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CHAPTER ONE

1. Introduction.

1.1 Objective.
This paper presents a method of formally specifying 

operations on a certain class of linked data structures. 
Rooted in formal language theory, the specification of 
operations provides a bais is for demonstrating the 
correctness of the operations, and a vehicle for future 
implementation of a mechanized programming system for data 

structures of interest.

1.2 Motivation.
Linked data structures form an important part of 

contemporary computing technology. Examples are found in 
operating system scheduler queues, file system directory 
trees, hierarchical and network data base management system 
implementations, and first-in-first-out message switching 

systems. Fundamentals of linked data structures are taught 
in undergraduate data structures courses, since an 
understanding of these structures is prerequisite to 
comprehending many other aspects of computer science 
coursework.

In computer science classrooms and in technical 
journals alike, the usual method of describing linked data

1
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structures involves diagrams showing the data elements and 
their relation to one another. The data elements are the 
nodes of a directed graph, and the relationships between 

elements are expressed as edges between the nodes. Once the 
intuitive graphic description has been communicated, authors 
frequently use programming language-like procedural 
descriptions of operations on the structures. Such 
algorithmic descriptions inherently include considerable 
implementation detail which is of secondary interest when 

describing structure transformations. While the graphical 
depiction of structure operations has a good deal of 

intuitive appeal, to rely on graphical methods alone results 
in a lack of desired conciseness and precision.

Various approaches to formalizing the description of 
data structure operations are addressed in the next section. 

The application of formalism results in a standard method of 
communicating ideas on the subject involved. Formalism 
provides the opportunity to analyze implementations of data 
structure operations at the abstract level, before in situ 
structures and programming mechanisms are employed. 
Suitable choice of notation allows conventional processing 
by computer, contrasted with the need for graphical computer 
input and output devices when relying solely on graphical 

depiction. The conventional processing feature also 
facilitates automated support of proofs of the correctness 
of data structure operations. Achieving the goal of
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elegance of formalism means achieving conciseness and 
precision without the complexity generally found in a 
programming language approach. This paper addresses the 
goal of an elegant method of specifying operations on linked 
data structures.

1.3 Previous Work.
In the past, the most frequently used method of 

defining linked data structures and describing operations on 
them has been the use of a programming language. The 
primary programming language features used are arrays, 

pointers, and the instructions (statements) which operate on 
them. These conventional features are used to synthesize 
data structures and operations on them because the 
structures themselves are not inherent in general purpose 
programming languages. When directed graphs are used to 
represent linked data structures, programming language 
extensions such as those described by Crespi-Rehizzi and 
Marpurgo (CM70) become available to implement data structure 
operations which are analogous to graph union, intersection 

and subtraction. Schneiderman and Scheuermann (SS74) also 

proposed an extension to a host programming language to 
include linear structure and multistructure declarations, 

and facilities for operations on these structures. However, 
because of the large amount of detail required, the 

programming language extension method by itself contributes 
little to the desired goal of demonstrating the correctness
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of the operations performed.
Earley (EJ71) attacked the data structure problem more 

directly through the use of so-called "V-graphs." 

Significant in the Earley paper is the distinction between 

data structure semantics (how the data is stored and 
accessed, and how the structure may be changed) and 
implementation (how semantics are realized in a physical 
machine). This important distinction, which is evident in 
other works on both graphs and data structures (GY75, RA71, 
PF71), allows one to model the real world problem with 
semantics without extraneous implementation detail. The 
implementation problem is attacked only after the semantics 
of the logical model of the problem are clearly understood. 
This formal recognition of the dichotomy between abstraction 
and implementation is essential to practical resolution of 

the correctness issue.
In addition to the programming language extension and 

directed graph approaches to data structures, Horowitz and 

Sahni (HS76) and Guttag (GJ77) have proposed algebraic 
approaches. Abstract data types are defined in a 
representation-independent specification in terms of the 
domains and ranges of operations. The meanings of 
operations are captured in axioms by stating their 
relationships to one another in a set of relations.

Standish (ST78) has taken a factored axiomatic approach 
to data structures wherein a set of "ground axioms"
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addressing the pervasive underlying characteristics of data 
structures are formalized. Higher order axiom sets for 
structures such as trees and queues are then developed in 

such a manner that representations synthesized for the 
structures obey both the ground axioms and the higher order 
(structure) axioms. Given a well-understood set of ground 
axioms, one transforms the higher-order axioms to produce 
function definitions for the (higher order) structure and a 
data model for the ground axioms. This system thus provides 

a framework which has advantages for proving the correctness 
of programs and data representations. While this method 

provides a framework for a "factored" approach to 
correctness proofs, Guttag reports that it is not always 
easy to determine if the axiomatization is consistent and 
sufficiently complete. As the axioms must capture the 
semantics of the operations on the structures, the 
completeness criterion is especially important in the proof 
process.

Guha and Yeh (GY75) formalize the semantics of list 
structures using graph representations, and then define 
structure operations in terms of partial functions on graph 
configurations. This approach provides mathematical tools 
for the analysis of applications of list structures, but 
correctness of operations and implementation strategies are 

not addressed.
Of importance to the work presented in this paper is
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the approach to data structures taken by Fleck (FA71), where 
list structures are formally shown to be identical to 
context free grammars. Fleck defines a list structure as a 

finite collection of sets of lists. The set of productions 
written for a particular recursive list then generates all 
possible instances of representations of the list structure. 
A construction is given by Fleck which shows the equivalence 
of context-free languages and list structure 
representations.

While the work of Fleck is significant, the work of 
Thompson (TJ81) actually forms the basis for the 

formalization of linked data structure operations addressed 
in the remainder of this paper. This approach combines 
graph theoretic and formal language concepts in developing 
grammatical descriptions of data structures. The next 

section introduces the approach to formal data structure 
specification. Additional discussion of the underlying 

theory is contained in Chapter 2.

1.4 Introduction to Formal Data Structure Specification.
Directed graphs are often used to communicate 

information pertaining to linked data structures. Because 
of the relative ease of expression, it is convenient to use 

K-formulas (BA75) to represent directed graphs. Briefly, 
graph nodes are represented in K-formulas by symbols such as 
single letters, and a prefix operator denotes an arc from 
one node to another. The relative positions of the operator
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and node symbols specify the connectivity of the graph. A 
set of rules specifies all well-formed K-formulas.

K-formulas can be generalized to incorporate various 
types of links; for example, separate operator symbols can 
be used to distinguish the left and right links in a binary 
tree. The set of rules which describes well-formed 
K-formulas can be tailored for each particular data 
structure of interest, and expressed in the form of a 

context-free grammar (TJ81). Such a grammar generates 

strings of node and link symbols, such that strings 
representing all allowed data structures can be generated by 

the grammar, and only those strings.
To specify changes to data structures, one can describe 

the changes by showing how the K-formula changes. 
Concentrating on only those parts of the structure which are 
modified, the corresponding "before" and "after" substrings 
of the K-formula precisely describe the structural changes. 

This method of K-formula "transforms" is the approach to 
data structure operations taken in this paper.

In Chapter Two, the theory underlying the data 

structure operations is described. Formalized data 

structure operations are presented in Chapter Three, 
followed by examples of the application of the method in 

Chapter Four. Some thoughts on future work are given in 
Chapter Five.



CHAPTER TWO

2. Underlying Theory.

2.1 Introduction.
The formal specification of operations on linked data 

structures, as presented herein, is based on concepts from 
graph and language theory. Graphs are used as an 
intermediate descriptiye tool; the K-formula method of 

representing graphs is fundamental to the entire balance of 
the paper. Grammars are used to define the allowable 

morphology of data structures, and properties of the 
particular type of grammars used guide the deyelopment of 
the method used to specify structure operations.

This chapter first addresses the use of K-formulas to 
represent directed graphs, and then applies grammatical 
methods to the generation of K-formulas. The resulting 
"K-grammars" are augmented to include node identification, 
and the correspondence between data structures and 

K-formulas is shown. Concepts from formal languages and 
automata are introduced, and applied in defining those data 
structures which are recognizable using the present methods. 
The material of Section 2.2 through Section 2.6.1 is a 
review of the work of others; the original contributions of 
this paper begin at Section 2.6.2.
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2.2 Multirelational Graphs and K-formulas.
When discussing directed graphs, there is normally a 

single type of relation between nodes: node "a" is related
to node "b" if there is an edge from "a" to "b", and nodes 
"a" and "b" are unrelated if there is no such directed edge. 
In data structures, it is frequently useful to distinguish 
links such as the "leftlinks" and "rightlinks" in a binary 

tree. For this reason, multirelational digraphs are 
introduced here.

DEFINITION: A multirelational digraph (see TJ81) D % <A,R>
is an ordered pair of sets with A a set of sets of nodes and
R a set of relations among the elements of the sets in A.
As an example, the multirelational digraph D =
<{{a,b,c,d,e}}, {LEFT,RIGHT}> with LEFT = {<a,b>, <c,d>} and 

RIGHT = {<a,0,<c,e>} defines the binary tree shown below.

A convenient method of portraying multirelational digraphs 
involves the use of K-formulas.

A K-formula is used to represent the topology of a 
directed graph through the use of a sequence of symbols.
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Two types of symbols are used: node symbols and operator
symbols. An operator symbol preceding two node symbols 
denotes a directed edge from the first node to the second 

node. Thus, the K-formula *ab describes a graph with nodes 
"a" and "b", and an edge from "a" to "b" denoted by the 
operator.

In this paper, nodes are designated by (sometimes 
subscripted) letters a,b,c, . . .  ; the lower case Greek 
letters (e.g., p,x) are used as operator symbols. If more 
than one edge originates at a node, the corresponding 

K-formula contains as many K-operators preceding the node as 
there are edges originating at the node. Unique types of 

edges are denoted by unique edge symbols. For example, in a 
binary tree, "x" may be used to represent the edge from a 
node to its left subtree (i.e., the left-link), and "p" to 
represent the edge from the node to its right subtree (i.e., 
the right link).

K-formulas may be combined using the "substitution 
rule" if common nodes are involved. If the K-formula A is 
defined to be pab and the K-formula B is defined to be pbc, 
we replace "b" of A with B to obtain papbc. Graphically,

A: a — > b and B: b — > c combine to a — > b — > c .

Thus, the singly-linked list:
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3 — — ̂ b ——  ̂ c — — ) d ——  ̂6 — — ) f 

is represented by the K-formula papbpcpdpef.

Similarly, the binary tree

/

is represented by the K-formula pXabXcpde.

The following recursive definition of K-formulas 
follows Berztiss (BA75).

(a) A node symbol is a K-formula.
(b) If A and B are K-formulas and x is an operator, 

then XAB is a K-formula.
(c) K-formulas are only those entities created 

under (a) and (b).

2.3 Grammars and Graph Grammars.

Since K-formulas are strings of symbols in which the 
symbols appear in a particular sequence, a tool is needed to 
construct well-formed sequences of symbols (sentences in a 
language) which meet the definition of K-formulas. A
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grammar is a mathematical tool for generating languages. A 
grammar for a language L uses two disjoint sets of symbols: 
the set N of nonterminal symbols and the set T of terminal 

symbols. The set of terminal symbols is the alphabet over 
which the language is defined. The nonterminal symbols 

serve as placeholders in the generation of sentences of the 
language. The set P of formation rules, or "productions", 

describes how the sentences of the language are to be 
generated. A distinguished symbol S in N, called the "start 
symbol", is used to designate the productions which initiate
the generation of sentences in the language defined by the

grammar.
More formally, a grammar is defined as follows. 

DEFINITION. A grammar is a 4-tuple G = (N, T, P, S) where:
(1) N is a finite set of nonterminal symbols, 

or variables.
(2) T is a finite set of terminal symbols 

disjoint from N.

(3) P is a finite set consisting of expressions 
(l,r) written in the form 1 — > r, where

1 is a string in (N U  T)*N(NU T)* and r
is a string in (N U  T)*.

(4) S is a symbol in N.

As an example, consider the following grammar.
G1 = ({A,B,S}, {p,a,b,c}, P, S) 

where P contains:
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S — > paA 

A — > PbB 

B ——  ̂c

(1 )
(2)
(3)

The grammar G1 generates the string "papbc", which is the 
K-formula for the singly-linked list a — > b — > c.

Before extensive discussion of grammars used to 
generate K-formulas ("K-grammars"), an introduction to 
graph-generating grammars ("graph grammars"; see TJ81) is 
presented. Because of the correspondence between graph 

grammars and K-grammars, one can work with either the 
pictures or text strings when studying directed graphs. 
Visualizing a linked data structure is easy when the 
corresponding graph is drawn.

Consider the grammar:

I, I 0">. i >. p.G2 = ({ 
where P contains:

s-list s-list ),

s-list — > 0 - - > s-list , and (1)
s-list - >  i . (2)

G2 generates single-successor lists such as:

i

0 - > i

the null list generated by 
production (2);
a list with one node, generated
by the production sequence (1),(2); and

(2)— >C^->(2)— >1 a list with three nodes, generated
by the production sequence (1)(1)(1)(2).

The productions in P are "redraw rules", which give all valid
replacements of nonterminal symbols (such as s-list in G2).

Next consider the grammar:



G3 = ({ B

where P contains:
B ——)

B

B

B

14

/ 1.

(1)

(2)

(3)

(4)

G3 generates binary tree graphs.

A graph grammar formally specifies all allowed graphs 
of a particular type. The nonterminal symbols in 
productions are placeholders for subgraphs. The 
productions, which are frequently recursive in that the same 
nonterminal appears on the left- and right-hand sides of the 
production, specify the generation rules. The terminal 
symbols appear in the resultant graph.

2.4 Grammars Augmented for Node Identification.
In directed graphs, the nodes are commonly assigned
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identifying labels. Similarly, nodes of data structures can 
also be distinguished by node identifiers. In grammar G1 
above, the node identifiers are "a”, *'b", and "c”. G1 is 
capable of generating the sentence "papbc", and only that 
sentence, because specific node identifiers are incorporated 
in the productions of G1. What is desired is the capability 
to generate all instances of a particular type of data 
structure using a single grammar. To achieve this 
capability, the grammar must be able to generate the 

K-formulas which correspond with all instances of the data 
structure involving the nodes specified by the terminal 
symbols in the grammar.

To generate the required sequences of terminal symbols, 
Thompson (TJ81) has augmented grammars as described in the 

following DEFINITION* Let A — > <<6>> be a production in a 
grammar. The string @ enclosed by French quotes "<<" and 
”>>•' is called a phrase. Let the string 6 contain a phrase 
indeterminate symbol of the form;

a
[i]

The set I of node phrase indeterminates is mapped into the 
set T of terminal symbols by the definitive mapping 
M: I X Q — > T, where Q is a set of integers which identify

distinct phrases.
The grammar

G4 = ({A}, {p,a,b,c,d}, P, A) 

augmented by the mapping
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M4 = ([(1,1), a], [(2,2), b], [(3,3), c], [(4,4), d]), 
with P given by

A — > «pa A »  (1)
[i] q

A — > « a  »  (2)
[i] q

generates the singly-linked lists shown by the following production 
sequence.

A — > «pa A>>
[i] 1

——) ((pa ((pa A>>
[i] [i] 2 1

--> ((pa ((pa ((pa A>> >> »
[i] [i] [i] 3 2 1

— > ((pa ((pa ((pa ((a >> >> >> >>
[i] [i] [i] [i] 4 3 2 1

Applying M4, where "i” is the nesting depth, removes the 
French quotes as follows:

((pa ((pa ((pa d>> >> >>
[i] [i] [i] 3 2 1

((pa ((pa pcd>> >>
[i] [i] 2 1

((pa pbpcd>>
[i] 1

papbpcd.
Applying another mapping M4.1 when using the same grammar 
results in another structure of the same type. For example, 

suppose
M4.1 = ([(1,1), d], [(2,2), c3).
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Then the production sequence

A — > «pa A>>
[i] 1

——) ((pa ((a )) ))
Cl] [1] 2 1

generates the singly-linked list pdc.
To expand the utility of Thompson's augmented grammars, 

the phrase indeterminates are extended here to include link 
symbols. Productions may then incorporate both link and 

node "metasymbols" inside the French quotes. The 
metasymbols are resolved by a modified mapping such as:

J X K X Q — > L X N 

where J is the set of link phrase indeterminate symbols, K 
is the set of node phrase indeterminate symbols, L is the 
set of link symbols and N is the set of node symbols. This 
extension is useful in defining the class of linked data 
structures to be transformed.

2.5 Context-Free Languages and Recognizers.
Using K-formulas to represent linked data structures 

offers the important qualities of notational conciseness and 
precision. A K-grammar provides a mechanism for generating 
the K-formulas which correspond with all allowed data 

structures defined by the grammar. Care in the choice of a 

data structure K-grammar allows one to take advantage of 

standard recognition tools in addition to the grammatical 
generation tools. In particular, if the K-grammar is 
context-free, then a push-down automaton (PDA) can be used
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to recognize whether a particular K-formula is well-formed 
according to the rules of the K-grammar.

The following definition is based on Aho and Ullman 

(AU72). DEFINITION. Let G = (N, T, P, S) be a grammar. G 
is a context-free grammar if each production in P is of the 
form A — > g, where A is a nonterminal in N and g is a 
(possibly empty) string of nonterminals and terminals in 

(nUt)*. The term "context-free” is appropriate because in 
a derivation of a particular sentence in the language L(G) 
generated by G, a nonterminal "A” can be replaced by the 

right-hand-side of a production (whose left-hand-side is 
”A”) without regard for the symbols which precede and follow 
”A”. Grammar G1 in paragraph 2.3 above is a context-free 
grammar. Grammar G4 in paragraph 2.4 above is not 
context-free because the right-hand-sides of productions 
contain symbols not in (N U  T)*; although the 
"supplementary” symbols are eventually removed, additional 

"machinery” in the form of a mapping function is needed to 
do so.

Given an instance of a K-formula, one can determine if 

it is well-formed according to the rules of a particular 
context-free K-grammar by use of a recognizer termed a 
pushdown automaton (PDA). A PDA consists of a read-only 
input medium, a finite state control and an auxiliary memory 
called a pushdown list. The recognizer operates by making a 
sequence of moves, where a move involves reading an input
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symbol, and based on the input symbol, the state of the 
finite control and the contents of the pushdown list 
(stack):

(1) shifting the input head right to the next symbol on
the input medium, or keeping the input head stationary;

(2) revising the contents of the stack; and
(3) changing the state of the finite control.
The activities of a PDA recognizer can be described by 

"configurations" of the recognizer, which include:
(1) the state of the finite control;
(2) the content of the stack; and
(3) the location of the input head, and the unused 

contents of the input medium.
The initial configuration is one where the finite control is 

in a specified initial state, the input head is at the 
leftmost symbol and the memory has specified initial 
contents. The final configuration of the recognizer is one 
where the finite control is in a final state, the input has 
been exhausted and the stack is empty.

