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Abstract 
The Mesoscale Predictability Experiment (MPEX) conducted during the spring 

of 2013 included frequent coordinated sampling of near-storm environments via 

upsondes.  These unique observations were taken to better understand the upscale 

effects of deep convection on the environment, and are used to validate the accuracy of 

convection-allowing (Dx = 3 km) model ensemble analyses. A 36-member ensemble 

was created with physics diversity using the Weather Research and Forecasting model, 

and observations were assimilated via the Data Assimilation Research Testbed using an 

ensemble adjustment Kalman filter.  A four-day sequence of convective events from 28-

31 May 2013 in the south central United States was analyzed by assimilating Doppler 

radar and conventional observations.  No MPEX upsonde observations were 

assimilated.  Since the ensemble mean analyses produce an accurate depiction of the 

storms, the MPEX observations are used to verify the accuracy of the analyses of the 

near-storm environment.   

The MPEX observations reveal modest analysis errors overall when considering 

all samples, although specific environmental regions reveal larger errors in some state 

fields. Since the environmental ensemble analyses have been thoroughly verified, 

convection-allowing models are used to assess the short-term (1-2 hours) impacts of 

convection on the surrounding environment. Convection evolution dependencies on the 

environment are assessed using the ensemble sensitivity technique. This includes 

forecast proxies for various hazards including tornadoes, hail, and damaging winds.  

Results suggest scenarios where environmental modifications by convection are 

significant in further convection evolution, supporting the notion of storm-environment 

feedbacks. 
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Chapter 1: Introduction  
 

Multiple portions of this dissertation are direct excerpts published in the Kerr et 

al. (2017; © American Meteorological Society). This includes most of Chapters 1,2, and 

3. 

1.1 Background and motivation 

Convection-allowing models (CAMs) can improve predictions of the 

organization and evolution of convection (e.g., Kain et al. 2006, 2008; Clark et al. 

2010a,b).  Reliable forecasts of deep convection are needed to improve warnings for 

associated high-impact meteorological phenomena (e.g., damaging winds, flash 

flooding, hail, tornadoes; Stensrud et al. 2009, 2013).  The practical predictability of 

such events is largely dependent on having accurate initial conditions and small model 

error (Zhang et al. 2007; Cintineo and Stensrud 2013).  Results from Cintineo and 

Stensrud (2013) suggest that convective environments must be well represented by the 

models to ensure reasonable forecast accuracy.  Thus, one facet that must be well 

depicted is the impact of long-lived convection on the environment, i.e. upscale 

feedbacks.  Proper depictions of these feedbacks should lead to better short-term 

forecasts.  The largest hindrance to evaluating the accuracy of model analyses of near-

storm environments is the lack of sufficient observations to perform such studies. 

 The Mesoscale Predictability Experiment (MPEX) included frequent, 

coordinated sampling of near-storm environments from 15 May – 15 June 2013 across 

the Great Plains of the United States using radiosondes (also called upsondes or sondes) 

(Weisman et al. 2015; Trapp et al. 2016; Hitchcock et al. 2016).  One goal of MPEX 

was to observe short-term storm-induced changes in the environment via upsondes. 
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These upsondes provided vertical profiles of temperature, humidity, pressure, and zonal 

and meridional wind components at a variety of locations near areas of deep convection 

and thus should have sampled the upscale feedbacks from convection on the nearby 

mesoscale environment.  While many previous studies have demonstrated the impacts 

of deep convection on the surrounding environment through either model simulations 

(e.g., Maddox 1980; Fritsch and Maddox 1981b; Brooks et al. 1994; Stensrud 1996; 

Stensrud and Anderson 2001) or observations (e.g., Fritsch and Maddox 1981a; Parker 

2014), the number of near-storm environment observations has been limited, causing 

extensive verification to be neglected.   

 Mesoscale convective systems (MCSs) are known to be a cause of upper-

tropospheric meso-alpha-scale anticyclones (Ninomiya 1971a,b; Maddox 1980; Fritsch 

and Maddox 1981; Anabor et al. 2009; Trier and Sharman 2009; Metz and Bosart 

2010).  With these anticyclones, 200 hPa winds and geopotential heights can be 

perturbed by over 20 m s-1 and 80 m, respectively (Leary 1979; Fritsch and Maddox 

1981; Perkey and Maddox 1985; Smull and Augustine 1993).  These perturbations often 

are observed relatively soon after the convective event (6-24 h; Weisman et al. 2015).  

Jet-streaks have also been shown to be enhanced due to the presence of MCSs (Keyser 

and Johnson 1984; Wolf and Johnson 1995a,b).  Simulated supercells increase storm-

relative environmental helicity (SREH) and convective available potential energy 

(CAPE) within convective inflow-regions (Brooks et al. 1994).  Low-level inflow to 

deep convection also increases if the convection is persistent (Stensrud 1996).   

 Although many studies have described the impacts of deep convection on the 

large-scale environment, few have focused on nearby mesoscale environmental impacts 
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and the accuracy of numerical weather models’ depictions of these alterations.  While 

CAMs can successfully simulate the structure of convection via radar data assimilation 

(e.g., Snyder and Zhang 2003; Dowell et al. 2004; Yossouf et al. 2013, 2015; Johnson et 

al. 2015), it is unknown whether or not radar data assimilation with a CAM provides 

sufficient information for storm-scale model analyses to reasonably represent the 

changes in the near-storm environment from convective feedbacks.  Using upsonde 

observations collected from near-storm environments during MPEX, a more complete 

evaluation of model ensemble analysis accuracy within the environments surrounding 

deep convection is performed.  This evaluation is done in order to assess whether the 

numerical model’s depiction of the environments influenced by convection is 

reasonable.  This evaluation will further reveal any systematic biases and model errors 

within the convectively perturbed environment that could influence subsequent 

predictions of convective evolution.    

 Once verified as previously stated, ensemble analyses will be used to analyze 

the impacts of convection on the surrounding mesoscale environment in the low-, mid-, 

and upper-troposphere. These storm-induced environmental changes may have 

significant effects on further convection predictability. Dependencies of convection 

evolution on the surrounding environment will be evaluated using an ensemble 

sensitivity technique (Torn and Hakim 2008). Convection evolution may also be 

dependent on the environmental modifications described previously. The broader 

understanding of storm-environment relationships that are the focus of this study will 

ultimately improve short-term predictability of potentially hazardous convective events 

such as tornadoes, hail, and flash flooding.  
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1.2. MPEX upsonde operations and convective events 

 The observational foundation of this research comes from the special MPEX 

upsonde observations. Four mobile upsonde units operated during MPEX to sample pre-

convective (PDE strategy) and near-storm environments that were convectively 

disturbed (CDE; Weisman et al. 2015; Trapp et al. 2016).  These units were from the 

National Severe Storms Laboratory (NSSL), Purdue University, Colorado State 

University (CSU), and Texas A&M University (TAMU).  NSSL, Purdue, and TAMU 

used radiosondes manufactured by International Met Systems (iMet) while CSU made 

use of Vaisala radiosondes.  The differences in observation error and data quality 

between these two radiosonde systems are negligible (Trapp et al. 2016).  Sondes were 

carried by 200 gram latex balloons that could ascend above the tropopause, having 

maximum flight times of approximately one hour.  During CDE sampling, observations 

were collected in convective inflow, convective outflow, and anvil regions among 

others.   

The four convective events highlighted in this study occurred from 28 – 31 May 

2013 in portions of Texas, Oklahoma, and Kansas.  Forcing for convection initiation 

generally stemmed from drylines, with modest large-scale forcing resulting from a 

cyclonic vorticity maximum ejecting into the central US.  All four MPEX upsonde units 

targeted a diminishing thunderstorm cluster in the Oklahoma Panhandle moving into 

southern Kansas on 28 May.  The units predominantly sampled the downstream 

environment at fixed locations, beginning at 2000 UTC in a rectangular formation, to 

measure environmental changes as convection approached their locations (Fig. 1.1a).  

The final sonde was released around 0030 UTC 29 May.  An example of 
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simultaneously released upsonde profiles show how a realistic convective environment 

can vary over short distances (< 150 km; Fig. 1.2).  The NSSL and TAMU launches 

were approximately 115 km apart, but TAMU observed a stout capping inversion while 

NSSL – located closer to the dryline - did not.  The following day (29 May) featured a 

developing squall line in the Texas Panhandle that eventually translated into western 

Oklahoma.  Upsondes were released in the wake of the squall line and sampled the 

environment around a bookend vortex on the convective line’s northern edge (Fig. 

1.1b).  Deployments shifted to central Oklahoma for 30 and 31 May, where supercell 

thunderstorms were targeted.  The inflow region of a nontornadic supercell was 

sampled every 30 minutes for several hours on 30 May by NSSL, while the three other 

units sampled the convective wake and environment to the north of this predominately 

eastward moving supercell (Fig. 1.1c).  NSSL, Purdue, and CSU sampled the tornadic 

supercell that produced a large tornado near El Reno, Oklahoma on 31 May (Bluestein 

et al. 2015).  As in the previous day, both inflow and wake regions were sampled 

frequently (Fig. 1.1d).  

Over this four-day period, a total of 81 upsondes were released.  It should be 

noted that some upsondes did not ascend very far above 600 hPa after release for a 

variety of reasons (interference with convection, balloon burst, etc.), so only the profiles 

below upsonde termination are used for verification.  Manual quality control also was 

applied to the entire upsonde data set.  The estimated accuracies of the upsonde 

observations are 0.5 K for temperature, 5% for relative humidity, 1 m s-1 for the zonal 

and meridional wind components, and 1 hPa for pressure between the surface and 

tropopause.   
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The next chapter outlines the various methodologies used within this volume. 

Chapter 3 presents the results of near-storm environment verification using MPEX 

upsonde observations (Kerr et al. 2017). Chapter 4 quantifies select environmental 

modifications by convection. Chapter 5 assesses the sensitivity of convection evolution 

to environmental features.  
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Figure 1.1. Hourly observed reflectivity 30 dBZ contours for (a) 28 May 2100 UTC 
(black), 2200 UTC (blue), and 2300 UTC (green), (b) 29 May 2100 UTC (black), 2200 
UTC (blue), and 2300 UTC (green), (c) 30 May 1900 UTC (black), 2000 UTC (blue), 
2100 UTC (green), and 2200 UTC (gray), (d) 31 May 2200 UTC (black), 2300 UTC 
(blue), 1 June 0000 UTC (green), 0100 UTC (gray).  MPEX upsonde releases are 
denoted with circles (NSSL-red, Purdue-orange, CSU-yellow, TAMU-purple).
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Figure 1.2. 2100 UTC 28 May MPEX sounding skew-T thermodynamic profiles and 
hodographs with NSSL (red), Purdue (orange), CSU (green), and TAMU (purple). 
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Chapter 2: Methodology 
 

 The four-day sequence chosen is simulated using the Advanced Research 

version of the Weather Research and Forecasting model (WRF-ARW) version 3.4.1 

(Skamarock et al. 2008).  A nested domain is placed over portions of Texas, Oklahoma, 

and Kansas in order to encompass all targeted convection during the 28 – 31 May 

period.  This inner domain has a horizontal grid spacing of 3 km while the outer domain 

(CONUS) has a grid spacing of 15 km (Fig. 2.1).  Both domains used 51 vertical layers 

from the surface to 10 hPa.  The NSSL Experimental Warn-on-Forecast (WoF) System 

for ensembles (NEWS-e) is utilized (Wheatley et al. 2015; Jones et al. 2016).  This 36-

member ensemble is initialized at 0000 UTC each respective day using a downscaled 

21-member Global Ensemble Forecast System (GEFS).  The boundary conditions for 

the outer domain are also created using the GEFS.  The outer domain serves as the 

boundary conditions for the inner domain.  

Ensemble members are developed following Wheatley et al. (2015) using a 

combination of 18 GEFS members and 18 physics combinations of planetary boundary 

layer (PBL), long- and short-wave radiation, and convective (outer domain only) 

parameterization schemes (Table 2.1).  Members 1-18 are initialized with the 

corresponding GEFS member (member 1 with GEFS member 1, member 2 with GEFS 

member 2, etc.) and are run with the corresponding numerical physics combination 

from Table 2.1.  Members 19-36 are initialized with the same 18 GEFS members in 

descending order (member 19 with GEFS member 18, member 20 with GEFS member 

17, etc.) while running the physics combinations in ascending order (member 19 with 

combination 1, member 20 with combination 2, etc.)  All ensemble members use the 
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Thompson et al. (2008) microphysics scheme.  Since there are only 18 unique initial 

conditions at 0000 UTC (due to only 18 GEFS members), the model is integrated one 

hour forward to 0100 UTC each day to create 36 unique initial conditions.   

