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ABSTRACT 

During the past decades, the size of 3D seismic data volumes and the number of 

seismic attributes have increased to the extent that it is difficult, if not impossible, for 

interpreters to examine every seismic line and time slice. Reducing the labor associated 

with seismic interpretation while increasing the reliability of the interpreted result has 

been an on going challenge that becomes increasingly more difficult with the amount of 

data available to interpreters. To address this issue, geoscientists often adopt concepts and 

algorithms from fields such as image processing, signal processing, and statistics, with 

much of the focus on auto-picking and automatic seismic facies analysis. I focus my 

research on adapting and improving machine learning and pattern recognition methods 

for automatic seismic facies analysis. Being an emerging and rapid developing topic, 

there is an endless list of machine learning and pattern recognition techniques available 

to scientific researchers. More often, the obstacle that prevents geoscientists from using 

such techniques is the “black box” nature of such techniques. Interpreters may not know 

the assumptions and limitations of a given technique, resulting in subsequent choices that 

may be suboptimum. In this dissertation, I provide a review of the more commonly used 

seismic facies analysis algorithms. My goal is to assist seismic interpreters in choosing 

the best method for a specific problem. Moreover, because all these methods are just 

generic mathematic tools that solve highly abstract, analytical problems, we have to tailor 

them to fit seismic interpretation problems. Self-organizing map (SOM) is a popular 

unsupervised learning technique that interpreters use to explore seismic facies using 

multiple seismic attributes as input. It projects the high dimensional seismic attribute data 

onto a lower dimensional (usually 2D) space in which interpreters are able to identify 

clusters of seismic facies. In this dissertation, using SOM as an example, I provide three 



xv 

improvements on the traditional algorithm, in order to present the information residing in 

the seismic attributes more adequately, and therefore reducing the uncertainly in the 

generated seismic facies map. 
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CHAPTER 1 

INTRODUCTION1 

In the 21st century, pattern recognition has become part of everyday life. Amazon 

or Alibaba analyzes the clothes you buy, Google analyzes your driving routine, and your 

local grocery store knows the kind of cereal you eat in the morning. Big companies and 

big government, attempting to identify patterns in our spending habits and the people with 

whom we associate, are analyzing “big data” with “deep learning algorithms” all the time.  

Successful seismic interpreters are experts at pattern recognition, identifying 

features such as channels, mass transport complexes, and collapse features where our 

engineering colleagues only see wiggles. Our challenge as interpreters is that the data 

volumes we need to analyze keep growing in size and dimensionality, while the number 

of experienced interpreters has remained relatively constant. One solution to this dilemma 

is for these experienced interpreters to teach their skills to the next generation of 

geologists and geophysicists, either through traditional education or on-the-job training. 

An alternative and complimentary solution is for these experienced interpreters to teach 

theirs skills to a machine. Turing (1950), whose scientific contributions and life has 

recently been popularized in a movie, asked whether “Machines can think?” Whether 

machines will ever be able to think is a question for scientists and philosophers to answer 

(e.g. Eagleman, 2012), but machines can be taught to perform repetitive tasks, and even 

                                                 

1 This chapter contains contents from a published article - Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 

2015, A comparison of classification techniques for seismic facies recognition: Interpretation, 3, SAE29–

SAE58. 
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to unravel the relationships that underlay repetitive patterns, in an area called machine 

learning.  

 25 years ago, skilled interpreters delineated seismic facies on a suite of 2D lines 

by visually examining seismic waveforms, frequency, amplitude, phase, and geometric 

configurations. Facies would then be posted on a map and hand contoured to generate a 

seismic facies map. With the introduction of 3D seismic data and volumetric attributes, 

such analysis has become both more quantitative and more automated. In this dissertation, 

I focus on pattern recognition on large 3D seismic data whereby like patterns in the 

seismic response (seismic facies) are assigned similar values. Based on the availability of 

training data (ground truth of the pattern to be discovered), we define supervised learning 

as situations with training data, and unsupervised learning as situations without. In either 

case, the ultimate goal is always discovering the hidden relation. In supervised learning, 

we want to build a model to discover the relation between a given input and output data 

pair (the aforementioned training data); in unsupervised learning, we want to build a 

model to characterize the relation among the input data (no known output data are given 

in this case). Seismic interpreters and petrophysicists use similar technology (the simpler 

being crossplots) to define specific rock properties, such as brittleness, TOC, or porosity. 

Pattern recognition is common to many industries, from using cameras to identify 

knotholes in plywood production to tracking cell phone communications to identify 

potential narcotics traffickers.  

I modify a workflow from the classical Duda et al. (2001) textbook in Figure 1.1 

to summarize the process. In this figure, “sensing” consists of seismic, well log, 

completion, and production measurements. For interpreters “segmentation” will usually 
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mean focusing on a given stratigraphic formation or suite of formations. Seismic data lose 

both temporal and lateral resolution with depth, such that a given seismic facies changes 

its appearance, or is nonstationary, as we go deeper in the section. The number of potential 

facies also increases as we analyze larger vertical windows incorporating different 

depositional environments, making classification more difficult. For computer assisted 

facies classification, “feature extraction” means attributes, be they simple measurements 

of amplitude and frequency, geometric attributes that measure reflector configurations, 

or more quantitative measurements of lithology, fractures, or geomechanical properties 

provided by prestack inversion and azimuthal anisotropy analysis. “Classification” 

assigns each voxel to one of a finite number of classes (also called clusters), each of which 

represents a seismic facies that may or may not correspond to a geological facies. Finally, 

using validation data, the interpreter makes a “decision” that determines whether a given 

cluster represents a unique seismic facies, if it should be lumped in other clusters having 

a somewhat similar attribute expression, or whether it should be further subdivided, 

perhaps through the introduction of additional attributes. 

Pattern recognition of seismic features is fundamental to human based 

interpretation, where our job may be as “simple” as identifying and picking horizons and 

faults, or more advanced such as the delineation of channels, mass transport complexes, 

carbonate buildups, or potential gas accumulations. The use of computer-assisted tools 

began soon after the development of seismic attributes in the 1970s (Balch, 1971; Taner 

et al., 1979), with the work by Sonneland (1983) and Justice et al. (1985) being two of 

the first. After decades of development, pattern recognition tools available to seismic 

interpreters have grown tremendously, so that it is infeasible for interpreters to try all 
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available methods before coming to a solution. Therefore, a comprehensive review on the 

popular contemporary pattern recognition methods is necessary and beneficial to the 

interpretation community. In this dissertation, using the same dataset, I provide in Chapter 

2 a comparison of unsupervised and supervised learning techniques that have been 

implemented for seismic data, aiming to help interpreters make an educated decision 

when selecting a pattern recognition method. I will discuss K-means, self-organizing map 

(SOM), and generative topographic mapping (GTM) as candidates for unsupervised 

learning, as well as artificial neural network and support vector machine (SVM) as 

candidates for supervised learning. 

Because all these methods are just generic mathematic tools that solve highly 

abstracted, analytical problems, we have to tailor them to fit seismic interpretation 

problems. SOM is probably the most commonly used unsupervised learning method in 

seismic interpretation that provides good performance with high efficiency. SOM projects 

multiattribute data from a high dimensional space (we define the number of dimension 

by the number of attributes) to a low dimensional (usual 2D) space, and defines clusters 

in the 2D space. In this dissertation, I introduce three improvements over the traditional 

SOM so that it handles seismic data more appropriately.  

Firstly, traditional SOM only preserves topology during the projection, which 

means after projection, it provides the order of similarity among clusters, but loses the 

proportion of similarity. In other words, the distance between two clusters in a 2D SOM 

space cannot properly represent the distance between two multiattribute data vectors that 

belong to those two clusters in the original multiattribute space. Such lack of distance 

information may confuse interpreters in that the facies on a SOM facies map may be too 
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separated or not separated enough. To address this issue, I adopt a distance-preserving 

step in SOM, which helps to define facies more appropriately. I demonstrate the value of 

such modifications by using an example on mapping a turbidite channel system. 

Compared with traditional SOM, I am able to better differentiate specific architectural 

elements.  

Secondly, traditional SOM defines facies only using input attribute response, and 

is spatially/temporally unaware. The pitfall in being spatially and temporally unaware is 

the potential of mixing geology across different formations during the SOM process. 

Adding information of stratigraphy (sedimentary cycle), which provides temporal (or 

spatial, if seismic data are in depth domain) constraint on the vertical axis, may help 

define layers that are otherwise not well defined by seismic attributes. In this dissertation, 

I adopt the workflow described in Li et al. (2016) to derive a sedimentary cycle model 

using a mode decomposition method, and use this model as a constraint on SOM facies 

analysis. I test the proposed stratigraphy constrained SOM to a Barnett Shale survey, with 

the objective of recovering more subtle lithologic variations than using the unconstrained 

SOM. 

Thirdly, all such multiattribute SOM analyses and subsequent improvements 

share one implicit assumption: input attributes are all independent and have the same 

contribution/importance to the SOM facies. Often times, interpreters qualitatively choose 

input attributes for multiattribute facies analysis based on their experience, but once an 

input attribute group is determined, every attribute is treated equally. Treating all input 

attributes equally is the somewhat “normal” practice in pattern recognition; unfortunately, 

seismic attributes are not created equally, and the importance of an attribute varies greatly 
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with exploration perspective. In this dissertation, I introduce a novel attribute selection 

approach for unsupervised seismic facies analysis. I assume that candidate attributes are 

chosen by an experienced interpreter. Once chosen, rather than assuming the selected 

attributes contribute equally to the facies map, I weight them based on their response from 

the unsupervised learning algorithm used to generate the facies map. as well as 

interpreter’s preference. Applying this strategy to the Barnett Shale, I find that the 

weighted attribute selection method better differentiates facies, retaining features seen on 

the previously insufficiently weighted attributes. 

I structure the dissertation as follows. In Chapter 2, I will provide an in-depth 

review and comparison of some of the most popular pattern recognition techniques that 

have been applied to seismic data. Then I will introduce the three improvements that I 

made on the traditional SOM algorithm to better fit problems in seismic exploration. In 

Chapter 3, I will introduce the distance-preserving SOM using a case study on data from 

offshore New Zealand. I will then discuss stratigraphy constrained SOM using an 

example from the Barnett Shale, United States in Chapter 4. In Chapter 5, I will 

demonstrate the previously mentioned attribute selection scheme for SOM, which 

incorporates both SOM response and the interpreter’s knowledge. Finally, I sum up the 

materials from Chapter 2 to 5 with conclusions in Chapter 6. 
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CHAPTER 1 FIGURES 

 

 

Figure 1.1. Pattern recognition as applied to the interpretation of seismic facies (Modified 

from Duda et al., 2000). 
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CHAPTER 2 

A REVIEW OF PATTERN RECOGNITION TECHNIQUES FOR 

SEISMIC FACIES ANALYSIS2 

INTRODUCTION 

As briefly introduced in Chapter 1, the amount of pattern recognition techniques 

that available at interpreters’ disposal is so huge that only the specialized experts are able 

to manipulate these techniques on seismic data confidently. Therefore, a comparison of 

the popular techniques deems necessary and important for average interpreters to embrace 

these powerful tools. In this chapter, I introduce three unsupervised learning techniques 

(K-means, SOM, and GTM) and two supervised learning techniques (neural network and 

SVM) with their mathematical backgrounds, and apply these techniques to a same seismic 

dataset from offshore New Zealand. By directly comparing the results using the same 

dataset, I am able to deliver the merits and demerits for each algorithm. 

K-means (Forgy, 1965; Jancey, 1966) was one of the earliest clustering algorithms 

developed, and was quickly applied by service companies and today is common to almost 

all interpretation software packages. K-means is an unsupervised learning algorithm in 

that the interpreter provides no prior information other than the selection of attributes and 

the number of desired clusters.  

Barnes and Laughlin (2002) reviewed several unsupervised learning techniques, 

including K-means, fuzzy clustering, and SOM. Their primary finding was that the 

clustering algorithm used was less important than the choice of attributes used. Among 

                                                 

2 This study is published as - Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 2015, A comparison of 

classification techniques for seismic facies recognition: Interpretation, 3, SAE29–SAE58. 
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the clustering algorithms, they favored SOM since there is topologically ordered mapping 

of the clusters with similar clusters lying adjacent to each other on a manifold and in the 

associated latent space. In the examples to be discussed, a “manifold” is a deformed 2D 

surface that best fits the distribution of N attributes lying in an N-dimensional attribute 

space. The clusters are then mapped to a simpler 2D rectangular “latent” (Latin for 

“hidden”) space upon which the interpreter can either interactively define clusters or 

simply map the projections using a 2D color map. A properly chosen latent space can 

help identify data properties that are otherwise difficult to observe in the original input 

space. Coleou et al.’s (2003) seismic “waveform classification” algorithm is implemented 

using SOM, where the “attributes” are seismic amplitudes that lie on a suite of 16 

phantom horizon slices. Each (x,y) location in the analysis window provides a 16-

dimensional vector of amplitudes. When plotted one element after the other, the mean of 

each cluster in 16-dimensional space looks like a waveform. These waveforms lie along 

a 1D deformed string (the manifold) that lies in 16D. This 1D string is then mapped to a 

1D line (the latent space) which in turn is mapped against a 1D continuous color bar. The 

proximity of like waveforms to each other on the manifold and latent spaces results in 

similar seismic facies appearing as similar colors. Coleou et al. (2003) also generalized 

their algorithm to attributes other than seismic amplitude, constructing vectors of dip 

magnitude, coherence, and reflector parallelism. Strecker and Uden (2002) were perhaps 

the first to use 2D manifolds and 2D latent spaces with geophysical data, using 

multidimensional attribute volumes to form N-dimensional vectors at each seismic 

sample point. Typical attributes included envelope, bandwidth, impedance, AVO slope 

and intercept, dip magnitude, and coherence. These attributes were projected onto a 2D 
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latent space and their results plotted against a 2D color table. Gao (2007) applied a 1D 

SOM to GLCM texture attributes to map seismic facies offshore Angola. Overdefining 

the clusters with 256 prototype vectors, he then used 3D visualization and his knowledge 

of the depositional environment to map the “natural” clusters. These natural clusters were 

then calibrated using well control, giving rise to what is called a posteriori supervision. 

Roy et al. (2013) built on these concepts and developed an SOM classification workflow 

of multiple seismic attributes computed over a deep-water depositional system. They 

calibrated the clusters a posteriori using classical principles of seismic stratigraphy on a 

subset of vertical slices through the seismic amplitude. A simple but very important 

innovation was to project the clusters onto a 2D nonlinear Sammon space (Sammon, 

1969). This projection was then colored using a gradational 2D color-scale like that of 

Matos et al. (2009) thus facilitating the interpretation. Roy et al. (2013) introduced a 

Euclidean distance measure to correlate predefined unsupervised clusters to average data 

vectors about interpreter defined well log facies.  

Generative topographic mapping (GTM) is a more recent unsupervised 

classification innovation, providing a probabilistic representation of the data-vectors in 

the latent space (Bishop et al., 1998). There has been very little work on the application 

of GTM technique to seismic data and exploration problems. Wallet et al. (2009) are 

probably the first to apply the GTM technique to seismic data, using a suite of phantom 

horizon slices through a seismic amplitude volume generating a “waveform 

classification”. While generating excellent images, Roy et al. (2013, 2014) found the 

introduction of well control to SOM classification to be somewhat limited, and instead 

applied generative topographic mapping (GTM) to Mississippian tripolitic chert reservoir 
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in the Midcontinent USA and a carbonate wash play in the Sierra Madre Oriental of 

Mexico. They found that GTM provided not only the most likely cluster associated with 

a given voxel, but also the probability that that voxel belongs each of clusters, providing 

a measure of confidence or risk in the prediction. 

K-means, SOM, and GTM are all unsupervised learning techniques, where the 

clustering is driven only by the choice of input attributes and the number of desired 

clusters. If we wish to teach the computer to mimic the facies identification previously 

chosen by a skilled interpreter, or link seismic facies to electro-facies interpreted using 

wireline logs, we need to introduce “supervision” or external control to the clustering 

algorithm. The most popular means of supervised learning classification are based on 

artificial neural networks (ANN). Meldahl et al. (1999) used seismic energy and 

coherence attributes coupled with interpreter control (picked seed points) to train a neural 

network to identify hydrocarbon chimneys. West et al. (2002) used a similar workflow 

where the objective was seismic facies analysis of a channel system and the input 

attributes were textures. Corradi et al. (2009) used GLCM (gray level co-occurrence 

matrix) textures and ANN, with controls based on wells and skilled interpretation of some 

key 2D vertical slices to map sand, evaporate, and sealing vs. non-sealing shale facies 

offshore west Africa.  

Support vector machine (SVM, where the word “machine” is due to Turing’s 

(1950) mechanical decryption machine) is a more recent introduction to (e.g. Li and 

Castagna, 2004; Kuzma and Rector, 2004, 2005; Zhao et al., 2005; Al-Anazi and Gates, 

2010). Originating from maximum margin classifiers, SVMs have gained great popularity 

for solving pattern classification and regression problems since the concept of a “soft 
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margin” was first introduced by Cortes and Vapnik (1995). SVMs map the N-dimensional 

input data into a higher dimensional latent (often called feature) space, where clusters can 

be linearly separated by hyperplanes. Detailed description on SVMs can be found in 

Cortes and Vapnik (1995), Cristianini and Shawe-Taylor (2000), and Schölkopf and 

Smola (2002). Li and Castagna (2004) used SVM to discriminate alternative AVO 

responses while Zhao et al. (2014) and Zhang et al. (2015) used a variation of SVM using 

mineralogy logs and seismic attributes to predict lithology and brittleness in a shale 

resource play. 

I begin the remaining of this chapter by providing a summary of the more common 

clustering techniques used in seismic facies classification, emphasizing their similarities 

and differences. I start from the unsupervised learning K-means algorithm, progress 

through projections onto principal component hyperplanes, and end with projections onto 

SOM and GTM manifolds, which are topological spaces that resemble Euclidean space 

near each point. Next, I provide a summary of supervised learning techniques including 

artificial neural networks and support vector machines. Given these definitions, I apply 

each of these methods to identify seismic facies in the same data volume acquired in the 

Canterbury Basin, New Zealand. I conclude this chapter with a discussion on the 

advantages and limitations of each method and areas for future algorithm development 

and workflow refinement. At the very end, I also provide an appendix containing some 

of the mathematical details to better quantify how each algorithm works. 
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REVIEW OF UNSUPERVISED LEARNING TECHNIQUES 

Crossplotting 

Crossplotting one or more attributes against each other is an interactive and 

perhaps the most common clustering technique. In its simplest implementation, one 

computes and then displays a 2D histogram of two attributes. In most software packages, 

the interpreter then identifies a cluster of interest and draws a polygon around it. While 

several software packages allow crossplotting of up to three attributes, crossplotting more 

than three attributes quickly becomes intractable. One workflow to address this 

visualization limitation is to first project a high number of attributes onto the first two or 

three eigenvectors, and then crossplot the principal components. Principal components 

will be discussed later in the section on projection methods. 

K-means clustering  

K-means (MacQueen, 1967) is perhaps the simplest clustering algorithm and is 

widely available in commercial interpretation software packages. The method is 

summarized in the cartoons shown in Figure 2.1. One drawback of the method is that the 

interpreter needs to define how many clusters reside in the data. Once the number of 

clusters is defined, the cluster means or centers are defined either on a grid or randomly 

to begin the iteration loop. Since attributes have different units of measurement (e.g. Hz 

for peak frequency, 1/km for curvature, and mV for RMS amplitude) the distance of each 

data point to the current means are computed by scaling the data by the inverse of the 

covariance matrix, giving us the “Mahalanobis” distance (see Appendix). Each data point 

is then assigned to the cluster to whose mean it is closest. Once assigned, new cluster 



15 

means are computed from the newly assigned data clusters and the process repeated. If 

there are Q clusters, the process will converge in about Q iterations. 

K-means is fast and easy to implement. Unfortunately, the clustering has no 

structure such that there is no relationship between the cluster numbering (and therefore 

coloring) and the proximity of one cluster to another. This lack of organization can result 

in similar facies appearing in totally different colors, confusing the interpretation. Tuning 

the number of clusters to force similar facies into the same cluster is a somewhat tedious 

procedure that also decreases the resolution of the facies map.  

Projection Techniques 

Although not defined this way in the pattern recognition literature, since this is a 

review, I will lump the following methods, principal component analysis (PCA), self-

organizing maps, and generative topographic maps together and call them “projection 

techniques”. Projection techniques project data residing in a higher dimensional space 

(say a 5D space defined by five attributes) onto a lower dimensional space (say a 2D 

plane or deformed 2D surface). Once projected, the data can be clustered in that space by 

the algorithm (such as SOM) or interactively clustered by the interpreter by drawing 

polygons (routine for PCA, and the preferred analysis technique for both SOM and 

GTM). 