More formally, a PDA R is defined (AU72) as a 7-tuple 
as follows. DEFINITION: R = (Q, A, G, d, qO , ZO , F),
where:

(1) Q is a finite set of state symbols, giving the
possible states of the finite state control,

(2) A is a finite input alphabet,
(3) G is a finite alphabet of stack symbols.
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(4) d is a mapping of Q x ( A U  (e}) x G to the finite 
subsets of Q X G* ("e" represents the empty string),

(5) qO in Q is the initial state of the finite control,
(6) ZO in G is the symbol that appears initially on the 

stack, and
(7) F contained in Q is the set of final states.
A configuration of P is a triple (q, w, g) in

Q X A* X G*, where:
(1) q represents the current state of the finite 

control,
(2) w represents the unused portion of the input, and

(3) g represents the contents of the stack. The
leftmost symbol of g is the topmost stack symbol.

A "move" by R is represented by the binary relation 

I — , for example:
(q1, aw, be) I—  (q2, w, abg) 

if dCql, a, b) contains (q2, ab),
A string "w" is accepted by R if (qO, w, ZO) 1*- (q, e, 

g) for some q in F and g in G*, or if (qO, w, ZO) I*- (q, e, 

e) for some q in Q. The language L(R) defined by R is the 
set of strings accepted by P.

Aho and Ullman (AH72) have shown that the languages 
recognized by PDAs are exactly the context-free languages. 

This means that, given a context-free grammar G = (N, T, P,
S), we can construct a PDA R such that L(R) = L(G); the
construction is:
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R = ({q}, T, {N U  T}, d, q, S, 0) 

where "d” is defined as follows:
(1) If A — > 8 is in P , then d(q, e, A) contains 

(q, 8).
(2) d(q, a, a) = {(q, e)} for all a in T.
As an example, consider the grammar G1 of Section 2.3 

above. The following PDA recognizes sentences of G1.
R

where:
({q} 1 {a,b,c,p}, {a.

d(q. e, S) = (q. paA)

d(q. e, A) = (q. pbB)
d(q. e, B) = (q. c)
d(q. a, a) = (q. e)
d(q. b, b) = (q. e)
d(q. 0, c) = (q. e)
d(q. P, p) = (q. e).

The following configuration sequence shows that (q, papbc, 
S) !•- (q, e, e).

(q, papbc, S) 1—  (q, papbc, paA)

1—  (q, apbc, aA)

i—  (q, Pbc, A)

1—  (q. pbc, PbB)

1—  (q, be, bB)

1—  (q, c, B)

1—  (q, c, c)

1—  (q, e, e)
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2.6 Recognizable Structures.
A pushdown automaton (PDA) can be used to recognize a 

linked data structure if the structure has certain 
characteristics. In this section, some concepts from graph 
theory are briefly examined, and the properties which render 
a data structure recognizable are enumerated.

2.6.1 Eulerian Graphs. A traversal of a data structure is 
defined as a systematic search in which each node of the 
structure is visited. A traversal of a
syntactically-specified data structure is represented by a 
K-formula derivable from the data structure grammar. A 
K-formula identifies not only the nodes and connectivity of 
an instance of a data structure, but also a traversal of the 
structure. A desirable property is to be able to visit all 
nodes by following a traversal path which traces each edge 
exactly once. The following definitions follow Chen (CW71). 
A graph is connected if every pair of its nodes are 
connected. The degree dCi) of a node ”i” is equal to the 
number of edges incident with "i”. An edge train is a 
sequence of edges in which all edges are distinct. A closed 
edge train containing all the edges of a directed graph is 
called an Euler line of the directed graph. A connected 

graph is an Euler line if, and only if, the degree of each 

of its nodes is even. Another view of the Euler line is 

that a connected graph is a directed Euler line if, and only 
if, the number of edges entering a node ”i" (the indegree of
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"i”) is equal to the number of edges leaving "i” (the 
outdegree of ”i") for all nodes "i".

2.6.2 K-Forumlas for Eulerian Graphs. The K-formulas for
graphs which are Eulerian have certain properties. Because
an Euler line consists of a closed edge train, the
associated K-formula must begin and end with the same node

symbol; the symbol "h" is normally used to identify this

distinguished header node. That all edges are distinct in
an Euler line requires that the symbols

1 a a 
1 j k

not be replicated in the K-formula for any given triple
(i,j,k). ("1” is a link symbol; "a” is a node symbol.) To
preclude multiple definition of any particular link, the 
symbols

1 a 
i j

may not be replicated in the K-formula for any given pair
(i,j). With application of the substitution rule for

K-formula combination, the aggregate result of these
constraints on K-formulas which represent Euler lines is
that they must conform to the following expression.

1 h«l a »  »h (2.6.3.1) 
i [j] [k] q

The operator indicates closure, which means that the 
quantity inside the French quotes is repeated zero or more 
times. The French quotes prohibit recurrence of any given
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link-node pair. (Note that the definitive mapping:

J X K X Q — > L X N 

may, and usually does, allow replication of a link symbol. 
While a node label may recur, it may appear only as many 
times as there are edges incident to the corresponding node, 
and its appearance must always conform to the relevant data 
structure grammar. Note that the mapping may not generate 
the link-node symbol pair "Ih".) In the case of one or more 
data structures embedded within a data structure or 

structures, a node symbol may map to the header node(s) of 
the embedded structure(s).

2.6.3 Eulerian Graphs and Recognizable Structures. To 

determine whether an instance of a data structure conforms 

to a certain data structure K-grammar, one can apply 
automata theory. In this section we show that if a graph G 

is Eulerian, then there is a traversal of G whose K-formula 
is PDA recognizable. The proof involves three theorems 
which use the following generalized grammar.

E = (N, T, P, A)

where N = (A, Bl
T = sets of link and node symbols 

denoted below by 1 , 1  ,
Ci] [j] 

a , h, and h . The h 
Ck] [k] [k]

are. substructure header nodes, 
which are unique for each 
substructure and distinct 
from "h".
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P is given by;

A — > « 1  hBh>>
Ci] q

A — > « 1  hh>>
[i] q

B — > « 1  a >>
[i] [k] q

B — > « 1  a B>>
Ci] [k] q

B — > « 1  h Bl h >>
[i] Ck] [j] [k] q

With suitable mapping functions, E generates the K-formulas 
which correspond with data structures with Eulerian 
traversals. Hereinafter, such data structures are termed 
"type-E" data structures.

In E, note that the set of actual terminal symbols is
determined by application of mapping functions which specify 
the link and node symbols. The mapping functions must
assure that a link symbol at any given node is not
multiply-defined. The mappings may allow node symbols to be 
replicated in a manner which conforms to the data structure 
grammars. The grammar E is important in the following 
theorem.

Theorem 1. For a graph G, there exists a traversal of G 
whose K-formula is derivable from the grammar E if and only 
if G is Eulerian.
Proof: (If): Because G is Eulerian, there exists a closed
edge train which begins and ends with the distinguished node 
"h". Adjacent edges in this edge train are related such
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that if an edge from "a” to "b" exists, then there is
another edge from ”b” to some "c” for all nodes in the 
graph. As all edges in Eulerian G are distinct, one can 
apply the K-formula substitution rule to generate a
K-forumla which consists of zero or more link-node pairs, 
all of which is prefixed by a link symbol followed by the 
header node label, and all of which is suffixed by the 
header node label. This is exactly the K-formula pattern 

generated by the grammar E.

(Only if): Suppose G is not Eulerian. Then there exist at
least two nodes whose degree is odd, because the total 
degree of G (the sum of the indegree and outdegree of all
nodes) must be an even number; this is true because each
edge in G contributes by 2 to the total degree. If the
degree of a node "y" is odd, then one of the following 
holds.

(a) The indegree of "y" is one and outdegree is
zero. This condition results in a K-formula 
"Ixy”, and there exists no K-formula "lyz" 
because no edges leave "y". Therefore, the 
substitution rule cannot be applied to 
•*lxy", and the resultant K-formula does
not conform to the grammar E.

(b) The indegree of ”y” is zero and the outdegree
of "y" is greater than zero. In this case,
there are no edge representations of the form
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•'Ixy", but there is one or more of the form 
"lyz”. The "lyz” cannot be combined with an 
”lxy”, and the resultant K-formula cannot be 
derived from E.

(c) The indegree of ”y” is greater than the 

outdegree of "y” which is greater than 
zero. This condition results in at 
least one more K-formula of the form ”lxy” 
than there are K-formulas of the form 
"lyz”. Thus, at least one of the "Ixy”
cannot be combined with "lyz” and the 
resultant K-formula cannot be derived from 
the grammar E.

(d) The outdegree of "y” is greater than the 
indegree of "y” which is greater than zero.
In this case, there exists at least one more 
K-formula of the form "lyz” than there are 
K-formulas of the form "Ixy”. Therefore, at 
least one of the "lyz” cannot be combined 

with "Ixy” and the resultant K-formula cannot 
be derived from the grammar E.

Given a traversal of an Eulerian graph G, which
traversal is described by a K-formula derivable from E, we
next show that the K-formula is PDA-recognizable.
Theorem 2; Any K-formula derived from the grammar E is
PDA-recognizable.
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Proof; The proof is given by constructing a PDA which 
recognizes K-formulas which are derived from E. Such 

K-formulas begin with a link symbol followed by the header 
node symbol, followed by zero or more link-node pair 
symbols, followed finally by the header node symbol.
Define: A'(&) to be a PDA which initially has an

empty stack.
B’(z) to be a PDA which has "z" at the top of 
its stack when invoked.
q:B'(z) to indicate that the PDA which 
invoked B' makes a transition to state q if 

B'(z) terminates.
The PDA of interest consists of two components, A'(&) 

and B'(z), as defined above. A* recognizes the structure 
header node, and invokes B' to recognize interior nodes and 
substructures. Three distinct link symbols are assumed 

here; additional link symbols merely result in additions to 
the mappings d~ and d . Using the PDA definition of 
Section 2.5, the following apply.

A' = (Q-, A“, G~, d-, q , &, q )
10 f

where:

Q~ = {q , q , q , q , q }
10 11 12 13 f

A“ = {1 } U  {a } U  {h } U  {h} 
i k k

G” = {&, h}
d~ is the mapping defined as follows.
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d-(q , 
10

1 , &) 
1

- ( q f

11
&) A' 1

d-(q , 
10

1 , &)
2

= (q I 
11

&) A'2

d-(q , 
10

1 , &) 
3

= (q , 
11

&) A’3

d-(q , 
11

h, &) = (q : B 
f

'(h), &) A'4

d-(q , 
11

h, &) = (q , 
12

h) A'5

d-(q , 
12

h, h) = (q 1
f

&) A'6

B' = (Q--, A~, G~~, 
where;

d--, q1, h, q0 t
)

Q~- = {q , q , 
0 1 q , q ,

2 3
q )
t

A“ is as in A* above.
G~~ = {h} U  {h }

k
d is the following mapping.

d~-(q , 
0

1 , h) 
1

= (q , 
1

h) B'1

d~~(q , 
0

1 , h)
2

“ ( q 1 
1

h) B'2

d--(q , 
0

1 , h)
3

= (q , 
1

h) B'3

d--(q , 
1

a , h) 
k

= (q »
2

h) B'4
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d-~(q , h h) Z (q , h h) B‘5

1 k 2 k

d--(q , 1 h) - (q , h) B’6
2 1 3

d--(q , 1 h) = (q , h) B'7
2 2 3

d--(q , 1 h) (q , h) B'8
2 3 3

d--(q , 1 h ) (q , h ) B'9
2 1 k 3 k

d~-(q , 1 h ) (q , h ) BMC
2 2 k 3 k

d~-(q , 1 h ) - (q , h ) B'11
2 3 k 3 k

d-~(q , a h) (q , h) B»12
3 k 2

d~~(q , a h ) (q , h ) B'1 3
3 k k 2 k

d--(q , h h) (q , h h) B'14
3 k 2 k

d--(q , h h ) - (q 1 e) B'15
3 i i 2

d--(q , h h ) (q , h h ) B'16
3 i j 2 i j

d--(q , h, h) - (q I e) B'17

In the above, the mapping notation d (q,x,y) = (q, e)
denotes that the top of the stack is removed; the mapping 
notation d (q, x, y) = (q*, xy) denotes that the symbol ”x” 
is stacked on top of the previous top-of-stack symbol "y".

By Theorem 1, G is Eulerian, and this condition assures 
that the corresponding K-formula is finite in length. With 
a finite input, A* either halts in the final state, or halts
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in an error state. If A* halts in its final state, the 
proof of the next theorem shows that its input conforms with 
E.
Theorem 3; If A'(&) terminates in its final state, then the
K-formula which was its input is derivable from E.
Proof; The grammar E generates K-formulas which are
described by the following expression:

1 h «l a »  »h 
i Ci] Ck] q

where 1 is a valid link symbol.
[i]

The a node symbols may include 
[k]

header nodes of substructures.
The French quotes and associated mapping assure that node
symbols, if repeated, occur only in an allowed sequence. We
must prove that input sequences derivable from the above
expression, and only those, cause A’(&) to terminate. The
method used here consists of showing that A'(&) terminates
if the input is derivable from:

1 h(l a )*h 
i i k

and then showing what conditions must exist to ensure that
the input is also derivable from:

1 h«l a »  »h. 
i [i] [k] q

The proof proceeds by considering state sequences of

the machines A' and B' of Theorem 2, and examining the input
which produced those state sequences. In the following, the
notation [A'1,A'2,A'3,...] denotes application of one of the
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bracketed transitions of machine A*; similar symbol 
sequences apply to transition sequences for machine B'.

Case 1; A* follows the transition sequence [A'1,A'2,A'33, 
A'5, A'6. The input K-formula consisted of a link symbol
followed by "hh", which is certainly derivable from E.

Case 2: A' follows the transition sequence [A'1,A'2,A'3],
A'4 and invokes S'. The input already processed when B' is 
invoked is a link symbol followed by "h". If B' is to halt 
successfully and return A' to a final state, B' must follow 
the following state sequence:

q q q (q q )*q 
0 1 2 3 2 t

The following input must exist to produce the above state 
sequence:

(a) A link symbol to transition from

q to q using [B'1,B'2,B'33; and 
0 1
followed by

(b) a node symbol to transition from

q to q using [B'4,B'53; and 
1 2

followed by

(c) zero or more instances of:
(1) a link symbol to transition

from q to q using 
2 3

CB'6,B'7,B'8,B'9,B'10,B'113; 
and
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(2) a node symbol to transition

from q to q using 
3 2

CBM2,B'13,B'14,BM5,B'16]; and
followed by

(d) the header node symbol "h" to
transition from q to q .

2 t
The input of (a)(b)(c)(d) above to B' is represented by

1 a (1 a )*h. 
i k i k

When the inputs to A' and B' are combined, the aggregate 
result is

1 h(l a ) h, 
i i k

which is derivable from E. The combined result of Case 1 
and Case 2 is that the input to A' and B' is of the form;

1 h(l a ) »h 
i i k q

That no other symbol sequence causes A' to reach its final 
state is apparent by inspection of the state transitions of 
A’ and B’.

We have now shown that if A'(&) terminates, then the 
input consists of alternating link and node symbols, 

followed by the header node symbol. The first (leftmost) 
node symbol is that of the header node. We now show that a 

given link-node symbol pair can appear only once in the 
input K-formula.

If a certain link-node symbol pair "Ix" is replicated
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in a K-formula, then either the node ”x" is repeated within 
a substructure (subcase 2a), or the node is common to
two substructures (subcase 2b),

Subcase 2a: Suppose a node "x” is repeated within a
substructure. Then the input K-formula contains a string of 
the form:

. . . Ixy . . . Ixz . . .
Because no link may be multiply-defined, "y" and "z” are one 

and the same node. Thus, the link from ”x” to "y" is 
retraced in the traversal which the K-formula describes, and 
there is a loop in the corresponding structure; this loop 
may be retraced an infinite number of times. But the 
looping of the traversal implies that A’(&) does not halt, 
contradicting the theorem statement. Therefore, no node "x" 
may be repeated within a substructure.
Subcase 2b: Assume two substructures contain a common node.

(Recall that the header node of each substructure must be 
unique, and thus the common node is not the header node.) 
To share a node, the node formats of both substructures must 
be identical, including link definitions. Suppose that B* 
successfully recognized the substring of the K-formula (a 
"K-string") which corresponds with the substructure whose 
header node is "hi”. Then, while processing the K-string 
which represents the other substructure in which the header 
node is "h2", B' will have "h2" at the top of its stack when 
it encounters "hi" in the input; "h2" will not be visited
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again in the traversal, which means B* cannot terminate with
an empty stack. Thus, A' cannot terminate and we have a
contradiction of the theorem statement. We have now shown
that a link-node symbol pair cannot be repeated in the input
K-formula, and thus the input K-formula is derivable from E.

Theorem 3 assures that if A’ terminates, then its input
K-formula is derivable from E and the corresponding data
structure is Eulerian. A proof shorter than that given

above is based on expression (2.6.3.1)* A' terminates only
if the input is of the form:

1 h(l a )*h. 
i j k

A K-string such as:
1 hi a 1 a h 

1 1 1 2  2

can be expanded to a series of K-formulas:
1 ha ; 1 a a ; 1 a h.

1 1  1 1 2  2 2

By inspection, the indegree equals the outdegree at each
node in the corresponding data structure. Because a graph
is Eulerian if and only if the indegree equals the outdegree
at each node in the graph, the data structure is Eulerian
and the corresponding K-formula is derivable from E.

Theorems 1, 2 and 3 collectively show that K-formulas
which correspond with Eulerian graphs are PDA-recognizable.

The recognizable K-formulas are those which can be derived
from the grammar E; the corresponding structures are termed

"Type-E" structures. Given a grammar for a data structure.
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to answer the PDA-recognizability question one must 
determine if the data structure K-grammar generates 
K-formulas which correspond with the grammar E. That is, 

one must show that the K-grammar generates K-formulas which 
can be described by the expression (2.6.3.1), repeated here 
for convenience.

1 h«l a »  *h 
i [i] [i] q

Consider the grammar:

G5 = ({A,B}, {p,h,a ,a P, A)
1 2

where P is given by:
A ——) phB (1)
B — > «pa B »  (2)

Ci] q
B ——) h (3 )

and the mapping function:
I X Q — > I

which maps <<a >> to a .
Ci] q q

To show that grammar G5 generates K-formulas which 
conform to the grammar E, and thus that the corresponding 
data structures are Eulerian, first note that all node 
symbols (except "h") in K-formulas generated by G5 are 
unique. Thus, there can be no link-node symbol pair
replication. Next, note that the production sequences 

C'pi-strings”) of G5 are described by (1)(2)*(3). The
mandatory use of productions (1) and (3) ensures that the
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resulting K-formulas begin with a link symbol followed by 
the header node symbol, and end with the header node symbol. 
Application of production (2) always generates a unique 

link-node symbol pair. Therefore, K-formulas generated by 
G5 are PDA-recognizable.