Member PBL SW Radiation LW Radiation Cumulus 
1 YSU Dudhia RRTM Kain-Fritsch 
2 YSU RRTMG RRTMG Kain-Fritsch 
3 MYJ Dudhia RRTM Kain-Fritsch 
4 MYJ RRTMG RRTMG Kain-Fritsch 
5 MYNN Dudhia RRTM Kain-Fritsch 
6 MYNN RRTMG RRTMG Kain-Fritsch 
7 YSU Dudhia RRTM Grell 
8 YSU RRTMG RRTMG Grell 
9 MYJ Dudhia RRTM Grell 
10 MYJ RRTMG RRTMG Grell 
11 MYNN Dudhia RRTM Grell 
12 MYNN RRTMG RRTMG Grell 
13 YSU Dudhia RRTM Tiedtke 
14 YSU RRTMG RRTMG Tiedtke 
15 MYJ Dudhia RRTM Tiedtke 
16 MYJ RRTMG RRTMG Tiedtke 
17 MYNN Dudhia RRTM Tiedtke 
18 MYNN RRTMG RRTMG Tiedtke 

 
Table 2.1. Physics options applied to 18 GEFS members.  This set of physics options 
also is applied to these same 18 GEFS members in reverse order to create members 19-
36 (for example, member 19 is initialized with GEFS member 18 but has physics option 
1 applied).  The Thompson microphysics and RAP land surface parameterization is 
applied to all members. PBL schemes include the Yonsei University (YSU), Mellor–
Yamada–Janjic (MYJ), and Mellor–Yamada–Nakanishi–Niino (MYNN) schemes. 
Shortwave (SW) and longwave (LW) radiation schemes include the Dudhia shortwave 
scheme, Rapid Radiative Transfer Model (RRTM) shortwave scheme, and the Rapid 
Radiative Transfer Model–Global (RRTMG) shortwave and longwave schemes 
(adapted from Wheatley et al. 2015) 
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Figure 2.1. Outer model domain (CONUS; 15 km grid spacing) and nested, convection-
resolving domain (3 km grid spacing) which includes KS, OK, and the TX Panhandle. 
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2.1 Mesoscale data assimilation 

 Hourly cycles of mesoscale data assimilation begin at 0100 UTC, when the first 

analysis is created.  Conventional observations of temperature, dewpoint, pressure, and 

zonal and meridional wind components, provided by the NOAA Meteorological 

Assimilation Data Ingest System (MADIS), are assimilated using an ensemble 

adjustment Kalman filter (EAKF) available via the Data Assimilation Research Testbed 

(DART; Anderson 2001; Anderson et al. 2009).  These observations platforms include 

METAR and marine surface stations, the Aircraft Communications Addressing and 

Reporting System (ACARS), and rawinsondes along with data from MADIS mesonet 

and the Oklahoma Mesonet.  The MPEX upsonde observations are not assimilated.   

 The Gaspari and Cohn (1999) Gaussian-like localization function is utilized for 

all observations assimilated.  The horizontal localization cutoff for non-mesonet 

mesoscale observations is approximately 458 km with a vertical localization cutoff of 8 

km [consistent with Wheatley et al. (2012, 2015)].  Mesonet observations have a 

horizontal localization of approximately 60 km [consistent with Sobash and Stensrud 

(2015), Wheatley et al. (2015), and Jones et al. (2016)].  Ensemble spread is maintained 

using spatial and temporal prior adaptive inflation (Anderson 2007).   

 

2.2 Storm-scale data assimilation 

 At a predetermined time based on each day’s convective event (Table 2.2), 

storm-scale data assimilation begins.  Level II radar data (radar reflectivity and radial 

velocity; radars for each event listed in Table 2.2) are assimilated every 15 minutes 

along with MADIS mesonet, Oklahoma Mesonet, and conventional rawinsonde 
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observations.  As with the outer domain, no MPEX observations are assimilated.  The 

horizontal localization cutoff for radar observations is 18 km with a 6 km vertical cutoff 

(Yussouf et al. 2013; Wheatley et al. 2014, 2015; Jones et al. 2016).  Surface and 

conventional rawinsonde observations retain the identical localization specifications as 

used in mesoscale data assimilation.  This assimilation only updates the inner domain as 

the parent domain continues to serve as lateral boundary conditions without update from 

data assimilation.  Radar reflectivity observations less than 10 dBZ are considered 

clear-air reflectivity observations and set to 0 dBZ (Wheatley et al. 2015).  Radial 

velocity observations are only assimilated if they are collocated with reflectivity 

observations exceeding or equal to 20 dBZ.   

 After quality control of radar observations, the data are objectively analyzed to a 

6-km Cartesian grid using the Cressman scheme (Cressman 1959) via the Observation 

Processing and Wind Synthesis (OPAWS; Majcen et al. 2008) software.  Radar 

observations collected within a 15-minute window centered on the analysis time are 

assimilated.  Observation errors of 5 dBZ for radar reflectivity and 3 m s-1 for radial 

velocity are assumed uniform and constant throughout each experiment (Dowell et al. 

2004; Aksoy et al. 2009; Yussouf et al. 2013, Wheatley et al. 2015; Jones et al. 2016).  

Convection spin-up is induced by the additive noise technique developed by Dowell and 

Wicker (2009).  Perturbations are added to the temperature, dewpoint, and horizontal 

wind fields in each member at locations where the reflectivity innovations are >10 dBZ 

and reflectivity observations are >25 dBZ (Sobash and Wicker 2015).     

 The 15-minute storm-scale data assimilation cycling continues until a 

predetermined ending time that is unique to each experiment (Table 2.2).  The ending 
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times are based on the end of MPEX upsonde operations.  High-resolution (Dx = 3 km) 

ensemble analyses are thus available every 15 minutes from convection initiation to the 

end of MPEX operations for each of the four cases.  MPEX upsonde observations are 

windowed to the closest 15-minute analysis time to the upsonde release time.  All 

observations collected by each sonde are considered valid at this analysis time.  

Ensemble sounding profiles are created for each MPEX upsonde by linearly 

interpolating the ensemble analysis output to the horizontal sonde location at 

logarithmically interpolated 25 hPa vertical increments.  Windowing each observation 

throughout the flight did not result in statistically significant differences (not shown).     

 

Date Event Radars Start 
Time 

End Time Upsondes 

28 May Oklahoma Panhandle; 
southern Kansas 
thunderstorm cluster 

KDDC, 
KICT, 
KAMA, 
KVNX 

1900 
UTC 

0200 UTC 
(29 May) 

18 

29 May Texas Panhandle; 
western Oklahoma 
bow echo and bookend 
vortex 

KAMA, 
KFDR, 
KDDC, 
KVNX 

1700 
UTC 

2345 UTC 20 

30 May Central Oklahoma 
non-tornadic supercell 

KTLX, 
KFDR 

1700 
UTC 

2300 UTC 28 

31 May Central Oklahoma 
tornadic supercell 

KTLX, 
KFDR, 
KVNX 

2100 
UTC 

0230 UTC 
(01 June) 

15 

 
 
Table 2.2.  Description of the convective events each day.  The start and end times of 
radar data assimilation are listed with the corresponding radars that collected the data 
including Dodge City, KS (KDDC), Amarillo, TX (KAMA), Vance Air Force Base, 
OK (KVNX), Wichita, KS (KICT), Oklahoma City, OK (KTLX), and Frederick, OK 
(KFDR).  The number of MPEX upsondes released during each event are listed last.   
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2.3 Convective perturbation technique 

 Severe storms often form in environments with strong horizontal gradients and 

rapid temporal changes in vertical wind shear and instability (Cortinas and Stensrud 

1995; Wagner et al. 2008; Kerr et al. 2017).  Thus, it is important to separate the 

evolution of the environment from any changes attributable to convective feedbacks. A 

method is developed to discern whether short-term changes in the environment are 

convectively induced or not.  

As discussed earlier, the forecasts are produced on an outer domain with 

parameterized convection, and inner domain analyses are created with explicit 

convection via the Thompson microphysics scheme. An investigation of the outer 

domain forecasts shows that parameterized convection did not occur in the regions 

targeted during MPEX. This situation suggests that the outer domain forecast can be 

used to quantify the environmental changes not linked to deep convection. For the inner 

domain, environmental changes with time include both convectively-induced changes 

as well as other environmental changes.  Thus, using the changes on both the inner and 

outer domain, the environmental impacts by convection are revealed by subtracting the 

changes on the outer domain from these on the inner domain. This difference represents 

the short-term changes in the near-storm environment induced by convection. 

To calculate the difference fields, temporal changes in the outer domain model 

state are first linearly interpolated in the horizontal to the Dx = 3 km grid points on the 

inner domain, and this downscaled outer domain is then subtracted from the inner, 

convection-allowing domain change of the same variable.  The difference reveals 

environmental variables that have been altered by nearby convection.  Fig. 2.2 displays 
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an example of the outer and inner domain 0-6 km vertical wind shear change over a one 

hour period and the difference between these two (inner – outer) which reveals impacts 

by convection on the surrounding shear field. 
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Figure 2.2. One hour changes in ensemble mean analysis 0-6 km vertical wind shear 
from 2130 – 2230 UTC on 31 May 2013 (filled) and low-level reflectivity analysis 
(black contours), (a) mesoscale domain (b) storm-scale domain (c) difference between 
mesoscale and storm-scale domain, revealing changes induced by convection. 
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2.4 Ensemble sensitivity analysis 

Ensemble sensitivity analysis (ESA) is a technique that uses a group of 

ensemble forecasts to reveal dependencies of forecast metrics on variables (same or 

different) at an earlier time, including initial conditions from which the forecasts are 

initialized (Ancell and Hakim 2007; Hakim and Torn 2008; Torn and Hakim 2008). 

This method is a simple linear regression derived from the response of a given scalar 

forecast metric to an initial condition variable. The sensitivity is defined by 

𝜕𝐽
𝜕𝑥

=
𝑐𝑜𝑣(𝐽, 𝑥)
𝑣𝑎𝑟(𝑥)

 

where J is a scalar forecast metric, x is an initial condition variable, and cov and var are 

the covariance and variance of the given variables, respectively. 

One advantage of ESA is that it is computationally inexpensive compared to 

adjoint sensitivity (LeDimet and Talagrand 1986). ESA has been thoroughly applied to 

synoptic-scale phenomena including mid-latitude cyclones (Ancell ad Hakim 2007; 

Torn and Hakim 2008; Garcies and Homar 2009, 2010; Torn and Hakim 2009; Chang 

et al. 2013; McMurdie and Ancell 2014) and tropical cyclones (Torn 2010; Ito and Wu 

2013; Torn and Cook 2013; Xie et al. 2013; Torn 2014). Fig. 2.3 is adapted from Torn 

and Hakim (2008) and shows sensitivities of 24-hour forecast mean sea-level pressure 

(MSLP) within a designated response region, in this case western Washington State, to 

initial condition MSLP. From these results, it is apparent that higher initial condition 

MSLP over the Pacific Ocean in regions of positive sensitivity will result in higher 

average MSLP within the response region in a 24-hour forecast. Torn and Hakim (2008) 
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test this method by inserting or denying observations for assimilation. This technique 

successfully verifies the ESA results.  

ESA has recently been applied on the mesoscale to examine sensitivities in 

convection forecasts (Bednarczyk and Ancell 2015; Torn and Romine 2015; Weisman 

et al. 2015; Hill et al. 2016; Romine et al. 2016). In these studies, ESA is applied to 

spatially averaged convection-related variables, such as reflectivity, vertical velocity, 

and precipitation. Bednarczyk and Ancell (2015) and Hill et al. (2016) show convection 

to be sensitive to upstream, synoptic-scale features in both the upper and lower 

troposphere. Torn and Romine (2015), Weisman et al. (2015), and Romine et al. (2016) 

use ESA in cases during MPEX where dropsonde observations were targeted in regions 

of high sensitivity. Results from Romine et al. (2016) suggest targeted observations of 

upstream features can help improve convection forecasts in the 12-24 hour range.  

 

2.4.1 ESA on the storm-scale 

This study applies ESA to short-term (1-2 hour) forecasts of individual 

thunderstorms on 29, 30 and 31 May 2013. ESA must be applied to very short-term 

forecasts in order for relationships between initial condition variables and forecast 

metrics to have somewhat of a linear relationship. Applying ESA to longer-term 

forecasts, say 3-6 hours, of individual storms would not yield meaningful results and the 

linear assumption would fail. The sensitivity of storm-related forecast metrics, including 

storm averaged reflectivity and updraft helicity (UH), to environmental initial condition 

variables, including moisture and vertical wind shear, is investigated. UH is a measure 

of updraft rotation defined by 
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𝑈𝐻 = 	 𝑤𝜁𝑑𝑧
45

46
 

where w is updraft velocity, ζ is the vertical component of relative vorticity, and zt and 

z0 are heights (Kain et al. 2008). Since environmental features that will affect 

convection evolution on the time scale of 1-2 hours are generally in close proximity to 

convective storms (< 100 km), a localization radius is placed centered on the main 

updraft of the supercell cases of 30 May and 31 May only. Localization is not applied to 

the 29 May case since the convective system is of larger scale. Localization removes 

distant spurious sensitivities that can arise due to ensemble sampling error, a common 

issue in ensemble data assimilation and forecasting (e.g., Wheatley et al. 2015; Jones et 

al. 2016; Kerr et al. 2017). 