Principal Component Analysis 

Principal component analysis is widely used to reduce the redundancy and excess 

dimensionality of the input attribute data. Such reduction is based on the assumption that 

most of the signals are preserved in the first few principle components (eigenvectors), 

while the last principal components contain uncorrelated noise. In this study, I use PCA 
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as the first iteration of the SOM and GTM algorithms. Many workers use PCA to reduce 

redundant attributes into “meta attributes” to simplify the computation. The first 

eigenvector is a vector in N-dimensional attribute space that best represents the attribute 

patterns in the data. Cross-correlating (projecting) the N-dimensional data against the first 

eigenvector at each voxel gives us the first principal component volume. If we scale the 

first eigenvector by the first principal component and subtract it from the original data 

vector, we obtain a residual data vector. The second eigenvector is that vector that best 

represents the attribute patterns in this residual. Cross-correlating (projecting) the second 

eigenvector against either the original data or residual data vector at each voxel gives us 

the second principal component volume. This process continues for all N-dimensions 

resulting in N eigenvectors and N principal components. In this study, I limit myself to 

the first two eigenvectors which thus define the plane that least-squares fits the N-

dimensional attribute data. Figure 2.2c shows a numerical example of the first two 

principle components defining a plane in a 3-dimensional data space. 

Self-organizing maps 

While many workers (e.g. Coleou et al., 2003) describe SOM as a type of neural 

network, for the purposes of this review, I prefer to describe SOM as a manifold 

projection technique. Kohonen (1982) SOM, originally developed for gene pattern 

recognition, is one of the most popular classification techniques, and it has been 

implemented in at least four commercial software packages for seismic facies 

classification. The major advantage of SOM over K-means is that the clusters residing on 

the deformed manifold in N-dimensional data space are directly mapped to a rectilinear 
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or otherwise regularly gridded latent space. I provide a brief summary of the mathematical 

formulations of the SOM implementation used in this study in the Appendix. 

Although SOM is one of the most popular classification technique there are 

several limitations to the SOM algorithm. First, the choice of neighborhood function at 

each iteration is subjective, with different choices resulting in different solutions. Second, 

the absence of a quantitative error measure does not let us know whether the solution has 

converged to an acceptable level, thus providing confidence in the resulting analysis. 

Third, while we find the most likely cluster for a given data vector, we have no 

quantitative measure of confidence in the facies classification, and no indication if the 

vector could be nearly as well represented by other facies. 

Generative topographic mapping 

GTM is a nonlinear dimensionality reduction technique that provides a 

probabilistic representation of the data vectors on a lower L-dimensional deformed 

manifold that is in turn mapped to an L-dimensional latent space. While SOM seeks the 

node or prototype vector that is closest to the randomly chosen vector from the training 

or input dataset, in GTM each of the nodes lying on the lower dimensional manifold 

provides some mathematical support to the data and is considered to be to some degree 

“responsible” for the data vector (Figure 2.3). The level of support or “responsibility” is 

modeled with a constrained mixture of Gaussians. The model parameter estimations are 

determined by maximum likelihood using the Expectation Maximization (EM) algorithm 

(Bishop et al., 1998). 

Because GTM theory is deeply rooted in probability, it can also be used in modern 

risk analysis. We can extend the GTM application in seismic exploration by projecting 
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the mean posterior probabilities of a particular window of multiattribute data (say, about 

a producing well) onto the 2D latent space. By project the data vector at any given voxel 

onto the latent space, we obtain a probability estimates of whether it falls into the same 

category (Roy et al., 2014). We thus have a probabilistic estimate of how similar any data 

vector is to attribute behavior (and hence facies) about a producing or non-producing well 

of interest. 

Other Unsupervised Learning Methods 

There are many other unsupervised learning techniques, several of which were 

evaluated by Barnes and Laughlin (2002). I do not currently have access to software to 

apply independent component analysis and Gaussian mixture models to seismic facies 

classification problem, but mention them as possible candidates.  

Independent component analysis 

Like PCA, independent component analysis (ICA) is a statistical technique used 

to project a set of N-dimensional vectors onto a smaller L-dimensional space. Unlike PCA 

which is based on Gaussian statistics, whereby the first eigenvector best represents the 

variance in the multidimensional data, ICA attempts to project data onto subspaces that 

result in non-Gaussian distributions which are then easier to separate and visualize. 

Honorio et al. (2014) successfully apply ICA to multiple spectral components to delineate 

architectural elements of an offshore Brazil carbonate terrain. Both PCA and ICA are 

commonly used to reduce a redundant set of attributes to form a smaller set of 

independent meta-attributes (e.g. Gao, 2007). 
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Gaussian mixture models 

Gaussian mixture model (GMM), are parametric models of probability 

distributions which can provide greater flexibility and precision in modeling than 

traditional unsupervised clustering algorithms. Lubo et al. (2014) apply this technique to 

a suite of well logs acquired over Horseshoe Atoll, west Texas, to generate different 

lithologies. These GMM lithologies are then used to calibrate 3D seismic prestack 

inversion results to generate a 3D rock property model. At present, I do not know of any 

GMM algorithms applied to seismic facies classification using seismic attributes as input 

data. 

REVIEW OF SUPERVISED LEARNING TECHNIQUES 

Artificial Neural Networks 

Artificial neural networks can be used in both unsupervised and supervised 

mulitattribute analysis (van der Baan and Jutten, 2000). The multilayer perceptron (MLP) 

and the radial basis function (RBF) are two popular types of neural networks used in 

supervised learning. Probabilistic neural network, PNN, which also uses radial basis 

functions, forms the basis of additional neural network geophysical applications. In terms 

of network architecture, the supervised algorithms are feed-forward networks. In contrast, 

the unsupervised SOM algorithm described earlier is a recurrent (or feed-backward) 

network. An advantage of feed-forward networks over SOMs is the ability to predict both 

continuous values (such as porosity) as well as discrete values (such as facies class 

number). Applications of neural networks can be found in seismic inversion (Rӧth and 

Tarantola, 1994), well log prediction from other logs (Huang et al., 1996; Lim, 2005), 

waveform recognition (Murat and Rudman, 1992), seismic facies analysis (West et al., 
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2002), and reservoir property prediction using seismic attributes (Yu et al., 2008; Zhao 

and Ramachandran, 2013). For the last application listed above, however, due to the 

resolution difference between seismic and well logs, structural and lithologic variation of 

inter-well points, and the highly nonlinear relation between these two domains, achieving 

a convincing prediction result can be challenging. In this case, geostatistical methods such 

as Bayesian analysis can be used jointly to provide a probability index, giving interpreters 

an estimate of how much confidence they should have in the prediction. 

Artificial neural networks are routinely used in the exploration and production 

industry. ANN provides a means to correlate well measurements such as gamma ray logs 

to seismic attributes (e.g. Verma, 2012) where the underlying relationship is a function 

of rock properties, depositional environment, and diagenetic alteration. Although it has 

produced reliable classification in many applications during its service, defects such as 

converging to local minima and difficult in parameterization are not negligible. In both 

industrial and scientific applications, we prefer a constant and robust classifier once the 

training vectors and model parameters have been determined. This leads to the more 

recent supervised learning technique developed in the late 20th century, the support vector 

machines. 

Support Vector Machines 

The basic idea of SVMs is straightforward. First, we transform the training data 

vectors into a still higher dimensional “feature” space using nonlinear mapping. Then we 

find a hyperplane in this feature space that separates the data into two classes with an 

optimal “margin”. The concept of a margin is defined to be the smallest distance between 

the separation hyperplane (commonly called a decision boundary) and the training vectors 
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(Bishop, 2006) (Figure 2.4). An optimal margin balances two criteria: maximizing the 

margin, thereby giving the classifier the best generalization, and minimizing the number 

of misclassified training vectors if the training data are not linearly separable. The margin 

can also be described as the distance between the decision boundary and two hyperplanes 

defined by the data vectors which have the smallest distance to the decision boundary. 

These two hyperplanes are called the “plus-plane” and the “minus-plane”. The vectors 

which lie exactly on these two hyperplanes mathematically define or “support” them and 

are called support vectors. Tong and Koller (2002) show that the decision boundary is 

dependent solely on the support vectors, resulting in the name “support vector machines”. 

SVMs can be used in either a supervised or in a semi-supervised learning mode. 

In contrast to supervised learning, semi-supervised learning defines a learning process 

that utilizes both labeled and unlabeled vectors. When there are a limited number of 

interpreter classified data vectors, the classifier may not act well due to insufficient 

training. In semi-supervised training, some of the nearby unclassified data vectors are 

automatically selected and classified based on a distance measurement during the training 

step, as in an unsupervised learning process. These vectors are then used as additional 

training vectors (Figure 2.5), resulting in a classifier that will perform better for the 

specific problem. The generalization power is sacrificed by using unlabeled data. In this 

study I focus on SVM; however, the future of semi-supervised SVM in geophysical 

applications is quite promising. 

Proximal Support Vector Machines 

Proximal support vector machine (PSVM) (Fung and Mangasarian, 2001, 2005) 

is a recent variant of SVM, which, instead of looking for a separating plane directly, 
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builds two parallel planes that approximate two data classes; the decision-boundary then 

falls between these two planes (Figure 2.6). Other researchers have found that PSVM 

provides comparable classification correctness to standard SVM but at considerable 

computational savings (Fung and Mangasarian, 2001, 2005; Mangasarian and Wild, 

2006). In this study, I use PSVM as the implementation of SVM. Details on the PSVM 

algorithm are provided in the Appendix. 

We may face problems in seismic interpretation that are linearly inseparable in 

the original input multidimensional attribute space. In SVM, we map the data vectors into 

a higher dimensional space where they become linearly separable (Figure 2.7), where the 

increase in dimensionality may result in significantly increased computational cost. 

Instead of using an explicit mapping function to map input data into a higher dimensional 

space, PSVM achieves the same goal by manipulating a kernel function in the input 

attribute space. In this implementation, I use a Gaussian kernel function, but in principal 

many other functions can be used (Shawe-Taylor and Cristianini, 2004). 

SVM can be used either as a classifier or as a regression operator. Used as a 

regression operator, SVM is capable of predicting petrophysical properties such as 

porosity (Wong et al., 2005), 𝑉𝑝 , 𝑉𝑠  and density (Kuzma and Rector, 2004), and 

permeability (Al-Anazi and Gates, 2010; Nazari et al., 2011). In all such applications, 

SVM shows comparable or superior performance to neural networks with respect to 

prediction error and training cost. When used as a classifier, SVM is suitable in predicting 

lithofacies (Al-Anazi and Gates, 2010; Torres and Reveron, 2013; Wang et al., 2014; 

Zhao et al., 2014) or pseudo rock properties (Zhang et al., 2015), either from well log 

data, core data, or seismic attributes.  
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GEOLOGIC SETTING 

In this study I use the Waka-3D seismic survey acquired over the Canterbury 

Basin, offshore New Zealand, generously made public by New Zealand Petroleum and 

Minerals. Readers can request this data set through their website for research purposes. 

Figure 2.8 shows the location of this survey, where the red rectangle corresponds to time 

slices shown in subsequent figures. The study area lies on the transition zone of 

continental slope and rise, with abundance of paleocanyons and turbidite deposits of 

Cretaceous and Tertiary ages. These sediments are deposited in a single, tectonically 

driven transgressive – regressive cycle (Uruski, 2010). Being a very recent and 

underexplored prospect, publically available comprehensive studies of the Canterbury 

Basin are somewhat limited. The modern seafloor canyons shown in Figure 2.8 are good 

analogs of the deeper paleocanyons illuminated by the 3D seismic amplitude and attribute 

data. 

ATTRIBUTE SELECTION 

In their comparison of alternative unsupervised learning techniques, Barnes and 

Laughlin (2002) concluded that the appropriate choice of attributes was the most critical 

component of computer assisted seismic facies identification. Although interpreters are 

skilled at identifying facies, such recognition is often subconscious and hard to define 

(see Eagleman’s 2012 discussion on differentiating male from female chicks and 

identifying military aircraft from silhouettes). In supervised learning, the software does 

some of the work during the training process, though we must always be wary of false 

correlations if we provide too many attributes (Kalkomey, 1999). For the prediction of 

continuous data such as porosity, Russell (1997) and others suggest that one begin with 
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exploratory data analysis, where one simply cross-correlates a candidate attribute with 

the desired property at the well. Such cross-correlation does not work well when trying 

to identify seismic facies, which are simply “labeled” with an integer number or 

alphanumeric name.  

Table 2.1 summarizes how interpreters perceive each of the seismic facies of 

interest. Once we have enumerated the seismic expression, the quantification using 

attribute expression is relatively straightforward. In general, amplitude and frequency 

attributes are lithology indicators and may provide direct hydrocarbon detection in 

conventional reservoirs, geometric attributes delineate reflector morphology such as dip, 

curvature, rotation, and convergence, while statistical and texture attributes provides 

information about data distribution that quantifies subtle patterns that are hard to define 

(Chopra and Marfurt, 2007). Attributes such as coherence provide images of the edges of 

seismic facies rather than a measure of the facies themselves, although slumps often 

appear as a suite of closely spaced faults separating rotated fault blocks. Finally, what we 

see as interpreters and what our clustering algorithms see can be quite different. While 

we may see a slump feature as exhibiting a high number of faults per km, the clustering 

algorithms are applied voxel by voxel and see only the local behavior. Extending the 

clustering to see such large scale textures requires the development of new texture 

attributes.  

The number of attributes should be as small as possible to discriminate the facies 

of interest, and each attribute should be mathematical independent from the others. While 

it may be fairly easy to represent three attributes with a deformed 2D manifold, increasing 

the dimensionality results in increased deformation, such that the manifold may fold on 
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itself or may not accurately represent the increased data variability. Because the Waka-

3D survey is just recently released to the public, interpreters have tested numerous 

attributes that they think may highlight different facies in the turbidite system. Among 

these attributes, I find the shape index to be good for visual classification but dominates 

the unsupervised classifications with valley and ridge features across the survey. After 

such analysis I chose four attributes that are mathematically independent but should be 

coupled through the underlying geology: peak spectral frequency, peak spectral 

magnitude, GLCM homogeneity, and curvedness, as the input to the classifiers. The peak 

spectral frequency and peak spectral magnitude form an attribute pair that crudely 

represents the spectral response. Peak frequency of spectrally whitened data is sensitive 

to tuning thickness while peak magnitude is a function of both tuning thickness and 

impedance contrast. GLCM homogeneity is a texture attribute that has a high value for 

adjacent traces with similar (high or low) amplitudes and measures the continuity of a 

seismic facies. Curvedness defines the magnitude of reflector structural or stratigraphic 

deformation, with dome-, ridge-, saddle-, valley-, and bowl-shaped features exhibiting 

high curvedness and planar features exhibiting zero curvedness. 

Figure 2.9 shows a time slice at t=1.88 s through the seismic amplitude volume 

on which I identify channels (white arrows), high amplitude deposits (yellow arrows), 

and slope fans (red arrows). Figure 2.10 shows an equivalent time slice through peak 

spectral frequency co-rendered with peak spectral magnitude that emphasizes the relative 

thickness and reflectivity of the turbidite system and surrounding slope fan sediments into 

which it was incised. The edges of the channels are delineated by Sobel filter similarity. 

I show equivalent time slices through (Figure 2.11) GLCM homogeneity, and (Figure 
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2.12) co-rendered shape index and curvedness. In Figure 2.13 I show a representative 

vertical slice at line AA’ in Figure 2.14 cutting through the channels through (Figure 

2.13a) seismic amplitude, (Figure 2.13b) seismic amplitude co-rendered with peak 

spectral magnitude/peak spectral frequency, (Figure 2.13c) seismic amplitude co-

rendered with GLCM homogeneity, and (Figure 2.13d) seismic amplitude co-rendered 

shape index and curvedness. White arrows indicate incised valleys, yellow arrows high 

amplitude deposits, and red arrows a slope fan. We note several of the incised values are 

visible at time slice t=1.88 s.  

In a conventional interpretation workflow, the geoscientist would examine each 

of these attribute images and integrate them within a depositional framework. Such 

interpretation takes time and may be impractical for extremely large data volumes. In 

contrast, in seismic facies classification the computer either attempts to classify what it 

sees as distinct seismic facies (in unsupervised learning) or attempts to emulate the 

interpreter’s classification made on a finite number of vertical sections, time, and/or 

horizon slices and apply the same classification to the full 3D volume (in supervised 

learning). In both cases, the interpreter needs to validate the final classification to 

determine if they represent seismic facies of interest. In this example I will use Sobel 

filter similarity to separate the facies and then evaluate how they fit within my 

understanding of a turbidite system. 

APPLICATION 

Given these four attributes, we now construct four-dimensional attribute vectors 

as input to the previously described classification algorithms. To better illustrate the 

performance of each algorithm, I summarize the data size, number of computational 
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processors, and runtime in Table 2.2. All the algorithms are developed by the authors 

except ANN, which is implemented using MATLAB® toolbox. 

I begin with K-means. As previously discussed, a limitation of K-means is the 

lack of any structure to the cluster number selection process. I illustrate this limitation by 

computing K-means with 16 (Figure 2.14) and 256 (Figure 2.15) clusters. On Figure 2.14, 

we can identify high amplitude overbank deposits (yellow arrows), channels (white 

arrows), and slope fan deposits (red arrows). A main limitation of K-means is that there 

is no structure linking the clusters, which leads to a somewhat random choice of color 

assignment to clusters. This problem becomes more serious when more clusters are 

selected: the result with 256 clusters (Figure 2.15) is so chaotic that we can rarely separate 

the overbank high amplitude deposits (yellow arrows) and slope fan deposits (red arrows) 

that were easily separable in Figure 2.14. For this reason, modern K-means applications 

focus on estimating the correct number of clusters in the data. 

In contrast to K-means, SOM restricts the cluster centers to lie on a deformed 2D 

manifold. While clusters may move closer or further apart, they still form (in this 

implementation) a deformed quadrilateral mesh which maps to a rectangular mesh on the 

2D latent space. Mapping the latent space to a continuous 1D (Coleou et al., 2003) or 2D 

color bar (Strecker and Uden, 2002), reduces the sensitivity to the number of clusters 

chosen. I follow Gao (2007) and avoid guessing at the number of clusters necessary to 

represent the data by overdefining the number of prototype vectors to be 256 (the limit of 

color levels in our commercial display software). These 256 prototype vectors (potential 

clusters) reduce to only three or four distinct “natural” clusters through the SOM 

neighborhood training criteria. The 2D SOM manifold is initialized using the first two 
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principle components, defining a plane through the N-dimensional attribute space (Figure 

2.16). The algorithm then deforms the manifold to better fit the data. Overdefining the 

number of prototype vectors results in clumping into a smaller number natural clusters. 

These clumped prototype vectors project onto adjacent locations in the latent space are 

therefore appear as subtle shades of the same color as indicated by the limited palette of 

256 colors shown in Figure 2.17. On the classification result shown on Figure 2.17, we 

can clearly identify the green colored spill-over deposits (yellow arrows). The difference 

between channel fill (white arrows) and slope fans (red arrows) is insignificant. However, 

by co-rendering with similarity, the channels are delineated nicely, allowing us to visually 

distinguish channel fills and the surrounded slope fans. We can also identify some purple 

color clusters (orange arrows) which I interpret to be crevasse splays at this moment. 

Next, I apply GTM to the same four attributes. I compute two “orthogonal” 

projections of data onto the manifold and thence onto the two dimensions of the latent 

space. Rather than define explicit clusters, we project the mean a posteriori probability 

distribution onto the 2D latent space and then export the projection onto the two latent 

space axes. I crossplot the projections along axes 1 and 2 and map them against a 2D 

color bar (Figure 2.18). In this slice, we see channels delineated by purple colors (white 

arrows), point bar and crevasse splays in pinkish colors (yellow arrows), and slope fans 

in lime green colors (red arrows). We can also identify some thin, braided channels at the 

south end of the survey (blue arrow). Similarly to the SOM result, similarity separates the 

incised valleys from the slope fans. However, the geological meaning of the orange 

colored facies is somehow vague. This is the nature of unsupervised learning techniques 

in that the clusters represent topological differences in the input data vectors, which are 
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not necessarily the facies differences we wish to delineate. We can ameliorate this 

shortcoming by adding a posteriori supervision to the GTM manifold. The simplest way 

to add supervision is to compute the average attribute vectors about a given seismic facies 

and map it to the GTM crossplot. Then, the interpreter can manually define clusters on 

the 2D histogram by constructing one or more polygons (Figure 2.19), where I cluster the 

data into four facies: multistoried channels (blue), high-energy point bar and crevasse 

splay deposits (yellow), slope fans (green), and “everything else” (red). A more 

quantitative methodology is to mathematically project these average clusters onto the 

manifold, and then cross multiply the probability distribution of the control vectors 

against the probability distribution function of each data vector, thereby forming the 

Bhattacharya distance (Roy et al., 2013, 2014). Such measures then provide a probability 

ranging between 0 and 100% as to whether the data vector at any seismic sample point is 

like the data vectors about well control (Roy et al., 2013, 2014) or like the average data 

vector within a facies picked by the interpreter. 

The a posteriori supervision added to GTM is the critical prior supervision 

necessary for supervised classification such as ANN and SVM. In this study I used the 

same four attributes as input for both unsupervised and supervised learning techniques. 

