
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

Universi^
Micronlms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

8306724

Mejstrik, Norman Louis

FORMAL SPECIFICATION OF OPERATIONS ON A CLASS OF
SYNTACTICALLY SPECIFIED DATA STRUCTURES

The Unbersity o f Oklahoma Ph.D. 1982

University
Microfilms

Internstionei 300 N. zeeb R W . Am Arbor. MI 48106

Copyright 1982

by

Mejstrik, Norman Louis

All Rights Reserved

THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

FORMAL SPECIFICATION OF OPERATIONS
ON A CLASS

OF SYNTACTICALLY-SPECIFIED DATA STRUCTURES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the

degree of
DOCTOR OF PHILOSOPHY

By
NORMAN LOUIS MEJSTRIK

Norman, Oklahoma
1982

FORMAL SPECIFICATION OF OPERATIONS
ON A CLASS

OF SYNTACTICALLY-SPECIFIED DATA STRUCTURES
A DISSERTATION APPROVED FOR

THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

-All |7v \\ c/rT

@ by Norman L. Mejstrik 1982
All Rights Reserved

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and appreciation
to my major professorj Dr. John C. Thompson, for his ideas
and patient guidance and counsel during my dissertation

work. I also thank the members of my committee, Dr. Foote,

Dr. Hurson, Dr. Minor and Dr. Walker, for their helpful
comments.

I am deeply indebted to Mr. Q . Inks Franklin for his
advice and generous computer support during the production
of this dissertation.

I am very grateful to my wife, Carolyn, and daughter,
Marie, for their patience and understanding during my
graduate years. Finally, I thank my parents, Ernest and
Agnes, for their continual encouragement.

IV

CONTENTS

ACKNOWLEDGEMENTS
CONTENTS . . .
LIST OF FIGURES

1 .1 . 1
1.2
1.3
1.4

2 .
2 . 1
2. 2

2.3
2.4

2.5
2.6
3.
3.1
3.2

3.3
3.4

4.
4.1
4.2

4.3
4.4

5.
5.1
5.2
5.3

Introduction
Objective
Motivation
Previous Work
Introduction to Formal
Data Structure Specification
Underlying Theory
Introduction
Multirelational Graphs
and K-formulas
Grammars and Graph Grammars
Grammars Augmented for Node
Identification
Context-Free Languages and
Recognizers
Recognizable Structures . . .
Formalized Data Structure
Operations
K-Grammars for Several
Common Data Structures . . .
The Correspondence of K-Grammars
and Classical Data Structure
Generation
Operations on Data Structures
Formalisms for Operations
on Data Structures
Application of Data Structure
Transforms
Method of Application . . ,
Syntax Checking Transform
Statements <
Interpreter Operations . . ,
Examples of Interpreter Use

Summary, Future Work and
an Evaluation
Summary
Future Work
An Evaluation

IV

V

vii

1
11
3

8
8

9
11

14

17
22

39
39

43
49
55

64
64

65
67
71

86
86
86
88

BIBLIOGRAPHY 91
APPENDIX 1: Interpreter Documentation . 93

APPENDIX 2; "lex" Specification . . . 109
APPENDIX 3: "yacc" Specification . . . 110

VI

LIST OF FIGURES
Figure Title
3.2.1 Binary Tree Constructor

Algorithm 44
3 .3 . 1 Derivation Trees for

Singly-Linked List Insertion . 52
4 .3 . 1 Interpreter Data Flow 69
4 .3 . 2 Interpreter Software Structure 70
4.4.1 Message Queue Example 74
4.4.2 AVL Tree "LL" Rotation 71
4 .4 . 3 Binary Tree Rebalancing 78
4.4.4 AVL Tree "LL" Rotation Example 81

4 .4 . 5 AVL Tree "LR" Rotation Example 83

Vll

CHAPTER ONE

1. Introduction.

1.1 Objective.
This paper presents a method of formally specifying

operations on a certain class of linked data structures.
Rooted in formal language theory, the specification of
operations provides a bais is for demonstrating the
correctness of the operations, and a vehicle for future
implementation of a mechanized programming system for data

structures of interest.

1.2 Motivation.
Linked data structures form an important part of

contemporary computing technology. Examples are found in
operating system scheduler queues, file system directory
trees, hierarchical and network data base management system
implementations, and first-in-first-out message switching

systems. Fundamentals of linked data structures are taught
in undergraduate data structures courses, since an
understanding of these structures is prerequisite to
comprehending many other aspects of computer science
coursework.

In computer science classrooms and in technical
journals alike, the usual method of describing linked data

1

2

structures involves diagrams showing the data elements and
their relation to one another. The data elements are the
nodes of a directed graph, and the relationships between

elements are expressed as edges between the nodes. Once the
intuitive graphic description has been communicated, authors
frequently use programming language-like procedural
descriptions of operations on the structures. Such
algorithmic descriptions inherently include considerable
implementation detail which is of secondary interest when

describing structure transformations. While the graphical
depiction of structure operations has a good deal of

intuitive appeal, to rely on graphical methods alone results
in a lack of desired conciseness and precision.

Various approaches to formalizing the description of
data structure operations are addressed in the next section.

The application of formalism results in a standard method of
communicating ideas on the subject involved. Formalism
provides the opportunity to analyze implementations of data
structure operations at the abstract level, before in situ
structures and programming mechanisms are employed.
Suitable choice of notation allows conventional processing
by computer, contrasted with the need for graphical computer
input and output devices when relying solely on graphical

depiction. The conventional processing feature also
facilitates automated support of proofs of the correctness
of data structure operations. Achieving the goal of

3
elegance of formalism means achieving conciseness and
precision without the complexity generally found in a
programming language approach. This paper addresses the
goal of an elegant method of specifying operations on linked
data structures.

1.3 Previous Work.
In the past, the most frequently used method of

defining linked data structures and describing operations on
them has been the use of a programming language. The
primary programming language features used are arrays,

pointers, and the instructions (statements) which operate on
them. These conventional features are used to synthesize
data structures and operations on them because the
structures themselves are not inherent in general purpose
programming languages. When directed graphs are used to
represent linked data structures, programming language
extensions such as those described by Crespi-Rehizzi and
Marpurgo (CM70) become available to implement data structure
operations which are analogous to graph union, intersection

and subtraction. Schneiderman and Scheuermann (SS74) also

proposed an extension to a host programming language to
include linear structure and multistructure declarations,

and facilities for operations on these structures. However,
because of the large amount of detail required, the

programming language extension method by itself contributes
little to the desired goal of demonstrating the correctness

4

of the operations performed.
Earley (EJ71) attacked the data structure problem more

directly through the use of so-called "V-graphs."

Significant in the Earley paper is the distinction between

data structure semantics (how the data is stored and
accessed, and how the structure may be changed) and
implementation (how semantics are realized in a physical
machine). This important distinction, which is evident in
other works on both graphs and data structures (GY75, RA71,
PF71), allows one to model the real world problem with
semantics without extraneous implementation detail. The
implementation problem is attacked only after the semantics
of the logical model of the problem are clearly understood.
This formal recognition of the dichotomy between abstraction
and implementation is essential to practical resolution of

the correctness issue.
In addition to the programming language extension and

directed graph approaches to data structures, Horowitz and

Sahni (HS76) and Guttag (GJ77) have proposed algebraic
approaches. Abstract data types are defined in a
representation-independent specification in terms of the
domains and ranges of operations. The meanings of
operations are captured in axioms by stating their
relationships to one another in a set of relations.

Standish (ST78) has taken a factored axiomatic approach
to data structures wherein a set of "ground axioms"

5

addressing the pervasive underlying characteristics of data
structures are formalized. Higher order axiom sets for
structures such as trees and queues are then developed in

such a manner that representations synthesized for the
structures obey both the ground axioms and the higher order
(structure) axioms. Given a well-understood set of ground
axioms, one transforms the higher-order axioms to produce
function definitions for the (higher order) structure and a
data model for the ground axioms. This system thus provides

a framework which has advantages for proving the correctness
of programs and data representations. While this method

provides a framework for a "factored" approach to
correctness proofs, Guttag reports that it is not always
easy to determine if the axiomatization is consistent and
sufficiently complete. As the axioms must capture the
semantics of the operations on the structures, the
completeness criterion is especially important in the proof
process.

Guha and Yeh (GY75) formalize the semantics of list
structures using graph representations, and then define
structure operations in terms of partial functions on graph
configurations. This approach provides mathematical tools
for the analysis of applications of list structures, but
correctness of operations and implementation strategies are

not addressed.
Of importance to the work presented in this paper is

6

the approach to data structures taken by Fleck (FA71), where
list structures are formally shown to be identical to
context free grammars. Fleck defines a list structure as a

finite collection of sets of lists. The set of productions
written for a particular recursive list then generates all
possible instances of representations of the list structure.
A construction is given by Fleck which shows the equivalence
of context-free languages and list structure
representations.

While the work of Fleck is significant, the work of
Thompson (TJ81) actually forms the basis for the

formalization of linked data structure operations addressed
in the remainder of this paper. This approach combines
graph theoretic and formal language concepts in developing
grammatical descriptions of data structures. The next

section introduces the approach to formal data structure
specification. Additional discussion of the underlying

theory is contained in Chapter 2.

1.4 Introduction to Formal Data Structure Specification.
Directed graphs are often used to communicate

information pertaining to linked data structures. Because
of the relative ease of expression, it is convenient to use

K-formulas (BA75) to represent directed graphs. Briefly,
graph nodes are represented in K-formulas by symbols such as
single letters, and a prefix operator denotes an arc from
one node to another. The relative positions of the operator

7
and node symbols specify the connectivity of the graph. A
set of rules specifies all well-formed K-formulas.

K-formulas can be generalized to incorporate various
types of links; for example, separate operator symbols can
be used to distinguish the left and right links in a binary
tree. The set of rules which describes well-formed
K-formulas can be tailored for each particular data
structure of interest, and expressed in the form of a

context-free grammar (TJ81). Such a grammar generates

strings of node and link symbols, such that strings
representing all allowed data structures can be generated by

the grammar, and only those strings.
To specify changes to data structures, one can describe

the changes by showing how the K-formula changes.
Concentrating on only those parts of the structure which are
modified, the corresponding "before" and "after" substrings
of the K-formula precisely describe the structural changes.

This method of K-formula "transforms" is the approach to
data structure operations taken in this paper.

In Chapter Two, the theory underlying the data

structure operations is described. Formalized data

structure operations are presented in Chapter Three,
followed by examples of the application of the method in

Chapter Four. Some thoughts on future work are given in
Chapter Five.

CHAPTER TWO

2. Underlying Theory.

2.1 Introduction.
The formal specification of operations on linked data

structures, as presented herein, is based on concepts from
graph and language theory. Graphs are used as an
intermediate descriptiye tool; the K-formula method of

representing graphs is fundamental to the entire balance of
the paper. Grammars are used to define the allowable

morphology of data structures, and properties of the
particular type of grammars used guide the deyelopment of
the method used to specify structure operations.

This chapter first addresses the use of K-formulas to
represent directed graphs, and then applies grammatical
methods to the generation of K-formulas. The resulting
"K-grammars" are augmented to include node identification,
and the correspondence between data structures and

K-formulas is shown. Concepts from formal languages and
automata are introduced, and applied in defining those data
structures which are recognizable using the present methods.
The material of Section 2.2 through Section 2.6.1 is a
review of the work of others; the original contributions of
this paper begin at Section 2.6.2.

9

2.2 Multirelational Graphs and K-formulas.
When discussing directed graphs, there is normally a

single type of relation between nodes: node "a" is related
to node "b" if there is an edge from "a" to "b", and nodes
"a" and "b" are unrelated if there is no such directed edge.
In data structures, it is frequently useful to distinguish
links such as the "leftlinks" and "rightlinks" in a binary

tree. For this reason, multirelational digraphs are
introduced here.

DEFINITION: A multirelational digraph (see TJ81) D % <A,R>
is an ordered pair of sets with A a set of sets of nodes and
R a set of relations among the elements of the sets in A.
As an example, the multirelational digraph D =
<{{a,b,c,d,e}}, {LEFT,RIGHT}> with LEFT = {<a,b>, <c,d>} and

RIGHT = {<a,0,<c,e>} defines the binary tree shown below.

A convenient method of portraying multirelational digraphs
involves the use of K-formulas.

A K-formula is used to represent the topology of a
directed graph through the use of a sequence of symbols.

10

Two types of symbols are used: node symbols and operator
symbols. An operator symbol preceding two node symbols
denotes a directed edge from the first node to the second

node. Thus, the K-formula *ab describes a graph with nodes
"a" and "b", and an edge from "a" to "b" denoted by the
operator.

In this paper, nodes are designated by (sometimes
subscripted) letters a,b,c, . . . ; the lower case Greek
letters (e.g., p,x) are used as operator symbols. If more
than one edge originates at a node, the corresponding

K-formula contains as many K-operators preceding the node as
there are edges originating at the node. Unique types of

edges are denoted by unique edge symbols. For example, in a
binary tree, "x" may be used to represent the edge from a
node to its left subtree (i.e., the left-link), and "p" to
represent the edge from the node to its right subtree (i.e.,
the right link).

K-formulas may be combined using the "substitution
rule" if common nodes are involved. If the K-formula A is
defined to be pab and the K-formula B is defined to be pbc,
we replace "b" of A with B to obtain papbc. Graphically,

A: a — > b and B: b — > c combine to a — > b — > c .

Thus, the singly-linked list:

11
3 — — ̂ b —— ̂ c — —) d —— ̂6 — —) f

is represented by the K-formula papbpcpdpef.

Similarly, the binary tree

/

is represented by the K-formula pXabXcpde.

The following recursive definition of K-formulas
follows Berztiss (BA75).

(a) A node symbol is a K-formula.
(b) If A and B are K-formulas and x is an operator,

then XAB is a K-formula.
(c) K-formulas are only those entities created

under (a) and (b).

2.3 Grammars and Graph Grammars.

Since K-formulas are strings of symbols in which the
symbols appear in a particular sequence, a tool is needed to
construct well-formed sequences of symbols (sentences in a
language) which meet the definition of K-formulas. A

12

grammar is a mathematical tool for generating languages. A
grammar for a language L uses two disjoint sets of symbols:
the set N of nonterminal symbols and the set T of terminal

symbols. The set of terminal symbols is the alphabet over
which the language is defined. The nonterminal symbols

serve as placeholders in the generation of sentences of the
language. The set P of formation rules, or "productions",

describes how the sentences of the language are to be
generated. A distinguished symbol S in N, called the "start
symbol", is used to designate the productions which initiate
the generation of sentences in the language defined by the

grammar.
More formally, a grammar is defined as follows.

DEFINITION. A grammar is a 4-tuple G = (N, T, P, S) where:
(1) N is a finite set of nonterminal symbols,

or variables.
(2) T is a finite set of terminal symbols

disjoint from N.

(3) P is a finite set consisting of expressions
(l,r) written in the form 1 — > r, where

1 is a string in (N U T)*N(NU T)* and r
is a string in (N U T)*.

(4) S is a symbol in N.

As an example, consider the following grammar.
G1 = ({A,B,S}, {p,a,b,c}, P, S)

where P contains:

13
S — > paA

A — > PbB

B —— ̂c

(1)
(2)
(3)

The grammar G1 generates the string "papbc", which is the
K-formula for the singly-linked list a — > b — > c.

Before extensive discussion of grammars used to
generate K-formulas ("K-grammars"), an introduction to
graph-generating grammars ("graph grammars"; see TJ81) is
presented. Because of the correspondence between graph

grammars and K-grammars, one can work with either the
pictures or text strings when studying directed graphs.
Visualizing a linked data structure is easy when the
corresponding graph is drawn.

Consider the grammar:

I, I 0">. i >. p.G2 = ({
where P contains:

s-list s-list),

s-list — > 0 - - > s-list , and (1)
s-list - > i . (2)

G2 generates single-successor lists such as:

i

0 - > i

the null list generated by
production (2);
a list with one node, generated
by the production sequence (1),(2); and

(2)— >C^->(2)— >1 a list with three nodes, generated
by the production sequence (1)(1)(1)(2).

The productions in P are "redraw rules", which give all valid
replacements of nonterminal symbols (such as s-list in G2).

Next consider the grammar:

G3 = ({ B

where P contains:
B ——)

B

B

B

14

/ 1.

(1)

(2)

(3)

(4)

G3 generates binary tree graphs.

A graph grammar formally specifies all allowed graphs
of a particular type. The nonterminal symbols in
productions are placeholders for subgraphs. The
productions, which are frequently recursive in that the same
nonterminal appears on the left- and right-hand sides of the
production, specify the generation rules. The terminal
symbols appear in the resultant graph.

2.4 Grammars Augmented for Node Identification.
In directed graphs, the nodes are commonly assigned

15
identifying labels. Similarly, nodes of data structures can
also be distinguished by node identifiers. In grammar G1
above, the node identifiers are "a”, *'b", and "c”. G1 is
capable of generating the sentence "papbc", and only that
sentence, because specific node identifiers are incorporated
in the productions of G1. What is desired is the capability
to generate all instances of a particular type of data
structure using a single grammar. To achieve this
capability, the grammar must be able to generate the

K-formulas which correspond with all instances of the data
structure involving the nodes specified by the terminal
symbols in the grammar.

To generate the required sequences of terminal symbols,
Thompson (TJ81) has augmented grammars as described in the

following DEFINITION* Let A — > <<6>> be a production in a
grammar. The string @ enclosed by French quotes "<<" and
”>>•' is called a phrase. Let the string 6 contain a phrase
indeterminate symbol of the form;

a
[i]

The set I of node phrase indeterminates is mapped into the
set T of terminal symbols by the definitive mapping
M: I X Q — > T, where Q is a set of integers which identify

distinct phrases.
The grammar

G4 = ({A}, {p,a,b,c,d}, P, A)

augmented by the mapping

16

M4 = ([(1,1), a], [(2,2), b], [(3,3), c], [(4,4), d]),
with P given by

A — > «pa A » (1)
[i] q

A — > « a » (2)
[i] q

generates the singly-linked lists shown by the following production
sequence.