 

 2.4.2 ESA statistical significance testing 

 To counteract potential ensemble sampling error, a statistical significance test, 

specifically a one-sample t-test that reveals the standard error-slope ratio, is applied to 

remove sensitivities that are statistically insignificant. This test is applied to the estimate 

of the sample distribution regression slope coefficient with a 95% confidence interval 

(p-value < 0.05; Wilks 2011, section 7.2.5). If a regression slope has a p-value < 0.05, 

there is a < 5% chance the observed effect in the sample is consistent with the null 

hypothesis meaning one can reject the null hypothesis that changes to an initial 

condition do not affect a forecast metric. Results suggest that when a relationship 

between an initial condition variable and forecast metric is highly nonlinear, the 

sensitivity will likely not pass the significance test since the standard error-slope ratio is 

too large. Example scatterplots illustrate statistically significant and insignificant 
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sensitivities (Fig. 2.4). Statistically significant sensitivities are represented by a notable 

regression slope, whereas insignificant regression slopes are small in magnitude. This 

test can be imperfect, where sensitivities representing known physical variable 

relationships may be deemed insignificant even if changes in the initial condition would 

affect the forecast metric. Therefore, ESAs are shown with both the significance test 

applied and not applied without a localization radius in Chapter 5. 
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Figure 2.3. 24-hour average forecasted MSLP (within box) sensitivity to initial 
condition MSLP (adapted from Torn and Hakim 2008).  
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Figure 2.4. Example scatterplots of ensemble initial condition 0-6 km shear (m s-1) and 
forecast 2-5 km UH (m2s-2) for a statistically significant sensitivity (top) and statistically 
insignificant sensitivity (bottom). The regression slope is more pronounced in the 
significant case (slope: 3.2, standard error: 1.5) than in the insignificant case (slope: 1.4 
(abs), standard error: 1.5). 
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Chapter 3: Verification of ensemble near-storm environment analyses 
and forecasts 

 

 A subjective evaluation of the analyses rendered with radar data assimilation 

indicate that the 15-min ensemble mean analyses reproduce the structures of supercells, 

squall lines, and other convective features as seen in earlier studies (Snyder and Zhang 

2003; Dowell et al. 2004; Tong and Xue 2005; Aksoy et al. 2009, 2010; Yussouf and 

Stensrud 2010).  The ensemble mean reflectivity analyses show that the depictions of 

the targeted convection on each day compare reasonably to reflectivity observations 

(Figs. 3.1a-d).  Further evidence of radar data assimilation effectiveness is shown by the 

root-mean-square error (RMSE) and total ensemble spread from 28 May (Fig. 3.1e,f), 

which illustrate how radial velocity and reflectivity assimilation has positive impacts on 

ensemble mean analyses.  Similar behaviors are seen in the other three cases and 

indicate that the ensemble data assimilation system is producing a reasonable analysis 

of the ongoing convection.  

 

3.1 Near-storm environment analysis errors 

The ensemble mean analyses of the near-storm environment are evaluated using 

diagnostics with the special MPEX observations of temperature, relative humidity, 

zonal and meridional wind components.  Vertical profiles of the root-mean-square 

difference (RMSD) are calculated using samples over the four-day period and is defined 

as 

𝑅𝑀𝑆𝐷 = 	
1
𝑁 (𝑥=> −	𝑥@>)A

B

>CD
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where 𝑥=>  is the ensemble mean analysis, 𝑥@> is observation, and N is the number of 

observations collected at the respective pressure level over the four-day period.  Mean 

ensemble spread (MES) is defined as 

𝑀𝐸𝑆 = 	
1
𝑁 𝜎@GHA +	

1
35 𝑥= − 𝑥L= A

MN

LCD

B

>CD

 

where i is ensemble member, 𝜎@GHA  is observation error variance, 𝑥= is ensemble mean 

analysis, 𝑥L= is ensemble member analysis, and N is the number of observations.  

Another diagnostic is mean bias of the analyses (MB), defined as 

𝑀𝐵 =	
1
𝑁 (𝑥=> −	𝑥@>)

B

>CD

 

where 𝑥=>, 𝑥@>, and N are previously defined.   

 The pressure-dependent sample size (Fig. 3.2a) has a magnitude of 81 between 

925 and 850 hPa.  The sample size generally decreases with height due to a variety of 

sonde and/or balloon failures.  At 500 hPa, the sample size is 70.  The sample size 

continues to decrease, reaching only 11 at 100 hPa.  As previously stated, upsondes 

were released in a variety of regions surrounding the targeted convection including 

inflow, anvil, and outflow.  Inflow soundings are designated as those released in areas 

where ground-relative low-level winds are directed into the region of convection.  Anvil 

regions are areas under upper-level cloud produced by convection, including instances 

where inflow soundings sampled the storm anvil in upper-levels.  Outflow 

environments are mainly confined to upstream (relative to storm motion) cold pool 

regions along with surging outflow ahead of convective cells.  The upsonde counts for 

individual regions within the near-storm environments (Figs. 3.2) show a modest 
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sample size for inflow and outflow regions (17 and 15 upsondes, respectively).  A 

majority of upsondes were released within anvil regions (56 upsondes).       

The RMSD of ensemble mean temperature for all 81 samples (Fig. 3.3a) reveals 

a local maximum just below 850 hPa of approximately 2 K.  While the MB (Fig. 3.3b) 

does not show a local maximum at this height, the MES below 850 hPa exceeds 6 K.  

Inspection of individual soundings suggests that this RMSD maximum is caused by the 

analyses failing to accurately capture the capping inversion strength, as also seen in 

Coniglio et al. (2013).  Another local RMSD maximum of ~1.75 K is seen at 500 hPa in 

association with a local minimum in MB of ~ -1 K, part of a mid-level cold bias that is 

present across all regions.  Inspection of individual observed upsondes often reveals the 

presence of weak to moderate stable layers at the top of the elevated mixed layer (as in 

the CSU and TAMU soundings in Fig. 1.2).  These features are not captured by the 

analyses, which tend to have smooth vertical temperature profiles, contributing to the 

mid-level cold bias.  The largest RMSD, MES, and MB is in upper-levels near the 

tropopause.  Temperatures near the tropopause have large spatial variations, as seen in 

Fig. 1.2 where upsondes were released within 150 km of each other.  Significant 

horizontal gradients in tropopause temperature lead to larger RMSDs and MBs as well 

as large MES due to ensemble variability.   

For inflow soundings, observations reveal a small warm bias of approximately 1 

K from the surface up to 600 hPa that slowly transitions to a negative bias by 500 hPa 

(Fig. 3.3c,d). In contrast, outflow analyses have a large warm MB of slightly less than 2 

K in low-levels (near 850 hPa; Fig. 3.3e,f), corresponding to a very large RMSD of 

approximately 4 K at the same pressure level.  This warm bias is unique to outflow 
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regions since it does not appear in non-outflow regions.  The pronounced warm bias and 

RMSD maximum in these low-levels is due to the analysis cold pools being warmer 

than observed, as also suggested by Engerer et al. (2008).  This result also suggests cold 

pools are too shallow in the ensemble analyses.  Some outflow samples are considered 

anvil as well (Figs. 3.3g,h), where the inclusion of outflow samples is the source of the 

RMSD maximum near 850 hPa for these two regions.  Anvil region MES in upper-

levels of the troposphere increases dramatically, signifying large temperature ensemble 

variations within thunderstorm anvils.   

 Relative humidity RMSDs for all upsondes increase with height, beginning near 

6 % at 925 hPa and increasing to approximately 18 % between 850 and 700 hPa (Fig. 

3.4a).  MB magnitudes are less than 10 % below 500 hPa, suggesting low-level relative 

humidity analyses are reasonable (Fig. 3.4b).  RMSD and MB continue to increase into 

the mid-levels (~ 400 hPa) reaching ~25% and ~13 %, respectively, and the values of 

RMSD tend to remain fairly constant until the tropopause.  Inspection of a number of 

upsonde humidity profiles suggests that the larger RMSDs and MBs in mid- to upper-

levels likely are due in part to either the presence or absence of observed moist layers 

combined with smooth ensemble analyses and large MES.  As Fig. 1.2 suggests, moist 

layers have well-defined tops where relative humidity decreases rapidly with height.  

Therefore, small vertical displacement errors in the locations of the moist layers 

produce large RMSDs.  The upsondes also have a known issue measuring humidity 

when RH is < 20 %, a common occurrence in upper-levels of the troposphere (Sapucci 

et al. 2005) that contributes to the large positive MB and large RMSD values above 400 

hPa.  Large RMSD and, by comparison, small MB below 700 hPa, result from a large 
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variance in analysis errors among samples.  This result is evidenced by MES between 

850 and 700 hPa, where the MES magnitude approaches 80 %.   

 The RMSDs of zonal and meridional winds for all upsondes reveal relatively 

small analysis errors in low-levels (Figs. 3.5a,3.6a).  The zonal wind RMSD is less than 

5 m s-1 below 450 hPa but slowly and steadily increases until 225 hPa.  The zonal mean 

MB (Fig. 3.5b) oscillates around 0 m s-1 in the low- to mid-levels and is strictly positive 

above ~325 hPa.  Meridional winds also have RMSDs less than 5 m s-1 above 925 hPa 

and below 500 hPa.  Both the zonal and meridional winds have a local RMSD 

maximum in the upper-levels of the troposphere near 200 hPa, with the zonal wind 

having a small positive MB and the meridional wind having a larger negative MB.  This 

finding is associated with large MES within thunderstorm anvils for both zonal and 

meridional winds (Figs. 3.5g, 3.6g).  An encouraging result arises from the inflow 

region zonal wind below 500 hPa, where MB oscillates between -2 and 2 m s-1 

throughout that vertical depth (Fig. 3.5d).  However, the inflow region meridional wind 

has negative MBs for the entire depth with magnitudes reaching ~ 3 m s-1 and RMSDs 

at or above 5 m s-1 (Fig. 3.6c,d).  The northerly bias indicates an under prediction of 

inflow wind speeds into the convective region given the strong southerly component 

associated with storm inflow in the supercell cases of 30 and 31 May.  Non-inflow 

region results show smaller meridional wind RMSDs in low- to mid-levels than found 

in the inflow region by comparison. 

 Wind speed for all upsondes is negatively biased in the analyses from the 

surface to 400 hPa (Fig. 3.7b).  A negative wind speed maximum in MB occurs at 200 

hPa.  This maximum is collocated with a negative meridional wind MB at 200 hPa (Fig. 
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3.6b), which produces the negative wind speed bias along with some directional error.  

A comparison of wind components in the 150-100 hPa layer shows the zonal wind to be 

slightly overestimated while the meridional wind MB is near 0.  The inflow region low-

level wind speeds are under predicted much more so than low-level non-inflow region 

wind speeds (Fig. 3.7d).  Outflow wind speed MB is similar to non-outflow MB (Fig. 

3.7f).  The large MES is once again present within upper-levels of anvil regions (Fig. 

3.7g).            

 Another environmental parameter conducive for convection includes vertical 

wind shear.  The RMSDs of Sfc-700 hPa and Sfc-500 hPa wind shear are 5.9 m s-1 and 

4.5 m s-1, respectively (Table 3.1).  Magnitudes of MB for both layers are quite small (-

0.8 m s-1 and -0.3 m s-1, respectively).  The large RMSD and small MB imply a large 

variance among samples.  Model analyses reveal steep shear gradients near convection 

(not shown), which would induce large variances when spatial errors are present.  Of all 

near-storm environment regions, inflow regions have the largest RMSDs for both Sfc-

700 hPa and Sfc-500 hPa wind shear.  All other regions are very comparable to the 

overall values previously mentioned.  The MBs of all regions except inflow are 

comparable as well.  Inflow Sfc-700 hPa MB is notably larger in magnitude (negative 

value) since the meridional winds analyses have a notable northerly bias.   
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Region Sfc-700 
hPa 
count 

Sfc-700 
hPa 
RMSD 

Sfc-700 
hPa MB 

Sfc-500 
hPa count 

Sfc-500 
hPa 
RMSD 

Sfc-500 
MB 

All 80 5.9 -0.8 70 4.5 -0.3 
Inflow 17 7.2 -4.2 11 6.8 -1.3 
Non-inflow 63 5.2 -0.2 59 4.3 -0.4 
Outflow 15 5.0 -0.3 14 4.1 -0.4 
Non-outflow 65 6.1 -1.1 56 5.1 -0.3 
Anvil 57 6.0 -0.4 47 5.2 0.1 
Non-anvil 23 5.7 -2.0 23 4.4 -1.1 

 
Table 3.1.  Sfc-700 hPa and Sfc-500 hPa wind shear RMSD and MB for all upsondes 
and each individual near-storm environment region.  All RMSDs and MBs are in m s-1.  
The number of shear observations within each region is listed last. 
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Figure 3.1.  Examples of low-level ensemble mean analysis reflectivity and surface winds 
in knots (barbs) with observed 20 dBZ reflectivity outlined with solid black line, at 0.5o 
tilt by the designated radar, (a) 2300 UTC 28 May (KDDC), (b) 2200 UTC 29 May 
(KAMA), (c) 2000 UTC 20 May (KTLX), (d) 2300 UTC 31 May (KTLX).  Example 
radial velocity (e) and reflectivity (f) sawtooth diagrams show ensemble mean prior and 
posterior RMSE (blue) and ensemble total spread (green) from 28 May with time 
(minutes) after storm-scale assimilation begins.   
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Figure 3.2.  Number of MPEX upsonde samples with height 28-31 May.  All (black), 
inflow (thick blue), non-inflow (thin blue), outflow (thick green), non-outflow (thin 
green), anvil (thick red), and non-anvil (thin red).   
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Figure 3.3.  Vertical profiles of temperature (T) root mean square difference (RMSD, 
solid), mean ensemble spread (MES, dashed), and mean bias (MB, solid).  All upsonde 
RMSD and MES, 1000-100 hPa (a), all upsonde MB, 1000-100 hPa (b), inflow (red) 
and non-inflow (blue) RMSD and MES, 1000-500 hPa (c), inflow (red) and non-inflow 
(blue) MB, 1000-500 hPa (d), outflow (red) and non-outflow (blue) RMSD and MES, 
1000-500 hPa (e), outflow (red) and non-outflow (blue) MB, 1000-500 hPa (f), anvil 
(red) and non-anvil (blue) RMSD and MES, 1000-100 hPa (g), anvil (red) and non-
anvil (blue) MB, 1000-100 hPa (h). 
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Figure 3.4.  As in Fig. 3.3, but for relative humidity (RH). 
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Figure 3.5.  As in Fig. 3.3, but for zonal winds (u-wind). 
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Figure 3.6.  As in Fig. 3.3, but for meridional winds (v-wind). 
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Figure 3.7.  As in Fig. 3.3, but for wind speed. 
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3.2 Bias distributions 

 Histograms are used to show the distribution of biases for different state fields.  