More formally, the pi-strings of G5 generate K-formulas 
which are described by the following expression;

ph<<pa >> *h.
[k] q

This expression conforms to (2.6.3.1) above.

2.6.4 Observations on Recognizability. The grammar E of 
Section 2.6.3 is not a context-free grammar. Indeed, no 
grammar which contains phrase indeterminates is context-free 
because resolution of a phrase indeterminate symbol depends 
upon the context (e.g., nesting level) in which the symbol 
appears. The phrase indeterminates and associated mappings 

are necessary to ensure that link-node symbol pairs are not 
replicated, and in conjunction with the grammar, serve to 
specify the traversal of the structure.

A PDA can be used to recognize well-formed K-formulas, 
and is constructed from the data structure grammar. The PDA 
must be augmented, however, to ensure that all incorrect 

usages of node symbols are detected. In particular, 
augmentation is required to detect illegal recurrence of a 
node symbol. The PDA may also fail to halt in certain 
cases, such as the event of a loop in a traversal, which is
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reflected as a traversal of infinite length. Modification 
of a PDA can incorporate a mechanism to detect potential 
traversal loops.

The data structure grammars are not strictly 
context-free, and the automata used to recognize K-formulas 
are not strictly PDAs. The formalisms are, however, very 
close to what is required, and with minor modifications, 

provide very useful machinery for automating data structure 
modifications.

We have now established the theoretical basis for 
formally describing operations on Eulerian data structures. 
In the next chapter, data structure transformations are 
examined, and a transform syntax is given.



CHAPTER THREE

3. Formalized Data Structure Operations.

3.1 K-Grammars for Several Common Data Structures.
In this chapter, the theory for formalized operations 

on data structures is developed. We begin by examining the 
K-grammars for some common structures. The grammar G4 of 
Section 2.4, in concert with a mapping function, generates 

K-formulas for a singly-linked list. Consider next the
grammar

SLL = ({A, B}, {p,h,a,b,c,d,e,i,j,k, ..., z}, P, A) 
where P is given by:

A — > PhB (1)
B — > « p a  B »  (2)

[i] q
B ——> h (3)

SLL, augmented by a mapping function, generates K-formulas 
for circular singly-linked lists. The PDA-recognizability 
of the SLL K-formulas has been established in the discussion 
of G5 in the previous chapter.

K-formulas for doubly-linked circular lists can be 
generated by the grammar

DLL = (lA, B}, {p,x,a,b,c,d,e,i,j, ..., z}, P, A)

39
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where P is given by;

A — > phBh (1)
B — > «pa BXa »  (2)

Ci] Ci] q
B ——  ̂ xh (3)

Once again, a mapping function is required to resolve the
phrase indeterminates.

In the DLL productions, ”p” denotes the "right" or 
"forward" link of the doubly-linked list, and "x" denotes 
the "left" or "backward" link. The same phrase

indeterminate symbol appears twice in the second 

production— once after the forward link and once after the 
backward link. A DLL K-formula such as:

phpapbxhxbxah
not only describes a list with nodes "h", "a" and "b", but
also specifies a traversal of the list. In this case, one
follows the forward link " p " from "h" to "a", the " p " link 
from "a" to "b", the " p " link from "b" to "h", and then
follows the backward link "x" from "h" to "b", the "x" link
from "b" to "a", and finally the "x" link from "a" to "h".

Graphically, the above traversal is:
h ——) a — ) b ——) h ——) b ——) a ——) h.

To show that the K-formulas generated by DLL are 

PDA-recognizable, notice that the allowable production 

sequence is (1)(2)*(3). The resulting K-formula is 
described by:
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phpa pa ... pa pa XhXa Xa ... Xa Xa h.
1 2  n-1 n n n-1 2 1

Production (2) and the phrase indeterminate mapping ensure
that link-node symbol pairs are not replicated, if the
header node label ”h" is disallowed in the mapping.
Therefore, DLL generates K-formulas which are described by;

ph«l a »  »h,
Ci] [k] q

which conforms to (2.6.3.2). These K-formulas are

PDA-recognizable.

The following grammar RTBT generates K-formulas for
right-threaded binary trees.

RTBT = ({A, B}, {p,X,p-,a,b,c,d,e,i,j, ..., z}, P, A) 
where P is given by:

A — > xhBh (1)
A — > p-hh (2)
B — > «xa Bpa B>> (3)

Ci] Ci] q
B — > «Xa Bp-a »  (4)

Ci] Ci] q
B — > «pa B »  (5)

Ci] q
B — > «p~a »  (6)

Ci] q
A mapping function is used to resolve the phrase 
indeterminates.

In the RTBT productions, "x” denotes the left link at a 
node, which is followed to reach the left subtree of the
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node. The right link is denoted by "p”, which points to the 
right subtree of a node. If there is no right subtree at a 
particular node, then the right link at that node points to 

the successor of the node when an inorder traverse (HS76) is 
used; in the K-formula, this pointer, or "thread", is 
signified by the symbols "p~". Thus, the grammar RTBT above 
generates K-formulas which not only provide the topology of 
right-threaded binary trees, but also give the inorder 
traversal of these trees; the list of nodes which 
corresponds with an inorder traverse is obtained from the 

K-formula by printing all node labels which do not 
immediately follow a left link ("x") symbol.

The K-formulas generated by RTBT are PDA-recognizable, 

shown as follows. The allowable production sequences are 
(2) alone, which conforms with (2.6.3*1), and (1) followed 
by the appropriate selection of the productions (3) through 
(6) which finally results in resolution of all non-terminal 
symbols. Productions (3) and (4) disallow replication of 
link-node symbol pairs, and the phrase indeterminate mapping 
ensures that node labels generated by any single production 

are distinct from those generated by any other production. 
All of the terminal symbols generated by (3) through (6) are 
link-node symbol pairs. Therefore, RTBT generates 

K-formulas which begin with a link symbol followed by the 
header node symbol, followed by zero or more link-node 
symbol pairs, and terminated by the header node symbol.
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This is exactly the pattern generated by (2.6.3.1)» and thus 
RTBT generates PDA-recognizable K-formulas.

3.2 The Correspondence of K-Grammars and Classical Data 
Structure Generation.

3.2.1 Introduction,
K-gramraars generate K-formulas which describe the 

topology and traversal of linked data structures. As 
introduced in Chapter One, the most prevalent method of 
providing this information in the past has involved the use 
of a programming language and supplementary diagrams. In 
this section, the correspondence between this classical 
method and the present approach is described.

A K-grammar is a generator of K-formulas, and can be 
compared with a programming language algorithm which 
constructs a particular type of data structure. Consider an 
algorithm which constructs right-threaded binary trees by 
adding nodes in a way such that a newly-inserted node would 
be the last node seen in a depth-first traversal (BA75). A 
C-language example of such an algorithm is shown in Figure 
3.2.1. Discussion of the correspondence of this algorithm 
and the K-grammar method requires the following DEFINITION: 
A left-most derivation of a K-formula is one in which the 
left-most nonterminal symbol in a sentential form is 
replaced before other nonterminal symbols.
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/* rtbt constructor algorithm */
#define printnod printf("%c", t,label[n]);

/* number of elements in rtbt 
/* flag for null index 
/* index of head node

*/
*/
*/

*/

/* return code for consrtbt */

#define NE 15 
#define NULL 999 
#define HEAD 1 
#define YES 1 
Idefine NO 0 
#define FOREVER 1
Idefine ERROR 99999 /* error symbol 
Idefine SUCCESS 0
int debug = NO; /* flag to enable debug messages */ 
struct rtbt { 

int llink[NE]; 
int rlink[NE]; 
char label[NE]; 
int mark[NE];

} t; 
mainO 
{
int retcode;
1.11 ink[HEAD] = NULL; 
t.rlink[HEAD] = -1; 
t.label[HEAD] = 

consrtbt(2,'a',' 1 
consrtbt(3,'b' , ' c  

consrtbt(4,'c','c 
consrtbt(5,'d','c 
consrtbt(6,'e','( 
consrtbt(7,'f','c 
consrtbt(8,'g','i 
consrtbt(9,'i','g','L') 
consrtbt(10,'j','i','L'); 
consrtbt(11,'k','i','R'); 
consrtbt(12,'m','k','R'); 
printf ("%s", "n");
} /* end of main */
consrtbt (indexin, nodelabl, parent, linktype) 
int indexin; /* index of node to be inserted */
char nodelabl; / *  label of inserted node * /

char parent; /* label of node which will be parent */
char linktype; /* which points to inserted node */

1;. 1h';
h' ,'L')
a' ,'L')
a' , ' R ' )
c' , ' R ' )
d' ,'L')
d' , ' R ' )
f ,'L')

{
int n; 
int c; 
int i; 
int 1;
printf("n"); 
for (i = 0;

/* index of node presently visited
/* index of last node visited */
/* loop control index */
/* last node reached via other */ 

/* than thread */
< NE; i = i + 1) t.mark[i] = NO;

V

Figure 3.2.1: Binary Tree Constructor Algorithm
(Page 1 of 3)
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if (t.llink[HEAD] == NULL && parent == 'h')
/* A — > Qhh */

{ if (debug) printf ("%s", "Qhhn"); 
c = HEAD;

}
else
{ n = t.llink[HEAD]; /* A — > LhBh */
if (debug) printf ("%s", "** tree not empty n");
1 = NULL; 
while (n != HEAD)
{ c = n;

if (t.llink[n] != NULL && t.rlink[n] > 0)
{ /* B — > LaBRaB */
if (debug) printf ("%s", "** LaSRaT n"); 
if (t.mark[n] 1= YES)

{t.markin] = YES; 
printnod; 
n = t.llinktn];
}

else
{ printnod;
n = t,rlink[n];
1 = n;

}
else if (t.llink[n] 1= NULL && t.rlink[n] < 0)

{ /* B __> LaBQa */
if (debug) printf("%s", "** LaSQan"); 
if (t.mark[n] 1= YES)

{ t.mark[n] = YES; 
printnod; 
n = t.llink[n];
1 = n;

}
else

{printnod; 
n = -t.rlink[n];
if (t.label[n] == parent) 1 = n;
}

}
else if (t.llink[n] == NULL && t.rlink[n] > 0)

{ /* B — > RaB */
if (debug) printf ("%s", "**RaS n"); 
printnod; 
t.mark[n] = YES; 
n = t.rlink[n];
1 = n;

}
Figure 3.2.1: Binary Tree Constructor Algorithm

(Page 2 of 3)
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else if (t.llink[n] == NULL && t.rlink[n] < 0)

{ /* B — > Qa */
if (debug) printf ("%s", "**Qa n"); 
printnod;
t.mark[n] = YES; n = -t.rlink[n]; 
if (t.label[n] == parent) 1 = n;

} /* end of while on n */
} /* end of else */

if (linktype == 'L' && t,llink[c] == NULL)
{ if (debug) printf ("%s", "** inserting leftchildn"); 

t,rlink[indexin] = -c; 
t.llinkiindexin] = NULL; 
t.labeliindexin] = nodelabl; 
t.llinkic] = indexin; 
printf ("%c", nodelabl); 
return (SUCCESS);

}
else if (linktype == 'L' && t,label[l] == parent

&& t.llinkCl] == NULL)
{ if (debug) printf ("%s", "** inserting dis leftchildn"); 
t.llink[l] = indexin; 
t.llinkiindexin] = NULL; 
t.rlinkiindexin] = -1; 
t.label[indexin] = nodelabl; 
printf ("%c", nodelabl); 
return (SUCCESS);

}
else if (linktype == 'R' && t.label[l] == parent 

&& t.rlink[l]<0)
{ if (debug) printf ("%s", "** inserting rightchildn"); 

t.rlink[indexin] = t.rlink[l]; 
t.llinkiindexin] = NULL; 
t.rlinkil] = indexin; 
t.labeliindexin] = nodelabl; 
printf ("%c", nodelabl); 
return (SUCCESS);}

else if (linktype == *R' && t.rlink[c] -- -HEAD)
{ if (debug) printf ("%s", "** inserting rightchildn"); 

t.rlinkiindexin] = t,rlink[c]; 
t.llinkiindexin] = NULL; 
t.label[indexin] = nodelabl; 
t.rlinkic] = indexin; 
printf ("%c", nodelabl); 
return (SUCCESS);}

else return (ERROR) ;
/* end of consrtbt */
Figure 3.2.1: Binary Tree Constructor Algorithm

(Page 3 of 3)
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For example, in a RTBT production with the following 
right-hand side,

«  Xa Tpa T »
[i] [i]

the leftmost "T” is expanded (using one or more
T-productions) to produce a terminal string before the 
rightmost "T" is expanded.

3.2.2 The Correspondence.

The following subsections address the elements of 
correspondence between the formal and programming language 
approaches to data structures. Terminal symbols,
nonterminal symbols, data structure grammars and K-formulas, 
production selection and traversal order are discussed.

3.2.2.1 Terminal Symbols. In a K-formula, a node is 
referenced by its node label, and fields of a node are
denoted by prefix operators on the node label, such as the 
link symbol ” p ” in the K-formula phpapbh. A programming 
language data structure declaration typically describes the 

format of a node using facilities such as the C-language 
"struct" (KR78); fields within a node are denoted by 

declarations of the variables which comprise the node.

3.2.2.2 Nonterminal Symbols. The appearance of a
nonterminal symbol in a sentential form indicates that one 
or more additional nodes are to be generated in the
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K-formula which represents the corresponding data structure. 
In an algorithm such as that in Figure 3.2.1, the 

corresponding factors are iteration to visit the next node 
and insertion of a node at a particular position in a 
structure.

3.2.2.3 Data Structure Grammars and K-Formulas. A data 
structure grammar defines the allowable sequences of 
terminal symbols, as declarations in a program define the 
allowable node formats. A K-formula defines a specific 
instance of a data structure and its traversal, which is 
represented in a program by the combination of a data 
structure declaration, some method (declaration, algorithm) 
of initializing the structure and a traversal algorithm.

3.2.2.4 Selection of a Production. When replacing the 
nonterminal ”B” during the left-most derivation of a 
K-formula, selection of a production from a set of alternate 
B-productions corresponds with determining which set of 
logic to use in a programming language depiction of a 
constructor algorithm. In Figure 3.2.1, the relevant 
K-grammar A-productions are noted as comments in the logic 
which precedes the depth-first search, and the B-productions 
are noted as comments in the search and insertion portions 
of the algorithm. In essence, selection of a K-grammar 
production corresponds with "case" selection in a 
programming language algorithm.
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3.2.2.5 Traversal Order. A K-grammar generates a K-formula 
which gives both the topology of a data structure and a 
particular traversal of the structure. In a constructor 

such as that of Figure 3.2.1, the traversal of a structure 
is distributed throughout the search portion of the 
algorithm. This algorithm was developed to correspond with 
the grammar RTBT; a shorter but equivalent algorithm not 
based on the grammar can be written to accomplish the same 
function.

3.2.3 Differences Between the Classical and Formal 
Approaches.

As seen above, a K-grammar can generate all instances 
of K-formulas which represent a certain traversal of a 
particular type of data structure. For example, the grammar 
RTBT generates K-formulas which represent an inorder 
traversal of a right-threaded binary tree. Thus, the
traversal order is specified in the declaration of the 
structure. In a programming language approach, the 
declaration of a structure allocates storage and possibly 
also initializes the structure, but the tranversal order 
must be specified separately by a procedure written using 
imperative statements of the language.

3.3 Operations on Data Structures.
This section contains a hueristic description of data

structure operations. The concepts presented here are
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formalized in the next section. The K-grammars of Section
3.1 specify the set of well-formed K-formulas which 
represent valid instances of the relevant data structures. 
To develop the background for formalizing operations on the 

data structures, consider the derivation sequence for a 
singly-linked list. The productions of the grammar SLL are 
repeated here for convenience.

3 --> PhT (1)
T — > «pa T »  (2)

[i] q
T — > h (3)

A derivation of the list LI: h — > a — > b — > c — > h uses

the production sequence (1)(2)(2)(2)(3) and an appropriate 
mapping function; the corresponding K-formula is phpapbpch.

Suppose one wishes to modify LI to obtain the list:
L2: h ——) a ——  ̂b ——) d ——  ̂ c — ) h

The K-formula phpapbpdpch for L2 is derived by the 

production sequence (1)(2)(2)(2)(2)(3) and an appropriate 
mapping function. The insertion of ”d” into LI involves 
setting the ”p" link at "d" to point to ”c” (i.e., setting 
the ”p” link at ”d” to the previous value of the "p” link at 
"b"), and resetting the "p” link at "b” to point to the 
newly-inserted node "d”. From the K-formula vantage point, 
the symbols ”pb” and "pd” paticipate in the insertion.

The insertion process causes the following mapping on 
the K-formulas which represent the data structure.

p h p a p b P c h  — > p h p a p b p d p c h
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The insertion can also be examined by study of the 
derivation of the initial and revised K-formulas, A 
convenient graphical depiction of the derivation involves 
use of "parse trees" (see AU77). Each interior node of a 
parse tree is labeled by some nonterminal "X", and the 
children are labeled, from left to right, by the symbols of 
the right side of the production which replaced X in the 
derivation. The leaves of the parse tree, read from left to 

right, constitute a sentential form called the yield or 
frontier of the tree.

The K-formula mapping
phpapbpch — > phpapbpdpch 

is depicted in parse tree form in Figure 3.3.1, where node 
symbols are shown as they would appear after application of 
the phrase indeterminate resolution mapping function.
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ti T

P a T

P b T

P h T

— >

p c T

P a T

P b T

p

Tcp

Figure 3.3.1: Derivation Trees for Singly-linked List
Insertion.
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The derivation portrayed in both parse trees is identical to 
the point where the nonterminal "T" which is a sibling of 

and "b" is replaced by "pdT" instead of "pel". That is, 
the insertion operation is characterized by the frontier

phpapbT — > phpapbpdT 
At the point of interest in the (leftmost) derivation, all 
nonterminals preceding "pbT" have been replaced by terminal 
symbols. The terminals "pb" provide a point of reference 
for the insertion function. The nonterminal symbol "T" in 
both the left-side and the right-side of the operation pbT 
— > pbpdT ultimately derives the terminal symbols pch. In a 

sense, "T" represents a substructure of the portion of the 
structure which is of central interest in the 
transformation. In other structures, a substructure may 
itself be involved in a transformation.

Operations on Type-E linked data structures can thus be 
characterized by a transform which involves;

(a) A point of reference at which the 
transformation occurs, termed the 
"reference node";

(b) Node and link symbols which describe the 
operation performed; and

(c) (If required) symbols which represent any 
substructures which are relevant to the 
transformation.

It is not necessary to show the entire K-formula to express
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the change, but only enough node, link and substructure 
symbols to describe the relevant aspects of the 
transformation.