The supervision consists of picked seed points for the three main facies previously 

delineated using the unsupervised classification results, which are multistoried channel, 

point bar and crevasse splay deposits, and slope fans, plus an additional channel flank 

facies. The seed points are shown in Figure 2.20. Seed points should be picked with great 

caution to correctly represent the corresponding facies, any false picking (a seed point 

that does not belong to the intended facies) will greatly compromise the classification 
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result. I then compute averages of the four input attributes within a 7 trace X 7 trace X 24 

ms window about each seed point to generate a training table which consists of 4-

dimensional input attribute vectors and one dimensional targets (the labeled facies). 

For the ANN application, I used the neural networks toolbox in MATLAB®, and 

generated a probabilistic neural network (PNN) composed of 20 neurons. Because of the 

relatively small size of the training data, the training process only took a second or so; 

however, since a PNN may converge to local minima, I am not confident that the first 

trained network has the best performance. The workflow is then to rerun the training 

process 50 times and choose the network exhibiting the lowest training and cross-

validation errors. Figure 2.21 and 2.22 show the PNN performance during training, while 

Figure 2.23 shows the PNN classification result. We notice that all the training, testing, 

and cross-validation performance are acceptable, with training and cross-validation 

correctness being around 90%, and testing correctness being over 86%. We identify blue 

channel stories within the relatively larger scale incised valleys (white arrows), and 

yellow point bars and crevasse splays (yellow arrows). However, many of the slope fan 

deposits are now classified as channel flanks or multistoried channels (blue arrows), 

which need to be further calibrated with well log data. Nevertheless, as a supervised 

learning technique, ANN provides classification with explicit geological meaning, which 

is its primary advantage over unsupervised learning techniques. 

Finally, I cluster the four-dimensional input data using SVM, using the same 

training data (interpreter picks) as for ANN. The workflow is similar to ANN in that I ran 

20 passes of training, varying the Gaussian kernel standard deviation, σ, and 

misclassification tolerance, ε, parameters for each pass. These parameter choices are 



31 

easier than selecting the number of neurons for ANN, since the SVM algorithm solves a 

convex optimization problem that converges to a global minima. The training and cross-

validation performance is comparable to ANN, with roughly 92% training correctness 

and 85% cross-validation correctness. Figure 2.24 shows the SVM classification result at 

time t = 1.88 s. The SVM map follows the same pattern as we have seen on the ANN 

map, but is generally cleaner, with some differences in details. Compared to ANN, SVM 

successfully mapped more of the slope fans (white arrows), but missed some crevasse 

splays that were correctly picked by ANN (yellow arrow). We also see a great amount of 

facies variation within the incised valleys, which is reasonable because of the multiple 

course changes of a paleochannel during its deposition that results in multiple channel 

stories. Finally, we note some red lines following NW-SE direction (red arrows) which 

correspond to acquisition footprint. 

CONCLUSION AND DISCUSSION 

In this study I have compared and contrasted some of the more important 

multiattribute facies classification tools, including four unsupervised (PCA, K-means, 

SOM, GTM) and two supervised (ANN, SVM) learning techniques. In addition to 

highlighting the differences in assumptions and implementation, I have applied each 

method to the same Canterbury Basin survey, with the goal of delineating seismic facies 

in a turbidite system to demonstrate the effectiveness and weaknesses of each method. K-

means and SOM move the user-defined number of cluster centers towards the input data 

vectors. PCA is the simplest manifold method, where the data variability in previous 

examples is approximated by a 2D plane defined by the first two eigenvectors. GTM is 

more accurately described as a mapping technique, like PCA, where the clusters are 
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formed either in the human brain as part of visualization or through crossplotting and the 

construction of polygons. SOM and GTM manifolds deform to fit the N-dimensional 

data. In SOM, the cluster centers (prototype vectors) move along the manifold towards 

the data vectors, forming true clusters. In all four methods, any labeling of a given cluster 

to a given facies happens after the process is completed. In contrast, ANN and SVM build 

a specific relation between the input data vectors and a subset of user-labeled input 

training data vectors thereby explicitly labeling the output clusters to the desired facies. 

Supervised learning is constructed from a limited group of training samples (usually at 

certain well locations or manually picked seed points) which generally are insufficient to 

represent all the lithologic and stratigraphic variations within a relatively large seismic 

data volume. A pitfall of supervised learning is that unforeseen clusters will be 

misclassified as clusters that have been chosen.  

For this reason, unsupervised classification products can be used to construct not 

only an initial estimate of the number of classes, but also a validation tool to determine if 

separate clusters have been incorrectly lumped together. I advise computing unsupervised 

SOM or GTM prior to picking seed points for subsequent supervised learning, to clarify 

the topological differences mapped by the choice of attributes. Such mapping will greatly 

improve the picking confidence, because the seed points are now confirmed by both 

human experience and mathematical statistics. 

The choice of the correct suite of attributes is critical. Specifically, images that 

are ideal for multiattribute visualization may be suboptimal for clustering. I made several 

poor choices in previous iterations of writing this paper. The image of inline (SW-NE) 

structural dip illustrates this problem directly. While a skilled interpreter sees a great deal 
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of detail in Figure 2.25, there is no clear facies difference between positive and negative 

dips, such that this component of vector dip cannot be used to differentiate them. A better 

choice would be dip magnitude, except that a long wavelength overprint (such as 

descending into the basin) would again bias our clustering in a manner that is unrelated 

to facies. Therefore, I tried to use relative changes in dip – curvedness and shape indices 

measure lateral changes in dip, and reflector convergence which differentiates conformal 

from nonconformal reflectors.  

Certain attributes should never be used in clustering. Phase, azimuth, and strike 

have circular distributions, where a phase value of -180 indicates the same value as +180. 

No trend can be found. While the shape index, s, is not circular, ranging between -1 and 

+1, the histogram has a peaks about the ridge (s=+0.5) and about the valley (s=-0.5). I 

speculate that shape components may be more amenable to classification. Reflector 

convergence follows the same pattern as curvedness. For this reason I only used 

curvedness as a representative of these three attributes. The addition of this choice 

improved the clustering.  

Edge attributes like the Sobel filter similarity and coherence are not useful for the 

example show here; instead, I have visually added them as an edge “cluster” and co-

rendered with the images shown in Figure 2.14-2.20, 2.23, and 2.24. In contrast, when 

analyzing more chaotic features such as salt domes and karst collapse, coherence is a 

good input to clustering algorithms. I do wish to provide an estimate of continuity and 

randomness to the clustering. To do so, I follow Corradi et al. (2009) and West et al. 

(2002) and use GLCM homogeneity as an input attribute. 
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Theoretically, no one technique is superior to all the others in every aspect, and 

each technique has its inherent advantages and defects. K-means with a relatively small 

numbers of clusters is the easiest algorithm to implement, provides rapid interpretation, 

but lacks the relation among clusters. SOM provides a generally more “interpreter 

friendly” clustering result with topological connections among clusters, but is 

computationally more demanding than K-means. GTM relies on probability theory and 

enables the interpreter to add posteriori supervision by manipulating the data’s posterior 

probability distribution; however, it is not widely accessible to the exploration 

geophysicist community. Rather than displaying the conventional cluster numbers (or 

labels), I suggest displaying the cluster coordinates projected onto the 2D SOM and GTM 

latent space axes. Doing so not only provides greater flexibility in constructing a 2D color 

bar but also provides data that can be further manipulated using 2D crossplot tools.  

For the two supervised learning techniques, ANN suffers from the convergence 

problem and requires expertise to achieve the optimal performance, while the 

computation cost is relatively low. SVM is mathematically more robust and easier to 

train, but is more computationally demanding.  

Practically, if no software limitations are set, we can make suggestions on how an 

interpreter can incorporate these techniques to facilitate seismic facies interpretation at 

different exploration and development stages. To identify the main features in a recently 

acquired 3D seismic survey on which limited to no traditional structural interpretation is 

done, K-means is a good candidate for exploratory classification starting with a small K 

(typically K = 4) and gradually increase the number of class. As more data are acquired 

(e.g. well log data and production data) and detailed structural interpretation has been 
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performed, SOM or GTM focusing in the target formations will provide more refined 

classification, which needs to be calibrated with wells. In the development stage when 

most of the data have been acquired, with proper training process, ANN and SVM provide 

targeted products, characterizing the reservoir by mimicking interpreters’ behavior. 

Generally, SVM provides superior classification than ANN but at a considerably higher 

computational cost, so choosing between these two requires balancing performance and 

runtime cost. As a practical manner, no given interpretation software platform provides 

all five of these clustering techniques, such that many of the choices are based on software 

availability.  

Because I wish this study to serve as an inspiration of interpreters, I do want to 

reveal one drawback of this work: all the classifications are performed volumetrically but 

not along a certain formation. Such classification may be biased by the bonding 

formations above and below the target formation (if we do have a target formation), 

therefore contaminates the facies map. However, I want to make the point that such 

classification can happen at a very early stage of interpretation, when both structural 

interpretation and well logs are very limited. And even in such situation, I can still use 

classification techniques to generate facies volumes to assist subsequent interpretation. 

In the 1970s and 1980s much of geophysical innovation in seismic processing and 

interpretation was facilitated by the rapid evolution of computer technology – from 

mainframes to minicomputers to workstations to distributed processing. I believe similar 

advances in facies analysis will be facilitated by the rapid innovation in “big data” 

analysis, driven by needs in marketing and security. While we may not answer Turing’s 
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(1950) question “Can machines think?”, we will certainly be able to teach them how to 

emulate a skilled human interpreter. 
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CHAPTER 2 TABLES 

Facies 
Appearance to 

Interpreter 
Attribute Expression 

Levee 

Structurally high 
Stronger dome or ridge shape structural 

components 

locally continuous 
Higher GLCM homogeneity; lower GLCM 

entropy 

Higher amplitude Dome or ridge shape component 

Possibly thicker Lower peak spectral frequency 

Channel 

thalwegs 

Shale-filled with  

negative compaction 

Stronger bowl or valley shape structural 

components; higher peak spectral frequency 

Sand-filled with  

positive compaction 

Stronger dome or ridge shape structural 

components; lower peak spectral frequency 

Channel flanks 
Onlap onto incisement, 

canyon edges 
Higher reflector convergence magnitude 

Gas-charged 

sands 

High amplitude,  

continuous reflections 

Higher GLCM homogeneity; lower GLCM 

entropy; high high peak magnitude 

Incised 

floodplain 
Erosional truncation 

Higher reflector convergence magnitude, 

Higher curvedness 

Floodplain 

Lower amplitude Lower spectral magnitude 

Higher frequency Higher peak spectral frequency 

Continuous 
Higher GLCM homogeneity; lower GLCM 

entropy 

Near planar events 

Lower amplitude structural shape 

components; lower reflector convergence 

magnitude 

Slumps Chaotic reflectivity 

Higher reflector convergence magnitude; 

higher spectral frequency; lower GLCM 

homogeneity; higher GLCM entropy 

Table 2.1. Attribute expressions of seismic facies. 
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Variable Name Definition 

n, N attribute index and number of attributes 

j, J voxel (attribute vector) index and number of voxels 

k, K manifold index and number of grid points 

aj the jth attribute data vector 

p matrix of principle components 

C attribute covariance matrix 

µn mean of the nth attribute 

λm, vm the mth eigenvalue and eigenvector pair 

mk 
the kth grid point lying on the manifold (prototype vector for SOM, 

or Gaussian center for GTM) 

uk the kth grid point lying on the latent space 

rjk 
the Mahalanobis distance between the jth data vector and the kth 

cluster center or manifold grid point 

I Identity matrix of dimension defined in the text 

Table 2.3. List of shared mathematical symbols. 
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CHAPTER 2 FIGURES 

 

Figure 2.1. Cartoon illustration of a K-means clustering of 3 clusters. (a) Select 3 random 

or equally spaced, but distinct seed points, which serve as the initial estimate of the vector 

means of each cluster. Next, compute the Mahalanobis distance between each data vector 

and each cluster mean. Then color code or otherwise label each data vector to belong to 

the cluster that has the smallest Mahalanobis distance. (b) Recompute the means of each 

cluster from the previously defined data vectors. (c) Recalculate the Mahalanobis distance 

from each vector to the new cluster means. Assign each vector to the cluster that has the 

smallest distance. (d) The process continues until the changes in means converge to their 

final locations. If we now add a new (yellow) point, we will use a Bayesian classifier to 

determine into which cluster it falls (Figure courtesy of Scott Pickford). 
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Figure 2.2. (a) A distribution of data points in 3-dimensional attribute space. The 

statistics of this distribution can be defined by the covariance matrix. (b) K-means will 

cluster data into a user-defined number of distributions (4 in this example) based on 

Mahalanobis distance measure. (c) The plane that best fits these data is defined by the 

first two eigenvectors of the covariance matrix. The projection of the 3D data onto this 

plane provides the first two principle components of the data as well as the initial model 

for both the SOM and GTM algorithms. (d) SOM and GTM deform the initial 2D plane 

into a 2D “manifold” that better fits the data. Each point on the deformed 2D manifold is 

in turn mapped to a 2D rectangular “latent” space. Clusters are color-coded or 

interactively defined on this latent space. 
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Figure 2.3. (a) K grid points uk defined on a L-dimensional latent space grid are mapped 

to K grid points mk lying on a non-Euclidean manifold in N-dimensional data space. In 

this paper, L=2 and will be mapped against a 2-dimensional color bar. The Gaussian 

mapping functions are initialized to be equally spaced on the plane defined by the first 

two eigenvectors. (b) Schematic showing the training of the latent space grid points to a 

data vector aj lying near the GTM manifold using an expectation maximization algorithm. 

The posterior probability of each data vector is calculated for all Gaussian centroids 

points mk and are assigned to the respective latent space grid points uk. Grid points with 

high probabilities are displayed as bright colors. All variables are discussed in Appendix. 
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Figure 2.4. Cartoon of a linear SVM classifier separating black from white data vectors. 

The two dashed lines are the margins defined by support vector data points. The red 

decision boundary falls midway between the margins, separating the two clusters. If the 

data clusters overlap, no margins can be drawn. In this situation the data vectors will be 

mapped to a higher dimensional space where they can be separated. 

 

 

Figure 2.5. Cartoon describing semi-supervised learning. Blue squares and red triangles 

indicate two different interpreter defined classes. Black dots indicate unclassified points. 

In semi-supervised learning, unclassified data vectors 1 and 2 are classified to be class 

“A” while data vector 3 is classified to be class “B” during the training process. 
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Figure 2.6. (a) Cartoon showing a two-class PSVM in 2D space. Classes “A” and “B” 

are approximated by two parallel lines that have been pushed as far apart as possible 

forming the cluster “margins”. The red decision-boundary lies midway between the two 

margins. Maximizing the margin is equivalent to minimizing (𝝎𝑇𝝎 + 𝛾2)1 2⁄ . (b) A two-

class PSVM in 3D space. In this case the decision-boundary and margins are 2D planes. 

 

 

 

Figure 2.7. Cartoon show how one SVM can map two linearly inseparable problem into 

a higher dimensional space in which they can be separated. (a) Circular classes “A” and 

“B” in a 2D space cannot be separated by a linear decision-boundary (line). (b) Mapping 

the same data into a higher 3-dimensional “feature” space using the given projection. This 

transformation allows the two classes to be separated by the green plane.  
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Figure 2.8. A map showing the location of the 3D seismic survey acquired over the 

Canterbury Basin, offshore New Zealand. The black rectangle denotes the limits of the 

Waka-3D survey, while the smaller red rectangle denotes the part of the survey shown in 

subsequent figures. Colors represent the relative depth of the current seafloor, warm being 

shallower and cold being deeper. Current seafloor canyons are delineated in this map, 

which are good analogs for the paleocanyons in Cretaceous and Tertiary ages (Modified 

from Mitchell and Neil, 2012). 
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Figure 2.9. Time slice at t=1.88 s through the seismic amplitude volume. White arrows 

indicate potential channel/ canyon features. The yellow arrow indicates a high amplitude 

feature. Red arrows indicate relatively low energy, gently dipping area. AA’ denotes a 

cross section shown in Figure 2.13. 
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Figure 2.10. Time slice at t=1.88 s through peak spectral frequency co-rendered with 

peak spectral magnitude that emphasizes the relative thickness and reflectivity of the 

turbidite system and surrounding slope fan sediments into which it was incised. The two 

attributes are computed using a continuous wavelet transform algorithm. The edges of the 

channels are delineated by Sobel filter similarity. 
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Figure 2.11. Time slice at t=1.88 s through the GLCM homogeneity attribute co-rendered 

with Sobel filter similarity. Bright colors highlights areas with potential fan sand deposits. 
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Figure 2.12. Time slice at t=1.88 s through the co-rendered shape index, curvedness, and 

Sobel filter similarity. The shape index highlights incisement, channel flanks, and levees 

providing an excellent image for interactive interpreter-driven classification. However, 

the shape index dominates the unsupervised classifications, highlighting valley and ridge 

features and minimizing more planar features of interest in the survey. 
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Figure 2.14. Time slice at t=1.88 s through K-means clustering volume with K=16. White 

arrows indicate channel-like features. Yellow arrows indicate high amplitude overbank 

deposits. Red arrows indicate possible slope fans. The edges of the channels are 

delineated by Sobel filter similarity. 
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Figure 2.15. Time slice at t=1.88 s through K-means clustering volume with K=256. The 

classification result follows the same pattern as K=16 but is more chaotic since the classes 

are computed independently and are not constrained to fall on a lower dimensional 

manifold. Note the similarity between clusters of high amplitude overbank (yellow 

arrows) and slope fan deposits (red arrows) which were separable in Figure 2.14. 
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Figure 2.16. Time slice at t=1.88 s of the first two principle components plotted against 

a 2D colorbar. These two principal components serve as the initial model for both the 

SOM and GTM images that follow. With each iteration, the SOM and GTM manifolds 

will deform to better fit the natural clusters in the input data. 
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Figure 2.17. Time slice at t=1.88 s through an SOM classification volume using 256 

clusters. White arrows indicate channel-like features. Combined with vertical sections 

through seismic amplitude, I interpret overbank deposits (yellow arrows), crevasse splays 

(orange arrows), and slope fan deposits (red arrows). The data are mapped to a 2D 

manifold initialized by first two principle components and are somewhat more organized 

than the K-means image shown in the previous figures. 
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Figure 2.18. Time slice at t=1.88 s through crossplotting GTM projection 1 and 2 using 

a 2D colorbar. White arrows indicate channel-like features, yellow arrows overbank 

deposits, and red arrows slope fan deposits. The blue arrow indicates a braided channel 

system that can be seen on PCA but cannot be identified from K-means or SOM 

classification maps. The color indicates the location of the mean probability of each data 

vector mapped into the 2D latent space. 
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Figure 2.19. The same time slice through the GTM projections shown in the previous 

image but now displayed as four seismic facies. To do so, I first create two GTM 

“components” aligned with the original first two principal components. I then pick four 

colored polygons representing four seismic facies on the histogram generated using a 

commercial crossplot tool, This histogram is a map of the GTM posterior probability 

distribution in the latent space. The yellow polygon represents overbank deposits, the 

blue polygon channels /canyons, the green polygon slope fan deposits, and the red 

polygon “everything else”. 
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Figure 2.20. Time slice at t=1.88 s through co-rendered peak spectral frequency, peak 

spectral magnitude, and Sobel filter similarity volumes. Seed points (training data) are 

shown with colors for the picked four facies, blue indicating multistoried channels, 

yellow point bars and crevasse splays, red channel flanks, and green slope fans. Attribute 

vectors at these seed points are used as training data in supervised classification. 
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Figure 2.21. PNN errors through the training epochs. The neural network reaches its best 

performance at epoch 42. 

 

 

Figure 2.22. Confusion tables for the same PNN shown in Figure 2.21. From these tables 

I find the training correctness to be 90%, the testing and cross-validation correctness to 

be 86% and 91%, warranting a reliable prediction.  
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Figure 2.23. Time slice at t=1.88 s through the ANN classification result. White arrows 

indicate channels/canyons. Yellow arrows indicate point bars and crevasse splays.  
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Figure 2.24. Time slice at t=1.88 s through SVM classification result. White arrows 

indicate more correctly classified slope fans. Yellow arrow indicates crevasse splays. Red 

arrows show the misclassifications due to possible acquisition footprint. 

 



61 

 

Figure 2.25. Time slice at t=1.88 s through inline dip component of reflector dip. Inline 

dip magnitude provides a photo-like image of the paleocanyons.  
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APPENDIX: Mathematical details 

In this appendix I summarize many of the mathematical details defining the 

various algorithm implementations. Although insufficient to allow a straightforward 

implementation of each algorithm, I hope to more quantitatively illustrate the algorithmic 

assumptions as well as algorithmic similarities and differences. Because K-means and 

artificial neural networks have been widely studied, in this appendix I only give some 

principle statistical background, and brief reviews of SOM, GTM, and PSVM algorithms 

involved in this tutorial. I begin this appendix by giving statistical formulations of the 

covariance matrix, principal components and the Mahalanobis distance when applied to 

seismic attributes. I further illustrate the formulations and some necessary theory for 

SOM, GTM, ANN, and PSVM. Because of the extensive use of mathematical symbols 

and notations, a table of shared mathematical notations is given in Table 2.3. All other 

symbols are defined in the text. 