A — > «pa A>>
[i] 1

——) ((pa ((pa A>>
[i] [i] 2 1

--> ((pa ((pa ((pa A>> >> »
[i] [i] [i] 3 2 1

— > ((pa ((pa ((pa ((a >> >> >> >>
[i] [i] [i] [i] 4 3 2 1

Applying M4, where "i” is the nesting depth, removes the
French quotes as follows:

((pa ((pa ((pa d>> >> >>
[i] [i] [i] 3 2 1

((pa ((pa pcd>> >>
[i] [i] 2 1

((pa pbpcd>>
[i] 1

papbpcd.
Applying another mapping M4.1 when using the same grammar
results in another structure of the same type. For example,

suppose
M4.1 = ([(1,1), d], [(2,2), c3).

17
Then the production sequence

A — > «pa A>>
[i] 1

——) ((pa ((a))))
Cl] [1] 2 1

generates the singly-linked list pdc.
To expand the utility of Thompson's augmented grammars,

the phrase indeterminates are extended here to include link
symbols. Productions may then incorporate both link and

node "metasymbols" inside the French quotes. The
metasymbols are resolved by a modified mapping such as:

J X K X Q — > L X N

where J is the set of link phrase indeterminate symbols, K
is the set of node phrase indeterminate symbols, L is the
set of link symbols and N is the set of node symbols. This
extension is useful in defining the class of linked data
structures to be transformed.

2.5 Context-Free Languages and Recognizers.
Using K-formulas to represent linked data structures

offers the important qualities of notational conciseness and
precision. A K-grammar provides a mechanism for generating
the K-formulas which correspond with all allowed data

structures defined by the grammar. Care in the choice of a

data structure K-grammar allows one to take advantage of

standard recognition tools in addition to the grammatical
generation tools. In particular, if the K-grammar is
context-free, then a push-down automaton (PDA) can be used

18
to recognize whether a particular K-formula is well-formed
according to the rules of the K-grammar.

The following definition is based on Aho and Ullman

(AU72). DEFINITION. Let G = (N, T, P, S) be a grammar. G
is a context-free grammar if each production in P is of the
form A — > g, where A is a nonterminal in N and g is a
(possibly empty) string of nonterminals and terminals in

(nUt)*. The term "context-free” is appropriate because in
a derivation of a particular sentence in the language L(G)
generated by G, a nonterminal "A” can be replaced by the

right-hand-side of a production (whose left-hand-side is
”A”) without regard for the symbols which precede and follow
”A”. Grammar G1 in paragraph 2.3 above is a context-free
grammar. Grammar G4 in paragraph 2.4 above is not
context-free because the right-hand-sides of productions
contain symbols not in (N U T)*; although the
"supplementary” symbols are eventually removed, additional

"machinery” in the form of a mapping function is needed to
do so.

Given an instance of a K-formula, one can determine if

it is well-formed according to the rules of a particular
context-free K-grammar by use of a recognizer termed a
pushdown automaton (PDA). A PDA consists of a read-only
input medium, a finite state control and an auxiliary memory
called a pushdown list. The recognizer operates by making a
sequence of moves, where a move involves reading an input

19

symbol, and based on the input symbol, the state of the
finite control and the contents of the pushdown list
(stack):

(1) shifting the input head right to the next symbol on
the input medium, or keeping the input head stationary;

(2) revising the contents of the stack; and
(3) changing the state of the finite control.
The activities of a PDA recognizer can be described by

"configurations" of the recognizer, which include:
(1) the state of the finite control;
(2) the content of the stack; and
(3) the location of the input head, and the unused

contents of the input medium.
The initial configuration is one where the finite control is

in a specified initial state, the input head is at the
leftmost symbol and the memory has specified initial
contents. The final configuration of the recognizer is one
where the finite control is in a final state, the input has
been exhausted and the stack is empty.

More formally, a PDA R is defined (AU72) as a 7-tuple
as follows. DEFINITION: R = (Q, A, G, d, qO , ZO , F),
where:

(1) Q is a finite set of state symbols, giving the
possible states of the finite state control,

(2) A is a finite input alphabet,
(3) G is a finite alphabet of stack symbols.

20

(4) d is a mapping of Q x (A U (e}) x G to the finite
subsets of Q X G* ("e" represents the empty string),

(5) qO in Q is the initial state of the finite control,
(6) ZO in G is the symbol that appears initially on the

stack, and
(7) F contained in Q is the set of final states.
A configuration of P is a triple (q, w, g) in

Q X A* X G*, where:
(1) q represents the current state of the finite

control,
(2) w represents the unused portion of the input, and

(3) g represents the contents of the stack. The
leftmost symbol of g is the topmost stack symbol.

A "move" by R is represented by the binary relation

I — , for example:
(q1, aw, be) I— (q2, w, abg)

if dCql, a, b) contains (q2, ab),
A string "w" is accepted by R if (qO, w, ZO) 1*- (q, e,

g) for some q in F and g in G*, or if (qO, w, ZO) I*- (q, e,

e) for some q in Q. The language L(R) defined by R is the
set of strings accepted by P.

Aho and Ullman (AH72) have shown that the languages
recognized by PDAs are exactly the context-free languages.

This means that, given a context-free grammar G = (N, T, P,
S), we can construct a PDA R such that L(R) = L(G); the
construction is:

21
R = ({q}, T, {N U T}, d, q, S, 0)

where "d” is defined as follows:
(1) If A — > 8 is in P , then d(q, e, A) contains

(q, 8).
(2) d(q, a, a) = {(q, e)} for all a in T.
As an example, consider the grammar G1 of Section 2.3

above. The following PDA recognizes sentences of G1.
R

where:
({q} 1 {a,b,c,p}, {a.

d(q. e, S) = (q. paA)

d(q. e, A) = (q. pbB)
d(q. e, B) = (q. c)
d(q. a, a) = (q. e)
d(q. b, b) = (q. e)
d(q. 0, c) = (q. e)
d(q. P, p) = (q. e).

The following configuration sequence shows that (q, papbc,
S) !•- (q, e, e).

(q, papbc, S) 1— (q, papbc, paA)

1— (q, apbc, aA)

i— (q, Pbc, A)

1— (q. pbc, PbB)

1— (q, be, bB)

1— (q, c, B)

1— (q, c, c)

1— (q, e, e)

22

2.6 Recognizable Structures.
A pushdown automaton (PDA) can be used to recognize a

linked data structure if the structure has certain
characteristics. In this section, some concepts from graph
theory are briefly examined, and the properties which render
a data structure recognizable are enumerated.

2.6.1 Eulerian Graphs. A traversal of a data structure is
defined as a systematic search in which each node of the
structure is visited. A traversal of a
syntactically-specified data structure is represented by a
K-formula derivable from the data structure grammar. A
K-formula identifies not only the nodes and connectivity of
an instance of a data structure, but also a traversal of the
structure. A desirable property is to be able to visit all
nodes by following a traversal path which traces each edge
exactly once. The following definitions follow Chen (CW71).
A graph is connected if every pair of its nodes are
connected. The degree dCi) of a node ”i” is equal to the
number of edges incident with "i”. An edge train is a
sequence of edges in which all edges are distinct. A closed
edge train containing all the edges of a directed graph is
called an Euler line of the directed graph. A connected

graph is an Euler line if, and only if, the degree of each

of its nodes is even. Another view of the Euler line is

that a connected graph is a directed Euler line if, and only
if, the number of edges entering a node ”i" (the indegree of

23
"i”) is equal to the number of edges leaving "i” (the
outdegree of ”i") for all nodes "i".

2.6.2 K-Forumlas for Eulerian Graphs. The K-formulas for
graphs which are Eulerian have certain properties. Because
an Euler line consists of a closed edge train, the
associated K-formula must begin and end with the same node

symbol; the symbol "h" is normally used to identify this

distinguished header node. That all edges are distinct in
an Euler line requires that the symbols

1 a a
1 j k

not be replicated in the K-formula for any given triple
(i,j,k). ("1” is a link symbol; "a” is a node symbol.) To
preclude multiple definition of any particular link, the
symbols

1 a
i j

may not be replicated in the K-formula for any given pair
(i,j). With application of the substitution rule for

K-formula combination, the aggregate result of these
constraints on K-formulas which represent Euler lines is
that they must conform to the following expression.

1 h«l a » »h (2.6.3.1)
i [j] [k] q

The operator indicates closure, which means that the
quantity inside the French quotes is repeated zero or more
times. The French quotes prohibit recurrence of any given

24
link-node pair. (Note that the definitive mapping:

J X K X Q — > L X N

may, and usually does, allow replication of a link symbol.
While a node label may recur, it may appear only as many
times as there are edges incident to the corresponding node,
and its appearance must always conform to the relevant data
structure grammar. Note that the mapping may not generate
the link-node symbol pair "Ih".) In the case of one or more
data structures embedded within a data structure or

structures, a node symbol may map to the header node(s) of
the embedded structure(s).

2.6.3 Eulerian Graphs and Recognizable Structures. To

determine whether an instance of a data structure conforms

to a certain data structure K-grammar, one can apply
automata theory. In this section we show that if a graph G

is Eulerian, then there is a traversal of G whose K-formula
is PDA recognizable. The proof involves three theorems
which use the following generalized grammar.

E = (N, T, P, A)

where N = (A, Bl
T = sets of link and node symbols

denoted below by 1 , 1 ,
Ci] [j]

a , h, and h . The h
Ck] [k] [k]

are. substructure header nodes,
which are unique for each
substructure and distinct
from "h".

25
P is given by;

A — > « 1 hBh>>
Ci] q

A — > « 1 hh>>
[i] q

B — > « 1 a >>
[i] [k] q

B — > « 1 a B>>
Ci] [k] q

B — > « 1 h Bl h >>
[i] Ck] [j] [k] q

With suitable mapping functions, E generates the K-formulas
which correspond with data structures with Eulerian
traversals. Hereinafter, such data structures are termed
"type-E" data structures.

In E, note that the set of actual terminal symbols is
determined by application of mapping functions which specify
the link and node symbols. The mapping functions must
assure that a link symbol at any given node is not
multiply-defined. The mappings may allow node symbols to be
replicated in a manner which conforms to the data structure
grammars. The grammar E is important in the following
theorem.

Theorem 1. For a graph G, there exists a traversal of G
whose K-formula is derivable from the grammar E if and only
if G is Eulerian.
Proof: (If): Because G is Eulerian, there exists a closed
edge train which begins and ends with the distinguished node
"h". Adjacent edges in this edge train are related such

26

that if an edge from "a” to "b" exists, then there is
another edge from ”b” to some "c” for all nodes in the
graph. As all edges in Eulerian G are distinct, one can
apply the K-formula substitution rule to generate a
K-forumla which consists of zero or more link-node pairs,
all of which is prefixed by a link symbol followed by the
header node label, and all of which is suffixed by the
header node label. This is exactly the K-formula pattern

generated by the grammar E.

(Only if): Suppose G is not Eulerian. Then there exist at
least two nodes whose degree is odd, because the total
degree of G (the sum of the indegree and outdegree of all
nodes) must be an even number; this is true because each
edge in G contributes by 2 to the total degree. If the
degree of a node "y" is odd, then one of the following
holds.

(a) The indegree of "y" is one and outdegree is
zero. This condition results in a K-formula
"Ixy”, and there exists no K-formula "lyz"
because no edges leave "y". Therefore, the
substitution rule cannot be applied to
•*lxy", and the resultant K-formula does
not conform to the grammar E.

(b) The indegree of ”y” is zero and the outdegree
of "y" is greater than zero. In this case,
there are no edge representations of the form

27
•'Ixy", but there is one or more of the form
"lyz”. The "lyz” cannot be combined with an
”lxy”, and the resultant K-formula cannot be
derived from E.

(c) The indegree of ”y” is greater than the

outdegree of "y” which is greater than
zero. This condition results in at
least one more K-formula of the form ”lxy”
than there are K-formulas of the form
"lyz”. Thus, at least one of the "Ixy”
cannot be combined with "lyz” and the
resultant K-formula cannot be derived from
the grammar E.

(d) The outdegree of "y” is greater than the
indegree of "y” which is greater than zero.
In this case, there exists at least one more
K-formula of the form "lyz” than there are
K-formulas of the form "Ixy”. Therefore, at
least one of the "lyz” cannot be combined

with "Ixy” and the resultant K-formula cannot
be derived from the grammar E.

Given a traversal of an Eulerian graph G, which
traversal is described by a K-formula derivable from E, we
next show that the K-formula is PDA-recognizable.
Theorem 2; Any K-formula derived from the grammar E is
PDA-recognizable.

28

Proof; The proof is given by constructing a PDA which
recognizes K-formulas which are derived from E. Such

K-formulas begin with a link symbol followed by the header
node symbol, followed by zero or more link-node pair
symbols, followed finally by the header node symbol.
Define: A'(&) to be a PDA which initially has an

empty stack.
B’(z) to be a PDA which has "z" at the top of
its stack when invoked.
q:B'(z) to indicate that the PDA which
invoked B' makes a transition to state q if

B'(z) terminates.
The PDA of interest consists of two components, A'(&)

and B'(z), as defined above. A* recognizes the structure
header node, and invokes B' to recognize interior nodes and
substructures. Three distinct link symbols are assumed

here; additional link symbols merely result in additions to
the mappings d~ and d . Using the PDA definition of
Section 2.5, the following apply.

A' = (Q-, A“, G~, d-, q , &, q)
10 f

where:

Q~ = {q , q , q , q , q }
10 11 12 13 f

A“ = {1 } U {a } U {h } U {h}
i k k

G” = {&, h}
d~ is the mapping defined as follows.

29

d-(q ,
10

1 , &)
1

- (q f

11
&) A' 1

d-(q ,
10

1 , &)
2

= (q I
11

&) A'2

d-(q ,
10

1 , &)
3

= (q ,
11

&) A’3

d-(q ,
11

h, &) = (q : B
f

'(h), &) A'4

d-(q ,
11

h, &) = (q ,
12

h) A'5

d-(q ,
12

h, h) = (q 1
f

&) A'6

B' = (Q--, A~, G~~,
where;

d--, q1, h, q0 t
)

Q~- = {q , q ,
0 1 q , q ,

2 3
q)
t

A“ is as in A* above.
G~~ = {h} U {h }

k
d is the following mapping.

d~-(q ,
0

1 , h)
1

= (q ,
1

h) B'1

d~~(q ,
0

1 , h)
2

“ (q 1
1

h) B'2

d--(q ,
0

1 , h)
3

= (q ,
1

h) B'3

d--(q ,
1

a , h)
k

= (q »
2

h) B'4

30
d-~(q , h h) Z (q , h h) B‘5

1 k 2 k

d--(q , 1 h) - (q , h) B’6
2 1 3

d--(q , 1 h) = (q , h) B'7
2 2 3

d--(q , 1 h) (q , h) B'8
2 3 3

d--(q , 1 h) (q , h) B'9
2 1 k 3 k

d~-(q , 1 h) (q , h) BMC
2 2 k 3 k

d~-(q , 1 h) - (q , h) B'11
2 3 k 3 k

d-~(q , a h) (q , h) B»12
3 k 2

d~~(q , a h) (q , h) B'1 3
3 k k 2 k

d--(q , h h) (q , h h) B'14
3 k 2 k

d--(q , h h) - (q 1 e) B'15
3 i i 2

d--(q , h h) (q , h h) B'16
3 i j 2 i j

d--(q , h, h) - (q I e) B'17

In the above, the mapping notation d (q,x,y) = (q, e)
denotes that the top of the stack is removed; the mapping
notation d (q, x, y) = (q*, xy) denotes that the symbol ”x”
is stacked on top of the previous top-of-stack symbol "y".

By Theorem 1, G is Eulerian, and this condition assures
that the corresponding K-formula is finite in length. With
a finite input, A* either halts in the final state, or halts

31

in an error state. If A* halts in its final state, the
proof of the next theorem shows that its input conforms with
E.
Theorem 3; If A'(&) terminates in its final state, then the
K-formula which was its input is derivable from E.
Proof; The grammar E generates K-formulas which are
described by the following expression:

1 h «l a » »h
i Ci] Ck] q

where 1 is a valid link symbol.
[i]

The a node symbols may include
[k]

header nodes of substructures.
The French quotes and associated mapping assure that node
symbols, if repeated, occur only in an allowed sequence. We
must prove that input sequences derivable from the above
expression, and only those, cause A’(&) to terminate. The
method used here consists of showing that A'(&) terminates
if the input is derivable from:

1 h(l a)*h
i i k

and then showing what conditions must exist to ensure that
the input is also derivable from:

1 h«l a » »h.
i [i] [k] q

The proof proceeds by considering state sequences of

the machines A' and B' of Theorem 2, and examining the input
which produced those state sequences. In the following, the
notation [A'1,A'2,A'3,...] denotes application of one of the

32
bracketed transitions of machine A*; similar symbol
sequences apply to transition sequences for machine B'.

Case 1; A* follows the transition sequence [A'1,A'2,A'33,
A'5, A'6. The input K-formula consisted of a link symbol
followed by "hh", which is certainly derivable from E.

Case 2: A' follows the transition sequence [A'1,A'2,A'3],
A'4 and invokes S'. The input already processed when B' is
invoked is a link symbol followed by "h". If B' is to halt
successfully and return A' to a final state, B' must follow
the following state sequence:

q q q (q q)*q
0 1 2 3 2 t

The following input must exist to produce the above state
sequence:

(a) A link symbol to transition from

q to q using [B'1,B'2,B'33; and
0 1
followed by

(b) a node symbol to transition from

q to q using [B'4,B'53; and
1 2

followed by

(c) zero or more instances of:
(1) a link symbol to transition

from q to q using
2 3

CB'6,B'7,B'8,B'9,B'10,B'113;
and

33
(2) a node symbol to transition

from q to q using
3 2

CBM2,B'13,B'14,BM5,B'16]; and
followed by

(d) the header node symbol "h" to
transition from q to q .

2 t
The input of (a)(b)(c)(d) above to B' is represented by

1 a (1 a)*h.
i k i k

When the inputs to A' and B' are combined, the aggregate
result is

1 h(l a) h,
i i k

which is derivable from E. The combined result of Case 1
and Case 2 is that the input to A' and B' is of the form;

1 h(l a) »h
i i k q

That no other symbol sequence causes A' to reach its final
state is apparent by inspection of the state transitions of
A’ and B’.

We have now shown that if A'(&) terminates, then the
input consists of alternating link and node symbols,

followed by the header node symbol. The first (leftmost)
node symbol is that of the header node. We now show that a

given link-node symbol pair can appear only once in the
input K-formula.