When inserting or deleting a node or substructure in a 
structure, note that an inserted node or substructure must 
be obtained from some source, and a deleted node or 
substructure must be returned to some destination. 
Consequently, a complete transform specification must really 
involve two structures, or two operations on a single 
structure. The complete transform for insertion of a free 
node into a SLL then becomes:

p f p x A  — > p f A  = = >  PbB — > p b p x B

where :
(a) "f" is the "header node" of a freelist;
(b) "b" is the reference node in the singly-

linked list;
(c) "A" represents the rest of the freelist; and
(d) "B" represents the portion of the singly-

linked list which follows "b".

The node "x" is removed from the freelist, and is inserted 
after "b" in the singly-linked list of interest.

To preserve the integrity of the source and destination 
data structures being changed, the transform must be 
well-formed such that K-formulas which describe each 
structure can be derived from the appropriate data structure 
grammar. That is, given well-formed K-formulas which
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correspond to the source and destination structures before 
the transform, the transform must guarantee that the 
K-formulas which correspond with the source and destination 
data structures after the transform are also well-formed. 
This assurance can be obtained if the components of the 
transform consist of well-formed symbol strings derivable 
from the right-hand-side (RHS) of a data structure 
production.

3.4 Formalisms for Operations on Data Structures.
The productions of a K-grammar define how a nonterminal 

symbol can be "rewritten" and thus precisely describe the 
pattern of symbols which can occur before and after a 
transformation of a structure. The sentential form 

sequences which generate the K-formulas which represent a 
structure before and after a transformation generally differ 

by one or two productions. Thus, a transform can be 
completely described by concentrating on the productions 
which express the changes. In the following, a primitive 
K-string consists of the right-hand side of a production, 
and a first-order K-string is a primitive K-string in which 
one or more nonterminals have been replaced by a valid 
production right-hand side. A second-order K-string is a 

first-order K-string in which one or more nonterminals have 
been replaced by a valid production right-hand side; higher 
order K-strings are similarly defined.

A transform which formally describes operations on
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Type-E linked data structures is defined as follows.
transform

source
destination

K-string

= source ==> destination (3.4.1)
= K-string — > K-string

= K-string — > K-string
= primitive K-string or any valid 

sentential form derived from a 
primitive K-string, where:
(1) the primitive K-string begins 

with a link-node symbol pair; 
and

(2) any nonterminal symbols in 
the K-string are replaced by 
substructure symbols.

In the following, the terminology follows Aho and 
Ullman (AU72). (On this page and on the following page, 
p,x,e denote K-strings and not specific link symbols.) For 

a grammar G = (N,T,P,S), define a special type of string
called a sentential form as follows:

a. S is a sentential form.
b. If pBX is a sentential form and B — > 6 is in P,

then pgx is also a sentential form.
A sentential form of G containing no nonterminal symbols is 

called a sentence of G.
Next, we define a relation " = >" (read "directly

derives") on (N U  T)* such that if p BX is a string in
(N U T ) *  and B — > g is a production in P, then pBX => pgx. 
The symbols "+=>" (read "derives in a nontrivial way") 
denote the transitive closure of "=>", and "*=>" (read 
"derives") denote the reflexive and transitive closure of 
"=>". The k-fold product of "=>" is denoted by "(k)=>";
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indicates that 3 is derived from p by a derivation of length 
”k”.

That transforms as defined above are sufficient to 
describe all single-node and substructure insertion and 

deletion operations on the Type-E data structures addressed 
in this paper is shown as follows. For a K-formula 
(sentence) "K1" which represents the pre-transform data 
structure and a K-formula "K2” which represents the 
post-transform structure, these conditions hold.

a. For some K-grammar K = (N, T, F, S), 
if K *=> K1, then K »=> K2.

b. Suppose K *=> pAg *=> K1 
and K »=> p'A'g' »=> K2, 
where: p ,3,p *,6’ are in (NUT) *

A,A' are in N.

If K1 and K2 are the pre-transform and 
post-transform K-strings, respectively, 
then p = p• and 3 = 3 * .

c. For A and A* in Step b above,
if A *=> X and A' *=> x', then the data 
structure transformation 

K1 — > K2 
is precisely described by 

X ——)  X *

where x = laL, x* = I'aL',
1 and 1’ are link symbols.
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”a" is the reference node symbol,
L,L* are in (N U T)*.

From a strictly-theoretical perspective, any transform 
which generates valid K-formulas from valid input K-formulas 
performs a valid operation on a structure. Thus, any 
transform which meets Definition 3.4.1 may be considered 
valid. For a given grammar, one can depict all possible 
insertion operations for a destination structure by 
generating transforms in which the K-string to the right of 
the ”— >” is of order "n" or higher if the K-string to the 
left of the "— >" is of order "n". For example, the 
destination portion of a transform given by

paT — > papbPcT
is a valid specification of insertion of the nodes labeled 
"b" and "c” into a singly-linked list. Similarly, the 
destination transform portion given by

xap~bp“a — > XaXcp“bp~cp~a 
is a valid insertion of the node labeled "c” between nodes 
"a” and "b" in a right-threaded binary tree. Deletion 

operations can be similarly defined.
In normal application, however, a rather small subset 

of the set of all valid transforms for a given grammar is 
sufficient to represent the classical operations. For 
example, inserting a "leaf" node at the frontier of a 
right-threaded binary tree is a relatively common operation. 
From the grammar RTBT, inserting a left leaf child "b" of
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the node "a" can be accomplished by either of the following 
transforms:

pfpbS — > pfS ==> paT — > Xap~bpaT ("a” had a right child) 
pfpbS — > pfS ==> p”a — > xap~bp~a ("a" had no children)

These are the only transforms necessary to reflect single 
left leaf node insertion.

Relatively powerful operations can also be expressed 
using transforms. The following exchanges the subtrees of a 
right-threaded binary tree node "a".

XaSpaT — > p“a ==> P~a — > XaTpaS 

The source and destination structures are one and the same 
in this instance.

Suppose one wishes to derive the transform used to 

effect a certain operation on a structure, given the 
relevant grammar and pre-transform and post-transform 
K-formulas. In the following procedure, portions of the 
pre-transform and post-transform K-strings are used to 
select the appropriate data structure productions.

a. Write the K-formula substrings (of terminal 
symbols) which describe the operation.

b. In the data structure grammar, find a symbol string 
in a primitive K-string in which:

(1) the terminal symbols correspond with the pattern 
of terminal symbols which represent the reference 
node and the preceding link symbol (and possibly



60

other terminal symbols) in the pre-transform
K-string, and

(2) the nonterminal symbols can be expanded to yield 
the "unmatched" terminal symbols of the
pre-transform K-string.

Note the nonterminal symbol which derives the selected
primitive K-string.

c. Expand the nonterminal symbol from step b above to 
generate the desired post-transform K-formula substring, 
using a primitive, first-order or higher-order K-string as

necessary. Note that the expansion must be based on a

primitive K-string which begins with a link symbol followed 
by the reference node.

d. The transform consists of the following separated
by

(1) A pre-transform K-string consisting of a primitive 
or higher-order K-string in which any nonterminal 
symbols have been replaced by substructure
symbols; this K-string was identified in step b 
above.

(2) A post-transform K-string consisting of a 
primitive or higher-order K-string in which any 
nonterminal symbols have been replaced by

substructure symbols; this K-string was identified 

in step c above.
Formally, the transform



61

t t t . . . t — > t t t . . . t
11 12 13 1m 21 22 23 2n

is specified as
p ——) 3

where :
a. p is a primitive or higher-order K-string

la (1 la IB* )»
1 Ci] [j] [k]

derived from a nonterminal "A” in which
(1) 1 = t ;

11

(2) a = t ;
1 12

(3) t . . . t are link terminal symbols
13 1m

1 , node terminal symbols a , or
Ci] Cj]

can be derived from nonterminal
symbols B ; and 

Ck]
(4) the nonterminal symbols B are

Ck]
replaced by substructure symbols B'

Ck]
b. B is a primitive or higher-order K-string

I’a (1 la IB’ )»
1 Ci] Cj] Ck]

derived from a nonterminal "A" in which

(1) 1’ = t ;
21

(2) a = t ;
1 21
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(3) t . . . t are link terminal symbols
23 2n
1 , node terminal symbols a , or
[i] Cj]

can be derived from nonterminal
symbols B ; and 

Ck]
(4) the nonterminal symbols B are

Ck]
replaced by substructure symbols B'

Ck]
Note that for an insertion operation, the post-transform 

K-string must be of equal or higher order than the 
pre-transform K-string, because the sentential form sequence 
used to derive the post-transform K-formula contains as many 
nonterminal expansions as does the sentential form sequence 
for the pre-transform K-string. Similarly, for a deletion 
operation, the pre-transform K-string must be of equal or 
higher order than the post-transform K-string.

As an example, consider an insertion operation for a 
structure associated with the grammar RTBT. The operation 
is described by the K-formula transform

p b p “ o  — > i b p “ d p b p ~ c .

Referring to the grammar RTBT of Section 3.1, the following 
procedure is used to develop the destination transform.

a. Production (5) of RTBT matches the pattern of the 
pre-transform K-string when a nonterminal symbol B is used 
to derive p " c .  The transform leftpart consists of pbS, 
where the substructure symbol S replaces the nonterminal B.
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b. Another B-production of the grammar RTBT, 

production (3), matches the pattern of the post-transform 
K-string when the leftmost nonterminal derives p~d and the 
rightmost nonterminal is replaced by the substructure symbol 
S.

The destination portion of the transform is 
pbS ——) xbp dpbS*

In this chapter, the correspondence of K-grammars and 
classical data structure generation has been examined, and a 

method of formally specifying operations on Type-E data
structures using K-strings has been described. To
illustrate these techniques, the next chapter gives several
examples of data structure modifications.



CHAPTER FOUR 

4. Application of Data Structure Transforms.

4.1 Method of Application.
Illustrations of the use of transforms on Type-E data 

structures are presented in this chapter. An interpreter, 
documented in Appendix 1, has been implemented to perform 
operations on the in situ structures. The interpreter 
operates on transforms which conform to the BNF presented in 
Section 3.4, but which transforms have been augmented to 
specify the types of the source and destination data 

structures. That is, the input to the interpreter is 
pseudo-programming language imperative statements which 
specify the transforms.

The interpreter of Appendix 1 operates on two data 
structures; a circular singly-linked list of unused nodes 
termed the "freelist” and the data structure which is 
transformed, termed the "target". Operations consist of 
removing a node from the freelist and inserting it into the 
target structure; removing a node from the target structure 
and inserting it into the freelist; and moving nodes or 
substructures about within the target structure. The 
interpreter can transform singly-linked circular lists, 
doubly-linked circular lists and right-threaded binary

64
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trees. The nodes of these structures must be atomic; 
embedded substructures are not allowed in this 
implementation.

The in situ data structures are initialized at the 
beginning of the interpreter execution in the present 
implementation; a more complete implementation (see the 
discussion in Chapter 5) would include facilities for 

declaring a variety of data structures, as well as a method 
of naming specific instances of structures in the 

declarative statements and in the imperative transform 
statements. Before transform statements are executed, a 
syntax check is performed as described in the following 
section.

4.2 Svntax Checking Transform Statements.
Using the facilities of lex (LS75) and yacc (JS75), a 

capability to verify the syntax of a set of transform 
statements has been developed. The lexical analysis input 
specification is shown in Appendix 2, and the parser input 
specification is given in Appendix 3. Transform statements 

include designation of node labels, links and substructure 
labels.

The valid node labels include the lower case alphabetic 
characters a,b,c,d,e,g, and "i” through "z". The character 
"f” is reserved to denote the head of the freelist, and the 
character "h" denotes the head of the data structure being 
transformed. Left links are denoted by "L” , right links by
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"R" and threads by ”Q”. The uppercase characters "S" 
through "Z” may be used to denote substructures. 
Occasionally, the character "N" is used to denote a null 
(empty) substructure.

The syntax checking mechanism verifies that transform 
statements identify the types of the source and destination 
structures. (Valid types are "free" for the list of all 
free cells; "sll” for singly-linked lists; "dll" for 
doubly-linked lists; and "rtbt" for right-threaded binary 
trees.) Also verified is the link-node sequence, accepting 
only K-strings which are valid for the relevant structures. 

Note that substructure symbols are accepted in many of the 
transforms. Error messages are produced to indicate the 
following.

o Failure to recognize the transform as valid.
0 Unmatched reference nodes in the source or
destination portion of the transform.
0 Illegal identical node or substructure Identifiers 
where uniqueness is required.
o Unmatched node labels, where identical labels are 
required, as in the K-strings for certain 
right-threaded binary tree operations.

Syntax checking of transform statements is an important 
issue. Transforms which are derivable from the data
structure grammar preserve the integrity of the in situ 
structure. The syntax checking of transform statements
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allows the use of syntactic methods to assess the semantics 
of the K-transforms; invalid transforms can be rejected 
before use.

4.3 Interpreter Operation.
The interpreter is designed for interactive operation, 

accepting commands from a terminal user. The main 
components of the command sequences illustrated in Section
4.4 are transform statements which use the following syntax.

transform stype & dtype : slhs — > srhs ==> dlhs — > drhs ;

where:
stype specifies the type of the source data structure, 
dtype specifies the type of the destination data

structure.
slhs specifies the K-string of the source transform

left-hand side, 
srhs specifies the K-string of the source transform

right-hand side, 
dhls specifies the K-string of the destination

transform left-hand side, 

drhs specifies the K-string of the destination
transform right-hand side.

A transform statement specifies that a node or substructure 
moves from a source to a destination data structure.

After accepting a transform statement from the user,
the interpreter displays the K-formula which corresponds
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with the in situ data structure before the transform. The 
K-formula which corresponds with the transformed data 

structure is displayed at the conclusion of the transform 
operation. Other interpreter outputs include indications of 
whether a transform succeeded or failed, and certain error 
messages when appropriate.

Figure 4.3.1 gives the data flow of the interpreter. 
The interpreter proceeds by accepting a transform statement 
and certain control information from the user, and then 
performs the corresponding operations. The left-hand side 
of the source structure transform is processed first, 
followed by the right-hand side of the source transform. 
The destination data structure portion of the transform is 
then similarly processed.

Figure 4.3.2 gives the structure of the interpreter 
software. The "main" routine controls interaction with the 
user by displaying prompts, accepting inputs and displaying 
messages.
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xformgr
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Figure 4.3.2: Interpreter Software Structure.
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The procedure "xformgr" invokes a sequence of procedures 
which use the transform K-strings to effect changes to the 
in situ structure. "findrefn" calls the appropriate 
traversal algorithm (for the type of structure involved) 

to locate the reference node (see Section 3.3) in the in 
situ structure. The procedure "procslhs" builds a symbol 
table of node labels and the corresponding in situ 
locations, and substructure labels with the corresponding 

beginning and ending node locations, "procsrhs" uses the 
symbol table prepared by "procslhs" to modify the in situ 
structure, beginning at the reference node and 
successively setting links as prescribed by the 
appropriate right-hand side K-string. An important 

service routine is "recogniz", which traverses a structure 
to identify the last node in a substructure, given the 
first node in the substructure. A collection of other 
subroutines is used to perform services such as displaying 
the K-formula which corresponds with the in situ 
structure, and obtaining link values.

4.4 Examples of Interpreter Use.
This section contains illustrations of use of the 

interpreter. The first example involves manipulation of a 

doubly-linked list used in a communications message 
switching software application. The second example shows 
modifications of a right-threaded binary tree.
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4.4.1 Message Queue Example. In a store-and-forward 

message switching system, messages awaiting delivery are 
typically serviced first-in first-out (FIFO) by message 
priority. Consider a system with three message 
priorities: high, medium and low. A practical way to
effect FIFO by priority message delivery is to store 
message identifiers in a doubly-linked queue with the 
"oldest" high-priority message at the front of the queue, 
followed by the newer high-priority messages, followed by 
the "oldest" medium-priority message, followed by newer 
medium-priority messages, followed by the low-priority 
messages.

Desired operations include inserting messages at the 
rear of any of the queue priority sections and removing 
messages from the front of the queue. Occasionally, a 
message may be removed from any point in the interior of 
the queue. These operations are implemented by noting the 
labels of the queue header node "h", the newest member "t" 
of the high-priority section , the newest member "m" of 

the medium-priority section, and the newest member "1" of 

the low-priority section. The transform statements which 
manipulate the message queue are exemplified in the 

following.
a. Remove the oldest high-priority message and 

return the associated storage to the freelist, 

transform dll & free : phpxSixh — > phSh ==> pf — > pfpx ;
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In this case, the substructure "S" represents all of the 
queue except for the nodes "h" and ”x”.

b. Insert a new message into the raediura-priority

section, after obtaining the required storage from the 
freelist.

tranaform fra# & dll : pfpx — > pf ■•> posxm — > pmpxsxxxm
f

Here, "S” represents the low-priority section of the
queue.

c. Remove an arbitrary member ’’y” from the queue and 
return the associated storage to the freelist. (Note that 
the predecessor ”c” of "y" must be known.)

transform dll & free : popySXyXo --> poSXo ==> pf — > pfpy
t

"S" represents that portion of the queue which follows the 
node "y" before the deletion.

Figure 4.4.1 illustrates the input to and output of 
the interpreter when processing the three transforms given 
above. In the output image, note that the transform 
statement is printed, followed by the K-formulas which 
correspond with the queue before and after each operation. 
Because of equipment limitations, the characters "L” and 
”R” are used in place of "x” and ”p" in the K-formulas.
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transform dll & free : RhRxSLxh — > RhSh ==> Rf — > RfRx ;
ytransform free & dll : RfRx — > Rf ==> RmSLm — > RmRxSLxLm ;
y
transform dll & free ; RcRySLyLc — > RcSLc ==> Rf — > RfRy ; 
n

Figure 4.4,1m: Messege Queue Input Trenaforme

transform dll & free : RhRxSLxh — > RhSh ==> Rf — > RfRx ; 
dll before transform: RhRaRtRcRdRmRiRlLhLlLiLmLdLcLtLah
transform succeeded
dll after transform: RhRtRcRdRmRiRlLhLlLiLmLdLcLth

more transformations ?? (y or n): y
transform free & dll : RfRx — > Rf ==> RmSLm — > RmRxSLxLm ; 
dll before transform: RhRtRcRdRmRiRlLhLlLiLmLdLcLth
transform succeeded
dll after transform: RhRtRcRdRmRaRiRlLhLlLiLaLmLdLcLth
* *  more transformations ?? (y or n): y
transform dll & free : RcRySLyLc — > RcSLc ==> Rf — > RfRy ; 
dll before transform: RhRtRcRdRmRaRiRlLhLlLiLaLmLdLcLth
transform succeeded
dll after transform; RhRtRcRmRaRiRlLhLlLiLaLmLcLth 
** more transformations ?? (y or n): n

Figure 4.4.1b: Message Queue Interpreter Output
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4.4.2 Height-Balanced Binary Tree Example. The height of 
a tree is defined to be the length of the longest path 
from the root to a leaf node. By minimizing the height of

subtrees in a binary search tree, one can reduce the time
required to locate a particular node below that required 
in an arbitrary binary tree organization. Horowitz and 
Sahni (HS76) describe an AVL tree which is height balanced 
such that the height of the left subtree of any given node
differs from the height of the right subtree at that node
by no more than one level. The difference between the

length of the left subtree and right subtree, termed the
balance factor, is stored at each node and is used to
reorganize the tree when an insertion or deletion causes
the balance factor at any node to exceed an absolute value 
of one.