Covariance matrix, principal components, and the Mahalanobis distance 

Given a suite of N attributes, the covariance matrix is defined as  

𝐶𝑚𝑛 =
1

𝐽
∑(𝑎𝑗𝑚(𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗) − 𝜇𝑚)(𝑎𝑗𝑛(𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗) − 𝜇𝑛)

𝐽

𝑗=1

,             (2.1) 

where ajm and ajn are the mth and nth attributes, J is the total number of data vectors, 

and where 

𝜇𝑛 =
1

𝐽
∑ 𝑎𝑗𝑛(𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗)

𝐽

𝑗=1

,                                         (2.2) 
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is the mean of the nth attribute. If we compute the eigenvalues, λi, and eigenvectors, vi, of 

the real, symmetric covariance matrix, C, the ith principal component at data vector j is 

defined as    

𝑝𝑗𝑖 = ∑ 𝑎𝑗𝑛(𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗)

𝑁

𝑛=1

𝑣𝑛𝑖,                                         (2.3) 

where vni indicates the nth attribute component of the ith eigenvector. In this chapter, the 

first two eigenvectors and eigenvalues are also used to construct an initial model in both 

the self-organizing map (SOM) and generative topographic mapping (GTM) algorithms. 

The Mahalanobis distance, rjq, of the jth sample from the qth cluster center, θq, is 

defined as  

𝑟𝑗𝑞
2 = ∑ ∑ (𝑎𝑗𝑛 − 𝜃𝑛𝑞)𝐶𝑛𝑚

−1 (𝑎𝑗𝑚 − 𝜃𝑚𝑞)

𝑁

𝑚=1

𝑁

𝑛=1

,                           (2.4) 

where the inversion of the covariance matrix, C, takes place prior to extracting the mnth 

element.  

Self-organizing map 

Rather than computing the Mahalanobis distance, both SOM and GTM first 

normalize the data using a z-score. If the data exhibit an approximately Gaussian 

distribution, the z-score of the nth attribute is obtained by subtracting the mean and 

dividing by the standard deviation (the square root of the diagonal of the covariance 

matrix, Cnn). To z-score non-Gaussian distributed data, such as coherence, one needs to 

first break the data using histograms that approximate a Gaussian. The objective of the 

SOM algorithm is to map the input seismic attributes onto a geometric manifold called 

the self-organized map. The SOM manifold is defined by a suite of prototype vectors mk 

lying on a lower-dimensional (in this case, 2D) surface which fit the N-dimensional 
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attribute data. The prototype vectors mk are typically arranged in 2D hexagonal or 

rectangular structure maps that preserve their original neighborhood relationship, such 

that neighboring prototype vectors represent similar data vectors. The number of 

prototype vectors in the 2D map determines the effectiveness and generalization of the 

algorithm. One strategy is to estimate the number of initial clusters, and then to either 

divide or join clusters based on distance criteria. In this case, I follow Gao (2007) and 

overdefine the number of clusters to be the maximum number of colors supported by our 

visualization software. Interpreters then either use their color perception or construct 

polygons on 2D histograms to define a smaller number of clusters.  

The implementation of the SOM algorithm is summarized in Figure 2.26. After 

computing z-scores of the input data, the initial manifold is defined to be a plane defined 

by the two first principal components. Prototype vectors mk are defined on a rectangular 

grid to the first two eigenvalues to range between 2(λ1)
1/2 and 2(λ2)

1/2. The seismic 

attribute data are then compared to each of the prototype vectors, finding the nearest one. 

This prototype vector and its nearest neighbors (those that fall within a range σ, defining 

a Gaussian perturbation) are moved towards the data point. After all the training vectors 

have been examined, the neighborhood radius, σ, is reduced. Iterations continue until σ 

approaches the distance between the original prototype vectors. Given this background, 

Kohonen (2001) defines the SOM training algorithm using the following five steps: 

Step 1: Randomly chose a previously z-scored input attribute vector, 𝐚𝑗, from the 

set of input vectors. 
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Step 2: Compute the Euclidean distance between this vector 𝐚𝑗 and all prototype 

vectors 𝐦𝑘, k=1,2,…,K. The prototype vector which has the minimum distance to the 

input vector 𝐚𝑗, is defined to be the “winner” or the Best Matching Unit, 𝐦𝑏: 

||𝐚𝑗 − 𝐦𝑏|| = min
𝑘

{||𝐚𝑗 − 𝐦𝑘||}.                                     (2.5) 

Step 3: Update the “winner” prototype vector and its neighbors. The updating rule 

for the weight of the kth prototype vector inside and outside the neighborhood radius 

𝜎(𝑡) is given by  

𝐦𝑘(𝑡 + 1) = {
𝐦𝑘(𝑡) +  𝛼(𝑡)ℎ𝑏𝑘(𝑡)[𝐚𝑗 − 𝐦𝑘(𝑡)],    𝑖𝑓 ||𝐫𝑘 − 𝐫𝑏||  ≤ 𝜎(𝑡)

𝐦𝑘(𝑡),                             𝑖𝑓 ||𝐫𝑘 − 𝐫𝑏|| > 𝜎(𝑡)
  (2.6) 

where the neighborhood radius defined as 𝜎(𝑡) is predefined for a problem and 

decreases with each iteration t. 𝐫𝑏 and 𝐫𝑘 are the position vectors of the winner prototype 

vector  𝐦𝑏  and the kth prototype vector  𝐦𝑘 respectively. We can also define the 

neighborhood function,  ℎ𝑏𝑘(𝑡), the exponential learning function, 𝛼(𝑡), and the length 

of training, T. ℎ𝑏𝑘(𝑡) and 𝛼(𝑡) decrease with each iteration in the learning process and 

are defined as  

ℎ𝑏𝑘(𝑡) = 𝑒−(||𝐫𝑏−𝐫𝑘||2/2𝜎2(𝑡),                                          (2.7) 

and 

𝛼(𝑡) = 𝛼0(
0.005

𝛼0
)𝑡/𝑇 .                                               (2.8) 

Step 4: Iterate through each learning step (steps 1-3) until the convergence 

criterion (which depends on the predefined lowest neighborhood radius and the minimum 

distance between the prototype vectors in the latent space) is reached. 
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Step 5: Project the prototype vectors onto the first two principal components and 

color code using a 2D color bar (Matos et al. 2009).  

Generative topographic mapping 

In GTM, the grid points of the 2D deformed manifold in N-dimensional attribute 

space define the centers, mk, of Gaussian distributions of variance σ2=β-1. These centers, 

mk, are in turn projected onto a 2D latent space, defined by a grid of nodes uk and 

nonlinear basis functions, Φ:  

𝐦𝑘 =  ∑ 𝑊𝑘𝑚𝛷𝑚(𝐮𝑘)

𝑀

𝑚=1

 ,                                        (2.9) 

where W is a K X M matrix of unknown weights, 𝛷𝑚(𝐮𝑘) is a set of M nonlinear basis 

functions, mk are vectors defining the deformed manifold in the N-dimensional data 

space, and k=1,2,…,K is the number of grid points arranged on a lower L-dimensional 

latent space (in this case, L=2). A noise model (the probability of the existence of a 

particular data vector aj given weights W and inverse variance β) is introduced for each 

measured data vector. The probability density function, p, is represented by a suite of K 

radially symmetric N-dimensional Gaussian functions centered about mk with variance 

of 1/β: 

𝑝(𝐚𝑗|𝐖, 𝛽) =  ∑
1

𝐾

𝐾

𝑘=1

(
𝛽

2𝜋
)

𝑁
2 𝑒−

𝛽
2

||𝐦𝑘−𝐚𝑗||
2

.                            (2.10) 

The prior probabilities of each of these components are assumed to be equal with a value 

of 1/K, for all data vectors 𝐚𝑗. Figure 2.3 illustrates the GTM mapping from an L=2D 

latent space to the 3D data space. 
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The probability density model (GTM model) is fit to the data 𝐚𝑗  to find the 

parameters W and β using a maximum likelihood estimation. One of the popular 

techniques used in parameter estimations is the Expectation Maximization (EM) 

algorithm. Using Bayes’ theorem, and the current values of the GTM model parameters 

W and β, we can calculate the J X K posterior probability or responsibility, Rjk, for each 

of the K components in latent space for each data-vector: 

      𝑅𝑗𝑘 =
𝑒−

𝛽
2

||𝐦𝑘−𝐚𝑗||
2

∑ 𝑒−
𝛽
2

||𝐦𝑖−𝐚𝑗||
2

𝑖

.                                                 (2.11) 

Equation 2.11 forms the “E-step” or Expectation step in the EM algorithm. The 

E-step is followed by the Maximization or “M-step”, which uses these responsibilities to 

update the model for a new weight matrix W by solving a set of linear equations 

(Dempster et al., 1977): 

(𝚽𝑇𝐆𝚽 +  
𝛼

𝛽
𝐈) 𝐖𝑇

𝑛𝑒𝑤 = 𝚽𝑇𝐑𝐗,                                  (2.12) 

where  

𝐺𝑘𝑘 =  ∑ 𝑅𝑗𝑘
𝐽
𝑗=1  are the non-zero elements of the K X K diagonal matrix G, 

𝚽 is a K X M Matrix with elements 𝚽 =  𝛷𝑚(𝐮𝑘),  

𝛼 is a regularization constant to avoid division by zero, and  

I is the M X M identity matrix. 

The updated value of β is given by 

1

𝛽𝑛𝑒𝑤
=  

1

𝐽𝑁
∑ ∑ 𝑅𝑗𝑘

𝐾

𝑘=1

𝐽

𝑗=1

 ||𝐖𝑘𝑚𝑛𝑒𝑤
𝛷𝑚(𝐮𝑘) − 𝐚𝑗||

2

.                     (2.13) 
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The initialization of W is done so that the initial GTM model approximates the 

principal components (largest eigenvectors) of the input data, 𝐚𝑗 . The value of β-1 is 

initialized to be the larger of the (L+1)th eigenvalue from PCA where L is the dimension 

of the latent space. In Figure 2.3, L=2, such that we can initialize β-1 to be the inverse of 

the third eigenvalue. Figure 2.27 summarizes this workflow. 

Artificial Neural Networks 

The artificial neural networks are a class of pattern recognition algorithms that 

were derived separately in different fields such as statistics and artificial intelligence. 

Artificial neural networks are easily accessible for most of the geophysical interpreters, 

so I only provide a general workflow of applying an ANN to seismic facies classification 

for completeness of this tutorial. The workflow is shown in Figure 2.28. 

Proximal support vector machines 

Because SVMs are originally developed to solve binary classification problems, 

the arithmetic I begin with a summary of the arithmetic describing a binary PSVM 

classifier.  

Similarly to SVM, a PSVM decision condition is defined as (Figure 2.6): 

𝐱𝑇𝛚 − 𝛾 {
> 0,            𝐱 ∈ 𝑋+;

= 0, 𝐱 ∈ 𝑋 + 𝑜𝑟 𝑋−;
< 0,            𝐱 ∈ 𝑋−,

                                          (2.14) 

where 𝐱  is an N-dimensional attribute vector to be classified, 𝛚  is an N X 1 vector 

implicitly defines the normal of the decision-boundary in the higher dimensional space, 

𝛾 defines the location of the decision-boundary, and “𝑋 +” and “𝑋 −” indicate the two 

classes of the binary classification. PSVM solves an optimization problem and takes the 

form of (Fung and Mangasarian, 2001): 



79 

𝑚𝑖𝑛
𝛚,𝛾,𝐲

𝜀
1

2
‖𝐲‖2 +

1

2
(𝛚𝑇𝛚 + 𝛾2),                                       (2.15) 

subject to 

  𝐃(𝐚𝛚 − 𝐞𝛾) + 𝐲 = 𝐞.                                               (2.16) 

In this optimization problem, 𝐲 is a J X 1 error variable; 𝐚 is a J X N sample matrix 

composed of 𝐽attribute vectors, which can be divided into two classes, “𝑋 +” and “𝑋 −”. 

𝐃 is a J X J diagonal matrix of labels with a diagonal composed of “+1” for “𝑋 +” and 

“−1” for “𝑋 −”. 𝜀 is a non-negative parameter. Finally, 𝐞 is a J X 1 column vector of 

ones. This optimization problem can be solved by using a J X 1 Lagrangian multiplier 𝐭: 

𝐿(𝛚, 𝛾, 𝐲, 𝐭) = 𝜀
1

2
‖𝐲‖2 +

1

2
(𝛚𝑇𝛚 + 𝛾2) − 𝐭𝑇(𝐃(𝐚𝛚 − 𝐞𝛾) + 𝐲 − 𝐞).       (2.17) 

By setting the gradients of 𝐿 to zero, I obtain expressions for 𝛚, 𝛾 and 𝐲 explicitly 

in the knowns and 𝐭 , where 𝐭  can further be represented by 𝐚 , 𝐃  and 𝜀 . Then by 

substituting 𝛚 in Equation 2.15 and 2.16 using its dual equivalent 𝛚 = 𝐚𝑇𝐃𝐭, we can 

arrive at (Fung and Mangasarian, 2001): 

𝑚𝑖𝑛
𝛚,𝛾,𝐲

𝜀
1

2
‖𝐲‖2 +

1

2
(𝐭𝑇𝐭 + 𝛾2),                                        (2.18) 

subject to  

𝐃(𝐚𝐚𝑇𝐃𝐭 − 𝐞γ) + 𝐲 = 𝐞.                                          (2.19) 

Equation 2.18 and 2.19 provide a more desirable version of the optimization 

problem since one can now insert kernel methods to solve nonlinear classification 

problems made possible by the term 𝐚𝐚𝑇  in Equation 2.19. Utilizing the Lagrangian 

multiplier again (this time we denote the multiplier as 𝛕), we can minimize the new 

optimization problem against 𝐭, 𝛾, 𝐲 and 𝛕. By setting the gradients of these four variables 

to zero, we can express 𝐭, 𝛾 and 𝐲 explicitly by 𝛕 and other knowns, where 𝛕 is solely a 
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dependent on the data matrices. Then for N-dimensional attribute vector 𝐱 we write the 

decision conditions as 

𝐱𝑇𝐚𝑇𝐃𝐭 − 𝛾 {
> 0,            𝐱 ∈ 𝑋+;

= 0, 𝐱 ∈ 𝑋 + 𝑜𝑟 𝑋−;
< 0,            𝐱 ∈ 𝑋−,

                                   (2.20) 

with 

𝐭 = 𝐃𝐊𝑇𝐃 (
𝐈

𝜀
+ 𝐆𝐆𝑇)

−1

𝐞,                                     (2.21) 

𝛾 = 𝐞𝑇𝐃 (
𝐈

𝜀
+ 𝐆𝐆𝑇)

−1

𝐞,                                      (2.22) 

and 

𝐆 = 𝐃[𝐊 −𝐞].                                                (2.23) 

Instead of 𝐚, we have 𝐊 in Equation 2.21 and 2.23, which is a Gaussian kernel 

function of 𝐚 and 𝐚𝑇 that has the form of: 

𝐊(𝐚, 𝐚𝑇)𝑖𝑗 = 𝑒𝑥𝑝 (−𝜎‖𝐚𝑇
𝑖∙ − 𝐚𝑇

𝑗∙‖
2

) , 𝑖, 𝑗 ∈ [1, 𝐽],                    (2.24)                          

where 𝜎  is a scalar parameter. Finally, by replacing 𝐱𝑇𝐚𝑇  by its corresponding 

kernel expression, the decision condition can be written as:  

𝐊(𝐱𝑇, 𝐚𝑇)𝐃𝐭 − 𝛾 {
> 0,            𝐱 ∈ 𝑋+;

= 0, 𝐱 ∈ 𝑋 + 𝑜𝑟 𝑋−;
< 0,            𝐱 ∈ 𝑋−.

                            (2.25) 

and 

𝐊(𝐱𝑇, 𝐚𝑇)𝑖𝑗 = 𝑒𝑥𝑝(−𝜎‖𝐱 − 𝐚𝑇
𝑖∙‖

2) , 𝑖 ∈ [1, 𝐽].                   (2.26)                             

The formulations above represent a nonlinear PSVM classifier. 

To extend this binary classifier to handle multiclass classification problems, some 

strategies have been developed by researchers, which generally fall into three categories: 

“one-versus-all”, “one-versus-one” and “all together”. For Q classes, the former two 



81 

strategies build a suite of binary classifiers individually: (𝑄(𝑄 − 1)/2 for the “one-

versus-one” and 𝑄 for the “one-versus-all” algorithm, and then use these classifiers to 

construct the final classification decision. The “all together” attempts to solve multiclass 

problem in one step. Hsu and Lin (2002) found “one-versus-one” method to be superior 

for large problems. There are two particular algorithms for “one-versus-one” strategies, 

namely the “Max Wins” (Kreßel, 1999) and directed acyclic graph (DAG) (Platt et al., 

2000) algorithms. Both algorithms provide comparable results while surpassing the “one-

versus-all” method in accuracy and computational efficiency. 

The approach in this study uses a classification factor table to assign classes to 

unknown samples (Figure 2.29). A classification factor of an unknown sample point for 

a certain pilot class “X” is the normalized distance to the binary decision boundary 

between “X” and the other class used when generating this binary decision boundary. An 

example of a classification factor table is shown in Figure 2.29, and based on this table, 

the unknown sample point belongs to class “D”. 
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CHAPTER 3 

DISTANCE PRESERVING SELF-ORGANIZING MAP AND ITS 

APPLICATION ON CHARACTERIZING A TURBIDITE SYSTEM 

IN CANTERBURY BASIN, OFFSHORE NEW ZEALAND3 

INTRODUCTION 

During the last two decades, seismic attributes have improved substantially, not 

only in innovative algorithm development, but also in their use in integrated 

interpretation. In addition to highlighting features of geological interest, multiple 

attributes can be combined for seismic facies classification. 3D co-rendering of multiple 

attributes is an effective way to visualize subtle features that may be overlooked on 

conventional amplitude data. Unfortunately, 32-bit color model (either RGB, HLS, or 

CMY color gamut modulated by alpha blending) limits us to combining at most four 

attributes. Furthermore, while some attribute combinations form natural pairs or triplets, 

such as dip magnitude, dip azimuth, and coherence (e.g. Marfurt, 2015), others do not, 

resulting in co-rendered images that are difficult to interpret. Seismic facies classification 

algorithms attempt to mimic human pattern recognition and can be applied to a more 

arbitrary collection and greater number of attributes. Feeding multiple attributes into a 

classification algorithm enables interpreters to analyze different aspects of seismic 

response (energy, frequency, phase, geometry, texture, etc.) simultaneously, generating a 

                                                 

3This study is published as - Zhao, T., J. Zhang, F. Li, and K. J. Marfurt, 2016, Characterizing a turbidite 

system in Canterbury basin, New Zealand using seismic attributes and distance-preserving self-organizing 

maps: Interpretation, 4, SB79-SB89. 
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map of facies or correlating seismic responses to engineering/ production data (Roy et al., 

2013; Zhang et al., 2015). 

The rapid invention of fresh seismic attributes has greatly expanded the 

interpreters’ arsenal for seismic interpretation. On the other hand, such great number of 

attributes put a serious challenge on inexperienced seismic interpreters: which attributes 

are most suitable to use? Generally, we prefer mathematically well designed, independent 

attributes with intuitive geologic and geophysical meaning (Barnes, 2007). Also, attribute 

selection is highly target oriented, which means we may use formation attributes to map 

lithology change, structure attributes for deformation, and edge detection attributes for 

fractures. In contrast, it may be inappropriate to use spectral magnitude to map a fault. 

Modern seismic interpretation often involves facies classification in which attributes 

serve as the input. The results of such applications are highly sensitive to the attribute 

selection process. During the analysis, I chose several attributes that as a human 

interpreter I thought represented important architectural elements. The classification 

scheme saw things differently such that these attributes needed to be rejected. In this 

chapter I therefore not only present attributes I used in seismic facies analysis to 

characterize the turbidite systems, but discuss attributes that were eliminated during the 

classification. 

Seismic attributes are routinely used by interpreters. In contrast, seismic facies 

classification, deeply rooted in statistics, and requiring significant computing power, is 

less commonly used. During the last twenty years, several alternative algorithms have 

been proposed and successfully applied to computer-assisted seismic facies classification 

(Zhao et al., 2015). Kohonen self-organizing map (SOM) (Kohonen, 1982) is one of the 
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most widely accessible technique in commercial software packages that produces 

reasonably high quality seismic facies maps. SOM preserves the topological connections 

among clusters, which is a preferred attribute for visualization when using similar colors 

for similar facies (Strecker and Uden, 2002; Roy et al., 2013). However, traditional 

Kohonen SOM does not preserve the distance in input space, which may result in an 

over/under shrinking of the clusters in the SOM latent space. A latent space is a lower 

dimensional space, in which the original input data are projected into. Analyze data in a 

particular latent space may discover data properties that are easily overlooked in the 

original space. A frequently used example would be projecting multiattribute data using 

principle component analysis (PCA) and crossplotting the first two principle components. 