At pressure levels where there are large magnitudes of RMSD and/or MB, these 

distributions may shed light on bias characteristics.  Biases of each ensemble member 

for each sample are calculated for selected variables at specified pressure levels.  The 

resulting bias distribution for 875 hPa temperature is Gaussian-like with a maximum on 

the positive side of zero and more bias samples > 4 K than < -4 K (Fig. 3.8a).  

Another Gaussian distribution is suggested in the relative humidity errors at 750 

hPa (Fig. 3.8b).  However, the peak of the distribution is near + 5 %.  As the magnitude 

of the MB increases, there are generally more negative samples than their positive 

counterparts. The 225 hPa zonal wind field reveals a bimodal distribution where one 

peak is near zero and a second peak is between 5 and 10 m s-1 (Fig. 3.8c).  It should be 

noted that there are many samples of extremely large bias magnitude (> 15 m s-1), 

indicating large differences with some ensemble members.  A histogram of 200 hPa 

meridional wind bias also has a bimodal distribution (Fig. 3.8d).  However, the two 

maximums are near zero and between -5 and -10 m s-1.   
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Figure 3.8.  Individual ensemble member bias histograms where frequency is number of 
ensemble member biases over all 81 samples (2,916 total) for (a) 875 hPa temperature 
with 0.5 K bins, (b) 750 hPa relative humidity, 5% bins, (c) 225 hPa u-wind, 1 m s-1 
bins, and (d) 200 hPa v-wind, 1 m s-1 bins. 
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3.3 Physics dependent errors 

 Fig. 3.9 depicts differences in MB and RMSD among ensemble members that 

differ in their physics as described in Table 1.  The nested domain physics has 

variations in PBL scheme (3) and short-wave/long-wave radiation scheme combinations 

(2; see Table 2.1).  Temperature biases below approximately 600 hPa are largely 

dependent on PBL scheme (Fig. 3.9a,b).  The YSU PBL scheme results in larger warm 

biases below 850 hPa and smaller warm biases between 850 and 600 hPa compared to 

the other schemes.  When combined with results with relative humidity (Fig. 3.9c,d), 

where the YSU scheme has a dry bias below 850 hPa and a moist bias above 850 hPa, 

the data suggest that YSU produces boundary layers that are too deep.  Dry biases 

above 850 hPa for MYJ and MYNN PBL schemes suggest boundary layers that are too 

shallow (Hong et al. 2006; Coniglio et al. 2013). The MYJ PBL scheme has the smallest 

bias in temperature and relative humidity below 850 hPa.  Members utilizing the 

Dudhia-RRTM radiation scheme combination also have a slight warm bias compared to 

its RRTMG scheme counterpart below 850 hPa.  However, the Dudhia-RRTM 

combination is slightly cooler than RRTMG between 850 and 600 hPa.  No significant 

differences in temperature are seen between radiation physics options above 600 hPa.   

 The effects of PBL schemes (mainly YSU) extend further into the mid-

troposphere in all fields except temperature.  MYJ has the driest bias between 800 hPa 

and ~ 550 hPa.  Radiation schemes do not have as great of an effect on relative 

humidity bias.  The Dudhia-RRTM combination has a slight dry bias over RRTMG 

below 850 hPa.  Horizontal wind fields are negligibly affected by physics schemes 

(Figs. 3.9e,f,g,h).  However, MYJ PBL scheme seems to have a more negative bias over 
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YSU and MYNN in mid- to upper-levels within the zonal wind field while causing a 

more positive bias within the meridional wind field.   
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Figure 3.9.  RMSD and MB for mean of members with specific physics schemes (YSU 
PBL – red, MYJ PBL – blue, MYNN PBL – green, Dudhia-RRTM combination – 
black, RRTMG combination – magenta).  Profiles are for temperature RMSD (a), 
temperature MB (b), relative humidity RMSD (c), relative humidity MB (d), u-wind 
RMSD (e), u-wind MB (f), v-wind RMSD (g), and v-wind MB (h). 
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3.4. Near-storm environment forecast errors 

 Ensemble forecasts are initialized 60 minutes prior to each upsonde launch time. 

The 60 minute forecasts, valid at the upsonde launch times, are verified using the same 

methods as the analysis verification (section 3.1). RMSD, MES, and MB are calculated 

for forecasted near-storm temperature in various near-storm environment regions (Fig. 

3.10). Errors only increase slightly for all regions from those of the ensemble analyses. 

For all regions, the forecasts are warm biased below ~600 hPa (Fig. 3.10b). In the mid-

levels, the forecasts are cold biased. The forecasts have a slight warm bias near 200 hPa. 

Inflow regions’ MB is near zero at 850 hPa while non-inflow regions have a warm 

biases near 1 K (Fig. 3.10d). The warm bias within outflow regions is the most notable 

feature. For 60 minute forecasts, the RMSD of outflow temperature (Fig. 3.10e) shows 

large errors just at and below 850 hPa that extend to > 4 K. The outflow MB is very 

similar to analysis MB where the value is approximately 2 K below 850 hPa. The MES 

of anvil region temperature is large within the upper troposphere compared to non-anvil 

regions (Fig. 3.10g). MES is ~10 K at 200 hPa in anvil regions versus ~3 K for non-

anvil regions. This is due to steep horizontal gradients temperature in the upper 

troposphere of anvil regions.  

 Relative humidity forecast errors are similar to analysis errors as well (Fig. 

3.11). RMSD increases around 500 hPa to nearly 25% (Fig. 3.11a). For all regions, the 

forecasts are predominantly too dry in low- to mid-levels (Fig. 3.11b). The maximum 

magnitude of this bias is slightly less than 10% between 850 and 700 hPa. This is 

consistent for inflow, outflow, and anvil regions (Fig. 3.11d,f,h). Within anvil regions, 

there is substantial MES throughout the troposphere (Fig. 3.11g). This is due to the 
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close proximity to convection where steep gradients in moisture can cause large 

differences between ensemble members. These gradients are smaller in non-anvil 

regions, which are mostly pre-convective and far-field soundings (not shown).  

 Zonal winds errors do not rapidly increase during a 60 minute forecast (Fig. 

3.12). The maximum RMSD (~ 5 m s-1) within the column is near 200 hPa (Fig. 3.12a). 

This is associated with a large MES (> 30 m s-1) at the same level. Within low-levels, 

the MB reveals a slight westerly bias below 850 hPa but an easterly bias between 850 

and 750 hPa (Fig. 3.12b).  The westerly bias below 850 hPa and easterly bias from 850 

– 700 hPa can be attributed to inflow regions (Fig. 3.12d). The large RMSD and MES 

near 200 hPa is confined to anvil regions just as in the analyses (Fig. 3.12g).  

 Meridional winds see larger error growth during a forecast (Fig. 3.13). RMSD 

oscillates around 5 m s-1 between the surface and 500 hPa (Fig. 3.13a). A negative MB 

exists in the low-levels similar to the analyses (Fig. 3.13b). A large increase in inflow 

MB (northerly) is seen between these forecasts and analyses (Fig. 3.13d). In the 

forecasts, the MB has nearly tripled to ~5-6 m s-1 compared to the analyses. This result 

is consistent from the surface to 500 hPa. Within outflow regions, the low-levels have 

southerly biases (Fig. 3.13f). In the upper-levels, anvil regions have a maximum in 

RMSD near 200 hPa (Fig. 3.13g), due to the large MES at the same level, where slight 

differences in storm locations result in large MES. 

 Wind speed errors are strongly affected by meridional wind errors, especially 

within inflow regions (Fig. 3.14). Inflow region wind speed MB also triples when 

compared to analysis MB (Fig. 3.14c). The difference between outflow and non-outflow 

wind speed MB is larger in comparison to analyses (Fig. 3.14f). Outflow wind speed 
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MB is positive while non-outflow MB is negative (primarily due to the inclusion of 

inflow upsondes). Anvil region RMSD and MES is affected by the large errors in both 

zonal and meridional winds in the upper troposphere (Fig. 3.14g). 
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Fig. 3.10. Vertical profiles of one-hour forecast temperature (T) root mean square 
difference (RMSD, solid), mean ensemble spread (MES, dashed), and mean bias (MB, 
solid).  All upsonde RMSD and MES, 1000-100 hPa (a), all upsonde MB, 1000-100 hPa 
(b), inflow (red) and non-inflow (blue) RMSD and MES, 1000-500 hPa (c), inflow (red) 
and non-inflow (blue) MB, 1000-500 hPa (d), outflow (red) and non-outflow (blue) 
RMSD and MES, 1000-500 hPa (e), outflow (red) and non-outflow (blue) MB, 1000-
500 hPa (f), anvil (red) and non-anvil (blue) RMSD and MES, 1000-100 hPa (g), anvil 
(red) and non-anvil (blue) MB, 1000-100 hPa (h). 
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Fig. 3.11. As in Fig. 3.10, but for relative humidity (RH). 
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Fig. 3.12. As in Fig. 3.10, but for zonal winds (u-wind). 
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Fig. 3.13. As in Fig. 3.10, but for meridional winds (v-wind). 
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Fig. 3.14. As in Fig. 3.10, but for wind speed 
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3.5. Discussion and conclusions 

 Over this four-day period, a total of 81 upsondes were released nearby deep 

convection in a variety of storm-relative locations.  The decreasing sample size with 

height obviously weakens the conclusions made within the upper troposphere, 

especially in near-storm environment regions with small sample sizes.  Nonetheless, the 

special MPEX observations revealed that WRF-ARW ensemble mean analyses at CAM 

grid spacing agree reasonably well with the observed convective near-storm 

environments over this four-day sequence, with some notable exceptions.   

1) A large variance in analysis temperature bias is implied by a maximum of 

RMSD in temperature just below 850 hPa.  This is likely in part a result of 

model analyses improper handling of capping inversions at the top of the 

PBL (not shown), which were present in many sounding datasets.  The 

choice of PBL schemes is found to greatly impact the low-level temperature 

analyses.  This has previously been presented by Coniglio et al. (2013) 

where model temperatures in pre-convective environments are highly 

dependent on PBL scheme.   

2) The outflow region upsondes reveal a large warm bias in the analyses near 

850 hPa.  Further inspection of individual soundings show that the ensemble 

analyses have warmer temperatures than observed, a result consistent with 

the conclusions of Engerer et al. (2008).  Since cold pools are important to 

the evolution of deep convection (Rotunno et al. 1988; Weisman and 

Rotunno 2004), this result deserves further attention as it could impact 

forecast accuracy.   
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3) The negative temperature MB in upper-levels is a result of horizontal 

temperature gradients near the tropopause not being accurately captured by 

the analyses.  Errors in horizontal temperature gradient placements cause 

RMSD and MB magnitudes to increase.  Overall, near-storm temperatures 

are well depicted in the ensemble analyses considering the lack of 

conventional mesoscale temperature profile observations.   

4) Relative humidity MB is consistently between +/- 10 % below 500 hPa in all 

regions nearby deep convection.  However, relative humidity RMSD 

increases with height and is above 20% by 500 hPa.  The mid-level relative 

humidity errors appear to be due to smooth ensemble analyses and errors in 

dry and moist layer vertical positions.  A propagation of error analysis 

created by the partial derivatives of a function can reveal the impacts of 

variable errors on the function (Ku 1966).  The inflow moisture error at 850 

hPa (mixing ratio bias of ~ +7.2 x 10-4 kg kg-1) combined with error in 850 

hPa temperature leads to an 850 hPa equivalent potential temperature (θe) 

bias of ~ +2 K, where ~ 1.9 K of the bias is due to moisture error alone.  The 

model has more latent heating due to this error, which increases updraft 

speeds.     

5) Inflow meridional wind MB below 700 hPa is near -3 m s-1, indicating that 

inflow wind speeds are underestimated in the ensemble analyses.  A 

propagation of error calculation (Ku 1966) for Sfc-500 hPa vertical wind 

shear given an inflow meridional surface wind bias of ~ -4.8 m s-1 reveals 

that this error only contributes to -0.16 m s-1 of the inflow shear bias.  Thus, 
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the majority of wind shear error likely originates from mid-level (500 hPa) 

wind error.  This notion deserves further study.   

6) Within the upper-troposphere between 300 and 150 hPa, both horizontal 

wind components have large RMSDs.  Upper-level wind MB are present in 

all near-storm environment regions, but are more pronounced within anvil 

regions, including within the environments downstream of convection. 