The types of reorganizations required to rebalance a 

tree are termed rotations, and involve moving nodes and 
subtrees such that the height balance is restored while 
preserving the proper search key ordering. Because the 
rotations involve substructures (subtrees), the K-string 
transforms developed in this paper are convenient 
abstractions for expressing the required operations. 

Consider the ”LL” rotation defined in Figure 4.4.2. The 
rotation involves:

(1) Identifying the parent of the unbalanced node 
"a".



76

(2) Identifying the subtrees of "b".

(3) Identifying the right subtree of "a".
(4) Relinking the tree such that the previous parent

of "a" becomes the parent of "b"; linking "a" as
the rightchild of "b"; and connecting the 
previous right subtree of ”b" as the new left 
subtree of "a". The left subtree of "b" remains 
as such, and the right subtree of "a" also 
retains its original connectivity.

Figure 4.4.3 gives an instance of a right-threaded 

binary tree before, during and after height rebalancing. 
Before rebalancing, the node labeled "b" is the closest 
ancestor of the inserted node ”m” for which the balance 
factor exceeds one in absolute value. Thus, rebalancing 
the left subtree of the node labeled "a" has the effect of 
rebalancing the entire tree. In Figure 4.4.3, the 
transforms referenced are those given in Figure 4.4.4.
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Figure 4.4.2a: Balanced AVL Tree
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Figure 4.4.2b: AVL Tree "LL" Rotation
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Figure 4.4.3b: Binary Tree After Transform 2
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Figure 4.4.3c: Binary Tree After Transform 3

m

Figure 4.4.3d: Rebalanced Binary Tree
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Figure 4.4.4a gives four transforms which rebalance 
the tree of Figure 4.4.3, using an "LL" rotation. Figure 
4.4.4b shows the output of the interpreter when the 

transforms of Figure 4.4.4a are supplied as the input. 
The rotation proceeds as follows:

(1) Transform statements "1" and "2" identify and 
disconnect the subtrees "S", "T", "U" and "V". 
Note that these actions are described in the 
"source" structure portion of the transform, and 

the "destination" structure portion of these 
transforms is essentially a null operation. The 
pseudo-substructure symbol "N" is used to set 
left links to a null value.

(2) Transform statement "3" replaces "b" by "d" as 
the leftchild of "a", relinks substructure "S" 
as the left subtree of "d" and establishes "b" 
as the rightchild of "d". In the absence of a 

compiler implementation, substructure symbols 
are used where necessary to effect proper 
interpreter operation.

(3) Transform statement "4" establishes

substructures "T" and "V" as the left and right 
subtrees, respectively, of the node "b".
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transform rtbt & free : LdSRdT — > LdNQd ==> Rf — > Rf ;
ytransform rtbt & free : LbURbV — > LbNQb ==> Rf — > Rf ;
y
transform rtbt & rtbt : LaQbRaX — > LaURaX =;= > Qd --> LdSRdQb ;
y
transform
n

free & rtbt : Rf — > Rf ==> Qb — > LbTRbV f

Figure 4.4,4m: AVL "LL* Rotation Interpreter Input

transform rtbt & free : LdSRdT — > LdNQd ==> Rf — > Rf ; 
rtbt before transform: LhLaLbLdLkQmQkRdQlRbQeRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaLbQdRbQeRaLcQiRcQjh
** more transformations ?? (y or n): y
transform rtbt & free : LbURbV — > LbNQb ==> Rf — > Rf ; 
rtbt before transform: LhLaLbQdRbQeRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaQbRaLcQiRcQjh
•* more transformations ?? (y or n): y
transform rtbt & rtbt : LaQbRaX — > LaURaX ==> Qd — > LdSRdQb ; 
rtbt before transform: LhLaQbRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaLdLkQmQkRdQbRaLcQiRcQjh
•* more transformations ?? (y or n): y

transform free & rtbt : Rf — > Rf ==> Qb — > LbTRbV ; 
rtbt before transform: LhLaLdLkQmQkRdQbRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaLdLkQmQkRdLbQlRbQeRaLcQiRcQjh

* *  more transformations ?? (y or n): n

Figurm 4.4.4b: AVL "LL" Rotation Intarprmter Output
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The transforms of Figure 4.4.M effect the "LL" AVL-tree 
rotation using K-strings derivable from the grammar RTBT 
of Chapter 3. Figure 4.4.5 gives another example of AVL 

tree rebalancing, this time using an "LR" rotation. Note 
that the left subtree of the node "p" is elided for 
clarity. The "RR" and RL" rotations (see HS76) can 
likewise be represented with K-transforms.

The AVL tree rotations are classically hard problems 
which typically perplex students who are being introduced 
to the structure. Applying the theory developed here, the 
rotations can be converted directly from pictorial 
depiction to transforms. The transforms allow the 
programmer to conceptualize the operations in terms of 

nodes, edges and substructures; whether the links are 
implemented using pointer variables or array indices is of 
little concern to the programmer. While the number of 
transform statements is approximately the same as the 
number of statements necessary using a modern programming 
language, the K-transforms can be syntactically evaluated 
to determine whether the integrity of the structure is 
preserved by each operation. Note that a right-threaded 
binary tree need not necessarily be used for the AVL tree 

representation. Because the right-threaded tree is 

Eulerian, it is convenient to use with regard to 
recognizability of the in situ structure.
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h

Figure 4.4.5a: AVL Tree Before "LR" Rebalancing

Figure 4.4.5b: AVL Tree After "LR" Rebalanoing



transform rtbt & free
y
transform rtbt & free
ytransform rtbt & rtbt
y
transform free & rtbt
y
transform free & rtbt
n

84

LbSRbLcTRcU — > LbNRbLcNQc ==> Rf — > Rf ;
RbV — > Qb ==> Rf — > Rf ;
LaWRaX — > LaNQa ==> RpY — > RpV ;
Rf — > Rf ==> Qc — > LcWRcY ;
Rf — > Rf ==> LcQbRcQa — > LcLbSRbTRcLaURaX ;

Figure 4.4.5c: AVL "LR" Rotation Interpreter Input
transform rtbt & free : LbSRbLcTRcU — > LbNRbLcNQc ==> Rf — > Rf ; 
rtbt before transform: LhRpLaLbReQlRbLcRjQlRcQkRaRdQmh
transform succeeded
rtbt after transform: LhRpLaRbQcRaRdQmh

•* more transformations ?? (y or n): y
transform rtbt & free : RbV — > Qb ==> Rf — > Rf ; 
rtbt before transform: LhRpLaRbQcRaRdQmh
transform succeeded
rtbt after transform: LhRpLaQbRaRdQmh
*• more transformations ?? (y or n); y
transform rtbt & rtbt ; LaWRaX — > LaNQa ==> RpY — > RpV ;
rtbt before transform: LhRpLaQbRaRdQmh
transform succeeded
rtbt after transform: LhRpQch
*• more transformations ?? (y or n): y
transform free & rtbt : Rf — > Rf ==> Qc — > LcWRcY ;
rtbt before transform: LhRpQch
transform succeeded
rtbt after transform: LhRpLcQbRcQah
* *  more transformations ?? (y or n): y

transform free & rtbt : Rf — > Rf ==> LcQbRcQa — > LcLbSRbTRcLaURaX ;
rtbt before transform: LhRpLcQbRcQah
transform succeeded
rtbt after transform: LhRpLcLbReQiRbRJQlRcLaQkRaRdQmh
•• more transformations ?? (y or n): n

Figure 4.4.5d: AVL "LR" Rotation Interpreter Output
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In this chapter, the viability of the K-transform 
methodology has been demonstrated using syntax checking 
tools and an interpreter. The final chapter contains 
discussion of work necessary for production implementation 
of the theory developed above.



CHAPTER FIVE

5. Summary. Future Work and An Evaluation^

5.1 Summary.
This paper described a method of formally specifying 

operations on the class of (Type-E) linked data structures 
which contain an Eulerian traversal. All valid operations 

on a Type-E structure can be derived from the associated 
data structure grammar, and all other operations fail to 
change the structure in a way which conforms to the grammar. 
To illustrate the syntactic specification of linked data 
structure operations, an interpreter was implemented.

5.2 Future Work.
For efficient use of the theory described herein in a 

production environment, it should be possible to use linked 
data structures in a manner similar to the way in which 
general purpose programming languages support scalar 
variables. In addition to the imperative transform 
statements described in this paper, additional statements 
are required to define instances of data structures and to 
initialize them for effective use.

Declaration statements should name a data structure and 
identify its type. Ideally, the type should be specified by 
including or referring to the data structure grammar.

86
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Because the grammar includes a traversal, separate 
declarations should be used for distinct traversals. Each 
declaration should identify sets of valid link symbols, node 

symbols, and substructure symbols. Data structure 
initialization can be implicit in the declaration, an 
explicit part of the declaration, or performed by the user 
(programmer).

The transform statements of this paper must be modified 
to include the structure labels. In addition to the 

statements which move nodes from one structure to another, 
and move substructures about within a structure, other types 
of statements may also be added. For example, statements 
which access the data stored at a node are needed. 
Statements which search for a specific node in a data 
structure, or the nodes adjacent to a particular node, 

should be available. It should also be possible to remove a 
substructure from a structure, and retain the substructure 

for use in a subsequent transform statement.
A significant action necessary to achieving production 

use of the theory is that of implementing a program 
generator, or a full language and the associated compiler. 
In the former case, declaration and transform statements
would be translated into program segments in an existing 
programming language, which would then be compiled and
executed in the host language environment. The latter
approach involves incorporating the data structure
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declarative and imperative statements into a new language, 
and developing a compiler and the support environment for 
the language. By implementing the data structure transforms 

in a new language, facilities convenient to data structure 
manipulation can be effected. The compiler approach also 
offers the potential for optimization of generated code, and 
full-scale error checking. Use of a compiler may result in 
the ability of the optimizer to choose the most effective 
representation of a structure, based upon the data structure 
grammar.

While Type-E data structures are frequently , found in 
databases, operating systems, communications and many other 
computer science applications, there are other important 
data structures which are not Type-E. Examples include 
unthreaded binary trees and arrays. A method of recognizing 
the syntactic representation of such structures would 
further increase the utility of the methods embodied in this 

paper. A hierarchy of data structures which parallels the 
Chomsky language hierarchy (AU72) may provide a 
classification useful in determining the required 

capabilities of the mechanisms which are needed to operate 
on the data structures.

5.3 An Evaluation.
To apply the present syntactic approach to linked data 

structures requires some appreciation of grammars, 
K-formulas and other formal methods in language and graph
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theory. One may argue that the "average programmer" may 
encounter difficulty when attempting to apply the syntactic 
methods because of the theoretical background required. 

This argument is mitigated somewhat by recognizing that in a 
full implementation, a grammar which specifies a structure 
(and an associated traversal) need only be written once, and 
thereafter can be easily applied by any number of 
programmers. With syntax checking mechanisms 
semiautomatically generated from the grammar, transforms can 
be checked for validity before executing the associated 
code. These methods of preserving the integrity of the in 
situ structure seem to be ample reward for the investment 
required to learn to use the syntactic approach.

An advantage of the method described in this paper 
which goes beyond the correctness issue is that of providing 
the programmer with a powerful tool for manipulating data 
structures. Each statement in a program can effect a rather 
significant change in a pair of data structures. Thus, the 
programmer can dwell on the problem to be solved without 
having to be concerned with many of the details of how the 

in situ structure will actually be changed. The result is 
improved programmer productivity. Because syntactic 
expressions are abstract, the programmer need not be 

concerned with the representation of Type-E data structures. 
Consequently, syntactic methods contribute to the data 
independence property (DG77) which is important in database
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management.
No advance in technology is effected without 

investment. Regarding the techniques described herein, the 
potential benefits appear to warrant the investment required 
to fully implement the methodology.
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APPENDIX ONE

I n t e r p r e t e r  D o c u m e n t a t i o n

/ *  l i s t i n g  o f  i n t e r p r e t e r  p r o g r a m  
S d e f i n e  s e q ( A , B )  s t r c m p ( A , B )  == 0 
( d e f i n e  NL n

summer 1 9 8 2  * /
/ *  s t r i n g  e q u a l i t y  * /

/ *  b u f f e r  u s e d  t o  p r i n t  K - f o r m u l a s  * /

/ *  nu mber  o f  n o d e s  i n  " i n  s i t u "  s t r u c t u r e  * /  

/ *  t r a n s f o r m  c o m p o n e n t s  s i z e  * /

/*
/*

number  o f  n o d e  s y m b o l s  a l l o w e d  * /  
number  o f  s u b s t r u c t u r e  s y m b o l s  a l l o w e d  * /

( d e f i n e  NLQ "n"
( d e f i n e  BUFSIZE 60  
( d e f i n e  NULL 9 9 9  
( d e f i n e  STRUCSIZ 14  
( d e f i n e  FOREVER 1 
( d e f i n e  XFSIZE 1 6  
( d e f i n e  YES 1 
( d e f i n e  NO 0
( d e f i n e  EQUAL 0 
( d e f i n e  ERROR - 9  
( d e f i n e  SUCCESS - 1  
( d e f i n e  NUMNODES 20  
( d e f i n e  NUMSTRUC 9 
/ *  V
s t a t i c  c h a r  l a b e l  [STRUCSIZ+1]  = " E h a b c d e i j k l m n f
s t a t i c  i n t  11 in k [ S T R U C S I Z ] = ( N U L L , 2 , 3 , 5 , 7 , 9 , NULL,NULL,NULL,1 1 , NULL,NULL,NULL,NU:  
s t a t i c  i n t  r l i n k [ S T R U C S I Z ] = { N U L L , N U L L , 4 , 6 , 8 , 1 0 , - 2 , - 4 , - 1 , - 5 , - 3 , - 9 , 1 3 , 1 2 } ;

s t a t i c  c h a r  l a b e l  [STRUCSIZ + 1]  = " E h a t c d m i l k n f
s t a t i c  i n t  l l i n k [ S T R U C S I Z ]  = (N U L L , 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , NULL,NULL,NULL);  
s t a t i c  i n t  r l i n k [ S T R U C S I Z ]  = ( N U L L ,2 , 3 , 4 , 5 , 6 , 7 , 8 , 1 , 1 0 , 1 1 , 9 ) ;
*/
s t a t i c  i n t  i n f o [ S T R U C S I Z ]
s t a t i c  c h a r  I h s l [ X F S I Z E ]
s t a t i c  c h a r  I h s r [ X F S I Z E ]
s t a t i c  c h a r  r h s r [ X F S I Z E ]
s t a t i c  c h a r  r h s l [ X F S I Z E ]
s t a t i c  c h a r  l h s [ X F S I Z E ] ;
s t a t i c  c h a r  r h s [ X F S I Z E ] ;
s t a t i c  i n t  l i s t c t r  = 0 ;
s t a t i c  i n t  i n d e x b e g  = 1 ;  / *  i n d e x  o f  b e g i n n i n g  o f  s t r u c t u r e  * /
s t a t i c  c h a r  e r p r e [ ]  = " * * --> e r r o r :  "; / *  e r  msg p r e f i x  * /
s t a t i c  i n t  n e x t n t s  =» 0 ;  / *  i n d e x  o f  n e x t  a v a i l  n o d e  t a b l e  s l o t  * /
s t a t i c  i n t  n e x t s t s  = 0 ;  / *  i n d e x  o f  n e x t  a v a i l  s u b s t r u c t  s l o t  * /
s t a t i c  i n t  n e x t n o d e ;  / *  i n d e x  o f  n o d e  f o l l o w i n g  x f o r m e d  n o d e  * /
s t a t i c  c h a r  v a l i d s t r [NUMSTRUC] = "STUVWXYZ"; / *  v a l i d  s u b s t r u  l a b e l s * /  
s t a t i c  c h a r  l e l e m [ 3 ] ;  / *  l e f t  e l e m e n t  u s e d  i n  p r o c r h s  * /
s t a t i c  c h a r  r e l e m [ 3 1 ;  / *  r i g h t  e t c  * /
s t a t i c  c h a r  l l i n k s y m  ■ ' L ' ;  / *  s y m b o l  d e n o t i n g  l e f t  l i n k  * /
s t a t i c  c h a r  r l i n k s y m  «  ' R ' ;  / *  s y m b o l  d e n o t i n g  r i g h t  l i n k  * /

= ( 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 ) ;  
/ *  t r a n s f o r m  K - s t r i n g s  * /
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s t a t i c  c h a r  t h r e d s y m  = * Q ' ;  / *  s y m b o l  d e n o t i n g  t h r e a d  * /
s t a t i c  c h a r  n u l l s y m  = *N';  / *  s y m b o l  d e n o t i n g  n u l l  l a b e l  * /
c h a r  s s t y p e [ 5 ] ;  / *  s o u r c e  s t r u c t u r e  t y p e  * /
c h a r  d s t y p e [ 5 ] ;  / *  d e s t  s t r u c t u r e  t y p e  * /
c h a r  s t y p e [ 5 ] ;  / *  s t r u c t  t y p e  u s e d  t o  r e c o g n i z  * /
i n t  d e b u g  = 0 ;
i n t  l i s t n o d e  = 0 ;  / *  1 ==> l i s t  n o d e s ,  0 ==> do  n o t  * /
s t r u c t  n o d e s  { / *  n o d e  s y m b o l  t a b l e  * /

c h a r  l a b ;  
i n t  i n d x ;

} nodetab[NUMNODES]  ; 
s t r u c t  s u b s t r u c  { / *  s u b s t r u c t u r e  s y m b o l  t a b l e  * /

c h a r  l a b ;  / *  l a b e l  * /
i n t  i n d x b ;  / *  i n d e x  o f  b e g  n o d e  * /
i n t  i n d x e ;  / *  i n d e x  o f  e n d  n o d e  * /
c h a r  l i n k ;  / *  l i n k  t y p e  a t  e n d  n o d e  * /