Such crossplot serves as a 2D latent space of the original multiattribute data. Intuitively, 

data vectors with similar seismic attribute responses should belong to similar facies. 

However, after mapping into a latent space in which the SOM nodes live in, the projection 

of such data vectors may no longer maintain the same degree of “similarity” between 

each other. For this reason, I need to introduce some constraints to maintain the 

consistency of “similarity” among clusters in both n-dimensional input and (in this 

example) two-dimensional latent space. 

During the development of SOM, several variants have been introduced to address 

this issue, including grouping neuron SOM (GNSOM) (Rubio and Gimenez, 2003), 

adaptive coordinate SOM (ACSOM) (Merkl and Rauber, 1997), and double SOM 

(DSOM) (Wang et al., 2002), to name a few. All these algorithms are based on Himberg’s 

contraction model (Himberg, 2000), which means the adjustment of distance among SOM 

nodes in the SOM latent space is only contraction, but not expansion. In this study I 
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implement Shao and Yang’s (2012) distance-preserving SOM (DPSOM) (in which the 

distance adjustment among SOM nodes can be both contraction and expansion.  

I begin this chapter by discussing the geologic setting in the Canterbury basin, 

followed by the attribute expression of a turbidite system. Then I will introduce DPSOM, 

apply it to a simple synthetic, and compare it with traditional Kohonen SOM. I then apply 

DPSOM to a Canterbury basin, New Zealand, turbidite, with the goal of mapping key 

architectural elements. I conclude with a final comparison to traditional SOM, 

summarizing the value and limitations of SOM in general.  

GEOLOGIC SETTING 

I examine a turbidite system imaged in the Waka-3D seismic survey acquired over 

the Canterbury basin, offshore New Zealand, which has been generously made public by 

the New Zealand Petroleum and Minerals. Figure 3.1 shows the location of this survey, 

where the red rectangle corresponds to the area shown in subsequent figures. The study 

area lies on the transition zone of continental slope and rise, with an abundance of 

paleocanyons and turbidite deposits of Cretaceous and Tertiary ages. These sediments 

were deposited in a single, tectonically driven transgressive – regressive cycle (Uruski, 

2010). Potential source rocks in the Canterbury basin are Late Jurassic coaly sediments, 

Late Cretaceous coaly sediments, and Paleocene marine shales. Reservoir rocks are 

fluvial, estuarine and marine sandstones of Cretaceous and Tertiary (Sutherland and 

Browne, 2003). Being a very recent and underexplored prospect, publically available 

comprehensive studies of the Canterbury basin are somewhat limited. The modern 

seafloor canyons shown in Figure 3.1 are good analogs of the deeper paleocanyons 

illuminated by the 3D seismic amplitude and attribute data. 
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In this study my goal is to analyze a turbidite system of Miocene age characterized 

by abundant submarine channels. This Miocene turbidite system is characterized by 

abundant of stacked submarine channel fills such that there are only piecewise continuous 

horizons within the zone of interest. Such complexity is more amenable to 3D volumetric 

interpretation using 3D visualization, geobodies, and in this paper, volumetric facies 

mapping. Animation through time slices provides a quick look at the geomorphology 

(Figure 3.2), but because of subsidence, no single time slice displays the complete 

depositional system. In this study, I interpreted a continuous reflector below the zone of 

interest, then used this horizon to generate a phantom horizon (horizon A) within the 

Miocene turbidite system. I then assume that deposition along horizon A represents a 

consistent geologic time interval. Figure 3.3 shows seismic amplitude along horizon A, 

on which I identify stacked channels (white arrows), high amplitude deposits (blue 

arrow), and slope fans (red arrow) which are also shown on Figure 3.2. On this phantom 

horizon slice another weaker, sinuous channel (black arrow), can be identified which 

cannot be seen on the time slice in Figure 3.2. 

ATTRIBUTE EXPRESSION  

Rather than replacing the human interpreters, a good facies analysis workflow 

builds on the interpreters’ experience and objectives. Given sufficient time, interpreters 

should be able to identify all the facies in a high quality data volume. With less time, 

important but subtle facies and spatial relationships might be overlooked. In this work, 

seismic attributes quantify key features in the amplitude data for subsequent computer 

analysis. Amplitude and frequency attributes are often lithology indicators that may be 

hydrocarbon indicators in conventional reservoirs; geometric attributes quantify 
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reflector morphology such as dip, curvature, rotation, and convergence; statistical 

attributes provide information about data distribution that quantifies subtle patterns that 

may be easy to identify but hard to define (Chopra and Marfurt, 2007). Attributes such as 

coherence provide images of the edges of seismic facies rather than a measure of the 

facies themselves, although slumps often appear as a suite of closely spaced faults 

separating rotated fault blocks. Since the objective is to map a deep water channel system 

consisting of incised and multistoried channels, levees, point bars, channel flanks, slope 

fans, and slumps, I generate attributes that highlight these features. Peak spectral 

frequency and peak spectral magnitude can be used to differentiate thick from thin 

channels as well as overbank deposits. Reflector convergence differentiates conformal 

reflectors from pinchouts and angular unconformities. Gray-level co-occurrence matrix 

(GLCM) attributes are texture attributes representing the degree of disorder, quantifying 

subtle variation in the depositional environment and useful to characterize 

geomorphology changes within channel beds, channel flanks, and slope fans. Similarity 

(coherence) attributes help to detect edges compartmentalizing different deposition 

features. 

Proper display of generated attributes is almost as important as selecting the 

suitable attributes, and co-rendering certain attributes correctly will greatly enhance the 

interpretability of an image. By employing a hue-lightness-saturation (HLS) color model, 

I follow Marfurt (2015) to display the generated attributes in the subsequent 

combinations, and the rule of thumb is to display one background attribute against hue, 

one modulating attribute against saturation, and one calibration attribute against lightness. 

Figure 3.4 shows phantom horizon A through peak spectral frequency co-rendered with 
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peak spectral magnitude that emphasizes the relative thickness and reflectivity of the 

turbidite system and the surrounding slope fan. The edges of the channels are delineated 

by Sobel filter similarity. I show the same phantom horizon A through (Figure 3.5) co-

rendered shape index and curvedness, and through (Figure 3.6) GLCM homogeneity co-

rendered with coherent energy. In Figure 3.7 I show vertical slices at line AA’ in Figure 

3.3 through (Figure 3.7a) seismic amplitude, (Figure 3.7b) seismic amplitude co-rendered 

with peak spectral magnitude/peak spectral frequency, (Figure 3.7c) seismic amplitude 

co-rendered with shape index and curvedness, and (Figure 3.7d) seismic amplitude co-

rendered with GLCM homogeneity and coherent energy. Block arrows indicate several 

of the key facies, white being channels, blue being high amplitude deposits, and red being 

a slope fan.  

From the generated attributes we note that two main channels (white arrows in 

Figure 3.4, 3.5, 3.6, and 3.7) exhibit medium-low frequency, low peak spectral 

magnitude, a valley shape, and low coherent energy, suggesting mud fill. Depending on 

which part of the channel we examine, GLCM homogeneity ranges from low to medium, 

indicating significant complexity within the meander valley because of the frequent 

change in channel route. Also note several sinuous channel complexes developed at this 

level (black arrows in Figure 3.4, 3.5, and 3.6), with attribute responses generally similar 

to those of the two main channels. Some high amplitude reflectors are indicated by blue 

arrows in Figure 3.4, 3.5, and 3.6, which suggest sand deposits, but it is unclear whether 

they are point bar or levee deposits. In most of the survey area, there are highly 

homogeneous, medium energy, and relatively flat reflectors which are probably slope 

fans (red arrows in Figure 3.4, 3.5, 3.6, and 3.7). 
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Using co-rendering, we are able to display and analyze two or three attributes 

simultaneously. However, we cannot use visualization to meaningfully combine the 

information content of all the attributes into a single image. Seismic facies classification 

techniques use multiple attributes as input to generate a facies map. Barnes and Laughlin 

(2002) concluded that the appropriate choice of attributes was the most critical 

component of computers assisted seismic facies identification. The number of attributes 

should be as small as possible to discriminate the facies of interest. Each attribute should 

be mathematically independent of the others. In contrast, attributes should be correlated 

through the underlying geology, forming a “pattern” or waveform in the attribute space. 

We also need to be aware that because human eyes and computers see the same image 

differently (a human sees features as combination of different textures, while a computer 

only see “voxels”), attributes that are suitable for visual interpretation may not be 

appropriate for use in classification. In this study, I find shape index dominates the 

unsupervised classifications with valley and ridge features across the survey, which 

“contaminate” the facies map. In this particular case, GLCM homogeneity anomalies 

follow a similar trend as the low coherent energy, such that I decide not to use GLCM 

homogeneity as an input attribute to reduce the redundancy. The final group of input 

attributes for classification consists of peak spectral frequency, peak spectral magnitude, 

coherent energy, and curvedness. Figure 3.8 shows crossplots for every attribute pair on 

which we see very limited correlation. Such independence is key to successful seismic 

classification techniques. 
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SOM AND DPSOM 

Seismic attributes serve as input to modern seismic classification techniques. 

Most geophysicists are familiar with SOM as a waveform classification technique, where 

the input “attributes” are amplitudes along adjacent phantom horizon slices (Poupon et 

al., 1999). Coléou et al. (2003) and Strecker and Uden (2002) showed how a suite of 

attributes can form a vector at each voxel. With this insight we can indeed conclude that 

waveform classification and multiattribute analysis are one and the same. The waveforms 

or attribute vectors are represented by a finite number of prototype vectors, each of which 

is assigned a unique color. 

In traditional Kohonen SOM, the position of an SOM node in the SOM latent 

space is only based on the distance between the corresponding prototype vector (the 

projection of an SOM node in the input data space) and the nearest data vector in the input 

space. DPSOM adds a step of adjusting the position of all SOM nodes according to their 

distances from the current winning node (best matching unit) in both input data space and 

SOM latent space. The adjustment rule is (Shao and Yang, 2012): 

𝐩𝑘(𝑡 + 1) = 𝐩𝑘(𝑡) + 𝛼(𝑡) ∙ (1 −
𝛿𝑣𝑘

𝑑𝑣𝑘
) ∙ (𝐩𝑣(𝑡) − 𝐩𝑘(𝑡)), ∀ 𝑘 ≠ 𝑣.             (1) 

In Equation 1, 𝐩𝑘(𝑡) is the positon of an SOM node before adjustment; 𝐩𝑘(𝑡 + 1) 

is the position of an SOM node after adjustment; 𝐩𝑣(𝑡) is the position of the current 

winning node; 𝛿𝑣𝑘  and 𝑑𝑣𝑘  are the distance between an SOM node and the current 

winning node in input data space and SOM latent space, respectively. 𝛼(𝑡) is the learning 

rate which exponentially decays over iterations. 

In this implementation, the SOM latent space is a 2D space initialized using the 

first two principal components from principal component analysis (PCA). Defined by 
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Equation 1, an SOM node may either move towards or away from the current winning 

node in the SOM latent space to preserve their distance found in the input data space. 

I generate a synthetic consisting of three attributes to test the proposed DPSOM 

algorithm and compare it with the traditional SOM (Figure 3.9). All attribute values are 

randomly generated within a certain range for each facies. Table 1 summarizes the ranges 

for each facies on each attribute. This model consists of three facies, a mud-filled channel, 

a gas-charged levee, and a flood plain.  

I feed these three synthetic attributes into traditional Kohonen SOM as well as 

DPSOM with (over defined) 256 prototype vectors, and show the results in Figure 3.10. 

Note the traditional SOM generates a facies map with two facies (Figure 3.10a), splitting 

the flood plain into levee and channel facies. In contrast, DPSOM generates three facies, 

even though there are some local variations in the flood plain and levee facies (Figure 

3.10b). The corresponding SOM latent spaces are shown in Figure 3.10c and 3.10d, where 

the color for each cluster represents the histogram count. We clearly see two clusters as 

end members in the traditional SOM, where we have three clusters in the DPSOM, two 

of which are further subdivided into two adjacent sub-clusters. Moreover, in Figure 3.10d 

we clearly see the distance between the green cluster (channel) and the cadet blue cluster 

(flood plain) is less than the distance between the cadet blue cluster and the deep pink 

cluster (levee). This is consistent with the model setting in which the attribute value 

ranges of flood plain are closer to that of channel than to that of levee. Such result 

confirms the advantage of the distance preserving character in DPSOM over the 

traditional SOM. 
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APPLICATION 

Given the selected four attributes, I form four-dimensional attribute vectors at 

each voxel and feed them into the DPSOM classification algorithm. As an interpreter, I 

need to validate the final classification to determine if they delineate the seismic facies of 

interest. In this example I use Sobel filter similarity to separate the facies and then 

evaluate how they fit within interpreters’ understanding of a turbidite system. 

To ensure the DPSOM classifier analyzing data in a relatively constant 

depositional environment, I take a 100 ms analysis window centered about phantom 

horizon A. In this window, each voxel (inline, crossline, time) is represented by a four-

dimensional data vector (peak spectral frequency, peak spectral magnitude, coherent 

energy, curvedness). After normalizing the input data along each dimension using the 

Mahalanobis distance (Mahalanobis, 1936), a 2D SOM latent space is initialized using 

the first two principle components. I then take 1 of every 125 data vectors (every 5th 

inline, crossline, and time sample) as training data to construct the SOM model. For each 

SOM training iteration, the position of all SOM nodes are adjusted based on Equation 1, 

resulting in SOM model that honors the distance among data vectors in the 4D input 

space. Once the algorithm reaches the desired number of iteration (in this case, 5 

iterations), the SOM model is applied to the data within the analysis window. Using only 

a single processor, the total calculation time is around 10 minutes, for a 25 sample by 600 

inline by 1800 crossline data slab of 4-attribute data. 

Figure 3.11 shows the DPSOM classification result along phantom horizon A. In 

the upper right corner I show a 2D colorbar and a 2D histogram representing the classes 

in the SOM latent space, with the two axes being the first two principle components of 
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the 4D input data. I then color code the classes using the 2D colorbar, and paint each 

sample point in the 3D seismic volume using the same color as the class to which it 

belongs. To better illustrate the distance-preserving characteristic of DPSOM, I compare 

with the result from classic Kohonon-SOM using the same parameters (Figure 3.12). It is 

observed that different geologic features in Figure 3.11 are represented by more distinct 

colors than in Figure 3.12. For example, the sinuous channel complex in the far north is 

more visually segmented from the surrounding slope fan in Figure 3.11 than in Figure 

3.12. This is attributed to the distance between these two facies being better preserved in 

DPSOM, therefore the contrast between colors representing such facies are greater in 

Figure 12. Back to Figure 3.11, we then identify two main slope channels (white arrows) 

which are classified as cyan that converge downstream. Vertical slices show these both 

to be multistory channels. As the channels move downslope, the slope becomes gentler, 

such that sediments lose momentum, spread out, and form a lobate feature. Black arrows 

indicate several sinuous channel complexes. On the facies map we see the northernmost 

large channel complex bifurcating into two minor channels. Most of the channel fill 

appear as cyan, similar to the two main channels, which suggests they are probably mud 

filled. The coherent slope fans (indicated by red arrows) are characterized by brownish 

colors. The purplish color facies (orange arrows) are less coherent and may indicate 

massive turbidite current or slump deposits. The yellow arrow indicates an older, 

probably sand-filled channel within the multistoried system. Blue arrows indicate the 

same color facies that I interpreted to be an older, high energy, sand filled channel 

developed earlier than the mud filled channel cutting through it. This sand-filled channel 
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spreads out and contributes to the lobe further downslope where it is covered by mud 

deposits transported by later stage channels. 

In Figure 3.11a-f, I also show several vertical slices through co-rendered seismic 

amplitude with SOM facies volumes. In each image, phantom horizon A is vertically 

centered within the SOM analysis window. Figure 3.11a shows the smaller scaled 

channels in the northern channel complex. I use red lines to delineate the longitudinal 

profile of the channels. I find the channels are mapped in cyan to purple colors, with the 

surrounding overbank complex deposits mapped in yellow to brown colors. This contrast 

in color has greatly simplified the characterization of such channel complexes, which 

otherwise are extremely tedious to interpret on traditional seismic amplitude data. Figure 

3.11b displays the lateral migration of the northern main channel complex. In this vertical 

section we identify at least four channel stories migrating from northeast to southwest 

(yellow lines highlight different stories). Notice the oldest story is mapped as lime green, 

while the younger channels are cyan (with the youngest one out of the SOM analysis 

window). This suggests a change of lithology during deposition, with the oldest story 

sand-filled, and the younger stories mud-filled. Figure 3.11c shows the vertical profile of 

the more distal northern main channel. Comparing to section Figure 3.11d, which is more 

proximal, the distal part of the channel is more spread out, forming a lobe mixed with the 

southern main channel. We also see an oxbow-like feature (probably another sandy 

channel fill) in the older deposits (outlined in green). Figure 3.11d-f show three vertical 

profiles through the proximal to the distal portions of the southern main channel (outlined 

in red), in which we clearly see it cutting through an older sand-filled channel in lime 

green (outlined in green). Similar to the northern main channel, we see the width of the 
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southern channel (as well as the old sand-filled channel) has expanded dramatically from 

proximal to distal, merging with the northern lobe. The yellow line in Figure 3.11f 

highlights a younger mud-filled incised channel in the southern main channel. 

In Figure 3.13 and 3.14, I show four prototype vectors representing four key 

facies. The location of the prototype vector in the 3D inline-crossline-time space and 2D 

SOM latent space is shown in Figure 3.13, while the normalized attribute responses of 

these four prototype vectors are in Figure 3.14. To ensure that the prototype vectors 

correctly represent the facies they belong to, all the attribute responses in Figure 3.14 are 

averaged from a 5 sample X 5 trace X 5 trace window centered at the target prototype 

vectors. As expected, the prototype vectors in similar facies (colors) have similar attribute 

responses. Prototype vector 1 is selected to represent sand-filled channel deposits, which 

has a similar response to that of prototype vector 3, which is selected to represent sandy 

overbank complexes. The inter-channel overbank complex (prototype vector 2) and the 

mud-filled sinuous channel complex (prototype vector 4) are in similar facies (blue to 

purple colors) and have different attribute responses. I also show the difference in 

reflection characteristics of the multistoried channel (yellow circle) and older sand filled 

channel (blue circle) that are in similar SOM facies. All such interpretations are solely 

based on seismic amplitude data, which need to be further verified by well log or core 

analysis. 

CONCLUSIONS 

In this study, I am able to characterize a Miocene deep water turbidite system in 

Canterbury basin, New Zealand, by incorporating seismic attributes, seismic facies 

classification, and a limited amount of structural interpretation (picking one horizon). 
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Phantom horizon slices through seismic attribute volumes effectively delineate 

depositional features where there are no continuous surfaces to pick. Co-rendering 

seismic attributes against an HLS color model facilitates the visual integration of two or 

three attributes at the same time, which greatly increases the value of seismic attributes. 

DPSOM is an innovated classification technique that produces an improved classification 

result by preserving the distance in input data space. The seismic facies map generated 

from DPSOM using appropriate seismic attributes provides statistics based machine 

assistance to identify depositional facies in a turbidite system. Multiple sinuous channel 

complexes and multistory channel stacking pattern are delineated precisely along with 

their depositional pattern, which can be further utilized to locate potential reservoirs. 
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CHAPTER 3 TABLES 

 

                  Attribute 

 

    Facies 

Attribute 1 Attribute 2 Attribute 3 

Shale-filled channel 25 ~ 30 -0.7 ~ -0.4 0 ~ 2 

Gas-charged levee 10 ~ 15 0.4 ~ 0.7 10 ~ 15 

Flood plain 40 ~ 45 -0.1 ~ 0.1 4 ~ 6 

Table 3.1. Value ranges for each facies on each attribute. All values are randomly 

generated within the given range. 
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CHAPTER 3 FIGURES 

 

 

Figure 3.1. A map showing the location of the 3D seismic survey acquired over the 

Canterbury basin, offshore New Zealand. The black rectangle denotes the limits of the 

Waka-3D survey, while the smaller red rectangle denotes the part of the survey shown in 

subsequent figures. Colors represent the relative depth of the current seafloor, warm being 

shallower and cold being deeper. Current seafloor canyons are delineated in this map, 

which are good analogs for the paleocanyons in Cretaceous and Tertiary turbidites. 

(Modified from Mitchell and Neil, 2012) 
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Figure 3.2. Time slice at t=1.88 s through the seismic amplitude volume. White arrows 

indicate potential channel/ canyon features. The blue arrow indicates a high amplitude 

feature. The red arrow indicates a relatively low energy, gently dipping area. AA’ denotes 

a vertical cross section shown in Figure 3.7. 
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Figure 3.3. Horizon slice along horizon A through seismic amplitude volume. White 

arrows indicate potential channel/ canyon features. The blue arrow indicates a high 

amplitude feature. The red arrow indicates a relatively low energy, gently dipping area. 