These results suggest the model struggles to accurately depict convective 

alterations of the upper-levels where winds have a northwesterly directional 

bias and speeds are under predicted.  

 Although analysis errors are large in some regions surrounding the observed 

areas of deep convection, the analyses created by radar and conventional data 

assimilation of convective near-storm environments agree reasonably well with the 

upsonde observations, suggesting that model analyses are a trustworthy source for 

insight into how deep convection alters the nearby environment.  Convective-scale 

model analyses are therefore a suitable tool to assess the mesoscale feedbacks due to 

convective storms which could affect further convection evolution.  However, even 

more extensive near-storm observations are required to truly evaluate the impact of 

convection on its surrounding environment, particularly within inflow and outflow 

regions.  Other simulations with varying microphysics schemes would evaluate cold 

pool strength and depth sensitivity. 

Overall, one-hour forecast errors are similar to analysis errors for most 

variables. This includes the under-prediction of low-level inflow wind speed and cold 

pool depth. The cold pool depth forecast error is similar in magnitude to the analysis 
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errors, however, the inflow wind speed bias nearly triples from analyses to forecasts. 

This under-prediction results in weakening storms, as the updrafts will struggle to be 

maintained, thus hindering the predictability of an individual convective storm. 
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Chapter 4:  Environmental modifications by convection 
 

 Using the convective perturbation technique described in Chapter 2, several 

environmental variable changes due to convection are analyzed using ensemble 

analyses from 29, 30, and 31 May 2013. These include the impacts of deep convection 

on vertical wind shear, CAPE, low-level temperature, upper-level winds, and upper-

level temperature.  

 

4.1 Vertical wind shear and CAPE perturbations 

Vertical wind shear within near storm environments changes rapidly in the 

presence of deep convection. The first example is from the 29 May MCS that occurred 

over the Texas Panhandle. The ensemble mean analysis 0-6 km vertical wind shear at 

various times during convection evolution shows a notable maximum in shear within 

the wake of the MCS, where low-level winds are predominantly easterly in the outflow 

region (Fig. 4.1). The changes in 0-6 km shear since 2100 UTC clearly illustrate the 

enhancement of shear within the outflow, where shear increases by nearly 25 m s-1 in 

some locations (Fig. 4.2).  Shear changes ahead of the MCS are difficult to interpret 

given the convective system to the east within Oklahoma that also modifies the wind 

shear.  

Brooks et al. (1994) demonstrate how SRH is modified within the inflow of an 

idealized supercell simulation out to distances of several tens of km.  For the present 

study, 0-6 km vertical wind shear convective perturbations in supercell inflow regions 

are analyzed.  The ensemble mean analysis 0-6 km shear for both the 30 and 31 May 

supercells in central Oklahoma (Figs. 4.3,4.4) depicts steep gradients in shear within the 
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vicinity of the convection (denoted by reflectivity contours) particularly in the 31 May 

case (Fig. 4.4c,d) where shear increases to the south of the supercell. The inflow shear 

maximums are less pronounced in the 30 May case and appear to not extend very far 

away from the storm (Fig. 4.3).  

The convection perturbation technique is applied to 0-6 km vertical wind shear 

for the 30 and 31 May simulated supercells. Changes in shear due to convection on 30 

May indicates that the shear enhances to the southeast of the target supercell in central 

Oklahoma by magnitudes less than 10 m s-1 (Fig. 4.5).  Shear is also enhanced by 

greater magnitudes (~10-12 m s-1) within the lingering cold pools of storms. The 

enhancement of inflow shear to the south and southeast of the storm is nearly double 

these values in the 31 May case (Fig. 4.6), in which the inflow shear increases by 15-20 

m s-1 over a 90 minute period and extends outward from the storm to near the southern 

Oklahoma border (Fig. 4.6c).   

The values and distribution of CAPE is also altered by convection in all three 

cases. The most obvious effect is the reduction of CAPE in areas where cold pools form 

(discussed more fully in the next section).  The 29 May case has notable CAPE 

reduction in the wake of the target MCS (Figs. 4.7 and 4.8), with CAPE decreasing by 

approximately 2000 J kg-1 over 90 minutes within the outflow.  There is also a decrease 

in CAPE ahead of this MCS due to the second to the east in Oklahoma.  The cold pool 

reduced CAPE in the wake of this eastern MCS likely contributes in part to the target 

line’s demise (not shown). 

The supercells of 30 and 31 May also modify the CAPE field surrounding the 

storms.  Ensemble mean analysis CAPE on 30 May have maximum values generally 
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located to the east of the target supercell approaching 2000 J kg-1 (Fig. 4.9). The short-

term changes in CAPE due to convection show some enhancement to the east of the 

convection as well as CAPE decreases to the north and west of the target supercell from 

the wakes of the surface cold pools (Fig. 4.10).  

The values of CAPE during the 31 May event were much higher, exceeding 

4000 J kg-1 in some locations (Fig. 4.11). The maximum corridor of CAPE is located to 

the east and south of the supercell.  This maximum moves to the west over the 90 

minute period displayed.  The change in CAPE (Fig. 4.12) reveals that the storm is 

responsible for the enhancement of CAPE to its south with increases over 1000 J kg-1. 

As expected, CAPE also decreases within the storm as well as to the west due to low-

level, cool outflow. This magnitude is similar in size to that seen in Brooks et al. (1994), 

although the size of the enhanced CAPE region on 31 May is much larger than found in 

Brooks et al. (1994). 
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Figure 4.1. Ensemble mean analysis 0-6 km vertical wind shear in m s-1 (filled) and 
low-level reflectivity (black contours) on 29 May 2013 at (a) 2100 UTC (b) 2130 UTC 
(c) 2200 UTC (d) 2230 UTC 

 

 

 

 

 

 

 



59 

 

Figure 4.2. 29 May 2013 ensemble mean analysis 0-6 km vertical wind shear difference 
in m s-1 from 2100 UTC due to convection (filled) and low-level reflectivity at (a) 2130 
UTC (b) 2200 UTC (c) 2230 UTC. 
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Figure 4.3. Ensemble mean analysis 0-6 km vertical wind shear in m s-1 (filled) and 
low-level reflectivity (black contours) on 30 May 2013 at (a) 1900 UTC (b) 1930 UTC 
(c) 2000 UTC (d) 2030 UTC. 
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Figure 4.4. Ensemble mean analysis 0-6 km vertical wind shear in m s-1 (filled) and 
low-level reflectivity (black contours) on 31 May 2013 at (a) 2130 UTC (b) 2200 UTC 
(c) 2230 UTC (d) 2300 UTC. 

 

 

 

 

 

 



62 

 

Figure 4.5. 30 May 2013 ensemble mean analysis 0-6 km vertical wind shear difference 
in m s-1 from 1900 UTC due to convection (filled) and low-level reflectivity at (a) 1930 
UTC (b) 2000 UTC (c) 2030 UTC. 
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Figure 4.6. 31 May 2013 ensemble mean analysis 0-6 km vertical wind shear difference 
in m s-1 from 2130 UTC due to convection (filled) and low-level reflectivity at (a) 2200 
UTC (b) 2230 UTC (c) 2300 UTC.  
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Figure 4.7. Ensemble mean analysis CAPE in J kg-1 (filled) and low-level reflectivity 
(black contours) on 29 May 2013 at (a) 2100 UTC (b) 2130 UTC (c) 2200 UTC (d) 
2230 UTC. 
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Figure 4.8. 29 May 2013 ensemble mean analysis CAPE difference in J kg-1 from 2100 
UTC due to convection (filled) and low-level reflectivity at (a) 2130 UTC (b) 2200 
UTC (c) 2230 UTC. 
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Figure 4.9. Ensemble mean analysis CAPE in J kg-1 (filled) and low-level reflectivity 
(black contours) on 30 May 2013 at (a) 1900 UTC (b) 1930 UTC (c) 2000 UTC (d) 
2030 UTC.  
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Figure 4.10. 30 May 2013 ensemble mean analysis CAPE difference in J kg-1 from 1900 
UTC due to convection (filled) and low-level reflectivity at (a) 1930 UTC (b) 2000 
UTC (c) 2030 UTC 
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Figure 4.11. Ensemble mean analysis CAPE in J kg-1 (filled) and low-level reflectivity 
(black contours) on 31 May 2013 at (a) 2130 UTC (b) 2200 UTC (c) 2230 UTC (d) 
2300 UTC. 
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Figure 4.12. 31 May 2013 ensemble mean analysis CAPE difference in J kg-1 from 2130 
UTC due to convection (filled) and low-level reflectivity at (a) 2200 UTC (b) 2230 
UTC (c) 2300 UTC.  
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4.2 Cold pools 

 Cold pool development is a storm feature known to impact the surrounding 

environment (Trapp and Woznicki 2017).  Ensemble mean analyses of lowest model 

level temperature reveal cold pool development in all three cases.  The most notable 

cold pool develops on 29 May in the wake of the MCS in the Texas Panhandle (Fig. 

4.13).  The cold pool surges to the west, overtaking the warm, dry airmass behind the 

dryline.  The temperature decreases by nearly 10 oC within the cold pool over short time 

periods (Fig. 4.14).  It should be noted the region of temperature reduction is similar to 

the region of reduction of CAPE (Fig. 4.8) as expected.   

 A small cold pool develops on 30 May in the wake of the target supercell, 

leaving behind a region of cooler temperatures (Figs. 4.15 and 4.16). This cold pool is 

less evident than the 29 May cold pool, as lowest model level temperatures only 

decrease by ~5 oC. The resultant cold pool of the 31 May supercell is much stronger 

(cooler), where temperatures decrease by ~10 oC over the period depicted (Figs. 4.17 

and 4.18). It is curious that low-level temperature decreases to the south of the supercell 

(Fig. 4.18c) while CAPE increases in this same region (Fig. 4.12b). The increase in 

CAPE is likely due to environmental cooling aloft (not shown). 
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Figure 4.13. Ensemble mean analysis lowest model level temperature in oC (filled) and 
low-level reflectivity (black contours) on 29 May 2013 at (a) 2100 UTC (b) 2130 UTC 
(c) 2200 UTC (d) 2230 UTC.  
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Figure 4.14. 29 May 2013 ensemble mean analysis lowest model level temperature 
difference in oC from 2100 UTC due to convection (filled) and low-level reflectivity at 
(a) 2130 UTC (b) 2200 UTC (c) 2230 UTC.  
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Figure 4.15. Ensemble mean analysis lowest model level temperature in oC (filled) and 
low-level reflectivity (black contours) on 30 May 2013 at (a) 1900 UTC (b) 1930 UTC 
(c) 2000 UTC (d) 2030 UTC. 
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Figure 4.16. 30 May 2013 ensemble mean analysis lowest model level temperature 
difference in oC from 1900 UTC due to convection (filled) and low-level reflectivity at 
(a) 1930 UTC (b) 2000 UTC (c) 2030 UTC.  
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Figure 4.17. Ensemble mean analysis lowest model level temperature in oC (filled) and 
low-level reflectivity (black contours) on 31 May 2013 at (a) 2130 UTC (b) 2200 UTC 
(c) 2230 UTC (d) 2300 UTC.  
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Figure 4.18. 31 May 2013 ensemble mean analysis lowest model level temperature 
difference in oC from 2130 UTC due to convection (filled) and low-level reflectivity at 
(a) 2200 UTC (b) 2230 UTC (c) 2300 UTC. 
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4.3 Upper troposphere 

 Impacts by convection also occur within the upper troposphere. On 29 May, the 

MCS was influenced by an upper-level vorticity maximum seen to the west of the anvil. 

(Fig. 4.19). The changes in anvil wind speeds are somewhat disorganized, but there 

appears to be a distinct, coherent region of acceleration to the northeast of the anvil and 

deceleration to the south and southeast over this 90 minute period (Fig. 4.20). With the 

background environmental flow being southerly, these changes in wind speed are 

consistent with upper-level storm outflow. These wind speed increases could possibly 

enhance synoptic-scale jet streaks, which would affect further convection development. 

On 30 May, the winds decelerate within the anvil region of the supercell (Figs. 4.21 and 

4.22), where the upper-level flow was predominantly zonal. This deceleration is likely 

due to stagnation points on the upwind side of storms.  

 Upper-level deceleration is also seen on the upwind side of the 31 May supercell 

(Figs. 4.23 and 4.24). This event also features zonal upper-level flow and weak large-

scale forcing. Wind accelerates toward the downwind side of the anvil, potentially 

enhanced by strong upper-level outflow from the updraft. This enhancement extends 

across the remainder of the anvil to the east and is even visible outside the anvil (Fig. 

4.24c).  

 The 250 hPa temperature generally increases within the MCS anvil on 29 May. 

This warmed air also extends outside the anvil region (Fig. 4.26c). Convection has little 

effect on 250 hPa temperature on 30 May as temperatures within the anvil region do not 

drastically change over the displayed time period. However, the more intense 

convection on 31 May has significant upper-level warming (> 5 oC) within the anvil 
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region (Figs. 4.29 and 4.30) similar to that seen with the 29 May MCS . This warming 

also extends outside the anvil region which contradicts Perkey and Maddox (1985) 

where cooling is noted at 200 hPa due to vertical motions and adiabatic cooling. 