} s t r u c t a b [ N U M S T R U C ] ; 
m a i n O

{ / *  "main"  a c c e p t s  t r a n s f o r m  s t a t e m e n t s  * /
i n t  n u m r e a d , r e t c o d e , w h i l e s w ,  i ;  
c h a r  d e b u g a n s [ 4 ] , r e p l y ( 4 ] ;  

w h i l e s w  = YES;  
w h i l e  ( w h i l e s w )

f o r  ( i  = 0 ;  i  < NUMNODES; i+ +)  n o d e t a b [ i ] . l a b  = '
/*

f o r  ( i  = 0 ;  i  < NUMSTRUC; i+ + )  s t r u c t a b [ i ] . l a b  = ' ’ ;
*/
n e x t n t s  = 0 ;
/ *  n e x t s t s  = 0 s p e c i a l  p r o g r a m  v e r s i o n  f o r  AVL t r e e  e x a m p l e  * /  
/ *  p r i n t f  ("%s " ,  "** d e b u g  ? ?  ( y  o r  n ) ; " ) ;  
s c a n f ( " % s " ,  d e b u g a n s ) ;
i f  ( s e q ( d e b u g a n s , " y " )  I I s e g ( d e b u g a n s , " y e s " ) ) 

l i s t n o d e  = 1 ;  
e l s e  l i s t n o d e  = 0 ;  * /
l i s t s t r u ( " m a i n " ) ; 

w h i l e (F O R E V E R )
{ /*

p r i n t f ( " % s % s n " ,  " t r a n s f o r m  s t y p e  & d t y p e  ; s l h s  — > s r h s  " ,
"==»> d l h s  — > d r h s  ; " ) ;

*/
n u m r e a d  = s c a n f  ("%*s%s%*s%s%*s%s%*s%s%*s%s%*s%s%*s", s s t y p e ,  

d s t y p e ,  I h s l ,  r h s l ,  I h s r ,  r h s r ) ;
i f  ( n u m r e a d  » =  6 )

{ p r i n t f ( " n " ) ;  
b r e a k ;
}

)  / *  e n d  o f  w h i l e  * /
print f ("%s%s%s%s%s%s%sts%s%s%s%s%s” ,  " t r a n s f o r m  " ,  s s t y p e ,

" S " ,  d s t y p e ,  " ; I h s l ,  " — > " ,  r h s l ,  " *■> " ,
I h s r ,  •  — > " ,  r h s r ,  " ; n " ) ;  

r e t c o d e  = x f o r m g r O ;
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i f ( r e t c o d e  ==  SUCCESS)

p r i n t f ( " t r a n s f o r m  s u c c e e d e d n ” ) ; 
e l s e  p r i n t f ( " t r a n s f o r m  f a i l e d n " ) ;
i f  ( s e q ( s s t y p e , " f r e e " ) ) p r i n t l a b  ( d s t y p e , "  a f t e r  t r a n s f o r m :  " ) ;

e l s e  p r i n t l a b  ( s s t y p e , "  a f t e r  t r a n s f o r m :  " ) ;
p r i n t f ( " n * *  m o r e  t r a n s f o r m a t i o n s  ? ?  ( y  o r  n ) : " ) ;
s c a n f ( " % s " ,  r e p l y ) ;  
p r i n t f ( " % s % s " ,  r e p l y ,  " n " ) ;  
i f  ( s e q ( r e p l y , " y " )  l l  s e q ( r e p l y , " y e s " )  ) 

w h i l e s w  = YES;  
e l s e  w h i l e s w  = NO;

} / *  e n d  o f  w h i l e  o n  w h i l e s w  * /
} / *  e n d  o f  m a i n  * /

/ *  V
x f o r m g r O

{ / *  t r a n s f o r m  m a n a g e r  —  s e q u e n c e s  r e m a i n i n g  p r o c e d u r e s  * /
i n t  r e f n o d e ,  r e t c o d e ;  

i f  ( s e q ( s s t y p e , " f r e e " ) ) p r i n t l a b  ( d s t y p e , "  b e f o r e  t r a n s f o r m :  " ) ;
e l s e  p r i n t l a b  ( s s t y p e , "  b e f o r e  t r a n s f o r m :  " ) ;
l i s t s t r u ( " x f o r m g r l " ) ;
r e f n o d e  = f i n d r e f n ( s s t y p e ,  l h s l [ l ] ) ;  / *  f i n d  r e f e r e n c e  n o d e  * /  
i f  ( r e f n o d e  == ERROR) 

r e t u r n  (ERROR); 
s t r c p y ( s t y p e , s s t y p e ) ; 
s t r c p y ( l h s , l h s l ) ;
r e t c o d e  = p r o c s l h s ( r e f n o d e ) ; / *  p r o c e s s  l e f t  I h s  * /
l i s t s t r u ( " x f o r m g r 2 " ) ; 
i f  ( r e t c o d e  == ERROR) 

r e t u r n ( E R R O R ) ; 
i f  ( l h s l [ l ]  ! =  r h s K l l )

{ p r i n t f ( " % s % s % s " ,  e r p r e ,  " f i r s t  n o d e  l a b e l s  o f  l e f t  I h s  " ,
"a nd  r h s  n o t  i d e n t i c a l  n " ) ;

r e t u r n ( E R R O R ) ;

s t r c p y ( s t y p e , s s t y p e ) ; 
s t r c p y ( r h s ,  r h s l ) ;
r e t c o d e  = p r o c s r h s ( r e f n o d e ) ; / *  p r o c e s s  l e f t  r h s  * /
l i s t s t r u ( " x f o r m g r 3 " ) ; 
i f  ( r e t c o d e  ==  ERROR) 

r e t u r n ( E R R O R ) ;
r e f n o d e  = f i n d r e f n ( d s t y p e ,  l h s r [ l ] ) ;  / *  f i n d  r i g h t  r e f  n o d e  * /  
i f  ( r e f n o d e  ==  ERROR) 

r e t u r n ( E R R O R ) ; 
s t r c p y ( s t y p e ,  d s t y p e ) ;  
s t r c p y ( I h s ,  I h s r ) ;
r e t c o d e  = p r o c s l h s ( r e f n o d e ) ; / *  p r o c e s s  r i g h t  I h s  * /
l i s t s t r u ( " x f o r m g r 4 " ) ; 
i f  ( r e t c o d e  = =  ERROR) 

r e t u r n ( E R R O R ) ;  
i f  ( I h s r d l  1= r h s r [ l ] )

{ p r i n t f ( " % s % s % s " ,  e r p r e ,  " f i r s t  n o d e  l a b e l s  o f  r i g h t  I h s  " ,
" an d  r h s  n o t  i d e n t i c a l  n " ) ;
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} r e t u r n ( E R R O R ) ,

s t r c p y ( s t y p e , d s t y p e )  ; 
s t r c p y ( r h s ,  r h s r ) ;  
r e t c o d e  = p r o c s r h s ( r e f n o d e ) ;  
l i s t s t r u ( " x f o r m g r 5 " ) ; 
i f  ( r e t c o d e  == ERROR) 

r e t u r n ( E R R O R ) j  
r e t u r n ( S U C C E S S ) ;

/ *  p r o c e s s  r i g h t  r h s  * /

}
p r o c s r h s ( r e f n o d e )  

i n t  r e f n o d e ;

i n t  c u r s o r ;  
i n t  l i n d x ,  r i n d x ;  
i n t  s t i n d x ;

i n t  sw;  
i f  ( d e b u g )  

p r i n t f ( " % s " ,

/ *  e n d  o f  x f o r m g r  * /
/* */

/ *  p r o c e s s  r i g h t  h a n d  s i d e  ( m o d i f i e s  s t r u c t u r e )  * /  
/ *  i n d e x  o f  f i r s t  n o d e  i n v o l v e d  i n  x for ra  * /

/*
/*
/*

n e x t  r h s  s y m b o l  * /
i n d i c e s  o f  l e l e m  & r e l e m  sym * /
s t r u c t u r e  t a b l e  i n d e x  * /

/*
/*
/*

b e g i n  a t  r e f e r e n c e  n o d e ;  s e t  * /  
l i n k s  a s  p r e s c r i b e d  b y  t h e  * /  
r i g h t - h a n d  s i d e  K - s t r i n g  * /

d e t e r m i n e  r h s  s y m b o l  t y p e s  * /  

s w ,  " n " ) ;

'---------- > e n t e r e d  p r o c s r h s n " ) ;
c u r s o r  = 0 ;
c u r s o r  = f i l l  ( c u r s o r ) ;  
i f  ( c u r s o r  == ERROR) 

r e t u r n  (ERROR); 
s t r c p y  ( l e l e m ,  r e l e m ) ;  
c u r s o r  = f i l l  ( c u r s o r ) ; 
i f  ( c u r s o r  == ERROR) 

r e t u r n  (ERROR);  
w h i l e  ( r e l e m [ 0 )  1= ' 0 ' )

{ sw  = c a l c s w  ( l e l e m ,  r e l e m ) ;  / *  
i f  ( l i s t n o d e )

p r i n t f ( " % s % d % s " ,  "* *  s w i t c h  v a l u e  = 
s w i t c h ( s w )
{

c a s e  1 1 :  / *  l i n k - n o d e ,  l i n k - n o d e  * /
l i n d x  = g e t i n d x ( l e l e m [ l ]  ) ; 
r i n d x  = g e t i n d x ( r e l e m [ l ] ) ;
i f  ( l i n d x  == ERROR II r i n d x  ==  ERROR) r e t u r n  (ERROR) 
i f  ( l e l e m [ 0 ]  == l l i n k s y m )  

l l i n k [ l i n d x ]  = r i n d x ;  
e l s e  i f  ( l e l e m [ 0 ]  == r l i n k s y m )  

r l i n k i l i n d x ]  = r i n d x ;  
e l s e  i f  ( l e l e m [ 0 ]  == t h r e d s y m )  

r l i n k i l i n d x ]  = - r i n d x ;  
e l s e  r e t u r n  (ERROR);  
b r e a k ;

/* */
c a s e  1 2 :  / *  l i n k - n o d e ,  n o d e  * /

l i n d x  =  g e t i n d x ( l e l e m [ l ] ) ;  
r i n d x  =  g e t i n d x ( r e l e m [ 0 ] ) ;
i f  ( l i n d x  == ERROR II r i n d x  »  ERROR) r e t u r n  (ERROR);  
i f  ( l e l e m [ 0 ]  "= l l i n k s y m )
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l l i n k [ l l n d x ]  = r i n d x ;  

e l s e  i f  ( l e l e m ( 0 ]  «=  r l i n k s y m )  
r l i n k [ l i n d x ]  = r i n d x ;  

e l s e  i f  ( l e l e r a [ 0 ]  »=» t h r e d s y m )  
r l i n k i l i n d x ]  = - r i n d x ;  

e l s e  r e t u r n  (ERROR);  
b r e a k ;

/* */
c a s e  1 3 :  / *  l i n k - n o d e ,  s u b s t r u c t u r e  * /

l i n d x  = g e t i n d x  ( l e l e m [ l ] ) ;  
s t i n d x  = g e t s t i n d ( r e l e m [ 0 1 ) ;
i f  ( l i n d x  ==  ERROR II s t i n d x  == ERROR) r e t u r n  (ERROR);  
r i n d x  = s t r u c t a b l s t i n d x ] . i n d x b ;  
i f  ( l e l e m [ 0 ]  ==  l l i n k s y m )  

l l i n k l l i n d x ]  = r i n d x ;  
e l s e  i f  ( l e l e m [ 0 ]  == r l i n k s y m )  

r l i n k i l i n d x ]  = r i n d x ;  
e l s e  i f  ( l e l e m [ 0 ]  == t h r e d s y m )  

r l i n k i l i n d x ]  = - r i n d x ;  
e l s e  r e t u r n  (ERROR);  
b r e a k ;

/* */
c a s e  1 4 :  / *  l i n k - n o d e ,  n u l l  * /

l i n d x  = g e t i n d x  ( l e l e m l l ] ) ;  
i f  ( l i n d x  ==  ERROR) r e t u r n  (ERROR);  
i f  ( l e l e m [ 0 J  ==  l l i n k s y m )  

l l i n k l l i n d x ]  = NULL; 
e l s e  r e t u r n  (ERROR);  
b r e a k ;

/* */
c a s e  3 1 :  / *  s u b s t r u c t u r e ,  l i n k - n o d e  * /

s t i n d x  = g e t s t i n d  ( l e l e m l 0 ) ) ;  
r i n d x  = g e t i n d x  ( r e l e m l l ] ) ;
i f  ( s t i n d x  == ERROR II r i n d x  == ERROR) r e t u r n  (ERROR);  
l i n d x  = s t r u c t a b l s t i n d x ] . i n d x e ;  
i f  ( s t r u c t a b l s t i n d x ] . l i n k  == l l i n k s y m )  

l l i n k l l i n d x ]  = r i n d x ;  
e l s e  i f  ( s t r u c t a b l s t i n d x ] . l i n k  == r l i n k s y m )  

r l i n k i l i n d x ]  = r i n d x ;  
e l s e  i f  ( s t r u c t a b l s t i n d x ] . l i n k  * =  t h r e d s y m )  

r l i n k i l i n d x ]  = - r i n d x ;  
e l s e  r e t u r n  (ERROR);  
b r e a k ;

/* #/
c a s e  3 2 :  / *  s u b s t r u c t u r e ,  n o d e  * /

s t i n d x  = g e t s t i n d  ( l e l e m l 0 ] ) ;  
r i n d x  = g e t i n d x  ( r e l e m ( 0 ] ) ;
i f  ( s t i n d x  == ERROR II r i n d x  » »  ERROR) r e t u r n  (ERROR);  
l i n d x  "  s t r u c t a b l s t i n d x ] . i n d x e ;  
i f  ( s t r u c t a b l s t i n d x ] . l i n k  == l l i n k s y m )  

l l i n k l l i n d x ]  > r i n d x ;  
e l s e  i f  ( s t r u c t a b l s t i n d x ]  . l i n k  »  r l i n k s y m )
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r l i n k i l i n d x ]  = r i n d x ;  

e l s e  i f  ( s t r u c t a b l s t i n d x ] . l i n k  ==  t h r e d s y m )  
r l i n k i l i n d x ]  »  - r i n d x ;  

e l s e  r e t u r n  (ERROR); 
b r e a k ;

c a s e  4 1 :  / *  n u l l ,  l i n k - n o d e  * /
/ *  n o  r e l i n k i n g  r e q u i r e d  * /  

b r e a k ;
/ *  V  

d e f a u l t :
p r i n t f ( " % s % s " , e r p r e , " i n v a l i d  I h s - r h s  c o m b i n a t i o n  i n  p r o c s r h s n " ) ;  
r e t u r n  (ERROR);

} / *  e n d  o f  s w i t c h  o n  sw  * /
s t r c p y  ( l e l e m ,  r e l e m ) ;  
c u r s o r  = f i l l ( c u r s o r ) ; 
i f  ( c u r s o r  ==  ERROR) 

r e t u r n  (ERROR);
} / *  e n d  o f  w h i l e  * /
i f  ( n e x t n o d e  == NULL II n e x t n o d e  == -NULL)  

r e t u r n  (SUCCESS) ; 
i f  ( i s v a l s u b  ( l e l e m l 0 ] )  == YES)

I s t i n d x  = g e t s t i n d  ( l e l e m l 0 ] ) ;  / *  l i n k  l a s t  s u b s t r u c t  t o  r e s t  * /  
i f  ( s t i n d x  == ERROR) r e t u r n  (ERROR);  
l i n d x  = s t r u c t a b l s t i n d x ] .  i n d x e ;  
i f  ( s t r u c t a b l s t i n d x ] . l i n k  ==  l l i n k s y m )  

l l i n k l l i n d x ]  = n e x t n o d e ;  
e l s e  i f  ( s t r u c t a b l s t i n d x ] . l i n k  ==  r l i n k s y m )  

r l i n k i l i n d x ]  = n e x t n o d e ;  
e l s e  i f  ( s t r u c t a b l s t i n d x ] . l i n k  == t h r e d s y m )  

r l i n k i l i n d x ]  = n e x t n o d e ;  
e l s e  r e t u r n  (ERROR);
1

e l s e
{ l i n d x  = g e t i n d x  ( l e l e m l l ] ) ;

i f  ( l i n d x  == ERROR) r e t u r n  (ERROR); / *  l i n k  l a s t  n o d e  t o  r e s t  * /  
i f  ( d e b u g )

p r i n t f ( " S s % d % c % s " , " e n d r h s  l i n d x  l e l e m l l ]  " , l i n d x , l e l e m l l ] , " n " )  ; 
i f  ( l e l e m l 0 ]  == l l i n k s y m )  

l l i n k l l i n d x ]  == n e x t n o d e ;  
e l s e  i f  ( l e l e m I 0 ]  == r l i n k s y m )  

r l i n k i l i n d x ]  = n e x t n o d e ;  
e l s e  i f  ( l e l e m I 0 ]  == t h r e d s y m )  

r l i n k i l i n d x ]  = n e x t n o d e ;  
e l s e  r e t u r n ( E R R O R ) ;

J / *  e n d  o f  e l s e  * /
r e t u r n  (SUCCESS) ;

} / *  e n d  o f  p r o c s r h s  * /
p r o c s l h s ( r e f n o d e )  

i n t  r e f n o d e ;  / *  i n d e x  o f  f i r s t  n o d e  i n v o l v e d  i n  x f o r m  V
( / *  b u i l d  s y m b o l  t a b l e  o f  n o d e  & s u b s t r u c t u r e  l a b e l s  & i n d i c e s  * /

i n t  I h s c u r ,  s t r u c u r ;  / *  I h s  a n d  s t r u c t u r e  c u r s o r s  * /
i n t  t f ;  / *  t h r e a d  f l a g :  YES *>  g e t l i n k  - >  t h r e a d  * /
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i n t  r e t c o d e ;  
i f  ( d e b u g )

p r i n t f ( " % s " ,  "---------- > e n t e r e d  p r o c s l h s n ” ) ;
i f  ( ( r e t c o d e  = f i n d l a b ( l a b e l [ r e f n o d e ] ) )  == NO)

{ / *  l a b e l  n o t  y e t  i n  t a b l e  * /
n o d e t a b [ n e x t n t s ] . l a b  = l a b e l [ r e f n o d e ] ; 
n o d e t a b C n e x t n t s j . i n d x  = r e f n o d e ;
+ + n e x t n t s ;

p r i n t n o d ( " p r o c s l h s l " ) ;
s t r u c u r  = g e t l i n k ( l h s [ 0 ] ,  r e f n o d e ) ;
i f  ( s t r u c u r  < 0 )

{ s t r u c u r  = - s t r u c u r ;
 ̂ t f  = YES;

e l s e  t f  =  NO; 
i f  ( s t r u c u r  == ERROR) 

r e t u r n  (ERROR);
I h s c u r  =  2 ;

/* */
w h i l e  ( l h s [ l h s c u r ]  1= ' 0 ' )
{

i f  ( d e b u g )
p r i n t f ( " % s % c % d % s " , " * * l h s ,  s t r u c u r  = " , l h s [ l h s c u r ] , s t r u c u r , " n ” ) ;  

i f  ( l h s [ l h s c u r ]  == l l i n k s y m  I I l h s [ l h s c u r ]  == r l i n k s y m  
II I h s [ I h s c u r ]  == t h r e d s y m )

{ / *  l i n k  n o d e  p a i r  * /
i f  ( (  r e t c o d e  = f i n d l a b ( l h s [ l h s c u r  + 1 ] ) )  == NO)