The black arrow indicates a sinuous channel complex which is not seen in the time slice 

shown in Figure 3.2. AA’ denotes a cross section shown in Figure 3.7. 
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Figure 3.4. Horizon slice along horizon A through the peak spectral frequency co-

rendered with peak spectral magnitude volumes. These spectral attributes computed using 

a continuous wavelet transform emphasize the relative thickness and reflectivity of the 

turbidite system and surrounding slope fan sediments into which it was incised. The edges 

of the channels are delineated by Sobel filter similarity. White arrows indicate two 

straight to meandering main channels; black arrows indicate sinuous channel complexes; 

blue arrows indicate high amplitude reflectors; and red arrows indicate gently dipping 

slope fans. 
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Figure 3.5. Horizon slice along horizon A through the co-rendered shape index, 

curvedness, and Sobel filter similarity volumes. The shape index co-rendered with 

curvedness is good for visual classification but dominates the unsupervised classifications 

with valley and ridge features across the survey. White arrows indicate two straight to 

meandering main channels; black arrows indicate sinuous channel complexes; blue 

arrows indicate high amplitude reflectors; and red arrows indicate gently dipping slope 

fans. 
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Figure 3.6. Horizon slice along horizon A through the co-rendered GLCM homogeneity, 

coherent energy, and Sobel filter similarity volumes. Bright colors highlight coherent, 

high energy areas that indicate potential sand deposits. White arrows indicate two straight 

to meandering main channels; black arrows indicate sinuous channel complexes; blue 

arrows indicate high amplitude reflectors; and red arrows indicate gently dipping slope 

fans. 
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Figure 3.8. Crossplot among all input attribute pairs. Note all crossplots are in a cloud 

shape instead of following a straight diagonal line. Such behavior demonstrates that these 

four attributes are relatively independent. 
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Figure 3.9. Time slices through three synthetic seismic attribute volumes, delineating 

three seismic facies. 

 

 

 

 

 

 

Figure 3.10. Classification 

result using (a) traditional 

SOM and (b) DPSOM for the 

synthetic data shown in Figure 

3.9. (c) Corresponding SOM 

latent spaces and 3D colorbars 

for (a) traditional SOM and 

(d) DPSOM. Clusters in the 

upper figures in (c) and (d) are 

painted in colors according to 

their corresponding position 

in the 2D colorbar. For 

example, a cluster appears in 

the upper left corner of the 

SOM latent space is painted in 

orange color (the color in the 

upper left corner of the 2D 

colorbar) in the seismic faces 

map. 
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Figure 3.12. Slice along horizon A through the seismic facies map generated from classic 

Kohonen-SOM using a 2D colorbar. White arrows indicate two straight to meandering 

mud filled channels. Blue arrows indicate a possible sand filled channel that is cut through 

by one of the mud filled channels. Red arrows indicate possible slope fan and lobe 

deposits. The black arrows indicate sinuous channel complexes. Note the less separated 

facies represented by more similar colors comparing to Figure 3.11. 
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Figure 3.14. Seismic attribute responses of the four prototype vectors in Figure 3.13. 

Input attributes are coherent energy, curvedness, peak spectral frequency, and peak 

spectral magnitude. All attribute values are normalized using z-score. 
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CHAPTER 4 

CONSTRAINING SELF-ORGANIZING MAP FACIES ANALYSIS 

WITH STRATIGRAPHY4 

INTRODUCTION 

Skilled seismic interpreters identify seismic facies by examining spatial variations 

in seismic reflection amplitude, phase, frequency, continuity, and orientation. Modern 

seismic attributes and impedance inversion algorithms quantify the local variation of 

these reflectors voxel by voxel, allowing them to be statistically analyzed by a computer. 

Zhao et al. (2015) reviewed some of the more commonly used supervised and 

unsupervised seismic facies classification techniques, including principal component 

analysis, K-means clustering, self-organizing maps, generative topological maps, 

artificial neural networks, and support vector machines. In general, unsupervised 

classification techniques are solely driven by the input data, while supervised techniques 

incorporate external control provided either by wells or as data labels defined by the 

interpreter. In either case, validation of the results is critical to gaining confidence in the 

prediction. When there is a great deal of well control or interpreter-generated labels 

(geomorphological/petrophysical facies), statistical validation may be sufficient. 

However, when the well control is limited or the interpreter suspect, correlation to well-

accepted geologic and petrophysical models provides added confidence. In a 

conventional reservoir, such a correlation may be that of a gas-sand facies exhibiting high 

                                                 

4This study is published as - Zhao, T., F. Li, and K. J. Marfurt, 2017, Constraining self-organizing map 

facies analysis with stratigraphy: an approach to increase the credibility in automatic seismic facies 

classification: Interpretation, 5, T163-T171.  
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negative reflectivity, low Poisson’s ratio, high local continuity, and occurring near the 

top of an anticlinal fold. For an unconventional shale reservoir such as the Barnett Shale, 

such a correlation may be a pattern of laterally continuous brittle and ductile layers that 

correspond to the cyclicity of the Fort Worth Basin evolution, interrupted by faults and 

collapse features associated with the deeper Ellenburger dolomite.  

Self-organizing map (SOM) (Kohonen, 1982) is one of the most popular seismic 

facies analysis algorithm that projects N-dimensional multiattribute data vectors, one for 

each voxel, onto a deformed lower dimensional surface that attempts to best fit the data 

distribution. Poupon et al. (1999) described one of the earliest SOM-based seismic facies 

analysis. In their application, the “attributes” consisted of seismic amplitude from a suite 

of 16 phantom horizon slices. Data vectors in this 16-dimensional space were then 

projected onto a 1D shoestring “manifold” that best represented the data. The mean of 

each cluster along this shoestring therefore could be interpreted as a 16-sample seismic 

waveform. They then subsequently plotted the location of the cluster center along the 1D 

manifold against a 1D rainbow colorbar to delineate multiple turbidite deposits. Later, 

Strecker and Uden (2002) clustered volumetric attributes such as envelope, frequency, 

and coherence rather than amplitudes extracted about a surface and projected them onto 

a 2D deformed surface (manifold) rather than a 1D shoestring, plotting the cluster centers 

against a continuous 2D color table. Coleou et al. (2003) furthered this work by using 

more sophisticated attributes. More recently, Matos et al. (2009) used concepts of inter-

cluster distances and a 2D HLS color table to improve the visualization of SOM facies. 

Roden et al. (2015) showed how to incorporate principal component analysis (PCA) to 

select the mathematically most meaningful input attributes for SOM. Because the 
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traditional Kohonen SOM only preserves topology but not distance, the distance 

information in the input attribute space is lost once projected into the 2D SOM latent 

space. Here the “distance” is not the spatial/temporal distance defined in (x, y, z) space 

in which the interpreter lives but rather the mathematical L2 norm between two N-

dimensional data vectors or between an N-dimensional data vector and an N-dimensional 

cluster center. Based on this definition, two data vectors that have similar seismic attribute 

response should be adjacent to each other, while their projections onto the deformed 2D 

manifold should also be close. To preserve the consistency of distance from input attribute 

space to 2D SOM space, Zhao et al. (2016) adopted a distance-preserving step, 

constraining the SOM facies to better reflect the degree of diversity as found in the input 

attribute space. However, unless the interpreter provides attributes that somehow measure 

spatial proximity between two data vectors, the analysis remains spatially and temporally 

unaware. 

The pitfall in being spatially and temporally unaware is the potential of mixing 

geology across different formations during the SOM process. In practice, an experienced 

interpreter can mitigate the possibility of mixing data samples from different formations 

by manipulating an operation window just localized at the target formation, yet there 

would always be vertical variations defined by sedimentary cycles in different scale 

(ranges from hundreds of millions of years to one tenth of million years), e.g. pinchouts 

and thin layers, within the operation window. Adding information of stratigraphy 

(sedimentary cycle), which provides temporal (or spatial, if seismic data are in depth 

domain) constraint on the vertical axis, may help define layers that are otherwise not well 

defined on seismic attributes. Relative geologic time (RGT) volume generated from 
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unwrapping instantaneous phase (Stark, 2003, 2004; Wu and Zhong, 2012) is an 

appropriate candidate for constraining SOM facies analysis with geologic time. However, 

in such RGT volumes, the vertical axis is monotonically increasing, on which 

sedimentary cycles controlled by changing sea level are not easily identified. In fact, there 

is very limited published research, if any, on calibrating RGT volumes with wells to 

identify sedimentary cycles which are routinely interpreted on well logs (e.g. gamma ray 

logs). An oscillation curve that directly links to periodic change in grain size is more 

preferred, and due to the limited resolution, presence of noise, and layer-interface relation 

in seismic data, such periodic change in grain size in most cases cannot be matched to 

seismic events. Empirical mode decomposition (EMD) (Huang et al., 1998) is an effective 

method to decompose seismic signal into several band limited modes, and researchers 

have discovered that some of the decomposed modes (which are named intrinsic mode 

functions or IMFs) corresponded with sedimentary cycles derived from well logs (Liu et 

al., 2010; Liu et al., 2015). However, EMD is a recursive model decomposition method, 

and is sensitive to noise and sampling and therefore not so robust. To overcome this issue, 

Dragomiretskiy and Zosso (2014) proposed a novel mode decomposition method, 

variational mode decomposition (VMD), which decomposes a signal concurrently and is 

robust to noise and sampling. Lateral consistency-preserved VMD has been successfully 

applied to seismic amplitude data to derive a sedimentary cycle model (Li et al., 2016). 

In this study, I adopt the workflow described in Li et al. (2016) to derive a sedimentary 

cycle model, and use this model as a constraint on SOM facies analysis. I test the proposed 

stratigraphy constrained SOM to a Barnett Shale survey in the United States, with the 
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objective of recovering more subtle lithologic variations than using the unconstrained 

SOM. 

I begin this chapter by introducing the workflow of stratigraphy constrained SOM, 

followed by the geologic background of the study area, which is in the Fort Worth Basin, 

United States. I then apply the stratigraphy constrained SOM to analyze the lithofacies 

distribution in the Barnett Shale reservoir intervals. To illustrate the effectiveness of the 

proposed method, I also compare with the unconstrained SOM using the same input 

attributes. Finally, I summarize the values and limitations of the proposed method in the 

conclusion. 

STRATIGRAPHY CONSTRAINED SOM 

The proposed method starts from extracting VMD modes (IMFs) from seismic 

amplitudes to build a sedimentary cycle model. In this implementation, I choose to 

decompose the seismic signal into four modes, aiming to represent the sedimentary cycles 

with varies orders. Because the IMFs are decomposed from seismic amplitude signal 

which is the response of the interfaces, I further calculate the gradient of IMFs, assuming 

that the oscillation in the IMF gradients is a more suitable candidate to match with the 

sedimentary cycle caused by cyclic sea level change, comparing to the oscillation of 

IMFs. To verify this assumption and choose the appropriate gradient, I use gamma ray 

logs as the representation of sedimentary cycle pattern, and compare with the derived 

IMF gradients to choose one that matches the gamma ray pattern the best. Such IMF 

gradient with the highest correlation to gamma ray log (referred in the later text as best 

matching IMF gradient) is the sedimentary cycle model to be used to constrain the SOM. 
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In traditional Kohonen SOM, the distance used to find the best matching unit 

(BMU) for a given multiattribute data sample vector is calculated using only attribute 

values. As discussed in the Introduction, the lack of a temporal/spatial constraint may 

sometimes lead to unreasonable classification results. As an improvement, I add a term 

defined by the best matching IMF gradient into the distance metric, which now becomes: 

𝑑 = (1 − 𝜆) ∑‖𝐚𝑖 − 𝐚̂𝑖‖ + 𝜆‖𝑔 − 𝑔̂‖,

𝑁

𝑖=1

                               (4.1) 

where d is the weighted distance between a multiattribute data sample and a prototype 

vector, N is the number of attributes, 𝐚 and 𝐚̂ are N-dimensional vectors at each voxel 

and of prototype vector, respectively, 𝑔 and 𝑔̂ are the best matching IMF gradients for a 

data sample and a prototype vector, respectively, and 𝜆 is a weight between zero and one.  

Unfortunately, the weight 𝜆 is handpicked by interpreters. A larger weight means 

the generated SOM facies will follow the trend of IMF gradient more, and vice versa. A 

weight too large will generate a SOM facies map that follows the IMF gradient strictly 

and therefore suppress the response found in input attributes. A weight too small will not 

add the amount of constraint interpreters need. So an optimal weight is really up to an 

interpreter’s choice and depends on project objective. In practice, I find values of 𝜆 

between 0.6 and 0.7 to provide good results. When 𝜆 =
1

𝑁+1
, the IMF gradient is weighted 

equally with other attributes. Such a modification, although in an extremely simple form, 

introduces a degree of stratigraphic constraint, which I will later illustrate through the 

application. The complete workflow of the modified SOM facies analysis is shown in 

Figure 4.1. 
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GEOLOGIC SETTING 

The seismic data used to evaluate the stratigraphy constrained SOM were acquired 

to image the Barnett Shale unconventional reservoir of the Fort Worth Basin, United 

States. The Fort Worth Basin is a shallow north-south-elongated foreland basin that 

encompasses roughly 15,000 mi2 in north-central Texas and formed during the late 

Paleozoic Ouachita orogeny (Walper, 1982). Being one of the most classic 

unconventional shale reservoir, the Barnett Shale is an organic-rich petroliferous shale 

formation deposited in Mississippian age, when an alternating series of black, organic-

rich shales and shallow marine limestones were deposited (Montgomery et al., 2005). The 

Barnett formation is deposited directly over the Viola Limestone formation, and topped 

by the Marble Falls Limestone formation. In the study area, the Barnett Shale is further 

divided into an upper and lower interval by a limestone interval, known as the Forestburg 

Limestone (Montgomery et al., 2005). All the three limestone intervals are water bearing 

and behave highly ductile, which make them hydraulic fracturing barriers. The general 

stratigraphy of the Barnett Shale is shown in Figure 4.2. The upper and lower Barnett 

Shale formations are not homogeneous, which can be subdivided into siliceous shale, 

argillaceous shale, calcareous shale, and limestone layers, with the presence of dolomite 

(Singh, 2008). Lithofacies stacking patterns (usually systematic) are also identified in the 

Barnett Shale, which are controlled by the eustatic sea level change over multiple scales 

of geological time (Slatt and Abousleiman, 2011). Slatt and Abousleiman (2011) further 

defined brittle-ductile couplets at different scales from such systematic lithofacies 

patterns identified on both gamma ray logs and core cuttings, ranging from over 100 m 

thick to only a few cms thick. The lithofacies patterns and brittle-ductile couplets are 
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directly linked to sedimentary cycles that are a result of eustatic sea level change. 

Therefore, if we are able to replicate the sedimentary cycles on seismic data and use such 

stratigraphic pattern to constrain the SOM analysis process, it well definitely benefit the 

facies classification, even though the sedimentary cycles are of high order due to the 

limited frequency band in seismic data. 

APPLICATION 

I apply the proposed stratigraphy constrained SOM facies analysis to the 

aforementioned Barnett Shale seismic survey, and compare the facies analysis result with 

one from unconstrained SOM, using the same input attributes and model parameters. In 

unconventional shale reservoirs, where interpreters are usually interested in lithology 

changes more than structural deformations, we prefer seismic inversion attributes as input 

attributes for automatic facies analysis algorithms. Zhang et al. (2014) and Verma et al. 

(2016) both used such inversion attributes to estimated brittleness and total organic 

carbon (TOC) in a supervised fashion. Spectral decomposition attributes are also 

routinely used as lithology indicators, and are especially helpful in mapping horizontal 

extension of different facies and geobodies. However, due to the window-based nature 

when generating such attributes, spectral decomposition attribute, such as peak spectral 

frequency and magnitude, have suboptimal vertical resolution, therefore are not suitable 

to represent vertical stacking patterns resulted from cyclic sea level change. In this study, 

attributes from prestack simultaneous inversion were used as inputs, which are P-

impedance, ZP, S-impedance, ZS, the ratio of incompressibility and shear modulus, λ/μ, 

and Poisson’s ratio, ν. I selecte these attributes with the understanding that such attributes 

directly correlate with mineral contents, grain size, and elastic properties of the rocks. 
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The prestack seismic data were carefully processed and preconditioned with the workflow 

described by Zhang et al. (2013) and Zhang et al. (2015). 

With the input attributes at my disposal, the next step is to generate the four IMFs 

using VMD. Figure 4.3 gives an example trace along well A (location shown in later 

figures) together with its decomposed four IMFs, and the gradient of IMF 3, which, after 

further analysis, was able to match the pattern found in gamma ray logs. Figure 4.4 gives 

vertical sections along seismic amplitude and the gradient of IMF 3 plotted with the 

gamma ray log at well A, and Figure 4.5 shows how the composite trace of the gradient 

of IMF 3 matches the gamma ray log along well A and well B(locations of both wells are 

shown in later figures). In Figure 4.4, formation tops are marked as solid colored curves, 

gamma ray logs as solid blue curve, and the well trajectory as dashed red line. From top 

to bottom, the marked formation tops are: Marble Falls Limestone, Upper Barnett 

Limestone, Upper Barnett Shale, Forestburg Limestone, and Lower Barnett Shale. The 

formations tops are displayed in the same color scheme for all remaining figures. We 

identify a similar cyclic pattern in the IMF 3 gradient as in the gamma ray log, which is 

commonly used by sequence stratigraphers to interpret sedimentary cycles controlled by 

eustatic sea level change, subsidence rate of the basin, and sediment supply. Therefore, 

the gradient of IMF 3 provides a volumetric approximation of sedimentary cycles, 

providing information that is not easily acquired from tradition spectral decomposition. 

I provide the input attributes with and without the constraint to a SOM classifier 

defined in the workflow discussed in Figure 4.1. Figure 4.6 shows time slices from 

unconstrained SOM (Figure 4.6a) and constrained SOM (Figure 4.6b), on which the 

location of well A and B, as well as vertical sections AA’, BB’, CC’ (discussed later) are 
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displayed. The facies maps are generated by crossplotting the data projected onto two 

SOM axes, and such crossplot enables the use of a 2D color map, providing better 

visualization. By looking at these two time slices alone, it is nearly impossible to draw 

any conclusions comparing the quality of facies, as the contribution of the stratigraphy 

constraint is in the vertical direction. Moving to vertical section AA’, Figure 4.7 gives the 

unconstrained SOM facies, and Figure 4.8 gives the constrained SOM facies, both of 

which are overlapped by the gamma ray log at well B. The formation tops are marked as 

colored curves. We identify the gamma ray value increases from the top to the bottom in 

the Marble Falls Limestone (black arrows in Figure 4.7 and 4.8), which translates into a 

color change from purplish to magenta in the unconstrained SOM facies (Figure 4.7), and 

a color change from orange to lime green in the constrained SOM facies (Figure 4.8). 

Adding the stratigraphy constraint makes such lithology variation more obvious in the 

form of colors with higher contrast, and matches the gamma ray trend better. The white 

arrows in Figure 4.7 and 4.8 show a local variation within the Upper Barnett formation, 

which is more obvious on the constrained SOM facies. Figure 4.9 displays vertical section 

AA’ along VP/VS ratio. Although VP/VS is derived from ZP and ZS, it is not directly 

used as an input attribute for SOM. We clearly identify a high VP/VS ratio layer 

corresponding to the high gamma ray at the bottom of Marble Falls Limestone, and a very 

low VP/VS zone within the Upper Barnett at the white arrow. 

Figure 4.10 and 4.11 are the vertical sections of unconstrained and constrained 

SOM facies maps along line BB’, respectively. Here, besides the higher color contrast at 

the Marble Falls Limestone and Upper Barnett Limestone, the constrained SOM also 

shows more details in the Upper Barnett Shale formation, comparing to the unconstrained 
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SOM. As previously discussed, the Barnett Shale is deposited over multiple cycles of sea 

level change, and thin layers at different scales are developed. In the unconstrained SOM 

facies map (Figure 4.10), the middle section of Upper Barnett Shale is a thick layer of 

grayish colors, with a hint of yellow. However, in the same region of the constrained 

SOM facies map (Figure 4.11), the two black arrows point at two facies with different 

colors in a stacking pattern, which are nearly identical in Figure 4.10. Figure 4.12 gives 

a vertical section of VP/VS ratio along the same BB’ line, which does not contain the 

sedimentary cycle information, can still provide an indication of thin layers of different 

VP/VS ratio, and the green facies in Figure 4.11 clearly correlates with the relatively 

higher VP/VS regions in the middle part of Upper Barnett Shale. Figure 4.13 provides a 

zoom-in around traces X1 and X1’, which are extracted from the unconstrained and 

constrained SOM facies volumes, respectively, at the same location, and overlaid with 

curve display of these two traces. The values on the traces are “facies numbers”, which 

are over-defined with 4096 SOM prototype vectors to ensure a smooth visualization. Such 

4096 “facies” are then arranged over a 64 × 64 2D space, and color-coded using the 2D 

color map shown in the lower right corner. This translates to the fact that facies N and 

facies N±64 have similar colors, so the curve display alone may sometime be misleading 

and has to be verified with color display. In practice, I am still able to see different layers 

(black arrows) on trace X1’, but nearly impossible to see on trace X1. Such details provide 

interpreters more insights of the small scale stratigraphy distribution in the Upper Barnett 

Shale formation. 