However, warming is noted within the mid-troposphere due to latent heat release. 
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Figure 4.19. Ensemble mean analysis 250 hPa wind speed (shaded) in m s-1 and wind 
barbs on 29 May 2013 at (a) 2100 UTC (b) 2130 UTC (c) 2200 UTC (d) 2230 UTC.  
The ensemble analysis cloud outline is denoted by the thick black line and is determined 
using the method described by Kerr et al. (2015).   
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Figure 4.20. Ensemble mean analysis 250 hPa wind speed difference in m s-1 from 29 
May 2100 UTC (filled) and cloud outline (thick black line) at (a) 2130 UTC (b) 2200 
UTC (c) 2230 UTC. 
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Figure 4.21. Ensemble mean analysis 250 hPa wind speed (shaded) in m s-1 and wind 
barbs on 30 May 2013 at (a) 1900 UTC (b) 1930 UTC (c) 2000 UTC (d) 2030 UTC.  
The ensemble analysis cloud outline is denoted by the thick black line and is determined 
using the method described by Kerr et al. (2015).   
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Figure 4.22. Ensemble mean analysis 250 hPa wind speed difference in m s-1 from 30 
May 1900 UTC (filled) and cloud outline (thick black line) at (a) 1930 UTC (b) 2000 
UTC (c) 2030 UTC.  
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Figure 4.23. Ensemble mean analysis 250 hPa wind speed (shaded) in m s-1 and wind 
barbs on 31 May at (a) 2130 UTC (b) 2200 UTC (c) 2230 UTC (d) 2300 UTC.  The 
ensemble analysis cloud outline is denoted by the thick black line.  
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Figure 4.24. Ensemble mean analysis 250 hPa wind speed difference in m s-1 from 31 
May 2130 UTC (filled) and cloud outline (thick black line) at (a) 2200 UTC (b) 2230 
UTC (c) 2300 UTC.  
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Figure 4.25. Ensemble mean analysis 250 hPa temperature in oC (shaded) and wind 
barbs on 29 May 2013 at (a) 2100 UTC (b) 2130 UTC (c) 2200 UTC (d) 2230 UTC.  
The ensemble analysis cloud outline is denoted by the thick black line.  
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Figure 4.26. Ensemble mean analysis 250 hPa temperature difference in oC from 29 
May 2100 UTC (filled) and cloud outline (thick black line) at (a) 2130 UTC (b) 2200 
UTC (c) 2230 UTC.  
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Figure 4.27. Ensemble mean analysis 250 hPa temperature in oC and wind barbs on 30 
May 2013 at (a) 1900 UTC (b) 1930 UTC (c) 2000 UTC (d) 2030 UTC.  The ensemble 
analysis cloud outline is denoted by the thick black line.  
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Figure 4.28. Ensemble mean analysis 250 hPa temperature difference in oC from 30 
May 1900 UTC (filled) and cloud outline (thick black line) at (a) 1930 UTC (b) 2000 
UTC (c) 2030 UTC.  
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Figure 4.29. Ensemble mean analysis 250 hPa temperature in oC and wind barbs on 31 
May at (a) 2130 UTC (b) 2200 UTC (c) 2230 UTC (d) 2300 UTC.  The ensemble 
analysis cloud outline is denoted by the thick black line.  
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Figure 4.30. Ensemble mean analysis 250 hPa temperature difference in oC from 31 
May 2130 UTC (filled) and cloud outline (thick black line) at (a) 2200 UTC (b) 2230 
UTC (c) 2300 UTC.  
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4.4 Discussion and conclusions 

 These results further support the notion that convection can have significant 

impacts on the surrounding environment. This is particularly evident for environmental 

wind shear and CAPE. Closer examination of the model output indicates that shear 

increases within supercell inflow regions due to an enhanced pressure gradient (not 

shown). For the 29 May MCS, shear enhances in the wake of the storm because of the 

easterly outflow. CAPE also is enhanced within supercell inflow regions, where 

environmental cooling aloft is the main contributor to this effect. In the wake of the 

MCS, CAPE decreases in association with cold pool formation.  

 Cold pool development is most notable in the 29 and 31 May cases. The 30 May 

supercell cold pool was not as large or cold relative to the environment. The cold pool 

of the 29 May MCS to the east of the target MCS interferes with the target MCS’s 

intensity and longevity, revealing how storm-storm interactions can affect convection 

development and evolution. Convection also influences the upper-tropospheric winds 

by slowing environmental winds on the upwind side. Winds also are enhanced within 

upper-level outflow. These effects may alter the synoptic-scale flow and potentially 

affect convection evolution on subsequent days (Stensrud 1996). 

 Future studies should investigate these effects in other cases as well as effects on 

other environmental variables. In the next chapter, the effects of some of these 

modifications on further convection evolution are analyzed. 
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Chapter 5: Ensemble sensitivity analysis (ESA) applied to convective-
scale forecasts 

 
ESA is applied to ensemble forecasts on 29, 30, and 31 May. Since this analysis 

is applied to forecasts of individual thunderstorms, storm variables are used as forecast 

metrics (e.g., radar reflectivity, updraft helicity, accumulated rainfall, etc.) while near-

storm environment variables are used as initial condition metrics (e.g., vertical wind 

shear, low- and mid-level moisture, etc.) via the technique outlined in Chapter 2. Table 

5.1 lists the metrics used on each day along with the corresponding figure number that 

displays the resulting sensitivities.  

 

 5.1 29 May MCS results 

Several forecast metrics relevant to an MCS are used in an ESA as listed in 

Table 5.1. All forecasts on this day are initialized at 2130 UTC in order to allow 

sufficient storm spin-up via radar data assimilation beginning at 1700 UTC (Table 2.2). 

Sensitivity of storm-averaged reflectivity (> 20 dBZ) to 850 hPa wind speed reveals a 

negative sensitivity just east of the initial condition storm location (Fig. 5.1). 

Magnitudes of sensitivity exceed 0.5 dBZ (m s-1)-1 in this region for both a one hour 

forecast (Fig. 5.1a) and two hour forecast (Fig. 5.1c). These sensitivities indicate that 

slower wind speeds in these areas (which are generally downstream of the initial 

condition storm location) will result in higher storm-averaged reflectivity. A notable 

area of positive sensitivity is present to the west of the convective system, associated 

with the eastward moving dryline in the Texas Panhandle. These results suggest faster 

winds behind the dryline will lead to increased averaged reflectivity of the target storm. 
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Application of statistical significance test (Fig. 5.1b,d) eliminates nearly all of the 

sensitivities, suggesting that they may be a result of ensemble sampling error. 

Forecast average reflectivity is also sensitive to initial condition 850 hPa 

temperature (Fig. 5.2). Reflectivity is predominantly positively sensitive to 850 hPa 

temperature, with sensitivity values approaching 2 dBZ (oC)-1 in areas that are east of 

the initial storm location. This means that warmer 850 hPa temperatures are associated 

with greater forecast average reflectivity. Application of the significance test reveals 

broad areas of positive sensitivity (Fig. 5.2b,d). Reflectivity sensitivity to 850 hPa water 

vapor mixing ratio also shows positive sensitivity within the inflow region to the east 

and southeast of the MCS (Fig. 5.3a,c). The sensitivities to temperature and moisture 

suggest that larger CAPE to the east of the storm yields larger reflectivity. Large 

negative sensitivities are noted to the west behind the dryline, suggesting that drier air 

results in higher average reflectivity, perhaps suggesting that a more intense dryline 

would influence storm intensity. Reflectivity is also found to be sensitive to the zonal 

component vertical wind shear over various depths. In the case of 0-1 km shear 

(hereafter SHR01), reflectivity is positively sensitive within the inflow region of the 

initial condition storm location and positively sensitive to SHR01 behind the dryline 

(Fig. 5.4). For 0-3 km shear (hereafter SHR03), reflectivity is also positively sensitive 

ahead of the MCS (Fig. 5.5).  

For this MCS case, the low-level outflow winds are predominantly zonal. Since 

a goal of short-term convection forecasts is to better predict potential hazards to lives 

and property, sensitivities of forecast lowest model level zonal winds (hereafter LLWs) 

to various environmental variables are explored. LLWs are sensitive to SHR01 behind 
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the dryline where sensitivities exceed 1.0 (Fig. 5.6). LLWs are negatively sensitive to 

SHR01 within the inflow region of the MCS, particularly for the two hour forecast (Fig. 

5.6c,d). LLWs are also sensitive to 850 hPa temperature (Fig. 5.7). LLWs are positively 

sensitive slightly ahead of the initial condition storm location but negatively sensitive 

further east. This may reflect interference with the cold pool of the MCS to the east, 

where a colder cold pool moving from the east will quickly diminish the target MCS.  

There are large sensitivities to temperature within the dry airmass as values exceed 1 m 

s-1 (oC)-1. LLW sensitivity to 850 hPa water vapor mixing ratio is very small in most 

locations (Fig. 5.8). However, there is very large negative sensitivity to moisture behind 

the dryline (< -3 m s-1 (g kg-1)-1). These results coupled with temperature sensitivities 

suggest warmer and drier air behind the dryline have some enhancement effect on low-

level, possibly damaging winds. 
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Day Forecast metric (J) Initial condition (x) Figure 

29 
May 

Storm-averaged composite 
radar reflectivity 

850 hPa wind speed 5.1 
850 hPa temperature 5.2 
850 hPa water vapor mixing 
ratio 

5.3 

0-3 km wind shear 5.4 
0-1 km wind shear 5.5 

Storm-averaged lowest model 
level zonal winds 

0-1 km wind shear 5.6 
850 hPa temperature 5.7 
850 hPa water vapor mixing 
ratio 

5.8 

30 
May 

Storm-averaged composite 
radar reflectivity 

850 hPa water vapor mixing 
ratio 

5.9 

700 hPa water vapor mixing 
ratio 

5.10 

CAPE 5.11 

Storm-averaged 2-5 km UH 
0-6 km wind shear 5.12 
850 hPa wind speed 5.13 
850 hPa temperature 5.14 

31 
May 

Storm-averaged composite 
radar reflectivity 

850 hPa water vapor mixing 
ratio 

5.15 

700 hPa water vapor mixing 
ratio 

5.16 

CAPE 5.17 

Storm-averaged accumulated 
rainfall 

850 hPa water vapor mixing 
ratio 

5.18 

700 hPa water vapor mixing 
ratio 

5.19 

Storm-averaged 2-5 km UH 
0-6 km wind shear 5.20 
850 hPa wind speed 5.21 
850 hPa temperature 5.22 

Storm-averaged 0-1 km UH 0-1 km wind shear 5.23 
 

Table 5.1. List of scalar forecast metrics (J) and initial condition variables (x) for which 
ESA is applied on each day. 
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Figure 5.1. 29 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 850 hPa wind speed in dBZ (m s-1)-1 and ensemble mean forecasted 
reflectivity (20 dBZ; black contour) and ensemble mean initial condition reflectivity (20 
dBZ; gray contour) for forecast times (a) 1-hour, valid 2230 UTC (b) 1-hour with 
statistical significance test (c) 2-hour, valid 2330 UTC (d) 2-hour with statistical 
significance test.  
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Figure 5.2. 29 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 850 hPa temperature in dBZ (oC)-1 and ensemble mean forecasted 
reflectivity (20 dBZ; black contour) and ensemble mean initial condition reflectivity (20 
dBZ; gray contour) for forecast times (a) 1-hour, valid 2230 UTC (b) 1-hour with 
statistical significance test (c) 2-hour, valid 2330 UTC (d) 2-hour with statistical 
significance test. 
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Figure 5.3. 29 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 850 hPa water vapor mixing ratio in dBZ (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 1-hour, valid 2230 
UTC (b) 1-hour with statistical significance test (c) 2-hour, valid 2330 UTC (d) 2-hour 
with statistical significance test. 
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Figure 5.4. 29 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition SHR01 in dBZ (m s-1)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) and ensemble mean initial condition reflectivity (20 dBZ; gray 
contour) for forecast times (a) 1-hour, valid 2230 UTC (b) 1-hour with statistical 
significance test (c) 2-hour, valid 2330 UTC (d) 2-hour with statistical significance test. 
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Figure 5.5. 29 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition SHR03 in dBZ (m s-1)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) and ensemble mean initial condition reflectivity (20 dBZ; gray 
contour) for forecast times (a) 1-hour, valid 2230 UTC (b) 1-hour with statistical 
significance test (c) 2-hour, valid 2330 UTC (d) 2-hour with statistical significance test. 
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Figure 5.6. 29 May target storm averaged LLW (> 10 m s-1) sensitivity to initial 
condition SHR01 (unitless) and ensemble mean forecasted reflectivity (20 dBZ; black 
contour) and LLW (10 m s-1; green contour) and ensemble mean initial condition 
reflectivity (20 dBZ; gray contour) for forecast times (a) 1-hour, valid 2230 UTC (b) 1-
hour with statistical significance test (c) 2-hour, valid 2330 UTC (d) 2-hour with 
statistical significance test. 
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Figure 5.7. 29 May target storm averaged LLW (> 10 m s-1) sensitivity to initial 
condition 850 hPa temperature in m s-1 (oC)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) and ensemble mean initial condition reflectivity (20 dBZ; gray 
contour) and LLW (10 m s-1; green contour) for forecast times (a) 1-hour, valid 2230 
UTC (b) 1-hour with statistical significance test (c) 2-hour, valid 2330 UTC (d) 2-hour 
with statistical significance test. 
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Figure 5.8. 29 May target storm averaged LLW (> 10 m s-1) sensitivity to initial 
condition 850 hPa water vapor mixing ratio in m s-1 (g kg-1)-1 and ensemble mean 
forecasted reflectivity (20 dBZ; black contour) and LLW (10 m s-1; green contour) and 
ensemble mean initial condition reflectivity (20 dBZ; gray contour) for forecast times 
(a) 1-hour, valid 2230 UTC (b) 1-hour with statistical significance test (c) 2-hour, valid 
2330 UTC (d) 2-hour with statistical significance test. 
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5.2 30 May non-tornadic supercell results 

 ESA is applied to the non-tornadic supercell in central Oklahoma on 30 May. 