{ / *  l a b e l  n o t  y e t  i n  t a b l e  * /
n o d e t a b [ n e x t n t s ] . l a b  = l h s [ l h s c u r  + 1 ] ;  
n o d e t a b i n e x t n t s ] . i n d x  = s t r u c u r ;
+ + n e x t n t s ;

s t r u c u r  = g e t l i n k  ( l h s [ l h s c u r ] ,  s t r u c u r ) ;  
i f  ( s t r u c u r  < 0)

{ s t r u c u r  = - s t r u c u r ;  
t f  =  YES;

}
e l s e  t f  = NO;
I h s c u r  =  I h s c u r  + 2 ;

e l s e  i f  { ( r e t c o d e  = i s v a l s u b  ( l h s [ l h s c u r ] ) )  == YES)
I / *  s u b s t r u c t u r e  * /

r e t c o d e  = r e c o g n i z  ( s t y p e ,  s t r u c u r ,  l h s [ l h s c u r ] ) ;  
i f  ( r e t c o d e  == ERROR) 

r e t u r n  (ERROR); 
s t r u c u r  = r e t c o d e ;  
i f  ( s t r u c u r  < 0 )

{ s t r u c u r  = - s t r u c u r ;  
t f  »  YES;

e l s e  t f  "  NO;
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l h s c u r + + ;

e l s e  i £  (YES)
{ / *  m u s t  b e  a  n o d e  s y m b o l  * /

i f  ( ( r e t c o d e  =  f i n d l a b  ( l h s [ l h s c u r ] ) )  == NO)
{ / *  l a b e l  n o t  y e t  i n  t a b l e  * /

n o d e t a b [ n e x t n t s ] . l a b  = l h s [ l h s c u r ] ;  
n o d e t a b i n e x t n t s ] . i n d x  = s t r u c u r ;
+ + n e x t n t s ;

s t r u c u r  = NULL; 
l h s c u r + + ;}

} / *  e n d  o f  w h i l e  * /
i f  ( t f  == YES)

n e x t n o d e  = - s t r u c u r ;  
e l s e  n e x t n o d e  = s t r u c u r ;  
p r i n t n o d ( " p r o c s l h s 2 " ) ; 
r e t u r n  (SUCCESS);

} / *  e n d  o f  p r o c s l h s  * /
/ *  V

r e c o g n i z ( t y p e ,  b e g i n ,  s l a b e l )  / *  r e c o g n i z e  s u b s t r u c t u r e  * /  
c h a r  t y p e [ ] ;  / *  s t r u c t u r e  t y p e  * /
i n t  b e g i n ;  / *  i n d e x  o f  b e g i n n i n g  n o d e  * /
c h a r  s l a b e l ;  / *  l a b e l  o f  s u b s t r u c t u r e  * /

i n t  c u r s o r ;  / *  u s e d  t o  t r a v e r s e  s t r u c t u r e s  * /
i f  ( s e q ( t y p e ,  " s l l " ) )

r e t u r n  (ERROR); / *  s l l  s u b s t r u c t u r e s  n o t  a l l o w e d  * /
i f  ( s e q ( t y p e ,  " d l l " ) )

i f  ( f l n d s l a b  ( s l a b e l )  == YES)
{ p r i n t f ( " % s % c % s " , e r p r e , s l a b e l , "  a l r e a d y  i n  d l l  s t r u c t  t a b  n " ) ;  

r e t u r n  (ERROR);
}

e l s e
{ s t r u c t a b [ n e x t s t s ] . l a b  = s l a b e l ;  

s t r u c t a b [ n e x t s t s ] . i n d x b  = b e g i n ;  
s t r u c t a b i n e x t s t s ] . i n d x e  = b e g i n ;  
s t r u c t a b [ n e x t s t s ] . l i n k  = l l i n k s y m ;  
n e x t s t s + + ;  
r e t u r n  (SUCCESS);

} / *  e n d  o f  d l l  r e c o g n i z e r  V
i f  ( s e q  ( t y p e ,  " r t b t " ) )

{ i f  ( f i n d s l a b  ( s l a b e l )  == YES)
{ p r i n t f  ( " % s % c % s n " , e r p r e , s l a b e l , "  a l r e a d y  i n  r t b t  s t r u c  t a b " ) ;
 ̂ r e t u r n  (ERROR);

else
( c u r s o r  ■ b e g i n ;

w h i l e  ( c u r s o r  l «  i n d e x b e g )
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{

i f  ( d e b u g )
p r i n t f ( " % s % d % s " , " * * r e c o g n i z  r t b t  c u r s o r  = " , c u r s o r , " n " ) ;

i f  ( r l i n k l c u r s o r l  > 0) .  , .  ............
c u r s o r  = r l i n k [ c u r s o r ] ; 

e l s e  i f  ( r l i n k [ c u r s o r ]  < 0 )
{ s t r u c t a b [ n e x t s t s ] . l a b  =  s l a b e l ;  

s t r u c t a b i n e x t s t s ] . i n d x b  =  b e g i n ;  
s t r u c t a b i n e x t s t s ] . i n d x e  =  c u r s o r ;  
s t r u c t a b i n e x t s t s ] . l i n k  =  t h r e d s y m ;  
n e x t s t s + + ;

 ̂ r e t u r n  ( r l i n k [ c u r s o r ] ) ;

} / *  e n d  o f  w h i l e  o n  c u r s o r  * /  
r e t u r n  (ERROR);

} / *  e n d  o f  e l s e  * /
} / *  e n d  o f  r t b t  r e c o g n i z e r  * /

p r i n t f ( " % s % s % s % s " ,  e r p r e ,  " r e c o g n i z e r  n o t  im p l e m  f o r  " ,  t y p e ,  " n " ) ;  
r e t u r n  (ERROR);

} / *  e n d  o f  r e c o g n i z  * /
/* */

f i n d r e f n ( s t r t y p e ,  r n o d l a b l )  / *  f i n d  r e f e r e n c e  n o d e  * /  
c h a r  s t r t y p e [ 5 ] ; 
c h a r  r n o d l a b l ;

i n t  r n o d i n d x ;  
i f  ( d e b u g )

p r i n t f ( " % s " ,  " > e n t e r e d  f i n d r e f n n " ) ;
i f  ( s e q ( s t r t y p e ,  " f r e e " ) )  

r e t u r n  (STRUCSIZ -  1 ) ;  
e l s e  i f  ( s e q ( s t r t y p e ,  " s l l " ) )

r n o d i n d x  = w a l k s l l  ( i n d e x b e g ,  r n o d l a b l ) ;  
e l s e  i f  ( s e q ( s t r t y p e ,  " d l l " ) )

r n o d i n d x  = w a l k d l l  ( i n d e x b e g ,  r n o d l a b l ) ;  
e l s e  i f  ( s e q ( s t r t y p e ,  " r t b t " ) )

r n o d i n d x  = w a l k r t b t  ( i n d e x b e g ,  r n o d l a b l ) ;  
i f  ( r n o d i n d x  == ERROR)

[ p r i n t f ( " % s % s % c % s " ,  e r p r e ,  " I h s  n o d e  " ,  r n o d l a b l , "  n o t  f o u n d n " ) ;  
r e t u r n  (ERROR);

e l s e  r e t u r n  ( r n o d i n d x ) ;
} / *  e n d  o f  f i n d r e f n  * /

/ *  V
l i s t s t r u ( c a l l p g m )  / *  l i s t  t h e  d a t a  s t r u c t u r e  * /  

c h a r  c a l l p g m [ 9 ] ;

i n t  i ;
i f  ( l i s t n o d e  == 0 )  r e t u r n ;
+ + l i s t c t r ;
p r i n t f ( " % s% d % s % s% s" ,  " d a t a  s t r u c t u r e  l i s t i n g  ” ,  l i s t c t r ,  " f r o m  " ,  

c a l l p g m , " n " ) ;
/ *  r e t u r n ;  * /
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f o r ( 1 = 0 ;  i <  STRUCSIZ; + + i )  

p r i n t f ( “ %2c%4d%4d%4d%s", l a b e l ( i ] ,  r l i n k ( i ] ,  l n f o ( i ] ,
"n") ;

} / *  e n d  o f  l i s t s t r u  * /
/ *  V

p r i n t n o d ( c a l l p g m )  / *  l i s t  n o d e s  i n  n o d e t a b  * /
c h a r  c a l l p g m [ 1 0 ] ;

i n t  i ;
i f  ( d e b u g  == 0 )  r e t u r n ;
p r i n t f ( " % s % s % s " , " l i s t i n g  o f  n o d e t a b  f r o m  " ,  c a l l p g m ,  " n " ) ;  
f o r  ( 1 = 0 ;  i <  NUMNODES; + + i )  

p r i n t f ( " % 2 c % 4 d % s " ,  n o d e t a b [ i ] . l a b ,  n o d e t a b [ i ] . i n d x ,  " n " ) ;
) / *  e n d  o f  p r i n t n o d  * /

/* */
i s v a l s u b ( t e s t l a b )  / *  i s  t e s t l a b  a v a l i d  s u b s t r u c t u r e  l a b e l  * /

c h a r  t e s t l a b ;

i n t  i ;
f o r  ( i = 0 ;  i<NUMSTRUC-l;  + + i )

i f  ( t e s t l a b  == v a l i d s t r [ i ] )  
r e t u r n  (Y E S) ;

}
r e t u r n  (NO) ;

} / *  e n d  o f  i s v a l s u b  * /
g e t l i n k  ( l i n k t y p e ,  n o d e i n d x )  

c h a r  l i n k t y p e ;  / *  t y p e  o f  l i n k  * /
i n t  n o d e i n d x ;  / *  i n d e x  o f  n o d e  f o r  w h i c h  l i n k  t y p e  d e s i r e d  * /

i f  ( l i n k t y p e  == l l i n k s y m )  
r e t u r n  ( l l i n k [ n o d e i n d x ] ) ;  

i f  ( l i n k t y p e  == r l i n k s y m )  
r e t u r n  ( r l i n k [ n o d e i n d x ]  ) ; 

i f  ( l i n k t y p e  == t h r e d s y m )  
r e t u r n  ( r l i n k [ n o d e i n d x ] ) ;  

p r i n t f  ("%s%s%s%s” , e r p r e ,  " i n v a l i d  l i n k  s y m b o l  " ,  l i n k t y p e ,
" d e t e c t e d  i n  g e t l i n k n " ) ;  

r e t u r n  (ERROR);
} / *  en d  o f  g e t l i n k  * /

/* */
w a l k s l l ( b e g n o d e ,  r n o d l a b l )  

i n t  b e g n o d e ;  / *  i n d e x  o f  b e g i n n i n g  n o d e  o f  s t r u c t u r e  * /
c h a r  r n o d l a b l ;  / *  l a b e l  o f  n o d e  w h o s e  i n d e x  t o  b e  f o u n d  * /

I / *  s e a r c h  s i n g l y  l i n k e d  l i s t  f o r  r n o d l a b l * /
i n t  c u r s o r ;  / *  c u r s o r  u s e d  t o  t r a v e r s e  s t r u c t u r e  * /
c u r s o r  = b e g n o d e ;  
w h i l e  ( r l i n k [ c u r s o r ]  I *  b e g n o d e )

{ i f  ( l a b e l [ c u r s o r ]  = «  r n o d l a b l )  
r e t u r n  ( c u r s o r ) ;  

c u r s o r  > r l i n k [ c u r s o r ]  ;
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i f  ( l a b e l [ c u r s o r ]  ==  r n o d l a b l )  

r e t u r n  ( c u r s o r ) ;  
e l s e  r e t u r n  (ERROR);

} / *  e n d  o f  w a l k s l l  * /
/* */

w a l k d l l  ( b e g n o d e ,  r n o d l a b l )  / *  s e a r c h  d l l  f o r  r n o d l a b l  * /  
i n t  b e g n o d e ;  
c h a r  r n o d l a b l ;

{ / *  w a l k s l l  w i l l  v i s i t  a l l  d l l  n o d e s  * /
i n t  r e t c o d e ;
i f  ( ( r e t c o d e  =  w a l k s l l  ( b e g n o d e ,  r n o d l a b l ) )  == ERROR) 

r e t u r n  (ERROR); 
e l s e  r e t u r n  ( r e t c o d e ) ;

} / *  e n d  o f  w a l k d l l  * /
/* */

w a l k r t b t  ( b e g n o d e ,  r n o d l a b l )  
i n t  b e g n o d e ;  / *  i n d e x  o f  b e g i n n i n g  o f  s t r u c t u r e  * /
c h a r  r n o d l a b l ;  / *  l a b e l  o f  n o d e  w h o s e  i n d e x  i s  t o  b e  f o u n d  * /

{ / *  f i n d  a c e r t a i n  n o d e  i n  r t b t  * /
i n t  c u r s o r ;  / *  u s e d  t o  t r a v e r s e  s t r u c t u r e  * /
i n t  t f ;  / *  t h r e a d  f l a g  u s e d  t o  i d  t h r e a d  p a t h  * /
c u r s o r  = b e g n o d e ;  
i f  ( l a b e l [ c u r s o r ]  ==  r n o d l a b l )

r e t u r n  ( c u r s o r ) ; / *  h e a d  n o d e  * /
c u r s o r  = l l i n k [ c u r s o r ] ; 

i f  ( c u r s o r  ==  NULL)
r e t u r n  (ERROR); / *  e m p t y  t r e e  * /

t f  = NO;
w h i l e  ( c u r s o r  1= b e g n o d e )

{ i f  ( l a b e l [ c u r s o r ]  == r n o d l a b l )  
r e t u r n  ( c u r s o r ) ; 

i f  ( l l i n k [ c u r s o r i  1= NULL)
{ i f  ( t f  ==  NO)

c u r s o r  = l l i n k [ c u r s o r ]  ; 
e l s e  i f  ( r l i n k [ c u r s o r ]  > 0 )

( c u r s o r  = r l i n k [ c u r s o r ]  ; 
t f  = NO;

}
e l s e  i f  ( r l i n k [ c u r s o r ]  < 0)

{ c u r s o r  = - r l i n k [ c u r s o r ]  ; 
t f  = YES;

1 / *  e n d  i f  o n  l a b e l  * /
e l s e  i f  ( l l i n k [ c u r s o r ]  ==  NULL)

{ i f  ( t f  == NO && r l i n k [ c u r s o r ]  > 0 )  
c u r s o r  »  r l i n k [ c u r s o r ]  ; 

e l s e  i f  ( t f  * =  NO && r l i n k [ c u r s o r ]  < 0 )
{ c u r s o r  =  - r l i n k [ c u r s o r ]  ; 

t f  = YES;
>

}
i f  ( c u r s o r  »  NULL) r e t u r n  (ERROR);
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} / *  e n d  o f  w h i l e  o n  c u r s o r  * /

r e t u r n  (ERROR); / *  i f  r n o d l a b l  n o t  f o u n d  * /
} / *  e n d  o f  w a l k r t b t  * /
/ *  V

f i n d l a b  ( n o d e l a b )  / *  s e e  i f  n o d e l a b  i s  i n  n o d e t a b  * /
c h a r  n o d e l a b ;

i n t  i ;
f o r  ( i = 0 ;  i<NUMNODES; i+ + )

{ i f  ( n o d e t a b [ i ] . l a b  == n o d e l a b )  
r e t u r n  ( Y E S ) ;

r e t u r n  (NO) ;
} / *  e n d  o f  f i n d l a b  * /
/* */
f i n d s l a b  ( n o d e l a b )  / *  s e e  i f  n o d e l a b  i s  i n  s t r u c t a b  * /

c h a r  n o d e l a b ;
{

i n t  i ;
f o r  ( i  = 0 ;  i  < NUMSTRUC; i+ + )

{ i f  ( s t r u c t a b [ i ] . l a b  == n o d e l a b )
 ̂ r e t u r n  ( Y E S ) ;

r e t u r n  (NO) ;
} / *  e n d  o f  f i n d s l a b  * /
/* */

f i l l ( f i l l c u r )  / *  f i l l  r e l e m  f r o m  r h s  * /
i n t  f i l l c u r ;
{

i n t  r e t v a l ;
i f  ( r h s [ f i l l c u r ]  == n u l l s y m )

{ r e l e m [ 0 ]  = r h s [ f i l l c u r ] ; 
f i l l c u r + + ;  
r e l e m [ l ]  *  ' \ 0 ' ;  
r e t u r n  ( f i l l c u r ) ;

i f  ( i s v a l s u b ( r h s [ f i l l c u r ] ) == YES)
{ r e l e r o [ 0 ]  = r h s [ f i l l c u r ] ; 

f i l l c u r + + ;  
r e l e m [ l ]  = ' 0 ' ;  
r e t u r n  ( f i l l c u r ) ;

}
e l s e  i f  ( r h s [ f i l l c u r ]  == l l i n k s y m  | |  r h s [ f i l l c u r ]  == r l i n k s y m  

I I r h s [ f i l l c u r ]  == t h r e d s y m )
{ r e l e m [ 0 ]  *  r h s [ f i l l c u r ] ; 

r e l e m i l ]  = r h s [ f i l l c u r  +  1 ] ;  
r e l e m [ 2 ]  = ' 0 ' ;  
r e t v a l  <■ f i l l c u r  +  2 ;  
r e t u r n ( r e t v a l )  ;

e l s e  i f  ( r h s [ f i l l c u r ]  >■ ' a '  && r h s [ f i l l c u r ]  <«  ' z ' )
{ r e l e m [ 0 ]  «  r h s [ f i l l c u r ] ;
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r e l e m [ l ]  = * 0 ' ;  
f i l l c u r + + ;  
r e t u r n  ( f i l l c u r ) ;

}
e l s e  i f  ( r h s [ f i l l c u r ]  ==  ' 0 ' )

{ r e l e m [ 0 ]  =  ' 0 ' ;  
r e t u r n  ( f i l l c u r ) ;

e l s e  r e t u r n  (ERROR);
} / *  e n d  o f  f i l l  * /

/* */
/* */
c a l c s w ( l s t r ,  r s t r )  / *  c a l c  s w i t c h  v a l  f r o m  l e l e m  & r e l e m * /

c h a r  I s t r t l ,  r s t r ( ] ;  / *  l e f t  and  r i g h t  e l e m e n t s  * /

i n t  s w v a l  = 0 ;  
i n t  r e t c o d e ;

i f  ( d e b u g  == YES) 
p r i n t f ( " % s % s % s % s " , "  e n t e r e d  c a l c s w  " ,  l s t r , r s t r , " n " ) ; 

i f  ( (  r e t c o d e  = i s v a l s u b ( l s t r [ 0 ] ) )  ==  YES) 
s w v a l  = 3 0 ;  

e l s e  i f  ( l s t r [ 0 ]  == n u l l s y m )
s w v a l  = 4 0 ;  / *  41  ==> n u l l , l i n k - n o d e  * /

e l s e  i f  ( l s t r [ 0 ]  == l l i n k s y m  I I l s t r [ 0 ]  == r l i n k s y m
II l s t r [ 0 ]  == t h r e d s y m )  

s w v a l  = 1 0 ;  
i f  ( ( r e t c o d e  = i s v a l s u b ( r s t r [ 0 ] ) )  ==  YES) 

s w v a l  = s w v a l  + 3 ;  
e l s e  i f  ( r s t r [ 0 ]  == n u l l s y m )

s w v a l  = s w v a l  + 4 ;  / *  14  ==> l i n k - n o d e , n u l l  * /
e l s e  i f  ( r s t r [ 0 ]  == l l i n k s y m  I I r s t r [ 0 ]  == r l i n k s y m