If a certain link-node symbol pair "Ix" is replicated

34

in a K-formula, then either the node ”x" is repeated within
a substructure (subcase 2a), or the node is common to
two substructures (subcase 2b),

Subcase 2a: Suppose a node "x” is repeated within a
substructure. Then the input K-formula contains a string of
the form:

. . . Ixy . . . Ixz . . .
Because no link may be multiply-defined, "y" and "z” are one

and the same node. Thus, the link from ”x” to "y" is
retraced in the traversal which the K-formula describes, and
there is a loop in the corresponding structure; this loop
may be retraced an infinite number of times. But the
looping of the traversal implies that A’(&) does not halt,
contradicting the theorem statement. Therefore, no node "x"
may be repeated within a substructure.
Subcase 2b: Assume two substructures contain a common node.

(Recall that the header node of each substructure must be
unique, and thus the common node is not the header node.)
To share a node, the node formats of both substructures must
be identical, including link definitions. Suppose that B*
successfully recognized the substring of the K-formula (a
"K-string") which corresponds with the substructure whose
header node is "hi”. Then, while processing the K-string
which represents the other substructure in which the header
node is "h2", B' will have "h2" at the top of its stack when
it encounters "hi" in the input; "h2" will not be visited

35

again in the traversal, which means B* cannot terminate with
an empty stack. Thus, A' cannot terminate and we have a
contradiction of the theorem statement. We have now shown
that a link-node symbol pair cannot be repeated in the input
K-formula, and thus the input K-formula is derivable from E.

Theorem 3 assures that if A’ terminates, then its input
K-formula is derivable from E and the corresponding data
structure is Eulerian. A proof shorter than that given

above is based on expression (2.6.3.1)* A' terminates only
if the input is of the form:

1 h(l a)*h.
i j k

A K-string such as:
1 hi a 1 a h

1 1 1 2 2

can be expanded to a series of K-formulas:
1 ha ; 1 a a ; 1 a h.

1 1 1 1 2 2 2

By inspection, the indegree equals the outdegree at each
node in the corresponding data structure. Because a graph
is Eulerian if and only if the indegree equals the outdegree
at each node in the graph, the data structure is Eulerian
and the corresponding K-formula is derivable from E.

Theorems 1, 2 and 3 collectively show that K-formulas
which correspond with Eulerian graphs are PDA-recognizable.

The recognizable K-formulas are those which can be derived
from the grammar E; the corresponding structures are termed

"Type-E" structures. Given a grammar for a data structure.

36
to answer the PDA-recognizability question one must
determine if the data structure K-grammar generates
K-formulas which correspond with the grammar E. That is,

one must show that the K-grammar generates K-formulas which
can be described by the expression (2.6.3.1), repeated here
for convenience.

1 h«l a » *h
i [i] [i] q

Consider the grammar:

G5 = ({A,B}, {p,h,a ,a P, A)
1 2

where P is given by:
A ——) phB (1)
B — > «pa B » (2)

Ci] q
B ——) h (3)

and the mapping function:
I X Q — > I

which maps <<a >> to a .
Ci] q q

To show that grammar G5 generates K-formulas which
conform to the grammar E, and thus that the corresponding
data structures are Eulerian, first note that all node
symbols (except "h") in K-formulas generated by G5 are
unique. Thus, there can be no link-node symbol pair
replication. Next, note that the production sequences

C'pi-strings”) of G5 are described by (1)(2)*(3). The
mandatory use of productions (1) and (3) ensures that the

37

resulting K-formulas begin with a link symbol followed by
the header node symbol, and end with the header node symbol.
Application of production (2) always generates a unique

link-node symbol pair. Therefore, K-formulas generated by
G5 are PDA-recognizable.

More formally, the pi-strings of G5 generate K-formulas
which are described by the following expression;

ph<<pa >> *h.
[k] q

This expression conforms to (2.6.3.1) above.

2.6.4 Observations on Recognizability. The grammar E of
Section 2.6.3 is not a context-free grammar. Indeed, no
grammar which contains phrase indeterminates is context-free
because resolution of a phrase indeterminate symbol depends
upon the context (e.g., nesting level) in which the symbol
appears. The phrase indeterminates and associated mappings

are necessary to ensure that link-node symbol pairs are not
replicated, and in conjunction with the grammar, serve to
specify the traversal of the structure.

A PDA can be used to recognize well-formed K-formulas,
and is constructed from the data structure grammar. The PDA
must be augmented, however, to ensure that all incorrect

usages of node symbols are detected. In particular,
augmentation is required to detect illegal recurrence of a
node symbol. The PDA may also fail to halt in certain
cases, such as the event of a loop in a traversal, which is

38
reflected as a traversal of infinite length. Modification
of a PDA can incorporate a mechanism to detect potential
traversal loops.

The data structure grammars are not strictly
context-free, and the automata used to recognize K-formulas
are not strictly PDAs. The formalisms are, however, very
close to what is required, and with minor modifications,

provide very useful machinery for automating data structure
modifications.

We have now established the theoretical basis for
formally describing operations on Eulerian data structures.
In the next chapter, data structure transformations are
examined, and a transform syntax is given.

CHAPTER THREE

3. Formalized Data Structure Operations.

3.1 K-Grammars for Several Common Data Structures.
In this chapter, the theory for formalized operations

on data structures is developed. We begin by examining the
K-grammars for some common structures. The grammar G4 of
Section 2.4, in concert with a mapping function, generates

K-formulas for a singly-linked list. Consider next the
grammar

SLL = ({A, B}, {p,h,a,b,c,d,e,i,j,k, ..., z}, P, A)
where P is given by:

A — > PhB (1)
B — > « p a B » (2)

[i] q
B ——> h (3)

SLL, augmented by a mapping function, generates K-formulas
for circular singly-linked lists. The PDA-recognizability
of the SLL K-formulas has been established in the discussion
of G5 in the previous chapter.

K-formulas for doubly-linked circular lists can be
generated by the grammar

DLL = (lA, B}, {p,x,a,b,c,d,e,i,j, ..., z}, P, A)

39

40

where P is given by;

A — > phBh (1)
B — > «pa BXa » (2)

Ci] Ci] q
B —— ̂ xh (3)

Once again, a mapping function is required to resolve the
phrase indeterminates.

In the DLL productions, ”p” denotes the "right" or
"forward" link of the doubly-linked list, and "x" denotes
the "left" or "backward" link. The same phrase

indeterminate symbol appears twice in the second

production— once after the forward link and once after the
backward link. A DLL K-formula such as:

phpapbxhxbxah
not only describes a list with nodes "h", "a" and "b", but
also specifies a traversal of the list. In this case, one
follows the forward link " p " from "h" to "a", the " p " link
from "a" to "b", the " p " link from "b" to "h", and then
follows the backward link "x" from "h" to "b", the "x" link
from "b" to "a", and finally the "x" link from "a" to "h".

Graphically, the above traversal is:
h ——) a —) b ——) h ——) b ——) a ——) h.

To show that the K-formulas generated by DLL are

PDA-recognizable, notice that the allowable production

sequence is (1)(2)*(3). The resulting K-formula is
described by:

41

phpa pa ... pa pa XhXa Xa ... Xa Xa h.
1 2 n-1 n n n-1 2 1

Production (2) and the phrase indeterminate mapping ensure
that link-node symbol pairs are not replicated, if the
header node label ”h" is disallowed in the mapping.
Therefore, DLL generates K-formulas which are described by;

ph«l a » »h,
Ci] [k] q

which conforms to (2.6.3.2). These K-formulas are

PDA-recognizable.

The following grammar RTBT generates K-formulas for
right-threaded binary trees.

RTBT = ({A, B}, {p,X,p-,a,b,c,d,e,i,j, ..., z}, P, A)
where P is given by:

A — > xhBh (1)
A — > p-hh (2)
B — > «xa Bpa B>> (3)

Ci] Ci] q
B — > «Xa Bp-a » (4)

Ci] Ci] q
B — > «pa B » (5)

Ci] q
B — > «p~a » (6)

Ci] q
A mapping function is used to resolve the phrase
indeterminates.

In the RTBT productions, "x” denotes the left link at a
node, which is followed to reach the left subtree of the

42

node. The right link is denoted by "p”, which points to the
right subtree of a node. If there is no right subtree at a
particular node, then the right link at that node points to

the successor of the node when an inorder traverse (HS76) is
used; in the K-formula, this pointer, or "thread", is
signified by the symbols "p~". Thus, the grammar RTBT above
generates K-formulas which not only provide the topology of
right-threaded binary trees, but also give the inorder
traversal of these trees; the list of nodes which
corresponds with an inorder traverse is obtained from the

K-formula by printing all node labels which do not
immediately follow a left link ("x") symbol.

The K-formulas generated by RTBT are PDA-recognizable,

shown as follows. The allowable production sequences are
(2) alone, which conforms with (2.6.3*1), and (1) followed
by the appropriate selection of the productions (3) through
(6) which finally results in resolution of all non-terminal
symbols. Productions (3) and (4) disallow replication of
link-node symbol pairs, and the phrase indeterminate mapping
ensures that node labels generated by any single production

are distinct from those generated by any other production.
All of the terminal symbols generated by (3) through (6) are
link-node symbol pairs. Therefore, RTBT generates

K-formulas which begin with a link symbol followed by the
header node symbol, followed by zero or more link-node
symbol pairs, and terminated by the header node symbol.

43

This is exactly the pattern generated by (2.6.3.1)» and thus
RTBT generates PDA-recognizable K-formulas.

3.2 The Correspondence of K-Grammars and Classical Data
Structure Generation.

3.2.1 Introduction,
K-gramraars generate K-formulas which describe the

topology and traversal of linked data structures. As
introduced in Chapter One, the most prevalent method of
providing this information in the past has involved the use
of a programming language and supplementary diagrams. In
this section, the correspondence between this classical
method and the present approach is described.

A K-grammar is a generator of K-formulas, and can be
compared with a programming language algorithm which
constructs a particular type of data structure. Consider an
algorithm which constructs right-threaded binary trees by
adding nodes in a way such that a newly-inserted node would
be the last node seen in a depth-first traversal (BA75). A
C-language example of such an algorithm is shown in Figure
3.2.1. Discussion of the correspondence of this algorithm
and the K-grammar method requires the following DEFINITION:
A left-most derivation of a K-formula is one in which the
left-most nonterminal symbol in a sentential form is
replaced before other nonterminal symbols.

44
/* rtbt constructor algorithm */
#define printnod printf("%c", t,label[n]);

/* number of elements in rtbt
/* flag for null index
/* index of head node

*/
*/
*/

*/

/* return code for consrtbt */

#define NE 15
#define NULL 999
#define HEAD 1
#define YES 1
Idefine NO 0
#define FOREVER 1
Idefine ERROR 99999 /* error symbol
Idefine SUCCESS 0
int debug = NO; /* flag to enable debug messages */
struct rtbt {

int llink[NE];
int rlink[NE];
char label[NE];
int mark[NE];

} t;
mainO
{
int retcode;
1.11 ink[HEAD] = NULL;
t.rlink[HEAD] = -1;
t.label[HEAD] =

consrtbt(2,'a',' 1
consrtbt(3,'b' , ' c

consrtbt(4,'c','c
consrtbt(5,'d','c
consrtbt(6,'e','(
consrtbt(7,'f','c
consrtbt(8,'g','i
consrtbt(9,'i','g','L')
consrtbt(10,'j','i','L');
consrtbt(11,'k','i','R');
consrtbt(12,'m','k','R');
printf ("%s", "n");
} /* end of main */
consrtbt (indexin, nodelabl, parent, linktype)
int indexin; /* index of node to be inserted */
char nodelabl; / * label of inserted node * /

char parent; /* label of node which will be parent */
char linktype; /* which points to inserted node */

1;. 1h';
h' ,'L')
a' ,'L')
a' , ' R ')
c' , ' R ')
d' ,'L')
d' , ' R ')
f ,'L')

{
int n;
int c;
int i;
int 1;
printf("n");
for (i = 0;

/* index of node presently visited
/* index of last node visited */
/* loop control index */
/* last node reached via other */

/* than thread */
< NE; i = i + 1) t.mark[i] = NO;

V

Figure 3.2.1: Binary Tree Constructor Algorithm
(Page 1 of 3)

45

if (t.llink[HEAD] == NULL && parent == 'h')
/* A — > Qhh */

{ if (debug) printf ("%s", "Qhhn");
c = HEAD;

}
else
{ n = t.llink[HEAD]; /* A — > LhBh */
if (debug) printf ("%s", "** tree not empty n");
1 = NULL;
while (n != HEAD)
{ c = n;

if (t.llink[n] != NULL && t.rlink[n] > 0)
{ /* B — > LaBRaB */
if (debug) printf ("%s", "** LaSRaT n");
if (t.mark[n] 1= YES)

{t.markin] = YES;
printnod;
n = t.llinktn];
}

else
{ printnod;
n = t,rlink[n];
1 = n;

}
else if (t.llink[n] 1= NULL && t.rlink[n] < 0)

{ /* B __> LaBQa */
if (debug) printf("%s", "** LaSQan");
if (t.mark[n] 1= YES)

{ t.mark[n] = YES;
printnod;
n = t.llink[n];
1 = n;

}
else

{printnod;
n = -t.rlink[n];
if (t.label[n] == parent) 1 = n;
}

}
else if (t.llink[n] == NULL && t.rlink[n] > 0)

{ /* B — > RaB */
if (debug) printf ("%s", "**RaS n");
printnod;
t.mark[n] = YES;
n = t.rlink[n];
1 = n;

}
Figure 3.2.1: Binary Tree Constructor Algorithm

(Page 2 of 3)

46
else if (t.llink[n] == NULL && t.rlink[n] < 0)

{ /* B — > Qa */
if (debug) printf ("%s", "**Qa n");
printnod;
t.mark[n] = YES; n = -t.rlink[n];
if (t.label[n] == parent) 1 = n;

} /* end of while on n */
} /* end of else */

if (linktype == 'L' && t,llink[c] == NULL)
{ if (debug) printf ("%s", "** inserting leftchildn");

t,rlink[indexin] = -c;
t.llinkiindexin] = NULL;
t.labeliindexin] = nodelabl;
t.llinkic] = indexin;
printf ("%c", nodelabl);
return (SUCCESS);

}
else if (linktype == 'L' && t,label[l] == parent

&& t.llinkCl] == NULL)
{ if (debug) printf ("%s", "** inserting dis leftchildn");
t.llink[l] = indexin;
t.llinkiindexin] = NULL;
t.rlinkiindexin] = -1;
t.label[indexin] = nodelabl;
printf ("%c", nodelabl);
return (SUCCESS);

}
else if (linktype == 'R' && t.label[l] == parent

&& t.rlink[l]<0)
{ if (debug) printf ("%s", "** inserting rightchildn");

t.rlink[indexin] = t.rlink[l];
t.llinkiindexin] = NULL;
t.rlinkil] = indexin;
t.labeliindexin] = nodelabl;
printf ("%c", nodelabl);
return (SUCCESS);}

else if (linktype == *R' && t.rlink[c] -- -HEAD)
{ if (debug) printf ("%s", "** inserting rightchildn");

t.rlinkiindexin] = t,rlink[c];
t.llinkiindexin] = NULL;
t.label[indexin] = nodelabl;
t.rlinkic] = indexin;
printf ("%c", nodelabl);
return (SUCCESS);}

else return (ERROR) ;
/* end of consrtbt */
Figure 3.2.1: Binary Tree Constructor Algorithm

(Page 3 of 3)

47

For example, in a RTBT production with the following
right-hand side,

« Xa Tpa T »
[i] [i]

the leftmost "T” is expanded (using one or more
T-productions) to produce a terminal string before the
rightmost "T" is expanded.

3.2.2 The Correspondence.

The following subsections address the elements of
correspondence between the formal and programming language
approaches to data structures. Terminal symbols,
nonterminal symbols, data structure grammars and K-formulas,
production selection and traversal order are discussed.

3.2.2.1 Terminal Symbols. In a K-formula, a node is
referenced by its node label, and fields of a node are
denoted by prefix operators on the node label, such as the
link symbol ” p ” in the K-formula phpapbh. A programming
language data structure declaration typically describes the

format of a node using facilities such as the C-language
"struct" (KR78); fields within a node are denoted by

declarations of the variables which comprise the node.

3.2.2.2 Nonterminal Symbols. The appearance of a
nonterminal symbol in a sentential form indicates that one
or more additional nodes are to be generated in the

48
K-formula which represents the corresponding data structure.
In an algorithm such as that in Figure 3.2.1, the

corresponding factors are iteration to visit the next node
and insertion of a node at a particular position in a
structure.

3.2.2.3 Data Structure Grammars and K-Formulas. A data
structure grammar defines the allowable sequences of
terminal symbols, as declarations in a program define the
allowable node formats. A K-formula defines a specific
instance of a data structure and its traversal, which is
represented in a program by the combination of a data
structure declaration, some method (declaration, algorithm)
of initializing the structure and a traversal algorithm.

3.2.2.4 Selection of a Production. When replacing the
nonterminal ”B” during the left-most derivation of a
K-formula, selection of a production from a set of alternate
B-productions corresponds with determining which set of
logic to use in a programming language depiction of a
constructor algorithm. In Figure 3.2.1, the relevant
K-grammar A-productions are noted as comments in the logic
which precedes the depth-first search, and the B-productions
are noted as comments in the search and insertion portions
of the algorithm. In essence, selection of a K-grammar
production corresponds with "case" selection in a
programming language algorithm.

49

3.2.2.5 Traversal Order. A K-grammar generates a K-formula
which gives both the topology of a data structure and a
particular traversal of the structure. In a constructor

such as that of Figure 3.2.1, the traversal of a structure
is distributed throughout the search portion of the
algorithm. This algorithm was developed to correspond with
the grammar RTBT; a shorter but equivalent algorithm not
based on the grammar can be written to accomplish the same
function.

3.2.3 Differences Between the Classical and Formal
Approaches.

As seen above, a K-grammar can generate all instances
of K-formulas which represent a certain traversal of a
particular type of data structure. For example, the grammar
RTBT generates K-formulas which represent an inorder
traversal of a right-threaded binary tree. Thus, the
traversal order is specified in the declaration of the
structure. In a programming language approach, the
declaration of a structure allocates storage and possibly
also initializes the structure, but the tranversal order
must be specified separately by a procedure written using
imperative statements of the language.