For this case, 30 and 60 minute forecasts are initialized at 1900 UTC. Storm-averaged 

composite reflectivity is sensitive to low-level moisture (850 hPa; Fig. 5.9). Reflectivity 

is positively sensitive to this moisture within the inflow region to the east and southeast 

of the storm, most notably for a 30 minute forecast. Values are approximately 1 dBZ (g 

kg-1)-1 in most locations but exceed 3 dBZ (g kg-1)-1 to the southeast of the storm for a 

30 minute forecast (Fig. 5.9a,b). The results from ESA for reflectivity forecasts to mid-

level moisture (700 hPa) are less conclusive (Fig. 5.10). For a one hour forecast, 

negative sensitivity to moisture appears to the southeast while positive sensitivity is 

seen in a 30 minute forecast in this same region with the sensitivities elongated in the 

downwind direction. Surprisingly, reflectivity is not strongly sensitive to CAPE (Fig. 

5.11). This may imply the relationship between CAPE and reflectivity is highly 

nonlinear, such that ESA, constrained by the linear assumption, fails to capture any 

meaningful relationship (not shown).  

 Since one characteristic of a supercell is a persistent, rotating updraft, ESA is 

applied to 2-5 km UH. For this particular supercell, UH values are quite small as some 

ensemble members only have a maximum UH of 5-10 m2s-2. Forecast UH is found to be 

very dependent on initial condition 0-6 km wind shear (hereafter SHR06; Fig. 5.12). 

Positive sensitivity spans the storm inflow environment to the south and southeast of the 

storm for both 30 and 60 minute forecasts where values exceed 7 m2s-2 (m s-1)-1. This 

suggests larger SHR06 values within the inflow region will yield large average UH for 

this supercell. UH is also positively sensitive to 850 hPa wind speed, particularly within 
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the inflow region for a 60 minute forecast (Fig. 5.13). In this 60 minute forecast, 

sensitivity magnitudes exceed 5 m2s-2 (m s-1)-1 within the inflow region. This translates 

to stronger storm-relative inflow inducing larger UH. UH is also positively sensitive to 

850 hPa temperature within the inflow region (Fig. 5.14). Sensitivity values are 

significantly larger where they exceed 20 m2s-2 (oC)-1. In summary, UH will increase if 

low-level inflow winds are faster, air is warmer, and 0-6 km shear is greater. 
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Figure 5.9. 30 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 850 hPa water vapor mixing ratio in dBZ (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
1930 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2000 UTC 
(d) 1-hour with statistical significance test. 
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Figure 5.10. 30 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 700 hPa water vapor mixing ratio in dBZ (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
1930 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2000 UTC 
(d) 1-hour with statistical significance test. 
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Figure 5.11. 30 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition CAPE in dBZ (10 J kg-1)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) for forecast times (a) 30 minutes, valid 1930 UTC (b) 30 
minutes with statistical significance test (c) 1-hour, valid 2000 UTC (d) 1-hour with 
statistical significance test. 
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Figure 5.11. 30 May target storm averaged 2-5 km UH (> 5 m2s-2) sensitivity to initial 
condition SHR06 in m2s-2 (m s-1)-1 and ensemble mean forecasted reflectivity (20 dBZ; 
black contour) and 2-5 km UH (5 m2s-2; green contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
1930 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2000 UTC 
(d) 1-hour with statistical significance test. 
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Figure 5.13. 30 May target storm averaged 2-5 km UH (> 5 m2s-2) sensitivity to initial 
condition 850 hPa wind speed in m2s-2 (m s-1)-1 and ensemble mean forecasted 
reflectivity (20 dBZ; black contour) and 2-5 km UH (5 m2s-2; green contour) and 
ensemble mean initial condition reflectivity (20 dBZ; gray contour) and ensemble mean 
initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, 
valid 1930 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2000 
UTC (d) 1-hour with statistical significance test. 
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Figure 5.14. 30 May target storm averaged 2-5 km UH (> 5 m2s-2) sensitivity to initial 
condition 850 hPa temperature in m2s-2 (oC)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) and 2-5 km UH (5 m2s-2; green contour) and ensemble mean 
initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, 
valid 1930 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2000 
UTC (d) 1-hour with statistical significance test. 
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5.2 31 May tornadic supercell results 

 As in the 30 May case, positive sensitivity of forecast reflectivity to 850 hPa 

water vapor mixing ratio is prevalent within the inflow region to the southeast of the 

supercell in 30, 60, and 90 minute forecasts (Fig. 5.15). Negative sensitivities exist to 

the west behind the dryline. This result is similar to the 29 May case where drier air 

behind the dryline is associated with higher average reflectivity. The pattern of 

reflectivity sensitivity to mid-level moisture (700 hPa mixing ratio) is similar to that of 

low-level moisture with positive sensitivity to the east and southeast (Fig. 5.16), but the 

sensitivity magnitudes are much larger. This indicates that small changes in cloud layer 

moisture have a much larger impact on reflectivity than similar changes in low-level 

moisture. As on 30 May, reflectivity is not sensitive to CAPE using this method (Fig. 

5.17). As previously stated, this may be a result of nonlinearity. 

Since the 31 May event produced significant flash flooding, ESA is applied to 

forecast accumulated rainfall. This reveals positive sensitivity to both low-level (Fig. 

5.18) and mid-level (Fig. 5.19) water vapor mixing ratio within the storm’s inflow 

region, again with cloud layer moisture having a larger influence. Ingested water vapor 

originates from the moist airmass to the east and directly impacts rainfall. For low-level 

moisture, these sensitivity values approach 2 mm (g kg-1)-1. In the mid-levels, 

magnitudes are greater (exceeding 4 mm (g kg-1)-1) suggesting mid-level moisture is an 

important environmental feature to rainfall accumulation. There are negative 

sensitivities to the southwest within the dry airmass, particularly in the low-levels. 

Overall, these results are similar to reflectivity sensitivities, which is to be expected.   
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ESA is also applied to 2-5 km UH beginning with SHR06 (Fig. 5.20). Sizable 

positive sensitivity exists within the near inflow region for 30 and 60 minute forecasts 

(Fig 5.20a,c), and these sensitivities are statistically significant (Fig. 5.20b,d). The 

sensitivity magnitudes decrease for a 90 minute forecast. These results are similar to the 

30 May case given positive sensitivity in the inflow region. UH is also positively 

sensitive to 850 hPa inflow winds for the 30 and 60 minute forecasts (Fig. 5.21). This 

agrees with the results of the previous day since stronger inflow will result in larger UH. 

Sensitivity to low-level temperature, however, is not similar to that seen on the previous 

day (Fig. 5.22). For these forecasts, UH is negatively sensitive to 850 hPa temperature 

within the inflow region. This result is somewhat unexpected and appears 

counterintuitive. Model soundings to the south of the storm indicate that a more stable 

layer has developed and that cooling at 850 hPa would reduce convection inhibition.   

Sobash et al. (2016) show through verification that 2-5 km UH is a poor surrogate for 

tornado prediction since it is a measure of mid-level updraft rotation while low-level 

rotation provides more insight into tornado probabilities. Thus, 0-1 km UH also is 

chosen as the forecast metric. The sensitivity of 0-1 km UH to 0-1 km wind shear 

(hereafter SHR01) indicates that 0-1 km UH is directly proportional to SHR01 in a 30 

minute forecast with values exceeding 1 m2s-2 (m s-1)-1 (Fig. 5.23). However, there is a 

sign change from a 30 minute to 1 hour forecast where positive sensitivities at 30 

minutes within the inflow region become negative sensitivities at 1 hour. This occurs in 

other fields as well (e.g., 850 hPa wind speed in Fig. 5.21). To further explore this 

temporal change in sensitivities, a grid point to the south of the UH maximum was 

chosen since this is a location where the sensitivity sign changes and is denoted by a 
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black dot in Fig. 5.23. Scatter plots of initial condition SHR01 and forecasted 0-1 km 

UH reveal the linear regressions for both a 30 and 60 minute forecast (Fig. 5.24). It is 

apparent that sampling error is the cause of this sign change as a few outliers skew the 

regression slope from positive (30 minute forecast) to negative (60 minute forecast). 

This is an example of how ESA can fail due to sampling error, particularly on the 

convective scale. Other sensitivity scatterplots reveal relationships between 

environmental initial conditions and forecast metrics (Fig. 5.25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

Figure 5.15. 31 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 850 hPa water vapor mixing ratio in dBZ (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
2300 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2330 UTC 
(d) 1-hour with statistical significance test (e) 90 minutes, valid 0000 UTC, 01 June (f) 
90 minutes with statistical significance test. 
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Figure 5.16. 31 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition 700 hPa water vapor mixing ratio in dBZ (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
2300 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2330 UTC 
(d) 1-hour with statistical significance test (e) 90 minutes, valid 0000 UTC, 01 June (f) 
90 minutes with statistical significance test. 
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Figure 5.17. 31 May target storm averaged composite reflectivity (> 20 dBZ) sensitivity 
to initial condition CAPE in dBZ (10 J kg-1)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) for forecast times (a) 1-hour, valid 2330 UTC (b) 1-hr with 
statistical significance test (c) 90 minutes, valid 0000 UTC, 01 June (d) 90 minutes with 
statistical significance test. 
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Figure 5.18. 31 May target storm averaged accumulated rainfall (> 10 mm) sensitivity 
to initial condition 850 hPa water vapor mixing ratio in mm (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and accumulated rainfall (10 mm; 
green contour) and ensemble mean initial condition reflectivity (20 dBZ; gray contour) 
for forecast times (a) 30 minutes, valid 2300 UTC (b) 30 minutes with statistical 
significance test (c) 1-hour, valid 2330 UTC (d) 1-hour with statistical significance test 
(e) 90 minutes, valid 0000 UTC, 01 June (f) 90 minutes with statistical significance test. 
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Figure 5.19. 31 May target storm averaged accumulated rainfall (> 10 mm) sensitivity 
to initial condition 700 hPa water vapor mixing ratio in mm (g kg-1)-1 and ensemble 
mean forecasted reflectivity (20 dBZ; black contour) and accumulated rainfall (10 mm; 
green contour) and ensemble mean initial condition reflectivity (20 dBZ; gray contour) 
for forecast times (a) 30 minutes, valid 2300 UTC (b) 30 minutes with statistical 
significance test (c) 1-hour, valid 2330 UTC (d) 1-hour with statistical significance test 
(e) 90 minutes, valid 0000 UTC, 01 June (f) 90 minutes with statistical significance test. 
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Figure 5.20. 31 May target storm averaged 2-5 km UH (> 75 m2s-2) sensitivity to initial 
condition SHR06 in m2s-2 (m s-1)-1 and ensemble mean forecasted reflectivity (20 dBZ; 
black contour) and 2-5 km UH (75 m2s-2; green contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
2300 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2330 UTC 
(d) 1-hour with statistical significance test (e) 90 minutes, valid 0000 UTC, 01 June (f) 
90 minutes with statistical significance test. 
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Figure 5.21. 31 May target storm averaged 2-5 km UH (> 75 m2s-2) sensitivity to initial 
condition 850 hPa wind speed in m2s-2 (m s-1)-1 and ensemble mean forecasted 
reflectivity (20 dBZ; black contour) and 2-5 km UH (75 m2s-2; green contour) and 
ensemble mean initial condition reflectivity (20 dBZ; gray contour) for forecast times 
(a) 1-hour, valid 2330 UTC (b) 1-hour with statistical significance test (c) 90 minutes, 
valid 0000 UTC, 01 June (d) 90 minutes with statistical significance test. 
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Figure 5.22. 31 May target storm averaged 2-5 km UH (> 75 m2s-2) sensitivity to initial 
condition 850 hPa temperature in m2s-2 (oC)-1 and ensemble mean forecasted reflectivity 
(20 dBZ; black contour) and 2-5 km UH (75 m2s-2; green contour) and ensemble mean 
initial condition reflectivity (20 dBZ; gray contour) for forecast times (a) 1-hour, valid 
2330 UTC (b) 1-hour with statistical significance test (c) 90 minutes, valid 0000 UTC, 
01 June (d) 90 minutes with statistical significance test. 
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Figure 5.23. 31 May target storm averaged 0-1 km UH (> 5 m2s-2) sensitivity to initial 
condition SHR01 in m2s-2 (m s-1)-1 and ensemble mean forecasted reflectivity (20 dBZ; 
black contour) and 0-1 km UH (5 m2s-2; green contour) and ensemble mean initial 
condition reflectivity (20 dBZ; gray contour) for forecast times (a) 30 minutes, valid 
2300 UTC (b) 30 minutes with statistical significance test (c) 1-hour, valid 2330 UTC 
(d) 1-hour with statistical significance test. The black dot in (a) and (c) is the grid point 
for Fig. 5.24. 
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Figure 5.24. Scatter plots of initial condition SHR01 versus target storm forecasted 
average 0-1 UH (> 5 m2s-2) at black dot in Fig. 5.23 for forecast lead times (a) 30 
minutes (b) 1-hour. 
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Figure 5.25. Example scatterplots of initial condition water vapor mixing ratio (g kg-1) 
and one-hour forecast reflectivity (dBZ; top); initial condition 0-6 km shear and one-
hour forecast 2-5 km UH (m2s-2; bottom). 
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5.4 Supercell evolution sensitivity to storm-induced shear perturbations 

It is shown in Chapter 4 that vertical wind shear is enhanced within the inflow 

region of supercells. Since UH is positively sensitive to shear within the inflow region, 

these short-term impacts on the environment by convection could be important to 

convection evolution. ESA is once again applied to UH, however, the sensitivity 

variable is the change in wind shear over an hour time period attributed to the storm, 

and the forecast metrics are the 2-5 and 0-1 km UH (Fig. 5.26). Using this technique, 

positive (negative) sensitivities represent scenarios where short-term increases 

(decreases) in shear caused by the storm result in larger UH in the future.  