I I r s t r [ 0 ]  == t h r e d s y m )  
s w v a l  = s w v a l  + 1 ;  

e l s e  i f  ( r s t r [ 0 ]  >= ' a '  && r s t r [ 0 ]  <= ' z ' )  
s w v a l  = s w v a l  + 2 ;  

r e t u r n  ( s w v a l ) ;
} / *  e n d  o f  c a l c s w  * /

/ *  V  
/* */
g e t i n d x ( n o d e s y m )  / *  d e t e r m i n e  i n d e x  o f  no des yra  * /

c h a r  n o d e s y m ;

i n t  i , j ;
f o r  ( i  «  0 ;  i  < n e x t n t s ;  i + + )

{ i f  ( n o d e s y m  == n o d e t a b [ i ] . l a b )

j  *  n o d e t a b [ i ] . i n d x ;  
r e t u r n  ( j ) ;

} / *  e n d  o f  i f  V
1

p r i n t f ( ” %s%s%c%s*, e r p r e ,  " n o d e  s y m b o l  " ,  n o d e s y m ,
” n o t  f o u n d  i n  n o d e t a b  b y  g e t i n d x n * ) ;
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r e t u r n  (ERROR);

} / *  e n d  o f  g e t i n d x  * /
/ *  V  
/ *  V
g e t s t i n d  ( s t r u c s y m )  / *  d e t e r m i n e  i n d e x  o f  s u b s t r u c  sym * /

c h a r  s t r u c s y m ;

i n t  i ;
f o r  ( i  = 0 ;  i  < n e x t s t s ;  i+ + )

{ i f  ( s t r u c s y m  == s t r u c t a b [ i ] . l a b )  
r e t u r n  ( i ) ;

p r i n t f ( " % s % s % c % s " ,  e r p r e ,  " s t r u c t u r e  s y m b o l  " ,  s t r u c s y m ,
" n o t  f o u n d  i n  s t r u c t a b  b y  g e t s t i n d n " ) ;  

r e t u r n  (ERROR);
} / *  e n d  o f  g e t s t i n d  * /
p r i n t l a b  ( s t r u c t y p ,  w h en )  / *  l i s t  n o d e  l a b e l s  o f  s t r u c t u r e  * /

c h a r  s t r u c t y p [ ] ;  / *  t y p e  o f  s t r u c t u r e  * /
c h a r  w h e n [ ] ;  / *  p r i n t  b e f o r e  o r  a f t e r  t r a n s f o r m  * /

i n t  i ,  i n d x ;
i n t  t f ;  / *  t h r e a d  f l a g  "ON" i f  l a s t  l i n k  w as  t h r e a d  * /
c h a r  b u f r ( B U F S I Z E ]  ; / *  p r i n t  b u f f e r  * /  f o r  ( i  = 0 ;  i  < BUFSIZE; i + +

b u f r ( i ]  = ' ' ;  
i f  ( s e q ( s t r u c t y p , " s l l " ) )

i  = 1 ;
i n d x  = i n d e x b e g ;
w h i l e  ( r l i n k [ i n d x ]  1= i n d e x b e g )

b i i f r [ i ]  = r l i n k s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i  -- i  +  2 ;
i f  ( i  > BUFSIZE) r e t u r n  (ERROR);  
indx*  = r l i n k [ i n d x ] ;
i f  ( i n d x  < i n d e x b e g  II i n d x  > STRUCSIZ)

{ p r i n t f ( " % s % s " , e r p r e , " c a n n o t  p r i n t  s t r u c t u r e — i n v a l i d  l i n k n " ) ;  
r e t u r n  (ERROR);

} / *  e n d  o f  w h i l e  * /
b u f r t i ]  =  r l i n k s y m ;  / *  l a s t  n o d e  * /
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
b u f r [ i + 2 ]  = l a b e l [ i n d e x b e g ]  ;
p r i n t f  ("%s%s%s%s",  s t r u c t y p ,  w h e n ,  b u f r ,  " n " ) ;

} / *  en d  o f  i f  * /
e l s e  i f  ( s e q ( s t r u c t y p , " d l l * ) )

i  =  1 ;
i n d x  = i n d e x b e g ;  ••
w h i l e  ( r l i n k [ i n d x ]  1» i n d e x b e g )
{

b u f r [ i ]  "  r l i n k s y m ;
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b u f r t i + 1 ]  = l a b e l [ i n d x ] ;
1 = i  + 2 ;
i f  ( i  > BUFSIZE) r e t u r n  (ERROR);  
i n d x  = r l i n k [ i n d x ] ;
i f  ( i n d x  < i n d e x b e g  I I i n d x  > STRUCSIZ)

{ p r i n t f ( ■ % s % s " , e r p r e , " c a n n o t  p r i n t  s t r u c t u r e —  i n v a l i d  l i n k n " ) ;  
r e t u r n  (ERROR);

}
] / *  e n d  o f  w h i l e  * /

b u f r t i ]  = r l i n k s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i  =  i  + 2 ;
i f  ( i  > BUFSIZE) r e t u r n  (ERROR);
i n d x  = i n d e x b e g ;
w h i l e  ( l l i n k [ i n d x ]  1= i n d e x b e g )

b u f r t i ]  = l l i n k s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i  = i  + 2 ;
i f  ( i  > BUFSIZE) r e t u r n  (ERROR);  

i n d x  = l l i n k t i n d x ] ;  
i f  ( i n d x  < i n d e x b e g  I I i n d x  > STRUCSIZ)  

t p r i n t f ( " % s % s " , e r p r e , " c a n n o t  p r i n t  s t r u c t u r e —  i n v a l i d  l i n k n " ) ;  
r e t u r n  (ERROR);

}
b u f r t i ]  = l l i n k s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
b u f r t i + 2 ]  = l a b e l [ i n d e x b e g ] ;
p r i n t f ( " % s % s % s % s " ,  s t r u c t y p ,  w h e n ,  b u f r ,  " n " ) ; 
r e t u r n  (SUCCESS) ;

) / *  e n d  o f  i f  o n  d l l  * /
e l s e  i f  ( s e q  ( s t r u c t y p ,  " r t b t " ) )
(

i  = 1 ;
i f  ( r l i n k t i n d e x b e g ]  == - i n d e x b e g  && l l i n k t i n d e x b e g ]  == NULL)
{ b u f r t i ]  = t h r e d s y m ;

b u f r [ i + l ]  = l a b e l t i n d e x b e g ] ; 
b u f r [ i + 2 l  = l a b e l t i n d e x b e g ] ;
p r i n t f  ("%s%s%sn",  " s t r u c t u r e  o f  t y p e  " ,  s t r u c t y p ,  b u f r ) ;  

r e t u r n  (SUCCESS);
>

b u f r t i ]  «  l l i n k s y m ;  
b u f r [ i + l ]  = l a b e l t i n d e x b e g ] ; 
i  = i  +  2 ;
i n d x  = l l i n k t i n d e x b e g ] ; 
t f  =  NO;
w h i l e  ( i n d x  1= i n d e x b e g )

i f  ( l l i n k t i n d x ]  !■  NULL)
{ i f ^ ( t f  “  NO)
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b u f r [ i ]  = l l i n k s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i n d x  = l l i n k [ i n d x ] ; 
i  = i  +  2 ;

e l s e  i f  ( r l i n k [ i n d x ]  > 0 )

b u f r [ i ]  = r l i n k s y m ;  
b u f r [ i + l ]  = l a b e l C i n d x l ;  
i n d x  = r l i n k [ i n d x ] ;  

t f  = NO;
I i  = i  +  2 ;

e l s e  i f  ( r l i n k [ i n d x j  < 0 )

b u f r [ i ]  = t h r e d s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i n d x  = - r l i n k [ i n d x ] ; 
t f  = YES;  
i  = i  +  2 ;

}
} / *  e n d  o f  i f  on  l l i n k  * /

e l s e  i f  ( l l i n k [ i n d x ]  ==* NULL)
( l E ^ ( t f  == NO && r l i n k [ i n d x ]  > 0 )

b u f r [ i ]  = r l i n k s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i n d x  = r l i n k [ i n d x ] ;  
i  = i  +  2 ;

}
e l s e  i f  ( t f  == NO && r l i n k [ i n d x ]  < 0 )

b u f r [ i ]  = t h r e d s y m ;  
b u f r [ i + l ]  = l a b e l [ i n d x ] ;  
i n d x  = - r l i n k [ i n d x ] ; 
i  = i  +  2 ;  
t f  = YES;

}
} / *  e n d  o f  e l s e  i f  o n  l l i n k  * /

i f  ( i  > BUFSIZE)  r e t u r n  (ERROR);
} / *  e n d  o f  w h i l e  * /
b u f r [ i ]  = l a b e l [ i n d e x b e g ] ;
p r i n t f  ("%s%s%s%s",  s t r u c t y p ,  w h e n ,  b u f r ,  " n " ) ;

] / *  e n d  o f  e l s e  i f  o n  r t b t  • /
e l s e  p r i n t f ( " % s % s " ,  e r p r e ,  " i n v a l i d  s t r u c t u r e  t y p e  i n  p r i n t l a b n " ) ;  

} / *  e n d  o f  p r i n t l a b  * /



APPENDIX 2

•lex" Specification

%%
{ r e t u r n  (A N D ) ; )
{ r e t u r n  ( C O L ) ; }
{ r e t u r n  ( 0 ) ; }

"— >■ { r e t u r n  ( A R C ) ; }
{ r e t u r n  (FARO); }

f { y y l v a l  = y y t e x t { 0 ]  -  ' a ' ;  
r e t u r n  (FHEAD); }

h { y y l v a l  = y y t e x t { 0 ]  -  ' a ' ;  
r e t u r n  (HEAD); }

t r a n s f o r m { r e t u r n  (TRANSFORM); }
f r e e { r e t u r n  ( F R E E ) ; }
s l l { r e t u r n  ( S L L ) ; }
d l l { r e t u r n  ( D L L ) ; }
r t b t { r e t u r n  ( R T B T ) ; }
[ a - e i - z g ] { y y l v a l  = y y t e x t { 0 ]  -  ' a ' ;  

r e t u r n  (NLAB) ; }
R { r e t u r n  (R L I N K ); }
L { r e t u r n  ( L L I N K ) ; }
Q { r e t u r n  (THREAD);}
N { r e t u r n  ( N U L ) ; }
[ S - 2 J { y y l v a l  = y y t e x t [ 0 ]  -  ' A ' ;  

r e t u r n  ( S L A B ) ; }
[A-KM-P] { r e t u r n  ( E R R ) ; }
t ] + { ; }[n] + { ; }
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APPENDIX 3

•yacc* Specification

%start stmt
%token LLINK RLINK THREAD NLAB SLAB HEAD FHEAD 
%token TRANSFORM AND SLL DLL RTBT FREE 
%token ARO FARO COL ERR 
%token NUL 
%%
stmt : TRANSFORM FREE AND SLL COL frees ARO frees FARO slls ARO slls 

{ if (($6 != $8) I I ($10 := $12))
printf ("%sn", "** warning - unmatched reference nodes");

I TRANSFORM SLL AND FREE COL slls ARO slls FARO frees ARO frees
{ if (($6 != $8) I I ($10 1= $12))

printf ("%sn", *** warning - unmatched reference nodes");

I TRANSFORM FREE AND DLL COL frees ARO frees FARO dlls ARO dlls 
{ if (($6 != $8) I I ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");

I TRANSFORM DLL AND FREE COL dlls ARO dlls FARO frees ARO frees
{ if (($6 i= $8) I 1 ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");

I TRANSFORM FREE AND RTBT COL frees ARO frees FARO rtbts ARO rtbts 
{ if (($6 1= $8) I 1 ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");

1 TRANSFORM RTBT AND FREE COL rtbts ARO rtbts FARO frees ARO frees 
{ if (($6 != $8) I I ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");
}

I TRANSFORM RTBT AND RTBT COL r t b t s  ARO r t b t s  FARO r t b t S  ARO r t b t S  
{ i f  ( ( $ 5  1= $ 8 )  II ( $ 1 0  1= $ 1 2 ) )

p r i n t f  ("% sn " ,  "**  w a r n i n g  -  u n m a t c h e d  r e f e r e n c e  n o d e s * ) ;

I TRANSFORM RTBT AND FREE COL r t b t s  ARO r t b t s n  FARO f r e e s  ARO f r e e s  
{ i f  ( ( $ 6  t >  $ 8 )  I I ( $ 1 0  1 -  $ 1 2 ) )

 ̂ p r i n t f  ("%s n" ,  "**  w a r n i n g  -  u n m a t c h e d  r e f e r e n c e  n o d e s " ) ;

I TRANSFORM RTBT AND RTBT COL r t b t s  ARO r t b t s n  FARO rtbts ARO r t b t S  
{ i f  ( ( $ 6  1» $ 8 )  II ( $ 1 0  l «  $ 1 2 ) )

p r i n t f  ("% sn " ,  "**  w a r n i n g  -  u n m a t c h e d  r e f e r e n c e  n o d e s * ) ;
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}
#

f r e e s  : RLINK FHEAD
{ $$ = $2 ; }

I RLINK FHEAD RLINK NLAB 
{ $$ = $2 ; }

?
s l l s  ; RLINK NLAB

{ $$ = $2 ; }
I RLINK NLAB RLINK NLAB 

{ i f  ( $ 2  == $ 4 )
p r i n t f ( " % s n " , " * * w a r n i n g  —  i l l e g a l  i d e n t i c a l  n o d e  l a b e l s * ) ;
$$ = $2;

}
I RLINK HEAD

{ $$ = $2 ;}
I RLINK HEAD RLINK NLAB

I $$ = $2;)
t

d l l s  : RLINK HEAD SLAB HEAD 
{ $$ = $2; }

I RLINK HEAD RLINK NLAB SLAB LLINK NLAB HEAD
{ if ($4 != $7)

p r i n t f  ("% sn " ,  "** w a r n i n g  -  u n m a t c h e d  n o d e  l a b e l s " ) ;
$S = $2;

}
I RLINK NLAB RLINK NLAB SLAB LLINK NLAB LLINK NLAB

{ i f  ( { $ 2  1= $ 9 )  I I ($4 !=  $7))
p r i n t f  ("% sn " ,  "** w a r n i n g  -  u n m a t c h e d  n o d e  l a b e l s " ) ;

$$ = $2 ;
}

I RLINK NLAB SLAB LLINK NLAB 
{ i f  ( $ 2  1= $ 5 )

p r i n t f  ("% sn " ,  "** w a r n i n g  -  u n m a t c h e d  n o d e  l a b e l s " ) ;
$$ = $2;

}
I RLINK NLAB LLINK HEAD LLINK NLAB

{ if ($2 1= $6)
p r i n t f  {"%sn" ,  "** w a r n i n g  -  u n m a t c h e d  n o d e  l a b e l s " ) ;

$$ = $2 ;
)

I RLINK NLAB RLINK NLAB LLINK HEAD LLINK NLAB LLINK NLAB
{ if (($2 1= $10) II ($4 != $8))

printf ("%sn", "** warning - unmatched node labels");
$$ = $2;

}
;

r t b t s  : THREAD HEAD HEAD 
{ $$ = $2; }

I LLINK HEAD SLAB HEAD 
{ $$ = $2; >

I THREAD NLAB
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{ $$ = $2; }

I RLINK NLAB SLAB 
{ $$ = $2; }

I LLINK NLAB SLAB THREAD NLAB 
{ $$ = $2;

i f  ( $ 2  1= $ 5 )
p r i n t f  ( " S s n " ,  " * * w a r n i n g - u n m a t c h e d  n o d e  l a b e l s " ) ;

}
I LLINK NLAB SLAB RLINK NLAB SLAB 

{ $$ = $2;
i f  ( $ 2  1= $ 5 )

p r i n t f  ("%sn",  " * * w a r n i n g - u n m a t c h e d  n o d e  l a b e l s " ) ;  
i f  ( $ 3  == $ 6 )

printf ("%s%sn", "warning-identical substructure ",
"labels");

}
1 RLINK NLAB THREAD NLAB 

{ $$ = $2;
if ($2 == $4)
printf ("%sn", "**warning-illegal identical node labels");

}
I LLINK NLAB THREAD NLAB THREAD NLAB

I $$ = $2;
if ($2 == $4 11 $4 == $6) 
printf ("%sn", "**warning-illegal identical node labels"); 

if ($2 != $6)
printf ("%sn", "**warning-unmatched node labels");

}
I LLINK NLAB THREAD NLAB RLINK NLAB SLAB

I $$ = $2;
if ($2 == $4 II $4 == $6) 
printf ("%sn", "**warning-illegal identical node labels"); 

if ($2 != $6)
printf ("%sn", "**warning-unraatched node labels");

I LLINK NLAB THREAD NLAB RLINK NLAB THREAD NLAB 
{ $$ = $2;

if ($2 == $4 II $4 == $6 II $6 == $8 
II $2 == $8 II $4 == $8) 

printf ("%sn", "**warning-illegal identical node labels"); 
if ($2 1= $6)

printf ("%sn", "**warning-unmatched node labels”);

I LLINK NLAB SLAB RLINK NLAB THREAD NLAB
t $$ = $2;

i f  ( $ 2  == $7  II $ 5  $ 7 )
p r i n t f  ("%sn" ,  " * * w a r n i n g - i l l e g a l  i d e n t i c a l  n o d e  l a b e l s * ) ;  

i f  ( $ 2  !=  $ 5 )
p r i n t f  {"%sn",  * * * w a r n i n g - u n m a t c h e d  n o d e  l a b e l s ” ) ;

I LLINK HEAD THREAD NLAB HEAD
I $$ » $2; }
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S

rtbtsn : LLINK NLAB NUL THREAD NLAB 
{ $$ = $2;

if ($2 1= $5)
printf ("%sn", "**warning-unmatched node labels");

I LLINK NLAB NUL RLINK NLAB SLAB 
{ $$ = $2;

if ($2 != $5)
printf ("%sn", "**warning-unmatched node labels");

I LLINK NLAB NUL RLINK NLAB THREAD NLAB 
{ $$ = $2;

if ($2 == $7 11 $5 == $7)
printf ("%sn", "**warning-illegal identical node labels"); 

if ($2 1= $5)
printf ("%sn", "**warning-unmatched node labels");

}
I LLINK HEAD NUL THREAD HEAD HEAD 

{ $$ = $2; )
;

%%
# i n c l u d e  " l e x . y y . c "