3.3 Operations on Data Structures.
This section contains a hueristic description of data

structure operations. The concepts presented here are

50

formalized in the next section. The K-grammars of Section
3.1 specify the set of well-formed K-formulas which
represent valid instances of the relevant data structures.
To develop the background for formalizing operations on the

data structures, consider the derivation sequence for a
singly-linked list. The productions of the grammar SLL are
repeated here for convenience.

3 --> PhT (1)
T — > «pa T » (2)

[i] q
T — > h (3)

A derivation of the list LI: h — > a — > b — > c — > h uses

the production sequence (1)(2)(2)(2)(3) and an appropriate
mapping function; the corresponding K-formula is phpapbpch.

Suppose one wishes to modify LI to obtain the list:
L2: h ——) a —— ̂b ——) d —— ̂ c —) h

The K-formula phpapbpdpch for L2 is derived by the

production sequence (1)(2)(2)(2)(2)(3) and an appropriate
mapping function. The insertion of ”d” into LI involves
setting the ”p" link at "d" to point to ”c” (i.e., setting
the ”p” link at ”d” to the previous value of the "p” link at
"b"), and resetting the "p” link at "b” to point to the
newly-inserted node "d”. From the K-formula vantage point,
the symbols ”pb” and "pd” paticipate in the insertion.

The insertion process causes the following mapping on
the K-formulas which represent the data structure.

p h p a p b P c h — > p h p a p b p d p c h

51

The insertion can also be examined by study of the
derivation of the initial and revised K-formulas, A
convenient graphical depiction of the derivation involves
use of "parse trees" (see AU77). Each interior node of a
parse tree is labeled by some nonterminal "X", and the
children are labeled, from left to right, by the symbols of
the right side of the production which replaced X in the
derivation. The leaves of the parse tree, read from left to

right, constitute a sentential form called the yield or
frontier of the tree.

The K-formula mapping
phpapbpch — > phpapbpdpch

is depicted in parse tree form in Figure 3.3.1, where node
symbols are shown as they would appear after application of
the phrase indeterminate resolution mapping function.

52

ti T

P a T

P b T

P h T

— >

p c T

P a T

P b T

p

Tcp

Figure 3.3.1: Derivation Trees for Singly-linked List
Insertion.

53

The derivation portrayed in both parse trees is identical to
the point where the nonterminal "T" which is a sibling of

and "b" is replaced by "pdT" instead of "pel". That is,
the insertion operation is characterized by the frontier

phpapbT — > phpapbpdT
At the point of interest in the (leftmost) derivation, all
nonterminals preceding "pbT" have been replaced by terminal
symbols. The terminals "pb" provide a point of reference
for the insertion function. The nonterminal symbol "T" in
both the left-side and the right-side of the operation pbT
— > pbpdT ultimately derives the terminal symbols pch. In a

sense, "T" represents a substructure of the portion of the
structure which is of central interest in the
transformation. In other structures, a substructure may
itself be involved in a transformation.

Operations on Type-E linked data structures can thus be
characterized by a transform which involves;

(a) A point of reference at which the
transformation occurs, termed the
"reference node";

(b) Node and link symbols which describe the
operation performed; and

(c) (If required) symbols which represent any
substructures which are relevant to the
transformation.

It is not necessary to show the entire K-formula to express

54

the change, but only enough node, link and substructure
symbols to describe the relevant aspects of the
transformation.

When inserting or deleting a node or substructure in a
structure, note that an inserted node or substructure must
be obtained from some source, and a deleted node or
substructure must be returned to some destination.
Consequently, a complete transform specification must really
involve two structures, or two operations on a single
structure. The complete transform for insertion of a free
node into a SLL then becomes:

p f p x A — > p f A = = > PbB — > p b p x B

where :
(a) "f" is the "header node" of a freelist;
(b) "b" is the reference node in the singly-

linked list;
(c) "A" represents the rest of the freelist; and
(d) "B" represents the portion of the singly-

linked list which follows "b".

The node "x" is removed from the freelist, and is inserted
after "b" in the singly-linked list of interest.

To preserve the integrity of the source and destination
data structures being changed, the transform must be
well-formed such that K-formulas which describe each
structure can be derived from the appropriate data structure
grammar. That is, given well-formed K-formulas which

55

correspond to the source and destination structures before
the transform, the transform must guarantee that the
K-formulas which correspond with the source and destination
data structures after the transform are also well-formed.
This assurance can be obtained if the components of the
transform consist of well-formed symbol strings derivable
from the right-hand-side (RHS) of a data structure
production.

3.4 Formalisms for Operations on Data Structures.
The productions of a K-grammar define how a nonterminal

symbol can be "rewritten" and thus precisely describe the
pattern of symbols which can occur before and after a
transformation of a structure. The sentential form

sequences which generate the K-formulas which represent a
structure before and after a transformation generally differ

by one or two productions. Thus, a transform can be
completely described by concentrating on the productions
which express the changes. In the following, a primitive
K-string consists of the right-hand side of a production,
and a first-order K-string is a primitive K-string in which
one or more nonterminals have been replaced by a valid
production right-hand side. A second-order K-string is a

first-order K-string in which one or more nonterminals have
been replaced by a valid production right-hand side; higher
order K-strings are similarly defined.

A transform which formally describes operations on

56

Type-E linked data structures is defined as follows.
transform

source
destination

K-string

= source ==> destination (3.4.1)
= K-string — > K-string

= K-string — > K-string
= primitive K-string or any valid

sentential form derived from a
primitive K-string, where:
(1) the primitive K-string begins

with a link-node symbol pair;
and

(2) any nonterminal symbols in
the K-string are replaced by
substructure symbols.

In the following, the terminology follows Aho and
Ullman (AU72). (On this page and on the following page,
p,x,e denote K-strings and not specific link symbols.) For

a grammar G = (N,T,P,S), define a special type of string
called a sentential form as follows:

a. S is a sentential form.
b. If pBX is a sentential form and B — > 6 is in P,

then pgx is also a sentential form.
A sentential form of G containing no nonterminal symbols is

called a sentence of G.
Next, we define a relation " = >" (read "directly

derives") on (N U T)* such that if p BX is a string in
(N U T) * and B — > g is a production in P, then pBX => pgx.
The symbols "+=>" (read "derives in a nontrivial way")
denote the transitive closure of "=>", and "*=>" (read
"derives") denote the reflexive and transitive closure of
"=>". The k-fold product of "=>" is denoted by "(k)=>";

57

indicates that 3 is derived from p by a derivation of length
”k”.

That transforms as defined above are sufficient to
describe all single-node and substructure insertion and

deletion operations on the Type-E data structures addressed
in this paper is shown as follows. For a K-formula
(sentence) "K1" which represents the pre-transform data
structure and a K-formula "K2” which represents the
post-transform structure, these conditions hold.

a. For some K-grammar K = (N, T, F, S),
if K *=> K1, then K »=> K2.

b. Suppose K *=> pAg *=> K1
and K »=> p'A'g' »=> K2,
where: p ,3,p *,6’ are in (NUT) *

A,A' are in N.

If K1 and K2 are the pre-transform and
post-transform K-strings, respectively,
then p = p• and 3 = 3 * .

c. For A and A* in Step b above,
if A *=> X and A' *=> x', then the data
structure transformation

K1 — > K2
is precisely described by

X ——) X *

where x = laL, x* = I'aL',
1 and 1’ are link symbols.

58

”a" is the reference node symbol,
L,L* are in (N U T)*.

From a strictly-theoretical perspective, any transform
which generates valid K-formulas from valid input K-formulas
performs a valid operation on a structure. Thus, any
transform which meets Definition 3.4.1 may be considered
valid. For a given grammar, one can depict all possible
insertion operations for a destination structure by
generating transforms in which the K-string to the right of
the ”— >” is of order "n" or higher if the K-string to the
left of the "— >" is of order "n". For example, the
destination portion of a transform given by

paT — > papbPcT
is a valid specification of insertion of the nodes labeled
"b" and "c” into a singly-linked list. Similarly, the
destination transform portion given by

xap~bp“a — > XaXcp“bp~cp~a
is a valid insertion of the node labeled "c” between nodes
"a” and "b" in a right-threaded binary tree. Deletion

operations can be similarly defined.
In normal application, however, a rather small subset

of the set of all valid transforms for a given grammar is
sufficient to represent the classical operations. For
example, inserting a "leaf" node at the frontier of a
right-threaded binary tree is a relatively common operation.
From the grammar RTBT, inserting a left leaf child "b" of

59

the node "a" can be accomplished by either of the following
transforms:

pfpbS — > pfS ==> paT — > Xap~bpaT ("a” had a right child)
pfpbS — > pfS ==> p”a — > xap~bp~a ("a" had no children)

These are the only transforms necessary to reflect single
left leaf node insertion.

Relatively powerful operations can also be expressed
using transforms. The following exchanges the subtrees of a
right-threaded binary tree node "a".

XaSpaT — > p“a ==> P~a — > XaTpaS

The source and destination structures are one and the same
in this instance.

Suppose one wishes to derive the transform used to

effect a certain operation on a structure, given the
relevant grammar and pre-transform and post-transform
K-formulas. In the following procedure, portions of the
pre-transform and post-transform K-strings are used to
select the appropriate data structure productions.

a. Write the K-formula substrings (of terminal
symbols) which describe the operation.

b. In the data structure grammar, find a symbol string
in a primitive K-string in which:

(1) the terminal symbols correspond with the pattern
of terminal symbols which represent the reference
node and the preceding link symbol (and possibly

60

other terminal symbols) in the pre-transform
K-string, and

(2) the nonterminal symbols can be expanded to yield
the "unmatched" terminal symbols of the
pre-transform K-string.

Note the nonterminal symbol which derives the selected
primitive K-string.

c. Expand the nonterminal symbol from step b above to
generate the desired post-transform K-formula substring,
using a primitive, first-order or higher-order K-string as

necessary. Note that the expansion must be based on a

primitive K-string which begins with a link symbol followed
by the reference node.

d. The transform consists of the following separated
by

(1) A pre-transform K-string consisting of a primitive
or higher-order K-string in which any nonterminal
symbols have been replaced by substructure
symbols; this K-string was identified in step b
above.

(2) A post-transform K-string consisting of a
primitive or higher-order K-string in which any
nonterminal symbols have been replaced by

substructure symbols; this K-string was identified

in step c above.
Formally, the transform

61

t t t . . . t — > t t t . . . t
11 12 13 1m 21 22 23 2n

is specified as
p ——) 3

where :
a. p is a primitive or higher-order K-string

la (1 la IB*)»
1 Ci] [j] [k]

derived from a nonterminal "A” in which
(1) 1 = t ;

11

(2) a = t ;
1 12

(3) t . . . t are link terminal symbols
13 1m

1 , node terminal symbols a , or
Ci] Cj]

can be derived from nonterminal
symbols B ; and

Ck]
(4) the nonterminal symbols B are

Ck]
replaced by substructure symbols B'

Ck]
b. B is a primitive or higher-order K-string

I’a (1 la IB’)»
1 Ci] Cj] Ck]

derived from a nonterminal "A" in which

(1) 1’ = t ;
21

(2) a = t ;
1 21

62

(3) t . . . t are link terminal symbols
23 2n
1 , node terminal symbols a , or
[i] Cj]

can be derived from nonterminal
symbols B ; and

Ck]
(4) the nonterminal symbols B are

Ck]
replaced by substructure symbols B'

Ck]
Note that for an insertion operation, the post-transform

K-string must be of equal or higher order than the
pre-transform K-string, because the sentential form sequence
used to derive the post-transform K-formula contains as many
nonterminal expansions as does the sentential form sequence
for the pre-transform K-string. Similarly, for a deletion
operation, the pre-transform K-string must be of equal or
higher order than the post-transform K-string.

As an example, consider an insertion operation for a
structure associated with the grammar RTBT. The operation
is described by the K-formula transform

p b p “ o — > i b p “ d p b p ~ c .

Referring to the grammar RTBT of Section 3.1, the following
procedure is used to develop the destination transform.

a. Production (5) of RTBT matches the pattern of the
pre-transform K-string when a nonterminal symbol B is used
to derive p " c . The transform leftpart consists of pbS,
where the substructure symbol S replaces the nonterminal B.

63
b. Another B-production of the grammar RTBT,

production (3), matches the pattern of the post-transform
K-string when the leftmost nonterminal derives p~d and the
rightmost nonterminal is replaced by the substructure symbol
S.

The destination portion of the transform is
pbS ——) xbp dpbS*

In this chapter, the correspondence of K-grammars and
classical data structure generation has been examined, and a

method of formally specifying operations on Type-E data
structures using K-strings has been described. To
illustrate these techniques, the next chapter gives several
examples of data structure modifications.

CHAPTER FOUR

4. Application of Data Structure Transforms.

4.1 Method of Application.
Illustrations of the use of transforms on Type-E data

structures are presented in this chapter. An interpreter,
documented in Appendix 1, has been implemented to perform
operations on the in situ structures. The interpreter
operates on transforms which conform to the BNF presented in
Section 3.4, but which transforms have been augmented to
specify the types of the source and destination data

structures. That is, the input to the interpreter is
pseudo-programming language imperative statements which
specify the transforms.

The interpreter of Appendix 1 operates on two data
structures; a circular singly-linked list of unused nodes
termed the "freelist” and the data structure which is
transformed, termed the "target". Operations consist of
removing a node from the freelist and inserting it into the
target structure; removing a node from the target structure
and inserting it into the freelist; and moving nodes or
substructures about within the target structure. The
interpreter can transform singly-linked circular lists,
doubly-linked circular lists and right-threaded binary

64

65

trees. The nodes of these structures must be atomic;
embedded substructures are not allowed in this
implementation.

The in situ data structures are initialized at the
beginning of the interpreter execution in the present
implementation; a more complete implementation (see the
discussion in Chapter 5) would include facilities for

declaring a variety of data structures, as well as a method
of naming specific instances of structures in the

declarative statements and in the imperative transform
statements. Before transform statements are executed, a
syntax check is performed as described in the following
section.

4.2 Svntax Checking Transform Statements.
Using the facilities of lex (LS75) and yacc (JS75), a

capability to verify the syntax of a set of transform
statements has been developed. The lexical analysis input
specification is shown in Appendix 2, and the parser input
specification is given in Appendix 3. Transform statements

include designation of node labels, links and substructure
labels.

The valid node labels include the lower case alphabetic
characters a,b,c,d,e,g, and "i” through "z". The character
"f” is reserved to denote the head of the freelist, and the
character "h" denotes the head of the data structure being
transformed. Left links are denoted by "L” , right links by

66

"R" and threads by ”Q”. The uppercase characters "S"
through "Z” may be used to denote substructures.
Occasionally, the character "N" is used to denote a null
(empty) substructure.

The syntax checking mechanism verifies that transform
statements identify the types of the source and destination
structures. (Valid types are "free" for the list of all
free cells; "sll” for singly-linked lists; "dll" for
doubly-linked lists; and "rtbt" for right-threaded binary
trees.) Also verified is the link-node sequence, accepting
only K-strings which are valid for the relevant structures.

Note that substructure symbols are accepted in many of the
transforms. Error messages are produced to indicate the
following.

o Failure to recognize the transform as valid.
0 Unmatched reference nodes in the source or
destination portion of the transform.
0 Illegal identical node or substructure Identifiers
where uniqueness is required.
o Unmatched node labels, where identical labels are
required, as in the K-strings for certain
right-threaded binary tree operations.

Syntax checking of transform statements is an important
issue. Transforms which are derivable from the data
structure grammar preserve the integrity of the in situ
structure. The syntax checking of transform statements

67

allows the use of syntactic methods to assess the semantics
of the K-transforms; invalid transforms can be rejected
before use.

4.3 Interpreter Operation.
The interpreter is designed for interactive operation,

accepting commands from a terminal user. The main
components of the command sequences illustrated in Section
4.4 are transform statements which use the following syntax.

transform stype & dtype : slhs — > srhs ==> dlhs — > drhs ;

where:
stype specifies the type of the source data structure,
dtype specifies the type of the destination data

structure.
slhs specifies the K-string of the source transform

left-hand side,
srhs specifies the K-string of the source transform

right-hand side,
dhls specifies the K-string of the destination

transform left-hand side,

drhs specifies the K-string of the destination
transform right-hand side.

A transform statement specifies that a node or substructure
moves from a source to a destination data structure.

After accepting a transform statement from the user,
the interpreter displays the K-formula which corresponds

68

with the in situ data structure before the transform. The
K-formula which corresponds with the transformed data

structure is displayed at the conclusion of the transform
operation. Other interpreter outputs include indications of
whether a transform succeeded or failed, and certain error
messages when appropriate.

Figure 4.3.1 gives the data flow of the interpreter.
The interpreter proceeds by accepting a transform statement
and certain control information from the user, and then
performs the corresponding operations. The left-hand side
of the source structure transform is processed first,
followed by the right-hand side of the source transform.
The destination data structure portion of the transform is
then similarly processed.

Figure 4.3.2 gives the structure of the interpreter
software. The "main" routine controls interaction with the
user by displaying prompts, accepting inputs and displaying
messages.

69
transform
statements process!

Ihs J

Ihs
K-stringsoapture

I input ,
node
addresses

K-strings
node labels
& addresses

symbol in situtransform
data

structures
table

addresses
node labels
& addressesrhs

K-strings

node labels &
link values

process'
rhs I

Figure 4.3.1; Interpreter Data Flow

main
I

70

xformgr

findrefn procslhs procsrhs
1 walksll 1 findlab I calcsw
I walkdllj —
1 walkrtbt

I findslab
I isvalsub

Î getlink
I
I getstindx

I recogniz fill
getlink

Figure 4.3.2: Interpreter Software Structure.

71
The procedure "xformgr" invokes a sequence of procedures
which use the transform K-strings to effect changes to the
in situ structure. "findrefn" calls the appropriate
traversal algorithm (for the type of structure involved)

to locate the reference node (see Section 3.3) in the in
situ structure. The procedure "procslhs" builds a symbol
table of node labels and the corresponding in situ
locations, and substructure labels with the corresponding

beginning and ending node locations, "procsrhs" uses the
symbol table prepared by "procslhs" to modify the in situ
structure, beginning at the reference node and
successively setting links as prescribed by the
appropriate right-hand side K-string. An important

service routine is "recogniz", which traverses a structure
to identify the last node in a substructure, given the
first node in the substructure. A collection of other
subroutines is used to perform services such as displaying
the K-formula which corresponds with the in situ
structure, and obtaining link values.