Figure 4.14 -4.16 show the unconstrained SOM facies, constrained SOM facies, 

and VP/VS ratio along line CC’, respectively. Similar to line AA’ and BB’, I am still able 
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to identify more facies with higher color contrast in the constrained SOM facies; while in 

the unconstrained SOM facies map, the facies are more smeared. The black arrows point 

to some high VP/VS regions in the Upper Barnett formation which are better delineated 

in the constrained SOM map as bright green spots (Figure 4.15). The constrained SOM 

map also shows the high VP/VS layer in the Lower Barnett (white arrows) clearer than 

in the unconstrained SOM map. Better delineation of such local elastic property change 

will greatly facilitate well-planning in the completion stage. 

CONCLUSIONS 

In this study, I explore the feasibility of constraining the SOM facies analysis 

using stratigraphy information, in the form of sedimentary cycles. The stratigraphy 

constrained SOM facies map provides more details, and shows layers that are more likely 

being overlooked on SOM facies maps without such constraint. The extra features can be 

calibrated with well log data and the VP/VS ratio attribute, which prove the credibility of 

the resulted facies. The sedimentary cycle is estimated by decomposing seismic 

amplitude signal into a finite number of modes using VMD, and I believe the selection of 

the most appropriate component to represent sedimentary cycle requires calibration with 

other data, and the most appropriate component may differ from region to region. 

However, the geological meaning of such modes is not well understood, and these modes 

need to be carefully calibrated with well logs. The different VMD gradient patterns in 

adjacent layers are a good indicator of layer geometry, however layers with the same 

VMD gradient response are not distinguishable. Fortunately, such limitation poses less 

problem in real application, because adjacent layers rarely have the same VMD gradient 

in seismic scale. 
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CHAPTER 4 FIGURES 

 

 

Figure 4.1. Workflow of the stratigraphy constrained SOM facies analysis. All 

abbreviations are explained in the main text. 
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Figure 4.2. General stratigraphy of the Ordovician to Pennsylvanian section in the Fort 

Worth Basin through a well near the study area (After Loucks and Ruppel, 2007). 

 

 
Figure 4.3. (a) Seismic amplitude from a trace along well A (location shown in Figure 

4.6). (b) VMD components (IMFs) of the trace above. Four components are used to 

represent sedimentary cycle at different scales. (c) The gradient of IMF 3. Dashed lines 

show the correspondence among seismic amplitude, IMF 3, and IMF 3 gradient, when 

IMF 3 gradient is at zero, local minimum, and local maximum. 
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Figure 4.4. Vertical sections along (a) seismic amplitude and (b) IMF 3 gradient plotted 

with the gamma ray log (blue curve) at well A (location shown in Figure 4.6). The well 

trajectory is marked by the red dashed line. Formation tops are marked as colored curves. 

Note the good match in pattern between the gamma ray log and IMF 3 gradient. 

 

 
Figure 4.5. Traces of IMF 3 gradient plotted with gamma ray logs (blue curve) at well A 

(left) and well B (right) (well locations are shown in Figure 4.6). Well A is a vertical well, 

and the corresponding IMF 3 gradient trace is the most adjacent trace of well A. Well B 

is a deviated well, and the corresponding IMF 3 gradient trace is a composite trace along 

the well trajectory. Note the good match in pattern between the gamma ray log and IMF 

3 gradient at both wells. 
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Figure 4.6. Time slices at t=1.28 s along SOM facies maps generated (a) without 

stratigraphy constraint and (b) with stratigraphy constraint. A 2D colorbar is used for 

visualization. Note the difference between two time slices is very limited, because the 

stratigraphy constraint is added on the vertical axis. 

 

 

Figure 4.7. Vertical section along line AA’ (location shown in Figure 4.6) through 

unconstrained SOM facies map. Formation tops are marked with colored curves. The 

black arrow indicates a high gamma ray layer at the bottom of the Marble Falls Limestone 

formation. The white arrow indicates a local facies change. 

 

 

 



129 

 

Figure 4.8. Vertical section along line AA’ (location shown in Figure 4.6) through 

constrained SOM facies map. Formation tops are marked with colored curves. The black 

arrow indicates a high gamma ray layer at the bottom of the Marble Falls Limestone 

formation. This high gamma ray layer corresponds better to the constrained SOM facies 

than the unconstrained SOM facies, as the facies show higher contrast in color (orange to 

lime versus purple to magenta in Figure 4.7). The white arrow indicates a local facies 

change in the Upper Barnett which corresponds to a low VP/VS region. 

 

 

Figure 4.9. Vertical section along line AA’ (location shown in Figure 4.6) through VP/VS 

ratio. Formation tops are marked with colored curves. The black arrow indicates a high 

gamma ray layer at the bottom of the Marble Falls Limestone formation. This high 

gamma ray layer has a very high VP/VS ratio. The white arrow indicates a low VP/VS 

region. 
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Figure 4.10. Vertical section along line BB’ (location shown in Figure 4.6) through 

unconstrained SOM facies map. Formation tops are marked with colored curves. The 

black arrows indicate two thin layers in the Upper Barnett Shale formation that are not 

well defined in the unconstrained SOM facies map. The area in the dashed box is 

discussed in Figure 4.13. The red dashed line is the location of trace X1 which is discussed 

in Figure 4.13. 

 

 

Figure 4.11. Vertical section along line BB’ (location shown in Figure 4.6) through 

constrained SOM facies map. Formation tops are marked with colored curves. The black 

arrows indicate two thin layers in the Upper Barnett Shale formation that can be identified 

in the constrained SOM facies map but are not well defined in the unconstrained SOM 

facies map. The area in the dashed box is discussed in Figure 4.13. The red dashed line is 

the location of trace X1’ which is discussed in Figure 4.13. 
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Figure 4.12. Vertical section along line BB’ (location shown in Figure 4.6) through 

VP/VS ratio. Formation tops are marked with colored curves. The black arrows indicate 

two thin layers in the Upper Barnett Shale formation identified in the constrained SOM 

facies map. Although the stratigraphy constrain is not from VP/VS ratio, we do observe a 

difference in the VP/VS ratio between these two layers. The red dashed line is the location 

of trace X1/X1’ which are discussed in Figure 4.13. 

 

 

Figure 4.13. Zoom-ins around traces X1 and X1’ extracted from the unconstrained and 

constrained SOM facies volume, respectively, at the same location, and overlaid with 

curve display of these two traces. The values on the traces are “facies numbers”, which 

are over-defined with 4096 SOM prototype vectors to ensure a smooth visualization. Such 

4096 “facies” are then arranged over a 64 × 64 2D space, and color-coded using the 2D 

color map shown in the lower right corner. We identify different layers (black arrows) on 

trace X1’, but nearly impossible to see on trace X1. 



132 

 

Figure 4.14. Vertical section along line CC’ (location shown in Figure 4.6) through 

unconstrained SOM facies map. Formation tops are marked with colored curves. The 

black arrows indicate a thin layer with high VP/VS ratio in the Upper Barnett Shale 

formation. The white arrows indicate a thin layer with high VP/VS ratio in the Lower 

Barnett Shale formation. 

 

 

Figure 4.15. Vertical section along line CC’ (location shown in Figure 4.6) through 

constrained SOM facies map. Formation tops are marked with colored curves. The black 

arrows indicate a thin layer with high VP/VS ratio in the Upper Barnett Shale formation. 

The white arrows indicate a thin layer with high VP/VS ratio in the Lower Barnett Shale 

formation. 
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Figure 4.16. Vertical section along line CC’ (location shown in Figure 4.6) through 

VP/VS ratio. Formation tops are marked with colored curves. The black arrows indicate a 

thin layer with high VP/VS ratio in the Upper Barnett Shale formation. The white arrows 

indicate a thin layer with high VP/VS ratio in the Lower Barnett Shale formation. 
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CHAPTER 5 

USER GUIDED DATA-ADAPTIVE ATTRIBUTE SELECTION FOR 

UNSUPERVISED SEISMIC FACIES ANALYSIS5 

INTRODUCTION 

Seismic attributes are routinely used in nearly every stage of an oilfield life cycle. 

However, Barnes (2007) finds that there are many redundant attributes, and many 

attributes with vague geological meaning rendering them useless. Excluding such 

redundant and useless attributes from the seismic interpretation workflow is important, 

but interpreters still face the challenge of selecting which of remaining attributes are 

appropriate for a given interpretation task. Interpreters have spent a considerable amount 

of effort on how to select the most suitable attributes for both qualitative and quantitative 

facies and reservoir property estimation. Chen and Sidney (1997) provide a 

comprehensive review on attribute selection for reservoir prediction and monitoring, 

dividing attributes into wave kinematics and reservoir feature categories, and further 

summarize the applicability for each attribute. Kalkomey (1997) discusses the risk of 

false correlation between seismic attributes and reservoir properties, in which she 

suggests that special caution is needed when there are too few wells to correlate with too 

many attributes. She further suggests to use only those attributes that have a physically 

justifiable relationship with reservoir property as predictors. Hart and Balch (2000) 

present a case study on predicting reservoir properties from seismic attributes with limited 

well control, in which they propose a suite of visual correlation schemes to define the 

                                                 

5A paper on this study is submitted to journal Geophysics as - Zhao, T., F. Li, and K. J. Marfurt, 2017, User 

guided data-adaptive attribute selection for unsupervised seismic facies analysis. 
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attributes of choice. From a more quantitative aspect, Schuelke and Quirein (1998) 

propose to use cross-validation as a measure of prediction performance, then select 

attributes that lead to higher cross-validation. Since then, almost all the proposed 

alternative strategies have shared one fundamental concept, which is to select attributes 

that lead to the lowest validation error. While sequential correlation (e.g. Hampson et al., 

2001) is the most commonly used correlation method to determine the input attributes, 

Dorrington and Link (2004) use a genetic nonlinear inversion algorithm to automatically 

determine which combination of input attributes minimizes the error in neural network 

porosity prediction.  

Such prediction error based attribute selection methods require a relatively large 

number of training samples, either from well control or from interpreter handpicked 

polygons defining seismic facies, providing supervision to the process. However, 

interpreters often wish to discover the natural facies distribution in the data in an 

unsupervised manner, without introducing any bias. 

Barnes and Laughlin (2002) find that the selection of input attributes has a higher 

impact on the facies map than the unsupervised learning algorithm used for classification. 

Zhao et al. (2015) review several competing unsupervised learning algorithms and 

through iterative experiments find a subset of attributes to highlight different architectural 

elements in a turbidite system. Roden et al. (2015) use principal component analysis 

(PCA) to quantitatively measure the contribution of each seismic attribute to the top 

principal components which in turn are used in the subsequent facies analysis. Although 

PCA estimates the contribution of each attribute to represent the data variability as a 
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whole, it does not provide a means of determining which attributes best differentiate a 

given facies from other facies and the background behavior. 

One of the most commonly used seismic facies analysis algorithms is the 

Kohonen (1982) self-organizing map (SOM). SOM is an unsupervised learning technique 

that projects higher dimensional multiattribute data onto a lower dimensional (usually 

2D) space called a manifold in which clusters of seismic facies are more easily defined 

and interpreted. In perhaps the first application of SOM to seismic data, Poupon et al. 

(1999) use amplitude from a suite of 30 phantom horizons as input projected to a 1D 

manifold, thereby generating a facies map along a target horizon. Strecker and Uden 

(2002) and Coleou et al. (2003) extend these concepts to volumetric SOM analysis, in 

which interpreters take multiple attributes at each voxel as inputs. Since then, researchers 

have been investigating how to effectively recover and represent the information buried 

in multiple seismic attributes. Matos et al. (2009) display an SOM facies map using a 2D 

color map. Hu et al. (2014) and Zhao et al. (2016) introduce improvements to preserve 

the Euclidean distance from seismic attribute space to 2D SOM latent space. Zhao et al. 

(2017) constrain SOM analysis using a sedimentary cycle model to introduce 

spatial/temporal awareness. 

At present, all multiattribute SOM analyses share one implicit assumption: input 

attributes are all independent and have the same contribution/importance to the SOM 

facies. This assumption has greatly simplified the SOM analysis, as interpreters just need 

to select which attributes to feed into a SOM, without specifying which of the selected 

attributes are more important than the others. Treating all input attributes equally is the 

somewhat “normal” practice in pattern recognition; unfortunately, seismic attributes are 
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not created equally, and the importance of an attribute varies greatly with the exploration 

perspective. Geometric attributes (e.g. coherence) attributes are routinely used to map 

discontinuities (e.g. faults) and stratigraphic edges in seismic data. In the Barnett Shale 

area, interpreters find coherence and curvature extremely useful when mapping the karst 

collapse features in the Ellenburger dolomitic formation, which pose drilling hazards to 

the overlaying Barnett Shale formation and therefore are crucial during completion design 

(Sullivan et al., 2006). In contrast, Qi et al. (2014) find that spectral decomposition 

attributes provide estimates of the lateral change in layer thickness and lithology, which 

can also map karst features in the same region. If an interpreter use both structural and 

spectral attributes in SOM, with the goal of mapping the facies distribution in the highly 

karsted Ellenburger formation, he/she would expect these attributes to have varying 

degrees of impact.  

In the structurally less deformed Barnett Shale reservoirs, interpreters are more 

interested in mapping different lithofacies, which may contain high total organic carbon 

(TOC), or may be more susceptible to hydraulic fracturing. In this case, seismic inversion 

attributes (e.g. 𝜆ρ and μρ) that are closely related to geomechanical behavior, are more 

favored by interpreters (Altamar and Marfurt, 2015). If the interpreter uses a combination 

of structural attributes and inversion attributes as inputs for SOM, weaker differences 

measured by inversion attributes may be suppressed by the stronger differences in 

structural attributes. 

The attribute selection system we use today is in fact simply a weighting system: 

if we use an attribute, its weight is one; if we reject it, its weight is zero. I therefore ask 

the question: instead of either selecting or rejecting an attribute, can we define weights 
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that represent the value of each input attribute in differentiating facies of interest? SOM 

clusters in data using either a Euclidean distance, 

𝑟𝐸 = √(𝐚1 − 𝐚2)𝑇𝐈(𝐚1 − 𝐚2),                                        (5.1)                         

or a Mahalanobis (1936) distance, 

𝑟𝑀 = √(𝐚1 − 𝐚2)𝑇𝐂−1(𝐚1 − 𝐚2),                                     (5.2) 

where 𝐚1 is an 𝑁 ⨯ 1 multiattribute data vector of N attributes, I is a diagonal matrix of 

ones, 𝐚2 is another multiattribute data vector, C is the covariance matrix of multiattribute 

variables, and r is the Euclidean or Mahalanobis distance between 𝐚1  and 𝐚2 . If we 

assume the input attributes to be independent, the Mahalanobis distance then becomes z-

score, where 

 𝐶𝑖𝑖 = 𝜎𝑖
2,                                                              (5.3) 

and 

𝐶𝑖𝑗 = 0, ∀ 𝑖 ≠ 𝑗.                                                     (5.4) 

𝜎𝑖  is the standard deviation of the ith attribute. To emphasize and deemphasize the 

importance of a given attribute, I define a weight matrix W when calculating distance in 

SOM: 

𝑟 = √(𝐚1 − 𝐚2)𝑇𝐖𝐂−1(𝐚1 − 𝐚2).                                    (5.5) 

Now we have a diagonal matrix W along with the diagonal normalization matrix 

C used for z-score. A larger value of Wii means the ith attribute is more important and is 

weighted more in SOM, and a smaller value of Wii means the ith attribute is less important 

and therefore has less impact on the SOM facies map. If the diagonal contains only zeros 

or ones, equation 5 reduces to the traditional (binary attribute weighting) SOM where one 
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selects (Wii = 1) or rejects (Wii = 0) an attribute. In Figure 5.1, I show a schematic plot 

of two attributes to demonstrate how the distance matrix W changes clusters in the data. 

I organize the remaining of this chapter as follows. I introduce the definition and 

derivation of the weight matrix in the next section, followed by data description of a field 

example. I then demonstrate the proposed workflow and compare with the traditional, 

input attributes equally weighted SOM using a dataset from the Barnett Shale, United 

States. I further provide a discussion using a second field example, complementing the 

first experiment with another input attribute scenario. Finally, I sum up the study with 

conclusions.  

WEIGHTING AS A MEANS FOR ATTRIBUTE SELECTION 

My goal is to define the weight matrix W as a function of interpreter’s knowledge 

and attributes’ contribution to SOM. I encourage readers to retrieve details of the SOM 

implementation on which this study is built from Roy et al. (2013), Zhao et al. (2015), 

and Zhao et al. (2016). 

Inspired by Benabdeslem and Lebbah (2007), given N input attributes and J 

prototype vectors (which are the proxies of the 2D SOM neurons in the attribute space), 

I define 𝜔𝑖, the ith attribute’s contribution to a SOM model, as: 

𝜔𝑖 = ∑ 𝑑𝑗

|𝑝𝑗𝑖|

∑ |𝑝𝑗𝑘|𝑁
𝑘=1

𝐽

j=1

,                                                  (5.6) 

and 

𝑑𝑗 =
ℎ𝑗

𝑀
,                                                              (5.7) 

where hj is the number of multiattribute training samples that are nearest to the jth 

prototype vector, M is the total number of multiattribute training samples, dj represents 
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the density of training samples assigned to the jth prototype vectors, and pjk is the value 

of the jth prototype vector along dimension k (the dimension of the kth attribute). 

Physically, if a prototype vector has a very large value in the dimension of the target 

attribute, and a large percentage of training samples are close to this prototype vector, 

then the target attribute’s contribution at this prototype vector is significant. Summing up 

over all the prototype vectors, we then arrive at the target attribute’s contribution to the 

whole SOM model. 

Unfortunately, after some tests, I conclude that this contribution 𝛚 depends on the 

combination of attributes, which means the rank of contribution for a given group of 

attributes changes by adding a new attribute in the group. Such phenomenon is a 

drawback of using PCA to initialize the SOM neurons. In this SOM implementation, the 

SOM neurons are initialized uniformly in the 2D space defined by the first two principal 

components of the input attributes. The first two principal components will change by 

adding or dropping attributes from the input group; as a result, the projection from input 

attribute space to the 2D SOM space changes, while the contribution of each attribute 

changes as well. To ensure an overall optimal contribution measurement for a given group 

of attributes, I propose to use an exhaustive search over all combinations of three of more 

attributes,  

𝑆 = ∑
𝑁!

𝑖! (𝑁 − 𝑖)!

𝑁

𝑖=3

,                                                  (5.8) 

and then weight by the number of attributes in each combination and take the sum over 

all used combinations: 

𝜔𝑖 = ∑ 𝑁𝑙𝜔̃𝑖𝑙

𝑆

𝑙=1

,                                                     (5.9) 
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where ! denotes factorial operation, S is the total number of SOM models to be searched, 

Nl is the number of attributes in the lth combination, 𝜔̃𝑖𝑙 is the contribution of the ith 

attribute to the lth SOM model, and 𝜔𝑖 is the final contribution of the ith attribute to SOM. 

Although the proposed method involves running SOM multiple times with different input 

attribute combinations, it is an embarrassingly parallel problem so that the increase in 

computation time over the traditional SOM is negligible given sufficient amount of 

threads/processors. 

To quantify which attributes are favored by interpreters to be used for SOM facies 

analysis, we first need to define an ideal facies map. Practically, an interpreter can either 

use different colors, or delineate boundaries to define different facies. The authors favor 

color representation, because then the boundary information becomes complimentary 

once a color change is identified. Attributes representing boundaries or local abrupt 

deformations such as coherence have much faster local variation than attributes 

representing bodies, and can dominate in voxel based classification methods. A window 

based method is proposed by Song et al. (2017), however they use waveforms instead of 

multiple attributes. Here I loosely define an “edge” attribute to be an attribute representing 

the variation among neighboring seismic samples, and a “body” attribute to be an attribute 

representing a property of a seismic sample or samples within a window. Figure 5.2 shows 

an example of two attributes along a horizon slice from the Ellenburger formation, Fort 

Worth Basin. The GLCM homogeneity is a texture attribute that provides a measure of 

the amplitude smoothness along a horizon, which is a “body” attribute. In contrast, the 

energy ratio similarity highlights edges, but ignores changes outside the edges. 

Researchers in geostatistics routinely inspect histograms to determine if variables behave 
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proper distribution for subsequent analysis, and even transform a variable using quantile 

representation if its distribution is highly skewed (Coburn et al., 2005). Figure 5.2c and 

5.2d show the histogram of these two attributes, from which I observe that the body 

attribute exhibits a flatter and more symmetric histogram, whereas the edge attribute’s 

histogram is tighter and skewed. Based on this observation, I propose to use skewness 

and kurtosis, which measures the symmetry and sharpness, to quantify the interpreter’s 

preference of body attributes over edge attributes. 