Beginning with the 30 May case, 2-5 km UH is positively sensitive to the one 

hour storm-induced change in SHR06 (1800 – 1900 UTC) to the south and east of the 

supercell (Fig. 5.27). This suggests that the storm-induced increases in SHR06 have an 

effect on future convection evolution, meaning a positive feedback exists between the 

storm and environment. However, most of these sensitivities are not statistically 

significant (Fig. 5.27b,d,f).  

The 31 May results are more robust than the previous day. The 2-5 km UH is 

positively sensitive to the one hour storm-induced change in SHR06 (2130 – 2230 

UTC) for all three forecasts shown (Fig. 5.28). This inflow positive sensitivity is 

statistically significant in the 30 and 60 minute forecasts (Fig. 5.28b,d), supporting the 

idea of positive feedback between the storm and its nearby environment. This feedback 

is more prevalent on this day likely because the storm is larger and more intense and 

perturbs the environment to a greater extent than on 30 May (Chapter 4). A similar 

analysis is done for 0-1 km UH and storm-induced change in SHR01 (Fig. 29). Low-
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level rotation is positively sensitive to storm-induced SHR01 enhancements just to the 

south of the storm in the 30 minute forecast (Fig. 5.29a,b). Negative sensitivities are 

present for the 60 minute forecast (Fig. 5.29c,d), similarly to the negative sensitivities to 

the value of SHR01 (Fig. 5.23). Positive sensitivities return for the 90 minute forecast in 

close proximity to the UH region’s forecast position (Fig. 5.29e,f).  

The general finding suggested by these results is that UH magnitude and 

environmental wind shear are positively correlated. To briefly explore this relationship 

further, an idealized supercell simulation, initialized with a 3 K warm bubble, is created 

with an environmental sounding conducive to supercell development (Weisman and 

Klemp 1982). The domain has a 3 km grid spacing as does the inner domain for the real 

data cases. This simulation is rerun in two other instances where the SHR06 profile is 

enhanced. Using these three model simulations, 2-5 km UH is compared at various 

times during the model runs (Fig. 5.30). Initially, environments of higher shear yield 

larger average UH until an hour into the simulations. UH does not increase as largely in 

the 32 m s-1 case compared to the other two between 45 and 60 minutes. Varying shear 

magnitudes seems to affect the rotation cycling rates at later times since UH decreases 

at varying rates and times. Overall, these results support the notion that increased 

environmental wind shear will induce greater UH. 
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Figure 5.26. Schematic of storm-induced perturbation period followed by the forecast. 
In the 31 May case, the perturbation period spans 2130 – 2230 UTC. 
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Figure 5.27. 30 May target storm averaged 2-5 km UH (> 5 m2s-2) sensitivity to initial 
one hour storm-induced change of SHR06 in m2s-2 (m s-1)-1 and ensemble mean 
forecasted reflectivity (20 dBZ; black contour) and 2-5 km UH (5 m2s-2; green contour) 
for forecast times (a) 30 minutes, valid 1930 UTC (b) 30 minutes with statistical 
significance test (c) 1-hour, valid 2000 UTC (d) 1-hour with statistical significance test 
(e) 90 minutes, valid 2030 UTC (f) 90 minutes with statistical significance test. 
 



130 

 

Figure 5.28. 31 May target storm averaged 2-5 km UH (> 75 m2s-2) sensitivity to initial 
one hour storm-induced change of SHR06 in m2s-2 (m s-1)-1 and ensemble mean 
forecasted reflectivity (20 dBZ; black contour) and 2-5 km UH (75 m2s-2; green 
contour) for forecast times (a) 30 minutes, valid 2300 UTC (b) 30 minutes with 
statistical significance test (c) 1-hour, valid 2300 UTC (d) 1-hour with statistical 
significance test (e) 90 minutes, valid 0000 UTC, 01 June (f) 90 minutes with statistical 
significance test. 
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Figure 5.29. 31 May target storm averaged 0-1 km UH (> 5 m2s-2) sensitivity to initial 
one hour storm-induced change of SHR01 in m2s-2 (m s-1)-1 and ensemble mean 
forecasted reflectivity (20 dBZ; black contour) and 2-5 km UH (5 m2s-2; green contour) 
for forecast times (a) 30 minutes, valid 2300 UTC (b) 30 minutes with statistical 
significance test (c) 1-hour, valid 2300 UTC (d) 1-hour with statistical significance test 
(e) 90 minutes, valid 0000 UTC, 01 June (f) 90 minutes with statistical significance test. 
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Figure 5.30. Idealized storm averaged 2-5 km UH with time for environments initialized 
with SHR06 of 27 m s-1 (red), 32 m s-1 (blue), 40 m s-1 (green). 
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5.5 Discussion and conclusions 

 The results of this chapter reveal how convection evolution is dependent on the 

surrounding near-storm environment. This dependency is shown for three case studies: 

one MCS and two supercells. The results suggest that it is imperative for the near-storm 

environment to be reasonably well represented in CAM initial conditions, especially in 

regions of high forecast sensitivity. Model biases for different state variables, as shown 

in Chapter 3, can degrade the accuracy of model initial conditions. Thus, model biases 

in areas of high forecast sensitivity may possibly have negative effects on forecast 

accuracy. The following are potential model biases that may impact forecasts based on 

ESA:  

1) Under-depicted low-level inflow wind speed could affect supercell UH 

and multi-cell reflectivity. Since supercell UH in these cases is positively 

sensitive to inflow wind speed, an under-depiction of initial condition 

inflow winds should, in theory, lead to under-estimated forecasted UH. 

For the 29 May MCS case, the average forecast composite reflectivity is 

negatively sensitive to low-level inflow wind speed. From these results, 

it is suggested the under-depiction of inflow winds will lead to higher 

average reflectivity. 

2) Comparison of observed and analysis wind shear shows the under-

depiction of shear within model analyses due to the under-depiction of 

low-level wind speed. UH is positively sensitive to inflow vertical wind 

shear (over varying depths; some not shown) meaning a negative bias in 

initial condition shear would produce weaker forecast UH. For low-level 



134 

rotation, this under-depiction could be important to tornado probabilities 

derived from proxies.  

3) In Chapter 3, results show cold pool depth is under-depicted in CAM 

analyses. ESA applied to the 29 May MCS shows small areas of negative 

sensitivity along the apex of the gust front for 850 hPa temperature, 

meaning colder temperatures at these locations are associated with 

higher reflectivity values. Deeper cold pools will cause their propagation 

speed to increase, thus resulting in more lift along the gust front. 

Multiple ESAs use reflectivity and accumulated rainfall as forecast metrics and 

evaluate the resulting sensitivities from low- and mid-level moisture as depicted in the 

initial conditions. These results suggest that a more accurate depiction of initial 

condition low-level and cloud-level moisture could lead to improved forecasts of 

rainfall and flash flooding potential. Rainfall is also dependent on mid-level moisture in 

the 31 May case. A good representation of mid-level moisture will benefit rainfall 

forecasts, however, mid-level moisture in the proximity of convection is difficult to 

observe. In the future, available storm-scale satellite observations could improve initial 

conditions of these fields (Jones and Stensrud 2012).  

These results from several ESAs using various forecast metrics and initial 

condition variables show clearly that low-level environmental features affect short-term 

convection evolution. However, the selection of initial condition variables is important 

and deserves careful attention. Variables at 850 hPa are selected as initial condition 

variables in this study since ensemble members have varying PBL schemes, making 

results from initial condition variables outside of the PBL more reliable. For example, 
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using near-surface temperature, moisture, and winds in the ESAs would skew the results 

since members could be clustered together based on PBL scheme. Therefore, these 

ESAs would provide unreliable results. Variables below 850 hPa would be appropriate 

if an ensemble only used one PBL scheme, although it is probable that the near-surface 

environment will affect convection evolution in a similar manner as the 850 hPa 

environment. Regardless, the results suggest that observations from a dense network of 

surface observing systems near convective storms could improve short-term predictions 

of convection evolution via the concept of observation targeting.  

A significant finding in this study is the presence of positive feedback between a 

convective storm and its surrounding environment. Since vertical wind shear is 

enhanced within supercell inflow regions and supercell rotation is affected by 

environmental shear, the storm-induced enhancements of shear result in larger UH at a 

later time. This effect is much stronger in the tornadic supercell of 31 May than the non-

tornadic supercell of 30 May. The 31 May supercell was much larger and more intense 

given the high CAPE and storm-relative environmental helicity, thus the storm 

perturbed the environment to a much larger extent. These larger perturbations allow for 

more pronounced storm-environment positive feedback. This feedback could be a 

crucial part of mesocyclone maintenance and intensity and deserves further study.  

In summary, ESA can be an effective tool on the storm-scale to reveal storm-

environment dependencies. Future work should include more supercell case studies of 

various sizes and intensities to further explore storm-environment feedbacks. 

Sensitivities to environmental initial conditions can be coupled with observations within 
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regions of high sensitivity to weight the ensemble member forecasts where the initial 

conditions are closest to these observations.  
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Summary  
 

Understanding convection-environment interactions is crucial to convection 

predictability. The study assesses the impacts of convection on the surrounding 

environment and effects of these impacts on further convection evolution. The 

hypothesis that environmental perturbations have a significant impact on convection 

evolution is analyzed. The results of this study provide an in-depth analysis of 

convective storm and environmental interactions using both observations and CAMs. 

Observations are considered the ground truth and are used to verify CAM analyses and 

forecasts. Verified CAMs are then used to assess the influence of convection on the 

surrounding environment. Short-term convection forecast sensitivities to the 

surrounding environment, both the environment itself and changes to the environment, 

reveal convection evolution dependencies on the environmental features. 

MPEX included frequent sampling of pre-convective and near-storm 

environments via mobile upsonde units. Using these unique observations, CAMs are 

verified in various near-storm environment regions including inflow, outflow, and anvil. 

CAM analyses and forecasts are shown to depict the near-storm environment 

reasonably well with a few exceptions. Low-level inflow wind speeds are under-

depicted in both analyses and forecasts. Forecast inflow wind speeds biases nearly triple 

from that of analyses. Inflow winds that are too weak could hinder storm longevity and 

intensity. Cold pool depths are also under-depicted in CAMs. Shallow cold pools move 

slower which would affect the convection development along its leading edge. 

Since the environments have been thoroughly verified using MPEX upsondes, 

CAMs are used to evaluate the impacts of convection on the surrounding environment. 
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Because short-term changes in an environment may or may not be storm-induced, the 

non-convection-allowing outer domain is used to isolate the storm-induced changes on 

the convection-allowing inner domain. For supercells, vertical wind shear increases 

within inflow regions due to an increase in low-level wind speed. This has been 

described in previous studies using idealized simulations of supercells. The under-

depiction of low-level inflow wind speeds suggests that the observed shear may 

enhance to a greater extent. CAPE also increases in supercell inflow regions, 

particularly on 31 May.  CAPE is depleted in outflow regions due to cold pool 

development. In the upper-troposphere, winds are accelerated in the upper-level outflow 

and may lead to enhancements in synoptic-scale jet streaks.  

Ensemble sensitivity analysis is found to be a useful tool for diagnosing storm-

environment dependencies. Reflectivity and accumulated rainfall are sensitive to low-

level water vapor mixing ratio in multiple cases. Higher amounts of low-level inflow 

moisture will result in higher average storm reflectivity and accumulated rainfall. 

Supercell updraft helicity is also affected by the surrounding environment. It is found 

that an increase in inflow region initial condition shear will result in an increase in 

updraft helicity over various depths. Since inflow shear is enhanced by convection, the 

storm is somewhat self-sustaining, since an increase in shear by convection will 

enhance the storm’s updraft helicity at a later time. This is an example of positive 

feedback between the storm and environment, and deserves further study to understand 

why this feature is more pronounced in some cases and not others. 

Overall, this study has major implications for hazardous weather prediction. 

Understanding the environmental initial conditions necessary to predict hazards such as 
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tornadoes, hail, and damaging winds will ultimately improve reliable forecast lead 

times. Improved knowledge of where environmental perturbations influence storm 

structure and evolution could lead to an improvement in how ensemble members are 

formulated. Future studies should assess other cases to create a large sample size of 

storm-environment interaction analyses, including supercell cases where the inflow 

wind shear feedback is present.   
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