4.4 Examples of Interpreter Use.
This section contains illustrations of use of the

interpreter. The first example involves manipulation of a

doubly-linked list used in a communications message
switching software application. The second example shows
modifications of a right-threaded binary tree.

72

4.4.1 Message Queue Example. In a store-and-forward

message switching system, messages awaiting delivery are
typically serviced first-in first-out (FIFO) by message
priority. Consider a system with three message
priorities: high, medium and low. A practical way to
effect FIFO by priority message delivery is to store
message identifiers in a doubly-linked queue with the
"oldest" high-priority message at the front of the queue,
followed by the newer high-priority messages, followed by
the "oldest" medium-priority message, followed by newer
medium-priority messages, followed by the low-priority
messages.

Desired operations include inserting messages at the
rear of any of the queue priority sections and removing
messages from the front of the queue. Occasionally, a
message may be removed from any point in the interior of
the queue. These operations are implemented by noting the
labels of the queue header node "h", the newest member "t"
of the high-priority section , the newest member "m" of

the medium-priority section, and the newest member "1" of

the low-priority section. The transform statements which
manipulate the message queue are exemplified in the

following.
a. Remove the oldest high-priority message and

return the associated storage to the freelist,

transform dll & free : phpxSixh — > phSh ==> pf — > pfpx ;

73

In this case, the substructure "S" represents all of the
queue except for the nodes "h" and ”x”.

b. Insert a new message into the raediura-priority

section, after obtaining the required storage from the
freelist.

tranaform fra# & dll : pfpx — > pf ■•> posxm — > pmpxsxxxm
f

Here, "S” represents the low-priority section of the
queue.

c. Remove an arbitrary member ’’y” from the queue and
return the associated storage to the freelist. (Note that
the predecessor ”c” of "y" must be known.)

transform dll & free : popySXyXo --> poSXo ==> pf — > pfpy
t

"S" represents that portion of the queue which follows the
node "y" before the deletion.

Figure 4.4.1 illustrates the input to and output of
the interpreter when processing the three transforms given
above. In the output image, note that the transform
statement is printed, followed by the K-formulas which
correspond with the queue before and after each operation.
Because of equipment limitations, the characters "L” and
”R” are used in place of "x” and ”p" in the K-formulas.

74

transform dll & free : RhRxSLxh — > RhSh ==> Rf — > RfRx ;
ytransform free & dll : RfRx — > Rf ==> RmSLm — > RmRxSLxLm ;
y
transform dll & free ; RcRySLyLc — > RcSLc ==> Rf — > RfRy ;
n

Figure 4.4,1m: Messege Queue Input Trenaforme

transform dll & free : RhRxSLxh — > RhSh ==> Rf — > RfRx ;
dll before transform: RhRaRtRcRdRmRiRlLhLlLiLmLdLcLtLah
transform succeeded
dll after transform: RhRtRcRdRmRiRlLhLlLiLmLdLcLth

more transformations ?? (y or n): y
transform free & dll : RfRx — > Rf ==> RmSLm — > RmRxSLxLm ;
dll before transform: RhRtRcRdRmRiRlLhLlLiLmLdLcLth
transform succeeded
dll after transform: RhRtRcRdRmRaRiRlLhLlLiLaLmLdLcLth
* * more transformations ?? (y or n): y
transform dll & free : RcRySLyLc — > RcSLc ==> Rf — > RfRy ;
dll before transform: RhRtRcRdRmRaRiRlLhLlLiLaLmLdLcLth
transform succeeded
dll after transform; RhRtRcRmRaRiRlLhLlLiLaLmLcLth
** more transformations ?? (y or n): n

Figure 4.4.1b: Message Queue Interpreter Output

75

4.4.2 Height-Balanced Binary Tree Example. The height of
a tree is defined to be the length of the longest path
from the root to a leaf node. By minimizing the height of

subtrees in a binary search tree, one can reduce the time
required to locate a particular node below that required
in an arbitrary binary tree organization. Horowitz and
Sahni (HS76) describe an AVL tree which is height balanced
such that the height of the left subtree of any given node
differs from the height of the right subtree at that node
by no more than one level. The difference between the

length of the left subtree and right subtree, termed the
balance factor, is stored at each node and is used to
reorganize the tree when an insertion or deletion causes
the balance factor at any node to exceed an absolute value
of one.

The types of reorganizations required to rebalance a

tree are termed rotations, and involve moving nodes and
subtrees such that the height balance is restored while
preserving the proper search key ordering. Because the
rotations involve substructures (subtrees), the K-string
transforms developed in this paper are convenient
abstractions for expressing the required operations.

Consider the ”LL” rotation defined in Figure 4.4.2. The
rotation involves:

(1) Identifying the parent of the unbalanced node
"a".

76

(2) Identifying the subtrees of "b".

(3) Identifying the right subtree of "a".
(4) Relinking the tree such that the previous parent

of "a" becomes the parent of "b"; linking "a" as
the rightchild of "b"; and connecting the
previous right subtree of ”b" as the new left
subtree of "a". The left subtree of "b" remains
as such, and the right subtree of "a" also
retains its original connectivity.

Figure 4.4.3 gives an instance of a right-threaded

binary tree before, during and after height rebalancing.
Before rebalancing, the node labeled "b" is the closest
ancestor of the inserted node ”m” for which the balance
factor exceeds one in absolute value. Thus, rebalancing
the left subtree of the node labeled "a" has the effect of
rebalancing the entire tree. In Figure 4.4.3, the
transforms referenced are those given in Figure 4.4.4.

77

x+1

j
Figure 4.4.2a: Balanced AVL Tree

LL

Figure 4.4.2b: AVL Tree "LL" Rotation

78

V

/J"
> m // /

L ___ /

\ \\ \

Figure 4.4.3a: Binary Tree Before Rebalancing

b-,-'

Figure 4.4.3b: Binary Tree After Transform 2

79

m

Figure 4.4.3c: Binary Tree After Transform 3

m

Figure 4.4.3d: Rebalanced Binary Tree

80

Figure 4.4.4a gives four transforms which rebalance
the tree of Figure 4.4.3, using an "LL" rotation. Figure
4.4.4b shows the output of the interpreter when the

transforms of Figure 4.4.4a are supplied as the input.
The rotation proceeds as follows:

(1) Transform statements "1" and "2" identify and
disconnect the subtrees "S", "T", "U" and "V".
Note that these actions are described in the
"source" structure portion of the transform, and

the "destination" structure portion of these
transforms is essentially a null operation. The
pseudo-substructure symbol "N" is used to set
left links to a null value.

(2) Transform statement "3" replaces "b" by "d" as
the leftchild of "a", relinks substructure "S"
as the left subtree of "d" and establishes "b"
as the rightchild of "d". In the absence of a

compiler implementation, substructure symbols
are used where necessary to effect proper
interpreter operation.

(3) Transform statement "4" establishes

substructures "T" and "V" as the left and right
subtrees, respectively, of the node "b".

81

transform rtbt & free : LdSRdT — > LdNQd ==> Rf — > Rf ;
ytransform rtbt & free : LbURbV — > LbNQb ==> Rf — > Rf ;
y
transform rtbt & rtbt : LaQbRaX — > LaURaX =;= > Qd --> LdSRdQb ;
y
transform
n

free & rtbt : Rf — > Rf ==> Qb — > LbTRbV f

Figure 4.4,4m: AVL "LL* Rotation Interpreter Input

transform rtbt & free : LdSRdT — > LdNQd ==> Rf — > Rf ;
rtbt before transform: LhLaLbLdLkQmQkRdQlRbQeRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaLbQdRbQeRaLcQiRcQjh
** more transformations ?? (y or n): y
transform rtbt & free : LbURbV — > LbNQb ==> Rf — > Rf ;
rtbt before transform: LhLaLbQdRbQeRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaQbRaLcQiRcQjh
•* more transformations ?? (y or n): y
transform rtbt & rtbt : LaQbRaX — > LaURaX ==> Qd — > LdSRdQb ;
rtbt before transform: LhLaQbRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaLdLkQmQkRdQbRaLcQiRcQjh
•* more transformations ?? (y or n): y

transform free & rtbt : Rf — > Rf ==> Qb — > LbTRbV ;
rtbt before transform: LhLaLdLkQmQkRdQbRaLcQiRcQjh
transform succeeded
rtbt after transform: LhLaLdLkQmQkRdLbQlRbQeRaLcQiRcQjh

* * more transformations ?? (y or n): n

Figurm 4.4.4b: AVL "LL" Rotation Intarprmter Output

82

The transforms of Figure 4.4.M effect the "LL" AVL-tree
rotation using K-strings derivable from the grammar RTBT
of Chapter 3. Figure 4.4.5 gives another example of AVL

tree rebalancing, this time using an "LR" rotation. Note
that the left subtree of the node "p" is elided for
clarity. The "RR" and RL" rotations (see HS76) can
likewise be represented with K-transforms.

The AVL tree rotations are classically hard problems
which typically perplex students who are being introduced
to the structure. Applying the theory developed here, the
rotations can be converted directly from pictorial
depiction to transforms. The transforms allow the
programmer to conceptualize the operations in terms of

nodes, edges and substructures; whether the links are
implemented using pointer variables or array indices is of
little concern to the programmer. While the number of
transform statements is approximately the same as the
number of statements necessary using a modern programming
language, the K-transforms can be syntactically evaluated
to determine whether the integrity of the structure is
preserved by each operation. Note that a right-threaded
binary tree need not necessarily be used for the AVL tree

representation. Because the right-threaded tree is

Eulerian, it is convenient to use with regard to
recognizability of the in situ structure.

83

h

Figure 4.4.5a: AVL Tree Before "LR" Rebalancing

Figure 4.4.5b: AVL Tree After "LR" Rebalanoing

transform rtbt & free
y
transform rtbt & free
ytransform rtbt & rtbt
y
transform free & rtbt
y
transform free & rtbt
n

84

LbSRbLcTRcU — > LbNRbLcNQc ==> Rf — > Rf ;
RbV — > Qb ==> Rf — > Rf ;
LaWRaX — > LaNQa ==> RpY — > RpV ;
Rf — > Rf ==> Qc — > LcWRcY ;
Rf — > Rf ==> LcQbRcQa — > LcLbSRbTRcLaURaX ;

Figure 4.4.5c: AVL "LR" Rotation Interpreter Input
transform rtbt & free : LbSRbLcTRcU — > LbNRbLcNQc ==> Rf — > Rf ;
rtbt before transform: LhRpLaLbReQlRbLcRjQlRcQkRaRdQmh
transform succeeded
rtbt after transform: LhRpLaRbQcRaRdQmh

•* more transformations ?? (y or n): y
transform rtbt & free : RbV — > Qb ==> Rf — > Rf ;
rtbt before transform: LhRpLaRbQcRaRdQmh
transform succeeded
rtbt after transform: LhRpLaQbRaRdQmh
*• more transformations ?? (y or n); y
transform rtbt & rtbt ; LaWRaX — > LaNQa ==> RpY — > RpV ;
rtbt before transform: LhRpLaQbRaRdQmh
transform succeeded
rtbt after transform: LhRpQch
*• more transformations ?? (y or n): y
transform free & rtbt : Rf — > Rf ==> Qc — > LcWRcY ;
rtbt before transform: LhRpQch
transform succeeded
rtbt after transform: LhRpLcQbRcQah
* * more transformations ?? (y or n): y

transform free & rtbt : Rf — > Rf ==> LcQbRcQa — > LcLbSRbTRcLaURaX ;
rtbt before transform: LhRpLcQbRcQah
transform succeeded
rtbt after transform: LhRpLcLbReQiRbRJQlRcLaQkRaRdQmh
•• more transformations ?? (y or n): n

Figure 4.4.5d: AVL "LR" Rotation Interpreter Output

85

In this chapter, the viability of the K-transform
methodology has been demonstrated using syntax checking
tools and an interpreter. The final chapter contains
discussion of work necessary for production implementation
of the theory developed above.

CHAPTER FIVE

5. Summary. Future Work and An Evaluation^

5.1 Summary.
This paper described a method of formally specifying

operations on the class of (Type-E) linked data structures
which contain an Eulerian traversal. All valid operations

on a Type-E structure can be derived from the associated
data structure grammar, and all other operations fail to
change the structure in a way which conforms to the grammar.
To illustrate the syntactic specification of linked data
structure operations, an interpreter was implemented.

5.2 Future Work.
For efficient use of the theory described herein in a

production environment, it should be possible to use linked
data structures in a manner similar to the way in which
general purpose programming languages support scalar
variables. In addition to the imperative transform
statements described in this paper, additional statements
are required to define instances of data structures and to
initialize them for effective use.

Declaration statements should name a data structure and
identify its type. Ideally, the type should be specified by
including or referring to the data structure grammar.

86

87

Because the grammar includes a traversal, separate
declarations should be used for distinct traversals. Each
declaration should identify sets of valid link symbols, node

symbols, and substructure symbols. Data structure
initialization can be implicit in the declaration, an
explicit part of the declaration, or performed by the user
(programmer).

The transform statements of this paper must be modified
to include the structure labels. In addition to the

statements which move nodes from one structure to another,
and move substructures about within a structure, other types
of statements may also be added. For example, statements
which access the data stored at a node are needed.
Statements which search for a specific node in a data
structure, or the nodes adjacent to a particular node,

should be available. It should also be possible to remove a
substructure from a structure, and retain the substructure

for use in a subsequent transform statement.
A significant action necessary to achieving production

use of the theory is that of implementing a program
generator, or a full language and the associated compiler.
In the former case, declaration and transform statements
would be translated into program segments in an existing
programming language, which would then be compiled and
executed in the host language environment. The latter
approach involves incorporating the data structure

88

declarative and imperative statements into a new language,
and developing a compiler and the support environment for
the language. By implementing the data structure transforms

in a new language, facilities convenient to data structure
manipulation can be effected. The compiler approach also
offers the potential for optimization of generated code, and
full-scale error checking. Use of a compiler may result in
the ability of the optimizer to choose the most effective
representation of a structure, based upon the data structure
grammar.

While Type-E data structures are frequently , found in
databases, operating systems, communications and many other
computer science applications, there are other important
data structures which are not Type-E. Examples include
unthreaded binary trees and arrays. A method of recognizing
the syntactic representation of such structures would
further increase the utility of the methods embodied in this

paper. A hierarchy of data structures which parallels the
Chomsky language hierarchy (AU72) may provide a
classification useful in determining the required

capabilities of the mechanisms which are needed to operate
on the data structures.

5.3 An Evaluation.
To apply the present syntactic approach to linked data

structures requires some appreciation of grammars,
K-formulas and other formal methods in language and graph

89

theory. One may argue that the "average programmer" may
encounter difficulty when attempting to apply the syntactic
methods because of the theoretical background required.

This argument is mitigated somewhat by recognizing that in a
full implementation, a grammar which specifies a structure
(and an associated traversal) need only be written once, and
thereafter can be easily applied by any number of
programmers. With syntax checking mechanisms
semiautomatically generated from the grammar, transforms can
be checked for validity before executing the associated
code. These methods of preserving the integrity of the in
situ structure seem to be ample reward for the investment
required to learn to use the syntactic approach.

An advantage of the method described in this paper
which goes beyond the correctness issue is that of providing
the programmer with a powerful tool for manipulating data
structures. Each statement in a program can effect a rather
significant change in a pair of data structures. Thus, the
programmer can dwell on the problem to be solved without
having to be concerned with many of the details of how the

in situ structure will actually be changed. The result is
improved programmer productivity. Because syntactic
expressions are abstract, the programmer need not be

concerned with the representation of Type-E data structures.
Consequently, syntactic methods contribute to the data
independence property (DG77) which is important in database

90

management.
No advance in technology is effected without

investment. Regarding the techniques described herein, the
potential benefits appear to warrant the investment required
to fully implement the methodology.

BIBLIOGRAPHY

AU72 Aho, A.V. and Oilman, J.D. The Theory of
Parsing. Translation, and Compiling. Vol. 1;
Parsing. Prentice-Hall, Englewood Cliffs,
N.J. 1972.

AU77 Aho, A.V. and Oilman, J.D. Principles of
Compiler Design. Addison-Wesley, Reading,
Massachusetts, 1977.

BA75 Bertziss, A.T. Data Structures Theory and
Practice. 2nd Edition, Academic Press, New
York, 1975.

CM70 Crespi-Reghizzi, S. and Marpurgo, R. "A
Language for Treating Graphs.” Communications
of the ACM, Vol. 13, No. 5 (May 1970) pp.
319-323.

CN59 Chomsky, N. ”0n Certain Formal Properties of
Grammars.” Information and Control. Vol. 2,
No. 2, 1959, pp. 137-1 6 7.

CW71 Chen, W. Applied Graph Theory. American
Elsevier Publishing Company, New York, 1971.

DC77 Date, D. An Introduction to Database
Systems. Addison-Wesley, Reading,
Massachusetts, 1977.

EJ71 Earley, J. ”Toward and Understanding of Data
Structures.” Communications of the ACM. Vol.
10, No. 10 (Oct 1971), pp. 617-627.

FA71 Fleck, A. "Towards a Theory of Data
Structures.” Journal of Computer and Systems
Sciences. Vol. 5, 1971, pp. 475-488.

GJ77 Guttag, J. "Abstract Data Types and the
Development of Data Structures."
Communications of the ACM. Vol. 20, No. 6,
1977, pp. 396-404.

91

92

GY76 Guha, R. and Yeh, R. "A Formalization and
Analysis of Simple List Structures.” Applied
Computation Theory; Analysis. Design.
Modeling. Prentice-Hall. 1976.

HS76 Horowitz, E. and Sahni, S. Fundamentals of
Data Structures. Computer Science Press,
Potomac, Maryland, 1976.

JS75 Johnson, S. "Yacc; Yet Another
Compiler-Compiler.” Computing Science
Technical Report No. 32, 1975. Bell
Laboratories, Murray Hill, NJ.

KR78 Kernighan, B.W. and Richie, D.M. The C
Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

LS75 Lesk, M. and Schmidt, E. ”Lex - A Lexical
Analyzer Generator.” Computing Science
Technical Report No. 39, October 1975. Bell
Laboratories, Murray Hill, New Jersey.

PF71 Pratt, T. and Friedman, D. ”A Language
Extension for Graph Processing and Its Formal
Semantics.” Communications of the ACM. Vol.
14, No. 7 (July 1971), pp. 400-467.

RA71 Rosenberg, A. "Data Graphs and Addressing
Schemes.” Journal of Computer and System
Sciences. Vol. 5, 1971, pp. 193-238.