Skewness, which is the third moment of the standard score of a variable x, is 

defined as: 

𝑠(𝑥) = 𝔼 [(
𝑥 − 𝑥̅

𝜎𝑥
)

3

],                                               (5.10) 

where 𝑥̅  is the mean of variable x, 𝜎𝑥  is the standard deviation, and 𝔼  represents 

expectation. Similarly, kurtosis is the fourth moment of the standard score of a variable x 

and is defined as: 

𝑘(𝑥) = 𝔼 [(
𝑥 − 𝑥̅

𝜎𝑥
)

4

].                                              (5.11) 

In practice, the skewness and kurtosis are precomputed before determining the 

attribute contribution 𝛚. After the computation of 𝛚, I further normalize both skewness 

and kurtosis to range between zero and one. Weighting the previously defined 𝛚 using 

skewness and kurtosis, and normalize again using the z-score: 

𝑤𝑖 = (3 −
|𝑠𝑖| − min

𝑖=1,𝑁
|𝑠𝑖|

max
𝑖=1,𝑁

|𝑠𝑖| − min
𝑖=1,𝑁

|𝑠𝑖|
−

𝑘𝑖 − min
𝑖=1,𝑁

𝑘𝑖

max
𝑖=1,𝑁

𝑘𝑖 − min
𝑖=1,𝑁

𝑘𝑖
) 𝜔𝑖,                 (5.12) 

𝑤̂𝑖 =
𝑤𝑖 − 𝑤̅

𝜎𝑤
.                                                        (5.13) 
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Here, 𝑤𝑖 is the weight of attribute i before z-score normalization, 𝑤̅ is the mean of 𝑤𝑖, 𝜎𝑤 

is the standard deviation, and 𝑤̂𝑖 is the weight of attribute i after the z-score. In equation 

5.12, because the skewness term and kurtosis term are both normalized to range between 

zero and one, I assume an equal impact of skewness and kurtosis. At the same time, the 

absolute value of 𝑤𝑖 is of less interest, as I further normalize it to be 𝑤̂𝑖 using z-score. 

Finally, I constrain the weight to range from zero to two using a sigmoid function, and 

defining the elements of the diagonal weight matrix W to be: 

𝑊𝑖𝑖 =
2

1 + 𝑒−𝑤̂𝑖
.                                                       (5.14) 

Using this heuristic approach, I have defined a weighting parameter as a function 

of the interpreter’s knowledge and SOM response. I then use the distance definition in 

equation 5.5 with the updated weight matrix W to run SOM a final time, and generate the 

facies map. I provide a workflow summarizing the steps in Figure 5.3. 

DATA DESCRIPTION 

In this field example, the Barnett Shale lies directly on top of the dolomitic 

Ellenburger formation in the western region of the Fort Worth Basin (Figure 5.4). Going 

through a series of diagenetic episodes (Kupecz and Land, 1991) which include at least 

five karst events ranging between post Ellenburger to Early Pennsylvanian (Canter et al., 

1993), the Ellenburger formation is highly deformed, with extensive development of karst 

and joints that extend upwards from the water-saturated Ellenburger into the Barnett 

Shale, posing drilling and completion hazards (Pollastro et al., 2007). I use spectral 

decomposition, geometric, and texture attributes, which are sensitive to strata thickness, 

lithology, and structural deformation, to illuminate the architectural elements presented 

in the shallow part of Ellenburger formation. 
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To study the geomorphology of the highly karsted Ellenburger formation, I use 

co-rendered multiple attributes along a phantom horizon (Horizon A) 25 ms below the 

top of Ellenburger formation (Figure 5.5 to 5.8). Karst features in the study area appear 

either as isolated circular to oval shape, or in a cellular network of polygonal karst. The 

positive (red) on the perimeter and negative (blue) in the center in structural curvature 

(Figure 5.5) define collapse features. Amplitude curvature provides a complimentary 

image, enhancing smaller collapse features (e.g., blue arrows in Figure 5.6). Polygonal 

karst and fractures are delineated in both structural and amplitude curvatures (yellow 

arrows), allowing the identification of the major faults (red arrows), which 

compartmentalize the karst into different clusters. Modulating peak spectral frequency by 

peak spectral magnitude (Figure 5.7), we observe that highly karsted regions exhibit 

lower frequency compared to the surrounding area, possibly due to the non-specular 

scattering from the chaotic reflectors. These regions are also low in peak spectral 

magnitude (dimmer color in Figure 5.7), as a substantial amount of the reflected energy 

is not properly received by the receivers within the migration aperture. Besides the highly 

karsted regions, we also notice a shift in frequency in the less deformed surrounding area, 

indicating a change in layer thickness. Figure 5.8 co-renders GLCM homogeneity with 

energy ratio similarity. Visually, areas that are less coherent are also less homogeneous, 

suggesting a more rugose surface. The low GLCM homogeneity outlines the regions of 

karst, inside which the similarity attribute provides details of the karst geometry at 

different scales. These visual correlations of mathematically independent attributes for a 

given geologic feature provide an interactive, interpreter-driven means of selecting the 

most appropriate attributes for subsequent machine-driven classification. 
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APPLICATION 

I perform SOM analysis within a 50 ms time window below the top Ellenburger 

surface in order to capture the structural deformation and diagenetic alteration of the 

sallow Ellenburger formation, which has a direct impact on the Barnett Shale reservoir 

lying unconformably above. While interaction with crossplots of two or three attributes 

(against x-, y-, and an additional color-axis, if needed) is simple, interacting with eight 

attributes and an 8D crossplot is intractable. In this implementation, SOM projects this 

intractable 8D crossplot into a 2D space that can be visualized on a computer screen, 

while still preserving most of the topological and distance relationship from the original 

8D space. After precomputing the attribute weight matrix as described previously, I 

obtain the weights of the eight input attributes and display with their corresponding 

histogram in Figure 5.9. Note that highly skewed attributes (curvature and similarity) are 

penalized; in contrast, “body” attributes are amplified. With such a penalty on curvature 

and similarity attributes, one may suspect that the anomalies from these attributes would 

have been overly mitigated. I assume that the contrast in curvature and similarity between 

features of interest (karst and faults, versus planar features in this example) still allows 

them to be classified by the SOM facies map. The majority of geology is planar and 

continuous, such that the mean value of curvature is close to zero and the mean value of 

similarity close to one. In contrast, structural or curvature anomalies of interest have 

values several standard deviations from the mean. Therefore, we still expect to observe 

the anomalies after penalizing on these attributes. 

The SOM facies map with equally weighed input attributes is shown in Figure 

5.10, and from the proposed workflow using the same group of input attribute in Figure 
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5.11. In this implementation, I output the SOM facies map as two volumes, one for each 

axis of the projected 2D space. I then blend these two volumes together to generate a 

SOM facies map as shown in Figure 5.10 and 5.11. Therefore, every sample in these SOM 

facies map is no longer a scalar, but a two dimensional vector that represents the 

coordinates of that sample in the projected SOM 2D space. This vector representation 

enables us to plot each dimension against two 1D color bars perpendicular to each other. 

By using commercial crossplotting tools available in many interpretation packages 

provides the color bar shown in Figure 5.10 and 5.11. Such representation has greatly 

enhanced the interpretation of SOM facies. 

Comparing Figure 5.10 and 5.11, note observe that both SOM facies maps are 

able to delineate the karst, faults, and fractures equally well. This observation verifies the 

assumption that I made earlier, that adding a penalty weight does not significantly alter 

the curvature and similarity anomaly contributions. The polygonal karst regions are 

characterized by purple and cyan facies, where purple corresponds to anticlinal 

components and cyan synclinal components. Compared to the co-rendered structural 

curvatures, both SOM facies maps provide details about smaller scaled karst caves that 

are not identifiable on structural curvatures, most of which correspond to fracture joints 

(blue arrows). We are also able to identify the major faults (red arrows) close to the 

polygonal karst regions, suggesting a tectonic control of the karst development 

(Khatiwada et al., 2013, Qi at al., 2014). The main difference between Figure 5.10 and 

5.11 comes from regions marked with yellow and orange arrows. In Figure 5.11, the 

yellow arrow regions are in a lime green facies, where the orange arrow regions are in an 

orange facies. In contrast, these regions look nearly identical in Figure 5.10, all being 
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brownish cellular textures that somehow follow the trend on the curvature attributes. The 

lime green versus orange facies change in Figure 5.11 reflects the frequency variation 

found in Figure 5.7, where low peak frequency regions are in lime green facies (yellow 

arrows), and high frequency regions are in orange facies (orange arrows). The peak 

frequency provides information on tuning thickness, which adds another dimension 

besides surface morphology. The SOM facies map from equally weighted attributes, on 

the other hand, does not distinct such frequency variation clearly. After z-score 

normalization, the contrast in some attributes (such as curvature and similarity in this 

example) are much higher than the others (such as spectral decomposition attributes) and 

dominates the distance calculation. SOM is biased towards finding clusters in those 

attributes. After stretching and squeezing the distance along each attribute dimension 

using the precomputed weights, I am able to recover the variation in peak frequency that 

is otherwise buried in the strong curvature contrast. Figure 5.12 provides a SOM result 

generated from a subset of equally weighted attributes. In this example, I only use 

structural curvatures, peak spectral frequency and magnitude, and GLCM homogeneity 

as input attributes, with the objective to better define the extent of polygonal karst while 

reducing the dominance of edge attributes that we previously observed when there were 

three more edge attributes. By eliminating the overprint from amplitude curvature and 

similarity, we recognize a cleaner silhouette of the polygonal karst; however, the change 

in frequency in the less deformed regions is still difficult to identify. This facies map is 

excellent in delineating structural deformations of karst, faults, and fractures, but fails to 

properly represent frequency information. 
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To look for evidence of the facies discovered in Figure 5.11, I take four composite 

vertical sections (a) – (d) from seismic amplitude, and co-render with the SOM facies 

(Figure 13). In order to allow the background seismic amplitude to come through, I 

modulate the opacity of the SOM facies, which leads to faded color on the vertical 

sections compared to on the map along Horizon A. Horizon A lies vertically at the center 

of the SOM analysis window, so we expect to see the same facies in Figure 5.11 to appear 

at the center (vertically) of the colored zone on vertical sections. In section (b), I use a 

red-white-blue colorbar for seismic amplitude to better visualize the thickness change in 

reflectors, where the black curve marks Horizon A. We see a change in layer thickness in 

the two red ovals, which verifies the facies change that I previously interpreted. The karst 

features identified on Horizon A nicely match the synclinal events on seismic amplitude 

profile (marked as red curves), with the perimeter in purple (which fades to magenta on 

the vertical sections) delineating the extent. We identify a large dome shaped karst 

developed in the center of a collapse in section (d), which may related to the compression 

from the two reverse faults on the east and west sides (blue curves). Most polygonal karst 

features develop along or in the vicinity of faults, and many of the smaller scale, isolated 

karst caves appear at joints of folds. The location of karst indicates that fractures of 

different scales might have accelerated the weathering and dissolution process of the 

Ellenburger formation. 

DISCUSSION 

By now I have demonstrated that by adaptively weighting the input attribute, 

information from input attributes are more adequately presented in the SOM facies map. 

To further investigate the effectiveness of the proposed attribute weighting scheme, I 
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provide a second example from the Barnett Shale, in which the main target is to map the 

interbedded layers within the Barnett Shale formation overlying the Ellenburger 

formation. In this example, I use structural attributes and inversion attributes as inputs to 

SOM, where the weights calculated using the proposed approach are provided in Table 

5.1. Inversion attributes are closely related to the elastic properties and lithology of the 

rocks, and therefore are effectively used to characterize shale reservoirs. On the other 

hand, structural attributes are useful when mapping faults and folds in the shale formation. 

Figure 5.14 shows SOM facies maps from both equally weighted (Figure 5.14a) and data-

adaptively weighted (Figure 5.14b) input attributes. We observe that the result from 

adaptively weighted attributes provides better defined layers, contain less “noise” 

associated with the structural attributes (black ovals), and still shows the major fault in 

the west of the survey. Furthermore, while increasing the weights of the inversion 

attributes, we also note the weights are consistent with the hierarchy of attribute 

dependence. P and S impedances are two independent attributes directly inverted from 

seismic inversion and have the highest weights; Lambda/Mu and Vp/Vs are calculated 

from P and S impedances and have more modest weights; Poisson’s Ratio is calculated 

from Vp/Vs and has the lowest weight. Such weight values indirectly verifies the 

dependency among input attributes. 

CONCLUSIONS 

In this study, I augment the attribute selection process with an attribute weighting 

process for seismic facies analysis. I define the attribute weight to be a function of both 

SOM response and interpreter’s preference. By using such weights, information in the 

input attributes are more adequately represented in the SOM facies map, and less 
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dominated by attributes with very high contrast. The weights also provides information 

on attribute inter-dependency, which may allow interpreters to understand the origin and 

behavior of different attributes, and in turn to select the most appropriate group of input 

attributes for seismic facies analysis. Being a heuristic method in nature, the proposed 

approach is one of the many possible ways for attribute selection, however I believe it is 

the very first attempt to using weighting in place of simple selection. I hope that the 

proposed approach will inspire others to add further metrics to the quantitative attribute 

selection problems. 
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CHAPTER 5 TABLES 

Attribute Weight 

Coherent energy 0.52 

Dip magnitude 0.69 

Energy ratio similarity 0.52 

P impedance 1.66 

S impedance 1.73 

Lambda/Mu 0.99 

Vp/Vs 0.94 

Poisson’s Ratio 0.72 

Table 5.1. Input attributes and their corresponding weights used in the second Barnett 

Shale example. Note the weight values of inversion attributes are consistent with attribute 

dependency.
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CHAPTER 5 FIGURES 

 

Figure 5.1. A schematic drawing to show the effect of weighting attributes. Before 

analysis, the attributes are transformed to have equal contribution to clustering using a z-

score algorithm. (a) Two equally weighted attributes with three clusters. The red and 

green clusters are very close such that a distance-based clustering algorithm may only 

find two instead of three clusters, placing red and green samples into a single cluster. (b) 

The same data samples but now with different weights applied to the two attributes 

changing their distance from the origin. The red and green clusters are now better 

separated. 
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(a) 

(b) 
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Figure 5.2. A phantom Horizon A 25 ms below the top of Ellenburger formation through 

the (a) GLCM homogeneity and (b) Energy ratio similarity volumes. Red arrows denote 

locations of large regional faults. Blue arrows denote small scale, isolated karst collapse 

features. Yellow arrows denote less deformed regions of relatively thick layers, while 

orange arrows denote less deformed regions of relatively thin layers. I loosely define the 

GLCM homogeneity as a “body” attribute as it represents information within a window 

along structural dip. It is useful for mapping the extent of the highly deformed regions. 

In contrast, the energy ratio similarity is an edge attribute that highlights the boundaries 

among different features. (c) The histogram of GLCM homogeneity within the analysis 

window. (d) The histogram of energy ratio similarity within the analysis window. 
 

 

 

 

(c) 

(d) 
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Figure 5.3. The proposed attribute weighting workflow. 

 

 

 

 

Figure 5.4. Stratigraphic cross section of the Fort Worth Basin. In the study area, the 

Barnett Shale lies unconformably on top of the dolomitic Ellenburger formation. The 

seismic survey showing the Ellenburger karst is to the south of Young County in this plot 

(after Pollastro et al., 2007). 
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Figure 5.5. Co-rendered structural curvatures k1 and k2 along a phantom Horizon A 25 

ms below the top of the Ellenburger formation. Red arrows denote locations of large 

regional faults. Blue arrows denote small scale, isolated karst collapse features. Yellow 

arrows denote less deformed regions of relatively thick layers, while orange arrows 

denote less deformed regions of relatively thin layers. 
 

 

Figure 5.6. Co-rendered amplitude curvatures epos and eneg along a phantom Horizon A 

25 ms below the top of the Ellenburger formation Red arrows denote locations of large 

regional faults. Blue arrows denote small scale, isolated karst collapse features. Yellow 

arrows denote less deformed regions of relatively thick layers, while orange arrows 

denote less deformed regions of relatively thin layers. Amplitude curvature shows more 

details about the small scale karst. 
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Figure 5.7. Peak spectral frequency modulated by peak spectral magnitude along a 

phantom Horizon A 25 ms below the top of the Ellenburger formation. Red arrows denote 

locations of large regional faults. Blue arrows denote small scale, isolated karst collapse 

features. Yellow arrows denote less deformed regions of relatively thick layers, while 

orange arrows denote less deformed regions of relatively thin layers. The polygonal karst 

regions are of low frequency and low magnitude, possibly due to the non-specular 

reflection from the highly deformed reflectors. 
 

 

Figure 5.8. Co-rendered GLCM homogeneity and energy ratio similarity along a 

phantom Horizon A 25 ms below the top of Ellenburger formation. Red arrows denote 

locations of large regional faults. Blue arrows denote small scale, isolated karst collapse 

features. Yellow arrows denote less deformed regions of relatively thick layers, while 

orange arrows denote less deformed regions of relatively thin layers. 
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Figure 5.9. Histograms of the eight input attributes within the analysis window. Weights 

are computed using the method described in this paper. Note that histograms exhibiting 

high kurtosis and/or skewness are assigned lower weights, while those that rea broader 

and more symmetric are assigned higher weights. Values at the bottom of each histogram 

mark the z-scores, and dashed lines mark values at zero, one, and two standard deviations. 

Note curvature and coherence attributes span several standard deviations. 
 

 

Figure 5.10. SOM facies map from equally weighted attributes along a phantom Horizon 

A 25 ms below the top of the Ellenburger formation. Red arrows denote locations of large 

regional faults. Blue arrows denote small scale, isolated karst collapse features. Yellow 

arrows denote less deformed regions of relatively thick layers, while orange arrows 

denote less deformed regions of relatively thin layers. The dashed lines in the 2D color 

maps denotes the 1D colorbar used for each projection along a SOM axis in order to 

approximate the 2D color map. 
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Figure 5.11. SOM facies map from adaptively weighted attributes along a phantom 

Horizon A 25 ms below the top of the Ellenburger formation. Red arrows denote locations 

of large regional faults. Blue arrows denote small scale, isolated karst collapse features. 

Yellow arrows denote less deformed regions of relatively thick layers, while orange 

arrows denote less deformed regions of relatively thin layers. The dashed lines in the 2D 

color maps denotes the 1D colorbar used for each projection along a SOM axis in order 

to approximate the 2D color map. 
 

 

Figure 5.12. SOM facies map from a subset of equally weighted attributes along a 

phantom Horizon A 25 ms below the top of the Ellenburger formation. Red arrows denote 

locations of large regional faults. Blue arrows denote small scale, isolated karst collapse 

features. Yellow arrows denote less deformed regions of relatively thick layers, while 

orange arrows denote less deformed regions of relatively thin layers. The dashed lines in 

the 2D color maps denotes the 1D colorbar used for each projection along a SOM axis in 

order to approximate the 2D color map. 
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Figure 5.14. Vertical sections from a second Barnett Shale seismic survey. (a) SOM 

facies map with equally weighted input attributes; (b) SOM facies map from adaptively 

weighed input attributes. Weights for each attribute are provided in Table 1. We notice 

the layers within the shale formations are better defined in (b), and with less noise 

associated with structural attributes (black ovals). 
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CHAPTER 6 

CONCLUSIONS 

In this dissertation, I explored the feasibility of machine learning/pattern 

recognition techniques on seismic interpretation, and focused on one technique, the self-

organizing map (SOM), improving it to better address multiattribute seismic 

interpretation problems. Machine learning/ pattern recognition techniques can effectively 

reduce the human labor involved in the traditional seismic interpretation, while reducing 

the interpretation uncertainty by combining information from multiple seismic attributes. 

Such technology innovation happens in every aspect of exploration geophysics. For 

example, while seismic imagers no longer use hand drawing on papers for migration and 

rely heavily on computers to perform the operation, there are still thousands of seismic 

imagers in the industry. Similarly, replacing human interpreters by automatic systems is 

not what I advocate and is deemed impossible. Interpreters will outsource the labor 

intensive steps to computers, oversee the processes, quality control the final products, and 

make decisions based on their experience. With the development of autopickers, seismic 

attributes, and seismic facies analysis techniques, I anticipate interpreters will be able to 

generate more complete, more quantitative products, testing and evaluating more 

hypotheses. 

Being an emerging topic, there are numerous developments and improvements 

that await us. I focus on SOM as it is the most popular and commonly available 

unsupervised learning method for the seismic interpretation community. Traditional 

SOM was not developed specificly for seismic interpretation problems. With the 

improvements I made, I believe that the seismic facies represent the information from 
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input attributes more appropriately than the traditional SOM. While the distance-

preserving improvement (discussed in Chapter 3) is unique to SOM, the stratigraphic 

constraint (Chapter 4) and attribute weighting (Chapter 5) are equally valid for other 

unsupervised seismic facies analysis methods. In this sense, SOM is just a proxy that 

demonstrates the value of such improvements; the broader message I wish to convey is a 

general solution on how to tailor an unsupervised learning technique to properly handle 

multiattribute seismic facies analysis. I hope that this dissertation contributes to building 

a “Turing machine” that built for seismic interpretation. 
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