tobin's Q 179 1.102 0.771 0.109 1.045 5.018 

ROA 181 0.025 0.120 -0.937 0.031 0.252 
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Table 18: Matched Sample Pre-shock Characteristics 
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Table 19: Matched Sample Post-shock Changes 
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115 

Table 20: Multivariate Analysis of Shock - Full Matched Sample 
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Table 21: Multivariate Analysis of Shock – Non-Interlocked Subsample 

This table displays results for the multivariate difference-on-differences analysis on 

the effect of a shock to the director network. The pooled sample in Panel A contains 

the treated firms with no current interlock to the deceased director and their matched-

control firms as separate observations. The dependent variables are the cumulative 

abnormal returns in the event-windows surrounding the directors’ deaths. The 

dependent variables are regressed on a dummy variable equaling 1 for treated firms, 

as well as control variables and industry fixed effects (using 1 digit SIC codes). The 

intercept term is subsumed by the fixed-effects. Panel B contains a sample of paired 

differences of treated and control firms. The control firm is subtracted from the 

treated firm for the dependent and control variables. No fixed effects are used in 

Panel B, allowing the intercept to be inferred as the difference-in-differences 

coefficient. All regressions use unbalanced panel, seemingly unrelated regression 

methodology, allowing the residuals on the seven event-days (director deaths) to be 

correlated. The variance-covariance matrix is adjusted using panel-corrected 

standard errors. Two-tailed p-values are in parenthesis below their corresponding 

coefficient. ***, **, and * represent statistical significance at the 1%, 5% and 10% 

levels, respectively. 

Panel A: Pooled Specifications 

Dependent variable AR(0) CAR(-2,+2) CAR(-1,+1) CAR(0,+1) 

Treated Dummy -0.409** -0.647 -0.631* -0.694** 

 (0.034) (0.103) (0.057) (0.013) 

Ln(Assets) -0.083 -0.294** -0.261** -0.129 

 (0.263) (0.050) (0.036) (0.236) 

Tobin's Q -0.093 -0.211 -0.331 -0.232 

 (0.481) (0.430) (0.132) (0.213) 

ROA 1.476 3.471 3.458 0.693 

 (0.361) (0.275) (0.173) (0.753) 

Board Size 0.010 -0.017 0.028 0.018 

 (0.749) (0.789) (0.601) (0.685) 

R2 0.059 0.105 0.088 0.062 

Obs. 268 268 268 268 

Fixed Effects Industry Industry Industry Industry 

 

(continued on next page)  
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Panel B: Paired-Difference Specifications 

Dependent variable 
AR(0) 

difference 

CAR(-2,+2) 

difference 

CAR(-1,+1) 

difference 

CAR(0,+1) 

difference 

Intercept -0.366** -0.614** -0.637*** -0.681*** 

 (0.011) (0.039) (0.010) (0.001) 

Ln(Assets) -0.371** -0.111 -0.375 -0.591** 

    difference (0.017) (0.728) (0.146) (0.014) 

Tobin's Q -0.074 -0.347 -0.983*** -0.799*** 

    difference (0.661) (0.318) (0.001) (0.001) 

ROA 2.103 5.416 9.187*** 1.477 

    difference (0.354) (0.218) (0.010) (0.631) 

Board Size -0.014 0.013 0.028 0.014 

    difference (0.732) (0.883) (0.694) (0.812) 

R2 0.037 0.010 0.075 0.069 

Obs. 201 201 201 201 

Fixed Effects None None None None 
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Table 22: Triple Difference Analysis of Shock - Interlocked Subsample 
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Figure 1: Residual Non-Default Yield Spread by Issuer Credit Rating 

 

This figure displays the average residual non-default yield spread for bonds grouped 

by issuer credit ratings at the time of observation. The residual non-default yield 

spreads are calculated by including rating fixed-effects in the regressions modelled 

in Table 14, thus these residual non-default yield spreads assume the mean level of 

the VIX in each respective regression: 26.22 (Full Sample), 31.84 (Crisis 

subsample), and 22.40 (Post-crisis subsample). 
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Figure 2: Impulse Response Functions 

 

This figure displays the response of the non-default spread (NDS), ln(Bid-Ask Spread), 

ln(Amihud measure), and ln(Resiliency) to a one standard deviation shock to each of 

the variables while controlling for contemporaneous market volatility using the VIX 

level. The three liquidity variables are orthogonalized to each other. Panel A contains 

responses during the financial crisis (2008-2009) while Panel B contains responses 

during the post-crisis period (2010-2012). 

(Continued on next page) 
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Panel A: Crisis Subsample 

 

(Continued on next page) 
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Panel B: Post-Crisis Subsample 

 

 