SS74 Schneiderman, B. and Scheuermann, P.
"Structured Data Structures.” Communications
of the ACM. Vol. 17, No. 10 (October 1974),
pp. 566-5 7 4.

ST78 Standish, T. "Data Structures - An Axiomatic
Approach.” Current Trends in Computing. Vol.
4, Prentice-Hall, 197Ô.

TJ81 Thompson, J.C. Information Structures
Lecture Notes, University of Oklahoma,
Norman, Oklahoma, 1981.

APPENDIX ONE

I n t e r p r e t e r D o c u m e n t a t i o n

/ * l i s t i n g o f i n t e r p r e t e r p r o g r a m
S d e f i n e s e q (A , B) s t r c m p (A , B) == 0
(d e f i n e NL n

summer 1 9 8 2 * /
/ * s t r i n g e q u a l i t y * /

/ * b u f f e r u s e d t o p r i n t K - f o r m u l a s * /

/ * nu mber o f n o d e s i n " i n s i t u " s t r u c t u r e * /

/ * t r a n s f o r m c o m p o n e n t s s i z e * /

/*
/*

number o f n o d e s y m b o l s a l l o w e d * /
number o f s u b s t r u c t u r e s y m b o l s a l l o w e d * /

(d e f i n e NLQ "n"
(d e f i n e BUFSIZE 60
(d e f i n e NULL 9 9 9
(d e f i n e STRUCSIZ 14
(d e f i n e FOREVER 1
(d e f i n e XFSIZE 1 6
(d e f i n e YES 1
(d e f i n e NO 0
(d e f i n e EQUAL 0
(d e f i n e ERROR - 9
(d e f i n e SUCCESS - 1
(d e f i n e NUMNODES 20
(d e f i n e NUMSTRUC 9
/ * V
s t a t i c c h a r l a b e l [STRUCSIZ+1] = " E h a b c d e i j k l m n f
s t a t i c i n t 11 in k [S T R U C S I Z] = (N U L L , 2 , 3 , 5 , 7 , 9 , NULL,NULL,NULL,1 1 , NULL,NULL,NULL,NU:
s t a t i c i n t r l i n k [S T R U C S I Z] = { N U L L , N U L L , 4 , 6 , 8 , 1 0 , - 2 , - 4 , - 1 , - 5 , - 3 , - 9 , 1 3 , 1 2 } ;

s t a t i c c h a r l a b e l [STRUCSIZ + 1] = " E h a t c d m i l k n f
s t a t i c i n t l l i n k [S T R U C S I Z] = (N U L L , 8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , NULL,NULL,NULL);
s t a t i c i n t r l i n k [S T R U C S I Z] = (N U L L ,2 , 3 , 4 , 5 , 6 , 7 , 8 , 1 , 1 0 , 1 1 , 9) ;
*/
s t a t i c i n t i n f o [S T R U C S I Z]
s t a t i c c h a r I h s l [X F S I Z E]
s t a t i c c h a r I h s r [X F S I Z E]
s t a t i c c h a r r h s r [X F S I Z E]
s t a t i c c h a r r h s l [X F S I Z E]
s t a t i c c h a r l h s [X F S I Z E] ;
s t a t i c c h a r r h s [X F S I Z E] ;
s t a t i c i n t l i s t c t r = 0 ;
s t a t i c i n t i n d e x b e g = 1 ; / * i n d e x o f b e g i n n i n g o f s t r u c t u r e * /
s t a t i c c h a r e r p r e [] = " * * --> e r r o r : "; / * e r msg p r e f i x * /
s t a t i c i n t n e x t n t s =» 0 ; / * i n d e x o f n e x t a v a i l n o d e t a b l e s l o t * /
s t a t i c i n t n e x t s t s = 0 ; / * i n d e x o f n e x t a v a i l s u b s t r u c t s l o t * /
s t a t i c i n t n e x t n o d e ; / * i n d e x o f n o d e f o l l o w i n g x f o r m e d n o d e * /
s t a t i c c h a r v a l i d s t r [NUMSTRUC] = "STUVWXYZ"; / * v a l i d s u b s t r u l a b e l s * /
s t a t i c c h a r l e l e m [3] ; / * l e f t e l e m e n t u s e d i n p r o c r h s * /
s t a t i c c h a r r e l e m [3 1 ; / * r i g h t e t c * /
s t a t i c c h a r l l i n k s y m ■ ' L ' ; / * s y m b o l d e n o t i n g l e f t l i n k * /
s t a t i c c h a r r l i n k s y m « ' R ' ; / * s y m b o l d e n o t i n g r i g h t l i n k * /

= (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3) ;
/ * t r a n s f o r m K - s t r i n g s * /

93

94

s t a t i c c h a r t h r e d s y m = * Q ' ; / * s y m b o l d e n o t i n g t h r e a d * /
s t a t i c c h a r n u l l s y m = *N'; / * s y m b o l d e n o t i n g n u l l l a b e l * /
c h a r s s t y p e [5] ; / * s o u r c e s t r u c t u r e t y p e * /
c h a r d s t y p e [5] ; / * d e s t s t r u c t u r e t y p e * /
c h a r s t y p e [5] ; / * s t r u c t t y p e u s e d t o r e c o g n i z * /
i n t d e b u g = 0 ;
i n t l i s t n o d e = 0 ; / * 1 ==> l i s t n o d e s , 0 ==> do n o t * /
s t r u c t n o d e s { / * n o d e s y m b o l t a b l e * /

c h a r l a b ;
i n t i n d x ;

} nodetab[NUMNODES] ;
s t r u c t s u b s t r u c { / * s u b s t r u c t u r e s y m b o l t a b l e * /

c h a r l a b ; / * l a b e l * /
i n t i n d x b ; / * i n d e x o f b e g n o d e * /
i n t i n d x e ; / * i n d e x o f e n d n o d e * /
c h a r l i n k ; / * l i n k t y p e a t e n d n o d e * /

} s t r u c t a b [N U M S T R U C] ;
m a i n O

{ / * "main" a c c e p t s t r a n s f o r m s t a t e m e n t s * /
i n t n u m r e a d , r e t c o d e , w h i l e s w , i ;
c h a r d e b u g a n s [4] , r e p l y (4] ;

w h i l e s w = YES;
w h i l e (w h i l e s w)

f o r (i = 0 ; i < NUMNODES; i+ +) n o d e t a b [i] . l a b = '
/*

f o r (i = 0 ; i < NUMSTRUC; i+ +) s t r u c t a b [i] . l a b = ' ’ ;
*/
n e x t n t s = 0 ;
/ * n e x t s t s = 0 s p e c i a l p r o g r a m v e r s i o n f o r AVL t r e e e x a m p l e * /
/ * p r i n t f ("%s " , "** d e b u g ? ? (y o r n) ; ") ;
s c a n f (" % s " , d e b u g a n s) ;
i f (s e q (d e b u g a n s , " y ") I I s e g (d e b u g a n s , " y e s "))

l i s t n o d e = 1 ;
e l s e l i s t n o d e = 0 ; * /
l i s t s t r u (" m a i n ") ;

w h i l e (F O R E V E R)
{ /*

p r i n t f (" % s % s n " , " t r a n s f o r m s t y p e & d t y p e ; s l h s — > s r h s " ,
"==»> d l h s — > d r h s ; ") ;

*/
n u m r e a d = s c a n f ("%*s%s%*s%s%*s%s%*s%s%*s%s%*s%s%*s", s s t y p e ,

d s t y p e , I h s l , r h s l , I h s r , r h s r) ;
i f (n u m r e a d » = 6)

{ p r i n t f (" n ") ;
b r e a k ;
}

) / * e n d o f w h i l e * /
print f ("%s%s%s%s%s%s%sts%s%s%s%s%s” , " t r a n s f o r m " , s s t y p e ,

" S " , d s t y p e , " ; I h s l , " — > " , r h s l , " *■> " ,
I h s r , • — > " , r h s r , " ; n ") ;

r e t c o d e = x f o r m g r O ;

95
i f (r e t c o d e == SUCCESS)

p r i n t f (" t r a n s f o r m s u c c e e d e d n ”) ;
e l s e p r i n t f (" t r a n s f o r m f a i l e d n ") ;
i f (s e q (s s t y p e , " f r e e ")) p r i n t l a b (d s t y p e , " a f t e r t r a n s f o r m : ") ;

e l s e p r i n t l a b (s s t y p e , " a f t e r t r a n s f o r m : ") ;
p r i n t f (" n * * m o r e t r a n s f o r m a t i o n s ? ? (y o r n) : ") ;
s c a n f (" % s " , r e p l y) ;
p r i n t f (" % s % s " , r e p l y , " n ") ;
i f (s e q (r e p l y , " y ") l l s e q (r e p l y , " y e s "))

w h i l e s w = YES;
e l s e w h i l e s w = NO;

} / * e n d o f w h i l e o n w h i l e s w * /
} / * e n d o f m a i n * /

/ * V
x f o r m g r O

{ / * t r a n s f o r m m a n a g e r — s e q u e n c e s r e m a i n i n g p r o c e d u r e s * /
i n t r e f n o d e , r e t c o d e ;

i f (s e q (s s t y p e , " f r e e ")) p r i n t l a b (d s t y p e , " b e f o r e t r a n s f o r m : ") ;
e l s e p r i n t l a b (s s t y p e , " b e f o r e t r a n s f o r m : ") ;
l i s t s t r u (" x f o r m g r l ") ;
r e f n o d e = f i n d r e f n (s s t y p e , l h s l [l]) ; / * f i n d r e f e r e n c e n o d e * /
i f (r e f n o d e == ERROR)

r e t u r n (ERROR);
s t r c p y (s t y p e , s s t y p e) ;
s t r c p y (l h s , l h s l) ;
r e t c o d e = p r o c s l h s (r e f n o d e) ; / * p r o c e s s l e f t I h s * /
l i s t s t r u (" x f o r m g r 2 ") ;
i f (r e t c o d e == ERROR)

r e t u r n (E R R O R) ;
i f (l h s l [l] ! = r h s K l l)

{ p r i n t f (" % s % s % s " , e r p r e , " f i r s t n o d e l a b e l s o f l e f t I h s " ,
"a nd r h s n o t i d e n t i c a l n ") ;

r e t u r n (E R R O R) ;

s t r c p y (s t y p e , s s t y p e) ;
s t r c p y (r h s , r h s l) ;
r e t c o d e = p r o c s r h s (r e f n o d e) ; / * p r o c e s s l e f t r h s * /
l i s t s t r u (" x f o r m g r 3 ") ;
i f (r e t c o d e == ERROR)

r e t u r n (E R R O R) ;
r e f n o d e = f i n d r e f n (d s t y p e , l h s r [l]) ; / * f i n d r i g h t r e f n o d e * /
i f (r e f n o d e == ERROR)

r e t u r n (E R R O R) ;
s t r c p y (s t y p e , d s t y p e) ;
s t r c p y (I h s , I h s r) ;
r e t c o d e = p r o c s l h s (r e f n o d e) ; / * p r o c e s s r i g h t I h s * /
l i s t s t r u (" x f o r m g r 4 ") ;
i f (r e t c o d e = = ERROR)

r e t u r n (E R R O R) ;
i f (I h s r d l 1= r h s r [l])

{ p r i n t f (" % s % s % s " , e r p r e , " f i r s t n o d e l a b e l s o f r i g h t I h s " ,
" an d r h s n o t i d e n t i c a l n ") ;

96

} r e t u r n (E R R O R) ,

s t r c p y (s t y p e , d s t y p e) ;
s t r c p y (r h s , r h s r) ;
r e t c o d e = p r o c s r h s (r e f n o d e) ;
l i s t s t r u (" x f o r m g r 5 ") ;
i f (r e t c o d e == ERROR)

r e t u r n (E R R O R) j
r e t u r n (S U C C E S S) ;

/ * p r o c e s s r i g h t r h s * /

}
p r o c s r h s (r e f n o d e)

i n t r e f n o d e ;

i n t c u r s o r ;
i n t l i n d x , r i n d x ;
i n t s t i n d x ;

i n t sw;
i f (d e b u g)

p r i n t f (" % s " ,

/ * e n d o f x f o r m g r * /
/* */

/ * p r o c e s s r i g h t h a n d s i d e (m o d i f i e s s t r u c t u r e) * /
/ * i n d e x o f f i r s t n o d e i n v o l v e d i n x for ra * /

/*
/*
/*

n e x t r h s s y m b o l * /
i n d i c e s o f l e l e m & r e l e m sym * /
s t r u c t u r e t a b l e i n d e x * /

/*
/*
/*

b e g i n a t r e f e r e n c e n o d e ; s e t * /
l i n k s a s p r e s c r i b e d b y t h e * /
r i g h t - h a n d s i d e K - s t r i n g * /

d e t e r m i n e r h s s y m b o l t y p e s * /

s w , " n ") ;

'---------- > e n t e r e d p r o c s r h s n ") ;
c u r s o r = 0 ;
c u r s o r = f i l l (c u r s o r) ;
i f (c u r s o r == ERROR)

r e t u r n (ERROR);
s t r c p y (l e l e m , r e l e m) ;
c u r s o r = f i l l (c u r s o r) ;
i f (c u r s o r == ERROR)

r e t u r n (ERROR);
w h i l e (r e l e m [0) 1= ' 0 ')

{ sw = c a l c s w (l e l e m , r e l e m) ; / *
i f (l i s t n o d e)

p r i n t f (" % s % d % s " , "* * s w i t c h v a l u e =
s w i t c h (s w)
{

c a s e 1 1 : / * l i n k - n o d e , l i n k - n o d e * /
l i n d x = g e t i n d x (l e l e m [l]) ;
r i n d x = g e t i n d x (r e l e m [l]) ;
i f (l i n d x == ERROR II r i n d x == ERROR) r e t u r n (ERROR)
i f (l e l e m [0] == l l i n k s y m)

l l i n k [l i n d x] = r i n d x ;
e l s e i f (l e l e m [0] == r l i n k s y m)

r l i n k i l i n d x] = r i n d x ;
e l s e i f (l e l e m [0] == t h r e d s y m)

r l i n k i l i n d x] = - r i n d x ;
e l s e r e t u r n (ERROR);
b r e a k ;

/* */
c a s e 1 2 : / * l i n k - n o d e , n o d e * /

l i n d x = g e t i n d x (l e l e m [l]) ;
r i n d x = g e t i n d x (r e l e m [0]) ;
i f (l i n d x == ERROR II r i n d x » ERROR) r e t u r n (ERROR);
i f (l e l e m [0] "= l l i n k s y m)

97
l l i n k [l l n d x] = r i n d x ;

e l s e i f (l e l e m (0] «= r l i n k s y m)
r l i n k [l i n d x] = r i n d x ;

e l s e i f (l e l e r a [0] »=» t h r e d s y m)
r l i n k i l i n d x] = - r i n d x ;

e l s e r e t u r n (ERROR);
b r e a k ;

/* */
c a s e 1 3 : / * l i n k - n o d e , s u b s t r u c t u r e * /

l i n d x = g e t i n d x (l e l e m [l]) ;
s t i n d x = g e t s t i n d (r e l e m [0 1) ;
i f (l i n d x == ERROR II s t i n d x == ERROR) r e t u r n (ERROR);
r i n d x = s t r u c t a b l s t i n d x] . i n d x b ;
i f (l e l e m [0] == l l i n k s y m)

l l i n k l l i n d x] = r i n d x ;
e l s e i f (l e l e m [0] == r l i n k s y m)

r l i n k i l i n d x] = r i n d x ;
e l s e i f (l e l e m [0] == t h r e d s y m)

r l i n k i l i n d x] = - r i n d x ;
e l s e r e t u r n (ERROR);
b r e a k ;

/* */
c a s e 1 4 : / * l i n k - n o d e , n u l l * /

l i n d x = g e t i n d x (l e l e m l l]) ;
i f (l i n d x == ERROR) r e t u r n (ERROR);
i f (l e l e m [0 J == l l i n k s y m)

l l i n k l l i n d x] = NULL;
e l s e r e t u r n (ERROR);
b r e a k ;

/* */
c a s e 3 1 : / * s u b s t r u c t u r e , l i n k - n o d e * /

s t i n d x = g e t s t i n d (l e l e m l 0)) ;
r i n d x = g e t i n d x (r e l e m l l]) ;
i f (s t i n d x == ERROR II r i n d x == ERROR) r e t u r n (ERROR);
l i n d x = s t r u c t a b l s t i n d x] . i n d x e ;
i f (s t r u c t a b l s t i n d x] . l i n k == l l i n k s y m)

l l i n k l l i n d x] = r i n d x ;
e l s e i f (s t r u c t a b l s t i n d x] . l i n k == r l i n k s y m)

r l i n k i l i n d x] = r i n d x ;
e l s e i f (s t r u c t a b l s t i n d x] . l i n k * = t h r e d s y m)

r l i n k i l i n d x] = - r i n d x ;
e l s e r e t u r n (ERROR);
b r e a k ;

/* #/
c a s e 3 2 : / * s u b s t r u c t u r e , n o d e * /

s t i n d x = g e t s t i n d (l e l e m l 0]) ;
r i n d x = g e t i n d x (r e l e m (0]) ;
i f (s t i n d x == ERROR II r i n d x » » ERROR) r e t u r n (ERROR);
l i n d x " s t r u c t a b l s t i n d x] . i n d x e ;
i f (s t r u c t a b l s t i n d x] . l i n k == l l i n k s y m)

l l i n k l l i n d x] > r i n d x ;
e l s e i f (s t r u c t a b l s t i n d x] . l i n k » r l i n k s y m)

98
r l i n k i l i n d x] = r i n d x ;

e l s e i f (s t r u c t a b l s t i n d x] . l i n k == t h r e d s y m)
r l i n k i l i n d x] » - r i n d x ;

e l s e r e t u r n (ERROR);
b r e a k ;

c a s e 4 1 : / * n u l l , l i n k - n o d e * /
/ * n o r e l i n k i n g r e q u i r e d * /

b r e a k ;
/ * V

d e f a u l t :
p r i n t f (" % s % s " , e r p r e , " i n v a l i d I h s - r h s c o m b i n a t i o n i n p r o c s r h s n ") ;
r e t u r n (ERROR);

} / * e n d o f s w i t c h o n sw * /
s t r c p y (l e l e m , r e l e m) ;
c u r s o r = f i l l (c u r s o r) ;
i f (c u r s o r == ERROR)

r e t u r n (ERROR);
} / * e n d o f w h i l e * /
i f (n e x t n o d e == NULL II n e x t n o d e == -NULL)

r e t u r n (SUCCESS) ;
i f (i s v a l s u b (l e l e m l 0]) == YES)

I s t i n d x = g e t s t i n d (l e l e m l 0]) ; / * l i n k l a s t s u b s t r u c t t o r e s t * /
i f (s t i n d x == ERROR) r e t u r n (ERROR);
l i n d x = s t r u c t a b l s t i n d x] . i n d x e ;
i f (s t r u c t a b l s t i n d x] . l i n k == l l i n k s y m)

l l i n k l l i n d x] = n e x t n o d e ;
e l s e i f (s t r u c t a b l s t i n d x] . l i n k == r l i n k s y m)

r l i n k i l i n d x] = n e x t n o d e ;
e l s e i f (s t r u c t a b l s t i n d x] . l i n k == t h r e d s y m)

r l i n k i l i n d x] = n e x t n o d e ;
e l s e r e t u r n (ERROR);
1

e l s e
{ l i n d x = g e t i n d x (l e l e m l l]) ;

i f (l i n d x == ERROR) r e t u r n (ERROR); / * l i n k l a s t n o d e t o r e s t * /
i f (d e b u g)

p r i n t f (" S s % d % c % s " , " e n d r h s l i n d x l e l e m l l] " , l i n d x , l e l e m l l] , " n ") ;
i f (l e l e m l 0] == l l i n k s y m)

l l i n k l l i n d x] == n e x t n o d e ;
e l s e i f (l e l e m I 0] == r l i n k s y m)

r l i n k i l i n d x] = n e x t n o d e ;
e l s e i f (l e l e m I 0] == t h r e d s y m)

r l i n k i l i n d x] = n e x t n o d e ;
e l s e r e t u r n (E R R O R) ;

J / * e n d o f e l s e * /
r e t u r n (SUCCESS) ;

} / * e n d o f p r o c s r h s * /
p r o c s l h s (r e f n o d e)

i n t r e f n o d e ; / * i n d e x o f f i r s t n o d e i n v o l v e d i n x f o r m V
(/ * b u i l d s y m b o l t a b l e o f n o d e & s u b s t r u c t u r e l a b e l s & i n d i c e s * /

i n t I h s c u r , s t r u c u r ; / * I h s a n d s t r u c t u r e c u r s o r s * /
i n t t f ; / * t h r e a d f l a g : YES *> g e t l i n k - > t h r e a d * /

99
i n t r e t c o d e ;
i f (d e b u g)

p r i n t f (" % s " , "---------- > e n t e r e d p r o c s l h s n ”) ;
i f ((r e t c o d e = f i n d l a b (l a b e l [r e f n o d e])) == NO)

{ / * l a b e l n o t y e t i n t a b l e * /
n o d e t a b [n e x t n t s] . l a b = l a b e l [r e f n o d e] ;
n o d e t a b C n e x t n t s j . i n d x = r e f n o d e ;
+ + n e x t n t s ;

p r i n t n o d (" p r o c s l h s l ") ;
s t r u c u r = g e t l i n k (l h s [0] , r e f n o d e) ;
i f (s t r u c u r < 0)

{ s t r u c u r = - s t r u c u r ;
 ̂ t f = YES;

e l s e t f = NO;
i f (s t r u c u r == ERROR)

r e t u r n (ERROR);
I h s c u r = 2 ;

/* */
w h i l e (l h s [l h s c u r] 1= ' 0 ')
{

i f (d e b u g)
p r i n t f (" % s % c % d % s " , " * * l h s , s t r u c u r = " , l h s [l h s c u r] , s t r u c u r , " n ”) ;

i f (l h s [l h s c u r] == l l i n k s y m I I l h s [l h s c u r] == r l i n k s y m
II I h s [I h s c u r] == t h r e d s y m)

{ / * l i n k n o d e p a i r * /
i f ((r e t c o d e = f i n d l a b (l h s [l h s c u r + 1])) == NO)

{ / * l a b e l n o t y e t i n t a b l e * /
n o d e t a b [n e x t n t s] . l a b = l h s [l h s c u r + 1] ;
n o d e t a b i n e x t n t s] . i n d x = s t r u c u r ;
+ + n e x t n t s ;

s t r u c u r = g e t l i n k (l h s [l h s c u r] , s t r u c u r) ;
i f (s t r u c u r < 0)

{ s t r u c u r = - s t r u c u r ;
t f = YES;

}
e l s e t f = NO;
I h s c u r = I h s c u r + 2 ;

e l s e i f { (r e t c o d e = i s v a l s u b (l h s [l h s c u r])) == YES)
I / * s u b s t r u c t u r e * /

r e t c o d e = r e c o g n i z (s t y p e , s t r u c u r , l h s [l h s c u r]) ;
i f (r e t c o d e == ERROR)

r e t u r n (ERROR);
s t r u c u r = r e t c o d e ;
i f (s t r u c u r < 0)

{ s t r u c u r = - s t r u c u r ;
t f » YES;

e l s e t f " NO;

100
l h s c u r + + ;

e l s e i £ (YES)
{ / * m u s t b e a n o d e s y m b o l * /

i f ((r e t c o d e = f i n d l a b (l h s [l h s c u r])) == NO)
{ / * l a b e l n o t y e t i n t a b l e * /

n o d e t a b [n e x t n t s] . l a b = l h s [l h s c u r] ;
n o d e t a b i n e x t n t s] . i n d x = s t r u c u r ;
+ + n e x t n t s ;

s t r u c u r = NULL;
l h s c u r + + ;}

} / * e n d o f w h i l e * /
i f (t f == YES)

n e x t n o d e = - s t r u c u r ;
e l s e n e x t n o d e = s t r u c u r ;
p r i n t n o d (" p r o c s l h s 2 ") ;
r e t u r n (SUCCESS);

} / * e n d o f p r o c s l h s * /
/ * V

r e c o g n i z (t y p e , b e g i n , s l a b e l) / * r e c o g n i z e s u b s t r u c t u r e * /
c h a r t y p e [] ; / * s t r u c t u r e t y p e * /
i n t b e g i n ; / * i n d e x o f b e g i n n i n g n o d e * /
c h a r s l a b e l ; / * l a b e l o f s u b s t r u c t u r e * /

i n t c u r s o r ; / * u s e d t o t r a v e r s e s t r u c t u r e s * /
i f (s e q (t y p e , " s l l "))

r e t u r n (ERROR); / * s l l s u b s t r u c t u r e s n o t a l l o w e d * /
i f (s e q (t y p e , " d l l "))

i f (f l n d s l a b (s l a b e l) == YES)
{ p r i n t f (" % s % c % s " , e r p r e , s l a b e l , " a l r e a d y i n d l l s t r u c t t a b n ") ;

r e t u r n (ERROR);
}

e l s e
{ s t r u c t a b [n e x t s t s] . l a b = s l a b e l ;

s t r u c t a b [n e x t s t s] . i n d x b = b e g i n ;
s t r u c t a b i n e x t s t s] . i n d x e = b e g i n ;
s t r u c t a b [n e x t s t s] . l i n k = l l i n k s y m ;
n e x t s t s + + ;
r e t u r n (SUCCESS);

} / * e n d o f d l l r e c o g n i z e r V
i f (s e q (t y p e , " r t b t "))

{ i f (f i n d s l a b (s l a b e l) == YES)
{ p r i n t f (" % s % c % s n " , e r p r e , s l a b e l , " a l r e a d y i n r t b t s t r u c t a b ") ;
 ̂ r e t u r n (ERROR);

else
(c u r s o r ■ b e g i n ;

w h i l e (c u r s o r l « i n d e x b e g)

101
{

i f (d e b u g)
p r i n t f (" % s % d % s " , " * * r e c o g n i z r t b t c u r s o r = " , c u r s o r , " n ") ;

i f (r l i n k l c u r s o r l > 0) . ,
c u r s o r = r l i n k [c u r s o r] ;

e l s e i f (r l i n k [c u r s o r] < 0)
{ s t r u c t a b [n e x t s t s] . l a b = s l a b e l ;

s t r u c t a b i n e x t s t s] . i n d x b = b e g i n ;
s t r u c t a b i n e x t s t s] . i n d x e = c u r s o r ;
s t r u c t a b i n e x t s t s] . l i n k = t h r e d s y m ;
n e x t s t s + + ;

 ̂ r e t u r n (r l i n k [c u r s o r]) ;

} / * e n d o f w h i l e o n c u r s o r * /
r e t u r n (ERROR);

} / * e n d o f e l s e * /
} / * e n d o f r t b t r e c o g n i z e r * /

p r i n t f (" % s % s % s % s " , e r p r e , " r e c o g n i z e r n o t im p l e m f o r " , t y p e , " n ") ;
r e t u r n (ERROR);

} / * e n d o f r e c o g n i z * /
/* */

f i n d r e f n (s t r t y p e , r n o d l a b l) / * f i n d r e f e r e n c e n o d e * /
c h a r s t r t y p e [5] ;
c h a r r n o d l a b l ;

i n t r n o d i n d x ;
i f (d e b u g)

p r i n t f (" % s " , " > e n t e r e d f i n d r e f n n ") ;
i f (s e q (s t r t y p e , " f r e e "))

r e t u r n (STRUCSIZ - 1) ;
e l s e i f (s e q (s t r t y p e , " s l l "))

r n o d i n d x = w a l k s l l (i n d e x b e g , r n o d l a b l) ;
e l s e i f (s e q (s t r t y p e , " d l l "))

r n o d i n d x = w a l k d l l (i n d e x b e g , r n o d l a b l) ;
e l s e i f (s e q (s t r t y p e , " r t b t "))

r n o d i n d x = w a l k r t b t (i n d e x b e g , r n o d l a b l) ;
i f (r n o d i n d x == ERROR)

[p r i n t f (" % s % s % c % s " , e r p r e , " I h s n o d e " , r n o d l a b l , " n o t f o u n d n ") ;
r e t u r n (ERROR);

e l s e r e t u r n (r n o d i n d x) ;
} / * e n d o f f i n d r e f n * /

/ * V
l i s t s t r u (c a l l p g m) / * l i s t t h e d a t a s t r u c t u r e * /

c h a r c a l l p g m [9] ;

i n t i ;
i f (l i s t n o d e == 0) r e t u r n ;
+ + l i s t c t r ;
p r i n t f (" % s% d % s % s% s" , " d a t a s t r u c t u r e l i s t i n g ” , l i s t c t r , " f r o m " ,

c a l l p g m , " n ") ;
/ * r e t u r n ; * /

102
f o r (1 = 0 ; i < STRUCSIZ; + + i)

p r i n t f (“ %2c%4d%4d%4d%s", l a b e l (i] , r l i n k (i] , l n f o (i] ,
"n") ;

} / * e n d o f l i s t s t r u * /
/ * V

p r i n t n o d (c a l l p g m) / * l i s t n o d e s i n n o d e t a b * /
c h a r c a l l p g m [1 0] ;

i n t i ;
i f (d e b u g == 0) r e t u r n ;
p r i n t f (" % s % s % s " , " l i s t i n g o f n o d e t a b f r o m " , c a l l p g m , " n ") ;
f o r (1 = 0 ; i < NUMNODES; + + i)

p r i n t f (" % 2 c % 4 d % s " , n o d e t a b [i] . l a b , n o d e t a b [i] . i n d x , " n ") ;
) / * e n d o f p r i n t n o d * /

/* */
i s v a l s u b (t e s t l a b) / * i s t e s t l a b a v a l i d s u b s t r u c t u r e l a b e l * /

c h a r t e s t l a b ;

i n t i ;
f o r (i = 0 ; i<NUMSTRUC-l; + + i)

i f (t e s t l a b == v a l i d s t r [i])
r e t u r n (Y E S) ;

}
r e t u r n (NO) ;

} / * e n d o f i s v a l s u b * /
g e t l i n k (l i n k t y p e , n o d e i n d x)

c h a r l i n k t y p e ; / * t y p e o f l i n k * /
i n t n o d e i n d x ; / * i n d e x o f n o d e f o r w h i c h l i n k t y p e d e s i r e d * /

i f (l i n k t y p e == l l i n k s y m)
r e t u r n (l l i n k [n o d e i n d x]) ;

i f (l i n k t y p e == r l i n k s y m)
r e t u r n (r l i n k [n o d e i n d x]) ;

i f (l i n k t y p e == t h r e d s y m)
r e t u r n (r l i n k [n o d e i n d x]) ;

p r i n t f ("%s%s%s%s” , e r p r e , " i n v a l i d l i n k s y m b o l " , l i n k t y p e ,
" d e t e c t e d i n g e t l i n k n ") ;

r e t u r n (ERROR);
} / * en d o f g e t l i n k * /

/* */
w a l k s l l (b e g n o d e , r n o d l a b l)

i n t b e g n o d e ; / * i n d e x o f b e g i n n i n g n o d e o f s t r u c t u r e * /
c h a r r n o d l a b l ; / * l a b e l o f n o d e w h o s e i n d e x t o b e f o u n d * /

I / * s e a r c h s i n g l y l i n k e d l i s t f o r r n o d l a b l * /
i n t c u r s o r ; / * c u r s o r u s e d t o t r a v e r s e s t r u c t u r e * /
c u r s o r = b e g n o d e ;
w h i l e (r l i n k [c u r s o r] I * b e g n o d e)

{ i f (l a b e l [c u r s o r] = « r n o d l a b l)
r e t u r n (c u r s o r) ;

c u r s o r > r l i n k [c u r s o r] ;

103
i f (l a b e l [c u r s o r] == r n o d l a b l)

r e t u r n (c u r s o r) ;
e l s e r e t u r n (ERROR);

} / * e n d o f w a l k s l l * /
/* */

w a l k d l l (b e g n o d e , r n o d l a b l) / * s e a r c h d l l f o r r n o d l a b l * /
i n t b e g n o d e ;
c h a r r n o d l a b l ;

{ / * w a l k s l l w i l l v i s i t a l l d l l n o d e s * /
i n t r e t c o d e ;
i f ((r e t c o d e = w a l k s l l (b e g n o d e , r n o d l a b l)) == ERROR)

r e t u r n (ERROR);
e l s e r e t u r n (r e t c o d e) ;

} / * e n d o f w a l k d l l * /
/* */

w a l k r t b t (b e g n o d e , r n o d l a b l)
i n t b e g n o d e ; / * i n d e x o f b e g i n n i n g o f s t r u c t u r e * /
c h a r r n o d l a b l ; / * l a b e l o f n o d e w h o s e i n d e x i s t o b e f o u n d * /

{ / * f i n d a c e r t a i n n o d e i n r t b t * /
i n t c u r s o r ; / * u s e d t o t r a v e r s e s t r u c t u r e * /
i n t t f ; / * t h r e a d f l a g u s e d t o i d t h r e a d p a t h * /
c u r s o r = b e g n o d e ;
i f (l a b e l [c u r s o r] == r n o d l a b l)

r e t u r n (c u r s o r) ; / * h e a d n o d e * /
c u r s o r = l l i n k [c u r s o r] ;

i f (c u r s o r == NULL)
r e t u r n (ERROR); / * e m p t y t r e e * /

t f = NO;
w h i l e (c u r s o r 1= b e g n o d e)

{ i f (l a b e l [c u r s o r] == r n o d l a b l)
r e t u r n (c u r s o r) ;

i f (l l i n k [c u r s o r i 1= NULL)
{ i f (t f == NO)

c u r s o r = l l i n k [c u r s o r] ;
e l s e i f (r l i n k [c u r s o r] > 0)

(c u r s o r = r l i n k [c u r s o r] ;
t f = NO;

}
e l s e i f (r l i n k [c u r s o r] < 0)

{ c u r s o r = - r l i n k [c u r s o r] ;
t f = YES;

1 / * e n d i f o n l a b e l * /
e l s e i f (l l i n k [c u r s o r] == NULL)

{ i f (t f == NO && r l i n k [c u r s o r] > 0)
c u r s o r » r l i n k [c u r s o r] ;

e l s e i f (t f * = NO && r l i n k [c u r s o r] < 0)
{ c u r s o r = - r l i n k [c u r s o r] ;

t f = YES;
>

}
i f (c u r s o r » NULL) r e t u r n (ERROR);

104
} / * e n d o f w h i l e o n c u r s o r * /

r e t u r n (ERROR); / * i f r n o d l a b l n o t f o u n d * /
} / * e n d o f w a l k r t b t * /
/ * V

f i n d l a b (n o d e l a b) / * s e e i f n o d e l a b i s i n n o d e t a b * /
c h a r n o d e l a b ;

i n t i ;
f o r (i = 0 ; i<NUMNODES; i+ +)

{ i f (n o d e t a b [i] . l a b == n o d e l a b)
r e t u r n (Y E S) ;

r e t u r n (NO) ;
} / * e n d o f f i n d l a b * /
/* */
f i n d s l a b (n o d e l a b) / * s e e i f n o d e l a b i s i n s t r u c t a b * /

c h a r n o d e l a b ;
{

i n t i ;
f o r (i = 0 ; i < NUMSTRUC; i+ +)

{ i f (s t r u c t a b [i] . l a b == n o d e l a b)
 ̂ r e t u r n (Y E S) ;

r e t u r n (NO) ;
} / * e n d o f f i n d s l a b * /
/* */

f i l l (f i l l c u r) / * f i l l r e l e m f r o m r h s * /
i n t f i l l c u r ;
{

i n t r e t v a l ;
i f (r h s [f i l l c u r] == n u l l s y m)

{ r e l e m [0] = r h s [f i l l c u r] ;
f i l l c u r + + ;
r e l e m [l] * ' \ 0 ' ;
r e t u r n (f i l l c u r) ;

i f (i s v a l s u b (r h s [f i l l c u r]) == YES)
{ r e l e r o [0] = r h s [f i l l c u r] ;

f i l l c u r + + ;
r e l e m [l] = ' 0 ' ;
r e t u r n (f i l l c u r) ;

}
e l s e i f (r h s [f i l l c u r] == l l i n k s y m | | r h s [f i l l c u r] == r l i n k s y m

I I r h s [f i l l c u r] == t h r e d s y m)
{ r e l e m [0] * r h s [f i l l c u r] ;

r e l e m i l] = r h s [f i l l c u r + 1] ;
r e l e m [2] = ' 0 ' ;
r e t v a l <■ f i l l c u r + 2 ;
r e t u r n (r e t v a l) ;

e l s e i f (r h s [f i l l c u r] >■ ' a ' && r h s [f i l l c u r] <« ' z ')
{ r e l e m [0] « r h s [f i l l c u r] ;

105
r e l e m [l] = * 0 ' ;
f i l l c u r + + ;
r e t u r n (f i l l c u r) ;

}
e l s e i f (r h s [f i l l c u r] == ' 0 ')

{ r e l e m [0] = ' 0 ' ;
r e t u r n (f i l l c u r) ;

e l s e r e t u r n (ERROR);
} / * e n d o f f i l l * /

/* */
/* */
c a l c s w (l s t r , r s t r) / * c a l c s w i t c h v a l f r o m l e l e m & r e l e m * /

c h a r I s t r t l , r s t r (] ; / * l e f t and r i g h t e l e m e n t s * /

i n t s w v a l = 0 ;
i n t r e t c o d e ;

i f (d e b u g == YES)
p r i n t f (" % s % s % s % s " , " e n t e r e d c a l c s w " , l s t r , r s t r , " n ") ;

i f ((r e t c o d e = i s v a l s u b (l s t r [0])) == YES)
s w v a l = 3 0 ;

e l s e i f (l s t r [0] == n u l l s y m)
s w v a l = 4 0 ; / * 41 ==> n u l l , l i n k - n o d e * /

e l s e i f (l s t r [0] == l l i n k s y m I I l s t r [0] == r l i n k s y m
II l s t r [0] == t h r e d s y m)

s w v a l = 1 0 ;
i f ((r e t c o d e = i s v a l s u b (r s t r [0])) == YES)

s w v a l = s w v a l + 3 ;
e l s e i f (r s t r [0] == n u l l s y m)

s w v a l = s w v a l + 4 ; / * 14 ==> l i n k - n o d e , n u l l * /
e l s e i f (r s t r [0] == l l i n k s y m I I r s t r [0] == r l i n k s y m

I I r s t r [0] == t h r e d s y m)
s w v a l = s w v a l + 1 ;

e l s e i f (r s t r [0] >= ' a ' && r s t r [0] <= ' z ')
s w v a l = s w v a l + 2 ;

r e t u r n (s w v a l) ;
} / * e n d o f c a l c s w * /

/ * V
/* */
g e t i n d x (n o d e s y m) / * d e t e r m i n e i n d e x o f no des yra * /

c h a r n o d e s y m ;

i n t i , j ;
f o r (i « 0 ; i < n e x t n t s ; i + +)

{ i f (n o d e s y m == n o d e t a b [i] . l a b)

j * n o d e t a b [i] . i n d x ;
r e t u r n (j) ;

} / * e n d o f i f V
1

p r i n t f (” %s%s%c%s*, e r p r e , " n o d e s y m b o l " , n o d e s y m ,
” n o t f o u n d i n n o d e t a b b y g e t i n d x n *) ;

106
r e t u r n (ERROR);

} / * e n d o f g e t i n d x * /
/ * V
/ * V
g e t s t i n d (s t r u c s y m) / * d e t e r m i n e i n d e x o f s u b s t r u c sym * /

c h a r s t r u c s y m ;

i n t i ;
f o r (i = 0 ; i < n e x t s t s ; i+ +)

{ i f (s t r u c s y m == s t r u c t a b [i] . l a b)
r e t u r n (i) ;

p r i n t f (" % s % s % c % s " , e r p r e , " s t r u c t u r e s y m b o l " , s t r u c s y m ,
" n o t f o u n d i n s t r u c t a b b y g e t s t i n d n ") ;

r e t u r n (ERROR);
} / * e n d o f g e t s t i n d * /
p r i n t l a b (s t r u c t y p , w h en) / * l i s t n o d e l a b e l s o f s t r u c t u r e * /

c h a r s t r u c t y p [] ; / * t y p e o f s t r u c t u r e * /
c h a r w h e n [] ; / * p r i n t b e f o r e o r a f t e r t r a n s f o r m * /

i n t i , i n d x ;
i n t t f ; / * t h r e a d f l a g "ON" i f l a s t l i n k w as t h r e a d * /
c h a r b u f r (B U F S I Z E] ; / * p r i n t b u f f e r * / f o r (i = 0 ; i < BUFSIZE; i + +

b u f r (i] = ' ' ;
i f (s e q (s t r u c t y p , " s l l "))

i = 1 ;
i n d x = i n d e x b e g ;
w h i l e (r l i n k [i n d x] 1= i n d e x b e g)

b i i f r [i] = r l i n k s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i -- i + 2 ;
i f (i > BUFSIZE) r e t u r n (ERROR);
indx* = r l i n k [i n d x] ;
i f (i n d x < i n d e x b e g II i n d x > STRUCSIZ)

{ p r i n t f (" % s % s " , e r p r e , " c a n n o t p r i n t s t r u c t u r e — i n v a l i d l i n k n ") ;
r e t u r n (ERROR);

} / * e n d o f w h i l e * /
b u f r t i] = r l i n k s y m ; / * l a s t n o d e * /
b u f r [i + l] = l a b e l [i n d x] ;
b u f r [i + 2] = l a b e l [i n d e x b e g] ;
p r i n t f ("%s%s%s%s", s t r u c t y p , w h e n , b u f r , " n ") ;

} / * en d o f i f * /
e l s e i f (s e q (s t r u c t y p , " d l l *))

i = 1 ;
i n d x = i n d e x b e g ; ••
w h i l e (r l i n k [i n d x] 1» i n d e x b e g)
{

b u f r [i] " r l i n k s y m ;

107
b u f r t i + 1] = l a b e l [i n d x] ;
1 = i + 2 ;
i f (i > BUFSIZE) r e t u r n (ERROR);
i n d x = r l i n k [i n d x] ;
i f (i n d x < i n d e x b e g I I i n d x > STRUCSIZ)

{ p r i n t f (■ % s % s " , e r p r e , " c a n n o t p r i n t s t r u c t u r e — i n v a l i d l i n k n ") ;
r e t u r n (ERROR);

}
] / * e n d o f w h i l e * /

b u f r t i] = r l i n k s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i = i + 2 ;
i f (i > BUFSIZE) r e t u r n (ERROR);
i n d x = i n d e x b e g ;
w h i l e (l l i n k [i n d x] 1= i n d e x b e g)

b u f r t i] = l l i n k s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i = i + 2 ;
i f (i > BUFSIZE) r e t u r n (ERROR);

i n d x = l l i n k t i n d x] ;
i f (i n d x < i n d e x b e g I I i n d x > STRUCSIZ)

t p r i n t f (" % s % s " , e r p r e , " c a n n o t p r i n t s t r u c t u r e — i n v a l i d l i n k n ") ;
r e t u r n (ERROR);

}
b u f r t i] = l l i n k s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
b u f r t i + 2] = l a b e l [i n d e x b e g] ;
p r i n t f (" % s % s % s % s " , s t r u c t y p , w h e n , b u f r , " n ") ;
r e t u r n (SUCCESS) ;

) / * e n d o f i f o n d l l * /
e l s e i f (s e q (s t r u c t y p , " r t b t "))
(

i = 1 ;
i f (r l i n k t i n d e x b e g] == - i n d e x b e g && l l i n k t i n d e x b e g] == NULL)
{ b u f r t i] = t h r e d s y m ;

b u f r [i + l] = l a b e l t i n d e x b e g] ;
b u f r [i + 2 l = l a b e l t i n d e x b e g] ;
p r i n t f ("%s%s%sn", " s t r u c t u r e o f t y p e " , s t r u c t y p , b u f r) ;

r e t u r n (SUCCESS);
>

b u f r t i] « l l i n k s y m ;
b u f r [i + l] = l a b e l t i n d e x b e g] ;
i = i + 2 ;
i n d x = l l i n k t i n d e x b e g] ;
t f = NO;
w h i l e (i n d x 1= i n d e x b e g)

i f (l l i n k t i n d x] !■ NULL)
{ i f ^ (t f “ NO)

108
b u f r [i] = l l i n k s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i n d x = l l i n k [i n d x] ;
i = i + 2 ;

e l s e i f (r l i n k [i n d x] > 0)

b u f r [i] = r l i n k s y m ;
b u f r [i + l] = l a b e l C i n d x l ;
i n d x = r l i n k [i n d x] ;

t f = NO;
I i = i + 2 ;

e l s e i f (r l i n k [i n d x j < 0)

b u f r [i] = t h r e d s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i n d x = - r l i n k [i n d x] ;
t f = YES;
i = i + 2 ;

}
} / * e n d o f i f on l l i n k * /

e l s e i f (l l i n k [i n d x] ==* NULL)
(l E ^ (t f == NO && r l i n k [i n d x] > 0)

b u f r [i] = r l i n k s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i n d x = r l i n k [i n d x] ;
i = i + 2 ;

}
e l s e i f (t f == NO && r l i n k [i n d x] < 0)

b u f r [i] = t h r e d s y m ;
b u f r [i + l] = l a b e l [i n d x] ;
i n d x = - r l i n k [i n d x] ;
i = i + 2 ;
t f = YES;

}
} / * e n d o f e l s e i f o n l l i n k * /

i f (i > BUFSIZE) r e t u r n (ERROR);
} / * e n d o f w h i l e * /
b u f r [i] = l a b e l [i n d e x b e g] ;
p r i n t f ("%s%s%s%s", s t r u c t y p , w h e n , b u f r , " n ") ;

] / * e n d o f e l s e i f o n r t b t • /
e l s e p r i n t f (" % s % s " , e r p r e , " i n v a l i d s t r u c t u r e t y p e i n p r i n t l a b n ") ;

} / * e n d o f p r i n t l a b * /

APPENDIX 2

•lex" Specification

%%
{ r e t u r n (A N D) ;)
{ r e t u r n (C O L) ; }
{ r e t u r n (0) ; }

"— >■ { r e t u r n (A R C) ; }
{ r e t u r n (FARO); }

f { y y l v a l = y y t e x t { 0] - ' a ' ;
r e t u r n (FHEAD); }

h { y y l v a l = y y t e x t { 0] - ' a ' ;
r e t u r n (HEAD); }

t r a n s f o r m { r e t u r n (TRANSFORM); }
f r e e { r e t u r n (F R E E) ; }
s l l { r e t u r n (S L L) ; }
d l l { r e t u r n (D L L) ; }
r t b t { r e t u r n (R T B T) ; }
[a - e i - z g] { y y l v a l = y y t e x t { 0] - ' a ' ;

r e t u r n (NLAB) ; }
R { r e t u r n (R L I N K); }
L { r e t u r n (L L I N K) ; }
Q { r e t u r n (THREAD);}
N { r e t u r n (N U L) ; }
[S - 2 J { y y l v a l = y y t e x t [0] - ' A ' ;

r e t u r n (S L A B) ; }
[A-KM-P] { r e t u r n (E R R) ; }
t] + { ; }[n] + { ; }

109

APPENDIX 3

•yacc* Specification

%start stmt
%token LLINK RLINK THREAD NLAB SLAB HEAD FHEAD
%token TRANSFORM AND SLL DLL RTBT FREE
%token ARO FARO COL ERR
%token NUL
%%
stmt : TRANSFORM FREE AND SLL COL frees ARO frees FARO slls ARO slls

{ if (($6 != $8) I I ($10 := $12))
printf ("%sn", "** warning - unmatched reference nodes");

I TRANSFORM SLL AND FREE COL slls ARO slls FARO frees ARO frees
{ if (($6 != $8) I I ($10 1= $12))

printf ("%sn", *** warning - unmatched reference nodes");

I TRANSFORM FREE AND DLL COL frees ARO frees FARO dlls ARO dlls
{ if (($6 != $8) I I ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");

I TRANSFORM DLL AND FREE COL dlls ARO dlls FARO frees ARO frees
{ if (($6 i= $8) I 1 ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");

I TRANSFORM FREE AND RTBT COL frees ARO frees FARO rtbts ARO rtbts
{ if (($6 1= $8) I 1 ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");

1 TRANSFORM RTBT AND FREE COL rtbts ARO rtbts FARO frees ARO frees
{ if (($6 != $8) I I ($10 1= $12))

printf ("%sn", "** warning - unmatched reference nodes");
}

I TRANSFORM RTBT AND RTBT COL r t b t s ARO r t b t s FARO r t b t S ARO r t b t S
{ i f (($ 5 1= $ 8) II ($ 1 0 1= $ 1 2))

p r i n t f ("% sn " , "** w a r n i n g - u n m a t c h e d r e f e r e n c e n o d e s *) ;

I TRANSFORM RTBT AND FREE COL r t b t s ARO r t b t s n FARO f r e e s ARO f r e e s
{ i f (($ 6 t > $ 8) I I ($ 1 0 1 - $ 1 2))

 ̂ p r i n t f ("%s n" , "** w a r n i n g - u n m a t c h e d r e f e r e n c e n o d e s ") ;

I TRANSFORM RTBT AND RTBT COL r t b t s ARO r t b t s n FARO rtbts ARO r t b t S
{ i f (($ 6 1» $ 8) II ($ 1 0 l « $ 1 2))

p r i n t f ("% sn " , "** w a r n i n g - u n m a t c h e d r e f e r e n c e n o d e s *) ;

110

Ill

}
#

f r e e s : RLINK FHEAD
{ $$ = $2 ; }

I RLINK FHEAD RLINK NLAB
{ $$ = $2 ; }

?
s l l s ; RLINK NLAB

{ $$ = $2 ; }
I RLINK NLAB RLINK NLAB

{ i f ($ 2 == $ 4)
p r i n t f (" % s n " , " * * w a r n i n g — i l l e g a l i d e n t i c a l n o d e l a b e l s *) ;
$$ = $2;

}
I RLINK HEAD

{ $$ = $2 ;}
I RLINK HEAD RLINK NLAB

I $$ = $2;)
t

d l l s : RLINK HEAD SLAB HEAD
{ $$ = $2; }

I RLINK HEAD RLINK NLAB SLAB LLINK NLAB HEAD
{ if ($4 != $7)

p r i n t f ("% sn " , "** w a r n i n g - u n m a t c h e d n o d e l a b e l s ") ;
$S = $2;

}
I RLINK NLAB RLINK NLAB SLAB LLINK NLAB LLINK NLAB

{ i f ({ $ 2 1= $ 9) I I ($4 != $7))
p r i n t f ("% sn " , "** w a r n i n g - u n m a t c h e d n o d e l a b e l s ") ;

$$ = $2 ;
}

I RLINK NLAB SLAB LLINK NLAB
{ i f ($ 2 1= $ 5)

p r i n t f ("% sn " , "** w a r n i n g - u n m a t c h e d n o d e l a b e l s ") ;
$$ = $2;

}
I RLINK NLAB LLINK HEAD LLINK NLAB

{ if ($2 1= $6)
p r i n t f {"%sn" , "** w a r n i n g - u n m a t c h e d n o d e l a b e l s ") ;

$$ = $2 ;
)

I RLINK NLAB RLINK NLAB LLINK HEAD LLINK NLAB LLINK NLAB
{ if (($2 1= $10) II ($4 != $8))

printf ("%sn", "** warning - unmatched node labels");
$$ = $2;

}
;

r t b t s : THREAD HEAD HEAD
{ $$ = $2; }

I LLINK HEAD SLAB HEAD
{ $$ = $2; >

I THREAD NLAB

112
{ $$ = $2; }

I RLINK NLAB SLAB
{ $$ = $2; }

I LLINK NLAB SLAB THREAD NLAB
{ $$ = $2;

i f ($ 2 1= $ 5)
p r i n t f (" S s n " , " * * w a r n i n g - u n m a t c h e d n o d e l a b e l s ") ;

}
I LLINK NLAB SLAB RLINK NLAB SLAB

{ $$ = $2;
i f ($ 2 1= $ 5)

p r i n t f ("%sn", " * * w a r n i n g - u n m a t c h e d n o d e l a b e l s ") ;
i f ($ 3 == $ 6)

printf ("%s%sn", "warning-identical substructure ",
"labels");

}
1 RLINK NLAB THREAD NLAB

{ $$ = $2;
if ($2 == $4)
printf ("%sn", "**warning-illegal identical node labels");

}
I LLINK NLAB THREAD NLAB THREAD NLAB

I $$ = $2;
if ($2 == $4 11 $4 == $6)
printf ("%sn", "**warning-illegal identical node labels");

if ($2 != $6)
printf ("%sn", "**warning-unmatched node labels");

}
I LLINK NLAB THREAD NLAB RLINK NLAB SLAB

I $$ = $2;
if ($2 == $4 II $4 == $6)
printf ("%sn", "**warning-illegal identical node labels");

if ($2 != $6)
printf ("%sn", "**warning-unraatched node labels");

I LLINK NLAB THREAD NLAB RLINK NLAB THREAD NLAB
{ $$ = $2;

if ($2 == $4 II $4 == $6 II $6 == $8
II $2 == $8 II $4 == $8)

printf ("%sn", "**warning-illegal identical node labels");
if ($2 1= $6)

printf ("%sn", "**warning-unmatched node labels”);

I LLINK NLAB SLAB RLINK NLAB THREAD NLAB
t $$ = $2;

i f ($ 2 == $7 II $ 5 $ 7)
p r i n t f ("%sn" , " * * w a r n i n g - i l l e g a l i d e n t i c a l n o d e l a b e l s *) ;

i f ($ 2 != $ 5)
p r i n t f {"%sn", * * * w a r n i n g - u n m a t c h e d n o d e l a b e l s ”) ;

I LLINK HEAD THREAD NLAB HEAD
I $$ » $2; }

113
S

rtbtsn : LLINK NLAB NUL THREAD NLAB
{ $$ = $2;

if ($2 1= $5)
printf ("%sn", "**warning-unmatched node labels");

I LLINK NLAB NUL RLINK NLAB SLAB
{ $$ = $2;

if ($2 != $5)
printf ("%sn", "**warning-unmatched node labels");

I LLINK NLAB NUL RLINK NLAB THREAD NLAB
{ $$ = $2;

if ($2 == $7 11 $5 == $7)
printf ("%sn", "**warning-illegal identical node labels");

if ($2 1= $5)
printf ("%sn", "**warning-unmatched node labels");

}
I LLINK HEAD NUL THREAD HEAD HEAD

{ $$ = $2;)
;

%%
i n c l u d e " l e x . y y . c "

